日土县高中2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
日土县高中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 已知f (x )在R 上是奇函数,且满足f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2015)=( ) A .2
B .﹣2
C .8
D .﹣8
2. 若y x ,满足约束条件⎪⎪⎩
⎪
⎪⎨⎧≥≤-+≥+-0
033033y y x y x ,则当31++x y 取最大值时,y x +的值为( )
A .1-
B .
C .3-
D .3
3. 设函数f (x )=,f (﹣2)+f (log 210)=( )
A .11
B .8
C .5
D .2
4. 如图,空间四边形ABCD 中,M 、G 分别是BC 、CD
的中点,则等( )
A
. B
. C
. D
.
5. 某几何体的三视图如图所示,则它的表面积为( )
A .
B .
C .
D .
6. 复数z=(其中i 是虚数单位),则z 的共轭复数=( )
A .﹣i
B .﹣﹣i
C . +i
D .﹣ +i
7. 从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( )
A .
B .
C .
D .
8. 设定义在R 上的函数f (x )对任意实数x ,y ,满足f (x )+f (y )=f (x+y ),且f (3)=4,则f (0)+f (﹣3)的值为( ) A .﹣2 B .﹣4 C .0 D .4
9. 设F 1,F 2是双曲线的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等
于( )
A .
B .
C .24
D .48
10.如图,在正方体1111ABCD A B C D 中,P 是侧面11BB C C 内一动点,若P 到直线BC 与直线11C D 的距离相等,则动点P 的轨迹所在的曲线是( )
A1
C
A.直线
B.圆
C.双曲线
D.抛物线
【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力.
11.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()
A.钱B.钱C.钱D.钱
12.下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m表示.若甲队的平均得分不低于乙队的平均得分,那么m的可能取值集合为()
A. B. C. D.
二、填空题
13.在△ABC中,若角A为锐角,且=(2,3),=(3,m),则实数m的取值范围是.
14.若直线y﹣kx﹣1=0(k∈R)与椭圆恒有公共点,则m的取值范围是.
15.已知i是虚数单位,复数的模为.
16.(﹣)0+[(﹣2)3]=.
17.如图是一个正方体的展开图,在原正方体中直线AB与CD的位置关系是.
18.直线l:(t为参数)与圆C:(θ为参数)相交所得的弦长的取值范围是.
三、解答题
19.已知在四棱锥P﹣ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分别是PA、PB、BC的中点.
(I)求证:EF⊥平面PAD;
(II)求平面EFG与平面ABCD所成锐二面角的大小.
20.已知椭圆E的中心在坐标原点,左、右焦点F1、F2分别在x轴上,离心率为,在其上有一动点A,A
到点F1距离的最小值是1,过A、F1作一个平行四边形,顶点A、B、C、D都在椭圆E上,如图所示.(Ⅰ)求椭圆E的方程;
(Ⅱ)判断▱ABCD能否为菱形,并说明理由.
(Ⅲ)当▱ABCD的面积取到最大值时,判断▱ABCD的形状,并求出其最大值.
21.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=ax 2+lnx (a ∈R ). (1)当a=
1
2
时,求f (x )在区间[1,e]上的最大值和最小值; (2)如果函数g (x ),f 1(x ),f 2(x ),在公共定义域D 上,满足f 1(x )<g (x )<f 2(x ),那么就称g (x )为f 1(x ),f 2(x )
的“活动函数”.已知函数()()
22
1121-a ln ,2f x a x ax x ⎛
⎫=-++ ⎪⎝⎭
.()22122f x x ax =+。
若在区间(1,+∞)上,函数f (x )是f 1(x ),f 2(x )的“活动函数”,求a 的取值范围.
22.如图,在三棱柱111ABC A B C -中,111,A A AB CB A ABB =⊥. (1)求证:1AB ⊥平面1A BC ;
(2)若15,3,60AC BC A AB ==∠= ,求三棱锥1C AA B -的体积.
23.
24.(本小题满分12分)某旅行社组织了100人旅游散团,其年龄均在[10,60]岁间,旅游途中导游发现该旅游散团人人都会使用微信,所有团员的年龄结构按[10,20),[20,30),[30,40),[40,50),[50,60]分成5组,分
A B C D E,其频率分布直方图如下图所示.
别记为,,,,
(Ⅰ)根据频率分布直方图,估计该旅游散团团员的平均年龄;
C D E三组中用分层抽样的方法抽取了6名团员负责全团协调,然后从这6名团员中(Ⅱ)该团导游首先在,,
随机选出2名团员为主要协调负责人,求选出的2名团员均来自C组的概率.
日土县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1.【答案】B
【解析】解:∵f(x+4)=f(x),
∴f(2015)=f(504×4﹣1)=f(﹣1),
又∵f(x)在R上是奇函数,
∴f(﹣1)=﹣f(1)=﹣2.
故选B.
【点评】本题考查了函数的奇偶性与周期性的应用,属于基础题.
2.【答案】D
【解析】
考点:简单线性规划.
3.【答案】B
【解析】解:∵f(x)=,
∴f(﹣2)=1+log24=1+2=3,
=5,
∴f(﹣2)+f(log210)=3+5=8.
故选:B.
【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.4.【答案】C
【解析】解:∵M、G分别是BC、CD的中点,
∴=,=
∴=++=+=
故选C
【点评】本题考查的知识点是向量在几何中的应用,其中将化为++,是解答本题的关键.
5.【答案】A
【解析】解:由三视图知几何体为半个圆锥,且圆锥的底面圆半径为1,高为2,
∴母线长为,
圆锥的表面积S=S
底面+S侧面=×π×12+×2×2+×π×=2+.
故选A.
【点评】本题考查了由三视图求几何体的表面积,解题的关键是判断几何体的形状及三视图的数据所对应的几何量.
6.【答案】C
【解析】解:∵z==,
∴=.
故选:C.
【点评】本题考查了复数代数形式的乘除运算,是基础题.
7.【答案】A
【解析】解:从1,2,3,4,5中任取3个不同的数的基本事件有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10个,
取出的3个数可作为三角形的三边边长,根据两边之和大于第三边求得满足条件的基本事件有(2,3,4),(2,4,5),(3,4,5)共3个,
故取出的3个数可作为三角形的三边边长的概率P=.
故选:A.
【点评】本题主要考查了古典概型的概率的求法,关键是不重不漏的列举出所有的基本事件.
8.【答案】B
【解析】解:因为f(x)+f(y)=f(x+y),
令x=y=0,
则f(0)+f(0)=f(0+0)=f(0),
所以,f(0)=0;
再令y=﹣x,
则f(x)+f(﹣x)=f(0)=0,
所以,f(﹣x)=﹣f(x),
所以,函数f(x)为奇函数.
又f(3)=4,
所以,f(﹣3)=﹣f(3)=﹣4,
所以,f(0)+f(﹣3)=﹣4.
故选:B.
【点评】本题考查抽象函数及其应用,突出考查赋值法的运用,判定函数f(x)为奇函数是关键,考查推理与运算求解能力,属于中档题.
9.【答案】C
【解析】解:F1(﹣5,0),F2(5,0),|F1F2|=10,
∵3|PF1|=4|PF2|,∴设|PF2|=x,则,
由双曲线的性质知,解得x=6.
∴|PF1|=8,|PF2|=6,
∴∠F1PF2=90°,
∴△PF1F2的面积=.
故选C.
【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.
10.【答案】D.
第Ⅱ卷(共110分)
11.【答案】B
【解析】解:依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,则由题意可知,a﹣2d+a﹣d=a+a+d+a+2d,即a=﹣6d,
又a﹣2d+a﹣d+a+a+d+a+2d=5a=5,∴a=1,
则a﹣2d=a﹣2×=.
故选:B.
12.【答案】C
【解析】【知识点】样本的数据特征茎叶图
【试题解析】由题知:
所以m可以取:0,1,2.
故答案为:C
二、填空题
13.【答案】.
【解析】解:由于角A为锐角,
∴且不共线,
∴6+3m>0且2m≠9,解得m>﹣2且m.
∴实数m的取值范围是.
故答案为:.
【点评】本题考查平面向量的数量积运算,考查了向量共线的条件,是基础题.
14.【答案】[1,5)∪(5,+∞).
【解析】解:整理直线方程得y﹣1=kx,
∴直线恒过(0,1)点,因此只需要让点(0.1)在椭圆内或者椭圆上即可,
由于该点在y轴上,而该椭圆关于原点对称,
故只需要令x=0有
5y2=5m
得到y2=m
要让点(0.1)在椭圆内或者椭圆上,则y≥1即是
y2≥1
得到m≥1
∵椭圆方程中,m≠5
m的范围是[1,5)∪(5,+∞)
故答案为[1,5)∪(5,+∞)
【点评】本题主要考查了直线与圆锥曲线的综合问题.本题采用了数形结合的方法,解决问题较为直观.
15.【答案】.
【解析】解:∵复数==i﹣1的模为=.
故答案为:.
【点评】本题考查了复数的运算法则、模的计算公式,属于基础题.
16.【答案】.
【解析】解:(﹣)0+[(﹣2)3]
=1+(﹣2)﹣2
=1+=.
故答案为:.
17.【答案】异面.
【解析】解:把展开图还原原正方体如图,
在原正方体中直线AB与CD的位置关系是异面.
故答案为:异面.
18.【答案】[4,16].
【解析】解:直线l:(t为参数),
化为普通方程是=,
即y=tanα•x+1;
圆C的参数方程(θ为参数),
化为普通方程是(x﹣2)2+(y﹣1)2=64;
画出图形,如图所示;
∵直线过定点(0,1),
∴直线被圆截得的弦长的最大值是2r=16,
最小值是2=2×=2×=4
∴弦长的取值范围是[4,16].
故答案为:[4,16].
【点评】本题考查了直线与圆的参数方程的应用问题,解题时先把参数方程化为普通方程,再画出图形,数形结合,容易解答本题.
三、解答题
19.【答案】
【解析】解:(I)证明:∵平面PAD⊥平面ABCD,AB⊥AD,
∴AB⊥平面PAD,
∵E、F为PA、PB的中点,
∴EF∥AB,
∴EF⊥平面PAD;
(II)解:过P作AD的垂线,垂足为O,
∵平面PAD⊥平面ABCD,则PO⊥平面ABCD.
取AO中点M,连OG,EO,EM,
∵EF∥AB∥OG,
∴OG即为面EFG与面ABCD的交线
又EM∥OP,则EM⊥平面ABCD.且OG⊥AO,
故OG⊥EO
∴∠EOM 即为所求
在RT△EOM中,EM=OM=1
∴tan∠EOM=,故∠EOM=60°
∴平面EFG与平面ABCD所成锐二面角的大小是60°.
【点评】本题主要考察直线与平面垂直的判定以及二面角的求法.解决第二问的难点在于找到两半平面的交线,进而求出二面角的平面角.
20.【答案】
【解析】解:(I)由题意可得:,解得c=1,a=2,b2=3.
∴椭圆E的方程为=1.
(II)假设▱ABCD能为菱形,则OA⊥OB,k OA•k OB=﹣1.
①当AB⊥x轴时,把x=﹣1代入椭圆方程可得:=1,解得y=,
取A,则|AD|=2,|AB|=3,此时▱ABCD不能为菱形.
②当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2).
联立,化为:(3+4k2)x2+8k2x+4k2﹣12=0,
∴x1+x2=﹣,x1x2=.
∴
k OA•k OB=====
,
假设=﹣1,化为k2=﹣,因此平行四边形ABCD不可能是菱形.
综上可得:平行四边形ABCD不可能是菱形.
(III)①当AB⊥x轴时,由(II)可得:|AD|=2,|AB|=3,此时▱ABCD为矩形,S矩形ABCD=6.
②当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2).
联立,化为:(3+4k2)x2+8k2x+4k2﹣12=0,
∴x1+x2=﹣,x1x2=.
|AB|=
=.
点O 到直线AB 的距离d=.
∴S 平行四边形ABCD =4×S △OAB =
=2×
×
=
.
则S 2=
=<36,
∴S <6.
因此当平行四边形ABCD 为矩形面积取得最大值6.
21.【答案】(1)()()2max
min 11,.22e f x f x =+= (2)a 的范围是11,24⎡⎤-⎢⎥⎣⎦
.
【解析】试题分析:(1)由题意得 f (x )=12x 2+lnx ,()
2'11f
0x x x x x
+=+=>,∴f (x )在区间[1,e]上为增函数,即可求出函数的最值.
试题解析:
(1)当
时,
,
;
对于x ∈[1,e],有f'(x )>0,∴f (x )在区间[1,e]上为增函数,
∴
,
.
(2)在区间(1,+∞)上,函数f (x )是f 1(x ),f 2(x )的“活动函数”,则f 1(x )<f (x )<f 2(x )令
<0,对x ∈(1,+∞)恒成立,
且h (x )=f 1(x )﹣f (x )=<0对x ∈(1,+∞)恒成立,
∵
若
,令p ′(x )=0,得极值点x 1=1,
,
当x 2>x 1=1,即 时,在(x 2,+∞)上有p ′(x )>0,
此时p (x )在区间(x 2,+∞)上是增函数,并且在该区间上有p (x )∈(p (x 2),+∞),不合题意; 当x 2<x 1=1,即a ≥1时,同理可知,p (x )在区间(1,+∞)上,有p (x )∈(p (1),+∞),也不合题意;
若
,则有2a ﹣1≤0,此时在区间(1,+∞)上恒有p ′(x )<0,
从而p (x )在区间(1,+∞)上是减函数;
要使p (x )<0在此区间上恒成立,只须满足 ,
所以
≤a ≤.
又因为h ′(x )=﹣x+2a ﹣=
<0,h (x )在(1,+∞)上为减函数,
h (x )<h (1)=
+2a ≤0,所以a ≤
综合可知a 的范围是[,].
22.【答案】(1)证明见解析;(2)【解析】
试题分析:(1)有线面垂直的性质可得1BC AB ⊥,再由菱形的性质可得11AB A B ⊥,进而有线面垂直的判定定理可得结论;(2)先证三角形1A AB 为正三角形,再由于勾股定理求得AB 的值,进而的三角形1A AB 的面积,又知三棱锥的高为3BC =,利用棱锥的体积公式可得结果.
考点:1、线面垂直的判定定理;2、勾股定理及棱锥的体积公式.
23.【答案】一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为[5,15],(15,25],(25,35],(35,45],由此得到样本的重量频率分布直方图(如图),
(1)求a的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;
(2)从盒子中随机抽取3个小球,其中重量在[5,15]内的小球个数为X,求X的分布列和数学期望.(以直方图中的频率作为概率)
【考点】离散型随机变量及其分布列;离散型随机变量的期望与方差.
【专题】概率与统计.
【分析】(1)求解得a=0.03,由最高矩形中点的横坐标为20,可估计盒子中小球重量的众数约为20
根据平均数值公式求解即可.
(2)X~B(3,),根据二项分布求解P(X=0),P(X=1),P(X=2)=,P(X=3),列出分布列,
求解数学期望即可.
【解析】解:(1)由题意得,(0.02+0.032+a+0.018)×10=1
解得a=0.03;
又由最高矩形中点的横坐标为20,
可估计盒子中小球重量的众数约为20,
而50个样本小球重量的平均值为:
=0.2×10+0.32×20+0.3×30+0.18×40=24.6(克)
故估计盒子中小球重量的平均值约为24.6克.
(2)利用样本估计总体,该盒子中小球的重量在[5,15]内的0.2;
则X~B(3,),
X=0,1,2,3;
P(X=0)=×()3=;
P(X=1)=×()2×=;
P(X=2)=×()×()2=;
P(X=3)=×()3=,
∴X的分布列为:
即E(X)=0×=.
【点评】本题考查了离散型的随机变量及概率分布列,数学期望的求解,注意阅读题意,得出随机变量的数值,准确求解概率,难度不大,需要很好的计算能力
24.【答案】
【解析】【命题意图】本题考查频率分布直方图与平均数、分层抽样、古典概型等基础知识,意在考查审读能力、识图能力、获取数据信息的能力.。