江安县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江安县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 已知i 为虚数单位,则复数
所对应的点在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
2. 设D 为△ABC 所在平面内一点,,则( )
A .
B .
C .
D .
3. 若集合A={x|﹣2<x <1},B={x|0<x <2},则集合A ∩B=( ) A .{x|﹣1<x <1} B .{x|﹣2<x <1} C .{x|﹣2<x <2} D .{x|0<x <1}
4. 四棱锥P ﹣ABCD 的底面是一个正方形,PA ⊥平面ABCD ,PA=AB=2,E 是棱PA 的中点,则异面直线BE 与AC 所成角的余弦值是( )
A .
B .
C .
D .
5. 如图,在正方体1111ABCD A B C D 中,P 是侧面11BB C C 内一动点,若P 到直线BC 与直线11C D 的距离相等,则动点P 的轨迹所在的曲线是( )
A 1
C
A.直线
B.圆
C.双曲线
D.抛物线
【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力.
6. 在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成
角的正切值为( )
A .
B .
C .
D .
7. 若命题“p ∧q ”为假,且“¬q ”为假,则( ) A .“p ∨q ”为假
B .p 假
C .p 真
D .不能判断q 的真假
8. 空间直角坐标系中,点A (﹣2,1,3)关于点B (1,﹣1,2)的对称点C 的坐标为( ) A .(4,1,1) B .(﹣1,0,5) C .(4,﹣3,1)
D .(﹣5,3,4)
9. 已知复数z 满足(3+4i )z=25,则=( )
A .3﹣4i
B .3+4i
C .﹣3﹣4i
D .﹣3+4i
10.若复数z=
(其中a ∈R ,i 是虚数单位)的实部与虚部相等,则a=( )
A .3
B .6
C .9
D .12
11.函数y=e cosx (﹣π≤x ≤π)的大致图象为( )
A .
B .
C .
D .
12.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能是( )
A .1
B .
C .
D .
二、填空题
13.设集合 {}{}
22
|27150,|0A x x x B x x ax b =+-<=++≤,满足
A
B =∅,{}|52A B x x =-<≤,求实数a =__________.
14.给出下列四个命题:
①函数f (x )=1﹣2sin 2的最小正周期为2π; ②“x 2﹣4x ﹣5=0”的一个必要不充分条件是“x=5”;
③命题p :∃x ∈R ,tanx=1;命题q :∀x ∈R ,x 2﹣x+1>0,则命题“p ∧(¬q )”是假命题; ④函数f (x )=x 3﹣3x 2+1在点(1,f (1))处的切线方程为3x+y ﹣2=0. 其中正确命题的序号是 .
15.在空间直角坐标系中,设)1,3(,m A ,)1,1,1(-B ,且22||=AB ,则=m .
16.已知一组数据1x ,2x ,3x ,4x ,5x 的方差是2,另一组数据1ax ,2ax ,3ax ,4ax ,5ax (0a >)
的标准差是a = .
17.已知点A (2,0),点B (0,3),点C 在圆x 2+y 2=1上,当△ABC 的面积最小时,点C 的坐标为 .
18.集合A={x|﹣1<x <3},B={x|x <1},则A ∩B= .
三、解答题
19.将射线y=x (x ≥0)绕着原点逆时针旋转后所得的射线经过点A=(cos θ,sin θ).
(Ⅰ)求点A 的坐标;
(Ⅱ)若向量=(sin2x ,2cos θ),=(3sin θ,2cos2x ),求函数f (x )=•,x ∈[0,]的值域.
20.2()sin 2f x x x =. (1)求函数()f x 的单调递减区间;
(2)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若()12
A f =,ABC ∆的面积为.
21.如图,在△ABC 中,BC 边上的中线AD 长为3,且sinB=,cos ∠ADC=﹣.
(Ⅰ)求sin ∠BAD 的值;
(Ⅱ)求AC 边的长.
22.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,且990S =,15240S =. (1)求{}n a 的通项公式n a 和前n 项和n S ;
(2)设(){}
1n
n n b a --是等比数列,且257,71b b ==,求数列{}n b 的前n 项和n T .
【命题意图】本题考查等差数列与等比数列的通项与前n 项和、数列求和等基础知识,意在考查逻辑思维能力、运算求解能力、代数变形能力,以及分类讨论思想、方程思想、分组求和法的应用.
23.(本题满分12分)在长方体1111D C B A ABCD -中,a AD AA ==1,E 是棱CD 上的一点,P 是棱1AA 上的一点.
(1)求证:⊥1AD 平面D B A 11; (2)求证:11AD E B ⊥;
(3)若E 是棱CD 的中点,P 是棱1AA 的中点,求证://DP 平面AE B 1.
24.【淮安市淮海中学2018届高三上第一次调研】已知函数()133x x a
f x b
+-+=+.
(1)当1a b ==时,求满足()3x
f x =的x 的取值;
(2)若函数()f x 是定义在R 上的奇函数
①存在t R ∈,不等式()()
22
22f t t f t k -<-有解,求k 的取值范围;
②若函数()g x 满足()()()
12333
x
x f x g x -⎡⎤⋅+=-⎣⎦,若对任意x R ∈,不等式()()211g x m g x ≥⋅-恒成立,求实数m 的最大值.
江安县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题
1.【答案】A
【解析】解:==1+i,其对应的点为(1,1),
故选:A.
2.【答案】A
【解析】解:由已知得到如图
由===;
故选:A.
【点评】本题考查了向量的三角形法则的运用;关键是想法将向量表示为.
3.【答案】D
【解析】解:A∩B={x|﹣2<x<1}∩{x|0<x<2}={x|0<x<1}.故选D.
4.【答案】B
【解析】解:以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,
则B(2,0,0),E(0,0,1),A(0,0,0),C(2,2,0),
=(﹣2,0,1),=(2,2,0),
设异面直线BE与AC所成角为θ,
则cosθ===.
故选:B.
5.【答案】D.
第Ⅱ卷(共110分)6.【答案】D
【解析】解:双曲线(a>0,b>0)的渐近线方程为y=±x
联立方程组,解得A(,),B(,﹣),
设直线x=与x轴交于点D
∵F为双曲线的右焦点,∴F(C,0)
∵△ABF为钝角三角形,且AF=BF,∴∠AFB>90°,∴∠AFD>45°,即DF<DA
∴c﹣<,b<a,c2﹣a2<a2∴c2<2a2,e2<2,e<又∵e>1
∴离心率的取值范围是1<e<
故选D
【点评】本题主要考查双曲线的离心率的范围的求法,关键是找到含a,c的齐次式,再解不等式.7.【答案】B
【解析】解:∵命题“p∧q”为假,且“¬q”为假,
∴q为真,p为假;
则p∨q为真,
故选B.
【点评】本题考查了复合命题的真假性的判断,属于基础题.
8.【答案】C
【解析】解:设C(x,y,z),
∵点A(﹣2,1,3)关于点B(1,﹣1,2)的对称点C,
∴,解得x=4,y=﹣3,z=1,
∴C(4,﹣3,1).
故选:C.
9.【答案】B
解析:∵(3+4i)z=25,z===3﹣4i.
∴=3+4i.
故选:B.
10.【答案】A
【解析】解:复数z===.
由条件复数z=(其中a∈R,i是虚数单位)的实部与虚部相等,得,18﹣a=3a+6,
解得a=3.
故选:A.
【点评】本题考查复数的代数形式的混合运算,考查计算能力.
11.【答案】C
【解析】解:函数f(x)=e cosx(x∈[﹣π,π])
∴f(﹣x)=e cos(﹣x)=e cosx=f(x),函数是偶函数,排除B、D选项.
令t=cosx,则t=cosx当0≤x≤π时递减,而y=e t单调递增,
由复合函数的单调性知函数y=e cosx在(0,π)递减,所以C选项符合,
故选:C.
【点评】本题考查函数的图象的判断,考查同学们对函数基础知识的把握程度以及数形结合的思维能力.
12.【答案】C
【解析】解:水平放置的正方体,当正视图为正方形时,其面积最小为1;当正视图为对角面时,其面积最大为.
因此满足棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积的范围为
.
因此可知:A,B,D皆有可能,而<1,故C不可能.
故选C.
【点评】正确求出满足条件的该正方体的正视图的面积的范围为是解题的关键.
二、填空题
13.【答案】
7
,3
2
a b
=-=
【解析】
考
点:一元二次不等式的解法;集合的运算.
【方法点晴】本题主要考查了集合的综合运算问题,其中解答中涉及到一元二次不等式的解法、集合的交集和集合的并集的运算、以及一元二次方程中韦达定理的应用,试题有一定的难度,属于中档试题,着重考查了学生分析问题和解答问题的能力,同时考查了转化与化归思想的应用,其中一元二次不等式的求解是解答的关键. 14.【答案】 ①③④ .
【解析】解:①∵
,∴T=2π,故①正确;
②当x=5时,有x 2﹣4x ﹣5=0,但当x 2﹣4x ﹣5=0时,不能推出x 一定等于5,故“x=5”是“x 2﹣4x ﹣5=0”成立
的充分不必要条件,故②错误;
③易知命题p 为真,因为>0,故命题q 为真,所以p ∧(¬q )为假命题,故③正确;
④∵f ′(x )=3x 2﹣6x ,∴f ′(1)=﹣3,∴在点(1,f (1))的切线方程为y ﹣(﹣1)=﹣3(x ﹣1),即3x+y ﹣2=0,故④正确.
综上,正确的命题为①③④. 故答案为①③④.
15.【答案】1 【解析】 试题分析:()()()()22131112
22=-+--+-=
m AB ,解得:1=m ,故填:1.
考点:空间向量的坐标运算 16.【答案】2 【解析】
试题分析:第一组数据平均数为2)()()()()(,2524232221=-+-+-+-+-∴x x x x x x x x x x x ,
22222212345()()()()()8,4,2ax ax ax ax ax ax ax ax ax ax a a -+-+-+-+-=∴=∴=.
考点:方差;标准差.
17.【答案】(,).
【解析】解:设C(a,b).则a2+b2=1,①
∵点A(2,0),点B(0,3),
∴直线AB的解析式为:3x+2y﹣6=0.
如图,过点C作CF⊥AB于点F,欲使△ABC的面积最小,只需线段CF最短.
则CF=≥,当且仅当2a=3b时,取“=”,
∴a=,②
联立①②求得:a=,b=,
故点C的坐标为(,).
故答案是:(,).
【点评】本题考查了圆的标准方程、点到直线的距离公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.
18.【答案】{x|﹣1<x<1}.
【解析】解:∵A={x|﹣1<x<3},B={x|x<1},
∴A∩B={x|﹣1<x<1},
故答案为:{x|﹣1<x<1}
【点评】本题主要考查集合的基本运算,比较基础.
三、解答题
19.【答案】
【解析】解:(Ⅰ)设射线y=x (x ≥0)的倾斜角为α,则tan α=,α∈(0,
).
∴tan θ=tan (α+)==,
∴由解得,
∴点A 的坐标为(,).
(Ⅱ)f (x )=•=3sin θ•sin2x+2cos θ•2cos2x=sin2x+
cos2x
=
sin (2x+
)
由x ∈[0,],可得2x+∈[
,
],
∴sin (2x+
)∈[﹣
,1],
∴函数f (x )的值域为[﹣
,
].
【点评】本题考查三角函数、平面向量等基础知识,考查运算求解能力,考查函数与方程的思想,属于中档题.
20.【答案】(1)5,3
6k k π
πππ⎡
⎤
++
⎢⎥⎣
⎦
(k ∈Z );(2)【解析】
试题分析:(1)根据32222
6
2
k x k π
π
π
ππ+≤-
≤+
可求得函数()f x 的单调递减区间;(2)由12A f ⎛⎫
= ⎪⎝⎭
可得3
A π
=
,再由三角形面积公式可得12bc =,根据余弦定理及基本不等式可得的最小值. 1
试题解析:(1)111()cos 22sin(2)2262
f x x x x π=
-=-+, 令3222262k x k πππππ+≤-≤+,解得536
k x k ππ
ππ+≤≤+,k Z ∈,
∴()f x 的单调递减区间为5[,]36
k k ππ
ππ++
(k Z ∈).
考点:1、正弦函数的图象和性质;2、余弦定理、基本不等式等知识的综合运用. 21.【答案】
【解析】解:(Ⅰ)由题意,因为
sinB=,所以
cosB=…
又cos ∠ADC=
﹣,所以sin ∠
ADC=…
所以sin ∠BAD=sin (∠ADC ﹣∠B )
=
×
﹣(﹣
)×
=…
(Ⅱ)在△ABD
中,由正弦定理,得,解得
BD=…
故BC=15,
从而在△ADC 中,由余弦定理,得AC 2
=9+225﹣2×3×15
×(﹣)
=
,所以
AC=
…
【点评】本题考查差角的正弦公式,考查正弦定理、余弦定理的运用,属于中档题.
22.【答案】
【解析】(1)设等差数列{}n a 的首项为1a ,公差为d ,
则由990S =,15240S =,得11
93690
15105240a d a d +=⎧⎨+=⎩,解得12a d ==,……………3分
所以2(n 1)22n a n =+-⨯=,即2n a n =,
(1)
22(1)2
n n n S n n n -=+
⨯=+,即1n S n n =+().……………5分
23.【答案】
【解析】【命题意图】本题综合考查了线面垂直、线线垂直、线面平行等位置关系的证明,对空间想象能力及逻辑推理有较高要求,对于证明中辅助线的运用是一个难点,本题属于中等难度.
24.【答案】(1)1x =-(2)①()1,-+∞,②6
【解析】
试题
解析:(1)由题意,1
31331x x
x +-+=+,化简得()2332310x x ⋅+⋅-= 解得()13133
x x
=-=舍或,
所以1x =-
(2)因为()f x 是奇函数,所以()()0f x f x -+=,所以1
133033x x x x a a
b b
-++-+-++=++ 化简并变形得:()()333260x x
a b ab --++-=
要使上式对任意的x 成立,则30260a b ab -=-=且 解得:11{
{ 33a a b b ==-==-或,因为()f x 的定义域是R ,所以1
{ 3
a b =-=-舍去 所以1,3a b ==,所以()131
33
x x f x +-+=+
①()131********x x x f x +-+⎛⎫
==-+ ⎪++⎝⎭
对任意1212,,x x R x x ∈<有:
()()()()
21
12
12121222333313133131
x x x x x x f x f x ⎛⎫-⎛⎫
⎪-=-= ⎪ ⎪++++⎝⎭⎝
⎭
因为12x x <,所以21330x x
->,所以()()12f x f x >,
因此()f x 在R 上递减.
因为()()
2222f t t f t k -<-,所以22
22t t t k ->-,
即2
20t t k +-<在
时有解
所以440t ∆=+>,解得:1t >-,
所以的取值范围为()1,-+∞
②因为()()()
12333x x
f x
g x -⎡⎤⋅+=-⎣⎦,所以()()
3323x x g x f x --=-
即()33x
x
g x -=+
所以()()
2
22233332x x x x
g x --=+=+-
不等式()()211g x m g x ≥⋅-恒成立, 即()
()
2
3323311x x
x x m --+-≥⋅+-,
即:9
3333x x
x x
m --≤++
+恒成立
令33,2x x t t -=+≥,则9
m t t
≤+在2t ≥时恒成立
令()9h t t t =+,()29
'1h t t
=-,
()2,3t ∈时,()'0h t <,所以()h t 在()2,3上单调递减
()3,t ∈+∞时,()'0h t >,所以()h t 在()3,+∞上单调递增
所以()()min 36h t h ==,所以6m ≤ 所以,实数m 的最大值为6
考点:利用函数性质解不等式,不等式恒成立问题
【思路点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题。