2013-2018中考计算题总结

合集下载

2013-2018年湖南省邵阳市中考数学试题汇编(含参考答案与解析)

2013-2018年湖南省邵阳市中考数学试题汇编(含参考答案与解析)

【中考数学试题汇编】2013—2018年湖南省邵阳市中考数学试题汇编(含参考答案与解析)1、2013年湖南省邵阳市中考数学试题及参考答案与解析 (2)2、2014年湖南省邵阳市中考数学试题及参考答案与解析 (18)3、2015年湖南省邵阳市中考数学试题及参考答案与解析 (37)4、2016年湖南省邵阳市中考数学试题及参考答案与解析 (55)5、2017年湖南省邵阳市中考数学试题及参考答案与解析 (75)6、2018年湖南省邵阳市中考数学试题及参考答案与解析 (96)2013年湖南省邵阳市中考数学试题及参考答案一、选择题(本大题共10个小题,每小题3分,共30分)1.﹣8的相反数是()A.﹣8B.18C.0.8D.82.下列四个图形中,不是轴对称图形的是()A.B.C.D.3.函数y=中,自变量x的取值范围是()A.x>1B.x<1C.15x≥D.15x-≥4.如图是某班学生参加兴趣小组的人数占总人数比例的统计图,则参加人数最多的课外兴趣小组是()A.棋类组B.演唱组C.书法组D.美术组5.若⊙O1和⊙O2的半径分别为3cm和4cm,圆心距d=7cm,则这两圆的位置是()A.相交B.内切C.外切D.外离6.据邵阳市住房公积金管理会透露,今年我市新增住房公积金11.2亿元,其中11.2亿元可用科学记数法表示为()A.11.2×108元B.1.12×109元C.11.2×1010元D.11.2×107元7.下列四个点中,在反比例函数6yx=-的图象上的是()A.(3,﹣2)B.(3,2)C.(2,3)D.(﹣2,﹣3)8.如图是我市几个旅游景点的大致位置示意图,如果用(0,0)表示新宁莨山的位置,用(1,5)表示隆回花瑶的位置,那么城市南山的位置可以表示为()A.(2,1)B.(0,1)C.(﹣2,﹣1)D.(﹣2,1)9.在△ABC中,若|sinA 12﹣|+(cosB﹣12)2=0,则∠C的度数是()A.30°B.45°C.60°D.90°10.如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE交CD于点O,连结AO,下列结论不正确的是()A.△AOB≌△BOC B.△BOC≌△EOD C.△AOD≌△EOD D.△AOD≌△BOC二、填空题(本大题共8个小题,每小题3分,共24分)11.在计算器上,依次按键2、x2,得到的结果是.12.因式分解:x2﹣9y2=.13.今年五月份,由于H7N9禽流感的影响,我市鸡肉的价格下降了10%,设鸡肉原来的价格为a 元/千克,则五月份的价格为元/千克.14.如图所示,在△ABC中,点D、E分别是AB、AC的中点,连结DE,若DE=5,则BC=.15.计算:323232a ba b a b---=.16.端午节前,妈妈去超市买了大小、质量及包装均相同的粽子8个,其中火腿粽子5个,豆沙粽子3个,若小明从中任取1个,是火腿粽子的概率是.17.如图所示,弦AB、CD相交于点O,连结AD、BC,在不添加辅助线的情况下,请在图中找出一对相等的角,它们是.18.如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,添加一个条件,使四边形ABCD为矩形.三、解答题(本大题共3个小题,每小题8分,共24分)19.(8分)先化简,再求值:(a﹣b)2+a(2b﹣a),其中12a=-,b=3.20.(8分)解方程组:312236x yx y+=⎧⎨-=⎩①②.21.(8分)将一幅三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB.(2)求∠DFC的度数.四、应用题(本大题共3个小题,每小题8分,共24分)22.(8分)如图所示,某窗户有矩形和弓形组成,已知弓形的跨度AB=3cm,弓形的高EF=1cm,现计划安装玻璃,请帮工程师求出AB所在圆O的半径r.23.(8分)如图所示,图①表示的是某教育网站一周内连续7天日访问总量的情况,图②表示的是学生日访问量占日访问总量的百分比情况,观察图①、②,解答下列问题:(1)若这7天的日访问总量一共约为10万人次,求星期三的日访问总量;(2)求星期日学生日访问总量;(3)请写出一条从统计图中得到的信息.24.(8分)雅安地震后,政府为安置灾民,从某厂调拨了用于搭建板房的板材5600m2和铝材2210m,计划用这些材料在某安置点搭建甲、乙两种规格的板房共100间,若搭建一间甲型板房或一间乙型板房所需板材和铝材的数量如下表所示:板房规格板材数量(m2)铝材数量(m)甲型40 30乙型60 20请你根据以上信息,设计出甲、乙两种板房的搭建方案.五、综合题(本大题共2个小题,其中25题8分,26题10,共18分)25.(8分)如图所示,已知抛物线y=﹣2x2﹣4x的图象E,将其向右平移两个单位后得到图象F.(1)求图象F所表示的抛物线的解析式:(2)设抛物线F和x轴相交于点O、点B(点B位于点O的右侧),顶点为点C,点A位于y轴负半轴上,且到x轴的距离等于点C到x轴的距离的2倍,求AB所在直线的解析式.26.(10分)如图所示,在Rt△ABC中,AB=BC=4,∠ABC=90°,点P是△ABC的外角∠BCN的角平分线上一个动点,点P′是点P关于直线BC的对称点,连结PP′交BC于点M,BP′交AC于D,连结BP、AP′、CP′.(1)若四边形BPCP′为菱形,求BM的长;(2)若△BMP′∽△ABC,求BM的长;(3)若△ABD为等腰三角形,求△ABD的面积.参考答案与解析一、选择题(本大题有10个小题,每小题3分,在每小题给出的四个选项中只有一项是符合题目的)1.﹣8的相反数是()A.﹣8B.18C.0.8D.8【知识考点】相反数.【思路分析】根据只有符号不同的两个数叫做互为相反数解答.【解答过程】解:﹣8的相反数是8.故选D.【总结归纳】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.下列四个图形中,不是轴对称图形的是()A.B.C.D.【知识考点】轴对称图形【思路分析】根据轴对称图形的概念对各选项判断即可.【解答过程】解:A、是轴对称图形,不符合题意,故本选项错误;B、不是轴对称图形,符合题意,故本选项正确;C、是轴对称图形,不符合题意,故本选项错误;D、是轴对称图形,不符合题意,故本选项错误;故选B.【总结归纳】本题考查了轴对称图形的知识,解答本题的关键是掌握轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.3.函数y=中,自变量x的取值范围是()A.x>1B.x<1C.15x≥D.15x≥【知识考点】函数自变量的取值范围.【思路分析】根据二次根式的性质被开方数大于或等于0,可以求出x的范围.【解答过程】解:根据题意得:5x﹣1≥0,解得:15x≥.故选C.【总结归纳】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.如图是某班学生参加兴趣小组的人数占总人数比例的统计图,则参加人数最多的课外兴趣小组是()A.棋类组B.演唱组C.书法组D.美术组【知识考点】扇形统计图.【思路分析】根据扇形统计图各部分所占的百分比,则参加人数最多的课外兴趣小组即为所占百分比最大的部分.【解答过程】解:根据扇形统计图,知参加人数最多的课外兴趣小组是所占百分比最大的,即为演唱.故选B.【总结归纳】本题考查了扇形统计图的知识,读懂扇形统计图,扇形统计图反映的是各部分所占总体的百分比.5.若⊙O1和⊙O2的半径分别为3cm和4cm,圆心距d=7cm,则这两圆的位置是()A.相交B.内切C.外切D.外离【知识考点】圆与圆的位置关系.【思路分析】本题直接告诉了两圆的半径及圆心距,根据数量关系与两圆位置关系的对应情况便可直接得出答案.【解答过程】解:∵⊙O1和⊙O2的半径分别为3cm和4cm,圆心距O1O2=7cm,∴O1O2=3+4=7,∴两圆外切.故选C.【总结归纳】本题主要考查圆与圆的位置关系,外离,则P>R+r;外切,则P=R+r;相交,则R﹣r<P<R+r;内切,则P=R﹣r;内含,则P<R﹣r.(P表示圆心距,R,r分别表示两圆的半径).6.据邵阳市住房公积金管理会透露,今年我市新增住房公积金11.2亿元,其中11.2亿元可用科学记数法表示为()A.11.2×108元B.1.12×109元C.11.2×1010元D.11.2×107元【知识考点】科学记数法—表示较大的数【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于11.2亿有10位,所以可以确定n=10﹣1=9.【解答过程】解:11.2亿=1 120 000 000=11.2×109.故选B.【总结归纳】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.7.下列四个点中,在反比例函数6yx=-的图象上的是()A.(3,﹣2)B.(3,2)C.(2,3)D.(﹣2,﹣3)【知识考点】反比例函数图象上点的坐标特征.【思路分析】根据反比例函数中k=xy的特点进行解答即可.【解答过程】解:A、∵3×(﹣2)=﹣6,∴此点在反比例函数的图象上,故本选项正确;B、∵3×2=6≠﹣6,∴此点不在反比例函数的图象上,故本选项错误;C、∵2×3=6≠﹣6,∴此点不在反比例函数的图象上,故本选项错误;D、∵(﹣2)×(﹣3)=6≠﹣6,∴此点不在反比例函数的图象上,故本选项错误.故选A.【总结归纳】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数kyx=中,k=xy为定值是解答此题的关键.8.如图是我市几个旅游景点的大致位置示意图,如果用(0,0)表示新宁莨山的位置,用(1,5)表示隆回花瑶的位置,那么城市南山的位置可以表示为()A.(2,1)B.(0,1)C.(﹣2,﹣1)D.(﹣2,1)【知识考点】坐标确定位置【思路分析】建立平面直角坐标系,然后写城市南山的坐标即可.【解答过程】解:建立平面直角坐标系如图,城市南山的位置为(﹣2,﹣1).故选C.【总结归纳】本题考查了利用坐标确定位置,是基础题,建立平面直角坐标系是解题的关键.9.在△ABC中,若|sinA 12﹣|+(cosB﹣12)2=0,则∠C的度数是()A.30°B.45°C.60°D.90°【知识考点】特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方;三角形内角和定理.【思路分析】根据绝对值及完全平方的非负性,可求出sinA、cosB的值,继而得出∠A、∠B的度数,利用三角形的内角和定理,可求出∠C的度数.【解答过程】解:∵|sinA﹣|+(cosB﹣)2=0,∴sinA=,cosB=,∴∠A=30°,∠B=60°,则∠C=180°﹣30°﹣60°=90°.故选D.【总结归纳】本题考查了特殊角的三角函数值,三角形的内角和定理,属于基础题,一些特殊角的三角函数值是需要我们熟练记忆的内容.10.如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE交CD于点O,连结AO,下列结论不正确的是()A.△AOB≌△BOC B.△BOC≌△EOD C.△AOD≌△EOD D.△AOD≌△BOC【知识考点】全等三角形的判定;矩形的性质.【思路分析】根据AD=DE,OD=OD,∠ADO=∠EDO=90°,可证明△AOD≌△EOD,OD为△ABE 的中位线,OD=OC,然后根据矩形的性质和全等三角形的性质找出全等三角形即可.【解答过程】解:∵AD=DE,DO∥AB,∴OD为△ABE的中位线,∴OD=OC,∵在Rt△AOD和Rt△EOD中,,∴△AOD≌△EOD(HL);∵在Rt△AOD和Rt△BOC中,,∴△AOD≌△BOC(HL);∵△AOD≌△EOD,∴△BOC≌△EOD;故B、C、D均正确.故选A.【总结归纳】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题(本大题共8个小题,每小题3分,共24分)11.在计算器上,依次按键2、x2,得到的结果是.【知识考点】计算器—有理数.【思路分析】根据题意得出x2=2,求出结果即可.【解答过程】解:根据题意得:x2=2,x=;故答案为:.【总结归纳】本题考查了计算器﹣有理数,关键是考查学生的理解能力,题型较好,但是一道比较容易出错的题目.12.因式分解:x2﹣9y2=.【知识考点】因式分解-运用公式法【思路分析】直接利用平方差公式分解即可.【解答过程】解:x2﹣9y2=(x+3y)(x﹣3y).【总结归纳】本题主要考查利用平方差公式分解因式,熟记公式结构是解题的关键.13.今年五月份,由于H7N9禽流感的影响,我市鸡肉的价格下降了10%,设鸡肉原来的价格为a 元/千克,则五月份的价格为元/千克.【知识考点】列代数式.【思路分析】因为原来鸡肉价格为a元/千克,现在下降了10%,所以现在的价格为(1﹣10%)a,即0.9a元/千克.【解答过程】解:∵原来鸡肉价格为a元/千克,现在下降了10%,∴五月份的价格为a﹣10%a=(1﹣10%)a=0.9a,故答案为:0.9a.【总结归纳】本题考查了列代数式的知识,解决问题的关键是读懂题意,找到所求的量的等量关系.注意价格下降了10%就是指原来的价格减去原来价格的10%.14.如图所示,在△ABC中,点D、E分别是AB、AC的中点,连结DE,若DE=5,则BC=.【知识考点】三角形中位线定理.【思路分析】由在△ABC中,点D、E分别是AB、AC的中点,可得DE是△ABC的中位线,然后由三角形中位线的性质,即可求得答案.【解答过程】解:∵在△ABC中,点D、E分别是AB、AC的中点,∴DE=12 BC,∵DE=5,∴BC=10.故答案为:10.【总结归纳】此题考查了三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.15.计算:323232a ba b a b---=.【知识考点】分式的加减法.【思路分析】分母不变,直接把分子相减即可.【解答过程】解:原式321 32a ba b-==-,故答案为:1.【总结归纳】本题考查的是分式的加减法,即同分母的分式想加减,分母不变,把分子相加减.16.端午节前,妈妈去超市买了大小、质量及包装均相同的粽子8个,其中火腿粽子5个,豆沙粽子3个,若小明从中任取1个,是火腿粽子的概率是.【知识考点】概率公式.【思路分析】共有8个粽子,火腿粽子有5个,根据概率的公式进行计算即可.【解答过程】解:∵共有8个粽子,火腿粽子有5个,∴从中任取1个,是火腿粽子的概率是,故答案为:【总结归纳】此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.17.如图所示,弦AB、CD相交于点O,连结AD、BC,在不添加辅助线的情况下,请在图中找出一对相等的角,它们是.【知识考点】圆周角定理.【思路分析】直接根据圆周角定理解答即可.【解答过程】解:∵∠A与∠C是同弧所对的圆周角,∴∠A=∠C(答案不唯一).故答案为:∠A=∠C(答案不唯一).【总结归纳】本题考查的是圆周角定理,此题属开放性题目,答案不唯一.18.如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,添加一个条件,使四边形ABCD为矩形.【知识考点】旋转的性质;矩形的判定.【思路分析】根据旋转的性质得AB=CD,∠BAC=∠DCA,则AB∥CD,得到四边形ABCD为平行四边形,根据有一个直角的平行四边形为矩形可添加的条件为∠B=90°.【解答过程】解:∵△ABC绕AC的中点O顺时针旋转180°得到△CDA,∴AB=CD,∠BAC=∠DCA,∴AB∥CD,∴四边形ABCD为平行四边形,当∠B=90°时,平行四边形ABCD为矩形,∴添加的条件为∠B=90°.故答案为∠B=90°.【总结归纳】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了矩形的判定.三、解答题(本大题共3个小题,每小题8分,共24分)19.(8分)先化简,再求值:(a﹣b)2+a(2b﹣a),其中12a=-,b=3.【知识考点】整式的混合运算—化简求值【思路分析】原式第一项利用完全平方公式展开,第二项利用单项式乘多项式法则计算,去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答过程】解:原式=a2﹣2ab+b2+2ab﹣a2=b2,当b=3时,原式=9.【总结归纳】此题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.20.(8分)解方程组:312236x yx y+=⎧⎨-=⎩①②.【知识考点】解二元一次方程组.【思路分析】根据y的系数互为相反数,利用加减消元法其解即可.【解答过程】解:,①+②得,3x=18,解得x=6,把x=6代入①得,6+3y=12,解得y=2,所以,方程组的解是.【总结归纳】本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.21.(8分)将一幅三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB.(2)求∠DFC的度数.【知识考点】平行线的判定;角平分线的定义;三角形内角和定理.【思路分析】(1)首先根据角平分线的性质可得∠1=45°,再有∠3=45°,再根据内错角相等两直线平行可判定出AB∥CF;(2)利用三角形内角和定理进行计算即可.【解答过程】(1)证明:∵CF平分∠DCE,∴∠1=∠2=12∠DCE,∵∠DCE=90°,∴∠1=45°,∵∠3=45°,∴∠1=∠3,∴AB∥CF;(2)∵∠D=30°,∠1=45°,∴∠DFC=180°﹣30°﹣45°=105°.【总结归纳】此题主要考查了平行线的判定,以及三角形内角和定理,关键是掌握内错角相等,两直线平行.四、应用题(本大题共3个小题,每小题8分,共24分)22.(8分)如图所示,某窗户有矩形和弓形组成,已知弓形的跨度AB=3cm,弓形的高EF=1cm,现计划安装玻璃,请帮工程师求出AB所在圆O的半径r.【知识考点】垂径定理的应用;勾股定理.【思路分析】根据垂径定理可得AF= 12AB,再表示出AO、OF,然后利用勾股定理列式进行计算即可得解.【解答过程】解:∵弓形的跨度AB=3cm,EF为弓形的高,∴OE⊥AB,∴AF=AB=cm,∵所在圆O的半径为r,弓形的高EF=1cm,∴AO=r,OF=r﹣1,在Rt△AOF中,AO2=AF2+OF2,即r2=()2+(r﹣1)2,解得r=cm.答:所在圆O的半径为cm.【总结归纳】本题考查了垂径定理的应用,勾股定理的应用,此类题目通常采用把半弦,弦心距,半径三者放到同一个直角三角形中,利用勾股定理解答.23.(8分)如图所示,图①表示的是某教育网站一周内连续7天日访问总量的情况,图②表示的是学生日访问量占日访问总量的百分比情况,观察图①、②,解答下列问题:(1)若这7天的日访问总量一共约为10万人次,求星期三的日访问总量;(2)求星期日学生日访问总量;(3)请写出一条从统计图中得到的信息.【知识考点】折线统计图;条形统计图【思路分析】(1)由这7天的日访问总量一共约为10万人次,结合条形统计图可得除星期三以外的其它天的日访问总量分别为:0.5万人次,1万人次,1万人次,1.5万人次,2.5万人次,3万人次,继而求得星期三的日访问总量;(2)由星期日的日访问总量为3万人次,结合扇形统计图可得星期日学生日访问总量占日访问总量的百分比为30%,继而求得星期日学生日访问总量;(2)结合图可得某教育网站一周内星期日的日访问总量最大;注意此题答案不唯一,符合题意即可.【解答过程】解:(1)∵这7天的日访问总量一共约为10万人次,除星期三以外的其它天的日访问总量分别为:0.5万人次,1万人次,1万人次,1.5万人次,2.5万人次,3万人次,∴星期三的日访问总量为:10﹣0.5﹣1﹣1﹣1.5﹣2.5﹣3=0.5(万人次);(2)∵星期日的日访问总量为3万人次,星期日学生日访问总量占日访问总量的百分比为30%,∴星期日学生日访问总量为:3×30%=0.9(万人次);(3)某教育网站一周内星期日的日访问总量最大.【总结归纳】本题考查的是条形统计图和扇形统计图的综合运用.注意读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.注意数形结合思想的应用.24.(8分)雅安地震后,政府为安置灾民,从某厂调拨了用于搭建板房的板材5600m2和铝材2210m,计划用这些材料在某安置点搭建甲、乙两种规格的板房共100间,若搭建一间甲型板房或一间乙型板房所需板材和铝材的数量如下表所示:板房规格板材数量(m2)铝材数量(m)甲型40 30乙型60 20请你根据以上信息,设计出甲、乙两种板房的搭建方案.【知识考点】一元一次不等式组的应用【思路分析】设甲种板房搭建x间,则乙种板房搭建(100﹣x)间,根据题意列出不等式组,再根据x只能取整数,求出x的值,即可得出答案.【解答过程】解:设甲种板房搭建x间,则乙种板房搭建(100﹣x)间,根据题意得:,解得:20≤x≤21,x只能取整数,则x=20,21,共有2种搭建方案:方案一:甲种板房搭建20间,乙种板房搭建80间,方案二:甲种板房搭建21间,乙种板房搭建79间.【总结归纳】此题考查了一元一次不等式组的应用,解题的关键是读懂题意,找出之间的数量关系列出不等式组,注意x只能取整数.五、综合题(本大题共2个小题,其中25题8分,26题10,共18分)25.(8分)如图所示,已知抛物线y=﹣2x2﹣4x的图象E,将其向右平移两个单位后得到图象F.(1)求图象F所表示的抛物线的解析式:(2)设抛物线F和x轴相交于点O、点B(点B位于点O的右侧),顶点为点C,点A位于y轴负半轴上,且到x轴的距离等于点C到x轴的距离的2倍,求AB所在直线的解析式.【知识考点】二次函数图象与几何变换;待定系数法求一次函数解析式;二次函数的性质.【思路分析】(1)根据二次函数图象左加右减,上加下减的平移规律进行解答;(2)先根据抛物线F的解析式求出顶点C,和x轴交点B的坐标,再设A点坐标为(0,y),根据点A到x轴的距离等于点C到x轴的距离的2倍,列出关于y的方程,解方程求出y的值,然后利用待定系数法求出AB所在直线的解析式.【解答过程】解:(1)∵抛物线y=﹣2x2﹣4x=﹣2(x+1)2+2的图象E,将其向右平移两个单位后得到图象F,∴图象F所表示的抛物线的解析式为y=﹣2(x+1﹣2)2+2,即y=﹣2(x﹣1)2+2;(2)∵y=﹣2(x﹣1)2+2,∴顶点C的坐标为(1,2).当y=0时,﹣2(x﹣1)2+2=0,解得x=0或2,∴点B的坐标为(2,0).设A点坐标为(0,y),则y<0.∵点A到x轴的距离等于点C到x轴的距离的2倍,∴﹣y=2×2,解得y=﹣4,∴A点坐标为(0,﹣4).设AB所在直线的解析式为y=kx+b,由题意,得,解得,∴AB所在直线的解析式为y=2x﹣4.【总结归纳】本题考查了二次函数图象与几何变换,二次函数的性质,运用待定系数法求函数的解析式,难度适中,求出图象F所表示的抛物线的解析式是解题的关键.26.(10分)如图所示,在Rt△ABC中,AB=BC=4,∠ABC=90°,点P是△ABC的外角∠BCN的角平分线上一个动点,点P′是点P关于直线BC的对称点,连结PP′交BC于点M,BP′交AC于D,连结BP、AP′、CP′.(1)若四边形BPCP′为菱形,求BM的长;(2)若△BMP′∽△ABC,求BM的长;(3)若△ABD为等腰三角形,求△ABD的面积.【知识考点】相似形综合题.【思路分析】(1)由菱形的性质可知,点M为BC的中点,所以BM可求;(2)△ABC为等腰直角三角形,若△BMP′∽△ABC,则△BMP′必为等腰直角三角形.证明△BMP′、△BMP、△BPP′均为等腰直角三角形,则BP=BP′;证明△BCP为等腰三角形,BP=BC,从而BP′=BC=4,进而求出BM的长度;(3)△ABD为等腰三角形,有3种情形,需要分类讨论计算.【解答过程】解:(1)∵四边形BPCP′为菱形,而菱形的对角线互相垂直平分,∴点M为BC的中点,∴BM=BC=×4=2.(2)△ABC为等腰直角三角形,若△BMP′∽△ABC,则△BMP′必为等腰直角三角形,BM=MP′.由对称轴可知,MP=MP′,PP′⊥BC,则△BMP为等腰直角三角形,∴△BPP′为等腰直角三角形,BP′=BP.∵∠CBP=45°,∠BCP=(180°﹣45°)=67.5°,∴∠BPC=180°﹣∠CBP﹣∠BCP=180°﹣45°﹣67.5°=67.5°,∴∠BPC=∠BCP,∴BP=BC=4,∴BP′=4.在等腰直角三角形BMP′中,斜边BP′=4,∴BM=BP′=.(3)△ABD为等腰三角形,有3种情形:①若AD=BD,如题图②所示.此时△ABD为等腰直角三角形,斜边AB=4,∴S△ABD=AD•BD=××=4;②若AD=AB,如下图所示:过点D作DE⊥AB于点E,则△ADE为等腰直角三角形,∴DE=AD=AB=∴S△ABD=AB•DE=×4×=;③若AB=BD,则点D与点C重合,可知此时点P、点P′、点M均与点C重合,∴S△ABD=S△ABC=AB•BC=×4×4=8.【总结归纳】本题是几何综合题,考查了相似三角形的性质、等腰直角三角形、等腰三角形、菱形、勾股定理等知识点,难度不大.第(3)问考查了分类讨论的数学思想,是本题的难点.2014年湖南省邵阳市中考数学试题及参考答案一、选择题(本大题共10小题,每小题3分,共30分)1)A.﹣1和0之间B.0和1之间C.1和2之间D.2和3之间2.下列计算正确的是()A.2x﹣x=x B.a3•a2=a6C.(a﹣b)2=a2﹣b2D.(a+b)(a﹣b)=a2+b23.如图的罐头的俯视图大致是()A.B.C.D.4.如图是小芹6月1日﹣7日每天的自主学习时间统计图,则小芹这七天平均每天的自主学习时间是()A.1小时B.1.5小时C.2小时D.3小时5.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45°B.54°C.40°D.50°6.不等式组1231xx-⎧⎨-⎩>≤的解集在数轴上表示正确的是()A.B.C.D.7.地球的表面积约为511000000km2,用科学记数法表示正确的是()A.5.11×1010km2B.5.11×108km2C.51.1×107km2D.0.511×109km28.如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是()A.30°B.45°C.60°D.40°9.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长D.三种方案所用铁丝一样长10.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是()A.a>b B.a=b C.a<b D.以上都不对二、填空题(本大题共8个小题,每小题3分,共24分)11.已知∠α=13°,则∠α的余角大小是.12.将多项式m2n﹣2mn+n因式分解的结果是.13.若反比例函数kyx的图象经过点(﹣1,2),则k的值是.14.如图,在▱ABCD中,F是BC上的一点,直线DF与AB的延长线相交于点E,BP∥DF,且与AD相交于点P,请从图中找出一组相似的三角形:.15.有一个能自由转动的转盘如图,盘面被分成8个大小与性状都相同的扇形,颜色分为黑白两种,将指针的位置固定,让转盘自由转动,当它停止后,指针指向白色扇形的概率是 .16.如图,在平面直角坐标系xOy 中,已知点A (3,4),将OA 绕坐标原点O 逆时针旋转90°至OA′,则点A′的坐标是 .17.如图,在Rt △ABC 中,∠C=90°,D 为AB 的中点,DE ⊥AC 于点E .∠A=30°,AB=8,则DE 的长度是 .18.如图,A 点的初始位置位于数轴上的原点,现对A 点做如下移动:第1次从原点向右移动1个单位长度至B 点,第2次从B 点向左移动3个单位长度至C 点,第3次从C 点向右移动6个单位长度至D 点,第4次从D 点向左移动9个单位长度至E 点,…,依此类推,这样至少移动 次后该点到原点的距离不小于41.三、解答题(本大题共3小题,每小题8分,共24分)19.(8分)计算:212sin 302-⎛⎫︒ ⎪⎝⎭.20.(8分)先化简,再求值:()11111x x x ⎛⎫-- ⎪-+⎝⎭,其中x=2. 21.(8分)如图,已知点A 、F 、E 、C 在同一直线上,AB ∥CD ,∠ABE=∠CDF ,AF=CE . (1)从图中任找两组全等三角形; (2)从(1)中任选一组进行证明.。

2013-2018年黑龙江省哈尔滨市中考数学试题汇编(含参考答案与解析)

2013-2018年黑龙江省哈尔滨市中考数学试题汇编(含参考答案与解析)

【中考数学试题汇编】2013—2018年黑龙江省哈尔滨市中考数学试题汇编(含参考答案与解析)1、2013年黑龙江省哈尔滨市中考数学试题及参考答案与解析 (2)2、2014年黑龙江省哈尔滨市中考数学试题及参考答案与解析 (27)3、2015年黑龙江省哈尔滨市中考数学试题及参考答案与解析 (52)4、2016年黑龙江省哈尔滨市中考数学试题及参考答案与解析 (76)5、2017年黑龙江省哈尔滨市中考数学试题及参考答案与解析 (99)6、2018年黑龙江省哈尔滨市中考数学试题及参考答案与解析 (121)2013年黑龙江省哈尔滨市中考数学试题及参考答案一、选择题(本大题共10小题,每小题3分,满分30分)1.13-的倒数是()A.3 B.﹣3 C.13-D.132.下列计算正确的是()A.a3+a2=a5B.a3•a2=a6C.(a2)3=a6D.22 22 a a ⎛⎫= ⎪⎝⎭3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.等边三角形平行四边形正五边形正六边形4.如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是()A.B.C.D.5.把抛物线y=(x+1)2向下平移2个单位,再向右平移1个单位,所得到的抛物线是()A.y=(x+2)2+2 B.y=(x+2)2﹣2 C.y=x2+2 D.y=x2﹣26.反比例函数12kyx-=的图象经过点(﹣2,3),则k的值为()A.6 B.﹣6 C.72D.72-7.如图,在▱ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A.4 B.3 C.52D.28.在一个不透明的袋子里,有2个白球和2个红球,它们只有颜色上的区别,从袋子里随机摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到白球的概率为()A .116 B .18C .14D .12 9.如图,在△ABC 中,M ,N 分别是边AB ,AC 的中点,则△AMN 的面积与四边形MBCN 的面积比为( )A .12 B .13C .14D .23 10.梅凯种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含10千克)的种子,超过10千克的那部分种子的价格将打折,并依此得到付款金额y (单位:元)与一次购买种子数量x (单位:千克)之间的函数关系如图所示,下列四种说法: ①一次购买种子数量不超过10千克时,销售价格为5元/千克; ②一次购买30千克种子时,付款金额为100元;③一次购买10千克以上种子时,超过10千克的那部分种子的价格打五折; ④一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱. 其中正确的个数是( )A .1个B .2个C .3个D .4个二、填空题(本大题共10小题,每小题3分,满分30分) 11.把98000用科学记数法表示为 .12.函数3xy x =+中自变量x 的取值范围是 .13= .14.不等式组31231x x -⎧⎨+⎩<≥的解集是 .15.把多项式4ax 2﹣ay 2分解因式的结果是 .16.一个圆锥的侧面积是36πcm 2,母线长12cm ,则这个圆锥的底面圆的直径是 cm .17.如图,直线AB 与⊙O 相切于点A ,AC ,CD 是⊙O 的两条弦,且CD ∥AB ,若⊙O 的半径为52,CD=4,则弦AC 的长为 .18.某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为 .19.在△ABC 中,AB=BC=1,∠ABC=45°,以AB 为一边作等腰直角三角形ABD ,使∠ABD=90°,连接CD ,则线段CD 的长为 .20.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点O 作OE ⊥AC 交AB 于E ,若BC=4,△AOE 的面积为5,则sin ∠BOE 的值为 .三、解答题(本大题共8小题,共计60分) 21.(6分)先化简,再求代数式2122121a a a a a a +-÷+--+的值,其中a=6tan30°﹣2. 22.(6分)如图,在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB 和直线MN ,点A ,B ,M ,N 均在小正方形的顶点上.(1)在方格纸中画四边形ABCD (四边形的各顶点均在小正方形的顶点上),使四边形ABCD 是以直线MN 为对称轴的轴对称图形,点A 的对称点为点D ,点B 的对称点为点C ; (2)请直接写出四边形ABCD 的周长.23.(6分)春雷中学要了解全校学生对不同类别电视节目的喜爱情况,围绕“在体育,新闻,动画,娱乐四类电视节目中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制了如图所示的不完整的条形统计图,其中最喜欢新闻类电视节目的人数占被抽取人数的10%,请你根据以上信息回答下列问题:(1)在这次调查中,最喜欢新闻类电视节目的学生有多少名?并补全条形统计图;(2)如果全校共有1200名学生,请你估计全校学生中最喜欢体育类电视节目的学生有多少名?24.(6分)某水渠的横截面呈抛物线,水面的宽度为AB(单位:米),现以AB所在直线为x轴,以抛物线的对称轴为y轴建立如图所示的平面直角坐标系,设坐标原点为O.已知AB=8米,设抛物线解析式为y=ax2﹣4.(1)求a的值;(2)点C(﹣1,m)是抛物线上一点,点C关于原点O的对称点为点D,连接CD,BC,BD,求△BCD的面积.25.(8分)如图,在△ABC中,以BC为直径作半圆O,交AB于点D,交AC于点E,AD=AE.(1)求证:AB=AC(2)若BD=4,BO=AD的长.26.(8分)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务个需多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?27.(10分)如图,在平面直角坐标系中,点O为坐标原点,A点的坐标为(3,0),以OA为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C,动点P从O点出发沿OC 向C点运动,动点Q从B点出发沿BA向A点运动,P,Q两点同时出发速度均为1个单位/秒,设运动时间为t秒.(1)求线段BC的长;(2)连接PQ交线段OB于点E.过点E作x轴的平行线交线段BC于点F.设线段EF的长为m,求m与t之间的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,将△BEF绕点B逆时针旋转得到△BE′F′,使点E的对应点E′落在线段AB上,点F的对应点是F′,E′F′交x轴于点G,连接PE,QG,当t为何值时,2BQ﹣QG?28.(10分)已知:△ABD和△CBD关于直线BD对称(点A的对称点是点C),点E,F分别是线段BC和线段BD上的点,且点F在线段EC的垂直平分线上,连接AF,AE,AE交BD于点G.(1)如图1,求证:∠EAF=∠ABD;(2)如图2,当AB=AD时,M是线段AG上一点,连接BM,ED,MF,MF的延长线交ED于点N,∠MBF=12∠BAF,AF=23AD,试探究FM和FN之间的数量关系,并证明你的结论.参考答案与解析一、选择题(本大题共10小题,每小题3分,满分30分)1.13-的倒数是()A.3 B.﹣3 C.13-D.13【知识考点】倒数.【思路分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.【解答过程】解:13-的倒数是﹣3.故选B.【总结归纳】本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.下列计算正确的是()A.a3+a2=a5B.a3•a2=a6C.(a2)3=a6D.22 22 a a ⎛⎫= ⎪⎝⎭【知识考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【思路分析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.【解答过程】解:A、不是同类项,不能合并,选项错误;B、a2•a3=a5,选项错误;C、正确;D、2224a a⎛⎫=⎪⎝⎭,选项错误.故选C.【总结归纳】本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.等边三角形平行四边形正五边形正六边形【知识考点】中心对称图形;轴对称图形.【思路分析】根据轴对称及中心对称概念,结合选项即可得出答案.【解答过程】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是中心对称图形,不是轴对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.【总结归纳】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.4.如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答过程】解:从上面看易得左侧有2个正方形,右侧有一个正方形.故选A.【总结归纳】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5.把抛物线y=(x+1)2向下平移2个单位,再向右平移1个单位,所得到的抛物线是()A.y=(x+2)2+2 B.y=(x+2)2﹣2 C.y=x2+2 D.y=x2﹣2【知识考点】二次函数图象与几何变换.【思路分析】先写出平移前的抛物线的顶点坐标,然后根据向下平移纵坐标减,向右平移横坐标加求出平移后的抛物线的顶点坐标,再利用顶点式解析式写出即可.【解答过程】解:抛物线y=(x+1)2的顶点坐标为(﹣1,0),∵向下平移2个单位,∴纵坐标变为﹣2,∵向右平移1个单位,∴横坐标变为﹣1+1=0,∴平移后的抛物线顶点坐标为(0,﹣2),∴所得到的抛物线是y=x2﹣2.故选D.【总结归纳】本题考查了二次函数图象与几何变换,利用顶点的变化确定函数图象的变化求解更加简便,且容易理解.6.反比例函数12kyx-=的图象经过点(﹣2,3),则k的值为()A.6 B.﹣6 C.72D.72-【知识考点】反比例函数图象上点的坐标特征.【思路分析】把点(﹣2,3)代入已知函数解析式,列出关于k的方程,通过解方程来求k的值.【解答过程】解:由题意,得3=,解得,x=.故选C.【总结归纳】本题主要考查反比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.7.如图,在▱ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A.4 B.3 C.52D.2【知识考点】平行四边形的性质;等腰三角形的判定与性质.【思路分析】根据平行四边形性质得出AB=DC,AD∥BC,推出∠DEC=∠BCE,求出∠DEC=∠DCE,推出DE=DC=AB,得出AD=2DE即可.【解答过程】解:∵四边形ABCD是平行四边形,∴AB=DC,AD∥BC,∴∠DEC=∠BCE,∵CE平分∠DCB,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴DE=DC=AB,∵AD=2AB=2CD,CD=DE,∴AD=2DE,∴AE=DE=3,∴DC=AB=DE=3,故选B.【总结归纳】本题考查了平行四边形性质,平行线性质,角平分线定义,等腰三角形的性质和判定的应用,关键是求出DE=AE=DC.8.在一个不透明的袋子里,有2个白球和2个红球,它们只有颜色上的区别,从袋子里随机摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到白球的概率为()A.116B.18C.14D.12【知识考点】列表法与树状图法.【思路分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到白球的情况,再利用概率公式求解即可求得答案.。

2013年重庆中考数学18题及解答(中考真题)五

2013年重庆中考数学18题及解答(中考真题)五

重庆中考18题1.2010年云南遭遇百年不遇的大旱灾,重灾区曲靖市某水库每天不断流入定量的水,按原来的放水量,水库中的水可使用80天,但因干旱,现在流入量减少20%,如果在放水量不变的情况下,只能用60天,若仍需要使用80天,则每天的放水量的要减少 12.5% 。

解: 设每天放水量减小的百分数为x,该水库存水量为m, 原来每天流入量为a, 放水量为b, 则808060(120%)6080(120%)80(1)m a b m a b m a x b +=⎧⎪+⨯-=⎨⎪+⨯-=-⎩∴481.66480(1)m a b a m a x b =⎧⎪=⎨⎪+=-⎩∴48a+64a=128a(1-x) ∴1-x=0.875∴x=12.5%2. 已知AB 是一段只有3米宽的窄道路,由于一辆小汽车与一辆大卡车在AB 段相遇,必须倒车才能继续前行。

如果小汽车在AB 段正常行驶需10分钟,大卡车在AB 段正常行驶需20分钟,小汽车在AB 段倒车的速度是它正常行驶速度的1/5,大卡车在AB 段倒车的速度是它正常行驶速度的1/8,小汽车需要倒车的路程是大卡车需倒车的路程的4倍。

问两车都通过AB 这段狭窄路面的最短时间是 50 分钟.解: 设AB 总路程为单位‘‘1’’大卡车先倒车两车通过AB 的总时间:12016105÷+ =32+20=52(分钟)小汽车先倒车两车通过AB 的总时间:1105405÷+ =40+10=50(分钟)[大卡车倒车时小汽车跟着通过AB 剩余路段, 小汽车倒车时大卡车跟着小车(大卡车正常行驶速度大于小汽车倒车速度) 通过AB 剩余路段.]3.市场调查表明:某种商品的销售率y (进货数量售出数量销售率=)与价格倍数x(进货价格售出价格价格倍数=)的关系满足关系式117615y x =-+ (0.8≤x ≤6.8 ).根据有关规定该商品售价不得超过进货价的2倍 某商场希望通过该商品获取50%的利润,那么该商品的价格倍数应是 9/5 .解: 设进价为a, 进货件数为m, 则 axm(-16x+1715)=(1+50%)am ∴5x ²-34x+45=0∴195x = 25x = (舍去) 4..把浓度为20%、30%和45%的三种酒精溶液混合在一起,得到浓度为35%的酒精溶液45千克.已知浓度为20%的酒精用量是浓度为30%的酒精用量的3解: 设浓度为30%酒精用了x 千克, 则20%·3x+30%·x+45%(45-4x)=45×35%∴6x+3x+45-18x=0∴9x=45∴X=5∴3x=45 45-4x=255.甲、乙两人分别从A 、B 两地同时出发,相向而行,甲的速度是乙的速度的2倍.两个相遇后继续往前走,各自到达B 、A 后立即返回.已知两人第二次相遇的地点距第一次相遇地点是12千米,那么A 、B解: 设A,B 两地路程为m 千米, 则∵甲的速度是乙的速度的2倍∴相同时间內甲所走路程是乙所走路程的两倍 ∴211212333m m m ⨯--= (行程图略) ∴m=186、三根铁丝,长度分别是120厘米、180厘米、300厘米,现在要把它们截成相等的小段,每根都不能有剩余,那么最少可截成 10 段 .解:∵120 , 180 , 300 的最大公约数为60 .∴要段数最少,每小段截成60厘米长,共10段.7、如果4个矿泉水空瓶可以换一瓶矿泉水,现有15个矿泉水空瓶,不交钱最多可喝矿泉水 5 瓶.解: 先用12个空瓶换3瓶矿泉水并喝完, 再拿6个空瓶中的4个又换1瓶矿泉水并喝完, 这时还有3个空瓶, 再拿1瓶矿泉水喝完后的空瓶和剩余3个空瓶换刚才所拿的矿泉水. 所以15个空矿泉水瓶一共可换5瓶矿泉水喝.8.为把2008年北京奥运会办成绿色奥运,全国各地都在加强环保,植树造林,某单位计划通往两个比赛场馆的两条路(不相交)两旁栽上树,现运回一批树苗,已知一条路的长度是另一条路长度的两倍还多6000米。

2013-2018年内蒙古包头市中考数学试题汇编(含参考答案与解析)

2013-2018年内蒙古包头市中考数学试题汇编(含参考答案与解析)

【中考数学试题汇编】2013—2018年内蒙古包头市中考数学试题汇编(含参考答案与解析)1、2013年内蒙古包头市中考数学试题及参考答案与解析 (2)2、2014年内蒙古包头市中考数学试题及参考答案与解析 (24)3、2015年内蒙古包头市中考数学试题及参考答案与解析 (48)4、2016年内蒙古包头市中考数学试题及参考答案与解析 (75)5、2017年内蒙古包头市中考数学试题及参考答案与解析 (102)6、2018年内蒙古包头市中考数学试题及参考答案与解析 (126)2013年内蒙古包头市中考数学试题及参考答案一、选择题(本大题共12小题,每小题3分,满分36分) 1.计算(+2)+(﹣3)所得的结果是( ) A .1 B .﹣1 C .5 D .﹣5 2.3tan30°的值等于( )A B . C .3 D .323.函数11y x =+中,自变量x 的取值范围是( ) A .x >﹣1 B .x <﹣1 C .x≠﹣1 D .x≠0 4.若|a|=﹣a ,则实数a 在数轴上的对应点一定在( )A .原点左侧B .原点或原点左侧C .原点右侧D .原点或原点右侧 5.已知方程x 2﹣2x ﹣1=0,则此方程( )A .无实数根B .两根之和为﹣2C .两根之积为﹣1D .有一根为1-6.一组数据按从大到小排列为2,4,8,x ,10,14.若这组数据的中位数为9,则这组数据的众数为( )A .6B .8C .9D .10 7.下列事件中是必然事件的是( )A .在一个等式两边同时除以同一个数,结果仍为等式B .两个相似图形一定是位似图形C .平移后的图形与原来图形对应线段相等D .随机抛掷一枚质地均匀的硬币,落地后正面一定朝上8.用一个圆心角为120°,半径为2的扇形作一个圆锥的侧面,则这个圆锥的底面圆半径为( )A .43 B .34 C .32 D .239.化简2164244244a a a a a a -+÷++++,其结果是( ) A .﹣2 B .2 C .()222a -+ D .()222a +10.如图,四边形ABCD 和四边形AEFC 是两个矩形,点B 在EF 边上,若矩形ABCD 和矩形AEFC 的面积分别是S 1、S 2的大小关系是( )A.S1>S2B.S1=S2C.S1<S2D.3S1=2S211.已知下列命题:①若a>b,则c﹣a<c﹣b;②若a>0;③对角线互相平行且相等的四边形是菱形;④如果两条弧相等,那么它们所对的圆心角相等.其中原命题与逆命题均为真命题的个数是()A.4个B.3个C.2个D.1个12.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②4a+2b+c<0;③a﹣b+c>0;④(a+c)2<b2.其中正确的结论是()A.①②B.①③C.①③④D.①②③④二、填空题(本大题共8小题,每小题3分,满分24分)13=.14.某次射击训练中,一小组的成绩如表所示:已知该小组的平均成绩为8环,那么成绩为9环的人数是.环数7 8 9人数 3 415.如图,点A、B、C、D在⊙O上,OB⊥AC,若∠BOC=56°,则∠ADB=度.16.不等式13(x﹣m)>3﹣m的解集为x>1,则m的值为.17.设有反比例函数2kyx-=,(x1,y1),(x2,y2)为其图象上两点,若x1<0<x2,y1>y2,则k的取值范围.18.如图,在三角形纸片ABC中,∠C=90°,AC=6,折叠该纸片,使点C落在AB边上的D点处,折痕BE与AC交于点E,若AD=BD,则折痕BE的长为.19.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为.20.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=度.三、解答题(本大题共6小题,共60分)21.(8分)甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A、B分成4等份、3等份的扇形区域,并在每一小区域内标上数字(如图所示),指针的位置固定.游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,甲胜;若指针所指两个区域的数字之和为4的倍数时,乙胜.如果指针落在分割线上,则需要重新转动转盘.(1)试用列表或画树形图的方法,求甲获胜的概率;(2)请问这个游戏规则对甲、乙双方公平吗?试说明理由.22.(8分)如图,一根长AB),斜靠在与地面(OM)垂直的墙(ON)上,与地面的倾斜角(∠ABO)为60°.当木棒A端沿墙下滑至点A′时,B端沿地面向右滑行至点B′.(1)求OB的长;(2)当AA′=1米时,求BB′的长.23.(10分)某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?24.(10分)如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.(1)求证:PA是⊙O的切线;(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG•AB=12,求AC的长;(3)在满足(2)的条件下,若AF:FD=1:2,GF=1,求⊙O的半径及sin∠ACE的值.25.(12分)如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE,交AC于点F.(1)如图①,当13CEEB时,求CEFCDFSS的值;(2)如图②当DE平分∠CDB时,求证:OA;(3)如图③,当点E是BC的中点时,过点F作FG⊥BC于点G,求证:CG=12 BG.26.(12分)已知抛物线y=x2﹣3x﹣74的顶点为点D,并与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C.(1)求点A、B、C、D的坐标;(2)在y轴的正半轴上是否存在点P,使以点P、O、A为顶点的三角形与△AOC相似?若存在,求出点P的坐标;若不存在,请说明理由;(3)取点E(32-,0)和点F(0,34-),直线l经过E、F两点,点G是线段BD的中点.①点G是否在直线l上,请说明理由;②在抛物线上是否存在点M,使点M关于直线l的对称点在x轴上?若存在,求出点M的坐标;若不存在,请说明理由.参考答案与解析一、选择题(本大题共12小题,每小题3分,满分36分)1.计算(+2)+(﹣3)所得的结果是()A.1 B.﹣1 C.5 D.﹣5【知识考点】有理数的加法.【思路分析】运用有理数的加法法则直接计算.【解答过程】解:原式=﹣(3﹣2)=﹣1.故选B.【总结归纳】解此题关键是记住加法法则进行计算.2.3tan30°的值等于()A B.C D.3 2【知识考点】特殊角的三角函数值.【思路分析】直接把tan30°代入进行计算即可.【解答过程】解:原式3=故选A.【总结归纳】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.3.函数11yx=+中,自变量x的取值范围是()A.x>﹣1 B.x<﹣1 C.x≠﹣1 D.x≠0【知识考点】函数自变量的取值范围.【思路分析】根据分母不等于0列式计算即可得解.【解答过程】解:根据题意得,x+1≠0,解得x≠﹣1.故选C.【总结归纳】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.若|a|=﹣a,则实数a在数轴上的对应点一定在()A.原点左侧B.原点或原点左侧C.原点右侧D.原点或原点右侧【知识考点】实数与数轴;绝对值【思路分析】根据|a|=﹣a,求出a的取值范围,再根据数轴的特点进行解答即可求出答案.【解答过程】解:∵|a|=﹣a,∴a一定是非正数,∴实数a在数轴上的对应点一定在原点或原点左侧;故选B.【总结归纳】此题考查了绝对值与数轴,根据|a|≥0,然后利用熟知数轴的知识即可解答,是一道基础题.5.已知方程x2﹣2x﹣1=0,则此方程()A.无实数根B.两根之和为﹣2 C.两根之积为﹣1 D.有一根为1-【知识考点】根与系数的关系;根的判别式.【思路分析】根据已知方程的根的判别式符号确定该方程的根的情况.由根与系数的关系确定两根之积、两根之和的值;通过求根公式即可求得方程的根.【解答过程】解:A、△=(﹣2)2﹣4×1×(﹣1)=8>0,则该方程有两个不相等的实数根.故本选项错误;B、设该方程的两根分别是α、β,则α+β=2.即两根之和为2,故本选项错误;C、设该方程的两根分别是α、β,则αβ=﹣1.即两根之积为﹣1,故本选项正确;D、根据求根公式x==1±知,原方程的两根是(1+)和(1﹣).故本选项错误;故选C.【总结归纳】本题综合考查了根与系数的关系、根的判别式以及求根公式的应用.利用根与系数的关系、求根公式解题时,务必清楚公式中的字母所表示的含义.6.一组数据按从大到小排列为2,4,8,x,10,14.若这组数据的中位数为9,则这组数据的众数为()A.6 B.8 C.9 D.10【知识考点】众数;中位数.【思路分析】根据中位数为9,可求出x的值,继而可判断出众数.【解答过程】解:由题意得,(8+x)÷2=9,解得:x=10,则这组数据中出现次数最多的是10,故众数为10.故选D.【总结归纳】本题考查了中位数及众数的知识,属于基础题,掌握中位数及众数的定义是关键.7.下列事件中是必然事件的是()A.在一个等式两边同时除以同一个数,结果仍为等式B.两个相似图形一定是位似图形C.平移后的图形与原来图形对应线段相等D.随机抛掷一枚质地均匀的硬币,落地后正面一定朝上【知识考点】随机事件.【思路分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【解答过程】解:A、当除数为0时,结论不成立,是随机事件;B、两个相似图形不一定是位似图形,是随机事件;C、平移后的图形与原来图形对应线段相等,是必然事件;D、随机抛出一枚质地均匀的硬币,落地后正面可能朝上,是随机事件.故选C.【总结归纳】本题考查了必然事件、随机事件的概念,理解概念是解决基础题的主要方法.用到的知识点为:必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.。

2013-2018年海南省中考数学试题汇编(含参考答案与解析)

2013-2018年海南省中考数学试题汇编(含参考答案与解析)

【中考数学试题汇编】2013—2018年海南省中考数学试题汇编(含参考答案与解析)1、2013年海南省中考数学试题及参考答案与解析 (2)2、2014年海南省中考数学试题及参考答案与解析 (20)3、2015年海南省中考数学试题及参考答案与解析 (35)4、2016年海南省中考数学试题及参考答案与解析 (54)5、2017年海南省中考数学试题及参考答案与解析 (73)6、2018年海南省中考数学试题及参考答案与解析 (91)2013年海南省中考数学试题及参考答案一、选择题(本大题共14小题,每小题3分,满分42分)1.﹣5的绝对值是()A.15B.﹣5 C.5 D.15-2.若代数式x+3的值为2,则x等于()A.1 B.﹣1 C.5 D.﹣53.下列计算正确的是()A.x2•x3=x6B.(x2)3=x5C.x2+x3=x5D.x6÷x3=x34.某班5位学生参加中考体育测试的成绩(单位:分)分别是35、40、37、38、40.则这组数据的众数是()A.37 B.40 C.38 D.355.如图是由5个大小相同的正方体组成的几何体,它的俯视图为()A.B.C.D.6)A B.C.D.27.“辽宁号”航母是中国海军航空母舰的首舰,标准排水量57000吨,满载排水量67500吨,数据67500用科学记数法表示为()A.675×102B.67.5×102C.6.75×104D.6.75×1058.如图,在▱ABCD中,AC与BD相交于点O,则下列结论不一定成立的是()A.BO=DO B.CD=AB C.∠BAD=∠BCD D.AC=BD9.一个三角形的三条边长分别为1、2、x,则x的取值范围是()A.1≤x≤3B.1<x≤3C.1≤x<3 D.1<x<310.今年我省荔枝喜获丰收,有甲、乙两块面积相同的荔枝园,分别收获8600kg和9800kg,甲荔枝园比乙荔枝园平均每亩少60kg,问甲荔枝园平均每亩收获荔枝多少kg?设甲荔枝园平均每亩收获荔枝xkg,根据题意,可得方程()A.8600980060x x=+B.8600980060x x=-C.8600980060x x=-D.8600980060x x=+11.现有四个外观完全一样的粽子,其中有且只有一个有蛋黄.若从中一次随机取出两个,则这两个粽子都没有蛋黄的概率是()A.13B.12C.14D.2312.如图,在⊙O中,弦BC=1.点A是圆上一点,且∠BAC=30°,则⊙O的半径是()A.1 B.2 C D13.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°14.直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3,把一块含有45°角的直角三角形如图放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为()A.254B.253C.203D.154二、填空题(本大题共4小题,每小题4分,共16分)15.因式分解:a2﹣b2=.16.点(2,y1),(3,y2)在函数2yx=-的图象上,则y1y2(填“>”或“<”或“=”).17.如图,AB∥CD,AE=AF,CE交AB于点F,∠C=110°,则∠A=°.18.如图,在梯形ABCD中,AD∥BC,AB=CD=AD=5,∠B=60°,则BC=.三、解答题(本大题共6小题,满分62分) 19.(10分)计算:(1)214336-⎛⎫⨯-⎪⎝⎭; (2)a (a ﹣3)﹣(a ﹣1)2. 20.(8分)据悉,2013年财政部核定海南省发行的60亿地方政府“债券资金”,全部用于交通等重大项目建设.以下是60亿“债券资金”分配统计图: (1)请将条形统计图补充完整;(2)在扇形统计图中,a= ,b= (都精确到0.1);(3)在扇形统计图中,“教育文化”对应的扇形圆心角的度数为 °(精确到1°)21.(9分)如图,在正方形网格中,△ABC 各顶点都在格点上,点A ,C 的坐标分别为(﹣5,1)、(﹣1,4),结合所给的平面直角坐标系解答下列问题: (1)画出△ABC 关于y 轴对称的△A 1B 1C 1; (2)画出△ABC 关于原点O 对称的△A 2B 2C 2;(3)点C 1的坐标是 ;点C 2的坐标是 ;过C 、C 1、C 2三点的圆的圆弧12CC C 的长是 (保留π).22.(8分)为迎接6月5日的“世界环境日”,某校团委开展“光盘行动”,倡议学生遏制浪费粮食行为.该校七年级(1)、(2)、(3)三个班共128人参加了活动.其中七(3)班48人参加,七(1)班参加的人数比七(2)班多10人,请问七(1)班和七(2)班各有多少人参加“光盘行动”?23.(14分)(1)如图(1)点P是正方形ABCD的边CD上一点(点P与点C,D不重合),点E 在BC的延长线上,且CE=CP,连接BP,DE.求证:△BCP≌△DCE;(2)直线EP交AD于F,连接BF,FC.点G是FC与BP的交点.①若CD=2PC时,求证:BP⊥CF;②若CD=n•PC(n是大于1的实数)时,记△BPF的面积为S1,△DPE的面积为S2.求证:S1=(n+1)S2.24.(14分)如图,二次函数的图象与x轴相交于点A(﹣3,0)、B(﹣1,0),与y轴相交于点C (0,3),点P是该图象上的动点;一次函数y=kx﹣4k(k≠0)的图象过点P交x轴于点Q.(1)求该二次函数的解析式;(2)当点P的坐标为(﹣4,m)时,求证:∠OPC=∠AQC;(3)点M,N分别在线段AQ、CQ上,点M以每秒3个单位长度的速度从点A向点Q运动,同时,点N以每秒1个单位长度的速度从点C向点Q运动,当点M,N中有一点到达Q点时,两点同时停止运动,设运动时间为t秒.①连接AN,当△AMN的面积最大时,求t的值;②直线PQ能否垂直平分线段MN?若能,请求出此时点P的坐标;若不能,请说明你的理由.参考答案与解析一、选择题(本大题共14小题,每小题3分,满分42分)1.﹣5的绝对值是()A.15B.﹣5 C.5 D.15【知识考点】绝对值.【思路分析】根据一个负数的绝对值是它的相反数求解即可.【解答过程】解:﹣5的绝对值是5.故选:C.【总结归纳】本题考查了绝对值的定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.若代数式x+3的值为2,则x等于()A.1 B.﹣1 C.5 D.﹣5【知识考点】解一元一次方程.【思路分析】根据题意,列出关于x的一元一次方程x+3=2,通过解该方程可以求得x的值.【解答过程】解:由题意,得x+3=2,移项,得x=﹣1.故选:B.【总结归纳】本题考查解一元一次方程的解法;解一元一次方程常见的过程有去括号、移项、系数化为1等.3.下列计算正确的是()A.x2•x3=x6B.(x2)3=x5C.x2+x3=x5D.x6÷x3=x3【知识考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【思路分析】根据同底数幂的乘法、幂的乘方,合并同类项,同底数幂的除法求出每个式子的值,再进行判断即可.【解答过程】解:A、x2•x3=x5,故本选项错误;B、(x2)3=x6,故本选项错误;C、x2和x3不是同类项,不能合并,故本选项错误;D、x6÷x3=x3,故本选项正确;故选:D.【总结归纳】本题考查了同底数幂的乘法、幂的乘方,合并同类项,同底数幂的除法的应用,主要考查学生的计算能力和辨析能力.4.某班5位学生参加中考体育测试的成绩(单位:分)分别是35、40、37、38、40.则这组数据的众数是()A.37 B.40 C.38 D.35【知识考点】众数.【思路分析】根据众数的定义,找出这组数据中出现次数最多的数,即可求出答案.【解答过程】解:在这组数据35、40、37、38、40中,40出现了2次,出现的次数最多,则这组数据的众数是40,故选:B.【总结归纳】此题考查了众数,掌握众数的定义是本题的关键,众数是一组数据中出现次数最多的数.5.如图是由5个大小相同的正方体组成的几何体,它的俯视图为()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】找到从上面看所得到的图形即可.【解答过程】解:此几何体的俯视图有2列,从左往右小正方形的个数分别是2,2,故选:A.【总结归纳】此题主要考查了简单几何体的三视图,关键是掌握所看的位置.6)A B.C.D.2【知识考点】实数的运算.【思路分析】根据实数运算的法则对各选项进行逐一解答即可.【解答过程】解:A、×=,故A错误;B、×3=3,故B错误;C、×2=6,故C正确;D、×(2﹣)=2﹣3,故D错误.故选:C.【总结归纳】本题考查的是实数的运算,熟知实数运算的法则是解答此题的关键.7.“辽宁号”航母是中国海军航空母舰的首舰,标准排水量57000吨,满载排水量67500吨,数据67500用科学记数法表示为()A.675×102B.67.5×102C.6.75×104D.6.75×105【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:将67500用科学记数法表示为6.75×104.故选:C.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.如图,在▱ABCD中,AC与BD相交于点O,则下列结论不一定成立的是()A.BO=DO B.CD=AB C.∠BAD=∠BCD D.AC=BD【知识考点】平行四边形的性质.【思路分析】根据平行四边形的性质(①平行四边形的对边平行且相等,②平行四边形的对角相等,③平行四边形的对角线互相平分)判断即可.【解答过程】解:A 、∵四边形ABCD 是平行四边形, ∴OB=OD (平行四边形的对角线互相平分),正确,不符合题意; B 、∵四边形ABCD 是平行四边形, ∴CD=AB ,正确,不符合题意; C 、∵四边形ABCD 是平行四边形, ∴∠BAD=∠BCD ,正确,不符合题意;D 、根据四边形ABCD 是平行四边形不能推出AC=BD ,错误,符合题意; 故选:D .【总结归纳】本题考查了平行四边形的性质的应用,注意:平行四边形的性质是:①平行四边形的对边平行且相等,②平行四边形的对角相等,③平行四边形的对角线互相平分. 9.一个三角形的三条边长分别为1、2、x ,则x 的取值范围是( ) A .1≤x≤3 B .1<x≤3 C .1≤x <3 D .1<x <3 【知识考点】三角形三边关系.【思路分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围.【解答过程】解:根据题意得:2﹣1<x <2+1, 即1<x <3. 故选:D .【总结归纳】考查了三角形三边关系,本题需要理解的是如何根据已知的两条边求第三边的范围. 10.今年我省荔枝喜获丰收,有甲、乙两块面积相同的荔枝园,分别收获8600kg 和9800kg ,甲荔枝园比乙荔枝园平均每亩少60kg ,问甲荔枝园平均每亩收获荔枝多少kg ?设甲荔枝园平均每亩收获荔枝xkg ,根据题意,可得方程( ) A .8600980060x x =+ B .8600980060x x =- C .8600980060x x =- D .8600980060x x=+ 【知识考点】由实际问题抽象出分式方程.【思路分析】根据关键描述语是:“两块面积相同的荔枝园”;等量关系为:甲试验田的面积=乙试验田的面积,假设出甲试验田每亩收获荔枝x 千克,求出即可.【解答过程】解:设甲荔枝园平均每亩收获荔枝xkg ,根据题意,可得方程:8600980060x x =+, 故选:A .【总结归纳】本题考查了由实际问题抽象出分式方程,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.11.现有四个外观完全一样的粽子,其中有且只有一个有蛋黄.若从中一次随机取出两个,则这两个粽子都没有蛋黄的概率是( ) A .13 B .12 C .14 D .23【知识考点】列表法与树状图法.【思路分析】根据概率的求法,先画出树状图,求出所有出现的情况,即可求出答案. 【解答过程】解:用A 表示没蛋黄,B 表示有蛋黄的,画树状图如下:。

2013-2018年宁夏回族自治区中考数学试题汇编(含参考答案与解析)

2013-2018年宁夏回族自治区中考数学试题汇编(含参考答案与解析)

【历年中考真题汇编】2013—2018年宁夏中考数学试题汇编(含参考答案与解析)1、2013年宁夏中考数学试题及参考答案与解析 (2)2、2014年宁夏中考数学试题及参考答案与解析 (24)3、2015年宁夏中考数学试题及参考答案与解析 (45)4、2016年宁夏中考数学试题及参考答案与解析 (67)5、2017年宁夏中考数学试题及参考答案与解析 (89)6、2018年宁夏中考数学试题及参考答案与解析 (109)2013年宁夏回族自治区中考数学试题及参考答案一、选择题(本大题共8小题,每小题3分,共24分)1.计算(a2)3的结果是()A.a5B.a6C.a8D.3a22.一元二次方程x(x﹣2)=2﹣x的根是()A.﹣1 B.2 C.1和2 D.﹣1和23.如图是某水库大坝横断面示意图.其中AB、CD分别表示水库上下底面的水平线,∠ABC=120°,BC的长是50m,则水库大坝的高度h是()A.B.25m C.D.34.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°5.雅安地震后,灾区急需帐篷.某企业急灾区之所急,准备捐助甲、乙两种型号的帐篷共1500顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置8000人.设该企业捐助甲种帐篷x顶、乙种帐篷y顶,那么下面列出的方程组中正确的是()A.4150048000x yx y+=⎧⎨+=⎩B.4150088000x yx y+=⎧⎨+=⎩C.1500468000x yx y+=⎧⎨+=⎩D.1500648000x yx y+=⎧⎨+=⎩6.函数ayx=(a≠0)与y=a(x﹣1)(a≠0)在同一坐标系中的大致图象是()A.B.C .D .7.如图是某几何体的三视图,其侧面积( )A .6B .4πC .6πD .12π8.如图,以等腰直角△ABC 两锐角顶点A 、B 为圆心作等圆,⊙A 与⊙B 恰好外切,若AC=2,那么图中两个扇形(即阴影部分)的面积之和为( )A .4π B .2π C D 二、填空题(本大题共8小题,每小题3分,共24分) 9.分解因式:2a 2﹣4a+2= .10.点 P (a ,a ﹣3)在第四象限,则a 的取值范围是 .11.如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有 种.12.如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为 cm .13.如图,菱形OABC 的顶点O 是原点,顶点B 在y 轴上,菱形的两条对角线的长分别是6和4,反比例函数()0ky x x=<的图象经过点C ,则k 的值为 .14.△ABC 中,D 、E 分别是边AB 与AC 的中点,BC=4,下面四个结论:①DE=2;②△ADE ∽△ABC ;③△ADE 的面积与△ABC 的面积之比为 1:4;④△ADE 的周长与△ABC 的周长之比为 1:4;其中正确的有 .(只填序号)15.如图,在Rt △ABC 中,∠ACB=90°,∠A=α,将△ABC 绕点C 按顺时针方向旋转后得到△EDC ,此时点D 在AB 边上,则旋转角的大小为 .16.若不等式组0122x a x x +⎧⎨--⎩≥>有解,则a 的取值范围是 .三、解答题(本大题共4小题,共24分)17.(6分)计算:226tan30|2|3-⎛⎫︒- ⎪⎝⎭.18.(6分)解方程:6123xx x =--+. 19.(6分)如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别为A (﹣1,2),B (﹣3,4)C (﹣2,6)(1)画出△ABC 绕点A 顺时针旋转90°后得到的△A 1B 1C 1(2)以原点O 为位似中心,画出将△A 1B 1C 1三条边放大为原来的2倍后的△A 2B 2C 2.20.(6分)某校要从九年级(一)班和(二)班中各选取10名女同学组成礼仪队,选取的两班女生的身高如下:(单位:厘米)(一)班:168 167 170 165 168 166 171 168 167 170(二)班:165 167 169 170 165 168 170 171 168 167(1)补充完成下面的统计分析表(2)请选一个合适的统计量作为选择标准,说明哪一个班能被选取.四、解答题(本大题共6小题,共48分)21.(6分)小明对自己所在班级的50名学生平均每周参加课外活动的时间进行了调查,由调查结果绘制了频数分布直方图,根据图中信息回答下列问题:(1)求m的值;(2)从参加课外活动时间在6~10小时的5名学生中随机选取2人,请你用列表或画树状图的方法,求其中至少有1人课外活动时间在8~10小时的概率.22.(6分)在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F;求证:DF=DC.23.(8分)在Rt△ABC中,∠ACB=90°,D是AB边上的一点,以BD为直径作⊙O交AC于点E,连结DE并延长,与BC的延长线交于点F.且BD=BF.(1)求证:AC与⊙O相切.(2)若BC=6,AB=12,求⊙O的面积.24.(8分)如图,抛物线与x轴交于A、B两点,与y轴交C点,点A的坐标为(2,0),点C的坐标为(0,3)它的对称轴是直线x=12 .(1)求抛物线的解析式;(2)M是线段AB上的任意一点,当△MBC为等腰三角形时,求M点的坐标.25.(10分)如图1,在一直角边长为4米的等腰直角三角形地块的每一个正方形网格的格点(纵横直线的交点及三角形顶点)上都种植同种农作物,根据以往种植实验发现,每株农作物的产量y(单位:千克)受到与它周围直线距离不超过1米的同种农作物的株数x(单位:株)的影响情况统计如下表:(1)通过观察上表,猜测y与x之间之间存在哪种函数关系,求出函数关系式并加以验证;(2)根据种植示意图填写下表,并求出这块地平均每平方米的产量为多少千克?(3)有人为提高总产量,将上述地块拓展为斜边长为6米的等腰直角三角形,采用如图2所示的方式,在每个正方形网格的格点上都种植了与前面相同的农作物,共种植了16株,请你通过计算平均每平方米的产量,来比较那种种植方式更合理?26.(10分)在▱ABCD中,P是AB边上的任意一点,过P点作PE⊥AB,交AD于E,连结CE,CP.已知∠A=60°;(1)若BC=8,AB=6,当AP的长为多少时,△CPE的面积最大,并求出面积的最大值.(2)试探究当△CPE≌△CPB时,▱ABCD的两边AB与BC应满足什么关系?参考答案与解析一、选择题(本大题共8小题,每小题3分,共24分)1.计算(a2)3的结果是()A.a5B.a6C.a8D.3a2【知识考点】幂的乘方与积的乘方.【思路分析】根据幂的乘方,底数不变,指数相乘,计算后直接选取答案.【解答过程】解:(a2)3=a6.故选B.【总结归纳】本题考查了幂的乘方的性质,熟练掌握性质是解题的关键.2.一元二次方程x(x﹣2)=2﹣x的根是()A.﹣1 B.2 C.1和2 D.﹣1和2【知识考点】解一元二次方程-因式分解法.【思路分析】先移项得到x(x﹣2)+(x﹣2)=0,然后利用提公因式因式分解,最后转化为两个一元一次方程,解方程即可.【解答过程】解:x(x﹣2)+(x﹣2)=0,∴(x﹣2)(x+1)=0,∴x﹣2=0或x+1=0,∴x1=2,x2=﹣1.故选D.【总结归纳】本题考查了运用因式分解法解一元二次方程的方法:利用因式分解把一个一元二次方程化为两个一元一次方程.3.如图是某水库大坝横断面示意图.其中AB、CD分别表示水库上下底面的水平线,∠ABC=120°,BC的长是50m,则水库大坝的高度h是()A.B.25m C.D.3【知识考点】解直角三角形的应用-坡度坡角问题.【思路分析】首先过点C作CE⊥AB于点E,易得∠CBE=60°,在Rt△CBE中,BC=50m,利用正弦函数,即可求得答案.【解答过程】解:过点C作CE⊥AB于点E,∵∠ABC=120°,∴∠CBE=60°,在Rt△CBE中,BC=50m,∴CE=BC•sin60°=.故选A.【总结归纳】此题考查了坡度坡角问题.注意能构造直角三角形,并利用解直角三角形的知识求解是解此题的关键.4.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°【知识考点】翻折变换(折叠问题).【思路分析】由△ABC中,∠ACB=90°,∠A=22°,可求得∠B的度数,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,由三角形外角的性质,可求得∠ADE的度数,继而求得答案.【解答过程】解:△ABC中,∠ACB=90°,∠A=22°,∴∠B=90°﹣∠A=68°,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,∴∠ADE=∠CED﹣∠A=46°,∴∠BDC=1802ADE︒-∠=67°.故选C.【总结归纳】此题考查了折叠的性质、三角形内角和定理以及三角形外角的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.5.雅安地震后,灾区急需帐篷.某企业急灾区之所急,准备捐助甲、乙两种型号的帐篷共1500顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置8000人.设该企业捐助甲种帐篷x顶、乙种帐篷y顶,那么下面列出的方程组中正确的是()A.4150048000x yx y+=⎧⎨+=⎩B.4150088000x yx y+=⎧⎨+=⎩C.1500468000x yx y+=⎧⎨+=⎩D.1500648000x yx y+=⎧⎨+=⎩【知识考点】由实际问题抽象出二元一次方程组.【思路分析】等量关系有:①甲种帐篷的顶数+乙种帐篷的顶数=1500顶;②甲种帐篷安置的总人数+乙种帐篷安置的总人数=8000人,进而得出答案.【解答过程】解:根据甲、乙两种型号的帐篷共1500顶,得方程x+y=1500;根据共安置8000人,得方程6x+4y=8000.列方程组为:1500 648000 x yx y+=⎧⎨+=⎩,故选:D.【总结归纳】此题主要考查了由实际问题抽象出二元一次方程组,列方程组解应用题的关键是找准等量关系,此题中要能够分别根据帐篷数和人数列出方程.6.函数ayx=(a≠0)与y=a(x﹣1)(a≠0)在同一坐标系中的大致图象是()A.B.C.D.。

2013-2018年湖北省黄石市中考数学试题汇编(含参考答案与解析)

2013-2018年湖北省黄石市中考数学试题汇编(含参考答案与解析)

【中考数学试题汇编】2013—2018年湖北省黄石市中考数学试题汇编(含参考答案与解析)1、2013年湖北省黄石市中考数学试题及参考答案与解析 (2)2、2014年湖北省黄石市中考数学试题及参考答案与解析 (29)3、2015年湖北省黄石市中考数学试题及参考答案与解析 (51)4、2016年湖北省黄石市中考数学试题及参考答案与解析 (73)5、2017年湖北省黄石市中考数学试题及参考答案与解析 (94)6、2018年湖北省黄石市中考数学试题及参考答案与解析 (115)2013年湖北省黄石市中考数学试题及参考答案与解析一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每个小题给出的四个选项中,只有一个是正确的.1.﹣7的倒数是()A.17-B.7 C.17D.﹣72.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.4960亿千米.用科学记数法表示1个天文单位应是()A.1.4960×107千米B.14.960×107千米C.1.4960×108千米D.0.14960×108千米3.分式方程3121x x=-的解为()A.x=﹣1 B.x=2 C.x=4 D.x=34.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是()A.①②B.②③C.②④D.③④5.已知直角三角形ABC的一条直角边AB=12cm,另一条直角边BC=5cm,则以AB为轴旋转一周,所得到的圆锥的表面积是()A.90πcm2B.209πcm2C.155πcm2D.65πcm26关于这15名学生所捐款的数额,下列说法正确的是()A.众数是100 B.平均数是30 C.极差是20 D.中位数是207.四川雅安地震期间,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的帐篷恰好(既不多也不少)能容纳这60名灾民,则不同的搭建方案有()A.1种B.11种C.6种D.9种8.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为()A.95B.215C.185D.529.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长为()A.B.5 C.4 D10.如图,已知某容器都是由上下两个相同的圆锥和中间一个与圆锥同底等高的圆柱组合而成,若往此容器中注水,设注入水的体积为y,高度为x,则y关于x的函数图象大致是()A.B.C.D.二、认真填一填(本题有6个小题,每小题3分,共18分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.分解因式:3x2﹣27=.12.若关于x的函数y=kx2+2x﹣1与x轴仅有一个公共点,则实数k的值为.13.甲、乙玩猜数字游戏,游戏规则如下:有四个数字0、1、2、3,先由甲心中任选一个数字,记为m,再由乙猜甲刚才所选的数字,记为n.若m、n满足|m﹣n|≤1,则称甲、乙两人“心有灵犀”,则甲、乙两人“心有灵犀”的概率是.14.如图所示,在边长为3的正方形ABCD中,⊙O1与⊙O2外切,且⊙O2分别于DA、DC边外切,⊙O1分别与BA、BC边外切,则圆心距,O1O2为.15.如图所示,在平面直角坐标系中,一次函数y=ax+b (a≠0)的图象与反比例函数ky x=(k≠0)的图象交于二、四象限的A 、B 两点,与x 轴交于C 点.已知A (﹣2,m ),B (n ,﹣2),tan ∠BOC=25,则此一次函数的解析式为 .16.在计数制中,通常我们使用的是“十进位制”,即“逢十进一”,而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为一天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据.已知二进位制与十进位制比较如下表:请将二进位制数10101010(二)写成十进位制数为.三、全面答一答(本题有9个小题,共72分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以. 17.(7分)计算:()131|3|tan3020133π-⎛⎫-︒--+ ⎪⎝⎭. 18.(7分)先化简,再求值:()11b a b b aa b ++++,其中a =b =. 19.(7分)如图,AB 是⊙O 的直径,AM 和BN 是⊙O 的两条切线,E 是⊙O 上一点,D 是AM 上一点,连接DE 并延长交BN 于点C ,且OD ∥BE ,OF ∥BN . (1)求证:DE 与⊙O 相切; (2)求证:OF=12CD .20.(8分)解方程组:2212223x y x ⎧-=-⎪⎨⎪-=⎩.21.(8分)青少年“心理健康”问题越来越引起社会的关注,某中学为了了解学校600名学生的心理健康状况,举行了一次“心理健康”知识测试,并随即抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本,绘制了下面未完成的频率分布表和频率分布直方图.请回答下列问题:(1)填写频率分布表中的空格,并补全频率分布直方图;(2)若成绩在70分以上(不含70分)为心理健康状况良好,同时,若心理健康状况良好的人数占总人数的70%以上,就表示该校学生的心理健康状况正常,否则就需要加强心里辅导.请根据上述数据分析该校学生是否需要加强心里辅导,并说明理由.22.(8分)高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改进行驶,试问:消防车是否需要改道行驶?请说明理由. 1.732)23.(8分)一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y 1千米,出租车离甲地的距离为y 2千米,两车行驶的时间为x 小时,y 1、y 2关于x 的函数图象如图所示:(1)根据图象,直接写出y 1、y 2关于x 的函数图象关系式; (2)若两车之间的距离为S 千米,请写出S 关于x 的函数关系式;(3)甲、乙两地间有A 、B 两个加油站,相距200千米,若客车进入A 加油站时,出租车恰好进入B 加油站,求A 加油站离甲地的距离.24.(9分)如图1,点C 将线段AB 分成两部分,如果AC BCAB AC=,那么称点C 为线段AB 的黄金分割点.某数学兴趣小组在进行课题研究时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l 将一个面积为S 的图形分成两部分,这两部分的面积分别为S 1、S 2,如果121S S S S =,那么称直线l 为该图形的黄金分割线. (1)如图2,在△ABC 中,∠A=36°,AB=AC ,∠C 的平分线交AB 于点D ,请问点D 是否是AB 边上的黄金分割点,并证明你的结论;(2)若△ABC 在(1)的条件下,如图3,请问直线CD 是不是△ABC 的黄金分割线,并证明你的结论;(3)如图4,在直角梯形ABCD 中,∠D=∠C=90°,对角线AC 、BD 交于点F ,延长AB 、DC 交于点E ,连接EF 交梯形上、下底于G 、H 两点,请问直线GH 是不是直角梯形ABCD 的黄金分割线,并证明你的结论.25.(10分)如图1所示,已知直线y=kx+m 与x 轴、y 轴分别交于点A 、C 两点,抛物线y=﹣x 2+bx+c 经过A 、C 两点,点B 是抛物线与x 轴的另一个交点,当12x =-时,y 取最大值254. (1)求抛物线和直线的解析式;(2)设点P是直线AC上一点,且S△ABP:S△BPC=1:3,求点P的坐标;(3)直线12y x a=+与(1)中所求的抛物线交于点M、N,两点,问:①是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,请说明理由.②猜想当∠MON>90°时,a的取值范围.(不写过程,直接写结论)(参考公式:在平面直角坐标系中,若M(x1,y1),N(x2,y2),则M、N两点之间的距离为||MN=参考答案与解析一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每个小题给出的四个选项中,只有一个是正确的.1.﹣7的倒数是()A.17-B.7 C.17D.﹣7【知识考点】倒数【思路分析】根据倒数的定义解答.【解答过程】解:﹣7的倒数是17 -,故选A.【总结归纳】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.4960亿千米.用科学记数法表示1个天文单位应是()A.1.4960×107千米B.14.960×107千米C.1.4960×108千米D.0.14960×108千米【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.。

陕西中考数学试题六年汇总(2013~2018)

陕西中考数学试题六年汇总(2013~2018)

2018年陕西省初中毕业学业考试数学试卷(考试时间:120分钟 满分:120分)第一部分(选择题 共30分)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的) 1. -711的倒数是( )A.711 B. -711 C. 117 D. -1172. 如图,是一个几何体的表面展开图,则该几何体是( ) A. 正方体 B. 长方体 C. 三棱柱 D. 四棱锥第2题图 第3题图3. 如图,若l 1∥l 2,l 3∥l 4,则图中与∠1互补的角有( ) A. 1个 B. 2个 C. 3个 D. 4个4. 如图,在矩形AOBC 中,A (-2,0),B (0,1).若正比例函数y =kx 的图象经过点C ,则k 的值为( ) A. -12 B. 12C. -2D. 2第4题图 第6题图5. 下列计算正确的是( )A. a 2·a 2=2a 4B. (-a 2)3=-a 6C. 3a 2-6a 2=3a 2D. (a -2)2=a 2-46. 如图,在△ABC 中,AC =8,∠ABC =60°,∠C =45°,AD ⊥BC ,垂足为D ,∠ABC 的平分线交AD 于点E ,则AE 的长为( ) A.43 2 B. 2 2 C. 832 D.3 2 7. 若直线l 1经过点(0,4),l 2经过点(3,2),且l 1与l 2关于x 轴对称,则l 1与l 2的交点坐标为( ) A. (-2,0) B. (2,0) C. (-6,0) D. (6,0)8. 如图,在菱形ABCD 中,点E 、F 、G 、H 分别是边AB 、BC 、CD 和DA 的中点,连接EF 、FG 、GH 和HE .若EH =2EF ,则下列结论正确的是( )A. AB =2EFB. AB =2EFC. AB =3EFD. AB =5EF第8题图 第9题图9. 如图,△ABC 是⊙O 的内接三角形,AB =AC ,∠BCA =65°,作CD ∥AB ,并与⊙O 相交于点D ,连接BD ,则∠DBC 的大小为( ) A. 15° B. 35° C. 25° D. 45°10. 对于抛物线y =ax 2+(2a -1)x +a -3,当x =1时,y >0,则这条抛物线的顶点一定在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限第二部分(非选择题 共90分)二、填空题(共4小题,每小题3分,计12分) 11. 比较大小:3________10(填“>”、“<”或“=”).12. 如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则∠AFE 的度数为________.第12题图 第14题图13. 若一个反比例函数的图象经过点A (m ,m )和B (2m ,-1),则这个反比例函数的表达式为________. 14. 如图,点O 是▱ABCD 的对称中心,AD >AB ,E 、F 是AB 边上的点,且EF =12AB ;G 、H 是BC 边上的点,且GH =13BC .若S 1,S 2分别表示△EOF 和△GOH 的面积,则S 1与S 2之间的等量关系是________.三、解答题(共11小题,计78分.解答应写出过程)15. (本题满分5分)计算:(-3)×(-6)+|2-1|+(5-2π)0.16. (本题满分5分)化简:(a +1a -1-aa +1)÷3a +1a 2+a .17. (本题满分5分)如图,已知:在正方形ABCD 中,M 是BC 边上一定点,连接AM .请用尺规作图法,在AM 上求作一点P ,使△DP A ∽△ABM .(不写作法,保留作图痕迹)第17题图18. (本题满分5分)如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF 相交于点G、H,若AB=CD.求证:AG=DH.第18题图19. (本题满分7分)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用,减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度,增强同学们的环保意识,普及垃圾分类及投放的相关知识,某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试,根据测试成绩分布情况,他们将全部测试成绩分成A、B、C、D四组,绘制了如下统计图表:“垃圾分类知识及投放情况”问卷测试成绩统计图表第19题图依据以上统计信息,解答下列问题:(1)求得m=________,n=________;(2)这次测试成绩的中位数落在________组;(3)求本次全部测试成绩的平均数.20. (本题满分7分)周末,小华和小亮想用所学的数学知识测量家门前小河的宽,测量时,他们选择了河对岸岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D,竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1 m,DE=1.5 m,BD=8.5 m,测量示意图如图所示.请根据相关测量信息,求河宽AB.第20题图21. (本题满分7分)经过一年多的精准帮扶、小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速销往全国.小明家网店中红枣和小米这两种商品的相关信息如下表:根据上表提供的信息,解答下列问题:(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共3000 kg,获得利润4.2万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2000 kg,其中,这种规格的红枣的销售量不低于600 kg,假设这后五个月,销售这种规格的红枣为x(kg),销售这种规格的红枣和小米获得的总利润为y(元),求出y与x之间的函数关系式,并求这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.22. (本题满分7分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形的圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字.此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止).(1)转动转盘一次,求转出的数字是-2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.第22题图23. (本题满分8分)如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作⊙O,分别与AC、BC相交于点M、N.(1)过点N作⊙O的切线NE与AB相交于点E,求证:NE⊥AB;(2)连接MD,求证:MD=NB.第23题图24. (本题满分10分)已知抛物线L:y=x2+x-6与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C.(1)求A、B、C三点的坐标,并求△ABC的面积;(2)将抛物线L向左或向右平移,得到抛物线L′,且L′与x轴相交于A′、B′两点(点A′在点B′的左侧),并与y 轴相交于点C′,要使△A′B′C′和△ABC的面积相等,求所有满足条件的抛物线的函数表达式.25. (本题满分12分)问题提出(1)如图①,在△ABC中,∠A=120°,AB=AC=5,则△ABC的外接圆半径R的值为________;问题探究(2)如图②,⊙O的半径为13,弦AB=24,M是AB的中点,P是⊙O上一动点,求PM的最大值;问题解决(3)如图③所示,AB 、AC 、BC ︵是某新区的三条规划路,其中,AB =6 km ,AC =3 km ,∠BAC =60°,BC ︵所对的圆心角为60°.新区管委会想在BC ︵路边建物资总站点P ,在AB 、AC 路边分别建物资分站点E 、F ,也就是,分别在BC ︵,线段AB 和AC 上选取点P 、E 、F .由于总站工作人员每天都要将物资在各物资站点间按P →E →F →P 的路径进行运输,因此,要在各物资站点之间规划道路PE 、EF 和FP .为了快捷、环保和节约成本,要使得线段PE 、EF 、FP 之和最短,试求PE +EF +FP 的最小值.(各物资站点与所在道路之间的距离、路宽均忽略不计)第25题图2017年陕西省初中毕业学业考试数学试卷(考试时间:120分钟 满分:120分)第一部分(选择题 共30分)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的) 1. 计算:(-12)2-1=( )A. -54B. -14C. -34D. 02. 如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是( )3. 若一个正比例函数的图象经过A (3,-6),B (m ,-4)两点,则m 的值为( ) A. 2 B. 8 C. -2 D. -84. 如图,直线a ∥b ,Rt △ABC 的直角顶点B 落在直线a 上.若∠1=25°,则∠2的大小为( ) A. 55° B. 75° C. 65° D. 85°5. 化简:yx yy x x +--,结果正确的是( ) A. 1 B. 2222yx y x -+ C. y x y x +- D. x 2+y 2 6. 如图,将两个大小、形状完全相同的△ABC 和△A′B′C ′拼在一起,其中点A′与点A 重合,点C′落在边AB 上,连接B′C .若∠ACB =∠AC′B′=90°,AC =BC =3,则B′C 的长为( ) A. 3 3 B. 6 C. 3 2 D. 217. 如图,已知直线l 1:y =-2x +4与直线l 2:y =kx +b (k ≠0)在第一象限交于点M .若直线l 2与x 轴的交点为A (-2,0),则k 的取值范围是( )A. -2<k <2B. -2<k <0C. 0<k <4D. 0<k <28. 如图,在矩形ABCD 中,AB =2,BC =3.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( ) A.3102 B. 3105 C. 105 D. 3559. 如图,△ABC 是⊙O 的内接三角形,∠C =30°,⊙O 的半径为5.若点P 是⊙O 上的一点,在△ABP 中,PB =AB ,则P A 的长为( )第9题图A. 5B.532C. 5 2D. 5 3 10. 已知抛物线y =x 2-2mx -4(m >0)的顶点M 关于坐标原点O 的对称点为M ′.若点M′ 在这条抛物线上,则点M 的坐标为( )A. (1,-5)B. (3,-13)C. (2,-8)D. (4,-20)第二部分(非选择题 共90分)二、填空题(共4小题,每小题3分,计12分)11. 在实数-5,-3,0,π,6中,最大的一个数是________.12. (节选)如图,在△ABC 中,BD 和CE 是△ABC 的两条角平分线.若∠A =52°,则∠1+∠2的度数为________.13. 已知A ,B 两点分别在反比例函数y =3m x (m ≠0)和y =2m -5x (m ≠52)的图象上.若点A 与点B 关于x 轴对称,则m 的值为________.14. 如图,在四边形ABCD 中,AB =AD ,∠BAD =∠BCD =90°,连接AC .若AC =6,则四边形ABCD 的面积为________.三、解答题(共11小题,计78分.解答应写出过程) 15. (本题满分5分)计算:(-2)×6+|3-2|-(12)-1.16. (本题满分5分)解方程:3233+--+x x x =1.17. (本题满分5分)如图,在钝角△ABC 中,过钝角顶点B 作BD ⊥BC 交AC 于点D .请用尺规作图法在BC 边上求作一点P ,使得点P 到AC 的距离等于BP 的长.(保留作图痕迹,不写作法)第17题图18. (本题满分5分)养成良好的早锻炼习惯,对学生的学习和生活都非常有益.某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x (分钟)进行了调查.现把调查结果分成A 、B 、C 、D 四组,如右下表所示;同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题: (1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在________区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)19. (本题满分7分)如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE 交于点G.求证:AG=CG.第19题图20. (本题满分7分,改编)某市一湖的湖心岛有一棵百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着测倾器和皮尺来测量这个距离.测量方案如下:如图,首先,小军站在“聚贤亭”的A处,用测倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米;然后,小军在A处蹲下,用测倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上所测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.39,cos23°≈0.92,tan23°≈0.42,sin24°≈0.41,cos24°≈0.91,tan24°≈0.45)21. (本题满分7分)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行整修改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜.今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜.他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.22. (本题满分7分)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C).这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.23. (本题满分8分)如图,已知⊙O的半径为5,P A是⊙O的一条切线,切点为A,连接PO并延长,交⊙O 于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC.当∠P=30°时.(1)求弦AC的长;(2)求证:BC∥P A.24. (本题满分10分)在同一直角坐标系中,抛物线C1:y=ax2-2x-3与抛物线C2:y=x2+mx+n关于y轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A、B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.第24题图25. (本题满分12分)问题提出(1)如图①,△ABC 是等边三角形,AB =12.若点O 是△ABC 的内心,则OA 的长为________; 问题探究(2)如图②,在矩形ABCD 中,AB =12,AD =18.如果点P 是AD 边上一点,且AP =3,那么BC 边上是否存在一点Q ,使得线段PQ 将矩形ABCD 的面积平分?若存在,求出PQ 的长;若不存在,请说明理由; 问题解决(3)某城市街角有一草坪,草坪是由△ABM 草地和弦AB 与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M 处的水管上安装了一喷灌龙头,以后,他想只用..喷灌龙头....来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水.于是,他让喷灌龙头的转角正好等于∠AMB (即每次喷灌时喷灌龙头由MA 转到MB ,然后再转回,这样往复喷灌),同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB =24 m ,MB =10 m ,△AMB 的面积为96 m 2;过弦AB 的中点D 作DE ⊥AB 交AB ︵于点E ,又测得DE =8 m .请你根据以上提供的信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)第25题图2016年陕西省初中毕业学业考试数学试卷(考试时间:120分钟 满分:120分)第一部分(选择题 共30分)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的) 1. 计算:(-12)×2=( )A. -1B. 1C. 4D. -42. 如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是( )3. 下列计算正确的是( )A. x 2+3x 2=4x 4B. x 2y ·2x 3=2x 6yC. (6x 3y 2)÷(3x )=2x 2D. (-3x )2=9x 2 4. 如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E .若∠C =50°,则∠AED =( ) A. 65° B. 115° C. 125° D. 130°5. 设点A (a ,b )是正比例函数y =-32x 图象上的任意一点,则下列等式一定成立的是( )A. 2a +3b =0B. 2a -3b =0C. 3a -2b =0D. 3a +2b =06. 如图,在△ABC 中,∠ABC =90°,AB =8,BC =6.若DE 是△ABC 的中位线,延长DE 交△ABC 的外角∠ACM 的平分线于点F ,则线段DF 的长为( ) A. 7 B. 8 C. 9 D. 107. 已知一次函数y =kx +5和y =k′x +7.假设k >0且k ′<0,则这两个一次函数图象的交点在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限8. 如图,在正方形ABCD 中,连接BD ,点O 是BD 的中点,若M 、N 是边AD 上的两点,连接MO 、NO ,并分别延长交边BC 于两点M′、N ′,则图中..的全等三角形共有( ) A. 2对 B. 3对 C. 4对 D. 5对9. 如图,⊙O 的半径为4,△ABC 是⊙O 的内接三角形,连接OB 、OC .若∠BAC 与∠BOC 互补,则弦BC 的长为( )A. 3 3B. 4 3C. 5 3D. 6 310. 已知抛物线y =-x 2-2x +3与x 轴交于A 、B 两点,将这条抛物线的顶点记为C ,连接AC 、BC ,则tan ∠CAB 的值为( )A. 12B. 55C. 255D. 2 第二部分(非选择题 共90分)二、填空题(共4小题,每小题3分,计12分) 11. 不等式-12x +3<0的解集是________.12. (节选)一个正多边形的一个外角为45°,则这个正多边形的边数是________.13. 已知一次函数y =2x +4的图象分别交x 轴、y 轴于A 、B 两点.若这个一次函数的图象与一个反比例函数的图象在第一象限交于点C ,且AB =2BC ,则这个反比例函数的表达式为________.14. 如图,在菱形ABCD 中,∠ABC =60°,AB =2,点P 是这个菱形内部或边上的一点.若以点P 、B 、C 为顶点的三角形是等腰三角形,则P 、D (P 、D 两点不重合)两点间的最短距离为________.三、解答题(共11小题,计78分.解答应写出过程) 15. (本题满分5分)计算:12-|1-3|+(7+π)0.16. (本题满分5分)化简:(x -5+91)3162--÷+x x x17. (本题满分5分)如图,已知△ABC ,∠BAC =90°,请用尺规过点A 作一条直线,使其将△ABC 分成两个相似的三角形.(保留作图痕迹,不写作法)第17题图18. (本题满分5分)某校为了进一步改进本校七年级数学教学,提高学生学习数学的兴趣.校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A—非常喜欢”、“B—比较喜欢”、“C—不太喜欢”、“D—很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计.现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是________;(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?19. (本题满分7分)如图,在▱ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使BF=DE,连接AF、CE.求证:AF∥CE.20. (本题满分7分)某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量.于是他们首先用平面镜进行测量,方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C.镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合.这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米;然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知:AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计.请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.第20题图21. (本题满分7分)昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回.如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?第21题图22. (本题满分7分)某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动.奖品是三种瓶装饮料,它们分别是:绿茶(500 ml)、红茶(500 ml)和可乐(600 ml).抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动.请你用列表或画树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.第22题图23. (本题满分8分)如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.求证:(1)FC=FG;(2)AB2=BC·BG.第23题图24. (本题满分10分)如图,在平面直角坐标系中,点O为坐标原点.抛物线y=ax2+bx+5经过点M(1,3)和N(3,5).(1)试判断该抛物线与x轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A(-2,0),且与y轴交于点B,同时满足以A、O、B为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.第24题图25. (本题满分12分)问题提出(1)如图①,已知△ABC.请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2.是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米.现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=5米,∠EHG=45°.经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件.试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.2015年陕西省初中毕业学业考试数学试卷(考试时间:120分钟 满分:120分)第一部分(选择题 共30分)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的) 1. 计算:(-23)0=( )A. 1B. -32C. 0D. 232. 如图是一个螺母的示意图,它的俯视图是( )3. 下列计算正确的是( ) A. a 2·a 3=a 6 B. (-2ab )2=4a 2b 2 C. (a 2)3=a 5 D. 3a 3b 2÷a 2b 2=3ab4. 如图,AB ∥CD ,直线EF 分别交直线AB 、CD 于点E 、F .若∠1=46°30′,则∠2的度数为( ) A. 43°30′ B. 53°30′ C. 133°30′ D. 153°30′5. 设正比例函数y =mx 的图象经过点A (m ,4),且y 的值随x 值的增大而减小,则m =( ) A. 2 B. -2 C. 4 D. -46. 如图,在△ABC 中,∠A =36°,AB =AC ,BD 是△ABC 的角平分线.若在边AB 上截取BE =BC ,连接DE ,则图中等腰三角形共有( ) A. 2个 B. 3个 C. 4个 D. 5个7. 不等式组⎩⎪⎨⎪⎧12x +1≥-3,x -2(x -3)>0的最大整数解为( )A. 8B. 6C. 5D. 48. 在平面直角坐标系中,将直线l 1:y =-2x -2平移后,得到直线l 2:y =-2x +4,则下列平移作法正确的是( )A. 将l 1向右平移3个单位长度B. 将l 1向右平移6个单位长度C. 将l 1向上平移2个单位长度D. 将l 1向上平移4个单位长度9. 在▱ABCD 中,AB =10,BC =14,E 、F 分别为边BC 、AD 上的点.若四边形AECF 为正方形,则AE 的长为( )A. 7B. 4或10C. 5或9D. 6或810. 下列关于二次函数y =ax 2-2ax +1(a >1)的图象与x 轴交点的判断,正确的是( ) A. 没有交点B. 只有一个交点,且它位于y 轴右侧C. 有两个交点,且它们均位于y 轴左侧D. 有两个交点,且它们均位于y 轴右侧第二部分(非选择题 共90分)二、填空题(共4小题,每小题3分,计12分)11. 将实数5,π,0,-6由小到大用“<”号连起来,可表示为______________. 12. (节选)正八边形一个内角的度数为________.13. 如图,在平面直角坐标系中,过点M (-3,2)分别作x 轴、y 轴的垂线与反比例函数y =4x 的图象交于A 、B 两点,则四边形MAOB 的面积为________.第13题图 第14题图14. 如图,AB 是⊙O 的弦,AB =6,点C 是⊙O 上的一个动点,且∠ACB =45°.若点M 、N 分别是AB 、BC 的中点,则MN 长的最大值是________.三、解答题(共11小题,计78分.解答应写出过程) 15. (本题满分5分)计算:3×(-6)+|-22|+(12)-3.16. (本题满分5分)解分式方程:x -2x +3-3x -3=1.17. (本题满分5分)如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC分成面积相等的两部分.(保留作图痕迹,不写作法)第17题图18. (本题满分5分)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育教师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x).现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.请你根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在________等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.19. (本题满分7分)如图,在△ABC中,AB=AC.作AD⊥AB交BC的延长线于点D,作AE∥BD、CE⊥AC,且AE、CE相交于点E.求证:AD=CE.第19题图20. (本题满分7分)晚饭后,小聪和小军在社区广场散步.小聪问小军:“你有多高?”小军一时语塞,小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N 点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长(结果精确到0.01米).第20题图21. (本题满分7分)胡老师计划组织朋友暑假去革命圣地延安两日游.经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同.针对组团两日游的游客,甲旅行社表示,每人都按。

2013-2018年上海市中考数学试题汇编(含参考答案与解析)

2013-2018年上海市中考数学试题汇编(含参考答案与解析)

【中考数学试题汇编】2013—2018年上海市中考数学试题汇编(含参考答案与解析)1、2013年上海市中考数学试题及参考答案与解析 (2)2、2014年上海市中考数学试题及参考答案与解析 (22)3、2015年上海市中考数学试题及参考答案与解析 (40)4、2016年上海市中考数学试题及参考答案与解析 (58)5、2017年上海市中考数学试题及参考答案与解析 (75)6、2018年上海市中考数学试题及参考答案与解析 (92)2013年上海市中考数学试题及参考答案一、选择题(本大题共6小题,每小题4分,共24分) 1.下列式子中,属于最简二次根式的是( )A B C D 2.下列关于x 的一元二次方程有实数根的是( )A .x 2+1=0B .x 2+x+1=0C .x 2﹣x+1=0D .x 2﹣x ﹣1=03.如果将抛物线y=x 2+2向下平移1个单位,那么所得新抛物线的表达式是( ) A .y=(x ﹣1)2+2 B .y=(x+1)2+2 C .y=x 2+1 D .y=x 2+3 4.数据 0,1,1,3,3,4 的中位数和平均数分别是( ) A .2和2.4 B .2和2 C .1和2 D .3和25.如图,已知在△ABC 中,点D 、E 、F 分别是边AB 、AC 、BC 上的点,DE ∥BC ,EF ∥AB ,且AD :DB=3:5,那么CF :CB 等于( )A .5:8B .3:8C .3:5D .2:56.在梯形ABCD 中,AD ∥BC ,对角线AC 和BD 交于点O ,下列条件中,能判断梯形ABCD 是等腰梯形的是( )A .∠BDC=∠BCDB .∠ABC=∠DABC .∠ADB=∠DACD .∠AOB=∠BOC 二、填空题(本大题共12小题,每小题4分,共48分) 7.分解因式:a 2﹣1= .8.不等式组1023x x x-⎧⎨+⎩>>的解集是 .9.计算:23b aa b⨯= .10.计算:()23a b b -+= .11.已知函数()231f x x =+,那么f = .12.将“定理”的英文单词theorem 中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e 的概率为 .13.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为 .14.在⊙O中,已知半径长为3,弦AB长为4,那么圆心O到AB的距离为.15.如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF=CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是.(只需写一个,不添加辅助线)16.李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是升.17.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为.18.如图,在△ABC中,AB=AC,BC=8,tanC=32,如果将△ABC沿直线l翻折后,点B落在边AC的中点处,直线l与边BC交于点D,那么BD的长为.三、解答题(本大题共7小题,满分78分)19.(10111|2π-⎛⎫-+ ⎪⎝⎭.20.(10分)解方程组:22220x y x xy y -=-⎧⎨--=⎩.21.(10分)已知平面直角坐标系xOy (如图),直线12y x b =+经过第一、二、三象限,与y 轴交于点B ,点A (2,t )在这条直线上,联结AO ,△AOB 的面积等于1. (1)求b 的值; (2)如果反比例函数ky x=(k 是常量,k≠0)的图象经过点A ,求这个反比例函数的解析式.22.(10分)某地下车库出口处“两段式栏杆”如图1所示,点A 是栏杆转动的支点,点E 是栏杆两段的连接点.当车辆经过时,栏杆AEF 升起后的位置如图2所示,其示意图如图3所示,其中AB ⊥BC ,EF ∥BC ,∠EAB=143°,AB=AE=1.2米,求当车辆经过时,栏杆EF 段距离地面的高度(即直线EF 上任意一点到直线BC 的距离).(结果精确到0.1米,栏杆宽度忽略不计参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75.)23.(12分)如图,在△ABC 中,∠ACB=90°,∠B >∠A ,点D 为边AB 的中点,DE ∥BC 交AC 于点E ,CF ∥AB 交DE 的延长线于点F . (1)求证:DE=EF ;(2)连结CD ,过点D 作DC 的垂线交CF 的延长线于点G ,求证:∠B=∠A+∠DGC .24.(12分)如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0),经过点A和x轴正半轴上的点B,AO=OB=2,∠AOB=120°.(1)求这条抛物线的表达式;(2)连接OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.25.(14分)在矩形ABCD中,点P是边AD上的动点,连接BP,线段BP的垂直平分线交边BC 于点Q,垂足为点M,联结QP(如图).已知AD=13,AB=5,设AP=x,BQ=y.(1)求y关于x的函数解析式,并写出x的取值范围;(2)当以AP长为半径的⊙P和以QC长为半径的⊙Q外切时,求x的值;(3)点E在边CD上,过点E作直线QP的垂线,垂足为F,如果EF=EC=4,求x的值.参考答案与解析一、选择题(本大题共6小题,每小题4分,共24分)1.下列式子中,属于最简二次根式的是()A B C D【知识考点】最简二次根式.【思路分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.=,故A选项错误;【解答过程】解:A3B是最简二次根式,故B选项正确;C=C选项错误;D=D选项错误;故选:B.【总结归纳】本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.下列关于x的一元二次方程有实数根的是()A.x2+1=0 B.x2+x+1=0 C.x2﹣x+1=0 D.x2﹣x﹣1=0【知识考点】根的判别式.【思路分析】计算出各项中方程根的判别式的值,找出根的判别式的值大于等于0的方程即可.【解答过程】解:A、这里a=1,b=0,c=1,∵△=b2﹣4ac=﹣4<0,∴方程没有实数根,本选项不合题意;B、这里a=1,b=1,c=1,∵△=b2﹣4ac=1﹣4=﹣3<0,∴方程没有实数根,本选项不合题意;C、这里a=1,b=﹣1,c=1,∵△=b2﹣4ac=1﹣4=﹣3<0,∴方程没有实数根,本选项不合题意;D、这里a=1,b=﹣1,c=﹣1,∵△=b2﹣4ac=1+4=5>0,∴方程有两个不相等实数根,本选项符合题意;故选D.【总结归纳】此题考查了根的判别式,熟练掌握根的判别式的意义是解本题的关键.3.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=x2+1 D.y=x2+3【知识考点】二次函数图象与几何变换.【思路分析】根据向下平移,纵坐标相减,即可得到答案.【解答过程】解:∵抛物线y=x2+2向下平移1个单位,∴抛物线的解析式为y=x2+2﹣1,即y=x2+1.故选C.【总结归纳】本题考查了二次函数的图象与几何变换,向下平移|a|个单位长度纵坐标要减|a|.4.数据0,1,1,3,3,4 的中位数和平均数分别是()A.2和2.4 B.2和2 C.1和2 D.3和2【知识考点】中位数;加权平均数.【思路分析】根据中位数和平均数的定义求解即可.【解答过程】解:这组数据的中位数为:(1+3)÷2=2,平均数为:01133426+++++=.故选B.【总结归纳】本题考查了中位数及平均数的定义,属于基础题,掌握基本定义是关键.5.如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于()A.5:8 B.3:8 C.3:5 D.2:5【知识考点】平行线分线段成比例.【思路分析】先由AD:DB=3:5,求得BD:AB的比,再由DE∥BC,根据平行线分线段成比例定理,可得CE:AC=BD:AB,然后由EF∥AB,根据平行线分线段成比例定理,可得CF:CB=CE:AC,则可求得答案.【解答过程】解:∵AD:DB=3:5,∴BD:AB=5:8,∵DE∥BC,∴CE:AC=BD:AB=5:8,∵EF∥AB,∴CF:CB=CE:AC=5:8.故选A.【总结归纳】此题考查了平行线分线段成比例定理.此题比较简单,注意掌握比例线段的对应关系是解此题的关键.6.在梯形ABCD中,AD∥BC,对角线AC和BD交于点O,下列条件中,能判断梯形ABCD是等腰梯形的是()A.∠BDC=∠BCD B.∠ABC=∠DAB C.∠ADB=∠DAC D.∠AOB=∠BOC【知识考点】等腰梯形的判定.【思路分析】等腰梯形的判定定理有:①有两腰相等的梯形是等腰梯形,②对角线相等的梯形是等腰梯形,③在同一底上的两个角相等的梯形是等腰梯形,根据以上内容判断即可.【解答过程】解:A、∵∠BDC=∠BCD,∴BD=BC,根据已知AD∥BC不能推出四边形ABCD是等腰梯形,故本选项错误;B、根据∠ABC=∠DAB和AD∥BC不能推出四边形ABCD是等腰梯形,故本选项错误;C、∵∠ADB=∠DAC,AD∥BC,∴∠ADB=∠DAC=∠DBC=∠ACB,∴OA=OD,OB=OC,∴AC=BD,∵AD∥BC,∴四边形ABCD是等腰梯形,故本选项正确;D、根据∠AOB=∠BOC,只能推出AC⊥BD,再根据AD∥BC不能推出四边形ABCD是等腰梯形,故本选项错误.故选C.【总结归纳】本题考查了对等腰梯形的判定定理的应用,主要考查学生的推理能力和辨析能力,注意:等腰梯形的判定定理有:①有两腰相等的梯形是等腰梯形,②对角线相等的梯形是等腰梯形,③在同一底上的两个角相等的梯形是等腰梯形.二、填空题(本大题共12小题,每小题4分,共48分)7.分解因式:a2﹣1=.【知识考点】因式分解-运用公式法.【思路分析】符合平方差公式的特征,直接运用平方差公式分解因式.【解答过程】解:a2﹣1=(a+1)(a﹣1).【总结归纳】本题主要考查平方差公式分解因式,熟记公式是解题的关键.8.不等式组1023xx x-⎧⎨+⎩>>的解集是.【知识考点】解一元一次不等式组.【思路分析】分别求出各不等式的解集,再求出其公共解集即可.【解答过程】解:1023x x x -⎧⎨+⎩>①>②,由①得,x >1; 由②得,x >﹣3,故此不等式组的解集为:x >1. 故答案为:x >1.【总结归纳】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.计算:23b aa b⨯= .【知识考点】分式的乘除法.【思路分析】分子和分母分别相乘,再约分.【解答过程】解:原式233b ab ab==,故答案为3b .【总结归纳】本题考查了分式的乘除法,分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算. 10.计算:()23a b b -+= . 【知识考点】*平面向量.【思路分析】先去括号,然后进行向量的加减即可. 【解答过程】解:原式2232a b b a b =-+=+. 故答案为:2a b +.【总结归纳】本题考查了平面向量的知识,属于基础题,掌握向量的加减运算是关键.11.已知函数()231f x x =+,那么f = .【知识考点】函数值.【思路分析】把自变量的值代入函数关系式进行计算即可得解.【解答过程】解:()2311f==+. 故答案为:1.【总结归纳】本题考查了函数值求解,把自变量的值代入进行计算即可,比较简单.12.将“定理”的英文单词theorem 中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e 的概率为 . 【知识考点】概率公式.【思路分析】让英文单词theorem 中字母e 的个数除以字母的总个数即为所求的概率.。

2013-2018黑龙江中考数学真题解析

2013-2018黑龙江中考数学真题解析

-5,解得 k=-152,∴ 直 线 的解 析式为 y= -152x,如解
DM =EM,∵ DM 平 分 ∠ADC,∴ ∠CDM =∠ADM,又 ∵

∠CDM =∠E,∠ADC=110°,∴∠ADM =∠E= 12∠ADC=

图,将该直线向上平移至与⊙O相切,切点为 C,连接 OC, 此时直线的解析式为 y=-152x+m,与 x轴交于点 A,与 y

S扇形 ABD -S△ ABC = S扇形 ABD =30°·π36×0(°2槡2) =23π.
=6,∴a+b=100,故选 C. 9.B 【解析】如解图,延长 DM、AB交于点

E,∵∠ABC=∠C

18.0<m<123 【解析】把(12, -5)代入
y=kx得
12k=
=90°,∴AB∥CD,∴∠CDM =∠E,∠C=∠MBE,又∵M 是 BC的中点,∴ CM =BM,∴ △DCM≌ △EBM(AAS),∴

3S△AOB =3槡3,∵S⊙O =π·22 =4π,∴S阴影 =S⊙O -S△ABC =
平行四边形.故 C选项错误. 8.C 【解析】设乙工人每小时搬运
x件,则甲每小时可搬运

4π-3槡3. 17. 1 3 【解析】设每个小正方形的面积为 1,则斗争方向的面
(x+30)件,根据甲搬运 300件所用的时间与乙搬运 200件

=2,∴ OH=1,AH=槡3,∴ AB=2
第 16题解图
7.C 【解析】根据平行四边形的判定定理:(1)两组对边分别
平行的四边形是平行四边形.(2)两组对边分别相等的四 边形是平行四边形.(3)一组对边平行且相等的四边形是
槡3,∴ S△AOB

2013-2018年江苏省苏州市中考数学试题汇编(含参考答案与解析)

2013-2018年江苏省苏州市中考数学试题汇编(含参考答案与解析)

【中考数学试题汇编】2013—2018年江苏省苏州市中考数学试题汇编(含参考答案与解析)1、2013年江苏省苏州市中考数学试题及参考答案与解析 (2)2、2014年江苏省苏州市中考数学试题及参考答案与解析 (29)3、2015年江苏省苏州市中考数学试题及参考答案与解析 (55)4、2016年江苏省苏州市中考数学试题及参考答案与解析 (78)5、2017年江苏省苏州市中考数学试题及参考答案与解析 (106)6、2018年江苏省苏州市中考数学试题及参考答案与解析 (131)2013年江苏省苏州市中考数学试题及参考答案一、选择题(本大题共10小题,每小题3分,满分30分)1.|﹣2|等于()A.2 B.﹣2 C.12D.12-2.计算﹣2x2+3x2的结果为()A.﹣5x2B.5x2C.﹣x2D.x23在实数范围内有意义,则x的取值范围是()A.x>1 B.x<1 C.x≥1 D.x≤14.一组数据:0,1,2,3,3,5,5,10的中位数是()A.2.5 B.3 C.3.5 D.55.世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.7×10n(n是正整数),则n的值为()A.5 B.6 C.7 D.86.已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣3x+m=0的两实数根是()A.x1=1,x2=﹣1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=37.如图,AB是半圆的直径,点D是AC的中点,∠ABC=50°,则∠DAB等于()A.55°B.60°C.65°D.70°8.如图,菱形OABC的顶点C的坐标为(3,4).顶点A在x轴的正半轴上,反比例函数kyx=(x>0)的图象经过顶点B,则k的值为()A.12 B.20 C.24 D.329.已知13xx-=,则213422x x-+的值为()A.1 B.32C.52D.7210.如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上.顶点B的坐标为(3,点C的坐标为(12,0),点P为斜边OB上的一个动点,则PA+PC的最小值为()A B C D.二、填空题(本大题共8个小题,每小题3分,共24分)11.计算:a4÷a2=.12.分解因式:a2+2a+1=.13.方程15121x x=-+的解为.14.任意抛掷一枚质地均匀的正方体骰子1次,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数大于4的概率为.15.按照如图所示的操作步骤,若输入x的值为2,则输出的值为.16.如图,AB切⊙O于点B,OA=2,∠OAB=30°,弦BC∥OA,劣弧»BC的弧长为.(结果保留π)17.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x,y轴的正半轴上.点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P.则点P的坐标为.18.如图,在矩形ABCD 中,点E 是边CD 的中点,将△ADE 沿AE 折叠后得到△AFE ,且点F 在矩形ABCD 内部.将AF 延长交边BC 于点G .若1CG GB k =,则ADAB= 用含k 的代数式表示).三、解答题(本大题共11小题,共76分) 19.(5分)计算:())311-++20.(5分)解不等式组:()21213x x x -⎧⎪⎨-+⎪⎩≥<.21.(5分)先化简,再求值:23111x x x x -⎛⎫÷+- ⎪--⎝⎭,其中2x =. 22.(6分)苏州某旅行社组织甲乙两个旅游团分别到西安、北京旅行,已知这两旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人.问甲、乙两个旅游团个有多少人?23.(6分)某企业500名员工参加安全生产知识测试,成绩记为A ,B ,C ,D ,E 共5个等级,为了解本次测试的成绩(等级)情况,现从中随机抽取部分员工的成绩(等级),统计整理并制作了如下的统计图:(1)求这次抽样调查的样本容量,并补全图①;(2)如果测试成绩(等级)为A ,B ,C 级的定位优秀,请估计该企业参加本次安全生产知识测试成绩(等级)达到优秀的员工的总人数.24.(7分)如图,在方格纸中,△ABC的三个顶点及D,E,F,G,H五个点分别位于小正方形的顶点上.(1)现以D,E,F,G,H中的三个点为顶点画三角形,在所画的三角形中与△ABC不全等但面积相等的三角形是(只需要填一个三角形)(2)先从D,E两个点中任意取一个点,再从F,G,H三个点中任意取两个不同的点,以所取得这三个点为顶点画三角形,求所画三角形与△ABC面积相等的概率(用画树状图或列表格求解).25.(7分)如图,在一笔直的海岸线l上有AB两个观测站,A在B的正东方向,AB=2(单位:km).有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(1)求点P到海岸线l的距离;(2)小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.(上述两小题的结果都保留根号)26.(8分)如图,点P是菱形ABCD对角线AC上的一点,连接DP并延长DP交边AB于点E,连接BP并延长交边AD于点F,交CD的延长线于点G.(1)求证:△APB≌△APD;(2)已知DF:FA=1:2,设线段DP的长为x,线段PF的长为y.①求y与x的函数关系式;②当x=6时,求线段FG的长.27.(8分)如图,在Rt△ABC中,∠ACB=90°,点D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长DE交BC的延长线于点F.(1)求证:BD=BF;(2)若CF=1,cosB=35,求⊙O的半径.28.(9分)如图,点O为矩形ABCD的对称中心,AB=10cm,BC=12cm,点E、F、G分别从A、B、C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s,当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是△EB′F.设点E、F、G运动的时间为t (单位:s).(1)当t=s时,四边形EBFB′为正方形;(2)若以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;(3)是否存在实数t,使得点B′与点O重合?若存在,求出t的值;若不存在,请说明理由.29.(10分)如图,已知抛物线y=12x2+bx+c(b,c是常数,且c<0)与x轴分别交于点A、B(点A位于点B的左侧),与y轴的负半轴交于点C,点A的坐标为(﹣1,0).(1)b=,点B的横坐标为(上述结果均用含c的代数式表示);(2)连接BC,过点A作直线AE∥BC,与抛物线y=12x2+bx+c交于点E,点D是x轴上的一点,其坐标为(2,0).当C,D,E三点在同一直线上时,求抛物线的解析式;(3)在(2)条件下,点P是x轴下方的抛物线上的一个动点,连接PB,PC,设所得△PBC的面积为S.①求S的取值范围;②若△PBC的面积S为整数,则这样的△PBC共有个.参考答案与解析一、选择题(本大题共10小题,每小题3分,满分30分)1.|﹣2|等于()A.2 B.﹣2 C.12D.12【知识考点】绝对值.【思路分析】根据绝对值的性质可直接求出答案.【解答过程】解:根据绝对值的性质可知:|﹣2|=2.故选A.【总结归纳】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.计算﹣2x2+3x2的结果为()A.﹣5x2B.5x2C.﹣x2D.x2【知识考点】合并同类项.【思路分析】根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变即可求解.【解答过程】解:原式=(﹣2+3)x2=x2,故选D.【总结归纳】本题主要考查合并同类项得法则.即系数相加作为系数,字母和字母的指数不变.3在实数范围内有意义,则x的取值范围是()A.x>1 B.x<1 C.x≥1 D.x≤1【知识考点】二次根式有意义的条件.【思路分析】根据二次根式有意义的条件可得x﹣1≥0,再解不等式即可.【解答过程】解:由题意得:x﹣1≥0,解得:x≥1,故选:C.【总结归纳】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.4.一组数据:0,1,2,3,3,5,5,10的中位数是()A.2.5 B.3 C.3.5 D.5【知识考点】中位数.【思路分析】根据中位数的定义先把这组数据从小到大排列,再求出最中间两个数的平均数即可.【解答过程】解:将这组数据从小到大排列为:0,1,2,3,3,5,5,10,最中间两个数的平均数是:(3+3)÷2=3,则中位数是3;故选B.【总结归纳】此题考查了中位数,掌握中位数的概念是解题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).5.世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.7×10n(n是正整数),则n的值为()A.5 B.6 C.7 D.8【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:将6700000用科学记数法表示为6.7×106,故n=6.故选B.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣3x+m=0的两实数根是()A.x1=1,x2=﹣1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=3【知识考点】抛物线与x轴的交点.【思路分析】关于x的一元二次方程x2﹣3x+m=0的两实数根就是二次函数y=x2﹣3x+m(m为常数)的图象与x轴的两个交点的横坐标.【解答过程】解:∵二次函数的解析式是y=x2﹣3x+m(m为常数),∴该抛物线的对称轴是:x=.又∵二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),∴根据抛物线的对称性质知,该抛物线与x轴的另一个交点的坐标是(2,0),∴关于x的一元二次方程x2﹣3x+m=0的两实数根分别是:x1=1,x2=2.故选B.【总结归纳】本题考查了抛物线与x轴的交点.解答该题时,也可以利用代入法求得m的值,然后来求关于x的一元二次方程x2﹣3x+m=0的两实数根.7.如图,AB是半圆的直径,点D是AC的中点,∠ABC=50°,则∠DAB等于()A.55°B.60°C.65°D.70°【知识考点】圆周角定理;圆心角、弧、弦的关系.【思路分析】连结BD,由于点D是AC弧的中点,即弧CD=弧AD,根据圆周角定理得∠ABD=∠CBD,则∠ABD=25°,再根据直径所对的圆周角为直角得到∠ADB=90°,然后利用三角形内角和定理可计算出∠DAB的度数.【解答过程】解:连结BD,如图,∵点D是AC弧的中点,即弧CD=弧AD,∴∠ABD=∠CBD,而∠ABC=50°,∴∠ABD=×50°=25°,∵AB是半圆的直径,∴∠ADB=90°,∴∠DAB=90°﹣25°=65°.故选C.【总结归纳】本题考查了圆周角定理及其推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角为直角.8.如图,菱形OABC的顶点C的坐标为(3,4).顶点A在x轴的正半轴上,反比例函数kyx(x>0)的图象经过顶点B,则k的值为()A.12 B.20 C.24 D.32【知识考点】反比例函数综合题.【思路分析】过C点作CD⊥x轴,垂足为D,根据点C坐标求出OD、CD、BC的值,进而求出B 点的坐标,即可求出k的值.【解答过程】解:过C点作CD⊥x轴,垂足为D,∵点C的坐标为(3,4),∴OD=3,CD=4,∴OC===5,∴OC=BC=5,∴点B坐标为(8,4),∵反比例函数y=(x>0)的图象经过顶点B,∴k=32,故选D.【总结归纳】本题主要考查反比例函数的综合题的知识点,解答本题的关键是求出点B的坐标,此题难度不大,是一道不错的习题.9.已知13xx-=,则213422x x-+的值为()A.1 B.32C.52D.72【知识考点】代数式求值;分式的混合运算.【思路分析】所求式子后两项提取公因式变形后,将已知等式去分母变形后代入计算即可求出值.【解答过程】解:∵x﹣=3,即x2﹣3x=1,∴原式=4﹣(x2﹣3x)=4﹣=.故选D.【总结归纳】此题考查了代数式求值,将已知与所求式子进行适当的变形是解本题的关键.10.如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上.顶点B的坐标为(3,点C的坐标为(12,0),点P为斜边OB上的一个动点,则PA+PC的最小值为()A B C D.【知识考点】轴对称-最短路线问题;坐标与图形性质.【思路分析】作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N,则此时PA+PC的值最小,求出AM,求出AD,求出DN、CN,根据勾股定理求出CD,即可得出答案.【解答过程】解:作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N,则此时PA+PC的值最小,∵DP=PA,∴PA+PC=PD+PC=CD,∵B(3,),∴AB=,OA=3,∠B=60°,由勾股定理得:OB=2,由三角形面积公式得:×OA×AB=×OB×AM,∴AM=,∴AD=2×=3,∵∠AMB=90°,∠B=60°,∴∠BAM=30°,∵∠BAO=90°,∴∠OAM=60°,∵DN⊥OA,∴∠NDA=30°,∴AN=AD=,由勾股定理得:DN=,∵C(,0),∴CN=3﹣﹣=1,在Rt△DNC中,由勾股定理得:DC==,即PA+PC的最小值是,故选B.【总结归纳】本题考查了三角形的内角和定理,轴对称﹣最短路线问题,勾股定理,含30度角的直角三角形性质的应用,关键是求出P点的位置,题目比较好,难度适中.二、填空题(本大题共8个小题,每小题3分,共24分)11.计算:a4÷a2=.【知识考点】同底数幂的除法.【思路分析】根据同底数幂的除法法则:底数不变,指数相减,进行运算即可.【解答过程】解:原式=a4﹣2=a2.故答案为:a2.【总结归纳】此题考查了同底数幂的除法运算,属于基础题,解答本题的关键是掌握同底数幂的除法法则.12.分解因式:a2+2a+1=.【知识考点】因式分解-运用公式法.【思路分析】符合完全平方公式的结构特点,利用完全平方公式分解因式即可.【解答过程】解:a2+2a+1=(a+1)2.【总结归纳】本题主要考查利用完全平方公式分解因式,熟记公式结构是解题的关键.13.方程15121x x=-+的解为.【知识考点】解分式方程.【思路分析】方程两边都乘以最简公分母(x﹣1)(2x+1)把分式方程化为整式方程,求解后进行检验.【解答过程】解:方程两边都乘以(x﹣1)(2x+1)得,2x+1=5(x﹣1),解得x=2,检验:当x=2时,(x﹣1)(2x+1)=(2﹣1)×(2×2+1)=5≠0,所以,原方程的解是x=2.故答案为:x=2.【总结归纳】本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.14.任意抛掷一枚质地均匀的正方体骰子1次,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数大于4的概率为.【知识考点】概率公式.【思路分析】根据掷得面朝上的点数大于4情况有2种,进而求出概率即可.【解答过程】解:掷一枚均匀的骰子时,有6种情况,出现点数大于4的情况有2种,掷得面朝上的点数大于4的概率是:=.故答案为:.【总结归纳】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.按照如图所示的操作步骤,若输入x的值为2,则输出的值为.【知识考点】代数式求值.【思路分析】根据运算程序写出算式,然后代入数据进行计算即可得解.【解答过程】解:由图可知,运算程序为(x+3)2﹣5,当x=2时,(x+3)2﹣5=(2+3)2﹣5=25﹣5=20.故答案为:20.【总结归纳】本题考查了代数式求值,是基础题,根据图表准确写出运算程序是解题的关键.16.如图,AB切⊙O于点B,OA=2,∠OAB=30°,弦BC∥OA,劣弧»BC的弧长为.(结果保留π)【知识考点】切线的性质;含30度角的直角三角形;弧长的计算.【思路分析】连接OB,OC,由AB为圆的切线,利用切线的性质得到三角形AOB为直角三角形,根据30度所对的直角边等于斜边的一半,由OA求出OB的长,且∠AOB为60度,再由BC与OA平行,利用两直线平行内错角相等得到∠OBC为60度,又OB=OC,得到三角形BOC为等边三角形,确定出∠BOC为60度,利用弧长公式即可求出劣弧BC的长.【解答过程】解:连接OB,OC,∵AB为圆O的切线,∴∠ABO=90°,在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°,∵BC∥OA,∴∠OBC=∠AOB=60°,又OB=OC,∴△BOC为等边三角形,∴∠BOC=60°,则劣弧长为=π.故答案为:π.【总结归纳】此题考查了切线的性质,含30度直角三角形的性质,以及弧长公式,熟练掌握切线的性质是解本题的关键.17.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x,y轴的正半轴上.点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P.则点P的坐标为.【知识考点】相似三角形的判定与性质;坐标与图形性质;正方形的性质.【思路分析】根据正方形的对角线等于边长的倍求出OB,再求出BQ,然后求出△BPQ和△OCQ 相似,根据相似三角形对应边成比例列式求出BP的长,再求出AP,即可得到点P的坐标.【解答过程】解:∵四边形OABC是边长为2的正方形,∴OA=OC=2,OB=2,∵QO=OC,∴BQ=OB﹣OQ=2﹣2,∵正方形OABC的边AB∥OC,∴△BPQ∽△OCQ,∴=,即=,解得BP=2﹣2,∴AP=AB﹣BP=2﹣(2﹣2)=4﹣2,∴点P的坐标为(2,4﹣2).故答案为:(2,4﹣2).【总结归纳】本题考查了相似三角形的判定与性质,正方形的对角线等于边长的倍的性质,以及坐标与图形的性质,比较简单,利用相似三角形的对应边成比例求出BP的长是解题的关键.18.如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若1CGGB k,则ADAB=用含k的代数式表示).【知识考点】矩形的性质;翻折变换(折叠问题).【思路分析】根据中点定义可得DE=CE,再根据翻折的性质可得DE=EF,AF=AD,∠AFE=∠D=90°,从而得到CE=EF,连接EG,利用“HL”证明Rt△ECG和Rt△EFG全等,根据全等三角形对应边相等可得CG=FG,设CG=a,表示出GB,然后求出BC,再根据矩形的对边相等可得AD=BC,从而求出AF,再求出AG,然后利用勾股定理列式求出AB,再求比值即可.【解答过程】解:∵点E是边CD的中点,∴DE=CE,∵将△ADE沿AE折叠后得到△AFE,∴DE=EF,AF=AD,∠AFE=∠D=90°,∴CE=EF,连接EG,在Rt △ECG 和Rt △EFG 中,,∴Rt △ECG ≌Rt △EFG (HL ), ∴CG=FG , 设CG=a ,∵=,∴GB=ka ,∴BC=CG+BG=a+ka=a (k+1), 在矩形ABCD 中,AD=BC=a (k+1), ∴AF=a (k+1),AG=AF+FG=a (k+1)+a=a (k+2), 在Rt △ABG 中,AB===2a,∴==.故答案为:.【总结归纳】本题考查了矩形的性质,全等三角形的判定与性质,勾股定理的应用,以及翻折变换的性质,熟记性质并作辅助线构造出全等三角形是解题的关键. 三、解答题(本大题共11小题,共76分) 19.(5分)计算:())311-++【知识考点】实数的运算;零指数幂.【思路分析】按照实数的运算法则依次计算,注意:(﹣1)3=﹣1,(+1)0=1,=3.【解答过程】解:(﹣1)3+(+1)0+=﹣1+1+3 =3.【总结归纳】此题主要考查了实数运算,本题需注意的知识点是:负数的立方是负数,任何不等于0的数的0次幂是1. 20.(5分)解不等式组:()21213x x x -⎧⎪⎨-+⎪⎩≥<.【知识考点】解一元一次不等式组.【思路分析】首先分别解出两个不等式的解集,再根据:大小小大取中间确定不等式组的解集即可. 【解答过程】解:,由①得:x≥3, 由②得:x <5,故不等式组的解集为:3≤x <5.【总结归纳】此题主要考查了解一元一次不等式组,关键是正确解出两个不等式,掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.(5分)先化简,再求值:23111x x x x -⎛⎫÷+- ⎪--⎝⎭,其中2x =. 【知识考点】分式的化简求值.【思路分析】将原式括号中各项通分并利用同分母分式的减法法则计算,整理后再利用平方差公式分解因式,然后利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,即可得到原式的值. 【解答过程】解:÷(x+1﹣)=÷[﹣] =÷=×=当x=﹣2时,原式==.【总结归纳】此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找出公因式,约分时,分式的分子分母出现多项式,应将多项式分解因式后再约分.22.(6分)苏州某旅行社组织甲乙两个旅游团分别到西安、北京旅行,已知这两旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人.问甲、乙两个旅游团个有多少人? 【知识考点】二元一次方程组的应用.【思路分析】设甲、乙两个旅游团个有x 人、y 人,根据题意可得等量关系:甲团+乙团=55人;甲团人数=乙团人数×2﹣5,根据等量关系列出方程组,再解即可. 【解答过程】解:设甲、乙两个旅游团个有x 人、y 人,由题意得:,解得,答:甲、乙两个旅游团个有35人、20人.【总结归纳】此题主要考查了二元一次方程组的应用,关键是正确理解题意,抓住题目中的关键语句,找出等量关系,列出方程组.23.(6分)某企业500名员工参加安全生产知识测试,成绩记为A,B,C,D,E共5个等级,为了解本次测试的成绩(等级)情况,现从中随机抽取部分员工的成绩(等级),统计整理并制作了如下的统计图:(1)求这次抽样调查的样本容量,并补全图①;(2)如果测试成绩(等级)为A,B,C级的定位优秀,请估计该企业参加本次安全生产知识测试成绩(等级)达到优秀的员工的总人数.【知识考点】条形统计图;用样本估计总体;扇形统计图.【思路分析】(1)抽查人数的样本容量可由A级所占的比例40%,根据总数=某级人数÷比例来计算;可由总数减去A、C、D、E的人数求得B级的人数,再补全条形统计图;(2)用样本估计总体,用总人数×达到优秀的员工的百分比,就是要求的结果.【解答过程】解:(1)依题意有:20÷40%=50(人),则这次抽样调查的样本容量为50.50﹣20﹣5﹣8﹣5=12(人).补全图①为:;(2)依题意有500×=370(人).答:估计该企业参加本次安全生产知识测试成绩(等级)达到优秀的员工的总人数为370人.【总结归纳】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.会画条形统计图.也考查了用样本估计总体.24.(7分)如图,在方格纸中,△ABC的三个顶点及D,E,F,G,H五个点分别位于小正方形的顶点上.(1)现以D,E,F,G,H中的三个点为顶点画三角形,在所画的三角形中与△ABC不全等但面积相等的三角形是(只需要填一个三角形)(2)先从D,E两个点中任意取一个点,再从F,G,H三个点中任意取两个不同的点,以所取得这三个点为顶点画三角形,求所画三角形与△ABC面积相等的概率(用画树状图或列表格求解).【知识考点】作图—应用与设计作图;列表法与树状图法.【思路分析】(1)根据格点之间的距离得出△ABC的面积进而得出三角形中与△ABC不全等但面积相等的三角形;(2)利用树状图得出所有的结果,进而根据概率公式求出即可.【解答过程】解:(1)∵△ABC的面积为:×3×4=6,只有△DFG或△DHF的面积也为6且不与△ABC全等,∴与△ABC不全等但面积相等的三角形是:△DFG或△DHF;(2)画树状图得出:由树状图可知共有6种可能的结果,其中与△ABC面积相等的有3种,即△DHF,△DGF,△EGF,故所画三角形与△ABC面积相等的概率P==,答:所画三角形与△ABC面积相等的概率为.故答案为:△DFG或△DHF.【总结归纳】此题主要考查了三角形面积求法以及树状图法求概率,根据已知得出三角形面积是解题关键.25.(7分)如图,在一笔直的海岸线l上有AB两个观测站,A在B的正东方向,AB=2(单位:km).有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(1)求点P到海岸线l的距离;(2)小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.(上述两小题的结果都保留根号)【知识考点】解直角三角形的应用-方向角问题.【思路分析】(1)过点P作PD⊥AB于点D,设PD=xkm,先解Rt△PBD,用含x的代数式表示BD,再解Rt△PAD,用含x的代数式表示AD,然后根据BD+AD=AB,列出关于x的方程,解方程即可;(2)过点B作BF⊥AC于点F,先解Rt△ABF,得出BF=AB=1km,再解Rt△BCF,得出BC= BF=km.【解答过程】解:(1)如图,过点P作PD⊥AB于点D.设PD=xkm.在Rt△PBD中,∠BDP=90°,∠PBD=90°﹣45°=45°,∴BD=PD=xkm.在Rt△PAD中,∠ADP=90°,∠PAD=90°﹣60°=30°,∴AD=PD=xkm.∵BD+AD=AB,∴x+x=2,x=﹣1,∴点P到海岸线l的距离为(﹣1)km;(2)如图,过点B作BF⊥AC于点F.在Rt△ABF中,∠AFB=90°,∠BAF=30°,∴BF=AB=1km.在△ABC中,∠C=180°﹣∠BAC﹣∠ABC=45°.在Rt△BCF中,∠BFC=90°,∠C=45°,∴BC=BF=km,∴点C与点B之间的距离为km.【总结归纳】本题考查了解直角三角形的应用﹣方向角问题,难度适中.通过作辅助线,构造直角三角形是解题的关键.26.(8分)如图,点P是菱形ABCD对角线AC上的一点,连接DP并延长DP交边AB于点E,连接BP并延长交边AD于点F,交CD的延长线于点G.(1)求证:△APB≌△APD;(2)已知DF:FA=1:2,设线段DP的长为x,线段PF的长为y.①求y与x的函数关系式;②当x=6时,求线段FG的长.【知识考点】相似三角形的判定与性质;全等三角形的判定与性质;菱形的性质.【思路分析】(1)根据菱形的性质得出∠DAP=∠PAB,AD=AB,再利用全等三角形的判定得出△APB≌△APD;(2)①首先证明△DFP≌△BEP,进而得出=,=,进而得出=,即=,即可得出答案;②根据①中所求得出PF=PE=4,DP=PB=6,进而得出==,求出即可.【解答过程】(1)证明:∵点P是菱形ABCD对角线AC上的一点,∴∠DAP=∠PAB,AD=AB,∵在△APB和△APD中,∴△APB≌△APD(SAS);(2)解:①∵△APB≌△APD,∴DP=PB,∠ADP=∠ABP,∵在△DFP和△BEP中,,∴△DFP≌△BEP(ASA),∴PF=PE,DF=BE,∵GD∥AB,∴=,∵DF:FA=1:2,∴=,=,∴=,∵=,即=,∴y=x;②当x=6时,y=×6=4,∴PF=PE=4,DP=PB=6,∵==,∴=,解得:FG=5,故线段FG的长为5.【总结归纳】此题主要考查了相似三角形的判定与性质以及全等三角形的判定与性质等知识,根据平行关系得出=,=是解题关键.27.(8分)如图,在Rt△ABC中,∠ACB=90°,点D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长DE交BC的延长线于点F.(1)求证:BD=BF;(2)若CF=1,cosB=35,求⊙O的半径.【知识考点】切线的性质;圆周角定理.【思路分析】(1)连接OE,由AC为圆O的切线,利用切线的性质得到OE垂直于AC,再由BC 垂直于AC,得到OE与BC平行,根据O为DB的中点,得到E为DF的中点,即OE为三角形DBF 的中位线,利用中位线定理得到OE为BF的一半,再由OE为DB的一半,等量代换即可得证;(2)在直角三角形ABC中,由cosB的值,设BC=3x,得到AB=5x,由BC+CF表示出BF,即为BD的长,再由OE为BF的一半,表示出OE,由AB﹣OB表示出AO,在直角三角形AOE中,利用两直线平行同位角相等得到∠AOE=∠B,得到cos∠AOE=cosB,根据cosB的值,利用锐角三角函数定义列出关于x的方程,求出方程的解得到x的值,即可求出圆的半径长.【解答过程】(1)证明:连接OE,∵AC与圆O相切,∴OE⊥AC,∵BC⊥AC,∴OE∥BC,又∵O为DB的中点,∴E为DF的中点,即OE为△DBF的中位线,∴OE=BF,又∵OE=BD,则BF=BD;(2)解:设BC=3x,根据题意得:AB=5x,又∵CF=1,∴BF=3x+1,由(1)得:BD=BF,∴BD=3x+1,∴OE=OB=,AO=AB﹣OB=5x﹣=,∵OE∥BF,∴∠AOE=∠B,∴cos∠AOE=cosB,即=,即=,解得:x=,则圆O的半径为=.【总结归纳】此题考查了切线的性质,锐角三角函数定义,以及圆周角定理,熟练掌握切线的性质是解本题的关键.28.(9分)如图,点O为矩形ABCD的对称中心,AB=10cm,BC=12cm,点E、F、G分别从A、B、C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s,当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是△EB′F.设点E、F、G运动的时间为t (单位:s).(1)当t=s时,四边形EBFB′为正方形;(2)若以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;(3)是否存在实数t,使得点B′与点O重合?若存在,求出t的值;若不存在,请说明理由.【知识考点】相似形综合题.【思路分析】(1)利用正方形的性质,得到BE=BF,列一元一次方程求解即可;(2)△EBF与△FCG相似,分两种情况,需要分类讨论,逐一分析计算;(3)本问为存在型问题.假设存在,则可以分别求出在不同条件下的t值,它们互相矛盾,所以不存在.【解答过程】解:(1)若四边形EBFB′为正方形,则BE=BF,即:10﹣t=3t,解得t=2.5;(2)分两种情况,讨论如下:①若△EBF∽△FCG,。

2013—2018年广东省数学中考解答题23题专题训练

2013—2018年广东省数学中考解答题23题专题训练

2013—2018年广东省数学中考解答题23题专题训练五、解答题(三)(本大题3小题,每小题9分,共27分)(2013中考)23. 已知二次函数1222-+-=m mx x y .(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如题23图,当2=m 时,该抛物线与y 轴交于点C,顶点为D,求C 、D 两点的坐标;(3)在(2)的条件下,x 轴上是否存在一点P,使得PC+PD 最短?若P 点存在,求出P 点的坐标;若P 点不存在,请说明理由.(2014中考)23、如题23图,已知A 14,2⎛⎫- ⎪⎝⎭,B (-1,2)是一次函数y kx b =+与反比例函数m y x= (0,0m m ≠<)图象的两个交点,AC ⊥x 轴于C ,BD ⊥y 轴于D 。

(1) 根据图象直接回答:在第二象限内,当x 取何值时,一次函数大于反比例函数的值?(2) 求一次函数解析式及m 的值;(3) P 是线段AB 上的一点,连接PC ,PD ,若△PCA 和△PDB 面积相等,求点P 坐标。

题23图(2015中考)23.如题23图,反比例函数kyx=(0k≠,0x>)的图象与直线3y x=相交于点C,过直线上点A(1,3)作AB⊥x轴于点B,交反比例函数图象于点D,且AB=3B D.(1)求k的值;(2)求点C的坐标;(3)在y轴上确实一点M,使点M到C、D两点距离之和d=MC+MD,求点M的坐标.(2018中考)23.如图,已知顶点为C (0,-3)的抛物线)0(2≠+=a b ax y 与x 轴交于A 、B 两点,直线m x y +=过顶点C 和点B .(1)求m 的值;(2)求函数)0(2≠+=a b ax y 的解析式;(3)抛物线上是否存在点M ,使得∠MCB =15o ?若存在,求出点M 的坐标;若不存在,请说明理由.。

2018-中考物理计算题专题

2018-中考物理计算题专题

初中物理计算题分类复习一、串、并联电路计算:1、在图1所示的电路中,当S1闭合,S2、S3断开时,电压表的示数为6 V,当S1、S3断开, S2闭合时, 电压表的示数为3 V.求:(1)电源电压是多少? (2)当S1、S3闭合, S2断开时, 电压表的示数为多少?图12、图2所示,用电压表分别测量L1两端的电压U1、L2两端的电压U2以及L1、L2串联的总电压U,请根据表盘读数回答下列问题:⑴L1两端的电压U1是多大?⑵L2两端的电压U2是多大?⑶L1、L2串联的总电压U是多大?⑷电源电压是多大?图2二、欧姆定律计算:3、如图3所示,R1=10 ,R2=15 ,电流表示数是1A,求:(1)R1中电流I1和R2中I2各是多大?(2)电压表的示数是多大?图34、如图4所示电路中,当电源电压为4 V时,电压表的示数为1 V;当电源电压增至12 V时,电流表的示数为0.5 A。

求电阻R1、R2的阻值。

三、电功、电功率、焦耳定律计算:5、如图5所示电路,电源电压为4.5V,R1阻值为5Ω,滑动变阻器R2最大阻值为20Ω,电流表量程为0~0.6A,电压表量程为0~3V。

求:(1)滑动变阻器允许接入电路的阻值围;(2)正常工作时整个电路消耗的最大功率。

图56、某电热水瓶的铭牌如下表所示。

若热水瓶装满水,在额定电压下工作7、(外界大气压强为1个标准大气压)。

求: (1)保温时通过电热水瓶的电流是多少?(2)加热时电热水瓶的电阻多大?(3)若瓶20℃的水加热10min 正好烧开,则加热时电热水瓶的热效率是多少?(4)请你尝试画出电热水瓶的部电路图。

7、某校同学在研究用电器的电功率时连接了如图6所示的电路,电路中电员两端电压保持不变。

当闭合开关S 1滑动变阻器的滑片P 移动到a 时,闭合开关S 2、S 3与断开S 2、S 3,电流表的变化围为0.4A ~0.1A ,电压表的变化围为6V ~4V ;当断开开关S 2和S 3,滑动变阻器的滑片P 移动到距a 点1/2时小灯泡L 正常发光。

2013年历届数学中考常考题与易错题整理(带解析)

2013年历届数学中考常考题与易错题整理(带解析)

2013年历届数学中考常考题与易错题整理考试范围:xxx ;考试时间:100分钟;命题人:xxx注意事项:1. 答题前填写好自己的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上分卷I分卷I 注释一、单选题(注释)1、 解集在数轴上表示为如图所示的不等式组是( )A .B .C .D .2、下列各式能用完全平方公式进行分解因式的是( )A .x 2+1B .x 2+2x ﹣1C .x 2+x+1D .x 2+4x+43、(2011?衢州)如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA=2,则PQ 的最小值为( )A .1B .2C .3D .44、如图所示,AB =AC ,要说明△ADC ≌△AEB ,需添加的条件不能是( )A .∠B =∠C B .AD =AEC .DC =BED .∠ADC =∠AEB5、(11·佛山)下列说法正确的是( )6、函数与的图象在同一平面直角坐标系内的交点的个数是( )第3页共26页第4页共26页A.1个B.2个C.3个D.07、若,则下列不等式成立的是()A .B.C .D.8、为了美化环境,某市2008年用于绿化的投资为20万元,2010年为25万元,求这两年绿化投资的年平均增长率.设这两年绿化投资的年平均增长率为,根据题意所列方程为()A.B.C.D.9、对于一组数据:75,73,75,71,76,下列说法正确的是()A.这组数据的平均数是75 B.这组数据的方差是3.2C.这组数据的中位数是74 D.这组数据的众数是7610、不等式组的解集在数轴上表示为11、函数中,自变量x的取值范围是A.x>1 B.x≥1C.x>-2 D.x≥―212、清明节前,某班分成甲、乙两组去距离学校4km的烈士陵园扫墓.甲组步行,乙组骑自行车,他们同时从学校出发,结果乙组比甲组早20min到达目的地.已知骑自行车的速度是步行速度的2倍,设步行的速度为x km/h,则x满足的方程为A.-=20 B.-=20 C.-=D.-=13、如图所示,一个正方形水池的四周恰好被4个正n边形地板砖铺满,则n等于( )A.4 B.6 C.8 D.1014、如图,已知∠AOB是直角,∠AOC是锐角,ON平分∠AOC,OM平分∠BOC,则∠MON是()A .45ºB .45º+∠AOCC .60°-∠AOCD .不能计算15、如图9四边形ABCD 是菱形,且,是等边三角形,M 为对角线BD(不含B 点)上任意一点,将BM 绕点B 逆时针旋转得到BN ,连接EN 、AM 、CM ,则下列五个结论中正确的是( )①若菱形ABCD 的边长为1,则的最小值1;②; ③;④连接AN ,则;⑤当的最小值为时,菱形ABCD 的边长为2.A .①②③B .②④⑤C .①②⑤D .②③⑤16、经过某十字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为( ) A .B .C .D .17、(2011?舟山)方程x (x ﹣1)=0的解是( )A .x="0"B .x=1C .x=0或x="1"D .x=0或x=﹣118、一个多边形的内角和与它的一个外角和为570°,则这个多边形的边数为( ) A .5 B .6 C .7 D .819、如图,在平面直角坐标系中,长、宽分别为2和1的矩形ABCD 的边上有一动点 P ,沿A→B→C→D→A 运动一周,则点P 的纵坐标y 与P 所走过的路程S 之间的函数关系用图象表示大致是【 】20、如图,已知□ABCD 的对角线BD =" 4" cm ,将□ABCD 绕其对称中心O 旋转180°,则点D 所转过的路径长为( ) 更多功能介绍/zt/第7页共26页第8页共26页A.4π cm B.3π cm C.2π cm D.π cm21、(2011?衢州)如图,下列几何体的俯视图是右面所示图形的是()A.B.C.D.22、(2011?北京)如图在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=2,D 是AB边上的一个动点(不与点A、B重合),过点D作CD 的垂线交射线CA于点E.设AD=x,CE=y,则下列图象中,能表示y与x的函数关系图象大致是()23、下面四个图形中,∠1=∠2一定成立的是().污染指数()100<≤150时空气质量为轻度污染,若1年按365天计算,请你估计该城市在一年中空气质量达到良以上(含良)的天数为A.255 B.256 C.292 D.29325、某校九年级(2)班50名同学为玉树灾区献爱心捐款情况如下表:捐款(元)10 15 30 40 50 60人数 3 6 11 11 13 6则该班捐款金额的众数和中位数分别是A. 13,11B. 50,35C. 50,40D. 40,50第11页共26页第12页共26页※题※※…………线…………○…分卷II分卷II注释二、填空题(注释)26、若x=2是关于x 的方程2x+3m ﹣1=0的解,则m 的值等于__________27、如图,△ABC 绕点A 顺时针旋转80°得到△AEF ,若∠B=100°,∠F=50°,则∠α的度数是 .28、如图,正方形的边长为cm ,正方形的边长为cm .如果正方形绕点旋转,那么、两点之间的最小距离是____________.29、30、(2004?无锡)点(1,2)关于原点的对称点的坐标为 . 三、计算题(注释)31、计算:32、(2011?金华)计算:.33、计算或化简:(1)计算.34、如图,已知AC 与BD 相交于点E ,DE =CE ,AE =BE 求证:∠A =∠B35、如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标为(4,2),过点D(0,3)和E(6,0)的直线分别与AB,BC交于点M,N。

2013-2018年广东省中考数学试题汇编(含参考答案与解析)

2013-2018年广东省中考数学试题汇编(含参考答案与解析)

【中考数学试题汇编】2013—2018年广东省中考数学试题汇编(含参考答案与解析)1、2013年广东省中考数学试题及参考答案与解析 (2)2、2014年广东省中考数学试题及参考答案与解析 (19)3、2015年广东省中考数学试题及参考答案与解析 (37)4、2016年广东省中考数学试题及参考答案与解析 (54)5、2017年广东省中考数学试题及参考答案与解析 (74)6、2018年广东省中考数学试题及参考答案与解析 (92)2013年广东省中考数学试题及参考答案一、选择题(本大题共10小题,每小题3分,满分30分) 1.2的相反数是( ) A .12- B .12C .﹣2D .2 2.下列四个几何体中,俯视图为四边形的是( )A .B .C .D .3.据报道,2013年第一季度,广东省实现地区生产总值约1260 000 000 000元,用科学记数法表示为( ) A .0.126×1012元 B .1.26×1012元 C .1.26×1011元 D .12.6×1011元 4.已知实数a 、b ,若a >b ,则下列结论正确的是( ) A .a ﹣5<b ﹣5 B .2+a <2+b C .33ab < D .3a >3b5.数学1、2、5、3、5、3、3的中位数是( ) A .1 B .2 C .3 D .56.如图,AC ∥DF ,AB ∥EF ,点D 、E 分别在AB 、AC 上,若∠2=50°,则∠1的大小是( )A .30°B .40°C .50°D .60° 7.下列等式正确的是( )A .(﹣1)﹣3=1 B .(﹣4)0=1 C .(﹣2)2×(﹣2)3=﹣26 D .(﹣5)4÷(﹣5)2=﹣52 8.不等式5x ﹣1>2x+5的解集在数轴上表示正确的是( ) A .B .C .D .9.下列图形中,不是轴对称图形的是( )A .B .C .D .10.已知k 1<0<k 2,则函数y=k 1x ﹣1和2k y x=的图象大致是( )A .B .C .D .二、填空题(本大题6小题,每小题4分,共24分) 11.分解因式:x 2﹣9= .12.若实数a 、b 满足|2|0a +,则2a b= . 13.一个六边形的内角和是 . 14.在Rt △ABC 中,∠ABC=90°,AB=3,BC=4,则sinA= .15.如图,将一张直角三角形纸片ABC 沿中位线DE 剪开后,在平面上将△BDE 绕着CB 的中点D 逆时针旋转180°,点E 到了点E′位置,则四边形ACE′E 的形状是 .16.如图,三个小正方形的边长都为1,则图中阴影部分面积的和是 (结果保留π).三、解答题(一)(本大题共3小题,每小题5分,共15分)17.(5分)解方程组128x y x y =+⎧⎨+=⎩.18.(5分)从三个代数式:①a 2﹣2ab+b 2,②3a ﹣3b ,③a 2﹣b 2中任意选两个代数式构造分式,然后进行化简,并求出当a=6,b=3时该分式的值. 19.(5分)如图,已知▱ABCD .(1)作图:延长BC ,并在BC 的延长线上截取线段CE ,使得CE=BC (用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结AE ,交CD 于点F ,求证:△AFD ≌△EFC .四、解答题(二)(本大题共3小题,每小题8分,共24分)20.(8分)某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如图和所示的不完整统计图表.(1)请你补全下列样本人数分布表和条形统计图(如图);(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.合计100%21.(8分)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?22.(8分)如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.(1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积为S3,则S1S2+S3(用“>”、“=”、“<”填空);(2)写出如图中的三对相似三角形,并选择其中一对进行证明.四、解答题(三)(本大题共3小题,每小题9分,共27分)23.(9分)已知二次函数y=x2﹣2mx+m2﹣1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.24.(9分)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC 交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.25.(9分)有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=1所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.(1)如图2,当三角板DEF运动到点D到点A重合时,设EF与BC交于点M,则∠EMC=15度;(2)如图3,当三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分的面积为y,求y与x的函数解析式,并求出对应的x取值范围.参考答案与解析一、选择题(本大题共10小题,每小题3分,满分30分) 1.2的相反数是( ) A .12 B .12C .﹣2D .2 【知识考点】相反数.【思路分析】根据相反数的概念解答即可. 【解答过程】解:2的相反数是﹣2, 故选:C .【总结归纳】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0. 2.下列四个几何体中,俯视图为四边形的是( )A .B .C .D .【知识考点】简单几何体的三视图.【思路分析】俯视图是从物体上面看,所得到的图形.【解答过程】解:A 、五棱柱的俯视图是五边形,故此选项错误;B 、三棱锥的俯视图是,故此选项错误;C 、球的俯视图是圆,故此选项错误;D 、正方体俯视图是正方形,故此选项正确; 故选:D .【总结归纳】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.据报道,2013年第一季度,广东省实现地区生产总值约1260 000 000 000元,用科学记数法表示为( ) A .0.126×1012元 B .1.26×1012元 C .1.26×1011元 D .12.6×1011元 【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于1260 000 000 000有13位,所以可以确定n=13﹣1=12. 【解答过程】解:1260 000 000 000=1.26×1012. 故选B .【总结归纳】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键. 4.已知实数a 、b ,若a >b ,则下列结论正确的是( ) A .a ﹣5<b ﹣5 B .2+a <2+b C .33a b < D .3a >3b 【知识考点】不等式的性质.【思路分析】以及等式的基本性质即可作出判断.B 、a >b ,则2+a >2+b ,选项错误;C 、a >b ,则33ab >,选项错误;D 、正确. 故选D .【总结归纳】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质: (1)不等式两边加(或减)同一个数(或式子),不等号的方向不变. (2)不等式两边乘(或除以)同一个正数,不等号的方向不变. (3)不等式两边乘(或除以)同一个负数,不等号的方向改变. 5.数学1、2、5、3、5、3、3的中位数是( ) A .1 B .2 C .3 D .5 【知识考点】中位数.【思路分析】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数. 【解答过程】解:将数据从大到小排列为:1,2,3,3,3,5,5, 则中位数是3. 故选C .【总结归纳】本题考查了中位数的知识,属于基础题,掌握中位数的定义及计算方法是关键. 6.如图,AC ∥DF ,AB ∥EF ,点D 、E 分别在AB 、AC 上,若∠2=50°,则∠1的大小是( )A .30°B .40°C .50°D .60° 【知识考点】平行线的性质.【思路分析】由AC ∥DF ,AB ∥EF ,根据两直线平行,同位角相等,即可求得∠1=∠A=∠2=50°. 【解答过程】解:∵AB ∥EF , ∴∠A=∠2=50°, ∵AC ∥DF ,∴∠1=∠A=50°. 故选C .【总结归纳】此题考查了平行线的性质.此题比较简单,注意掌握两直线平行,同位角相等订立的应用,注意掌握数形结合思想的应用. 7.下列等式正确的是( )A .(﹣1)﹣3=1 B .(﹣4)0=1 C .(﹣2)2×(﹣2)3=﹣26 D .(﹣5)4÷(﹣5)2=﹣52 【知识考点】负整数指数幂;同底数幂的乘法;同底数幂的除法;零指数幂. 【思路分析】根据负整数指数幂:a ﹣p =(a ≠0,p 为正整数),零指数幂:a 0=1(a ≠0),同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.同底数幂的除法法则:底数不变,指数相减分别进行计算,可得答案.B 、(﹣4)0=1,故此选项正确;C 、(﹣2)2×(﹣2)3=﹣25,故此选项错误;D 、(﹣5)4÷(﹣5)2=52,故此选项错误; 故选:B .【总结归纳】此题主要考查了负整数指数幂、零指数幂、同底数幂的乘除法,关键是熟练掌握各运算的计算法则,不要混淆.8.不等式5x ﹣1>2x+5的解集在数轴上表示正确的是( )A .B .C .D .【知识考点】在数轴上表示不等式的解集;解一元一次不等式. 【思路分析】先求出不等式的解集,再在数轴上表示出来即可. 【解答过程】解:移项得,5x ﹣2x >5+1, 合并同类项得,3x >6, 系数化为1得,x >2, 在数轴上表示为:故选A . 【总结归纳】本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示. 9.下列图形中,不是轴对称图形的是( )A .B .C .D .【知识考点】轴对称图形.【思路分析】根据轴对称图形的概念对各选项分析判断即可得出答案. 【解答过程】解:A 、是轴对称图形,故本选项错误; B 、是轴对称图形,故本选项错误; C 、不是轴对称图形,故本选项正确; D 、是轴对称图形,故本选项错误. 故选C .【总结归纳】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10.已知k 1<0<k 2,则函数y=k 1x ﹣1和2k y x的图象大致是( )。

2013-2018年山西省中考数学试题汇编(含参考答案与解析)

2013-2018年山西省中考数学试题汇编(含参考答案与解析)

【中考数学试题汇编】2013—2018年山西省中考数学试题汇编(含参考答案与解析)1、2013年山西省中考数学试题及参考答案与解析 (2)2、2014年山西省中考数学试题及参考答案与解析 (32)3、2015年山西省中考数学试题及参考答案与解析 (58)4、2016年山西省中考数学试题及参考答案与解析 (83)5、2017年山西省中考数学试题及参考答案与解析 (109)6、2018年山西省中考数学试题及参考答案与解析 (133)2013年山西省中考数学试题及参考答案一、选择题(本大题共12小题,每小题2分,共24分) 1.计算:2×(﹣3)的结果是( ) A .6B .﹣6C .﹣1D .52.不等式组35215x x +⎧⎨+⎩≥<的解集在数轴上表示为( )A .B .C .D .3.如图是一个长方体包装盒,则它的平面展开图是( )A .B .C .D .4.某班实行每周量化考核制,学期末对考核成绩进行统计.结果甲、乙两组的平均成绩相同.方差分别是2s 甲=36,2s 乙=30,则两组成绩的稳定性( ) A .甲组比乙组的成绩稳定 B .乙组比甲组的成绩稳定C .甲、乙两组的成绩一样稳定D .无法确定5.下列算式计算错误的是( )A .x 3+x 3=2x 3B .a 6÷a 3=a 2 C= D .1133-⎛⎫= ⎪⎝⎭6.解分式方程22311x x x++=--时,去分母后变形为( ) A .2+(x+2)=3(x ﹣1) B .2﹣x+2=3(x ﹣1) C .2﹣(x+2)=3(1﹣x ) D .2﹣(x+2)=3(x ﹣1) 7.如表是我省11个地市5月份某日最高气温(℃)的统计结果: 太原 大同 朔州 忻州 阳泉 晋中 吕梁 长治 晋城 临汾 运城 2727282827292828303031该日最高气温的众数和中位数分别是( ) A .27℃,28℃B .28℃,28℃C .27℃,27℃D .28℃,29℃8.如图,正方形地砖的图案是轴对称图形,该图形的对称轴有( )A .1条B .2条C .4条D .8条9.王先生到银行存了一笔三年期的定期存款,年利率是4.25%.若到期后取出得到本息(本金+利息)33825元.设王先生存入的本金为x 元,则下面所列方程正确的是( )A .x+3×4.25%x=33825B .x+4.25%x=33825C .3×4.25%x=33825D .3(x+4.25x )=33825 10.如图,某地修建高速公路,要从B 地向C 地修一座隧道(B 、C 在同一水平面上).为了测量B 、C 两地之间的距离,某工程师乘坐热气球从C 地出发,垂直上升100m 到达A 处,在A 处观察B 地的俯角为30°,则B 、C 两地之间的距离为( )A .B .C .D .3m 11.起重机将质量为6.5t 的货物沿竖直方向提升了2m ,则起重机提升货物所做的功用科学记数法表示为(g=10N/kg )( )A .1.3×106JB .13×105JC .13×104JD .1.3×105J12.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A .232π- B .23π C .2π- D .π-二、填空题(本大题共6小题,每小题3分,满分18分) 13.因式分解:a 2﹣2a= .14.四川雅安发生地震后,某校九(1)班学生开展献爱心活动,积极向灾区捐款.如图是该班同学捐款的条形统计图.写出一条你从图中所获得的信息:.(只要与统计图中所提供的信息相符即可得分)15.一组按规律排列的式子:a2,43a,65a,87a,…,则第n个式子是(n为正整数).16.如图,矩形ABCD在第一象限,AB在x轴正半轴上,AB=3,BC=1,直线y=12x﹣1经过点C交x轴于点E,双曲线kyx经过点D,则k的值为.17.如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A 落在对角线BD上的点A′处,则AE的长为.18.如图是我省某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A、B两点,拱桥最高点C到AB的距离为9m,AB=36m,D、E为拱桥底部的两点,且DE∥AB,点E到直线AB 的距离为7m,则DE的长为m.三、解答题(本大题共8小题,满分78分)19.(10分)(11453⎛⎫︒- ⎪⎝⎭;(2)下面是小明化简分式的过程,请仔细阅读,并解答所提出的问题.解:()()()()()222266242222xx xx x x x x x----=-+-+-+-…第一步=2(x﹣2)﹣x+6…第二步=2x﹣4﹣x﹣6…第三步=x+2…第四步小明的解法从第步开始出现错误,正确的化简结果是.20.(7分)解方程:(2x﹣1)2=x(3x+2)﹣7.21.(8分)如图,在△ABC中,AB=AC,D是BA延长线上的一点,点E是AC的中点.(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法);①作∠DAC的平分线AM;②连接BE并延长交AM于点F;(2)猜想与证明:试猜想AF与BC有怎样的位置关系和数量关系,并说明理由.22.(9分)小勇收集了我省四张著名的旅游景点图片(大小、形状及背面完全相同):太原以南的壶口瀑布和平遥古城,太原以北的云冈石窟和五台山.他与爸爸玩游戏:把这四张图片背面朝上洗匀后,随机抽取一张(不放回),再抽取一张,若抽到的两个景点都在太原以南或都在太原以北,则爸爸同意带他到这两个景点旅游,否则,只能去一个景点旅游.请你用列表或画树状图的方法求小勇能去两个景点旅游的概率(四张图片分别用H,P,Y,W表示).23.(9分)如图,AB为⊙O的直径,点C在⊙O上,点P是直径AB上的一点(不与A重合),过点P作AB的垂线交BC于点Q.(1)在线段PQ上取一点D,使DQ=DC,连接DC,试判断CD与⊙O的位置关系,并说明理由.(2)若cosB=35,BP=6,AP=1,求QC的长.24.(8分)某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)填空:甲种收费的函数关系式是.乙种收费的函数关系式是.(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?25.(13分)数学活动﹣﹣﹣求重叠部分的面积.问题情境:数学活动课上,老师出示了一个问题:如图1,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D与边AB的中点重合,DE经过点C,DF交AC于点G.求重叠部分(△DCG)的面积.(1)独立思考:请回答老师提出的问题.(2)合作交流:“希望”小组受此问题的启发,将△DEF 绕点D 旋转,使DE ⊥AB 交AC 于点H ,DF 交AC 于点G ,如图2,你能求出重叠部分(△DGH )的面积吗?请写出解答过程.(3)提出问题:老师要求各小组向“希望”小组学习,将△DEF 绕点D 旋转,再提出一个求重叠部分面积的问题.“爱心”小组提出的问题是:如图3,将△DEF 绕点D 旋转,DE ,DF 分别交AC 于点M ,N ,使DM=MN ,求重叠部分(△DMN )的面积.任务:①请解决“爱心”小组提出的问题,直接写出△DMN 的面积是 .②请你仿照以上两个小组,大胆提出一个符合老师要求的问题,并在图4中画出图形,标明字母,不必解答(注:也可在图1的基础上按顺时针旋转).26.(14分)综合与探究: 如图,抛物线213442y x x =--与x 轴交与A ,B 两点(点B 在点A 的右侧),与y 轴交于点C ,连接BC ,以BC 为一边,点O 为对称中心作菱形BDEC ,点P 是x 轴上的一个动点,设点P 的坐标为(m ,0),过点P 作x 轴的垂线l 交抛物线于点Q . (1)求点A ,B ,C 的坐标.(2)当点P 在线段OB 上运动时,直线l 分别交BD ,BC 于点M ,N .试探究m 为何值时,四边形CQMD 是平行四边形,此时,请判断四边形CQBM 的形状,并说明理由.(3)当点P 在线段EB 上运动时,是否存在点Q ,使△BDQ 为直角三角形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共12小题,每小题2分,共24分)1.计算:2×(﹣3)的结果是()A.6 B.﹣6 C.﹣1 D.5【知识考点】有理数的乘法.【思路分析】根据有理数乘法法则进行计算即可.【解题过程】解:2×(﹣3)=﹣6;故选B.【总结归纳】此题考查了有理数的乘法,掌握有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘是解题的关键.2.不等式组35215xx+⎧⎨+⎩≥<的解集在数轴上表示为()A.B.C.D.【知识考点】在数轴上表示不等式的解集;解一元一次不等式组.【思路分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【解题过程】解:35215xx+⎧⎨+⎩≥①<②,解不等式①得,x≥2,解不等式②得,x <3, 故不等式的解集为:2≤x <3, 在数轴上表示为:.故选:C .【总结归纳】本题考查的是解一元一次不等式组及在数轴上表示不等式组的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.3.如图是一个长方体包装盒,则它的平面展开图是( )A .B .C .D .【知识考点】几何体的展开图.【思路分析】由平面图形的折叠及长方体的展开图解题. 【解题过程】解:由四棱柱四个侧面和上下两个底面的特征可知, A 、可以拼成一个长方体;B 、C 、D 、不符合长方体的展开图的特征,故不是长方体的展开图. 故选A .【总结归纳】考查了几何体的展开图,解题时勿忘记四棱柱的特征及长方体展开图的各种情形. 4.某班实行每周量化考核制,学期末对考核成绩进行统计.结果甲、乙两组的平均成绩相同.方差分别是2s 甲=36,2s 乙=30,则两组成绩的稳定性( ) A .甲组比乙组的成绩稳定 B .乙组比甲组的成绩稳定C .甲、乙两组的成绩一样稳定D .无法确定【知识考点】方差.【思路分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 【解题过程】解:∵2s 甲=36,2s 乙=30, ∴22s s 甲乙>,∴乙组比甲组的成绩稳; 故选:B .【总结归纳】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.下列算式计算错误的是()A.x3+x3=2x3B.a6÷a3=a2C=D.113 3-⎛⎫= ⎪⎝⎭【知识考点】同底数幂的除法;算术平方根;合并同类项;负整数指数幂.【思路分析】根据合并同类项的法则、同底数幂的乘除法则及幂的乘方法则,结合各选项进行判断即可.【解题过程】解:A、x3+x3=2x3,计算正确,故本选项错误;B、a6÷a3=a3,计算错误,故本选项正确;C=D、1133-⎛⎫=⎪⎝⎭,计算正确,故本选项错误;故选B.【总结归纳】本题考查了同底数幂的乘除、合并同类项的知识,解答本题的关键是掌握各部分的运算法则.6.解分式方程22311xx x++=--时,去分母后变形为()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3(1﹣x)D.2﹣(x+2)=3(x﹣1)【知识考点】解分式方程.【思路分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x﹣1和1﹣x互为相反数,可得1﹣x=﹣(x﹣1),所以可得最简公分母为x﹣1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【解题过程】解:方程两边都乘以x﹣1,得:2﹣(x+2)=3(x﹣1).故选D.【总结归纳】考查了解分式方程,对一个分式方程而言,确定最简公分母后要注意不要漏乘,这正是本题考查点所在.切忌避免出现去分母后:2﹣(x+2)=3形式的出现.7.如表是我省11个地市5月份某日最高气温(℃)的统计结果:太原大同朔州忻州阳泉晋中吕梁长治晋城临汾运城27 27 28 28 27 29 28 28 30 30 31 该日最高气温的众数和中位数分别是()A.27℃,28℃B.28℃,28℃C.27℃,27℃D.28℃,29℃。

2013-2018年辽宁省大连市中考数学试题汇编(含参考答案与解析)

2013-2018年辽宁省大连市中考数学试题汇编(含参考答案与解析)

【中考数学试题汇编】2013—2018年辽宁省大连市中考数学试题汇编(含参考答案与解析)1、2013年辽宁省大连市中考数学试题及参考答案与解析 (2)2、2014年辽宁省大连市中考数学试题及参考答案与解析 (28)3、2015年辽宁省大连市中考数学试题及参考答案与解析 (50)4、2016年辽宁省大连市中考数学试题及参考答案与解析 (73)5、2017年辽宁省大连市中考数学试题及参考答案与解析 (98)6、2018年辽宁省大连市中考数学试题及参考答案与解析 (116)2013年辽宁省大连市中考数学试题及参考答案一、选择题(本大题8小题,每小题3分,共24分)1.﹣2的相反数是()A.﹣2 B.12C.12D.22.如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的俯视图是()A.B.C.D.3.计算(x2)3的结果是()A.x B.3x2C.x5D.x64.一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出一个球,它是黄球的概率为()A.13B.25C.12D.355.如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于()A.35°B.70°C.110°D.145°6.若关于x的方程x2﹣4x+m=0没有实数根,则实数m的取值范围是()A.m<﹣4 B.m>﹣4 C.m<4 D.m>47.在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金额(单位:元)如下表所示:这8名同学捐款的平均金额为()A.3.5元B.6元C.6.5元D.7元8.P是∠AOB内一点,分别作点P关于直线OA、OB的对称点P1、P2,连接OP1、OP2,则下列结论正确的是()A.OP1⊥OP2B.OP1=OP2C.OP1⊥OP2且OP1=OP2D.OP1≠OP2二、填空题(本大题共8小题,每小题3分,共24分) 9.因式分解:x 2+x= .10.在平面直角坐标系中,点(2,﹣4)在第 象限. 11.把16000 000用科学记数法表示为 .12.某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:成活的频率根据表中数据,估计这种幼树移植成活率的概率为 (精确到0.1).13.化简:2211x x x x ++-+= .14.用一个圆心角为90°半径为32cm 的扇形作为一个圆锥的侧面(接缝处不重叠),则这个圆锥的底面圆的半径为 cm .15.如图,为了测量河的宽度AB ,测量人员在高21m 的建筑物CD 的顶端D 处测得河岸B 处的俯角为45°,测得河对岸A 处的俯角为30°(A 、B 、C 在同一条直线上),则河的宽度AB 约为 m(精确到0.1m ).)16.如图,抛物线y=x 2+bx+92与y 轴相交于点A ,与过点A 平行于x 轴的直线相交于点B (点B 在第一象限).抛物线的顶点C 在直线OB 上,对称轴与x 轴相交于点D .平移抛物线,使其经过点A 、D ,则平移后的抛物线的解析式为 .三、解答题(本大题共4小题,共39分)17.(9分)计算:(11115-⎛⎫+- ⎪⎝⎭18.(9分)解不等式组:()211841x x x x -+⎧⎪⎨+-⎪⎩><.19.(9分)如图,▱ABCD 中,点E 、F 分别在AD 、BC 上,且AE=CF .求证:BE=DF .20.(12分)以下是根据《2012年大连市环境状况公报》中有关海水浴场环境质量和市区空气质量级别的数据制作的统计图表的一部分(2012年共366天).大连市2012年海水浴场环境质量监测结果统计表,监测时段:2012年7月至9月根据以上信息,解答下列问题:(1)2012年7月至9月被监测的8个海水浴场环境质量最好的是 (填浴场名称),海水浴场环境质量为优的数据的众数为 %,海水浴场环境质量为良的数据的中位数为 %; (2)2012年大连市区空气质量达到优的天数为 天,占全年(366)天的百分比约为 (精确到0.1%);(3)求2012年大连市区空气质量为良的天数(按四舍五入,精确到个位).四、解答题(本大题共3小题,共28分)21.(9分)某超市购进A、B两种糖果,A种糖果用了480元,B种糖果用了1260元,A、B两种糖果的重量比是1:3,A种糖果每千克的进价比B种糖果每千克的进价多2元.A、B两种糖果各购进多少千克?22.(9分)如图,在平面直角坐标系xOy中,一次函数y=ax+b的图象与反比例函数kyx=的图象相交于点A(m,1)、B(﹣1,n),与x轴相交于点C(2,0),且.(1)求该反比例函数和一次函数的解析式;(2)直接写出不等式ax+b≥kx的解集.23.(10分)如图,AB是⊙O的直径,CD与⊙O相切于点C,DA⊥AB,DO及DO的延长线与⊙O 分别相交于点E、F,EB与CF相交于点G.(1)求证:DA=DC;(2)⊙O的半径为3,DC=4,求CG的长.五、解答题(本大题共3小题,共35分)24.(11分)如图,一次函数443y x=-+的图象与x轴、y轴分别相交于点A、B.P是射线BO上的一个动点(点P不与点B重合),过点P作PC⊥AB,垂足为C,在射线CA上截取CD=CP,连接PD.设BP=t.(1)t为何值时,点D恰好与点A重合?(2)设△PCD与△AOB重叠部分的面积为S,求S与t的函数关系式,并直接写出t的取值范围.25.(12分)将△ABC 绕点B 逆时针旋转α得到△DBE ,DE 的延长线与AC 相交于点F ,连接DA 、BF .(1)如图1,若∠ABC=α=60°,BF=AF .①求证:DA ∥BC ;②猜想线段DF 、AF 的数量关系,并证明你的猜想; (2)如图2,若∠ABC <α,BF=mAF (m 为常数),求DFAF的值(用含m 、α的式子表示).26.(12分)如图,抛物线2424455y x x =-+-与x 轴相交于点A 、B ,与y 轴相交于点C ,抛物线的对称轴与x 轴相交于点M .P 是抛物线在x 轴上方的一个动点(点P 、M 、C 不在同一条直线上).分别过点A 、B 作直线CP 的垂线,垂足分别为D 、E ,连接点MD 、ME . (1)求点A ,B 的坐标(直接写出结果),并证明△MDE 是等腰三角形;(2)△MDE 能否为等腰直角三角形?若能,求此时点P 的坐标;若不能,说明理由;(3)若将“P 是抛物线在x 轴上方的一个动点(点P 、M 、C 不在同一条直线上)”改为“P 是抛物线在x 轴下方的一个动点”,其他条件不变,△MDE 能否为等腰直角三角形?若能,求此时点P 的坐标(直接写出结果);若不能,说明理由.参考答案与解析一、选择题(本大题8小题,每小题3分,共24分)1.﹣2的相反数是()A.﹣2 B.12C.12D.2【知识考点】相反数.【思路分析】一个数的相反数就是在这个数前面添上“﹣”号.【解答过程】解:﹣2的相反数是2.故选D.【总结归纳】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的俯视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答过程】解:从上面看易得三个横向排列的正方形.故选A.【总结归纳】本题考查了三视图的知识,要求同学们掌握俯视图是从物体的上面看得到的视图.3.计算(x2)3的结果是()A.x B.3x2C.x5D.x6【知识考点】幂的乘方与积的乘方.【思路分析】根据幂的乘方法则进行解答即可.【解答过程】解:(x2)3=x6,故选:D.【总结归纳】本题考查的是幂的乘方法则,即幂的乘方法则:底数不变,指数相乘.4.一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出一个球,它是黄球的概率为()A.13B.25C.12D.35【知识考点】概率公式.【思路分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答过程】解;袋子中球的总数为:2+3=5,取到黄球的概率为:25.故选:B.【总结归纳】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)= mn.5.如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于()A.35°B.70°C.110°D.145°【知识考点】角平分线的定义.【思路分析】首先根据角平分线定义可得∠BOD=2∠BOC=70°,再根据邻补角的性质可得∠AOD 的度数.【解答过程】解:∵射线OC平分∠DOB.∴∠BOD=2∠BOC,∵∠COB=35°,∴∠DOB=70°,∴∠AOD=180°﹣70°=110°,故选:C.【总结归纳】此题主要考查了角平分线定义,关键是掌握角平分线把角分成相等的两部分.6.若关于x的方程x2﹣4x+m=0没有实数根,则实数m的取值范围是()A.m<﹣4 B.m>﹣4 C.m<4 D.m>4【知识考点】根的判别式.【思路分析】由方程没有实数根,得到根的判别式的值小于0,列出关于m的不等式,求出不等式的解集即可得到m的范围.【解答过程】解:∵△=(﹣4)2﹣4m=16﹣4m<0,∴m>4.故选D【总结归纳】此题考查了根的判别式,熟练掌握根的判别式的意义是解本题的关键.7.在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金额(单位:元)如下表所示:这8名同学捐款的平均金额为()A.3.5元B.6元C.6.5元D.7元【知识考点】加权平均数.【思路分析】根据加权平均数的计算公式用捐款的总钱数除以8即可得出答案.【解答过程】解:根据题意得:(5×2+6×3+7×2+10×1)÷8=6.59(元);故选C.【总结归纳】此题考查了加权平均数,掌握加权平均数的计算公式是解题的关键,属于基础题.8.P是∠AOB内一点,分别作点P关于直线OA、OB的对称点P1、P2,连接OP1、OP2,则下列结论正确的是()A.OP1⊥OP2B.OP1=OP2C.OP1⊥OP2且OP1=OP2D.OP1≠OP2【知识考点】轴对称的性质.【思路分析】作出图形,根据轴对称的性质求出OP1、OP2的数量与夹角即可得解.【解答过程】解:如图,∵点P关于直线OA、OB的对称点P1、P2,∴OP1=OP2=OP,∠AOP=∠AOP1,∠BOP=∠BOP2,∴∠P1OP2=∠AOP+∠AOP1+∠BOP+∠BOP2,=2(∠AOP+∠BOP),=2∠AOB,∵∠AOB度数任意,∴OP1⊥OP2不一定成立.故选B.【总结归纳】本题考查了轴对称的性质,是基础题,熟练掌握性质是解题的关键,作出图形更形象直观.二、填空题(本大题共8小题,每小题3分,共24分)9.因式分解:x2+x= .【知识考点】因式分解-提公因式法.【思路分析】根据观察可知原式公因式为x,直接提取可得.【解答过程】解:x2+x=x(x+1).【总结归纳】本题考查了提公因式法分解因式,通过观察可直接得出公因式,结合观察法是解此类题目的常用的方法.。

【历年中考试题汇编】贵阳市2013-2018年中考数学试题汇编(含参考答案与解析)

【历年中考试题汇编】贵阳市2013-2018年中考数学试题汇编(含参考答案与解析)

【历年中考试题汇编】贵阳市2013—2018年中考数学试题汇编(含参考答案与解析)1、2013年贵阳市中考数学试题及参考答案与解析 (2)2、2014年贵阳市中考数学试题及参考答案与解析 (23)3、2015年贵阳市中考数学试题及参考答案与解析 (44)4、2016年贵阳市中考数学试题及参考答案与解析 (66)5、2017年贵阳市中考数学试题及参考答案与解析 (89)6、2018年贵阳市中考数学试题及参考答案与解析 (113)2013年贵阳市中考数学试题及参考答案一、选择题(本大题共10小题,每小题3分,共30分)1.3的倒数是()A.﹣3 B.3 C.13D.132.2013年5月在贵阳召开的“第十五届中国科协年会”中,贵州省签下总金额达790亿元的项目,790亿元用科学记数法表示为()A.79×10亿元B.7.9×102亿元C.7.9×103亿元D.0.79×103亿元3.如图,将直线l1沿着AB的方向平移得到直线l2,若∠1=50°,则∠2的度数是()A.40°B.50°C.90°D.130°4.在端午节到来之前,儿童福利院对全体小朋友爱吃哪几种粽子作调查,以决定最终买哪种粽子.下面的调查数据中最值得关注的是()A.方差B.平均数C.中位数D.众数5.一个几何体的三视图如图所示,则这个几何体的位置是()A.B.C.D.6.某校学生小亮每天骑自行车上学时都要经过一个十字路口,设十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为13,遇到绿灯的概率为59,那么他遇到黄灯的概率为()A.49B.13C.59D.197.如图,P是∠α的边OA上一点,点P的坐标为(12,5),则tanα等于()A.513B.1213C.512D.1258.如图,M是Rt△ABC的斜边BC上异于B、C的一定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有()A.1条B.2条C.3条D.4条9.如图,在直径为AB的半圆O上有一动点P从A点出发,按顺时针方向绕半圆匀速运动到B点,然后再以相同的速度沿着直径回到A点停止,线段OP的长度d与运动时间t之间的函数关系用图象描述大致是()A.B.C.D.10.在矩形ABCD中,AB=6,BC=4,有一个半径为1的硬币与边AB、AD相切,硬币从如图所示的位置开始,在矩形内沿着边AB、BC、CD、DA滚动到开始的位置为止,硬币自身滚动的圈数大约是()A.1圈B.2圈C.3圈D.4圈二、填空题(本大题共5小题,每小题4分,共20分)11.方程3x+1=7的根是.12.在一个不透明的袋子中有10个除颜色外均相同的小球,通过多次摸球实验后,发现摸到白球的频率约为40%,估计袋中白球有个.13.如图,AD、AC分别是直径和弦,∠CAD=30°,B是AC上一点,BO⊥AD,垂足为O,BO=5cm,则CD等于cm.14.直线y=ax+b(a>0)与双曲线3yx=相交于A(x1,y1),B(x2,y2)两点,则x1y1+x2y2的值为.15.已知二次函数y=x2+2mx+2,当x>2时,y的值随x值的增大而增大,则实数m的取值范围是.三、解答题(本大题共10小题,满分100分)16.(6分)先化简,再求值:22312121x xx x x x-⎛⎫-÷⎪+++⎝⎭,其中x=1.17.(10分)现有两组相同的扑克牌,每组两张,两张牌的牌面数字分别是2和3,从每组牌中各随机摸出一张牌,称为一次试验.(1)小红与小明用一次试验做游戏,如果摸到的牌面数字相同小红获胜,否则小明获胜,请用列表法或画树状图的方法说明这个游戏是否公平?(2)小丽认为:“在一次试验中,两张牌的牌面数字和可能为4、5、6三种情况,所以出现‘和为4’的概率是13”,她的这种看法是否正确?说明理由.18.(10分)在一次综合实践活动中,小明要测某地一座古塔AE的高度,如图,已知塔基AB的高为4m,他在C处测得塔基顶端B的仰角为30°,然后沿AC方向走5m到达D点,又测得塔顶E的仰角为50°.(人的身高忽略不计)(1)求AC的距离;(结果保留根号)(2)求塔高AE.(结果保留整数)19.(10分)贵阳市“有效学习儒家文化”课题于今年结题,在这次结题活动中,甲、乙两校师生共150人进行了汇报演出,小林将甲、乙两校参加各项演出的人数绘制成如下不完整的统计图表,根据提供的信息解答下列问题:甲校参见汇报演出的师生人数统计表百分比人数话剧50% m演讲12% 6其他n 19(1)m=,n=;(2)计算乙校的扇形统计图中“话剧”的圆心角度数;(3)哪个学校参加“话剧”的师生人数多?说明理由.20.(10分)已知:如图,在菱形ABCD中,F是BC上任意一点,连接AF交对角线BD于点E,连接EC.(1)求证:AE=EC;(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由.21.(10分)2010年底某市汽车拥有量为100万辆,而截止到2012年底,该市的汽车拥有量已达到144万辆.(1)求2010年底至2012年底该市汽车拥有量的年平均增长率;(2)该市交通部门为控制汽车拥有量的增长速度,要求到2013年底全市汽车拥有量不超过155.52万辆,预计2013年报废的汽车数量是2012年底汽车拥有量的10%,求2012年底至2013年底该市汽车拥有量的年增长率要控制在什么范围才能达到要求.22.(10分)已知:如图,AB是⊙O的弦,⊙O的半径为10,OE、OF分别交AB于点E、F,OF 的延长线交⊙O于点D,且AE=BF,∠EOF=60°.(1)求证:△OEF是等边三角形;(2)当AE=OE时,求阴影部分的面积.(结果保留根号和π)23.(10分)已知:直线y=ax+b 过抛物线y=﹣x 2﹣2x+3的顶点P ,如图所示. (1)顶点P 的坐标是 ;(2)若直线y=ax+b 经过另一点A (0,11),求出该直线的表达式;(3)在(2)的条件下,若有一条直线y=mx+n 与直线y=ax+b 关于x 轴成轴对称,求直线y=mx+n 与抛物线y=﹣x 2﹣2x+3的交点坐标.24.(12分)在△ABC 中,BC=a ,AC=b ,AB=c ,设c 为最长边,当a 2+b 2=c 2时,△ABC 是直角三角形;当a 2+b 2≠c 2时,利用代数式a 2+b 2和c 2的大小关系,探究△ABC 的形状(按角分类). (1)当△ABC 三边分别为6、8、9时,△ABC 为 三角形;当△ABC 三边分别为6、8、11时,△ABC 为 三角形.(2)猜想,当a 2+b 2 c 2时,△ABC 为锐角三角形;当a 2+b 2 c 2时,△ABC 为钝角三角形. (3)判断当a=2,b=4时,△ABC 的形状,并求出对应的c 的取值范围.25.(12分)如图,在平面直角坐标系中,有一条直线l :4y x =+与x 轴、y 轴分别交于点M 、N ,一个高为3的等边三角形ABC ,边BC 在x 轴上,将此三角形沿着x 轴的正方向平移.(1)在平移过程中,得到△A 1B 1C 1,此时顶点A 1恰落在直线l 上,写出A 1点的坐标 ; (2)继续向右平移,得到△A 2B 2C 2,此时它的外心P 恰好落在直线l 上,求P 点的坐标; (3)在直线l 上是否存在这样的点,与(2)中的A 2、B 2、C 2任意两点能同时构成三个等腰三角形?如果存在,求出点的坐标;如果不存在,说明理由.参考答案与解析一、选择题(本大题共10小题,每小题3分,共30分)1.3的倒数是()A.﹣3 B.3 C.13-D.13【知识考点】倒数.【思路分析】根据倒数的定义进行答题.【解答过程】解:设3的倒数是a,则3a=1,解得,13a=.故选D.【总结归纳】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.2013年5月在贵阳召开的“第十五届中国科协年会”中,贵州省签下总金额达790亿元的项目,790亿元用科学记数法表示为()A.79×10亿元B.7.9×102亿元C.7.9×103亿元D.0.79×103亿元【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于790有3位,所以可以确定n=3﹣1=2.【解答过程】解:790=7.9×102.故选B.【总结归纳】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.如图,将直线l1沿着AB的方向平移得到直线l2,若∠1=50°,则∠2的度数是()A.40°B.50°C.90°D.130°【知识考点】平移的性质【思路分析】根据平移的性质得出l1∥l2,进而得出∠2的度数.【解答过程】解:∵将直线l1沿着AB的方向平移得到直线l2,∴l1∥l2,∵∠1=50°,∴∠2的度数是50°.故选;B.【总结归纳】此题主要考查了平移的性质以及平行线的性质,根据已知得出l1∥l2是解题关键.4.在端午节到来之前,儿童福利院对全体小朋友爱吃哪几种粽子作调查,以决定最终买哪种粽子.下面的调查数据中最值得关注的是()A.方差B.平均数C.中位数D.众数【知识考点】统计量的选择;众数.【思路分析】儿童福利院最值得关注的应该是哪种粽子爱吃的人数最多,即众数.【解答过程】解:由于众数是数据中出现次数最多的数,故儿童福利院最值得关注的应该是统计调查数据的众数.故选D.【总结归纳】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.5.一个几何体的三视图如图所示,则这个几何体的位置是()A.B.C.D.【知识考点】由三视图判断几何体【思路分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.结合图形,使用排除法来解答.【解答过程】解:根据几何体的主视图和左视图是矩形,俯视图是三角形可以得到该几何体是三棱柱,根据俯视图三角形的方向可以判定选A,故选A.【总结归纳】本题考查了由三视图判断几何体的知识,难度一般,考生做此类题时可利用排除法解答.6.某校学生小亮每天骑自行车上学时都要经过一个十字路口,设十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为13,遇到绿灯的概率为59,那么他遇到黄灯的概率为()A.49B.13C.59D.19。

2013-2018年江苏省扬州市中考数学试题汇编(含参考答案与解析)

2013-2018年江苏省扬州市中考数学试题汇编(含参考答案与解析)

【中考数学试题汇编】2013—2018年江苏省扬州市中考数学试题汇编(含参考答案与解析)1、2013年江苏省扬州市中考数学试题及参考答案与解析 (2)2、2014年江苏省扬州市中考数学试题及参考答案与解析 (26)3、2015年江苏省扬州市中考数学试题及参考答案与解析 (50)4、2016年江苏省扬州市中考数学试题及参考答案与解析 (72)5、2017年江苏省扬州市中考数学试题及参考答案与解析 (97)6、2018年江苏省扬州市中考数学试题及参考答案与解析 (118)2013年江苏省扬州市中考数学试题及参考答案与解析一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一个选项是符合题目要求的.)1.﹣2的倒数是()A.12B.12C.﹣2 D.22.下列运算中,结果是a4的是()A.a2•a3B.a12÷a3C.(a2)3D.(﹣a)43.下列说法正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨B.“抛一枚硬币正面朝上的概率为12”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在16附近4.某几何体的三视图如图所示,则这个几何体是()A.三棱柱B.圆柱C.正方体D.三棱锥5.下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.6.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形7.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°8.方程x 2+3x ﹣1=0的根可视为函数y=x+3的图象与函数1y x=的图象交点的横坐标,则方程x 3+2x ﹣1=0的实根x 0所在的范围是( )A .0104x <<B .01143x <<C .01132x <<D .0102x << 二、填空题(本大题共10小题,每小题3分,共30分,不需要写出解决过程)9.据了解,截止2013年5月8日,扬泰机场开通一年,客流量累计达到450000人次,数据450000用科学记数法可表示为 . 10.分解因式:a 3﹣4ab 2= .11.在温度不变的条件下,一定质量的气体的压强p 与它的体积V 成反比例,当V=200时,p=50,则当p=25时,V= .12.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有 条鱼.13.在△ABC 中,AB=AC=5,sin ∠ABC=0.8,则BC= .14.如图,在梯形ABCD 中,AD ∥BC ,AB=AD=CD ,BC=12,∠ABC=60°,则梯形ABCD 的周长为 .15.如图,在扇形OAB 中,∠AOB=110°,半径OA=18,将扇形OAB 沿过点B 的直线折叠,点O 恰好落在AB 上的点D 处,折痕交OA 于点C ,则AD 的长为 .16.已知关于x 的方程3221x nx +=+的解是负数,则n 的取值范围为 . 17.矩形的两邻边长的差为2,对角线长为4,则矩形的面积为 .18.如图,已知⊙O 的直径AB=6,E 、F 为AB 的三等分点,M 、N 为AB 上两点,且∠MEB=∠NFB=60°,则EM+FN= .三、解答题(本大题共10小题,共96分,解答时应写出必要的文字说明、证明过程或演算步骤)19.(8分)(1)计算:212sin 602-⎛⎫-︒ ⎪⎝⎭(2)先化简,再求值:(x+1)(2x ﹣1)﹣(x ﹣3)2,其中x=﹣2. 20.(8分)已知关于x 、y 的方程组5211823128x y a x y a +=+⎧⎨-=-⎩的解满足x >0,y >0,求实数a 的取值范围.21.(8分)端午节期间,扬州某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”、“20元”、“30元”、“40元”的字样(如图).规定:同一日内,顾客在本商场每消费满100元就可以转装盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券,某顾客当天消费240元,转了两次转盘. (1)该顾客最少可得 元购物券,最多可得 元购物券;(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.22.(8分)为声援扬州“运河申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包含9分)为优秀.这次竞赛中甲乙两组学生成绩分布的条形统计图如图所示.(1)补充完成下面的成绩统计分析表:(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是 组的学生;(填“甲”或“乙”)(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.23.(10分)如图,在△ABC中,∠ACB=90°,AC=BC,点D在边AB上,连接CD,将线段CD 绕点C顺时针旋转90°至CE位置,连接AE.(1)求证:AB⊥AE;(2)若BC2=AD•AB,求证:四边形ADCE为正方形.24.(10分)某校九(1)、九(2)两班的班长交流了为四川安雅地震灾区捐款的情况:(Ⅰ)九(1)班班长说:“我们班捐款总数为1200元,我们班人数比你们班多8人.”(Ⅱ)九(2)班班长说:“我们班捐款总数也为1200元,我们班人均捐款比你们班人均捐款多20%.”请根据两个班长的对话,求这两个班级每班的人均捐款数.25.(10分)如图,△ABC内接于⊙O,弦AD⊥AB交BC于点E,过点B作⊙O的切线交DA的延长线于点F,且∠ABF=∠ABC.(1)求证:AB=AC;(2)若AD=4,cos∠ABF=45,求DE的长.26.(10分)如图,抛物线y=x2﹣2x﹣8交y轴于点A,交x轴正半轴于点B.(1)求直线AB对应的函数关系式;(2)有一宽度为1的直尺平行于x轴,在点A、B之间平行移动,直尺两长边所在直线被直线AB 和抛物线截得两线段MN、PQ,设M点的横坐标为m,且0<m<3.试比较线段MN与PQ的大小.27.(12分)如图1,在梯形ABCD 中,AB ∥CD ,∠B=90°,AB=2,CD=1,BC=m ,P 为线段BC 上的一动点,且和B 、C 不重合,连接PA ,过P 作PE ⊥PA 交CD 所在直线于E .设BP=x ,CE=y . (1)求y 与x 的函数关系式;(2)若点P 在线段BC 上运动时,点E 总在线段CD 上,求m 的取值范围; (3)如图2,若m=4,将△PEC 沿PE 翻折至△PEG 位置,∠BAG=90°,求BP 长.28.(12分)如果10b =n ,那么b 为n 的劳格数,记为b=d (n ),由定义可知:10b =n 与b=d (n )所表示的b 、n 两个量之间的同一关系.(1)根据劳格数的定义,填空:d (10)= ,d (10﹣2)= ;(2)劳格数有如下运算性质:若m 、n 为正数,则d (mn )=d (m )+d (n ),m d n ⎛⎫⎪⎝⎭=d (m )﹣d (n ). 根据运算性质,填空:()()3d a a a = (a 为正数),若d (2)=0.3010,则d (4)= ,d (5)= ,d (0.08)= ;(3)如表中与数x 对应的劳格数d (x )有且只有两个是错误的,请找出错误的劳格数,说明理由并改正.参考答案与解析一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一个选项是符合题目要求的.)1.﹣2的倒数是()A.12-B.12C.﹣2 D.2【知识考点】倒数.【思路分析】根据倒数的定义即可求解.【解答过程】解:﹣2的倒数是12 -.故选A.【总结归纳】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.下列运算中,结果是a4的是()A.a2•a3B.a12÷a3C.(a2)3D.(﹣a)4【知识考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【思路分析】根据同底数的幂的乘法以及除法法则以及幂的乘方法则即可判断.【解答过程】解:A、a2•a3=a5,故选项错误;B、a12÷a3=a9,故选项错误;C、(a2)3=a6,选项错误;D、正确.故选D.【总结归纳】本题考查同底数幂的除法,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.3.下列说法正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨B.“抛一枚硬币正面朝上的概率为12”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在16附近【知识考点】概率的意义.【思路分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【解答过程】解:A、“明天下雨的概率为80%”指的是明天下雨的可能性是80%,错误;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013
14.右图是A、B的溶解度曲线。

t2℃时分别将100gA、B的饱和溶
液降温至t1℃,析出固体治理A B(填“>”、“<”或“=”);
把t2℃时150gA的饱和溶液稀释为20%,需加水g。

21-4、LiOH和NaOH的化学性质相似。

“神舟”飞船内,可用盛有LiOH的过滤网吸收航天员呼出的气体,以降低CO2含量。

请计算:用LiOH完全吸收176 g CO2生成Li2CO3和H2O,理论上至少需要LiOH的质量是多少?(Li:7)
2014
12.在一定质量的某NaCl溶液中加入足量的AgN03溶液,所得AgCl沉淀质量等于原NaCl 溶液质量的1/4。

则原NaCl溶液中溶质的质量分数约为【】
A.40% B.30% C.20% D.10%
16. 一定条件下4.8g CH4与16.0g O2恰好完全反应,生成10.8gH2O和4.4g CO2和物质X。

则X的质量为g;该反应方程式中O2与X化学计量数之比为。

24—(4)某工厂变废为宝,探究用废硫酸等来制取所需产品。

现有废硫酸4.9 t(H2SO4的质量分数为20%),与足量废铁屑反应来制取硫酸亚铁,同时将生成的全部氢气通入足量氧化铜中并加热(H2+CuO == Cu +H2O),请计算理论上最多可生产铜的质量
2015
12.现有10.6g碳酸钠和8.4g碳酸氢钠,分别与过量盐酸反应,其中
A.碳酸钠消耗的氯化氢多B.碳酸钠生成的二氧化碳多
C.碳酸氢钠消耗的氯化氢多D.碳酸氢钠生成的二氧化碳多
17.在点燃的条件下,2.6gC2H2与7.2gO2恰好完全反应,生成6.6g CO2、1.8g H2O 和x gCO。

则x= ;化学方程式为。

23-5钛和钛合金性能优良,广泛用于航空、造船和化学工业。

工业上常用钠来制取钛,在高温时,钠与四氯化钛(TiCl4)反应生成氯化钠和钛。

若要用该方法制取2.4kg钛,理论上需要用钠的质量是多少?(Ti:48;Na:23;Cl:35.5)
2016
12.相同质量的镁铝锌分别与相同质量20%的盐酸充分反应,产生氢气质量(直接用各金属表示)大小关系有以下几种猜测:①Mg>Al>Zn;②Al>Mg>Zn;③Al=Mg=Zn;
④Al=Mg>Zn;⑤Al=Zn>Mg;⑥Al>Mg=Zn。

其中合理的个数为
A.5个B.4个C.3个D.2个
17.葡萄糖酸锌(C12H22O14Zn )中所含人体必需的微量元素是______。

2015年诺贝尔奖获得者屠呦呦发现的青蒿素是一种抗疟疾药,若14.1g青蒿素燃烧生成33.0gCO2和9.9gH2O 则青蒿素中氧的质量与其燃烧消耗氧气的质量之比为________。

23-(5)工业上可利用“铝热反应”焊接钢轨、冶炼难熔金属等,其原理是在高温下用铝将某些金属从其氧化物中置换出来。

若用铝与四氧化三铁反应来制取25.2kg铁,理论上需要消耗铝的质量是多少?
2017
14.2.3 g铁和M的混合物与足量盐酸反应,生成0.2 g氢气,则M可能是
A.镁
B.铝
C.碳
D.钠
20.电解食盐水可得到烧碱、氯气(Cl2)和一种可燃性气体,反应的化学方程式为_________;
配制质量分数为5%的氯化钠溶液,若量取水时俯视量筒刻度读数(其他操作正确),溶液的质量分数______5%(填“大于”、“小于”或“等于”);现有NaCl和NaBr的混合物共2.2 g ,溶于水并加入过量的AgNO3溶液后,生成AgCl和AgBr沉淀共4.75g,则原混合物的含钠元素的质量为________g。

25-(3)将30.9 g 氯酸钾(KClO3)和二氧化锰的固体混合物装入试管中,加热制取氧气,同时生成氯化钾。

待反应完全后,将试管冷却,称量,可以得到21.3 g 固体物质。

请计算原固体混合物中氯酸钾的质量。

2018
14、有Mg、Al、Zn的混合物共7.2g,与足量盐酸反应,生成H2的质量可能是【】
A. 0.2g
B. 0.6g
C. 0.8g
D. 0.9g
20、碱式碳酸铜【Cu2(OH)2CO3】受热分解生成氧化铜、水和二氧化碳,反应的化学方程式
为;充分加热24g含氧化铜的碱式碳酸铜固体,若反应前后固体中铜元素的质量分数之比为3:4,则该反应生成水和二氧化碳的质量之和为g。

(4)为测定某石灰石样品中碳酸钙的质量分数,称取10g石灰石(杂质不参加反应)放入烧杯中,加入100g稀盐酸,二者恰好完全反应,反应后烧杯中剩余物质的总质量为106.7g (气体的溶解忽略不计)。

请计算该样品中碳酸钙的质量分数。

选择、填空中容易出现的计算题解题类型汇总
1.将5g某CO和CO2的混合气体通过足量灼热的氧化铜后,再将气体通入足量澄清石灰水中,得到白色沉淀15g,则该CO和CO2的混合气体中碳元素的质量分数为()
A.36%
B.23%
C.20%
D.17%
2.取镁、碳酸镁组成的固体混合物20.4g,放入325g稀硫酸中,恰好完全反应,得到54g气体和溶质质量分数为20%的溶液,则原固体混合物中镁元素的质量为【】
A.4.8g
B.9.6g
C.13.6g
D.16.8g
3、将6g碳和12g氧气在密闭容器中点燃,完全反应后生成二氧化碳的质量为【】
A.11g B.16. C.18g D.22g
4、取一定质量MgO和CuO的混合物,恰好与20g质量分数为14.6%的稀盐酸完全反应,则原混合物中氧元素的质量是【】
A.0.64g B.0.72g C.1.28g D.1.44g
5、向盛有足量稀盐酸的烧杯中加入4g含钙元素50%(质量分数)的碳酸钙与氧化钙的混合固体中,使之完全反应。

烧杯中最终增加的质量为【】
A.2.8g
B.2g
C.1.2g
D.0.8g
6、向100g氯化钡溶液中加入硫酸溶液至恰好完全反应,过滤后所得溶液的质量等于原氯化钡溶液的质量,则所加硫酸溶液中溶质的质量分数约为【】
A.42%
B.45%
C.53%
D.57%
7、40gCO 和CO2的混合气体通过足量灼热氧化铜,充分反应后气体的质量为44g,则原混合气体中碳元素的质量分数为【】
A .30% B.42.9% C.72.7% D.90.1%
8、C3H6(丙烷)和C3H6O(丙酮)组成的混合物中氧元素的质量分数为30%,则碳元素的质量分数为【】
A.60% B.45% C.30% D.22.5%
9、某碳酸钙和氧化钙组成的混合物中,钙元素的质量分数为60%,将80g该混合物高温煅烧至固体质量不再发生变化,则生成二氧化碳的质量为【】
A12.8g B.`13.2g C.32g D.48g
10、将100gCaCO3质量分数为80%的石灰石样品(杂质不反应,且不含钙元素),高温煅烧一段时间后,冷却,测得剩余固体中钙元素质量分数为41%,则生成的CaO质量约为【】
A.28.0g
B.44.8g
C.56.0g
D.78.0g
11、取铝、铁、锌三种金属的混合物20 g,加入200 g溶质质量分数为14.6%的稀盐酸中充分反应,生成H2的质量不可能是【】
A.0.85 g
B.0.8 g
C.0.75 g
D.0.7 g
1.能源与环境是全球关注的热点问题,能源的开发与合理利用越来越重要。

(1)最清洁的燃料是
(2)某密闭容器中盛有CH4和O2的混合气体,点燃使其充分反应,反应后容器内的物质为CO、CO2和H2O,待容器温度恢复至室温,测得容器内混合气体中氧元素的质量分数为64%。

则反应前CH4和O2的质量比为。

2、一定质量的碳酸钙高温煅烧一段时间后,得到碳酸钙和氧化钙的固体混合物,测得其中碳、氧元素的质量比为1:5,则该固体混合物中碳酸钙和氧化钙的质量比为;能用氧化钙作为干燥剂的原因是
3、丙烷(C3H8)在点燃的条件下,4.4g丙烷与12.8g氧气恰好完全反应,生成7.2g水、4.4g 二氧化碳和a g X,则X的化学式为;该反应的化学式为。

4、密闭容器中盛有乙炔(C2H2)和O2的混合气体,点燃使其充分反应,C2H2全部转化为CO、CO2和H2O,待容器恢复到室温,测得反应前后容器内混合气体中碳元素的质量分数比为32:41,则参加反应O2和生成CO2质量比为;此反应的化学方程式为
5、2.4g甲烷在一定量的氧气中燃烧生成5.4g水,同时得到CO和CO2和混合气体5g,那么CO和CO2混合物中碳元素和氧元素质量比为,该反应的化学方程式为
6、一定条件下,2.3g酒精与4.0 g O2恰好完全反应,生成2.7g水、2.2g二氧化碳和物质X。

则物质X的质量为g;该反应的化学方程式为;为使酒精完全燃烧还可以再增加g氧气。

7、实验室用H2O2溶液和二氧化锰制取氧气的方程式为;某过氧化氢溶液中氢元素和氧元素的质量比为2:17,76g该过氧化氢溶液完全分解,产生的氧气质量为
8、现有6.4g未知物和氧气充分反应,经测定生成4.4g二氧化碳和2.8g一氧化碳和2.7g水,则该未知物中含有的元素是(元素符号),该反映的化学方程式中CO和H2O的化学计量数比是
9、将铜片放在潮湿的空气中一段时间后,其表面会生成铜绿[Cu2(OH)2CO3,该反应为缓慢氧化反应],写出该反应的化学方程式。

取5 g氧化铜和铜的混合物,先加热待完全氧化后,再加入70 g 9.8%的稀硫酸恰好完全反应,则固体混合物中铜单质的质量分数为。

相关文档
最新文档