数学建模竞赛PPT资料24页

合集下载

数学建模竞赛培训与数学建模报告PPT课件

数学建模竞赛培训与数学建模报告PPT课件

36 40
x1 , x 2 , x 3 0
矩阵形式:
max cTx s.t. Ax≤b
x≥0
c T [4, 3, 2], x T [ x1, x2 , x3 ]
2 3 1 34
A
3
2
1
.5
,
b
3
6
3 2 5 4 0
30
MATLAB软件求解
Matlab中求解线性规划的命令为: linprog, 解决的线性规 划的标准格式为:
min cTx s.t. A·x <= b
Aeq·x = beq VLB≤x≤VUB 其中,A, b, c, x, Aeq, beq, VLB, VUB等均表示矩阵,特别 b, c, x, beq, VLB, VUB为列矩阵。
31
命令linprog的基本调用格式
x = linprog(c, A, b, Aeq,beq ,VLB, VUB)
案例:节水洗衣机
仿真
II. 结果
1. 表 2 是溶解率 Q 0.99 时不同洗衣轮数下的最少 用水量和每一轮的最优用水量(各轮的最优用水 量恰好相等).
2. 表 3 是不同溶解率 Q 值下的最优洗衣轮数, 最少 总用水量和每一轮的最优用水量(各轮的最优用 水量恰好相等).
案例:节水洗衣机
表2 不同洗衣轮数下的最少用水量和每一轮的最优用水量
k=n-1
xn为衣服上的最
终 脏物量
案例:节水洗衣机
模型建立
1. 溶解特性和动态方程
分析:在第k轮漂洗之后和脱水之前,第k-1 轮脱水之后的脏物量xk已变成两部分:
x k p k q k ,k 0 , 1 ,2 ,,n - 1 ( 1 )

数学建模讲座PPT_ppt课件

数学建模讲座PPT_ppt课件
数学建模讲座 PPT
讲座内容
关于数学建模
80年代以来在发达国家兴起并引起巨大凡响的 数学建模竞赛是适应世界性高科技发展及人才需求 而出现的新生事物。 在国家教育部高教司的领导和支持下,提出在 全国普通高校开展数学建模竞赛,旨在“培养学生 解决时间问题的能力和创造精神,全面提高学生的 综合素质”。
不是开玩笑,这就是数学建模。从不同度思考一个 问题,想尽所有的可能,正所谓智者千虑,绝无一 失,这才是数学建模的高手。
数学建模的意义
1 体现了数学的应用价值 2 有利于学生理论联系实际能力的培养 3 有利于培养学生的科研素养 4 有利于增加同学参加课外学术活动的 经验并在评优时更有竞争力。
数学建模的乐趣
论 文
数学建模论文的一般结构
• • • • • • • • • 摘要 问题重述与分析 问题假设 符号说明 模型建立与求解 模型检验 结果分析 模型的进一步讨论 模 问题的重述 基本假设与符号说明 问题的分析与模型的准备
论文的模块设计
模型的建立 模型的求解 模型的检验 模型的灵敏度与稳定性分析 模型的科学性及现实意义 模型的使用说明 模型的进一步讨论与改进 模型评价与推广
1.可以认识一群人; 2.可以消磨一下无聊的时光; 3.可以学会喝咖啡,提高生活品味;
获奖后: 1.加个奖励分拿个奖学金; 2.加个分,保个研; 3.各种其他好处。
数学建模需要能力????
1)分析题意的能力
2)超找资料的能力 3)建立数学模型的能力 4)问题的转化能力 5)现学现用的能力 6)编程能力 7)论文写作能力
论文的模块设计
参考文献 附录
数学建模竞赛网上资源
• 中国数学建模网: • 数学中国网: • 中国大学生数学建模竞赛网:

《数学建模》PPT课件

《数学建模》PPT课件

( x2
x1)
f
f (x2 ) (x2 ) f
2 1 ( x1) 22
1
f
( x1 )
f
(x2 )
3
f
( x1 ) x1
f (x2 ) x2
2 (12 f (x1)f (x2 ))1/2
如函数的导数容易求得,一般首先考虑使用三次插值
法,因为它具有较高效率。对于只需要计算函数值的方
法中,二次插值法是一个很好的方法,它的收敛速度较
优化模型
(2)多项式近似法 该法用于目标函数比较复杂的情 况。此时寻找一个与它近似的函数代替目标函数,并用 近似函数的极小点作为原函数极小点的近似。常用的近 似函数为二次和三次多项式。
二次内插涉及到形如下式的二次函数数据拟合问题:
mq() a2 b c
其中步长极值为:
b
2a
完整版课件ppt
求解单变量最优化问题的方法有很多种,根据目标函 数是否需要求导,可以分为两类,即直接法和间接法。 直接法不需要对目标函数进行求导,而间接法则需要用 到目标函数的导数。
完整版课件ppt
4
优化模型
1、直接法 常用的一维直接法主要有消去法和近似法两种: (1)消去法 该法利用单峰函数具有的消去性质进行
反复迭代,逐渐消去不包含极小点的区间,缩小搜索区 间,直到搜索区间缩小到给定允许精度为止。一种典型 的消去法为黄金分割法(Golden Section Search)。黄金 分割法的基本思想是在单峰区间内适当插入两点,将区 间分为三段,然后通过比较这两点函数值的大小来确定 是删去最左段还是最右段,或同时删去左右两段保留中 间段。重复该过程使区间无限缩小。插入点的位置放在 区间的黄金分割点及其对称点上,所以该法称为黄金分 割法。该法的优点是完整算版课法件p简pt 单,效率较高,稳定性好5 。

数学建模竞赛课件---微分方程模型

数学建模竞赛课件---微分方程模型
微分方程在生物学、物理学、化学和经济学等领域都有广泛的应用。它们可以用于模拟生物生长、物体 运动、热传导和经济增长等现象。
案例分析
通过几个具体案例,展示微分方程在建模竞赛中的应用。包括鱼的增长模型、自由落体问题、热传导问 题和稳定的经济增长模型。
结语
微分方程是数学建模竞赛中必不可少的工具,对于解决复杂问题具有重要作 用。通过系统学习和实践,可以掌握微分方程的解法和应用。
一阶微分方程
一阶微分方程是最基本的微分方程类型之一,包括可分离变量、齐次线性、 一阶线性和变量分离法等。掌握这些求解方法可以解决许多实际问题。
高阶微分方程
高阶微分方程是一阶微分方程的延伸,包括齐次线性、非齐次线性、常系数 和变系数等类型。熟练掌握这些求解方法可以应对更加复杂的建模问题。
微分方程在建模中的应用
数学建模竞赛课件---微分 方程模型
本课件介绍微分方程模型在数学建模竞赛中的重要性和应用。内容包括微分 方程的定义、分类、解法,以及在生物学、物理学、是数学中的重要工具,可用于描述自然现象和科学问题。它们分为 常微分方程和偏微分方程,并可以按类型进行分类。了解微分方程的解法对 于建模竞赛至关重要。

全国大学生数学建模竞赛简介PPT课件

全国大学生数学建模竞赛简介PPT课件

194
35
225
39
224
38
262
46
223
43
队数
总数
中国
211
4
235
6
260
21
292
26
259
40
315
84
320
84
393
115
409
107
472
138
479
155
美国大学生数学建模竞赛
• 1985年开始举办数学建模竞赛(MCM), 1989年我国 (我校)学生开始参加。
• 1999年开始增办交叉学科竞赛(ICM).
竞赛宗旨
竞赛事项
❖ 答卷按省(市、自治区)和全国两级评奖; ❖ 每年赛题、优秀答卷及获奖名单刊登于次年
“工程数学学报”第1期; ❖ 全国组委会网址:
竞赛的社会影响不断扩大
❖ 99年的竞赛命名为“99’创维杯全国大学生数学建 模竞赛”;
❖ 2000年的竞赛命名为“2000网易杯全国大学生数 学建模竞赛”;
❖ A,C 为连续型题目; B,D为离散型题目
评奖标准
❖ 假设的合理性、建模的创造性、结果的正确 性和文字表述的清晰程度。
竞赛意义
大学阶段难得的一次近似于“真刀真枪” 的训练,模拟了毕业后工作时的情况,既丰 富、活跃了广大同学的课外生活,也为优秀 学生脱颖而出创造了条件.
竞赛意义
❖ 数学建模竞赛培养学生创新精神,提高 学生综合素质;
年 2000 2001 2002 2003 2004 2005
参赛国数 9 11 11 8 9 9
参赛总队数 495 579 628 638 742 808

数学建模PPT课件

数学建模PPT课件
“树上有十只鸟,开枪打死一只,还剩几只?”
二、相关的数学基础
• 线性规划 • 概率统计 • 图论 • 常微分方程 • 最优化理论
三、如何组队及合作
• 根据数学建模竞赛章程,三人组成一队,这 三人中必须一人数学基础较好,一人应用数学 软件(如Matlab,lindo,maple等)和编程(如 c,Matlab,vc++等)的能力较强,一人科技论文 写作的水平较好。科技论文的写作要求整篇论 文的结构严谨,语言要有逻辑性,用词要准确。
2
• 它要用到各方面的综合的知识,但还不限于 此.参赛选手不只是要有各方面的知识,还要 驾驭这些知识,应用这些知识处理实际问题的 能力。知识是无止境的,还必须有善于获得新 的知识的能力。总之,数学建模竟赛,既要比 赛各方面的综合知识,也要比赛各方面的综合 能力。它的特点就是综合,它的优点也是综合。 在这个意义上看,它与任何一个学科领域内的 纯知识竞赛都不相同的特点就是不纯,它的优 点也就是不纯,综合就是不纯。
• 三人之间要能够配合得起来。若三人之间配 合不好,会降低效率,导致整个建模的失败。
• 如果可能的话,最好是数学好的懂得编程的 一些知识,编程好的了解建模,搞论文写作也
5
• 要了解建模,这样会合作得更好。因为 数学好的在建立模型方案时会考虑到编 程的便利性,以利于编程;编程好的能 够很好地理解模型,论文写作的能够更 好、更完全地阐述模型。否则会出现建 立的模型不利于编程,程序不能完全概 括模型,论文写作时会漏掉一些不经意 的东西。
• 于处理的是静态的独立数据,故称为数理统计 方法。
• 4. 时序分析法--处理的是动态的相关数据,又 称为过程统计方法。
• 三、仿真和其他方法
• 1. 计算机仿真(模拟)--实质上是统计估计方 法,等效于抽样试验。

数学建模简介PPT课件

数学建模简介PPT课件
• 利用统计数据用最小二乘法作拟合
例:美国人口数据(单位~百万)
1790 1800 1810 1820 1830 …… 1950 1960 1970 1980 3.9 5.3 7.2 9.6 12.9 …… 150.7 179.3 204.0 226.5
r=0.2072, xm=464
• 专家估计
模型检验
x(t) ~时刻t人口
r ~ 人口(相对)增长率(常数)
x(t t) x(t) r(tx ) t x(t)xert 0
dxrx, dt
x(0)x0
x(t)x0(er)t x0(1r)t
随着时间增加人口按指数规律无限增长
指数增长模型的应用及局限性
• 与19世纪以前欧洲一些地区人口统计数据吻合 • 适用于19世纪后迁往加拿大的欧洲移民后代 • 可用于短期人口增长预测 • 不符合19世纪后多数地区人口增长规律 • 不能预测较长期的人口增长过程 19世纪后人口数据 人口增长率r不是常数(逐渐下降)
3
法 允许状态S ~ 10个 点
允许决策D ~ 移动1或2格; 2
k奇,左下移; k偶,右上移.
d1, d11给出安全渡河方案
1 d11
s1
d1
评注和思考
0sn+1 1
2
3x
规格化方法, 易于推广 考虑4名商人各带一随从的情况
案例二:如何预报人口的增长
背景
世界人口增长概况
年 1625 1830 1930 1960 1974 1987 1999 人口(亿) 5 10 20 30 40 50 60
xm
r(x) r(1 x ) xm
阻滞增长模型 (Logistic模型)
dx rx dt

全国大学生数学建模竞赛培训-PPT课件

全国大学生数学建模竞赛培训-PPT课件

三种主要需求:换乘次数,费用,时间
尽可能准确理解题意,明确需要解决哪些问题
分析赛题——问题1 (1)关于模型 ① 这是什么样的数学问题? 1、仅考虑公汽线路,给出任意两公汽站点之间线路选择问题的 一般数学模型与算法。并根据附录数据,利用你们的模型与算法, 优化问题——最佳路线。 求出以下6 对起始站→终到站之间的最佳路线(要有清晰的评价说明)。 ② 至少有哪些需求、哪些目标? (1) S3359→S1828 ;(2) S1557→S0481; (3) S0971→S0485
三个目标各自独立的优化问题,三个独立规划: 最少换乘次数规划,最少行程费用规划,最短行程路程规划;
④ 三个独立的优化问题,最优解不唯一,是否需要 考虑其余目标?其余目标的优先次序如何?
可能的模型方案:三个目标的各种可能排列 ������ 换乘次数第一,其次费用,再次时间; ������ 换乘次数第一,其次时间,再次费用; ������ 费用第一,其次换乘次数,再次时间; ������ 费用第一,其次时间,再次换乘次数; ������ 时间第一,其次换乘次数,再次费用; ������ 时间第一,其次费用,再次换乘次数
分析赛题——明确意图
意图:定量评估2019年上海世博会的影响力
注意:本题是一道比较开放的题目,对问题的理解和所 关注的侧 面(角度)的不同,会导致模型的多样性。
关键:影响力的定义,即因素的选定。
容易考虑到的影响力包括经济、旅游、社会、文化等多个方面也可 以是一个较小的侧面(比如表演、自愿者、摄影)。 世博会在经济方面 考虑到3天时间不太可能进行一个全面的影响力分析,如何恰当地 的影响力 选择一个影响力的侧面极其相关因素是解题的基本前提。 要求有明确具体的定义,要有合理的论证,要有数据支撑。

数学建模课件讲课资料

数学建模课件讲课资料
• 数学建模将各种知识综合应用于解决实际问 题中,是培养和提高同学们应用所学知识分析问 题、解决问题的能力的必备手段之一。
• 从一组数据中可以看出它的蓬勃发展之势:从 1994年196个学校的867支参赛队,到2000年 517个学校的3210支参赛队,再到2005年795个 学校的8492支参赛队,参赛队壮大了近10倍, 2005年竞赛的选手达到25000多名。 2006年竞 赛的选手达到25000多名。
• (2)模型假设:根据实际对象的特征和建 模的目的,对问题进行必要的简化,并用 精确的语言提出一些恰当的假设。
• (3)模型建立:在假设的基础上,利用适 当的数学工具来刻划各变量之间的数学关 系,建立相应的数学结构。(尽量用简单的 数学工具)
• (4)模型求解:利用获取的数据资料,对模 型的所有参数做出计算(估计)。
y
y0 y=f(x)
0
x0
P(xm ,ym )
P(xm,ym) x=g(y)
x
甲方的被动防御也会使双方军备竞赛升级。
模型解释
• 甲方将固定核导弹基地改进为可移动发射架
乙安全线y=f(x)不变 y 甲方残存率变大
威慑值x 0和交换比不变
x减小,甲安全线
y0
x=g(y)向y轴靠近
0
P(xm,ym)
x=2y
乙方残存率 s ~甲方一枚导弹攻击乙方一个 基地,基地未被摧毁的概率。
甲方以 x攻击乙方 y个基地中的 x个,
sx个基地未摧毁,y–x个基地未攻击。
y0=sx+y–x
y= y0+(1-s)x
y0=sy
y=y0/s
乙的x–y个被攻击2次,s2(x–y)个未摧毁;
y –(x–y)=2y– x个被攻击1次,s(2y– x )个未摧毁

数学建模竞赛集训精品PPT课件

数学建模竞赛集训精品PPT课件
9.模型评价 (1)优点突出,缺点不回避。 (2)推广或改进方向 10.参考文献
参考文献要书写规范,可参考专业学术杂志。 11.附录
(1)计算程序、详细的结果,详细的数据表格,可 在此列出。但不要错,错的宁可不列。
(2)主要结果数据,应在正文中列出,不怕重复。
8

五、检查论文主要把握三点: (1) 模型的正确性、合理性、创新性
1、队员要有积极的合作及吃苦精神。 2、相互取长补短,优势互补。
如:一个思维敏捷,数学基础好, 一个计算机水平高, 一个写作能力强
3、一个优秀的队长。
2
二、充分重视竞赛论文的质量。 1. 评定参赛队的成绩好坏、高低,获奖级别,竞
赛论文是唯一依据。 2. 答卷是竞赛活动的成绩结晶的书面形式。
3. 写好答卷的训练,是科技写作的一种基本训练。 三、论文评选标准:
数学建模的创新可体现在: ▲建模中,模型本身,简化的好方法、好策略等; ▲模型求解中; ▲结果表示、分析、检验,模型检验; ▲推广部分。 (2) 结果的正确性、合理性; (3) 文字表述清晰,分析精辟,摘要精彩。
9
六、建模竞赛论文需再强调的几点:
1、严格按照论文要求的格式;
2、论文摘要极为重要; 3、语言流畅,表达清晰准确;
5
6、模型的建立(由简单到复杂可建多个模型);
建立数学模型应注意以下几点
(1) 分清变量类型,恰当使用数学工具。
(2)抓住问题本质,简化变量之间的关系。
(3) 建立数学模型时要有严密的数学推理。 (4)用数学方法建模,模型要明确,要有数学表 达式。
7、模型求解
(1)重要结论需要建立数学命题时,命题叙述要 符合数学命题的表述规范,尽可能论证严密;

数学建模培训PPT课件

数学建模培训PPT课件
第15页/共62页
数学建模作为用数学方法解决实际问题的 第一步,越来越受到人们的重视。
第16页/共62页
数学建模的一般步骤
实体 信息
假设
建模


应用 验证 分析
第17页/共62页
数学模型的分类
分类标准
具体类别
对某个实际问题 了解的深入程度
白箱模型、灰箱模型、黑箱模型
模型中变量的特 连续模型、离散模型;确定性模型、随
第28页/共62页
建模:
x k • :第 次渡河前此岸的商人数 k
yk:第 k次渡河前此岸的随从数
xk , yk 0,1, 2,3; k 1, 2, sk (xk , yk ) :过程的状态
S :允许状态的集合
S {(x, y) | x 0, y 0,1,2,3; x 3, y 0,1,2,3; x y 1,2}
x=(x1, …, xn)T: 决策变量 f (x): 目标函数, hi(x), gp(x): 约束函数
第38页/共62页
数学规划的一般模型
• min f (x) s.t. hi(x)=0, i=1, …, m gp(x)≥0, p=1, …, t
(MP)
若f(x), hi(x)( i=1, …, m), gp(x)( p=1, …, t) 均为线性函数,则问题(MP)就被称为线
相遇时他已步行了多少分钟?
请思考:本题解答中隐含了哪些假设条 件?
5:30
5分钟 5:35
会合点
相遇点

第35页/共62页
预备技能
• 数学知识
分析、代数、几何、概率、统计、优化、 方程…
软件使用
Matlab, Mathematica, Maple, Lindo, Lingo…
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2 竞赛形式、规则和纪律
❖ 竞赛期间参赛队员可以使用各种图书资料、计算机 和软件,在国际互联网上浏览,但不得与队外任何 人(包括在网上)讨论。
❖ 竞赛开始后,赛题将公布在指定的网址供参赛队下 载,参赛队在规定时间内完成答卷,并准时交卷。
❖ 参赛院校应责成有关职能部门负责竞赛的组织和纪 律监督工作,保证本校竞赛的规范性和公正性。
1.1 竞赛内容
❖ 竞赛题目一般来源于工程技术和管理科学等方 面经过适当简化加工的实际问题,不要求参赛者预 先掌握深入的专门知识,只需要学过高等学校的数 学课程。题目有较大的灵活性供参赛者发挥其创造 能力。参赛者应根据题目要求,完成一篇包括模型 的假设、建立和求解、计算方法的设计和计算机实 现、结果的分析和检验、模型的改进等方面的论文 (即答卷)。竞赛评奖以假设的合理性、建模的创 造性、结果的正确性和文字表述的清晰程度为主要 标准。
展趋势,常采用数理统计或模拟的方法 (3)优化管理、决策或者控制事物,需合理地定义
可量化的评价指标及评价方法.
4 建立模型
• 建模过程中的几个要点: 模型的整体设计、合理的假设、建立数学结构、 建立数学表达式
• 数学模型最好明确、合理、简洁,具有一般性; 有些论文不给出明确的模型,只是就赛题所给的 特殊情况,用“凑”的方法给出结果,虽然结果 大致对,但缺乏一般性,不是数学建模的正确思 路
• 要有创新,但要合理。 • 避免出现罗列一系列模型,又不作评价的现象。 建议: 尽可能多地了解数学工具,各种数学模型
5 模型求解——最重要的部分之一
• 算法设计或选择, 算法思想依据,步骤;
• 引用或建立必要的数学命题和定理;
• 在不能求出精确解的情况下,需要给出不只一种 解法(算法),并进行测试比较,给出评价。为 了说明你的算法好,你需要有一个参照与之比较, 你可以从最简单、最易得到的算法开始,逐步改 进直到得到你的最好解。
8. 参考文献
• 列出论文中确实应用了其中的方法或结论的 文献;不要列出论文中没有引用的文献。
• 正文中要标出后面的文献序号
3.1 第三人赛前任务
❖ 学会熟练使用搜索引擎,google搜索攻略见资料。 ❖ 赛前每天去数学中国网站论坛刷分,防止比赛期间
下载资料时无体力。注意不要太疯狂,以免被封。 ❖ 第三人数学要好,模型建立的各种方案需要你来提
1.2 竞赛形式、规则和纪律
❖ 全国统一竞赛题目,采取通讯竞赛方式,以相对集 中的形式进行。
❖ 竞赛每年举办一次,一般在某个周末前后的三天内 举行。
❖ 大学生以队为单位参赛,每队3人(须属于同一所学 校),专业不限。竞赛分本科、专科两组进行,本 科生参加本科组竞赛,专科生参加专科组竞赛(也 可参加本科组竞赛),研究生不得参加。每队可设 一名指导教师(或教师组),从事赛前辅导和参赛 的组织工作,但在竞赛期间必须回避参赛队员,不 得进行指导或参与讨论,否则按违反纪律处理。
出。因此,基本数学方法,工具你必须熟悉。还不 熟悉的,现在找书来学习。如时间序列,微分方程, 模糊数学,运筹学等。尽量都看看。 ❖ 熟悉图书馆的查借阅流程,比赛期间可能需要常跑 图书馆。 ❖ 检索培训,网址madio/thread-93363-1-1.html

3.2 第三人比赛任务
❖ 写作是在竞赛中取得好成绩的基石,编程几乎是同 样的重要,但是还有许多其它重要的工作。为了让 团队获胜,所有的3个人必须全力以赴,因此,第三 人必须寻找一些事情去做。
1. 数学建模简介
❖ 中国大学生数学建模竞赛是全国高校规模最大 的课外科技活动之一。该竞赛每年9月(一般在中旬 某个周五8:00至下周一8:00,连续72小时)举行, 竞赛面向全国大专院校的学生,不分专业(但竞赛 分本科、专科两组,本科组竞赛所有大学生均可参 加,专科组竞赛只有专科生(包括高职、高专生) 可以参加)。
• 通常对于离散问题,最简单的解可能只是做随机 选择,然后用你的算法得到的解与它比较。
6 结果表示、结果分析、模型检验
• 结果表示要集中,一目了然,直观,便于比较; • 结果分析不能少,从计算结果可得出什么结论 ; • 模型检验特别重要。
7 优缺点
突出优点,但弱点也不能回避。在写模型弱 点时,要对照你建立模型时所作的假设,模型 有哪些局限和适用条件。陈述要完整,前后一 致。
2 问题重述
• 重述问题,用自己的语言陈述你将要做的工作, 模型的特点.
• 根据自己的理解,用自己的语言清楚简明地阐述 问题的背景、条件和要求。
3 模型假设
• 假设要合理,在建模时会用到,不要罗列大量无 关紧要的假设。 有用的假设主要包括两种:与问题相关的特别信 息缺乏且在规定的时间内得不到,因此必须做出 假设,才能继续。另外就是为了应用你熟悉的数 学或为了避免在给定的时间不能完成你的模型而 简化问题的细节所作出的简化假设,
• 合理假设的作用:简化问题,明确问题,限定模 型的适用范围
4 建立模型
• 模型的主要类型: 初等模型、微分方程模型、差分方程模型、概率 模型、统计预测模型、优化模型、决策模型、排 队模型、图论模型等
• 几类常见建模目的: (1)描述或解释现实世界的各类现象,常采用机理
分析的方法,探索研究对象的内在规律性 (2)预测感兴趣的事件是否会发生,或者事物的发
2.竞赛论文剖析
1 摘要
• 特色和创新之处必须在这里强调(稍夸张地)。 • 长度:理想长度很难说,必须包括上述要点,但
简洁也非常重要。一般掌握在半页至2/3页左右。 • 是文章最重要的部分。要保证准确、简明、条理
清晰,突出特色和创新点。
注:评阅时将首先根据摘要和论文整体结构及概貌对论文优劣 进行初步筛选。
❖ 第一个大的工作就是资料检索。找到尽可能多的有 关于问题的资料,尽可能多的解决问题的方法。 Google是个好工具。
❖ 为了能够在竞赛中应用,资料检索通常是非常具体 的。从数学书籍中挖掘出一些能够在计算机上应用 的东西。到所知的数值分析算法库,寻找你能够用 到的东西。
❖ 应该参与写作。作为论文撰写者的一个辅助,确保 每一件事都非常清楚。
相关文档
最新文档