海拉尔区实验中学2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海拉尔区实验中学2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 如图,AB 是半圆O 的直径,AB =2,点P 从A 点沿半圆弧运动至B 点,设∠AOP =x ,将动点P 到A ,B 两点的距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )
和为n S ,若4232()
a a a =+,则
7
4
S a =( ) 2. 设公差不为零的等差数列{}n a 的前n 项 A .74
B .
14
5
C .7
D .14 【命题意图】本题考查等差数列的通项公式及其前n 项和,意在考查运算求解能力.
3. 已知命题p 和命题,若p q ∧为真命题,则下面结论正确的是( )
A .p ⌝是真命题
B .q ⌝是真命题
C .p q ∨是真命题
D .()()p q ⌝∨⌝是真命题 4. 一个椭圆的半焦距为2,离心率
e=,则它的短轴长是( )
A .3
B
.
C .
2
D .6
5. 已知幂函数y=f (x
)的图象过点(
,),则f (2)的值为( )
A
.
B
.﹣
C .2
D .﹣2
6. 已知命题p :对任意x ∈R ,总有3x >0;命题q :“x >2”是“x >4”的充分不必要条件,则下列命题为真命题的是( )
A .p ∧q
B .¬p ∧¬q
C .¬p ∧q
D .p ∧¬
q
7. 在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为( )
A .
B .
C .
D .
8. 已知圆C 1:x 2+y 2=4和圆C 2:x 2+y 2
+4x ﹣4y+4=0关于直线l 对称,则直线l 的方程为( ) A .x+y=0 B .x+y=2 C .x ﹣y=2 D .x ﹣y=﹣2 9. 方程(x 2﹣4)2+(y 2﹣4)2=0表示的图形是( ) A .两个点 B .四个点
C .两条直线
D .四条直线
10.已知点M 的球坐标为(1,,
),则它的直角坐标为( )
A .(1,
,
)
B .(,
,)
C .(,,)
D .(
,,
)
11.设集合A={x|﹣2<x <4},B={﹣2,1,2,4},则A ∩B=( ) A .{1,2}
B .{﹣1,4}
C .{﹣1,2}
D .{2,4}
12.设P 是椭圆+
=1上一点,F 1、F 2是椭圆的焦点,若|PF 1|等于4,则|PF 2|等于( )
A .22
B .21
C .20
D .13
二、填空题
13.定义在R 上的偶函数f (x )在[0,+∞)上是增函数,且f (2)=0,则不等式f (log 8x )>0的解集是 .
14.已知关于的不等式20x ax b ++<的解集为(1,2),则关于的不等式2
10bx ax ++>的解集 为___________.
15.设函数
,其中[x]表示不超过x 的最大整数.若方程f (x )=ax 有三个不同
的实数根,则实数a 的取值范围是 .
16.【常熟中学2018届高三10月阶段性抽测(一)】函数()2
1ln 2
f x x x =-的单调递减区间为__________.
17.椭圆C : +
=1(a >b >0)的右焦点为(2,0),且点(2,3)在椭圆上,则椭圆的短轴长为 .
18.已知函数f (x )=,若关于x 的方程f (x )=k 有三个不同的实根,则实数k 的取值范
围是 .
三、解答题
19.如图,四面体ABCD中,平面ABC⊥平面BCD,AC=AB,CB=CD,∠DCB=120°,点E在BD上,且CE=DE.
(Ⅰ)求证:AB⊥CE;
(Ⅱ)若AC=CE,求二面角A﹣CD﹣B的余弦值.
20.提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(Ⅰ)当0≤x≤200时,求函数v(x)的表达式;
(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v (x)可以达到最大,并求出最大值.(精确到1辆/小时).
21.已知函数f (x )=
sin ωxcos ωx ﹣cos 2ωx+(ω>0)经化简后利用“五点法”画其在某一个周期内的图象
π π
(Ⅰ)请直接写出①处应填的值,并求函数f (x )在区间[﹣
,
]上的值域;
(Ⅱ)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知f (A+)=1,b+c=4,a=
,求△ABC 的面
积.
22.武汉市为增强市民交通安全意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示. (1)分别求第3,4,5组的频率;
(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?
(3)在(2)的条件下,该市决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.
23.已知函数f(x)=lg(2016+x),g(x)=lg(2016﹣x)
(1)判断函数f(x)﹣g(x)的奇偶性,并予以证明.
(2)求使f(x)﹣g(x)<0成立x的集合.
24.已知二次函数f(x)=x2+bx+c,其中常数b,c∈R.
(Ⅰ)若任意的x∈[﹣1,1],f(x)≥0,f(2+x)≤0,试求实数c的取值范围;(Ⅱ)若对任意的x1,x2∈[﹣1,1],有|f(x1)﹣f(x2)|≤4,试求实数b的取值范围.
海拉尔区实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题
1. 【答案】
【解析】选B.取AP 的中点M , 则P A =2AM =2OA sin ∠AOM
=2sin x
2,
PB =2OM =2OA ·cos ∠AOM =2cos x
2
,
∴y =f (x )=P A +PB =2sin x 2+2cos x 2=22sin (x 2+π
4),x ∈[0,π],根据解析式可知,只有B 选项符合要求,
故选B. 2. 【答案】C.
【解析】根据等差数列的性质,4231112()32(2)a a a a d a d a d =+⇒+=+++,化简得1a d =-,∴17
4
176
7142732a d
S d a a d d
⋅+
===+,故选C.
3. 【答案】C 【解析】]
试题分析:由p q ∧为真命题得,p q 都是真命题.所以p ⌝是假命题;q ⌝是假命题;p q ∨是真命题;
()()p q ⌝∨⌝是假命题.故选C.
考点:命题真假判断. 4. 【答案】C
【解析】解:∵椭圆的半焦距为2,离心率
e=,
∴c=2,a=3,
∴
b= ∴
2b=2
.
故选:C .
【点评】本题主要考查了椭圆的简单性质.属基础题.
5. 【答案】A
【解析】解:设幂函数y=f (x )=x α
,把点(
,
)代入可得
=
α
,
∴α
=,即f (x )=,
故f(2)==,
故选:A.
6.【答案】D
【解析】解:p:根据指数函数的性质可知,对任意x∈R,总有3x>0成立,即p为真命题,
q:“x>2”是“x>4”的必要不充分条件,即q为假命题,
则p∧¬q为真命题,
故选:D
【点评】本题主要考查复合命题的真假关系的应用,先判定p,q的真假是解决本题的关键,比较基础
7.【答案】C
【解析】解:正方体8个顶点中任选3个顶点连成三角形,所得的三角形是等腰直角三角形只能在各个面上,在每一个面上能组成等腰直角三角形的有四个,
所以共有4×6=24个,
而在8个点中选3个点的有C83=56,
所以所求概率为=
故选:C
【点评】本题是一个古典概型问题,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.
8.【答案】D
【解析】【分析】由题意可得圆心C1和圆心C2,设直线l方程为y=kx+b,由对称性可得k和b的方程组,解方程组可得.
【解答】解:由题意可得圆C1圆心为(0,0),圆C2的圆心为(﹣2,2),
∵圆C1:x2+y2=4和圆C2:x2+y2+4x﹣4y+4=0关于直线l对称,
∴点(0,0)与(﹣2,2)关于直线l对称,设直线l方程为y=kx+b,
∴•k=﹣1且=k•+b,
解得k=1,b=2,故直线方程为x﹣y=﹣2,
故选:D.
9.【答案】B
【解析】解:方程(x2﹣4)2+(y2﹣4)2=0
则x2﹣4=0并且y2﹣4=0,
即,
解得:,,,,
得到4个点.
故选:B.
【点评】本题考查二元二次方程表示圆的条件,方程的应用,考查计算能力.
10.【答案】B
【解析】解:设点M的直角坐标为(x,y,z),
∵点M的球坐标为(1,,),
∴x=sin cos=,y=sin sin=,z=cos=
∴M的直角坐标为(,,).
故选:B.
【点评】假设P(x,y,z)为空间内一点,则点P也可用这样三个有次序的数r,φ,θ来确定,其中r为原点O与点P间的距离,θ为有向线段OP与z轴正向的夹角,φ为从正z轴来看自x轴按逆时针方向转到OM 所转过的角,这里M为点P在xOy面上的投影.这样的三个数r,φ,θ叫做点P的球面坐标,显然,这里r,φ,θ的变化范围为r∈[0,+∞),φ∈[0,2π],θ∈[0,π],
11.【答案】A
【解析】解:集合A={x|﹣2<x<4},B={﹣2,1,2,4},则A∩B={1,2}.
故选:A.
【点评】本题考查交集的运算法则的应用,是基础题.
12.【答案】A
【解析】解:∵P是椭圆+=1上一点,F1、F2是椭圆的焦点,|PF1|等于4,
∴|PF2|=2×13﹣|PF1|=26﹣4=22.
故选:A.
【点评】本题考查椭圆的简单性质的应用,是基础题,解题时要熟练掌握椭圆定义的应用.
二、填空题
13.【答案】 (0,)∪(64,+∞) .
【解析】解:∵f (x )是定义在R 上的偶函数, ∴f (log 8x )>0,等价为:f (|log 8x|)>f (2),
又f (x )在[0,+∞)上为增函数, ∴|log 8x|>2,∴log 8x >2或log 8x <﹣2,
∴x >64或0<x <
.
即不等式的解集为{x|x >64或0<x <}
故答案为:(0,
)∪(64,+∞)
【点评】本题考查函数奇偶性与单调性的综合,是函数性质综合考查题,熟练掌握奇偶性与单调性的对应关系是解答的关键,根据偶函数的对称性将不等式进行转化是解决本题的关键.
14.【答案】),1()2
1,(+∞-∞ 【
解
析
】
考
点:一元二次不等式的解法.
15.【答案】 (﹣1,﹣]∪[,) .
【解析】解:当﹣2≤x <﹣1时,[x]=﹣2,此时f (x )=x ﹣[x]=x+2. 当﹣1≤x <0时,[x]=﹣1,此时f (x )=x ﹣[x]=x+1.
当0≤x <1时,﹣1≤x ﹣1<0,此时f (x )=f (x ﹣1)=x ﹣1+1=x . 当1≤x <2时,0≤x ﹣1<1,此时f (x )=f (x ﹣1)=x ﹣1.
当2≤x <3时,1≤x ﹣1<2,此时f (x )=f (x ﹣1)=x ﹣1﹣1=x ﹣2.
当3≤x<4时,2≤x﹣1<3,此时f(x)=f(x﹣1)=x﹣1﹣2=x﹣3.
设g(x)=ax,则g(x)过定点(0,0),
坐标系中作出函数y=f(x)和g(x)的图象如图:
当g(x)经过点A(﹣2,1),D(4,1)时有3个不同的交点,当经过点B(﹣1,1),C(3,1)时,有2个不同的交点,
则OA的斜率k=,OB的斜率k=﹣1,OC的斜率k=,OD的斜率k=,
故满足条件的斜率k的取值范围是或,
故答案为:(﹣1,﹣]∪[,)
【点评】本题主要考查函数交点个数的问题,利用函数零点和方程之间的关系转化为两个函数的交点是解决本题的根据,利用数形结合是解决函数零点问题的基本思想.
0,1
16.【答案】()
【解析】
17.【答案】.
【解析】解:椭圆C:+=1(a>b>0)的右焦点为(2,0),且点(2,3)在椭圆上,
可得c=2,2a==8,可得a=4,
b2=a2﹣c2=12,可得b=2,
椭圆的短轴长为:4.
故答案为:4.
【点评】本题考查椭圆的简单性质以及椭圆的定义的应用,考查计算能力.
18.【答案】(0,1).
【解析】解:画出函数f(x)的图象,如图示:
令y=k,由图象可以读出:0<k<1时,y=k和f(x)有3个交点,
即方程f(x)=k有三个不同的实根,
故答案为(0,1).
【点评】本题考查根的存在性问题,渗透了数形结合思想,是一道基础题.
三、解答题
19.【答案】
【解析】解:(Ⅰ)证明:△BCD中,CB=CD,∠BCD=120°,
∴∠CDB=30°,
∵EC=DE,∴∠DCE=30°,∠BCE=90°,
∴EC⊥BC,
又∵平面ABC⊥平面BCD,平面ABC与平面BCD的交线为BC,
∴EC⊥平面ABC,∴EC⊥AB.
(Ⅱ)解:取BC的中点O,BE中点F,连结OA,OF,
∵AC=AB,∴AO⊥BC,
∵平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,
∴AO⊥平面BCD,∵O是BC中点,F是BE中点,∴OF⊥BC,
以O为原点,OB为y轴,OA为z轴,建立空间直角坐标系,
设DE=2,则A(0,0,1),B(0,,0),
C(0,﹣,0),D(3,﹣2,0),
∴=(0,﹣,﹣1),=(3,﹣,0),
设平面ACD的法向量为=(x,y,z),
则,取x=1,得=(1,,﹣3),
又平面BCD的法向量=(0,0,1),
∴cos<>==﹣,
∴二面角A﹣CD﹣B的余弦值为.
【点评】本小题主要考查立体几何的相关知识,具体涉及到线面以及面面的垂直关系、二面角的求法及空间向量在立体几何中的应用.本小题对考生的空间想象能力与运算求解能力有较高要求.
20.【答案】
【解析】解:(Ⅰ)由题意:当0≤x≤20时,v(x)=60;当20<x≤200时,设v(x)=ax+b
再由已知得,解得
故函数v(x)的表达式为.
(Ⅱ)依题并由(Ⅰ)可得
当0≤x<20时,f(x)为增函数,故当x=20时,其最大值为60×20=1200
当20≤x≤200时,
当且仅当x=200﹣x,即x=100时,等号成立.
所以,当x=100时,f(x)在区间(20,200]上取得最大值.
综上所述,当x=100时,f(x)在区间[0,200]上取得最大值为,
即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.
答:(Ⅰ)函数v(x)的表达式
(Ⅱ)当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.21.【答案】
【解析】解:(Ⅰ)①处应填入.
=.
∵T=,
∴,,
即.
∵,∴,∴,
从而得到f(x)的值域为.
(Ⅱ)∵,
又0<A<π,∴,
得,.
由余弦定理得a2=b2+c2﹣2bccosA==(b+c)2﹣3bc,
即,∴bc=3.
∴△ABC的面积.
【点评】本小题主要考查三角函数的图象与性质、两角和与差的三角函数、解三角形等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题.
22.【答案】
【解析】解:(1)由题意可知第3组的频率为0.06×5=0.3,
第4组的频率为0.04×5=0.2,
第5组的频率为0.02×5=0.1;
(2)第3组的人数为0.3×100=30,
第4组的人数为0.2×100=20,
第5组的人数为0.1×100=10;
因为第3,4,5组共有60名志愿者,
所以利用分层抽样的方法在60名志愿者中抽取6名志愿者,
每组抽取的人数分别为:第3组=3;第4组=2;第5组=1;
应从第3,4,5组各抽取3,2,1名志愿者.
(3)记第3组3名志愿者为1,2,3;第4组2名志愿者为4,5;第5组1名志愿者为6;
在这6名志愿者中随机抽取2名志愿者有:
(1,2),(1,3),(1,4),(1,5),(1,6),
(2,3),(2,4),(2,5),(2,6),
(3,4),(3,5),(3,6),
(4,5),(4,6),
(5,6);
共有15种,第4组2名志愿者为4,5;至少有一名志愿者被抽中共有9种,
所以第4组至少有一名志愿者被抽中的概率为.
【点评】本题考查列举法计算基本事件数及事件发生的概率,频率分布直方图,考查计算能力.
23.【答案】
【解析】解:(1)设h(x)=f(x)﹣g(x)=lg(2016+x)﹣lg(2016﹣x),h(x)的定义域为(﹣2016,2016);
h(﹣x)=lg(2016﹣x)﹣lg(2016+x)=﹣h(x);
∴f(x)﹣g(x)为奇函数;
(2)由f(x)﹣g(x)<0得,f(x)<g(x);
即lg(2016+x)<lg(2016﹣x);
∴;
解得﹣2016<x<0;
∴使f(x)﹣g(x)<0成立x的集合为(﹣2016,0).
【点评】考查奇函数的定义及判断方法和过程,对数的真数需大于0,以及对数函数的单调性.
24.【答案】
【解析】解:(Ⅰ)因为x∈[﹣1,1],则2+x∈[1,3],
由已知,有对任意的x∈[﹣1,1],f(x)≥0恒成立,
任意的x∈[1,3],f(x)≤0恒成立,
故f(1)=0,即1为函数函数f(x)的一个零点.
由韦达定理,可得函数f(x)的另一个零点,
又由任意的x∈[1,3],f(x)≤0恒成立,
∴[1,3]⊆[1,c],
即c≥3
(Ⅱ)函数f(x)=x2+bx+c对任意的x1,x2∈[﹣1,1],有|f(x1)﹣f(x2)|≤4恒成立,
即f(x)max﹣f(x)min≤4,
记f(x)max﹣f(x)min=M,则M≤4.
当||>1,即|b|>2时,M=|f(1)﹣f(﹣1)|=|2b|>4,与M≤4矛盾;
当||≤1,即|b|≤2时,M=max{f(1),f(﹣1)}﹣f()=
﹣f()=(1+)2≤4,
解得:|b|≤2,
即﹣2≤b≤2,
综上,b的取值范围为﹣2≤b≤2.
【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质是解答的关键.。