呼伦贝尔市实验中学2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
呼伦贝尔市实验中学2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 不等式x (x ﹣1)<2的解集是( )
A .{x|﹣2<x <1}
B .{x|﹣1<x <2}
C .{x|x >1或x <﹣2}
D .{x|x >2或x <﹣1}
2. 从1、2、3、4、5中任取3个不同的数、则这3个数能构成一个三角形三边长的概率为( ) A.110 B.15 C.310 D.25 3. 下列命题中正确的是( )
A .复数a+bi 与c+di 相等的充要条件是a=c 且b=d
B .任何复数都不能比较大小
C .若
=
,则z 1=z 2
D .若|z 1|=|z 2|,则z 1=z 2或z 1=
4. 已知a n =
(n ∈N *
),则在数列{a n }的前30项中最大项和最小项分别是( )
A .a 1,a 30
B .a 1,a 9
C .a 10,a 9
D .a 10,a 30
5. 设集合A={x||x ﹣2|≤2,x ∈R},B={y|y=﹣x 2
,﹣1≤x ≤2},则∁R (A ∩B )等于( ) A .R
B .{x|x ∈R ,x ≠0}
C .{0}
D .∅
6. 半径R 的半圆卷成一个圆锥,则它的体积为( )
A .
πR 3
B .
πR 3 C .
πR 3
D .
πR 3
7. 有下列说法:
①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适.
②相关指数R 2来刻画回归的效果,R 2值越小,说明模型的拟合效果越好.
③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.
其中正确命题的个数是( )
A .0
B .1
C .2
D .3
8. 如图是七位评委为甲,乙两名参赛歌手打出的分数的茎叶图(其中m ,n 为数字0~9中的一个),则甲歌手得分的众数和乙歌手得分的中位数分别为a 和b ,则一定有( )
A .a >b
B .a <b
C .a=b
D .a ,b 的大小与m ,n 的值有关
9. 一个几何体的三个视图如下,每个小格表示一个单位, 则该几何体的侧面积为( )
A.4π
B.25π
C. 5π
D. 225π+π
【命题意图】本题考查空间几何体的三视图,几何体的侧面积等基础知识,意在考查学生空间想象能力和计算
能力.
10.将正方形的每条边8等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三角形个数为( ) A .1372 B .2024 C .3136 D .4495
11.在ABC ∆中,222
sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )1111] A .(0,
]6π
B .[,)6ππ C. (0,]3π D .[,)3
π
π 12.直线: (为参数)与圆:(为参数)的位置关系是( )
A .相离
B .相切
C .相交且过圆心
D .相交但不过圆心
二、填空题
13.设等差数列{a n }的前n 项和为S n ,若﹣1<a 3<1,0<a 6<3,则S 9的取值范围是 .
14.若非零向量,满足|+|=|﹣|,则与所成角的大小为 .
15.设抛物线2
4y x =的焦点为F ,,A B 两点在抛物线上,且A ,B ,F 三点共线,过AB 的中点M 作y 轴的垂线与抛物线在第一象限内交于点P ,若3
2
PF =
,则M 点的横坐标为 .
16.直线ax+
by=1与圆x 2+y 2=1相交于A ,B 两点(其中a ,b 是实数),且△AOB 是直角三角形(O 是坐
标原点),则点P (a ,b )与点(1,0)之间距离的最小值为 .
17.如图,函数f (x )的图象为折线 AC B ,则不等式f (x )≥log 2(x+1)的解集是 .
18.已知函数2
1()sin cos sin 2f x a x x x =-+
的一条对称轴方程为6
x π
=,则函数()f x 的最大值为( )
A .1
B .±1
C
D .【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.
三、解答题
19.已知函数f (x )=
sin ωxcos ωx ﹣cos 2ωx+(ω>0)经化简后利用“五点法”画其在某一个周期内的图象
π π
(Ⅰ)请直接写出①处应填的值,并求函数f (x )在区间[﹣
,
]上的值域;
(Ⅱ)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知f (A+)=1,b+c=4,a=
,求△ABC 的面
积.
20.(本小题满分10分)选修4-5:不等式选讲 已知函数()|21|f x x =-.
(1)若不等式1()21(0)2
f x m m +≤+>的解集为(]
[),22,-∞-+∞,求实数m 的值;
(2)若不等式()2|23|2y
y
a
f x x ≤+
++,对任意的实数,x y R ∈恒成立,求实数a 的最小值.
21.已知
,且
.
(1)求sin α,cos α的值;
(2)若,求sin β的值.
22.(本小题满分10分)选修4—4:坐标系与参数方程
以坐标原点为极点,以x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为方程为r (],0[πθ∈),直线l 的参数方程为2t cos 2sin x y t a
a
ì=+ïí
=+ïî(t 为参数).
(I )点D 在曲线C 上,且曲线C 在点D 处的切线与直线+2=0x y +垂直,求点D 的直角坐标和曲线C 的参数方程;
(II )设直线l 与曲线C 有两个不同的交点,求直线l 的斜率的取值范围.
23.在极坐标系内,已知曲线C1的方程为ρ2﹣2ρ(cosθ﹣2sinθ)+4=0,以极点为原点,极轴方向为x正半轴
方向,利用相同单位长度建立平面直角坐标系,曲线C2的参数方程为(t为参数).
(Ⅰ)求曲线C1的直角坐标方程以及曲线C2的普通方程;
(Ⅱ)设点P为曲线C2上的动点,过点P作曲线C1的切线,求这条切线长的最小值.
24.已知A(﹣3,0),B(3,0),C(x0,y0)是圆M上的三个不同的点.
(1)若x0=﹣4,y0=1,求圆M的方程;
(2)若点C是以AB为直径的圆M上的任意一点,直线x=3交直线AC于点R,线段BR的中点为D.判断直线CD与圆M的位置关系,并证明你的结论.
呼伦贝尔市实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题
1.【答案】B
【解析】解:∵x(x﹣1)<2,
∴x2﹣x﹣2<0,
即(x﹣2)(x+1)<0,
∴﹣1<x<2,
即不等式的解集为{x|﹣1<x<2}.
故选:B
2.【答案】
【解析】解析:选C.从1、2、3、4、5中任取3个不同的数有下面10个不同结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,
4,5),能构成一个三角形三边的数为(2,3,4),(2,4,5),(3,4,5),故概率P=3
10.
3.【答案】C
【解析】解:A.未注明a,b,c,d∈R.
B.实数是复数,实数能比较大小.
C.∵=,则z1=z2,正确;
D.z1与z2的模相等,符合条件的z1,z2有无数多个,如单位圆上的点对应的复数的模都是1,因此不正确.故选:C.
4.【答案】C
【解析】解:a
n
==1+,该函数在(0,)和(,+∞)上都是递减的,
图象如图,
∵9<<10.
∴这个数列的前30项中的最大项和最小项分别是a10,a9.
故选:C.
【点评】本题考查了数列的函数特性,考查了数形结合的解题思想,解答的关键是根据数列通项公式画出图象,是基础题.
5.【答案】B
【解析】解:A=[0,4],B=[﹣4,0],所以A∩B={0},∁R(A∩B)={x|x∈R,x≠0},
故选B.
6.【答案】A
【解析】解:2πr=πR,所以r=,则h=,所以V=
故选A
7.【答案】C
【解析】解:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适,正确.
②相关指数R2来刻画回归的效果,R2值越大,说明模型的拟合效果越好,因此②不正确.
③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好,正确.
综上可知:其中正确命题的是①③.
故选:C.
【点评】本题考查了“残差”的意义、相关指数的意义,考查了理解能力和推理能力,属于中档题.
8.【答案】C
【解析】解:根据茎叶图中的数据,得;
甲得分的众数为a=85,
乙得分的中位数是b=85;
所以a=b.
故选:C.
9.【答案】B
10.【答案】
C
【解析】
【专题】排列组合.
【分析】分两类,第一类,三点分别在三条边上,第二类,三角形的两个顶点在正方形的一条边上,第三个顶点在另一条边,根据分类计数原理可得.
【解答】解:首先注意到三角形的三个顶点不在正方形的同一边上.任选正方形的三边,使三个顶点分别在其上,有4种方法,
再在选出的三条边上各选一点,有73种方法.这类三角形共有4×73=1372个.
另外,若三角形有两个顶点在正方形的一条边上,第三个顶点在另一条边上,则先取一边使其上有三角形的两个顶点,有4种方法,
再在这条边上任取两点有21种方法,然后在其余的21个分点中任取一点作为第三个顶点.这类三角形共有4×21×21=1764个.
综上可知,可得不同三角形的个数为1372+1764=3136.
故选:C.
【点评】本题考查了分类计数原理,关键是分类,还要结合几何图形,属于中档题.
11.【答案】C
【解析】
考点:三角形中正余弦定理的运用.
12.【答案】D
【解析】【知识点】直线与圆的位置关系参数和普通方程互化
【试题解析】将参数方程化普通方程为:直线:圆:
圆心(2,1),半径2.
圆心到直线的距离为:,所以直线与圆相交。
又圆心不在直线上,所以直线不过圆心。
故答案为:D
二、填空题
13.【答案】(﹣3,21).
【解析】解:∵数列{a n}是等差数列,
∴S9=9a1+36d=x(a1+2d)+y(a1+5d)=(x+y)a1+(2x+5y)d,
由待定系数法可得,解得x=3,y=6.
∵﹣3<3a 3<3,0<6a 6<18, ∴两式相加即得﹣3<S 9<21. ∴S 9的取值范围是(﹣3,21). 故答案为:(﹣3,21).
【点评】本题考查了等差数列的通项公式和前n 项和公式及其“待定系数法”等基础知识与基本技能方法,属于中档题.
14.【答案】 90° .
【解析】解:∵
∴=
∴
∴α与β所成角的大小为90°
故答案为90°
【点评】本题用向量模的平方等于向量的平方来去掉绝对值.
15.【答案】2
【解析】由题意,得2p =,(1,0)F ,准线为1x =-,设11(,)A x y 、22(,)B x y ,直线AB 的方程为(1)y k x =-,
代入抛物线方程消去y ,得22
2
2
(24)0k x k x k -++=,所以2122
24k x x k ++=,121x x =.又设00(,)P x y ,
则01212112()[(1)(1)]22y y y k x k x k =+=-+-=,所以021x k =,所以212
(,)P k k
.
因为0213
||112
PF x k =+=+=,解得22k =,所以M 点的横坐标为2.
16.【答案】 .
【解析】解:∵△AOB 是直角三角形(O 是坐标原点),
∴圆心到直线ax+by=1的距离d=,
即d=
=
,
整理得a 2+2b 2
=2,
则点P (a ,b )与点Q (1,0)之间距离d==≥,
∴点P(a,b)与点(1,0)之间距离的最小值为.
故答案为:.
【点评】本题主要考查直线和圆的位置公式的应用以及两点间的距离公式,考查学生的计算能力.17.【答案】(﹣1,1].
【解析】解:在同一坐标系中画出函数f(x)和函数y=log2(x+1)的图象,如图所示:
由图可得不等式f(x)≥log2(x+1)的解集是:(﹣1,1],.
故答案为:(﹣1,1]
18.【答案】A
【解析】
三、解答题
19.【答案】
【解析】解:(Ⅰ)①处应填入.
=.
∵T=,
∴,,
即.
∵,∴,∴,
从而得到f(x)的值域为.
(Ⅱ)∵,
又0<A<π,∴,
得,.
由余弦定理得a2=b2+c2﹣2bccosA==(b+c)2﹣3bc,
即,∴bc=3.
∴△ABC的面积.
【点评】本小题主要考查三角函数的图象与性质、两角和与差的三角函数、解三角形等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题.
20.【答案】
【解析】【命题意图】本题主要考查绝对值不等式的解法、三角不等式、基本不等式等基础知识,以及考查等价转化的能力、逻辑思维能力、运算能力.
21.【答案】
【解析】解:(1)将sin+cos=两边平方得:(sin+cos)2=sin2+2sin cos+cos2=1+sinα=,
∴sinα=,
∵α∈(,π),
∴cosα=﹣=﹣;
(2)∵α∈(,π),β∈(0,),
∴α+β∈(,),
∵sin(α+β)=﹣<0,
∴α+β∈(π,),
∴cos(α+β)=﹣=﹣,
则sin β=sin=sin (α+β)cos α﹣cos (α+β)sin α=﹣×(﹣)﹣(﹣)×=+=.
【点评】此题考查了两角和与差的正弦函数公式,以及运用诱导公式化简求值,熟练掌握公式是解本题的关键.
22.【答案】
【解析】【命题意图】本题考查圆的参数方程和极坐标方程、直线参数方程、直线和圆位置关系等基础知识,意在考查数形结合思想、转化思想和基本运算能力.
(Ⅱ)设直线l :2)2(+-=x k y 与半圆)0(22
2
≥=+y y x 相切时
21|22|2
=+-k
k
0142=+-∴k k ,32-=∴k ,32+=k (舍去)
设点)0,2(-B ,2
AB
k =
=-
故直线l 的斜率的取值范围为]22,32(--. 23.【答案】
【解析】
【专题】计算题;直线与圆;坐标系和参数方程.
【分析】(Ⅰ)运用x=ρcos θ,y=ρsin θ,x2+y2=ρ2,即可得到曲线C 1的直角坐标方程,再由代入法,即可化
简曲线C 2的参数方程为普通方程; (Ⅱ)可经过圆心(1,﹣2)作直线3x+4y ﹣15=0的垂线,此时切线长最小.再由点到直线的距离公式和勾
股定理,即可得到最小值.
【解答】解:(Ⅰ)对于曲线C 1的方程为ρ2
﹣2ρ(cos θ﹣2sin θ)+4=0,
可化为直角坐标方程x 2+y 2
﹣2x+4y+4=0, 即圆(x ﹣1)2+(y+2)2
=1;
曲线C 2的参数方程为
(t 为参数),
可化为普通方程为:3x+4y﹣15=0.
(Ⅱ)可经过圆心(1,﹣2)作直线3x+4y﹣15=0的垂线,此时切线长最小.
则由点到直线的距离公式可得d==4,
则切线长为=.
故这条切线长的最小值为.
【点评】本题考查极坐标方程、参数方程和直角坐标方程、普通方程的互化,考查直线与圆相切的切线长问题,考查运算能力,属于中档题.
24.【答案】
【解析】解:(1)设圆的方程为x2+y2+Dx+Ey+F=0
圆的方程为x2+y2﹣8y﹣9=0…
(2)直线CD与圆M相切O、D分别是AB、BR的中点
则OD∥AR,∴∠CAB=∠DOB,∠ACO=∠COD,
又∠CAO=∠ACO,∴∠DOB=∠COD
又OC=OB,所以△BOD≌△COD
∴∠OCD=∠OBD=90°
即OC⊥CD,则直线CD与圆M相切.…
(其他方法亦可)。