Atomic coherence and interference phenomena in resonant nonlinear optical interactions
中子的特性——精选推荐

7
Scattering from Nuclei Using the Fermi Pseudopotential
The neutron-nucleus interaction is governed by strong force (typical characteristic energy Vnn>10MeV) over a very short range (typically the size of the nucleus d~10-15m). At first sight the strong interaction
region
d. From
the uncertainty principle,
(Δp)2(Δx)2 ≥
2
2
the above equation demands the neutron kinetic energy at the nucleus,
~
2md 2
, much larger than the
which becomes ~10-11m without altering the physics because it is still significantly smaller than the
zero-point vibration amplitude of the nucleus in any materials. By maintaining a constant energy-space volume of Vnnd3 , Vnn can then be scale down by a factor of 106 to ~eV, thereby enabling the Born
TWR: Be target, H2O(300K) & CH4(20K) moderators
实验在宏观尺度验证全同粒子的全同性

在宏观尺度验证全同粒子的不可分辨性原作:Michael Fleischhauer 翻译:葛韶锋原文网址:/nature/journal/v445/n7128/full/445605a.html 对微观世界进行正确的描述需要使用量子力学,在量子力学中同种微观粒子具有全同性,更确切地说是不可分辨性(Indistinguishability),然而迄今尚未对这一性质在宏观的尺度上验证过。
本文描述的实验用两团在宏观尺度上隔离开的玻色-爱因斯坦凝聚体(Bose-Einstein Condensates)验证了全同粒子的全同性,这是前所未有的。
将相干光脉冲(Coherent Light Pulse)携带的信息传递给一团原子的自旋(Spin)是量子物理实验中采用标准的技术;但是从远处的第二团原子中重新提取出光脉冲的信息看起来像是不可思议的巫术。
但是在下文的介绍中我们将会看到这并不是什么巫术,而是量子力学的效应。
在量子世界中,同种粒子是不可区分的:描述它们的波函数(Wavefunction)是所有占据了全部可能状态的同种粒子波函数的叠加。
这意味着我们在讨论地球上某一个电子的时候,严格说来必须考虑到月球上的每一个电子对它的影响,它们之间是完全平等的。
幸运的是,我们可以忽略这种影响,因为它们离得太远了,而单个电子的波函数主要分布在微观的尺度上,相距宏观尺度电子间波函数的重叠可以忽略不计。
在实际的计算之中,我们常常忽略它们之间的关联。
但是在本期《自然》(Nautre)杂志上,Ginsberg,Garner和Hau的文章中我们可以看到两团原子形成的玻色爱因斯坦凝聚体之间具有全同性,即使它们之间隔开一定的距离。
虽然这两团原子之间的距离不足一毫米,比起地球和月亮之间的距离来显得微不足道,但是比起只有微观尺度的凝聚体本身来已经是相当大的了。
为了演示这种性质,Ginsberg等人使用了一种在几年前才发展出来的一项技术将光脉冲中包含的信息储存在原子凝聚体中。
“一体化三维结构碳基纳米复合材料的制备及在金属空气电池中的应用基础研究”项目通过验收

此前已有基于GeSn薄膜结构的光电探测等工作的相关报道,但是GeSn薄膜与Ge缓冲层之间较大的晶格失配严重影响了GeSn薄膜晶体质量,从而导致其相应的光电探测器暗电流较大,不利于实现低功耗应用需求。
上海微系统所研究人员利用分子束外延技术,成功制备出大面积、高密度且高长宽比的Ge纳米线,并利用其作为模板,通过二次沉积法获得了Sn组分可达~10%的GeSn/ Ge双层纳米线结构。
由于纳米线具有柔性且极高的比表面积,能够通过弹性形变的方式自主弛豫释放GeSn/Ge之间晶格失配引入的应力,从而有效抑制GeSn/Ge界面处的缺陷形成。
由于GeSn具有较窄的禁带宽度,因此基于GeSn/Ge双层纳米线的光电探测器件比Ge纳米线光电探测器具有更长的探测波长,延伸到2 μm以上。
为了抑制窄禁带宽度GeSn引起的暗电流增加,研究人员进一步引入具有铁电性的P(VDF-TrFE)离子胶作为栅介质,通过侧栅调控大幅降低了GeSn/Ge双层纳米线光电探测器的暗电流与静态功耗,从而实现了兼具长波长与低暗电流的光电探测,对于拓展Ⅳ族材料纳米线结构在光电探测领域的研究与应用具有重要参考意义。
该论文由中科院上海微系统所信息功能材料国家重点实验室与中科院上海技术物理研究所合作完成。
其中上海微系统所直博生杨悦昆为第一作者,上海微系统所研究员狄增峰和上海技物所研究员王建禄为共同通讯作者,上海微系统所为第一完成单位。
该工作得到国家科技重大专项、中科院前沿科学重点研究项目、国家自然科学基金杰出青年基金、上海市科学技术委员会、中科院战略性先导科技专项等的支持。
“一体化三维结构碳基纳米复合材料的制备及在金属空气电池中的应用基础研究”项目通过验收5月13日,由中国科学院福建物质结构研究所研究员官轮辉承担的福建省自然科学基金杰青滚动支持项目“一体化三维结构碳基纳米复合材料的制备及在金属空气电池中的应用基础研究”通过福建省科技厅组织的专家验收。
项目组针对具有一体化三维结构特征的碳基纳米复合材料的制备与应用的关键科学问题开展研究,取得以下成果:设计掺杂原子与碳的配位方式及调控孔道,制备了具有优异性能的碳复合电催化材料,增加催化剂活性位点数量与暴露度,揭示材料的微结构对催化性能的影响规律;研制基于阴极Fe-N-C催化剂的燃料电池电堆样机,实现该新型碳基纳米复合材料在金属空气电池与燃料电池的应用。
第四届冷原子会议会议安排July 5

[P16]
Jing Qian(钱静)
Efficient production of polar molecular Bose–Einstein condensates via an all-optical R-type atom–molecule adiabatic passage
41
[P17]
31
[P07]
Haichao Zhang(张海潮)
Demonstration of Neutral Atom Guiding via Radio-Frequency Field
32
[P08]
Shuyu Zhou(周蜀渝)
Double-well Array Trapping Atoms Based on Binary Optics ethod
会议安排July 5, Monday
Opening Ceremony
Presider
Liang Liu(刘亮)
8:30-9:00
Yuzhu Wang(王育竹)and Chaohui Ye(叶朝辉)
Opening Remarks
Sec. A
Presider
Li You(尤力)
9:00-9:30
Jun Ye(叶军)
Xing-Dong Zhao(赵兴东)
A magical polarization orientation for canceling the dipole-dipole
interaction in ultracold Bosonic dipolar gases
42
[P18]
Cheng-ling Bian(边成玲)
46
[P22]
K. Zhang(张可烨)
范德华莫尔超晶格中的共振杂化激子异质结构

范德华莫尔超晶格中的共振杂化激子异质结构下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!引言近年来,范德华莫尔超晶格中的共振杂化激子异质结构研究备受关注。
原子核模型

动,与实验结果差不多。
<E>=
❖相应地,可以写出中子和质子的最大动量
Pn=
(
9
N
)
1 3
r0 4A
Pp=
(
9Z
)
1 3
r0 4A
❖每个核子的平均动能
<E>=
pF Ed 3 p
0
pF d 3 p
3 ( PF2 ) 5 2m
0
❖费米气体模型忽略了核子间的相互作用, 过于粗糙,因此,它的结果在定量上是比
Pauli原理:不能有两个全同的Fermi子处 于同一个单粒子态.
费米气体模型
由于中子和质子有电荷差异,因此它们的核势阱的 形式和深度不相同,质子阱的底就比中子阱高出库 仑能Ec。
费米气体模型
❖ 势阱内有一定的分立能级,当原子核处于 基态时,核子都处于它们可能处的最低能态。
❖每一个能级上可以有两个中子(或质子), 一个自旋向上,一个自旋向下。
www.themegallery.
Company Logo
5. 平均势场
❖ 考虑本征值问题
以谐振子为例:
其中主量子数 角动量 简并度为
,径向量子数
,
为谐振子频率.
5. 平均势场
❖具有确定 N 的能级,称为壳。
❖具有相同 N ,不同n 和 l 的能级是 简并的。
❖从下图可以看出:此模型可以解释部 分幻数(2、8、20),但不能给出其 它幻数。
❖基态时核子可以处的最高能级的位置称之为 费米能级EF。
2. 费米能级
❖按量子力学计算,粒子在一维无限深方势阱
中的能量表达式为
En
n2h2 8md 2
,n
原子核物理专业英语

原子核物理专业词汇中英文对照表absorption cross-section吸收截面activity radioactivity放射性活度activity活度adiabatic approximation浸渐近似allowed transition容许跃迁angular correlation角关联angular distribution角分布angular-momentum conservation角动量守恒anisotropy各项异性度annihilation radiation湮没辐射anomalous magnetic moment反常极矩anti neutrino反中微子antiparticle反粒子artificial radioactivity人工放射性atomic mass unit原子质量单位atomic mass原子质量atomic nucleus原子核Auger electron俄歇电子backbending回弯bag model口袋模型baryon number重子数baryon重子binary fission二分裂变binging energy结合能black hole黑洞bombarding particle轰击粒子bottom quark底夸克branching ration 分支比bremsstrahlung轫致辐射cascade radiation级联辐射cascade transition级联跃迁centrifugal barrier离心势垒chain reaction链式反应characteristic X-ray特征X射线Cherenkov counter切连科夫计数器coincidence measurement符合剂量collective model集体模型collective rotation 集体转动collective vibration集体震动color charge色荷complete fusion reaction全熔合反应complex potential复势compound-nucleus decay复合核衰变compound-nucleus model复合核模型compound nucleus复合核Compton effect康普顿效应Compton electron康普顿电子Compton scattering康普顿散射cone effect圆锥效应conservation law守恒定律controlled thermonuclear fusion受控热核聚变cosmic ray宇宙射线Coulomb barrier库仑势垒Coulomb energy库伦能Coulomb excitation库仑激发CPT theorem CPT定理critical angular momentum临界角动量critical distance临界距离critical mass临界质量critical volume临界体积daily fuel consumption 燃料日消耗量dalitz pair 达立兹对damage criteria 危害判断准则damage 损伤damped oscillations 阻尼震荡damped vibration 阻尼震荡damped wave 阻尼波damper 减震器damping factor 衰减系数damping 衰减的damp proof 防潮的damp 湿气danger coefficient 危险系数danger dose 危险剂量danger range 危险距离danger signal 危险信号dark current pulse 暗电瘤冲dark current 暗电流data acquisition and processing system 数据获得和处理系统data base 数据库data communication 数据通信data processing 数据处理data reduction equipment 数据简化设备data 数据dating 测定年代daughter atom 子体原子daughter element 子体元素daughter nuclear子核daughter nucleus 子体核daughter nuclide 子体核素daughter 蜕变产物dd reaction dd反应dd reactor dd反应器deactivation 去活化dead ash 死灰尘dead band 不灵敏区dead space 死区dead time correction 死时间校正dead time 失灵时间deaerate 除气deaeration 除气deaerator 除气器空气分离器deaquation 脱水debris activity 碎片放射性debris 碎片de broglie equation 德布罗意方程de broglie frequency 德布罗意频率de broglie relation 德布罗意方程de broglie wavelength 德布罗意波长de broglie wave 德布罗意波debuncher 散束器debye radius 德拜半径debye scherrer method 德拜谢乐法debye temperature 德拜温度decade counter tube 十进计数管decade counting circuit 十进制计数电路decade counting tube 十进管decade scaler 十进位定标器decagram 十克decalescence 相变吸热decalescent point 金属突然吸热温度decanning plant 去包壳装置decanning 去包壳decantation 倾析decanter 倾析器decanting vessel 倾析器decan 去掉外壳decarburization 脱碳decascaler 十进制定标器decatron 十进计数管decay chain衰变链decay coefficient 衰变常数decay constant 衰变常数decay constant衰变常量decay energy衰变能decay factor 衰变常数decay fraction衰变分支比decay heat removal system 衰变热去除系统decay heat 衰变热decay kinematics 衰变运动学decay out 完全衰变decay period 冷却周期decay power 衰减功率decay rate 衰变速度decay scheme衰变纲图decay series 放射系decay storage 衰变贮存decay table 衰变表decay time 衰变时间decay 衰减decelerate 减速deceleration 减速decigram 分克decimeter wave 分米波decladding plant 去包壳装置decladding 去包壳decommissioning 退役decompose 分解decomposition temperature 分解温度decomposition 化学分解decontaminability 可去污性decontamination area 去污区decontamination factor 去污因子decontamination index 去污指数decontamination plant 去污装置decontamination reagent 去污试剂decontamination room 去污室decontamination 净化decoupled band 分离带decoupling 去耦解开decrease 衰减decrement 减少率deep dose equivalent index 深部剂量当量指标deep inelastic reaction深度非弹性反应deep irradiation 深部辐照deep therapy 深部疗deep underwater nuclear counter 深水放射性计数器deep water isotopic current analyzer 深海水连位素分析器de excitation 去激发de exemption 去免除defecation 澄清defective fuel canning 破损燃料封装defective fuel element 破损元件defect level 缺陷程度defectoscope 探伤仪defect 缺陷defence 防护deficiency 不足define 定义definite 确定的definition 分辨deflagration 爆燃deflecting coil 偏转线圈deflecting electrode 偏转电极deflecting field 偏转场deflecting plate 偏转板deflecting system 偏转系统deflecting voltage 偏转电压deflection angle 偏转角deflection plate 偏转板deflection system 偏转系统deflection 负载弯曲deflector coil 偏转线圈deflector field 致偏场deflector plate 偏转板deflector 偏转装置deflocculation 解凝defoamer 去沫剂defoaming agent 去沫剂defocusing 散焦deformation bands 变形带deformation energy 变形能deformation of irradiated graphite 辐照过石墨变形deformation parameter形变参量deformation 变形deformed nucleus 变形核deformed region 变形区域deform 变形degassing 脱气degas 除气degeneracy 简并degenerate configuration 退化位形degenerate gas 简并气体degenerate level 简并能级degenerate state 简并态degeneration 简并degradation of energy 能量散逸degradation 软化degraded spectrum 软化谱degree of acidity 酸度degree of anisotropic reflectance 蛤异性反射率degree of burn up 燃耗度degree of cross linking 交联度degree of crystallinity 结晶度degree of degeneration 退化度degree of dispersion 分散度degree of dissociation 离解度degree of enrichment 浓缩度degree of freedom 自由度degree of hardness 硬度degree of ionization 电离度degree of moderation 慢化度degree of polymerization 聚合度degree of purity 纯度dehumidify 减湿dehydrating agent 脱水剂dehydration 脱水deionization rate 消电离率deionization time 消电离时间deionization 消电离dejacketing 去包壳delay circuit 延迟电路delayed alpha particles 缓发粒子delayed automatic gain control 延迟自动增益控制delayed coincidence circuit 延迟符合电路delayed coincidence counting 延迟符合计数delayed coincidence method 延迟符合法delayed coincidence unit 延迟符合单元delayed coincidence 延迟符合delayed criticality 缓发临界delayed critical 缓发临界的delayed fallout 延迟沉降物delayed fission neutron 缓发中子delayed gamma 延迟性射线delayed neutron detector 缓发中子探测器delayed neutron emitter 缓发中子发射体delayed neutron failed element monitor 缓发中子破损燃料元件监测器delayed neutron fraction 缓发中子份额delayed neutron method 缓发中子法delayed neutron monitor 缓发中子监测器delayed neutron precursor 缓发中子发射体delayed neutron 缓发中子delayed proton缓发质子delayed reactivity 缓发反应性delay line storage 延迟线存储器delay line 延迟线delay system 延迟系统delay tank 滞留槽delay time 延迟时间delay unit 延迟单元delay 延迟delineation of fall out contours 放射性沉降物轮廓图deliquescence 潮解deliquescent 潮解的delivery dosedose 引出端delta electron 电子delta metal 合金delta plutonium 钚delta ray 电子demagnetization 去磁demagnetize 去磁dematerialization 湮没demineralization of water 水软化demineralization 脱盐demonstration reactor 示范反应堆demonstration 示范dempster mass spectrograph 登普斯特质谱仪denaturalization 变性denaturant 变性剂denaturation of nuclear fuel 核燃料变性denaturation 变性denature 变性denaturize 变性denitration 脱硝dense plasma focus 稠密等离子体聚焦dense 稠密的densimeter 光密度计densimetry 密度测定densitometer 光密度计densitometry 密度计量学density analog method 密度模拟法density bottle 密度瓶density effect 密度效应density gradient instability 密度梯度不稳定性density of electrons 电子密度deoxidation 脱氧deoxidization 脱氧departure from nucleate boiling ratio 偏离泡核沸腾比departure from nucleate boiling 偏离泡核沸腾dependability 可靠性dependence 相依dependency 相依dephlegmation 分凝酌dephlegmator 分馏塔depilation dose 脱毛剂量depilation 脱毛depleted fraction 贫化馏分depleted fuel 贫化燃料depleted material 贫化材料depleted uranium shielding 贫铀屏蔽depleted uranium 贫化铀depleted water 贫化水depleted zone 贫化区域deplete uranium tail storage 贫化铀尾料储存depletion layer 耗尽层depletion 贫化;消耗depolarization 去极化depolymerization 解聚合deposit dose 地面沉降物剂量deposited activity 沉积的放射性deposition 沉积deposit 沉淀depression 减压depressurization accident 失压事故depressurizing system 降压系统depth dose 深部剂量depth gauge 测深计depth of focus 焦点深度depthometer 测深计derby 粗锭derivant 衍生物derivate 衍生物derivative 衍生物derived estimate 导出估价值derived unit 导出单位derived working limit 导出工撰限desalinization 脱盐desalting 脱盐descendant 后代desensitization 脱敏desensitizer 脱敏剂desiccation 干燥desiccator 干燥器防潮器design basis accident 设计依据事故design basis depressurization accident 设计依据卸压事故design basis earthquake 设计依据地震design dose rate 设计剂量率design of the safeguards approach 保障监督方法设计design power 设计功率design pressure 设计压力design safety limit 设计安全限design temperature rise 设计温度上升design transition temperature 设计转变温度design 设计desmotropism 稳变异构desmotropy 稳变异构desorption 解吸desquamation 脱皮destruction test 破坏性试验destructive distillation 干馏detailed balance principle细致平衡原理detailed decontamination 细部去污detectable activity 可探测的放射性detectable 可检测的detection efficiency 探测效率detection efficiency探测效率detection limit 探测限detection of neutrons from spontaneous fission 自发裂变中子探测detection of radiation 辐射线的探测detection probability 探测概率detection time 探测时间detection 探测detector 1/v 1/v探测器detector efficiency 探测僻率detector foil 探测骗detector noise 探测齐声detector shield 探测屏蔽detector tube 检波管detector with internal gas source 内气源探测器detector 探测器敏感元件detect 探测;检波detergent 洗涤剂determination 确定deterrence of diversion 转用制止detonating gas 爆鸣气detonation altitude 爆炸高度detonation point 爆炸点detonation yield 核爆炸威力detonation 爆炸detoxifying 净化detriment 损害detted line 点线deuteride 氘化物deuterium alpha reaction 氘反应deuterium critical assembly 重水临界装置deuterium leak detector 重水检漏器deuterium moderated pile low energy 低功率重水慢化反应堆deuterium oxide moderated reactor 重水慢化反应堆deuterium oxide 重水deuterium pile 重水反应堆deuterium sodium reactor 重水钠反应堆deuterium target 氘靶deuterium tritium fuel 氘氚燃料deuterium tritium reaction 氘氚反应deuterium 重氢deuteron alpha reaction 氘核反应deuteron binding energy 氘核结合能deuteron induced fission 氘核诱发裂变deuteron neutron reaction 氘核中子反应deuteron proton reaction 氘核质子反应deuteron stripping 氘核涎deuterum moderated pile 重水反应堆deuton 氘核development of uranium mine 铀矿开发development 发展deviation from the desired value 期望值偏差deviation from the index value 给定值偏差deviation 偏差dewatering 脱水dewindtite 水磷铅铀矿dew point 露点dextro rotatory 右旋的diagnostic radiology 诊断放射学diagnostics 诊断diagram 线图dialkyl phosphoric acid process 磷酸二烷基酯萃取法dialysis 渗析dial 度盘diamagnetic effect 抗磁效应diamagnetic loop 抗磁圈diamagnetic substance 抗磁体diamagnetic susceptibility 抗磁化率diamagnetism of the plasma particles 等离子体粒子反磁性diamagnetism 反磁性diamagnet 抗磁体diameter 直径diamond 稳定区;金刚石diaphragm gauge 膜式压力计diaphragm type pressure gauge 膜式压力计diaphragm 薄膜diapositive 透谬片diascope 投影放影器投影仪diathermance 透热性diathermancy 透热性diatomic gas 双原子气体diatomic molecule 二原子分子dibaryon 双重子diderichite 水菱铀矿dido type heavy water research reactor 迪多型重水研究用反应堆dido 重水慢化反应堆dielectric after effect 电介质后效dielectric constant 介电常数dielectric hysteresis 电介质滞后dielectric polarization 电介质极化dielectric strain 电介质变形dielectric strength 绝缘强度dielectric 电介质diesel engine 柴油机diesel oil 柴油difference ionization chamber 差分电离室difference linear ratemeter 差分线性计数率计difference number 中子过剩difference of potential 电压difference scaler 差分定标器differential absorption coefficient 微分吸收系数differential absorption ratio 微分吸收系数differential albedo 微分反照率differential control rod worth 控制棒微分价值differential cross section 微分截面differential cross-section微分截面differential discriminator 单道脉冲幅度分析器differential dose albedo 微分剂量反照率differential energy flux density 微分能通量密度differential particle flux density 粒子微分通量密度differential pressure 压差differential range spectrum 射程微分谱differential reactivity 微分反应性differential recovery rate 微分恢复率differential scattering cross section 微分散射截面differentiator 微分器diffraction absorption 衍射吸收diffraction analysis 衍射分析diffraction angle 衍射角diffraction grating 衍射光栅diffraction instrument 衍射仪diffraction pattern 衍射图diffraction peak 衍射峰值diffraction scattering 衍射散射diffraction spectrometer 衍射谱仪diffraction spectrum 衍射光谱diffraction 衍射diffractometer 衍射仪diffusate 扩散物diffuse band 扩散带diffused junction semiconductor detector 扩散结半导体探测器diffused 散射的diffuseness parameter 扩散性参数diffuse reflection 漫反射diffuser 扩散器diffuse scattering 漫散射diffuse 扩散diffusion approximation 扩散近似diffusion area 扩散面积diffusion barrier 扩散膜diffusion cascade 扩散级联diffusion chamber 扩散云室diffusion coefficient for neutron flux density 中子通量密度扩散系数diffusion coefficient for neutron number density 中子数密度扩散系数diffusion coefficient 扩散系数diffusion column 扩散塔diffusion constant 扩散常数diffusion cooling effect 扩散冷却效应diffusion cooling 扩散冷却diffusion cross section 扩散截面diffusion current density 扩散淋度diffusion current 扩散电流diffusion energy 扩散能diffusion equation 扩散方程diffusion factory 扩散工厂diffusion kernel 扩散核diffusion layer 扩散层diffusion length 扩散长度diffusion length扩散长度diffusion mean free path 扩散平均自由程diffusion plant 扩散工厂diffusion pump 扩散泵diffusion rate 扩散速率diffusion stack 务马堆diffusion theory 扩散理论diffusion time 扩散时间diffusion 扩散diffusivity 扩散系数digital analog converter 数模转换器digital computer 数字计算机digital data acquisition and processing system 数字数据获取与处理系统digital data handling and display system 数字数据处理和显示系统digital recorder 数字记录器digital time converter 数字时间变换器dilation 扩胀dilatometer 膨胀计diluent 稀释剂dilute solution 稀溶液dilute 冲淡dilution analysis 稀释分析dilution effect 稀释效应dilution method 稀释法dilution ratio 稀释比dilution 稀释dimensional change 尺寸变化dimension 尺寸diminishing 衰减dimorphism 双晶现象di neutron 双中子dineutron 双中子dingot 直接铸锭dip counter tube 浸入式计数管dipelt 双重线dipole dipole interaction 偶极子与偶极子相互酌dipole layer 偶极子层dipole momentum 偶极矩dipole moment 偶极矩dipole radiation 偶极辐射dipole transition 偶极跃迁dipole 偶极子di proton 双质子dirac electron 狄拉克电子dirac equation 狄拉克方程dirac quantization 狄拉克量子化dirac theory of electron 狄拉克电子论direct and indirect energy conversion 直接和间接能量转换direct contact heat exchanger 直接接触式换热器direct conversion reactor study 直接转换反应堆研究direct conversion reactor 直接转换反应堆direct current 直流direct cycle integral boiling reactor 直接循环一体化沸水堆direct cycle reactor 直接循环反应堆direct cycle 直接循环direct digital control 直接数字控制direct energy conversion 能量直接转换direct exchange interaction 直接交换相互酌direct exposure 直接辐照direct fission yield 原始裂变产额direct interaction 直接相互酌directional correlation of successive gamma rays 连续射线方向相关directional counter 定向计数器directional distribution 方向分布directional focusing 方向聚焦directional 定向的direction 方向direct isotopic dilution analysis 直接同位素稀释分析directly ionizing particles 直接电离粒子directly ionizing radiation 直接电离辐射direct measurement 直接测量direct radiant energy 直接辐射能direct radiation proximity indicator 直接辐射接近指示器direct radiation 直接辐射direct reaction 直接反应direct reaction直接反应direct use material 直接利用物质direct voltage 直羚压direct x ray analysis 直接x射线分析dirft tube 飞行管道dirt column 尘土柱dirty bomb 脏炸弹disadvantage factor 不利因子disagreement 不一致disappearence 消失discharge chamber 放电室discharge current 放电电流discharge in vacuo 真空放电discharge potential 放电电压discharge tube 放电管discharge voltage 放电电压discharge 放电discomposition 原子位移discontinuity 非连续性discontinuous 不连续的disc operating system 磁盘操椎统discrepancy 差异discrete energy level 不连续能级discrete spectrum 不连续光谱discrete state 不连续态discrete 离散的discrimination coefficient 甄别系数discriminator 鉴别器disinfectant 杀菌剂disintegrate 蜕衰disintegration chain 放射系disintegration constant 衰变常数disintegration curve 衰变曲线disintegration energy 衰变能disintegration heat 衰变热disintegration of elementary particles 基本粒子衰变disintegration particle 衰变粒子disintegration probability 衰变概率disintegration product 蜕变产物disintegration rate 衰变速度disintegration scheme 蜕变图disintegration series 蜕变系disintegrations per minute 衰变/分disintegrations per second 衰变/秒disintegration 蜕变disk source 圆盘放射源dislocation edge 位错边缘dislocation line 位错线dislocation 位错dismantling 解体disorder scattering 无序散射disorder 无序dispersal effect 分散效应dispersal 分散disperser 分散剂dispersing agent 分散剂dispersion fuel element 弥散体燃料元件dispersion fuel 弥散体燃料dispersion 分散dispersive medium 色散媒质displacement current 位移电流displacement kernel 位移核displacement law of radionuclide 放射性核素位移定律displacement law 位移定律displacement spike 离位峰displacement 替换displace 位移;代替disposal of radioactive effluents 放射性瘤液处置disposition 配置disproportionation 不均disruption 破坏disruptive instability 破裂不稳定性disruptive voltage 哗电压dissipation of energy 能消散dissipation 耗散dissociation constant 离解常数dissociation energy 离解能dissociation pressure 离解压dissociation 离解dissociative ionization 离解电离dissolution 溶解dissolver gas 溶解气体dissolver heel 溶解泣滓dissolver 溶解器distance control 遥控distant collision 远距离碰撞distillate 蒸馏液distillation column 蒸馏塔distillation method 蒸馏法distillation tower 蒸馏塔distillation 蒸馏distilled water 蒸馏水distiller 蒸馏器distilling apparatus 蒸馏器distilling flask 蒸馏瓶distorted wave Born approximation,DWBA扭曲波波恩近似distorted wave impulse approximation 畸变波冲动近似distorted wave theory 畸变波理论distorted wave 畸变波distortionless 不失真的distortion 畸变distributed ion pump 分布式离子泵distributed processing 分布式处理distributed source 分布源distribution coefficient 分配系数distribution factor 分布因子distribution function 分布函数distribution law 分配定律distribution of dose 剂量分布distribution of radionuclides 放射性核素分布distribution of residence time 停留时间分布distribution ratio 分配系数distribution 分布distrubited constant 分布常数disturbance 扰动disturbation 扰动diuranium pentoxide 五氧化二铀divergence of ion beam 离子束发散divergence problem 发散问题divergence 发散divergent lens 发射透镜divergent reaction 发散反应diversing lens 发射透镜diversion assumption 转用假定diversion box 转换箱diversion hypothesis 转用假设diversion path 转用路径diversion strategy 转用战略diversion 转向divertor 收集器divider 分配器division of operating reactors 反应堆运行部division 刻度djalmaite 钽钛铀矿document information system 文献情报体系doerner hoskins distribution law 德尔纳霍斯金斯分配定律dollar 元domain 磁畴dome 圆顶水柱dominant mutation 显性突变donut 环形室doping control of semiconductors 半导体掺杂物第Dopper effect多普勒效应doppler averaged cross section 多普勒平均截面doppler broadening 多普勒展宽doppler coefficient 多普勒系数doppler effect 多普勒效应doppler free laser spectroscopy 无多普勒激光光谱学doppler shift method 多普勒频移法doppler width 多普勒宽度dosage measurement 剂量测定dosage meter 剂量计dosage 剂量dose albedo 剂量反照率dose build up factor 剂量积累因子dose commitment 剂量负担dose effect curve 剂量效应曲线dose effect relationship 剂量效应关系dose equivalent commitment 剂量当量负担dose equivalent index 剂量当量指标dose equivalent limit 剂量当量极限dose equivalent rate 剂量当量率dose equivalent 剂量当量dose equivalent剂量当量dose fractionation 剂量分割dose limit 剂量极限dose measurement 剂量测量dose meter 剂量计dose modifying factor 剂量改变系数dose of an isotope 同位素用量dose prediction technique 剂量预报技术dose protraction 剂量迁延dose rate meter 剂量率测量计dose ratemeter 剂量率表dose rate 剂量率dose reduction factor 剂量减低系数dose response correlation 剂量响应相关dose unit 剂量单位dose 剂量dosifilm 胶片剂量计dosimeter charger 剂量计充电器dosimeter 剂量计dosimetry applications research facility 剂量测定法应用研究设施dosimetry 剂量测定法dotted line 点线double beam 双射束double beta decay 双衰变double bond 双键double charged 双电荷的double clad vessel 双层覆盖容器double compton scattering 双康普顿散射double container 双层容器double contingency principle 双偶然性原理double decomposition 复分解double differential cross section 二重微分截面double focusing mass spectrometer 双聚焦质谱仪double focusing 双聚焦double-humped barrier双峰势垒double ionization chamber 双电离室double precision 双倍精度double probe 双探针double pulse 双脉冲double resonance spectroscopy 双共振光谱学double resonance 双共振double scattering method 双散射法doublet splitting 双重线分裂doublet 电子对double walled heat exchanger 双层壁换热器doubling dose 加倍剂量doubling time meter 倍增时间测量计doubling time 燃料倍增时间doubly charged 双电荷的doubly closed shell nuclei 双闭合壳层核doughnut 环形室downcomer 下降管down quark下夸克down time 停机时间downwards coolant flow 下行冷却剂流downwind fall out 下风放射性沉降物draft 通风drain tank 排水槽draught 通风drell ratio 多列尔比dressing of uranium ore 铀矿石选矿dressing 选矿drier 干燥器drift instability 漂移不稳定性drift mobility 漂移率drift speed 漂移速度drift transistor 漂移晶体管drift velocity 漂移速度driven magnetic fusion reactor 从动磁核聚变反应堆driver fuel 驱动燃料drive voltage 控制电压drop reaction 点滴反应drop 点滴dry active waste 干放射性废物dry analysis 干法分析dry box 干箱dry criticality 干临界dry distillation 干馏dryer 干燥器dry friction 干摩擦dry ice 干冰drying oil 干性油drying oven 烘干炉drying 干燥dry out 烧干dry reprocessing 干法再处理dry way process 干法过程dry well 干井dt fuel cycle dt燃料循环dt reactor dt反应堆dual cycle boiling water reactor system 双循环沸水反应堆系统dual cycle reactor 双循环反应堆dual decay 双重放射性衰变dual energy use system 能量双重利用系统duality 二重性dual purpose nuclear power station 两用核电站dual purpose reactor 两用反应堆dual temperature exchange separation process 双温度交换分离法dual temperature exchange 双温度交换duant d形盒ductile brittle transition temperature 延性脆性转变温度ductility 延伸性duct 管dummy load 仿真负载dumontite 水磷铀铅矿dump condenser 事故凝汽器dump tank 接受槽dump valve 事故排放阀dump 烧毁元件存放处dunkometer 燃料元件包壳破损探测器duplet 电子对duration of a scintillation 闪烁持续时间duration 持续时间dust chamber 集尘室dust cloud 尘埃云dust collector 集尘器dust cooled reactor 粉尘冷却反应堆dust monitor 灰尘监测器dust sampler 灰尘取样器dust trap 集尘器dye laser 染料激光器dynamical friction 动摩擦dynamic behaviour 动态dynamic characteristic 动特性dynamic equilibrium ratio 动态平衡比dynamic equilibrium 动态平衡dynamic pressure 动压dynamic process inventory determination 动态过程投料量测定dynamic stabilization 动力稳定dynamic viscosity 动力粘滞系数dynamitron 地那米加速器并激式高频高压加速器dynamometer 测力计dynamo 发电机dyne 达因dynode 倍增电极dysprosium 镝dystectic mixture 高熔点混合物elastic scattering cross-section弹性散射截面elastic scattering弹性散射electronic stopping电子阻止elementary particle基本粒子EMC effect EMC效应endothermic reaction吸能反应energy conservation能量守恒energy loss能量损失energy resolution能量分辨率evaporation model蒸发模型even-even nucleus偶偶核exchange force交换力excitation curve激发曲线excitation function 激发函数excited state激发态exothermic reaction放能反应experimental Q-wave实验Q值exposure照射量fabrication 制造facility attachment 设施附属文件facility practice 设施实行facility safeguards approach 设施的保障监督方法facility 设施factor of porosity 孔隙率factor of stress concentration 应力集中因数factor 系数fading 阻尼failed can detection 破损燃料探测failed element indicator 破损元件指示器failed element monitor 破损元件监测器failed element 破损元件failed fuel detection and location 破损燃料探测和定位failed fuel detection 破损燃料探测failed fuel detector 破损燃料探测器fail safe instrument 故障时安全运行的仪器fail safe operation 安全运行failsafe 故障自动保险的failure checking 故障检查failure free operation 无故障运行failure mode 故障种类failure of parity conservation 宇称守恒的破坏failure prediction 故障预测fall back 回落falling stream method 降哩fallout density 放射性沉降物密度fallout monitoring 沉降物监测fallout particle 沉降粒子fallout pattern 沉降物分布型式fallout radioactive material 放射性沉降物fallout sampling network 沉降物取样网fallout shelter 沉降物掩蔽所fall out 放射性沉降fall time 下降时间false alarm probability 假报警几率false curvature 假曲率false scram 错误信号紧急停堆family 系fano's theorem 法诺定理faraday cage 法拉第笼faraday constant 法拉第常数faraday cup 法拉第笼farad 法拉far field 远场far infra red radiation 远红外辐射far ultraviolet radiation 远紫外辐射farvitron 线振质谱仪fast acting control rod 快动棕制棒fast advantage factor 快中子有利因子fast amplifier 宽频带放大器fast and thermal reactor burnup computer code 快和热反应堆燃耗计算机代码fast breeder reactor 快中子增殖反应堆fast breeder 快中子增殖反应堆fast burst reactor facility 快中子脉冲反应堆装置fast burst reactor 快中子脉冲反应堆fast ceramic reactor 陶瓷燃料快堆fast chamber 快速电离室fast chopper 快中子选择器fast coincidence unit 快符合单元fast coincidence 快符合fast compression cloud chamber 快压缩云室fast conversion 快中子转换fast cosmic ray neutron 宇宙射线的快中子fast critical assembly 快中子临界装置fast cross section 快中子截面fast detector 快速探测器fast effect 快中子倍增效应fast electron 快电子fast exponential experiment 快中子指数实验装置fast fissionability 快中子致裂变性fast fission effect factor 快中子裂变效应系数fast fission region 快中子裂变区fast fission 快中子裂变fast flux test facility 快中子通量试验装置fast flux 快中子通量fast fragment 快碎片fast killing dose 快速杀伤剂量fast leakage factor 快中子泄漏因子fast mean free path 快中子平均自由程fast medium 快中子介质fast multiplication effect 快中子倍增效应fast multiplication factor 快中子倍增因子fast neutron activation method 快中子活化法fast neutron breeder reactor 快中子增殖反应堆fast neutron breeding 快中子增殖fast neutron calibration 快中子刻度fast neutron collimator 快中子准直器fast neutron counter tube 快中子计数管fast neutron cycle 快中子增殖循环fast neutron detector 快中子探测器fast neutron diffusion length 快中子扩散长度fast neutron dose equivalent 快中子剂量当量fast neutron dosimeter 快中子剂量计fast neutron fission cross section 快中子裂变截面fast neutron fission increase rate 快中子裂变增加率fast neutron fluence 快中子积分通量fast neutron generator 快中子发生器fast neutron non leakage probability 快中子不泄漏几率fast neutron range 快中子区fast neutron reaction 快中子反应fast neutron reactor 快中子裂变反应堆fast neutron selector 快中子选择器fast neutron spectrometer 快中子谱仪fast neutron 快中子fast plutonium reactor 快中子钚反应堆fast radiochemistry 快速放射化学fast reaction 快速核反应fast reactor core test facility 快堆堆芯试验装置fast reactor physics 快速反应堆物理学fast reactor test assembly 快堆试验装置fast reactor thermal engineering facility 快堆热工程研究设施fast reactor 快中子裂变反应堆fast region 快中子区fast setback 迅速下降fast slow coincidence circuit 快慢符合电路fast sub critical assembly 快中子次临界装置fast test reactor 快中子试验反应堆fast thermal coupled reactor 快热耦合反应堆fast zero power reactor 快中子零功率反应堆fatal dose 致命剂量fatalities 死亡事故fatigue fracture 疲劳断裂fatigue limit 疲劳极限fatigue test 疲劳试验fatigue 疲劳faulted condition 损伤状态faulty fuel assembly 破损燃料组件fault 故障favorable geometry 有利几何条件fb 快中子增殖反应堆fcc 核燃料循环成本fcf 核燃料循环设施feather analysis 费塞分析feather's empirical formula 费瑟经验公式feather's rule 费瑟规则feed adjustment tank 进料蝶槽feedback circuit 反馈回路feedback control 反馈控制feedback loop 反馈回路feedback ratio 反馈比feedback signal 反馈信号feedback 反馈feed end 加料端feed material 给料物质feed plant 核燃料生产工厂feed pump 给水泵feed stage 给料段feed water control system 给水控制系统feedwater equipment 给水设备feedwater flow control 给水量控制feed water 给水feed 供给ferganite 水钒铀矿fermat's principle 费马原理fermi acceleration 费米加速fermi age equation 费米年龄方程fermi age theory 费米年龄理论fermi age 费米年龄fermi beta decay theory 费米衰变理论fermi characteristic energy level 费米能级fermi constant 费米常数fermi dirac gas 费米狄拉克气体fermi dirac statistics 费米狄拉克统计学fermi distribution function 费米狄拉克分布函数fermi distribution 费米分布fermi energy 费米能级fermi function 费米函数Fermi function费米函数fermi gas model 费米气体模型fermi gas 费米气体Fermi interaction F相互作用fermi interaction 费米相互酌fermi intercept 散射长度fermi level 费米能级fermi limit 费米能级fermion 费米子fermi particle 费米子fermi perturbation 费米微扰fermi plot 费米线图fermi potential 费米势fermi reactor 费米中子反应堆fermi resonance 费米共振fermi selection rules 费米选择定则fermi's golden rule 费米黄金法则fermi spectrum 费米谱fermi statistics 费米统计fermi surface 费米面fermi temperature 费米温度fermi theory of cosmic ray acceleration 费米宇宙射线加速理论fermi transition 费米跃迁fermium 镄fermi 费米。
光学名词中英文对照

incoherence addition interference phenomenon of light coherent condition single photon interference relationship between optical path difference and phase difference wavefront-splitted interference Young's double-slit interference experiment Thomas Young interference pattern (fringe) order of interference nonlocalized interference nonlocalized fringe Fresnel bimirror Fresnel biprism Lloyd mirror visibility wave train coherence time coherence length temporal coherence spatial coherence critical width of light source interference aperture angle partially coherent light amplitude-splitted interference film interference equal-inclination interference equal-inclination fringes localized interference
泰勒判据 象分辨本領 物镜的分辨本領 相对孔径
Taylor criterion image resolving power resolving power of objective relative aperture
原子吸收分光光度.

原子吸收仪器(4)
03:00:22
TAS-986 北京普析通用
03:00:22
一、流程
1.特点
(1)采用锐线光源 (2)单色器在火焰与 检测器之间 (3)原子化系统
03:00:22
2.原子吸收中的原子发射现象
在原子化过程中,原子受到辐射跃迁到激发态后,处于 不稳定状态,将再跃迁至基态,故既存在原子吸收,也有原 子发射。但返回释放出的能量可能有多种形式,产生的辐射 也不在一个方向上,但对测量仍将产生一定干扰。 消除干扰的措施:
e 0
I0 d
;
I
e 0
I d
将 It=I0e-Kvb 代入上式:
则:
A
lg
e 0
I0 d
I e d e
-K L
0
0
I
I e d e
-K L
0
0
采用锐线光源进行测量,则
Δνe<Δνa ,由图可见,在辐射线宽度 范 围 内 , Kν 可 近 似 认 为 不 变 , 并 近 似等于峰值时的吸收系数K0
Nj
Pj
E0 E j
e kT
Pj
E
e kT
Pj
h
e kT
N0 P0
P0
P0
上式中Pj和PO分别为激发态和基态的统计权重,激发态 原子数Nj与基态原子数No之比较小,<1%. 可以用基态原子数 代表待测元素的原子总数。公式右边除温度T外,都是常数 。T一定,比值一定。
03:00:22
《原子吸收光谱法在分析化学中的应用》 奠定了原子吸收光谱法的基础,之后迅速发展。特点: (1) 检出限低,10-10 ~10-14 g; (2) 准确度高,1%~5%; (3) 选择性高,一般情况下共存元素不干扰; (4) 应用广,可测定70多个元素(各种样品中); 局限性:难熔元素、非金属元素测定困难、不能同时多元素
原子物理第四章

《原子物理学》(Atomic Physics) 第四章 原子的精细结构:电子的自旋
《原子物理学》(Atomic Physics) 第四章 原子的精细结构:电子的自旋
考虑磁矩 的进动 磁矩元
d sin d
则
d d sin sin dt dt
d 即 dt 因此, 称为磁矩绕磁场方向进动的角速度。
《原子物理学》(Atomic Physics) 第四章 原子的精细结构:电子的自旋
由于原子在磁场中附加了拉莫尔进动,会使其能量 发生变化。进动角动量叠加到L在磁场方向的分量上, 将使系统能量增加(L和B方向一致或具有同向的分量) (图a),或使系统能量减少(L和B方向相反或具有反 向的分量)(图b) 。
根据j的取值,相邻的j均相差1,由于s=1/2, 所以对某一确定的 l ,j l 1 2, l 1 2 。 即当 l 0时,j只有两个取值 j l 1 2 ;当 l 0 时,j只有一个值1/2。 例1、求p电子的L,S和J的大小,并画出矢量图。 解:p电子对应的量子数为 l 1, s 1 2 所以
0.6nm
《原子物理学》(Atomic Physics) 第四章 原子的精细结构:电子的自旋
§4.1、原子中电子轨道运动的磁矩
有关电磁学知识
1、电偶极矩
p ql
l
q
F qE
F 0
E
q
F
M l F l (qE) p E
《原子物理学》(Atomic Physics) 第四章 原子的精细结构:电子的自旋
有机化学基础知识点核磁共振光谱与耦合常数的解释

有机化学基础知识点核磁共振光谱与耦合常数的解释引言:有机化学是研究和讨论有机化合物的一门学科,其中的核磁共振光谱和耦合常数是研究有机分子结构的重要工具。
本文将详细解释核磁共振光谱的原理以及耦合常数的概念和应用。
一、核磁共振光谱的原理核磁共振光谱(Nuclear Magnetic Resonance, NMR)是一种通过核磁共振现象来研究化合物结构的方法。
核磁共振现象是指在外加磁场的作用下,原子核可以发生能级的跃迁,从而产生共振现象。
核磁共振光谱仪是通过磁场、射频辐射和探测器等部件组成的。
在强磁场的作用下,样品中的原子核的磁矩会与外加磁场相互作用,呈现出两种状态:与磁场方向相同的α态和与磁场方向相反的β态。
射频辐射能够使这些核态之间发生能级跃迁,当辐射频率能与核态之间的能级差相匹配时,就会观察到共振吸收现象。
二、耦合常数的概念耦合常数是核磁共振光谱中用于解释峰的裂分情况的参数。
在分子中,存在不对称的原子核环境,如邻近的氢原子核会相互影响。
当一个共享的电子云上有两个或多个化学位点时,称这些位点是耦合的。
通过测定峰的裂分情况以及裂分的模式,可以推断出耦合的存在,并利用耦合常数来描述耦合的程度。
三、核磁共振光谱的解释核磁共振光谱的解释需要考虑以下几个方面。
1. 化学位移(Chemical Shift):这是指样品中原子核吸收射频辐射的频率相对于参考物质的频率的偏移量。
化学位移通过化学位移标尺来表示,单位通常为ppm。
2. 裂分模式:当存在耦合时,一个峰可能会裂分成多个更小的峰。
裂分模式可以通过N+1规则来推断,其中N是与该核相邻的原子核数量。
3. 耦合常数:耦合常数描述了裂分模式中峰之间的差距。
常用的一种耦合常数是耦合常数J值,它表示裂分峰之间的频率差。
J值可以由裂分峰的间距计算得到。
四、耦合常数的应用耦合常数有很多应用,以下是其中的几个例子:1. 判断化学环境:通过分析耦合常数的数值和模式,可以判断相邻的氢原子核所处的化学环境,从而推断出它们所连接的基团。
!Emission spectroscopy and energy transfer in Tm3+, Tm3+-Ho3+ and Tm3+-Yb3+ doped tellurite fibers

Emission spectroscopy and energy transfer in Tm3+, Tm3+-Ho3+ andTm3+-Yb3+ doped tellurite fibersBilly Richards*a, Shaoxiong Shen a, Animesh Jha aa Institute for Materials Research, Houldsworth Building, University of Leeds, Clarendon Road,Leeds, LS2 9JTABSTRACTThis paper examines the steady state and time resolved emission spectroscopy of Tm3+ doped and Tm3+-Ho3+, Tm3+-Yb3+ co-doped tellurite fibers for mid-IR fiber laser design which find applications for lidar. These doped fibers show promising properties for compact and tunable laser sources in the visible and mid-IR when pumped at 800 nm, 980 nm and 1480 nm which can be used for remote chemical sensing and atmospheric monitoring. Tellurite glass has a lower cut-off phonon energy than silica glass and is more environmentally stable than fluoride glass, and coupling these properties with its high rare-earth ion solubility and high refractive index make this glass a very interesting material in which to study the fluorescence properties of these rare earth ions. We have measured the mid-IR fluorescence properties in varying lengths of multi-mode and single-mode fiber for the 3H4-3H6 (~1.85 µm), 3H4-3F4 (~1.46 µm) transitions in Tm3+ and the 5I7-5I8 (~2.05 µm) transition in Ho3+. We have also measured the visible emission from these fibers due to excited state absorption (ESA) as there is blue and green emission in Tm3+ and Tm3+-Ho3+ doped fibers respectively when pumped at 800 nm, and strong red and blue emission in the Tm3+-Yb3+ when pumped at 980 nm. These results in fiber are compared to bulk glass results and are used to describe the pumping schemes and energy transfer mechanisms of these rare earth ions in tellurite fiber.Keywords: Tellurite, fiber, fluorescence, thulium, holmium, ytterbium, laser1. INTRODUCTIONTellurite glass has several properties which make it an interesting candidate for mid-IR fiber laser design and use in other optical devices. The transmission range of tellurium based glasses extends into the mid infrared up to around 5 µm and has a low cut-off phonon energy of around 800cm-1.1 Both of these properties compare well against other oxide based glasses such as silicates. This feature, coupled with the high rare earth ion solubility, makes tellurium oxide based glass a good host within which to examine the longer wavelength transitions of thulium and holmium ions. Tellurite glass has a high refractive index which increases the absorption and emission cross-sections2, good optical and mechanical properties and is relatively easy to manufacture having a low melting point.Mid-IR fiber lasers in the range 1.8-2.9 µm and beyond have various potential applications including eye-safe laser lidar and remote chemical sensing, including the characterization of CO2 and OH which both have very strong absorption bands in the mid-IR. The strong absorption from water in this region makes these compact laser sources attractive for medical surgery applications. There are many reports of thulium doped silica fiber lasers operating at around 2 µm3-7, and of thulium and thulium/holmium co-doped fluoride based fiber lasers operating in the 1.8 to 2.9 µm region.8-12 There are however very few reports of tellurite fiber lasers operating in the longer wavelength end of this range. The development of these lasers in tellurite fiber is desirable due to the fact that the glass is much more stable and resistant to corrosion than fluoride glass leading to fewer design and operation problems.13The thulium ions can be pumped directly into the 3H4 level with an 800 nm source, and will show emission at around 1.46 µm (3H4-3F4) and 1.8 µm (3F4-3H6). Holmium cannot be pumped directly with an 800 nm source due to the lack of an appropriate absorption band. In a thulium-holmium co-doped glass, the 3H4 thulium level is populated by the 800 nm pump source and a quenching mechanism transfers energy to the 5I7 holmium level which then radiatively depopulates to the holmium ground state (5I8) giving rise to emission at around 2.0 µm.14*prebdor@; phone +44(0)113 3432352; fax +44(0)1133432384Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing II,edited by Upendra N. Singh, Proc. of SPIE Vol. 6367, 63670G, (2006)0277-786X/06/$15 · doi: 10.1117/12.689619Thulium and holmium can also be co-doped with ytterbium which acts as an effective sensitizer. The ytterbium ions can be pumped with a 980 nm source into the 2F5/2 level which can then through energy transfer mechanisms, populate the thulium 3H5 and holmium 5I6 levels. The absorption band of ytterbium at 980 nm makes it very convenient for use with readily available diode lasers, and because of the ytterbium ion energy level structure there is no possibility of excited state absorption making ytterbium co-doped devices more efficient. 15This paper details the results of the emission spectroscopy of Tm3+, Ho3+ and Yb3+ doped tellurite fiber and also Tm3+ doped silica fiber in the infrared and visible regions and uses these results to explain the pumping schemes and energy transfer processes within these rare-earth ion dopants.2. EXPERIMENTALThe tellurite fibers were manufactured from glass with the composition 78TeO2-12ZnO-10Na2O (mol%) for the core and 75TeO2-15ZnO-10Na2O (mol%) for the cladding. Tm2O3 (0.5 wt%) doped, Tm2O3-Ho2O3 (0.5-1.0 wt%) codoped and Tm2O3-Yb2O3 (0.5-1.0 wt%) codoped fibers were investigated. The starting chemicals for the core and cladding glasses were weighed, ground, mixed and then placed into gold crucibles and melted in separate electric tube furnaces in a dry O2 atmosphere. The powders are initially dried overnight and then melted at 820ºC. The mixtures were stirred after 1 hour with a gold rod and then homogenized at 720ºC for 2 hours. The fiber preform is cast using the suction method into a preheated brass mould and then annealed at 300ºC for 3 hours, after which it is allowed to cool slowly in the furnace to room temperature. The preforms are extruded into structured rods which can then be further extruded with cladding tubes made by the rotation method to reduce the core diameter. Fiber is drawn at each stage providing a range of fibers with varying core diameter. The silica fiber tested was bought from the National Optics Institute, (INO, Canada), and was a 10 m Tm3+ doped double-clad fiber with a D-shaped inner cladding and a 20 µm core diameter.The infrared fluorescence spectra of the samples were measured using an FLS920 Steady State and Time Resolved Fluorescence Spectrometer (Edinburgh Instruments). The spectrometer uses an indium gallium arsenide (InGaAs) detector for measurements in the wavelength range 1.3-2.2 µm. Visible measurements were made using a cooled photomultiplier tube in the range 400-850 nm. The samples were pumped with either a 5 W 808 nm, or a 250 mW 976 nm laser diode. The excitation radiation was launched into the fibers using a 40× microscope objective and the emitted fluorescence was collected and delivered to the spectrometer using a commercial silica fiber which was butt-coupled to the end of the test fiber. Steady-state spectra were measured using a mechanical chopper and lock-in amplifier. Lifetime measurements were made by modulating the laser diode current supply with an external function generator and capturing the fluorescence decay using a digital oscilloscope (Tektronics, TDS3012). All experiments were carried out at room temperature. The spectra were measured with an 800 nm filter placed between the sample and the detector. This was required to attenuate the high intensity pump light reaching the detector which had not been fully absorbed by the test fiber. This was necessary because without the filter, the spectra showed a large sharp peak at 1.6 µm which is the first harmonic of the pump laser. Spectra were taken with and without the filter and then normalized. Although the filter did slightly reduce the intensity of the entire spectrum, the shapes of the peaks were not altered, and the peak at 1.6 µm was removed.3. RESULTS AND DISCUSSIONS3.1. Infrared emission spectroscopy of Tm3+ doped tellurite fiberFigure 1 shows the emission spectra of a range of lengths of multi-mode Tm3+ doped tellurite fiber with a core diameter of approximately 12 µm when pumped with an 808 nm laser diode source. The doping concentration in this fiber is 0.5 wt%. The spectra have been normalized with respect to the peak at ~1.86 µm which is attributed to 3F4→3H6 transition of Tm3+. As the length of the fiber increases, the peak shifts to longer wavelengths due to ground-state absorption and re-emission of light within these two energy levels. The figure also compares the fiber emission spectra to that of the bulk glass sample with the same doping concentration. The 3F4→3H6 peaks measured in the fiber samples are narrower than the bulk glass sample and also shifted to longer wavelengths. In fiber the peak at 1.46 µm due to the 3H→3F4 transition is lower in intensity relative to the ~1.86 µm peak than in the bulk sample showing that the 4confinements of the fiber geometry are increasing the energy transfer efficiency between Tm 3+ ions. The emission spectra of different lengths of single-mode Tm 3+ doped tellurite fiber were also measured which showed the same trends as for the multi-mode fibers.The measured fluorescence lifetime from the 3F 4 Tm 3+ level was 1633 µs in bulk glass and increased from 1941 µs to 2290 µs in increasing lengths of singly doped multi-mode fiber. This increase in lifetime is due to the 3F 4 population increasing due to the enhanced energy transfer in longer fibers.140015001600170018001900200021000.00.20.40.60.81.065mm 100mm 137mm 172mm 210mm BulkN o r m a l i s e d i n t e n s i t y (a .u .)Wavelength (nm)Fig. 1. The emission spectra of 0.5 wt% Tm 3+ doped tellurite fiber (core diameter = 12µm) and bulk glass when excited withan 808 nm laser source. The spectra have been normalized with respect to the peak at ~1.86 µm.3.2. Infrared emission spectroscopy of Tm 3+-Ho 3+ codoped tellurite fiberFigure 2 shows the emission spectra of varying lengths of 0.5 wt% Tm 3+ and 1.0 wt% Ho 3+ codoped telluritefiber which are compared to the bulk glass sample of the same dopant concentration when excited with the same 808 nm laser source. The fibers are multi-mode with a core diameter of approximately 12 µm. The spectra have been normalized with respect to the peak at ~2.0 µm which is attributed to the 5I 7→5I 8 Ho 3+ transition. The spectra show that the shape of the emission peak from this transition is different when measured in fiber to bulk glass. In fiber the peak is narrowed and shifted to longer wavelengths and also appears as a single peak instead of a double peak in bulk glass. Ground state absorption and re-emission in the Ho 3+ ions due to the increased path length and energy confinement in the fiber results in emission only from the longer wavelength levels in the 5I 7 manifold. The peak at 1.46 µm and shoulder at ~1.86 µm are due to the 3H 4→3F 4 and 3F 4→3H 6 transitions respectively in Tm 3+. The intensities of these peaks relative to the ~2.0 µm peak are much lower in fiber than bulk glass. Ho 3+ ions cannot be directly excited with an 808 nm source which means that energy must be transferred to Ho 3+ from the Tm 3+ ions. The reduction in intensity of the Tm 3+ peaks in figure 3 shows that the energy transfer processes from Tm 3+ to Ho 3+ are becoming more efficient in fiber over bulk glass. The intensity of the peak at 1.46 µm increases with fiber length suggesting a back energy transfer process from Ho 3+ to Tm 3+ ions due to the upconversion in Ho 3+ which increases in longer fibers. This also suggests that for operation at ~2.0 µm in this fiber, shorter lengths are preferable. In single-mode geometries of this fiber the spectra shape are similar but with smaller 1.46 µm peak intensities confirming that the increased energy confinement in the fiber geometry is increasing the energy transfer from the 3H 4→3F 4 Tm 3+ transition to the 5I 8→5I 7 Ho 3+ transition.The measured fluorescence lifetime of the 5I 7 Ho 3+ level is 3148 µs in bulk glass and 4200-4500 µs in multi-mode fiber but does not appear to vary with fiber length. The increase in lifetime in fiber over bulk glass further confirms the increased energy transfer to the 5I 7 level in the fiber geometry.1400150016001700180019002000210022000.00.20.40.60.81.061mm 120mm 176mm 226mm 279mm BulkN o r m a l i s e d i n t e n s i t y (a .u .)Wavelength (nm)Fig. 2. The emission spectra of 0.5 wt% Tm 3+-1.0 wt% Ho 3+ codoped tellurite fiber (core diameter = 12µm) and bulk glasswhen excited with an 808 nm laser source. The spectra have been normalized with respect to the peak at ~2.0 µm.N o r m a l i s e d i n t e n s i t y (a .u .)Wavelength (nm)Fig. 3. The emission spectra of 0.5 wt% Tm 3+-1.0 wt% Yb 3+ codoped tellurite fiber (core diameter = 12µm) when excitedwith an 978 nm laser source. The spectra have been normalized with respect to the peak at ~1.86 µm.3.3. Infrared emission of Tm 3+-Yb 3+ codoped tellurite fiberFigure 3 shows the emission spectra of 0.5 wt% Tm 3+ and 1.0 wt% Yb 3+ codoped fiber of varying length with acore diameter of approximately 12 µm. The use of Yb 3+ as a sensitizer in this fiber allowed the use of a 978 nm pump source to populate the 3H 5 level of Tm 3+ through energy transfer from Yb 3+. Yb 3+ has an absorption peak centered close to 978 nm due to the 2F 7/2→2F 5/2 transition which is more intense than the Tm 3+ absorption peaks making this an efficient pumping scheme.2 Coupling of this pump source into the fiber was much improved over the 808 nm source dueto the single-mode nature of the pump diode output. The emission spectra have been normalized with respect to the peak from the 3F 4→3H 6 Tm 3+ transition. The results again show a narrowing and shifting to longer wavelengths with increasing fiber length. The peak at ~1.5 µm is from the 3H 4→3F 4 transition of Tm 3+ which must be caused by upconversion in Tm 3+ due to the fact that energy transfer from Yb 3+ populates the lower lying 3H 5 level of Tm 3+. The intensity of this peak is lower in shorter lengths of fiber and in the single-mode geometry. The lifetime of the 3F 4 level in this fiber was generally slightly shorter than in the pure Tm 3+ doped fiber due to the increased upconversion, and did not seem to vary with length.3.4. Visible upconversion in Tm 3+, Tm 3+-Ho 3+ and Tm 3+-Yb 3+ dope tellurite fibersStrong visible emission due to upconversion was observed in all these fibers, so to further understand thefluorescence and energy transfer mechanisms, the visible emission spectra were also measured at room temperature using the same pump sources as for the infrared measurements. These results can be found in figure 4 and are all measured using single-mode fiber. Graphs (a) and (b) do not show the emission at 800 nm from the 3H 4 level of Tm 3+ because a filter had to be used to attenuate the unabsorbed pump light which was saturating the detector. This emission can be seen in graph (c) however as the pump (at 978 nm) was out of the detection range thus not requiring the filter. The Tm 3+ doped fiber shows weak blue emission at 480 nm due to the 1G 4→3H 6 transition arising from a two pump photon excited state absorption (ESA) process. In graph (a) there also appears to be emission at 525 and 550 nm but this is not due to the Tm 3+ ions. These peaks have been seen in other fibers, (including undoped ones), and is believed to be due to some possible contamination arising during the fiber fabrication process. The intensity of the blue emission in the Tm 3+ doped fiber is extremely low compared to the emission in the other two fibers which is why these contamination peaks are visible in this spectrum but not in the other two. The Tm 3+-Ho 3+ doped fiber shows additional emission at 550 nm which is due to the (5S 2, 5F 4)→5I 8 Ho 3+ transition. In this fiber the blue and green emission lines are significantly narrowed which suggests superfluorescence and promise for visible laser operation. The Tm 3+-Yb 3+ codoped fiber shows strong emission at 480 and 650 and 800 nm due to the 1G 4→3H 6, 1G 4→3F 4 and 3H 4→3H 6 Tm 3+ transitions respectively.N o r m a l i s e d i n t e n s i t y (a u )Wavelength (nm)N o r m a l i s e d i n t e n s i t y (a u )Wavelength (nm)N o r m a l i s e d i n t e n s i t y (a .u .)Wavelength (nm)Fig. 4. The visible upconversion emission spectra for (a) 0.5 wt% Tm 3+ doped tellurite fiber with 808 nm pump (b) 0.5 wt%Tm 3+ - 1.0 wt% Ho 3+ codoped tellurite fiber with 808 nm pump and (c) 0.5 wt% Tm 3+ - 1.0 wt% Yb 3+ codoped tellurite fiber with 978 nm pump.Figure 5 shows the energy level diagrams for the three systems studied showing the pumping schemes, energytransfer and upconversion mechanisms. The 808 nm pump excites the 3H 4 Tm 3+ level which decays to the 3F 4 level emitting a 1.46 µm photon and then to the 3H 6 level emitting the 1.86 µm photon. At high Tm 3+ concentration and in fiber, a quenching mechanism takes place between Tm 3+ ions where the 1.46 µm photon excites a neighboring ion to the 3F 4 level which decays emitting a further 1.86 µm photon. Stokes energy transfer also occurs from an ion decaying from the 3F 4 level exciting another ion to the 3F 4 level. ESA excites a Tm 3+ ion from the 3H 5 level to the 1G 4 level which decays to the ground state giving rise to the small 480 nm peak in fig 5 (a). This peak is very low in intensity because the upconversion to 1G 4 is originating from the 3H 5 level which will undergo fast non-radiative decay to 3F 4. Upconversion emission has been observed at ~376 nm in Tm 3+ doped fluoride glass due to the 1D 2→3H 6 transition 16 which is not seen in our tellurite glass because the corresponding energy of this transition falls in the UV absorption edge and is therefore quenched.In the Tm 3+-Ho 3+ fiber the Tm 3+ ions are pumped in the same way as above but the energy from the emission at1.86 µm is transferred to a Ho 3+ ion exciting it from the ground state to the 5I 7 level where it decays emitting a2.05 µm photon. Upconversion excites the Ho 3+ ion to the 5I 5 level which then decays non-radiatively to the 5I 6 level, is back transferred to the 3H 5 Tm 3+ level which decays non-radiatively to the 3F 4 level where energy is transferred back to the Ho 3+ 5I 7 level emitting a 2.05 µm photon.14 Upconversion also populates the 5S 2 and 5F 4 levels of Ho 3+ which de-excite to the ground state giving rise to the green emission at 550 nm. The addition of the Ho 3+ ions enhances the upconversion to the 1G 4 Tm 3+ level and consequently the blue emission intensity at 480 nm.In the Tm 3+-Yb 3+ codoped fiber the 976 nm pump excites the 2F 5/2 Yb 3+ level which exhibits fluorescence at1020 nm pumping the Tm 3+ ions into the 3H 5 level. This level decays non-radiatively to 3F 4 and then radiatively to the ground state emitting the 1.86 µm photon. Two photon upconversion populates the 3H 4 Tm 3+ level which decays to the ground state emitting an 800 nm photon and three photon upconversion populates the 1G 4 which decays to the 3F 4 and 3H 6 levels giving strong emission at 650 nm (red) and 480 nm (blue) respectively.17,185101520Yb 3+Tm3+Tm 3+Ho3+E n e r g y (103c m -1)Tm 3+ Tm3+Fig. 5. Energy level diagrams for the Tm 3+-Tm 3+, Tm 3+-Ho 3+ and Tm 3+-Yb 3+ systems showing the pumping schemes,multiple photon upconversion and energy transfer, (represented by the dashed arrows).3.5. Tm 3+ doped silica fiberFigure 6 shows the infrared emission spectrum of a 10 m length of Tm 3+ doped double clad silica fiber whenpumped with around 1.8 W of 808 nm laser source. The graph also shows the spectrum of the 210 mm length of Tm 3+ doped multi-mode tellurite fiber for comparison. The silica fiber has emission peaks at around 1.45 and 1.85 µm which are due to the 3H 4-3F 4 and 3F 4-3H 6 transitions respectively. Although these peaks are due to the same transitions as in the tellurite fiber, the peak shapes are different due to the change in host glass causing the ratio of transitions from the various Stark levels within the manifolds to change. The spectrum for the tellurite fiber is narrower than the silica fiber and the 1.85 µm peak is shifted to longer wavelengths. This suggests that the emission in the tellurite fiber is starting to superfluoresce. The silica fiber also showed weak emission at 480 nm due to upconversion and emission due to the 1G 4-3H 6 transition. Figure 7 shows the decay curve for emission at 1852 nm in the silica fiber when pumped with a modulating 808 nm laser source. The lifetime of the 3F 4 level in silica level was measured to be around 650 µs compared to around 2290 µs in the 210 mm length of tellurite fiber. A long upper laser level lifetime is desirable for non-terminating CW laser operation, and these results confirm the potential advantages of tellurite fiber for compact fiber laser sources.N o r m a l i s e d i n t e n s i t y (a .u .)Wavelength (nm)Fig. 6. The emission spectra of Tm 3+ doped silica and tellurite fiber when excited with an 808 nm laser source. The spectrahave been normalized with respect to the peak at ~1.86 µm.0.00.5 1.0 1.5 2.0 2.5e-2e-1eN o r m a l i s e d i n t e n s i t y (a .u .)Time (ms)Fig. 7. The emission decay curve at 1852 nm for the Tm 3+ doped silica fiber when excited with a modulated 808 nm lasersource.4. CONCLUSIONMid-IR emission in the 1.8 – 2.1 µm range has been measured in Tm 3+ doped and Tm 3+-Ho 3+ codoped telluritefibers when excited with an 808 nm pump. Tm 3+ doped fiber shows strong emission at ~1.86 µm while the Tm 3+-Ho 3+ codoped fiber shows emission at ~2.05 µm through energy transfer to the Ho 3+ ions. Emission has also been observed at ~1.86 µm in Tm 3+-Yb 3+ codoped fiber when pumped with a 976 nm source. These measurements show narrowing and red-shifting of emission peaks and increased energy transfer in the smaller geometries associated with these fibers. Thevisible upconversion emission has been measured and used to help explain the energy transfer processes involved. Emission has also been measured in a 10 m length of Tm3+ doped double-clad silica fiber which exhibits a broader peak and a shorter lifetime at ~1.86 µm than in the tellurite fiber. These results suggest that short lengths (<0.5 m) of doped tellurite fiber can be used for mid-IR fiber laser sources.REFERENCES1.L. D. da Vila, L. Gomes, C. R. Eyzaguirre, E. Rodriguez, C. L. Cesar, L. C. Barbosa, Opt. Mater. 27, 1333-1339(2005).2.L. Huang, S. Shen, A. Jha, J. Non-Cryst. Solids,345&346, 349-353 (2004).3.Y. H. Tsang, D. J. Coleman, T. A. King, Opt. Comm. 231, 357-364 (2004).4. D. C. Hanna, I. R. Perry, J. R. Lincoln, Opt. Comm. 80(1), 52-56 (1990).5. B. C. Dickinson, S. D. Jackson, T. A. King, Opt. Comm. 182, 199-203 (2000).6.W. A. Clarkson, N. P. Barnes, P. W. Turner, J. Nilsson, D. C. Hanna, Opt. Lett. 27(22), 1989-1991 (2002).7. A. F. El-Sherif, T. A. King, Opt. Lett. 28(1), 22-24 (2003).8.J. Y. Allain, M. Monerie, H. Poignant, Electron. Lett. 25(24), 1660-1662 (1989).9.R. G. Smart, J. N. Carter, A. C. Tropper, D. C. Hanna, Opt. Comm.82(5,6), 563-570 (1991).10.M. Doshida, M. Obara, Jpn. J. Appl. Phys. 34, 6079-6083 (1995).11.L. Esterowitz, R. Allen, I. Aggarwal, Electron. Lett. 24(17), 1104 (1988).12.S. D. Jackson, Electron. Lett. 37(13), 821-822 (2001).13.S. Shen, A. Jha, E. Zhang, S. J. Wilson, C. R. Chimie, 5, 921-938 (2002).14.X. Zou, H. Toratani, J. Non-Cryst Solids, 195, 113-124 (1996).15.L. C. Courrol, L. V. G. Tarelho, L. Gomes, N. D. Vieira Jr, F. C. Cassanjes, Y. Messaddeq, S. J. L. Ribeiro, J. Non-Cryst Solids, 284, 217-222 (2001).16.N. Rakov, G. Maciel, M. Sundheimer, L. Menezes, A. Gomes, Y. Messaddeq, F. Cassanjes, G. Poirier, S. Ribeiro,J. App. Phys. Comm. 92(10), 6337-6339 (2002).17.S. Shen, A. Jha, L. Huang, P. Joshi, Opt. Lett. 30(12), 1437-1439 (2005).18.G. Wang, S. Dai, J. Zhang, L. Wen, J. Yang, Z. Jiang, Spectrochim. Acta A, 64, 349-354 (2005).。
不同化学环境氢原子判断

不同化学环境氢原子判断英文回答:Differentiating hydrogen atoms in various chemical environments can be achieved through several methods, including spectroscopy, chemical reactions, and computational simulations. These techniques provide valuable information about the electronic structure and bonding of hydrogen atoms in different molecules or compounds.Spectroscopy is a powerful tool for identifying the chemical environment of hydrogen atoms. Nuclear magnetic resonance (NMR) spectroscopy, for example, can determine the number and types of hydrogen atoms present in a molecule. By analyzing the chemical shifts in the NMR spectrum, we can infer the electronic environment surrounding the hydrogen atoms. For instance, a hydrogen atom in an alkyl group will have a different chemical shift compared to a hydrogen atom in an aromatic ring. Thisinformation helps in distinguishing the hydrogen atoms in different chemical environments.Chemical reactions can also be used to differentiate hydrogen atoms. Different functional groups or substituents attached to a hydrogen atom can influence its reactivity. For instance, a hydrogen atom attached to a carbon atom in an alkene will exhibit different reactivity compared to a hydrogen atom attached to a nitrogen atom in an amine. By selectively reacting with specific functional groups, wecan identify and differentiate hydrogen atoms in different chemical environments.Computational simulations, such as density functional theory (DFT) calculations, provide a theoretical approachto determine the electronic structure and properties of molecules. These simulations can predict the chemicalshifts of hydrogen atoms in different chemical environments. By comparing the calculated chemical shifts with experimental data, we can identify the specific chemical environment of hydrogen atoms in a molecule.To illustrate this further, let's consider the example of ethanol (CH3CH2OH). In the NMR spectrum of ethanol, we would observe three distinct peaks corresponding to the three different types of hydrogen atoms present in the molecule. The hydrogen atoms in the methyl group (CH3) would exhibit a different chemical shift compared to the hydrogen atom in the ethyl group (CH2) or the hydroxyl group (OH). This allows us to differentiate the hydrogen atoms based on their chemical environments.中文回答:通过光谱学、化学反应和计算模拟等多种方法可以区分不同化学环境中的氢原子。
玻恩奥本海默近似

玻恩奥本海默近似在量子力学中,玻恩奥本海默近似(Born-Oppenheimer approximation)是一个基本假设,它允许我们将复杂的多体问题简化为更容易处理的单体问题。
本文将简要介绍玻恩奥本海默近似的原理及其在量子化学中的应用。
1. 玻恩奥本海默近似的原理量子力学描述了原子或分子系统中各个粒子的运动和相互作用。
然而,当系统中存在多个粒子时,粒子之间的相互作用会导致系统的哈密顿量变得非常复杂,难以求解。
为了克服这个问题,玻恩和奥本海默提出了近似方法。
玻恩奥本海默近似的基本思想是将系统的波函数表示为电子和原子核的乘积形式:Ψtotal(Ψelectron × Ψnuclear),其中Ψelectron是电子的波函数,Ψnuclear是原子核的波函数。
这种近似方法的合理性在于,电子比原子核运动要快得多,因此可以将其视为运动快速的“自由”粒子。
2. 玻恩奥本海默近似在量子化学中的应用玻恩奥本海默近似在量子化学中有着广泛的应用,特别是在分子结构和光谱研究中。
以下是一些具体的应用领域:2.1. 分子结构计算在分子结构计算中,玻恩奥本海默近似可以将分子的总能量表示为电子和原子核的能量之和:Etotal = Eelectron + Enuclear。
通过求解电子的薛定谔方程,可以得到电子的能量和波函数,进而确定分子的几何结构。
2.2. 分子能级计算玻恩奥本海默近似还可以用于计算分子的能级结构和光谱特性。
通过近似处理,可以将原子核运动和电子结构的耦合关系分开考虑,从而方便地计算出分子的能级和光谱吸收、发射等性质。
2.3. 化学反应动力学玻恩奥本海默近似还在研究化学反应动力学中发挥重要作用。
通过将反应系统分解为原子核和电子两个子系统,并考虑它们之间的相互作用,可以推导出化学反应的速率方程和动力学行为。
3. 玻恩奥本海默近似的局限性虽然玻恩奥本海默近似在很多情况下都能提供有关原子和分子性质的准确结果,但它也有一定的局限性。
2020高中化学竞赛—无机化学(修订版)07原子结构与周期表 第一节:核外电子的运动状态等

(3) 当电子由能量为 E1 的定态跃迁到能量为 E2 的 定态时,若 E2 E1,吸收辐射能,若 E2 E1 ,发 出辐射能。其吸收或发出辐射的频率 为:
若 E2 E1 (吸收辐射能) E2
E = E2 E1 = h E1
若 E2 E1 (发出辐射能) E1
E = E1 E2 = h E2
ቤተ መጻሕፍቲ ባይዱ
(电子动能 + 电子势能)
〔 〕 =
1 2
e2 e2 rr
mv2 =
e2 r
(由式 (1) 和 Z = 1)
=
e2 2r
22me4 = n2h2
(将 r 代入)
=
R n2
R=
22me4 h2
= 13.6 eV
n = 1 , E = 13.6 eV
n = 2 , E = 3.4 eV n = 3 , E = 1.51 eV
与经典电磁学理论矛盾?!
氢原子的玻尔 (Bohr) 模型 (1913年)
普朗克 (Planck) 量子论 + 爱因思坦 (Einstein) 光子学说 + 卢瑟福 (Rutherford) 有核原子模型
假设 (三点)
(1) 定态假设: 电子只能在特殊的轨道上绕核运动。 在这轨道上运动的电子既不吸收能量也不辐射能量
Paschen series (帕邢线系)
(巴尔麦线系)
(赖曼线系)
=
波数
1/
=
RH(
1 nl2
1 n22
)
RH = 1.097107 m1 Rydberg (里德堡) constant for hydrogen
Series n1 Lyman 1 Balmer 2 Paschen 3
核子形状因子

FD (q ) = (1 +
2
称为偶极形式
q
2 2αBiblioteka )−2核子的电磁形状因子
点电荷核子的狄拉克散射截面: 点电荷核子的狄拉克散射截面:
dσ dσ h 2q 2 θ h 2 q 2 ( ∆µ ) 2 (1 + ∆µ ) 2 tan 2 ( ) + ] = ( ) Mott [1 + 2 2 2 2 dΩ dΩ 2m p c 2 4m p c ∆µ为磁矩的反常部分, 对质子和中子分别为1.79和 − 1.91
核子的电磁形状因子
h 2q 2 GE (q ) = F1 (q ) − ∆µF2 (q 2 ) 4m 2 c 2 p
2 2
GM (q 2 ) = F1 (q 2 ) + ∆µF2 (q 2 )
µP 当hq = 0时,GE (0) = Q p / e = 1, GM (q ) = = 2.79 µN 的定义: q的定义: r r ( E − E ' ) ( p − p' ) 2 q2 = − = −Q 2 h 2c 2 h2
兰州大学核科学与技术学院核子的半径和形状因子核子不是点粒子它有一定的体积内部的电荷有一定的分布rr作为核子电荷的概率分布满足归一化条件mott两个零自旋点电荷之间的库仑散射mottdirac自旋为12的粒子在自旋为零的粒子上的散射自旋为12的粒子在自旋为12的粒子上的散射rdrqrqr通过截面测量得到质子的电荷形状因子进一步得出质子的电均方根如果质子的电荷分布为汤川型如果质子的电荷分布为指数型称为单极形式称为偶极形式核子的电磁形状因子91对质子和中子分别为为磁矩的反常部分非点电荷的rosenbluth公式公式的另一种形式核子的电磁形状因子79q的定义
对相干态光场与混合态原子间的纠缠传递

对相干态光场与混合态原子间的纠缠传递张晋华(忻州师范学院物理系,山西忻州 034000)摘要:对处于混合直积态的2个原子与对相干态光场的相互作用,研究了在不同形式强度耦合作用下,原子与光场之间的纠缠传递,结果发现适当形式的强度耦合作用可以增强纠缠传递并且使2原子间纠缠的时间演化呈现出周期性.即使在原子初态变混合时,2原子间纠缠的最大值以及纠缠随时间演化的周期性依然保持.另外发现,2原子间的纠缠与2模间光子数差q 有很大关系,q 是奇数时的纠缠小于q 是偶数时的纠缠.关键词:纠缠;对相干态;强度耦合;混合态原子中图分类号:O 431.1 文献标识码:A 文章编号:1000 5854(2011)02 0135 05Entanglement Transfer from Pair coherent States to Two Mixed AtomsZHANG Jinhua(Department of Physics,Xinz hou Teachers Universi ty,Shanxi Xinzhou 034000,C hi na)Abstract:The entanglement transfer from pair coherent states to mixed atoms w ith different forms of intensity dependent coupling is studied.It s found that suitable form of intensity dependent coupling can enhance the entanglement transfer and makes it evolve periodically.Even for the mixed initial atom ic states,the m ax imum v alue of entang lement and the periodical evolvement are kept.It s also show n that the photon number difference between the tw o modes plays a key role.When is odd,the maximum entanglement betw een the atoms is less than that w hen is even.Key words:entanglement;pair coherent states;intensity dependent coupling;mixed atoms量子多体系统的重要特征之一就是纠缠传递,纠缠是重要的量子信息资源,在量子通讯、量子计算、量子密码学、量子博弈等方面有着广泛的应用[1 5],人们对其进行了多方面的研究.文献[6]给出了利用光场和原子相互作用的Jayness Cumm ing 模型,文献[7]讨论了双模压缩真空场与2个初始时刻处于直积纯态的原子之间的相互作用及纠缠传递.在此基础上,其他作者又对初始时刻处于混合直积态的原子与一些双模光场之间的纠缠传递进行了研究[8].依赖于强度耦合作用的J C 模型[9]在研究光场压缩[10]、原子反转[11]以及非线性相干态的制备[12]等方面具有广泛应用.对相干态光场是一种重要的双模非经典光场,具有较强的模间纠缠,可以作为量子计算和量子通讯中的良好信息载体[13].因此有必要对原子与对相干态光场的相互作用进行研究.本文中,笔者给出了对相干态光场的模间纠缠;考虑了任意形式的强度耦合作用后,通过精确计算研究了对相干态光场与混合直积态二能级原子间的纠缠传递,结果发现适当形式的强度耦合作用可以增强纠缠传递并且使2原子间纠缠的时间演化呈现出周期性.1 对相干态光场的模间纠缠对相干态光场的形式为 | F =A qn=0n n !(n +q )!|n +q ,n ,(1)收稿日期:2010 09 20;修回日期:2010 11 22基金项目:国家自然科学基金(20376054)作者简介:张晋华(1982 ),男,山西忻州人,讲师,硕士,研究方向为量子信息与量子光学.第35卷/第2期/2011年3月河北师范大学学报/自然科学版/J OU RNAL OF HEB EI NO RMAL UNIV ER SITY /Natu ral Scien ce Edition /Vol.35N o.2M ar.2011其中: =r ex p(i ),r =| |, 为实数;q 是光场两模间的光子数差;A q 是| |的函数,A q =[| |q /I q (2| |)]1/2,I q (2| |)为虚宗量贝塞尔函数.可以用量子约化熵来计算对相干态光场的模间纠缠.S =-n=0A 2q| |2n n!(n +q )!lb A 2q | |2nn!(n +q )!.(2)图1 对相干态光场模间纠缠随参量的变化数值计算结果见图1(其中3条曲线由上至下分别对应q =0,3,7).可以看出,r =0时,2模之间没有纠缠;随着参量r 的增加,量子约化熵S 增大;但是随着q 的增加,量子约化熵减小.另外可以看出,当r 取值较大时,q 的影响减小,3条曲线近乎重合.总之,对相干态光场的模间纠缠性较好,可以用作量子计算和量子通讯的信息载体.2 理论模型假定2个二能级原子初始时刻处于混合态A (0)=[x |e 1 e 1|+(1-x )|g 1 g 1|] [x |e 2 e 2|+(1-x )|g 2 g 2|],(3)其中0 x 1,x 的取值反映了初始时刻原子状态的混合程度,它与外界环境作用有关.当x =0时,2个原子均处于基态;若x =1,2,原子均处于激发态.在强度耦合形式f (a +j a j )的作用下,让2原子分别与对相干态的2模发生作用,作用时间为t.第j 个原子(j =1,2)与光场相互作用的有效哈密顿量为H Ij =g(|e j g j |a m j f (a +j a j )+f (a +j a j )(a +j )m |g j e j |).(4)假定A j =a mj f (a +j a j ),A +j =f (a +j a j )(a +j )m,整个系统的时间演化算符为U (t)=u 1(t) u 2(t),其中u j (t)=ex p (-i H Ij t )=cos (gtA j A +j )-isin (gtA j A +j )A jA j A +j-isin (gtA +j A j )A +jA +jA jcos (gtA +j A j )(5)(在二能级原子本征态矢集|e =10和|g =01表象中).初始时刻系统密度算符为 F,A (0)= F (0) A (0)=| F |FA (0).其中| F 为初始时刻对相干态光场的态矢,由此可以得到t 时刻系统的密度算符: F,A (t )=U(t)F,A (0)U +(t).对光场变量求迹后可以求出2个原子的约化密度矩阵A =tr F F,A =A (t)00E (t)0B (t)000C(t)E *(t )00D (t).(6)矩阵的基矢是{|e 1,e 2 ,|e 1,g 2 ,|g 1,e 2 ,|g 1,g 2 }.(6)中矩阵元均为作用时间的函数,其中:A (t)=n=0|B n |2{x 2cos 2[U 3(n)t ]cos 2[U 4(n )t]+x (1-x )cos 2[U 3(n)t]sin 2[U 2(n)t ]+x (1-x )sin 2[U 1(n)t ]cos 2[U 4(n )t]+(1-x )2sin 2[U 1(n )t]sin 2[U 2(n )t]},B (t)=n =0|B n |2{x 2cos 2[U 3(n)t]sin 2[U 4(n)t ]+x (1-x )cos 2[U 3(n )t]cos 2[U 2(n)t]+x (1-x )sin 2[U 1(n)t]sin 2[U 4(n)t ]+(1-x )2sin 2[U 1(n)t ]cos 2[U 2(n )t]},C (t )=n =0|B n |2{x 2sin 2[U 3(n)t]cos 2[U 4(n)t ]+x (1-x )sin 2[U 3(n)t]sin 2[U 2(n )t]+136x (1-x )cos 2[U 1(n)t]cos 2[U 4(n )t]+(1-x )2cos 2[U 1(n )t]sin 2[U 2(n )t]},D (t)=n=0|B n |2{x 2sin 2[U 3(n)t ]sin 2[U 4(n)t]+x (1-x )sin 2[U 3(n )t]cos 2[U 2(n)t]+x (1-x )cos 2[U 1(n)t ]sin 2[U 4(n )t]+(1-x )2cos 2[U 1(n )t]cos 2[U 2(n)t]},E (t )=n=0|B n+m B *n {x 2cos 2[U 3(n +m )t ]sin [U 4(n +m )t]sin [U 3(n )t]cos [U 4(n)t]+x (1-x )cos [U 3(n +m )t ]sin [U 2(n +m )t]sin [U 3(n)t ]cos [U 2(n)t]+x (1-x )sin [U 1(n +m )t ]cos [U 4(n +m )t]cos [U 1(n)t ]sin [U 4(n)t]+x (1-x )2sin [U 1(n +m )t ]sin [U 2(n +m )t]cos [U 1(n)t ]cos [U 2(n )t]}.其中B n =A qn n!(n +q)!,U 1(n)=f (n +q)m-1k=0(n +q -k ),U 2(n)=f (n )m-1k=0(n -k),U 3(n)=f (n +q +m ) m k=1(n +q +k),U 4(n)=f (n +m )mk=1(n +k).3 光场与原子间的纠缠传递为了考察2个原子之间的纠缠特性,采用文献[7 8]中的方法对密度矩阵进行部分转置,求出其本征值,纠缠度是其负本征值 i 之和的负2倍,即纠缠度 =-2 ii .当 =0时,2个原子没有纠缠;当 =1时,2个原子处于最大纠缠态.通过计算可以得出2原子之间纠缠度为=[B(t)-C (t)]2+4|E (t )|2-B(t)-C (t).(7)首先,考虑当f (n )=1,m =1时光场与原子之间纠缠传递的情况.此时相当于没有强度耦合作用发生,原子与光场相互作用的哈密顿量简化为H Ij =g (a |e j g j |+a +|g j e j |).通过数值计算,图2给出了当r =0.5,m =1,f (n )=1时纠缠度 随作用时间gt 以及参数x 的变化情况(a,b,c 分别对应q =0,1,2).可见,当q =0时,对于大多数gt 的取值,随着参数x 的逐渐增加 在减小.这就意味着当原子初态变为混合态,即有外界环境介入时,发生退相干现象,原子间的纠缠被削弱.就q =1,2而言,对于大多数x 和gt 的取值,2原子之间没有纠缠,纠缠持续的时间远小于q =0时的情况.由数值计算结果可知,q 为奇数时2原子间的纠缠最大值小于q 为偶数时的情形.计算表明该结论对加入其他形式强度耦合作用后的情况依然成立.图2 随gt 和x 的变化然后,考虑m =1,f (n )=n 的情况(数值计算结果见图3,a ~f 分别对应i =0,1,2, ,5).若gt =(0.5+m ) (m 为整数),对于q =0,2,纠缠的最大值大于没有强度耦合(f (n )=1)时的情况;并且随着x 的增加,最大值保持不变.这一点与图2a,c 比较后可得出结论:强度耦合作用可以增强纠缠和抵制外界环境退相干.在图2中,纠缠的时间演化没有周期性;而在强度耦合f (n)=n 作用下,即使在原子初态变为混137合态时,2原子间纠缠的时间演化仍然呈现出周期性.另外,由图3a 可见,当q =0时,随着x 的增加2原子间纠缠的持续时间变短.若q =2, 的最大值略小于q =0时的情况,而纠缠的持续时间却远小于后者,这一特征可以用来制备纠缠开关.当q =1时, 的最大值远小于q =0,2时的情况,并且只有在x 较小时才有纠缠.更多的数值计算结果表明当q 为偶数时,纠缠最大值随着q 的增加而减小,反之,若q 为奇数,纠缠最大值随着q 的增加而增加.随着q 的进一步增大,二者的差别逐渐减小.另外,从图3e,f 可以看出,当q 的取值较大时,2原子间的纠缠呈现周期性崩塌和恢复的现象.1,2分别对应x =0,0.5.图3 当r =0.5,f (n )=n ,m =1时, 随时间gt 的变化对相干态光场与原子的相互作用时,也可以考虑双光子作用过程(m =2)的情况.数值计算结果见图4(a,b 分别对应f (n )=1,n(n -1)).可见,随m 的增加,较m =1时 减小很多.强度耦合作用f (n )=n(n -1)同样可以使纠缠的时间演化呈现出周期性,并且此时对应周期比f (n )=n ,m =1时减半.当x =0时,即使原子与光场发生图4b 所示的强度耦合作用,纠缠的最大值基本没有变化,但是当x 增大时,原子初态变为混合态,图4a 中2原子的纠缠已经相当微弱,而在图4b 中,虽然纠缠的持续时间变短,但纠缠的最大值依然保持不变.由此可知,当m =2时,强度耦合作用f (n )=n (n -1)同样可以增强纠缠传递.更进一步的计算表明,当m 取更大数值时,强度耦合作用f (n )=m-1k=0(n -k )可以增强纠缠.1,2分别对应x =0,0.5.图4 当r =0.5,q =0,m =2时, 随时间gt 以及x 的变化1384 结束语运用部分转置密度算符求负本征值的方法,研究了对相干态光场与初始时刻处于混合态的二能级原子间的纠缠传递,并且考虑了不同强度耦合作用形式以及光场的参量对结果的影响.结果发现,如果强度耦合作用形式以及其他参量取值合适,即使在原子初态变成混合态的情况下,原子之间纠缠的最大值依然保持不变,即强度耦合作用可以增强纠缠和抵制外界环境的退相干作用,这一点在量子信息以及量子计算中具有应用价值.参考文献:[1] BOU W M EEST ER D.Experimental Quantum T elepor tation [J].N ature,1997,390(11):575 579.[2] SHOR P W.Scheme for Reducing Decoherence in Q uantum Computer M emory [J].Phys Review A,1995,52(4):R2493R2496.[3] SLU T SKY B A,RAM ESH R.Security of Q uantum Cr yptogr aphy Against Individual Attacks [J].Phys Rev A,1998,57(4):2383 2398.[4] BENJAM IN S C,HAYDEN P M.Quantum Computing in Arrays Coupled by Always on Interactions [J].Phys Rev A,2004,70(3):032314 032320.[5] BEN JAM I N S C.M ultiplayer Q uantum Games [J].P hys Rev Lett,2001,64(3):069801 069804.[6] JAY N ES E T ,CU M M I NG F parison o f Quantum and Semiclassical Radiat ion T heories with Application to the BeamM aser [J].Proc IEEE,1963,51(1):89 109.[7] SO N W ,K IM M S,L EE J.Entang lement T ransfer from Continuous V ar iables to Q ubits [J].J M od Opt,2002,49(10):17391746.[8] ZOU J,L I J G,SHA O B.Entanglement T ransfer fr om Entangled T wo mode F ields to a Pair of Separable and M ixed Qubits[J].Phys Rev A,2006,73(4):042319 042327.[9] BU CK B,SU CU MA R C V.Ex actly Soluble M odel of A to m phonon Coupling Show ing P er iodic Decay and Revival [J].P hysLett A,1981,81(2 3):132 135.[10] BU ZEK V.Light Squeezing in t he Jaynes Cummings M odel w ith I ntensity dependent Coupling [J].J M od O pt,1989,36(9):1151 1162.[11] ZHOU P,LI N Z,JIN H,et al.Effect of Atomic Coherence on the Collapses and Rev ivals in So me Generalized Jaynes Cummings M odels [J].J M od O pt,1992,39(1):49 62.[12] N ADERI M H,SOL T AN OLK OT ABI M ,ROK NI ZA DEH R.A T heoretical Scheme for G enerat ion of Nonlinear CoherentStates in a M icromaser U nder Intensit y dependent Jay nes Cumming s M odel [J].Eur P hys J D,2005,32(3):397 408.[13] AGA RWAL G S,BISWAS A.Q uantitative M easures of Entanglement in P air coherent States [J].J O pt B:Quant SemiclassO pt,2005,7(11):350 354.(责任编辑 刘新喜)139。
赛曼效应

M J 0 , +1, -1,
9种跃迁,但只有三个波长,所以对应 的一根光谱线分裂成三根
例 讨论Na光谱双线: 1 589 .6nm 2P1/ 22S1/ 2 2 589 .0nm 2P3/22S1/2 在外场中的分裂情况,。
塞曼效应:在外加均匀磁场情况下的能级 分裂导致的光谱线分裂;
塞曼效应小结:
塞曼效应:外加均匀磁场情况下的能级分裂导致的光谱线分裂;
光源不加磁场
E2
原子态2S2 1L2J2
S2 , L2 , J2
光源加匀强磁场B
E1 E2
….
原子态2S1
L 1 1J1
S1, L1, J1
E J B mj g jBB
atomic nuclear spin
• 可以产生能级分裂的核
• 讨论: • 核磁共振现象
nuclear magnetic resonance
原子核的自旋
atomic nuclear spin
(1)一些原子核像电子一样存在自
旋现象,因而有自旋角动量:
将变化,这就是塞曼效应。
J
和外加磁场
层,因此谱线也
例2 计算求下列能级的分裂情况:(1)1P1 (2)2P3/ 2 (3) 4D1/ 2
原子态2s1Lj
解:(1) 1P1:分裂成2j+1,3个小能级
gj
3 2
s(s 1) l(l 1) 2 j( j 1)
s 0,l 1, j 1, m j 1,0,1
g
j
3 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a rXiv:q uant-ph/05114v126M ay2SPIE Vol.279815th International Conference on Nonlinear Optics ICONO’9527June -1July 1995,St.Petersburg,Russia Coherent Phenomena and Amplification without Inversion Atomic coherence and interference phenomena in resonant nonlinear optical interactions 1A.K.Popov Institute for Physics Russian Academy of Sciences,Krasnoyarsk University and Krasnoyarsk Technical University 660036,Krasnoyarsk,Russia.Fax:(3912)438923,E-mail:popov@ksc.krasn.ru and S.G.Rautian Institute of Automation and Electrometry Russian Academy of Sciences 630090,Novosibirsk,Russia 1Abstract Interference effects in quantum transitions,giving rise to amplification without inversion,optical trans-parency and to enhancements in nonlinear optical frequency conversions are considered.Review of the relevant early theoretical and experimental results is given.The role of relaxation processes,spon-taneous cascade of polarizations,local field effects,Doppler-broadening,as well as specific features of the interference in the spectral continuum are discussed.Keywords:atomic coherence and interference,resonant nonlinear interactions,bound-free transi-tions,amplification without inversion,relaxation-induced processes,local field effects,inhomogeneous broadening,frequency-conversion,V UV generation 2Introduction There has been considerable interest recently in the study of laser-induced quantum coherence and interference,which leads to fundamental effects in high resolution nonlinear spectroscopy,to amplifica-tion of radiation without the requirement of population inversion (AW I )and to resonantly enhancedrefraction at vanishing (without)absorption (ERW A ),to coherent population trapping and construc-tive contributions in resonantly enhanced nonlinear-optical frequency conversions and,at the same time,to distractive contributions in absorption of the fundamental and generated radiations 1,2.Wide range of applications are expected 3.Resonant nonlinear optical interference effects have been subject of the extensive both theoretical and experimental studies since the discovery of masers and lasers (see for example 2and ref.therein).In this paper we briefly review some early and recent results of Russian research groups on this topic.3Resonant nonlinear optical interference processes3.1Destructive and constructive interference in classical and quantum opticalphysicsInterference is one of the fundamental physical phenomena.Two oscillations at one and the same,or close,frequencies may interfere both in constructive and destructive ways.One can manipulateby the resulting oscillations with variation of the relative phase and the amplitudes of the interfering oscillators in order to enhance or,on the contrary,to eliminate the oscillations of any nature.In-terference is widely used in optical physics,including quantum optics.The concept of interference is more general,then the notions of elementary quantum-optical processes,such as one-photon,multistep and multiphoton transitions.These notions were introduced and classify at their frequency-correlation properties in the framework of the perturbation theory.Indeed,in resonant interactions,these proper-ties may be drastically changed with growth of the intensity of the coupled fields 4;2b,c .The latter may give rise to such effects in nonlinear spectroscopy of Doppler broadened transition,as compensation of the residual inhomogeneous broadening in Raman-like and cascade configurations 4;2b,c ;5.Quantum interference may occur when coherent superposition of real states is involved in a process 6.Alternatively,interfering frequency-degenerate intraatomic oscillations may originate from different correlated quantum pathways,contributing in one and the same frequency.For example,in the weak-field approximation,these can be one-and two-photon contributions to an optical process,associated with the radiation at a given frequency.Such process may be thought as that started from the coherent superposition of closely spaced real energy-level and quasi-level (virtual state),created by the auxiliary strong field 2b,c ;4.Such a coherent superposition can be produced even more easily than in the case of real doublet state.In general,even in the cases,when many elementary processes contribute to an optical process and their classification is troublesome,one can explain and predict experimental results with the aid of the notion of interfering frequency-degenerated components of nonlinear polarization.The amplitudes of the components can be varied with the intensities and phases –with the frequency-detunings of the driving fields.3.2Effect of energy levels population and relaxation,density matrix approach In general case of open energy-level configuration with all the levels being populated and various relaxation processes involved,density-matrix method is the most convenient for the analysis of a resonant nonlinear-optical response.Explicit formulae,describing spectral properties of a weak probe field in the presence of an auxiliary strong one,in cascade,V and Λconfigurations can be easily derived in the similar way 2b,c .We shall show that on the example of the energy-level schematic,givenE 1at frequency ω1≈ωgl and E 3at frequency ω3≈ωmn are els configuration.Fields E 2at frequency ω2and E 4at frequency ω4are probeWe shall derive the conditions to achieve AW I at the transitionwell as at transition ml ,so that both V and Λconfigurations Frequency of the probe field may be both higher and compared to the driving field.energy-level configuration,shown in the Fig.1.Density equations in the interaction representation,relevant to theunder consideration,can be written in the form:lg r 1·exp (i Ω1t ),ρnm =r 3·exp (i Ω3t ),ρng =r 2·exp (i Ω1t )+˜r 2·exp [i (Ω1+Ω3−Ω4)t ],ρlm =r 4·exp (i Ω4t )+˜r 4·exp [i (Ω1−Ω2+Ω3)t ],ρln =r 12·exp [i (Ω1−Ω2)t ]+r 43·exp [i (Ω4−Ω3)t ],ρii =r i ,P 2r 2=iG 2∆r 2−iG 3r ∗32+ir ∗12G 1,d 2˜r 2=−iG 3r ∗41+ir ∗43G 1,P 4r 4=i [G 4∆r 4−G 1r 41+r 43G 3],d 4˜r 4=−iG 1r 32+ir 12G 3P 41r 41=−iG ∗1r 4+ir ∗1G 4,P 43r 43=−iG 4r ∗3+ir 4G ∗3,P 32r 32=−iG ∗2r 3+ir ∗2G 3,P 12r 12=−iG 1r ∗2+ir 1G ∗2,Γm r m =−2Re {iG ∗3r 3}+q m ,Γn r n =−2Re {iG ∗3r 3}+γgn r g +γmn r m +q n ,Γg r g =−2Re {iG ∗1r 1}+q g ,Γl r l =−2Re {iG ∗1r 1}+γgl r g +γml r m +q l ,∆r1=r l−r g,∆r2=r n−r g,∆r3=r n−r m,∆r4=r l−r m.WhereΩ1=ω1−ωlg,Ω3=ω3−ωmn,Ω2=ω2−ωgn,Ω4=ω4−ωml,G1=−E1d lg/2¯h,G2=−E2d gn/2¯h,G3=−E3d nm/2¯h,G4=−E4d ml/2¯h,P1=Γlg+iΩ1,P2=Γng+iΩ2,P3=Γnm+iΩ3,P4=Γlm+iΩ4,,P12=Γln+i(Ω1−Ω2), P43=Γln+i(Ω4−Ω3),P32=Γgm+i(Ω3−Ω2),P41=Γgm+i(Ω4−Ω1),d2=Γng+i(Ω1+Ω3−Ω4),d4=Γlm+i(Ω1−Ω2+Ω3).HereΩi are frequency detuning from the resonances,G i—Rabi frequencies,∆r i—power–depending population differences,Γij—homogeneous half linewidths,Γ−1i—lifetimes,γij—relax-ation rates from i to j states,q i—population rate by a incoherent source.Density matrix amplitudes r i determine absorption/gain and refraction indexes,˜r i—determine four–wave mixing driving nonlinear polarizations.The equations and their solution for the cascade atomic configurations can be derived by the simple change of the detunings signs2b.3.3Laser–induced atomic coherence and classification of resonant nonlinear ef-fectsSolution of the coupled density–matrix equations may be represented in the form:r1,3=iG1,3∆r1/P1,r2,4=iG2,4R2,4/P2,4,R2=∆r2(1+g7+v7)−v3(1+v7−g8)∆r3−g3(1+g7−v8)∆r1(1+g4+v4)+[v5+v4(v5−g6)+g5+g4(g5−v6)],(2)∆r1=(1+æ3)∆n1+b1æ3∆n3(1+æ1)(1+æ3)−a1æ1b1æ3,∆r2=∆n2−b2æ3∆r3−a2æ1∆r1,∆r4=∆n4−a3æ1∆r1−b3æ3∆r3;r m=n m+(1−b2)æ3∆r3,r g=n g+(1−a3)æ1∆r1,r n=n n−b2æ3∆r3+a1æ1∆r1,(3) r l=n l−b1æ3∆r3+a3æ1∆r1,∆r i(E1=0,E3=0)=∆n i;g1=|G1|2P∗12P2,g3=|G1|2P41P4,g5=|G1|2P41d∗2,g7=|G1|2P∗12d∗4,v1=|G3|2P∗32P2,v3=|G3|2P43P4,v5=|G3|2P43d∗2,v7=|G3|2P∗32d∗4;æ1=æ01Γ2lgΓlΓgΓlg|G1|2,æ3=æ03Γ2mnΓmΓnΓmn|G3|2;a1=γgn a2Γn(Γg−γgl)=γgnΓlΓl(Γm−γmn)=γml b3Γl(Γm+Γn−γmn).By substituting frequency deviationsΩi for that Doppler-shiftedΩi−k i v(v is atomic velocity)we can take into account the effect of atomic motion.Imaginary part of density-matrix amplitudes r2and r4 represent absorption or gain at the corresponding probe-field frequencies.At G3=0equations(2) and(3)convert in solutions forΛand V schemesr2=i G2,r4=iG4.(4)Following2b,c we can classify resonant nonlinear effects as1)power saturation of the populations (eq.(4));2)strong-field induced splitting of the probe-field resonances,or ac Stark effect(denom-inators in eqs.(4));and3)nonlinear interference effect(NIEF)(second and third terms in the nominators of eqs.(2)).4Difference in absorption and emission spectra due to the nonlinear interference effects,amplification without inversion,resonance–enhanced refraction without absorptionPower of emitted or absorbed radiation,for example at the frequencyω2,which is proportional to Re(−iG∗2r2),can be considered as a difference between pure emission(the term,proportional to r g) and pure absorption(the rest terms in eqs.(2)).The difference in frequency-dependence of these terms, induced by the auxiliary drivingfield,is the origin of AW I2b.Refractive index atω2is determined by Im(−iG∗2r2)and,in general,laser-induced minimum in absorption may coincide with the resonance-enhanced maximum in refraction1,3.Thus,laser-induced resonance splitting and NIEF transform only spectral shape of absorption/gain and refractive indices,give rise to difference in the line shapes of spontaneous(or pure induced)emission and absorption,but do not affect the integral intensity of the spectral lines2b,c:dΩ2Re(−ir2/G2)=∆r2, dΩ4Re(−ir4/G4)=∆r4.(5) Indeed,NIEF give rise to electromagnetically induced transparency(EIT)and to AW I at the transi-tions gn(or ml),when contributions of second and third terms in the nominators of eqs.(2)are equal or dominate over∆r2(or over∆r4),correspondingly.From the above presented density-matrix equa-tions one can see that the coherence at the transitions gm and ln(r32and r12),induced in cooperation of the strong and the probefields,is the source of the EIT and AW I effects.A great number of elementary processes,introduced and defined for the bare states in the frame-work of the perturbation theory,may give contribution to the absorption/gain indexα(Ωi).Consider, for example,α(Ω4)at the frequencyω4>ω1(Fig.1),reduced by it’s maximum valueα0(0)in the absence of the all strongfields,for the case when E3=0.From the eqs.(2)onefinds:α(Ω4)P4·∆r4−g1∆r1α0(0)≈Γ24∆r4iΩ4∆n4}≈Γ24∆r4Γ214+(Ω4−Ω1)2·|G1|2(∆r1−∆r4) (n l−n m)Ω24−ΓgmΓlmΩ24(n l−n m)(7)The last terms in eqs.(7)describe Raman-like coupling and originate both from the nominator and the denominator in eq.(6).Population inversion between initial andfinal bare states(r m=n m>r g) is required for amplification of the probefield.b.Resonance:Ω1=Ω4=0.Conditions for AW I and EIT are:|G1|2 g1∆r1≥∆r4,orFigure2:Interference enhanced frequency–mixing.a.Triple resonance enhanced frequency-conversion. Levels2and1as well as3and2are coupled by the strong either one-or multiphoton interac-tions.Levels1and2are coupled by the weakfield. b.Enhancement in frequency-mixing due to the autoionizing-like resonance,induced in spectral continuum by the auxiliary strongfields E and E3. c. Enhancement in three-photon resonant four-wave mixing,induced by the auxilliary strongfield E. mentioned Autler-Townes(ac Stark splitting)as well as local-field effects.Consider energy-level scheme,shown in Fig.2a.Strongfields at frequenciesω3andω2couple unpopulated levels3and2(Rabi frequency G3)and2and1(Rabi frequency G2),respectively.Field atω1≈ω10as well as generatedωs=ω1+ω2+ω3are weak,do not change populations of the levels and are accounted for only in the lowest order of the perturbation theory.Absorption and refraction indexes for the probefields atω1andωs are represented by the imaginary and real parts ofχ1(−ω1;ω1)=(χ01/P01)f1,χs(−ωs;ωs)=(χ0s/P03)f s(9) Nonlinear susceptibility is:χNL(−ωs;ω1+ω2+ω3)=(χNL/P01P02D03)f,(10)whereχ01,χ0s andχNL0are resonant values of the susceptibilities at negligibly small G2and G3.Factorsf1,f2and f describe effects of the strongfields.Simple density-matrix calculations,similar to given in2b,e;10a.yield:f1={1+g2/P01P02[1+(g3/P02D03)]}−1,(11)f s={1+g3/P03D02[1+(g2/D02D01)]}−1,(12)f=f1[1+g3/D03P02]−1=[1+(g2/D02D01)+(g3/D03P02)]−1(13) P01=1+ix1,P02=1+ix0,P03=1+ix s;D01=1+iy1,D02=1+iy0,D03=1+iy s;x1=(ω1−ω10)/Γ10=0,x02=(ω1+ω2−ω21)/Γ20=0,x s=(ωs−ω30)/Γ30=0;y1=(ωs−ω3−ω2−ω10)/Γ10=0,y02=(ωs−ω3−ω21)/Γ20=0,y s=(ω1+ω2+ω3−ω30)/Γ30=0;g2=G22/Γ10Γ2,g3=G23/Γ30Γ20,Γij are homogeneous halfwidth of the corresponding transitions.In the case,when E s is not a probe field,but generated radiation,ωs=ω1+ω2+ω3and D0i=P0i.Factors f1,f s and f are different and describe splitting of the corresponding resonances.Frequency-dependence and difference from unity of the factors f1,f s and f is determined by the coherence, induced at the transition02by the two combinations of strong and weakfields(E1,E2and E s,E3).Generated power P∝g2g3|χNL|2,depends not only on imaginary but on real part ofχNL too,and because of that may not deplete in the spectral range of induced transparency and phase-matching. Each resonance increases|χNL|2by the factor of x−2i,which may be on the order ser-induce spectral structures in real parts ofχ1andχs(dispersion caused by the coherence at the02 transition),provide additional means to phase-match frequency-conversion by the small detunings of the fundamental radiations from the resonances.Triple resonance may yield total enhancement in generated power on the order of1018.Due to the induced transparency,number density of the atoms N and consequently P∝N2may be increased by several orders of the magnitude in addition.At high number density of the atoms,localfields may significantly differ from the external electro-magneticfields both in amplitudes and in phases.As it was shown in12,13,that may drastically change spectral properties of the induced transparency as well as of the generating nonlinear polarization. Similar to11,12,making use Lorentz-Lorenz approximation,localfield effects can be accounted for by the substituting one-photon resonances on that red-shifted(by substituting x1and x s for x1+C1and x s+C s,C1=N|d10|2/3ǫ0Γ10;C s=N|d30|2/3ǫ0Γ30,ǫ0-is permittivity of free space).Due to the fact that this does not influence transition frequencies between the excited states and that of the multiphoton transitions,the introduced shifts may drastically change effects of strong electromagnetic fields atω2andω3on both dressed linear and nonlinear responses.Equations,given above,can be easily generalized on the cases of the higher order processes.For example,when1–0and/or3–2,2–1are multiphoton transitions,generalization can be done simply by substituting one-photon Rabi frequencies and detunings for the corresponding multiphoton ones. Manipulations by the nonlinear susceptibility,absorption and refractive indexes for the generating radiation with the auxilliary strongfields,coupled to the adjacent transitions(both bound and con-tinuum states,Figs.2b,c.),were considered in ref.2f,10.6Nonlinear interference effects at bound-free transitions,Laser-induced autoionizing-like resonances(laser induced continuum structure)Nonlinear interference phenomena,similar to those at bound-bound transitions,including AW I and EIT,can occur at the transitions to ionization continuum.Appropriate theory was developed in ref.2f,10a,14.Similar case,relevant to the zone bands in crystals,was considered in ser induced autoionizing like resonances–laser induced continuum structure(LICS)was observed in the experiments ref.16,and since the end of80′s studies of the resonant interference processes in the context of LICS,AW I and EIT,first at bound–free and then at bound–bound transitions,have involved a number of research groups17,18.Potential feasibilities to manipulate both by LICS and by the splitting of the discrete resonances in order to enhance short-wavelengths frequency-mixing output and to decrease resonant absorption of the both fundamental and generated radiations can be shown with the example of Fig.2b.,generalized for the case,whenω1is close toω10,and radiations atω2,ω3andωare strong.The example combines opportunities to manipulate by two LICS and by depletion of absorption at the discrete transitions. Contribution of strong off-resonant k levels are taken into account too.By that,the detunings |ω1-ωgm|,|ω1+ω2−ωgn|and|ω−ω3−ωnl|are assumed being much less than all the rest.Density -matrix calculations give the expressions for nonlinear susceptibilityχ(3)(ωµ=ω1+ω2+ω3),which determines generated power at the frequencyωµ,as well as for absorption indexesα(ω1)andα(ωµ) for probe radiations at corresponding frequences as follows19:χ(3)(ωµ=ω1+ω2+ω3)/χ(3)0µ=K/(D gm X),(14)α(ω1)/α01=Re{[1−g mn/(D gm X)]/D gm},(15)α(ωµ)/α0µ=1−k3βl+k3βl(y l+q gl)2/(1+y l2)−−Re{k4g nn A2(1−iq gn)2/Y}(16) whereχ(3)0µ,α01andα0µ-are corresponding resonant values at the intencities of all thefields beeing negligibly weak.The rest parameters are as follows:K=1−k1βl[(1−iq nl)(1−iq lg)]/[(1−iq ng)(1+ix l)],(17)A=1−k1βl[(1−iq ln)(1−iq gl)]/[(1−iq gn)(1+iy l)],(18) X=(1+g nn)[1+ix n+g mn/D gm(1+g nn)−k2βlβn(1−iq nl)2/(1+ix l)],(19)Y=(1+g nn)[1+iy n+g mn/p gm(1+g nn−k2βlβn(1−iq nl)2/(1+iy l)],(20)D gm=1+i(ω1−ωgm)/Γgm,p gm=1+i(ωµ−ω3−ω2−ωgm)/Γgm,(21)x l=(ω1+ω2+ω3−ω−ωgl−δll)/(Γgl+γll),x n=(ω1+ω2−ωgn−δnn)/(Γgn+γnn),(22) y l=(ωµ−ω−ωgl−δll)/(Γgl+γll),y n=(ωµ−ω3−ωgn−δnn)/(Γgn+γnn),(23) k1=(γglγln)/(γgnγnn),k2=(γnlγln)/(γllγnn),k3=(γglγlg)/(γggγll),k4=(γgnγng)/(γggγnn),(24)g mn=|G mn|2/ΓgmΓgn,βl=g ll/(1+g ll),βn=g nn/(1+g nn),(25)g ii=γii/Γgi,q ij=δij/γij,γij=π¯h G iǫGǫj|ǫ=¯hωµ+Re{ k G ik G kj/p gk},(26)δij=¯h P dǫG iǫGǫj/(¯hωµ−ǫ)+Im{ k G ik G kj/p gk}(27)Factors0≥k i≥1,depending on whether continuum states are not degenerate or degenerate(unity).Comparing eqs.(14)and(16)with corresponding equations from ref.10a,2f,one can see additional interference LICS structures in generating nonlinear polarization,absorption and refraction indexes, produced in cooperation by the E3and Efields(terms,proportional toβn and g n),which provide with the supplementary means in absorption spectroscopy and for enhancements of generated short-wavelength radiation.7Relaxation-induced coherence processesAs it was outlined above,relaxation may influence interference processes both in negative and positive ways.Consider examples,when role of relaxation is positive.7.1AW I due to interference in spontaneous cascade of polarizationsThe features in absorption and emission spectra,discussed above,are caused by interference of con-tributions of probefield and combination of probe and auxiliary strongfield in atomic polarization. As it was outlined above,there may be other sources of interfering intraatomic oscillations.One of the means to obtain AW I without making use of auxiliary strongfields has been suggested recently in ref.20.The origin is interference through the correlations in spontaneous decay.Consider four-level atomic configuration shown in Fig.3a.All four transitions are allowed.Suppose,that the transition frequencyωmn is close toωm1n1,andωm1mis close toωn1n,that is difference∆∆=ωm1n1−ωmn=ωm1m−ωn1n(28)is small.In this case interference between considered four radiating channels is possible.It is caused by the coherence transfer due to interaction with the vacuum oscillations,besides the populationsFigure3:Energy-level schematics for relaxation-induced coherent processes. a.AW I through spon-taneous cascade of polarizations. b.Relaxation-induced F W M.decay and spontaneous emissions of photons.For the absorption index in the frequency range around ωmn calculations give:α(Ω)=λ2Γ2+Ω2+N n1m1A m1n1[Γ1ΓΓ1f(Ω)]},(29)C= 2J m+1(Γ−iΩ)[Γ1−i(Ω−∆)]=ΓΓ1[ΓΓ1−Ω(Ω−∆)]4πΩ2{N nm A mnΓ+N n1m1A m1n1(Γ1−KC)},(33)According to eq.33,absorption index may occur negative(AW I),if the requirementsK>O,(KC/Γ1−1)N n1m1A m1n1Γ1>N nm A mnΓ(34)are met.When K≤0,∆=0,the condition(|K|C/Γ−1)N n1m1A m1n1Γ>N nm A mnΓ1(35)means appearance of AW I in the line center(Ω=0).Similar phenomena may occur in the spectralrange of the doubletωm1m ,ωn1n.Thus,in the considered atomic configuration AW I may be providedby the correlations in the spontaneous decay without any external action.7.2Collision-induced four-wave mixingConsider example,when collisions and spontaneous relaxation,as well as external magneticfield,break destructive interference8a.This remove elimination of for-wave mixing process and provides with the test,selectively sensitive to the specific modes of relaxation.The experiment was carried out with He−Ne laser,λ=1.52µm,which is resonant to2s2–2p4transition of Ne.The upper level consist of three Zeeman’s sublevel(J1=1),the lower one is singlet(J0=0).Fundamental beam consisted of two linear and orthogonal polarized components E1and E2,frequency-shift∆=ω2−ω1being much less than natural transition linewidth.Intensity of the radiation atω1was much greater then that at ω2.Collision and magneticfield sensitive four-wave mixing output E s atωs=2ω1−ω2=ω2−2∆and with the same polarization as E2was detected.Growth of the F W M signal with the increase of collision rate and strength of magneticfield was observed,that can be explained as follows.Eachfield and emitting nonlinear polarization P NL(ωs)may be represented as combination of twocircular polarized components P NL+(ωs)and P NL−(ωs).Formulae for each of these components of non-linear polarization consist of two terms.One of them describes F W M of the radiations with one and the same polarizations in two-level subsystem,another one–F W M of the waves with opposite polar-izations in three-level Zeeman’s subsystem(Fig.3b).In the schematic under consideration,it turned out,that the two contributions interfere in the distractive way and completely eliminate each other, provided by the relaxation rates of population and quadruple moment(alignment)in the upper level are equal.It is obvious that trapping of the spontaneous radiation from the upper level,anisotropic collisions,as well as external magneticfield break the counterbalance and,therefore,induce F W M output.Such dependence was observed in the experiments.External magneticfield turns the second channel into fully resonant double-V schematics.8Review of early theory and experiments on NIEF,AW I and related phenomenaCoherence phenomena in three-level systems were studied since discovery of masers.Feasibility to attain AW I in these systems was discussed in some of publications of that period both for microwave21 and optical transitions22.AW I in optical two-level systems was predicted in ref.23andfirst was observed in radio-frequency transitions24,2d.In optical range AW I and corresponding features in refractive index were observed in ref.2e,25.Studies of coherence and interference phenomena in quantum transitions is growing research area,since they are embedded in many optical processes of basic and practical importance.9Concluding remarksAs it was outline,interference is basic and very general phenomenon of optical physics,which may play a crucial role in many experimental schematics of resonant nonlinear optics.Some of such schematics are shown in the Fig.4.Fig.4a.shows upconversion of weak infrared radiation at the frequencyω2.Fields E1and E3 are strong.Destructive interference of oscillations at the frequencyωs−ω3=ωng=ω1+ω2was shown to be one of the main process,limiting the conversion efficiency26.Fig.4b.–interference of multiphoton transition and one-photon,induced by the generating radiation eliminates population of the upper level.Fig.4c.–off-resonant7th-order seventh-harmonic generation interfere with resonant 9th-order seventh-harmonic generation,that was used for detection of the processes26.Figs.4d,e.–interference of contributions of the doublet sublevels in two-photon and off-resonant one-photon transitions.Figs.4f,g.–interference of doublet sublevels in F W M.Figure4:Interfering channels,embedded in resonant nonlinear optical processes.Pressure-induced resonance wasfirst proposed and experimentally proved in8a and later in27.The entire analogy between the schemes3b and4f is seen from the formula for the driving coherence(scheme4f)ρ(2)n′n∝V n′gρ(1)gn+ρ(1)n′g V gn∝[1Ω1−iΓng]1(Ω2+iΓn′g)(Ω1−iΓng)[1−iΓnn′−Γn′g−Γng11References.1.For a survey of recent research on AWI and ERWA see:a.M.Fleischhauer,C.H.Keitel,M.O.Scully,Chang Su,B.T.Ulrich,Shi-Yao Zhu,Phys.Rev.,Vol. A46,1468,1992;b.Papers from”Atomic Coherence and Interference”,Springer-Verlag,1977;b.A.K.Popov,Introduction in Nonlinear Spectroscopy,North-Holland, 1991;G.E.Notkin,S.G.Rautian,A.A.Feoktistov,Zh.Eksp.Teor.Fiz.,Vol.52,No6,1673,1967;d.A.M.Bonch-Bruevich,V.A.Khodovoi,N.A.Chigir,Zh.Eksp.Teor.Fiz.,Vol.67,2069,1974;e.L.S.Gaida,S.A.Pul’kin,Opt.Spektr.,Vol.67,No2,761,1989;f.Yu.I.Heller and A.K.Popov,Laser Induction of Nonlinear Resonances in Continuous Spectra(in Russ.),Leningrad University, Leningrad,1975;b.E.B.Aleksandrov,G.I.Khvostenko,M.P.Chaika,Interference of atomic states:Proceedings of the Esfahan Symposium, August29—September5,1971/Ed.by M.S.Feld,A.Javan,N.Kurnit,N.Y.,Willey,pp.369–420,1973;b.Th.H¨a nsch,P.Toschek,Z.Physik,Bd.236,213,1970.8.a.Im Tkhekde,et al,Pis’ma Zh.Eksp.Teor.Fiz.,Vol.24,8,1976;mun.,Vol.18, 499,1976;mun.,Vol.30,No2,196,1979;Opt.Spektr.,Vol.67,No2,263,1989;b.V.M.Klementjev,et al,Pis’ma Zh.Eksp.Teor.Fiz.,Vol.24,8,1976;c.L.T.Bolotskikh,et al,Appl.Phys.,Vol.B35,249,1984;d.V.G.Arkhipkin,et al,Kvant.Elektron.,Vol.13,No7,1352,1986.9.a.Yu.M.Kirin,et al,Pis’ma Zh.Eksp.Teor.Fiz.,Vol.9,7,1969;JETP,Vol.62,466,1972;b.M.P.Bondareva,et al,Opt.Spektrosk.Vol.38,219,1975.10.a.Yu.I.Heller,A.K.Popov,mun.,Vol.18,449,1976;Phys.Lett.,Vol.50A,453, 1976;b.S.E.Harris,et al,Phys.Rev.Lett.Vol.64,1107,1990;c.V.G.Arkhipkin,Kvant.Elektr.,vol.22,No1,81,1995.11.a.Ch.M.Bowden and J.P.Dowling,Phys.Rev.,Vol.A47,1247,1993;b.J.J.Maki et al.,Phys.Rev.Let.,Vol.67,972,1993.12.V.G.Arkhipkin,A.K.Popov,A.S.Aleksandrovsky,JETP Lett.,Vol.59,No.6,398,1994.13. A.K.Popov.Triple-resonance enhanced frequency-mixing using electromagnetically induced transparency.Advance Programme(p.89)and technical Digest of European Quantum Electronics Conference CLEO/Europe-EQUEC94,28August-2September,1994,Amsterdam,The Netherlands.14.V.G.Arkhipkin and Yu.I.Heller,Phys.Lett.,Vol.98A,12,1993.15. E.Yu.Perlin,erd.Tela(Sov.Journ.Sol.State.Phys.),Vol.14,No7,2133,1973; ibid.,Vol.15,No1,66,1973;Opt.Spektr.,Vol.41,No2,263,1976.16.Yu.I.Heller,V.F.Lukinykh,A.K.Popov,V.V.Slabko,Phys.Lett.,Vol.82A,No1,4,1981.17.P.L.Knight,nder,B.J.Dalton,Phys.Reports,Vol.190,No2,2,1990(and ref. therein).18. a.S.Cavaliery,et al.,Phys.Rev.,Vol.A47,No5,1993;b.O.Faucher,et al.,Phys.Rev.Lett.,Vol.70,No5,3004,1993(and ref.therein).19.A.K.Popov and V.V.Kimberg,(to be published)(Quantum Electron.28(3),228-234(1998).)20.S.G.Rautian,Pis’ma Zh.Eksp.Teor.Fiz.,Vol.61,No6,461,1995.21. a.A.Javan,Phys.Rev.,Vol.107,No6,1579,1957;b.V.M.Kontorovich,A.M.Prokhorov,Zh.Eksp.Teor.Fiz.,Vol.33,1428,1957;c.T.Yajima,K.Shimoda,J.Phys.Jap.,Vol.15,1668,1960;Adv.Quant.Electr.,p.548,1961;d.V.M.Fain,Photons and Nonlinear Media,(In Russ.,translated in English).22.T.Ya.Popova,A.K.Popov,Zh.Eksp.Teor.Fiz.,Vol.52,1517,1967.23.S.G.Rautian and I.I.Sobelman,Zh.Eksp.Teor.Fiz.,Vol.41,456,1961.24. a.D.N.,Yu.S.Konstantinov,V.S.,Izv.Vuz.Radiofiz.,Vol.8,513,1965;b.A.M.Bonch-Bruevich,S.G.Przhibelskii,N.A.Chigir,Vestnik MGU,Fisika,Vol.33,No4,35,1978 (Engl.:p.28).25. a.E.Y.Wu,et al.,Phys.Rev.Lett.,Vol.38,1077,1977;b.I.S.Zelikovich,S.A.Pulkin,L.S.Gaida,V.N.Komar,Zh.Eksp.Teor.Fiz.,Vol.94,76,1988.c.I.M.Beterov,V.P.Chebotaev,Pis’ma v Zh.Eksp.Fiz.Vol.9,No4,216,1969(JETP Lett.); explicit statements and description of the observed amplification without inversion at the transitions of Ne can be found in:I.M.Beterov,Cand.thesis,Novosibirsk,1970.26. a.V.G.Arkhipkin and A.K.Popov,Nonlinear Conversion of Light in Gases,ed.E.Wolf,North Holland,Amsterdam,Vol.24,p.24,1987 and ref.therein.。