框架结构内力与位移计算

合集下载

3框架内力与位移计算4(D值法)

3框架内力与位移计算4(D值法)

作业题:某三层两跨框架,跨度及层高、尺寸如图,柱截面积尺寸300×350,左跨梁截面为250×500,
右跨梁截面为250×400,现浇梁柱及楼面,采用C30钢筋混凝土(Ec=3.0×104MPa),试用D值法求其 内力(M图)。 0.8kN 3.60m
J
1.2kN
K
L
1.5kN 4.50m
D A
7.80m
第三章 框架结构内力与位移计算
----D值法
水平荷载作用下的改进反弯点法——D值法
当框架的高度较大、层数较多时,柱子的截面尺寸一般较大,这时梁、柱的线刚度之比往往要小于3, 反弯点法不再适用。如果仍采用类似反弯点的方法进行框架内力计算,就必须对反弯点法进行改进— —改进反弯点(D值)法。 日本武藤清教授在分析多层框架的受力特点和变形特点的基础上作了一些假定,经过力学分析,提出了 用修正柱的抗侧移刚度和调整反弯点高度的方法计算水平荷载下框架的内力。修正后的柱侧移刚度用D表 示,故称为D值法。
反弯点高度比
图给出了柱反弯 点位置和根据柱 剪力及反弯点位 置求出的柱端弯 矩、根据结点平 衡求出的梁端弯 矩。根据梁端弯 矩可进一步求出 梁剪力(图中未 给出)。
作业练习
1.用反弯点法和D值法计算的刚度系数d和D值物理意义是什么?什么区别?为什么?二者在基本假定 上有什么不同?分别在什么情况下使用? 2.影响水平荷载下柱反弯点位置的主要因素是什么? 框架顶层和底层柱反弯点位置与中部各层反弯点位 置相比,有什么变化? 3.D值法的计算步骤是什么?边柱和中柱,上层柱和底层柱D值的计算公式有是区别? 4.请归纳一下D值法与反弯点法都作了哪些假定?有哪些是相同的?为什么说二者都是近似方法?D值法 比反弯点法有哪些改进?
E

横向水平荷载作用下框架结构的内力和侧移计算

横向水平荷载作用下框架结构的内力和侧移计算

结构等效总重力荷载
F
G
G
G
G3
质点i的水平地震作用Fi 若: 不考虑顶部附加地震作用 若: 考虑顶部附加地震作用 查表1.19
(3)判别
楼层位移
01
弹性角位移
02
层间位移 查表1.21 钢筋混凝土框架1/550
节点平衡
左地震M图
方向:
01
剪力:使物体顺时针转为正 轴力:压力为正
02
左地震剪力、轴力图
03
梁端剪力、柱轴力
(二)横向风荷载作用下框架结构内力和侧移计算 1、风荷载标准值 :风振系数 :体型系数 :高度变化系数,表1.11 :基本风压 0.65 压 吸 ……
03
3、水平地震作用下的位移验算
4、水平地震作用下框架内力计算
D值法(改进反弯点法)
柱端弯矩:
--标准反弯点高度比(表2.4) --上、下层梁线刚度比修正系数(表2.6) --上层层高变化的修正值(表2.7)底层 --下层层高变化的修正值(表2.7)二层 --本层层高
梁端弯矩:
柱左侧受拉为正
以梁线刚度分配
六、横向水平荷载作用下框架结构的内力和侧移计算
单击添加副标题
单击此处添加文本具体内容,简明扼要地阐述你的观点
(一)横向水平地震作用下框架结构的内力和侧移计算 1、横向自震周期(基本自震周期)T1 Gi 为计算单元范围内各层楼面上的重力荷载代表值及上下各半层的墙柱等重量 注:突出屋面部分面<30%屋面面积,则按附属结构计算;>30%按一层计算 计算时,先将突出屋面部分重力荷载折算到顶层: Ge=Gn×(1+3h/2H)
自振周期计算公式:
考虑非承重墙影响的折减系数,框架0.6~0.7; 计算结构基本自振周期用的结构顶点假想位移 对于带屋面局部突出间的房屋,应取主体结构顶点的位移。

框架结构内力位移计算算例

框架结构内力位移计算算例

结构力学课程大作业——多层多跨框架结构内力及位移计算班级学号姓名华中科技大学土木工程与力学学院年月日结构力学课程大作业——多层多跨框架结构内力与位移计算一、任务1、计算多层多跨框架结构在荷载作用下的弯矩和结点位移。

2、计算方法要求:(1)用迭代法、D 值法、反弯点法及求解器计算框架结构在水平荷载作用下的弯矩,并用迭代法的结果计算其结点位移。

(2)用迭代法、分层法、二次力矩分配法及求解器计算框架结构在竖向荷载作用下的弯矩,并用迭代法的结果计算其结点位移。

3、分析近似法产生误差的原因。

二、计算简图及基本数据本组计算的结构其计算简图如图1所示,基本数据如下。

混凝土弹性模量:723.010/h E kN m =⨯构件尺寸:柱:底 层:23040b h cm ⨯=⨯其它层:23030b h cm ⨯=⨯ 梁:边 梁:22560b h cm ⨯=⨯中间梁:22530b h cm ⨯=⨯ 水平荷载:'15P F kN =,30P F kN =(见图2)竖向均布恒载:17/q kN m 顶= 21/q kN m 其它=(见图8) 图1各构件的线刚度:EIi L =,其中312b h I ⨯=边 梁:33410.250.6 4.51012I m -⨯==⨯F 7311 3.010 4.510225006EI i kN m L -⨯⨯⨯===⋅ 中间梁: 34420.250.3 5.6251012I m -⨯==⨯ 7422 3.010 5.6251067502.5EI i kN m L -⨯⨯⨯===⋅ 底层柱: 33440.30.4 1.61012I m -⨯==⨯ 7344 3.010 1.61096005EI i kN m L -⨯⨯⨯===⋅ 其它层柱:34430.30.3 6.751012I m -⨯==⨯ 7433 3.010 6.75106136.43.3EI i kN m L -⨯⨯⨯===⋅ 三、水平荷载作用下的计算 (一)用迭代法计算1、计算各杆的转角分配系数ikμ' 转角分配系数计算公式:()2ikikiki i i μ'=-∑结点“1”:12225000.3932(6136.422500)μ'=-=-⨯+156136.40.1072(6136.422500)μ'=-=-⨯+结点“2”:21225000.3182(67506136.422500)μ'=-=-⨯++图2232(67506136.422500)⨯++266136.40.0872(67506136.422500)μ'=-=-⨯++由于该结构是对称结构,因此结点“3”的分配系数应该等于结点“2”的,结点“4”的分配系数应该与结点“1”的相等,所以本题只需计算1、2、5、6、9、10、13、14、17、18结点的分配系数。

框架结构的内力和位移计算

框架结构的内力和位移计算

H
(4.21)
(10.53)
E
(4.84)
(括号内数字为线刚度相对值)
A
(i=EI/l)
B
8.00m
2021/4/10
(8.21)
I
(2.00) q=2.4kN/m
(10.77)
F
(5.00)
C
6.00m
19
4.40m
3.80m
水平荷载作用下的近似计算——反弯点法
框架所受水平荷载主要是风力和地震作用。将在每个楼层上 的总风力和总地震作用分配给各个框架,将结构分析简化为平面 框架分析。 • 受力和变形特点 • 假定条件 • 计算方法 • 需注意的问题
3
2
2i12z1
4i12z1 1/2
1
0 3 i13 z1
4i15z1
i14 z1 -1
4
i14 z1
1/2
5
2i15z1
11
2021/4/10
弯矩分配法注意事项
12
2021/4/10
例题
G
(4.21)
D
(7.11)
q=2.8kN/m
(7.63) q=3.8kN/m
H
(4.21)
(9.53)
E
基本假定
①假定同层各节点转角相同; 承认节点转角的存在,但是为了计算的方便,假定同层各节点转角相同。 ②假定同层各节点的侧移相同。这一假定,实际上忽略了框架梁的轴向变形。这与实际结构差别不大。
优点: 1、计算步骤与反弯点法相同,计算简便实用。 2、计算精度比反弯点法高。 缺点: 1、忽略柱的轴向变形,随结构高度增大,误差增大。 2、非规则框架中使用效果不好。
点角位移 ,0 各节点只有侧移,同层各节点 水平位移相等; • 底层柱反弯点在距底端2/3h处,上层各柱反 弯点在柱高1/2处。

框架和剪力墙结构的内力与位移计算

框架和剪力墙结构的内力与位移计算

框架和剪力墙结构的内力与位移计算在建筑结构设计中,框架和剪力墙结构是一种常见且重要的结构形式。

理解和准确计算这种结构的内力与位移,对于确保建筑物的安全性、稳定性以及使用性能至关重要。

框架结构主要由梁和柱组成,通过节点连接形成空间受力体系。

在承受水平荷载时,框架结构的变形以剪切型为主,即层间位移由下至上逐渐增大。

而剪力墙结构则是由一系列的钢筋混凝土墙板组成,能够有效地抵抗水平荷载,其变形以弯曲型为主,即顶部位移较大。

当框架和剪力墙共同工作时,其内力和位移的计算就变得较为复杂。

首先,我们来探讨内力的计算。

内力包括弯矩、剪力和轴力。

在水平荷载作用下,框架和剪力墙所承担的内力会根据它们的刚度比例进行分配。

对于框架部分,其内力计算通常采用 D 值法。

D 值法考虑了梁柱线刚度比、上下层横梁线刚度比以及层高变化等因素对框架柱抗侧刚度的影响。

通过计算得到框架柱的抗侧刚度后,再根据水平荷载的大小和分布,就可以计算出框架柱和框架梁的内力。

剪力墙的内力计算则相对复杂一些。

一般来说,可以采用等效抗弯刚度法或者连续连杆法。

等效抗弯刚度法将剪力墙等效为一个悬臂梁,通过计算其等效抗弯刚度来确定内力。

连续连杆法则是将剪力墙视为一系列连续的连杆,通过建立微分方程来求解内力。

在计算框架和剪力墙结构的位移时,需要分别考虑弯曲变形和剪切变形的影响。

对于框架结构,由于其剪切变形较大,需要同时考虑梁柱的弯曲变形和剪切变形。

而剪力墙结构主要是弯曲变形,其位移计算可以基于材料力学中的弯曲理论。

在实际工程中,为了更准确地计算框架和剪力墙结构的内力和位移,通常会借助计算机软件进行分析。

这些软件基于有限元法等数值方法,能够模拟结构在各种荷载作用下的响应。

然而,软件计算结果也并非绝对准确,工程师还需要根据自己的经验和判断对结果进行分析和校核。

例如,在一些特殊的情况下,软件可能无法准确考虑结构的非线性行为或者一些复杂的边界条件。

另外,在设计过程中,还需要考虑一些其他因素对内力和位移的影响。

框架施工图—内力分析及侧移计算(建筑构造)

框架施工图—内力分析及侧移计算(建筑构造)

(2) 侧移刚度d的确定 侧移刚度d表示柱上下两端有单位侧移时在柱中产生的 剪力。根据假定(1),梁柱线刚度之比无穷大,则各 柱端转角为零,由结构力学的两端无转角但有单位水平 位移时杆件的杆端剪力方程,柱的侧移刚度d可写成:
V 12 i
d= =
c
D
h2
EI
i=
c
h
内力分析及侧移计算
(3)同层各柱剪力的确定
(5
柱端弯矩确定以后,根据节点平衡条件可确定梁的弯矩。
对于边柱节点(图(a)),有Mb=Mc1+Mc2 对于中柱节点(图1(b))
Mb1=ib1/(ib1+ib2)(Mc1+Mc2 Mb2=ib2/(ib1+ib2)(Mc1+Mc2)
内力分析及侧移计算
如图所示,从框架中任取一柱AB,根据转角位移方
内力分析及侧移计算
分层法
认为某层框架梁上的荷载只给本层梁及与本层梁相连的框架产 生剪力和弯矩
进行弯矩分配后叠加,叠加后的不平衡弯矩再分配但不传递
内力分析及侧移计算
2 框架在水平荷载作用下内力的近似计算——反弯点法和D值法
A 反弯点法 反弯点法基本假定: (1) 在进行各柱间的剪力分配时,假定梁与柱的线
(2) 在确定各柱的反弯点位置时,假定除底层柱以
多层多跨框架所受水平荷载主要是风荷载及水平 地震作用。一般可简化为作用在框架节点上的集中 荷载,其弯矩图如图(a)所示。它的特点是,各杆的 弯矩图都是直线形,每杆都有一个零弯矩点,称为 反弯点。框架在水平荷载作用下的变形情况如图(b) 所示
内力分析及侧移计算
程,柱两端剪力为:
V
=
12ic h2
6ic h

第七章--风荷载作用下的内力和位移计算

第七章--风荷载作用下的内力和位移计算

第七章--风荷载作用下的内力和位移计算第7章 风荷载作用下的内力和位移计算由设计任务资料知,该建筑为五层钢筋混凝土框架结构体系,室内外高差为0.45m 基本风压20m /4.0KN =ω,地面粗糙度为C 类,结构总高度19.8+0.45=20.25m (基础顶面至室内地面1m )。

计算主要承重结构时,垂直于建筑物表面上的风荷载标准值,应按下式计算,即oz s z k w w μμβ=1、因结构高度H=20.25m<30m,高宽比20.25÷18.2=1.11<1.5,故可取0.1z =β;2、s μ为风荷载体型系数,本设计按《建筑结构荷载规范》(GB50009--2012)中规定,迎风面取0.8,背风面取0.5,合计s μ=1.3。

3、z μ为风压高度变化系数,本设计的地面粗糙度类别为C 类,按下表选取风压高度变化系数。

7.1 横向框架在风荷载作用下的计算简图6轴线框架的负荷宽度B=(6.6+6.6)/2=6.6m。

各层楼面处集中风荷载标准值计算如表7.1:表7.1层号离地面高度Z(m)zμzβsμW0(KN/m2)h下(m)h上(m)(+)/2i z s zF w B h hβμμ=下上(kN)1 4.650.65 1.0 1.30.4 4.65 3.99.54 28.550.65 1.0 1.30.4 3.9 3.98.70 312.450.65 1.0 1.30.4 3.9 3.98.70 416.350.65 1.0 1.30.4 3.9 3.98.70 520.250.74 1.0 1.30.4 3.9 1.0 6.22根据表7.1,画出6轴框架在风荷载作用下的计算简图,如图7.2所示:图7.2 框架在风荷载作用下的计算简图7.2 位移计算7.2.1框架梁柱线刚度计算考虑现浇楼板对梁刚度的加强作用,故对6轴线框架(中框架梁)的惯性矩乘以2.0,框架梁的线刚度计算:跨度为7.3m 的梁(b ×h=250mm ×600mm ):)(109126.0250.0212bh 24333m I -⨯=⨯⨯=⨯= m KN L I E c b /105.33.7109108.2i 437b ⨯=⨯⨯⨯==- 跨度为3.3m 的梁 (b ×h=200mm ×400mm ):)(43-33m 101.2124.02.0212bh 2⨯=⨯⨯=⨯=I m KN L I E c b /109.13.31013.2108.2i 437b ⨯=⨯⨯⨯==- 7.2.1.1 框架柱的线刚度 1、底层柱:A 、D 轴柱:)(1021.512500500433c m I -⨯=⨯=m KN h I E c c c /100.32.51021.5100.3i 437⨯=⨯⨯⨯==-B 、C 轴柱:)(1021.512500500433c m I -⨯=⨯=m KN h I E c c c /100.32.51021.5100.3i 437⨯=⨯⨯⨯==-2、上层柱:A 、D 轴柱:)(1021.512500500433c m I -⨯=⨯=四A0.875 0.30 9467 44180B 1.35 0.40 12623C 1.35 0.40 12623D 0.875 0.30 9467 三A0.875 0.30 9467 44180 B 1.35 0.40 12623 C 1.35 0.40 12623 D 0.875 0.30 9467 二A0.875 0.30 9467 44180 B 1.35 0.40 12623 C 1.35 0.40 12623 D 0.875 0.30 9467 首层A1.17 0.53 7056 30354 B 1.80 0.61 8121 C 1.80 0.61 8121 D1.170.537056风荷载作用下框架的层间侧移可按下式计算,即有:∑=∆ijjj D V u式中 jV ------第j 层的总剪力标准;∑ijD--------第j 层所有柱的抗侧刚度之和;ju ∆--------第j 层的层间侧移。

框架结构的内力和位移计算(精)

框架结构的内力和位移计算(精)

假定: (1)平面结构假定; (2)忽略柱的轴向变形; (3)D值法考虑了结点转角, 假定同层结点转角相等
2019/3/19
27
D 值法
计算方法 1、D值——修正抗侧刚度的计算 水平荷载作用下,框架不仅有侧移, 且各结点有转角,设杆端有相对位 移 ,转角 、 ,转角 1 2 位移方程为:
2019/3/19
22
反弯点法
2、剪力的计算 根据假定1:
V1 j d1 j j
Vij d ij j
Vij , d ij
——第j层第I根柱的剪力及其抗侧刚度
第j层总剪力
V pj
Vpj V1 j V2 j Vmj
2019/3/19 23
反弯点法
V1 j
第j层各柱剪力为
M ( z) N B
M(z)——上部水平荷载对坐标Z力矩总和 B——两边柱轴线间的距离
N
2019/3/19 44
柱轴向变形产生的侧移

N j
任意水平荷载下柱轴向变形产生的第j层处侧移 把框架连续化,根据单位荷载法:
2 ( NN / EA)dz
N j 0
Hj
N ( H j z) / B
框架结构的内力和位移计算荷载和设计要求51计算简图计算简图计算简图计算简图计算简图52竖向荷载作用下的近似计算方法分层法分层法分层法分层法力学知识回顾分层法计算过程构件弯矩图53水平荷载作用下内力近似计算方法反弯点法反弯点法弯点法反弯点法反弯点法反弯点法反弯点法反弯点法54水平荷载作用下内力近似计算方法d55水平荷载作用下侧移的近似计算梁柱刚度比k中柱
2019/3/19
9
计算简图
二、结构构件的截面抗弯刚度 考虑楼板的影响,框架梁的截面抗弯刚度应适当提高 现浇钢筋混凝土楼盖: 中框架:I=2I0 边框架:I=1.5I0 装配整体式钢筋混凝土楼盖: 截面形式选取: 框架梁跨中截面: 中框架:I=1.5 I0 T型截面 边框架:I=1.2 I0 框架梁支座截面: 装配式钢筋混凝土楼盖: 矩形截面 中框架:I=I0 边框架:I=I0 注:I0为矩形截面框架梁的截面惯性矩

第四章 框架结构内力计算

第四章 框架结构内力计算

4、计算和确定梁、柱弯矩分配系数。 按修正后的刚度计算各结点周围杆件的杆 端分配系数。 5、按力矩分配法计算单层梁、柱弯矩。 6、将每个单层框架的计算结果按相应部分迭 加起来便得到原框架的计算结果,即柱的弯矩 取相邻两个单元中同一柱对应弯矩之和,而梁 的弯矩直接采用。
四、计算例题
作业2
3.2 水平荷载下内力的近似计算—反弯点法
d
i 1
m
V pj
ij
4、柱端弯矩的确定 M j V jY j 柱下端弯矩 柱上端弯矩 M j V j (h j Yj )
5、梁端弯矩的确定 M ml (M mt M m1b ) 对于边柱 ibl 对于中柱
M ml ( M mt M m1b ) M mr ibl ibr ibr ( M mt M m1b ) ibl ibr
第3章 框架结构的内力和位移计算
3.1 竖向荷载下内力的近似计算—分层法 3.2 水平荷载下内力的近似计算—反弯点法 3.3 水平荷载下内力的近似计算—D值法 3.4 水平荷载作用下侧移的近似计算
3.1 竖向荷载下内力近似计算—分层法
一、竖向荷载 自重、活荷、雪荷载及施工检修荷载等。 二、分层法的基本假设 1、忽略侧移的影响; 2、忽略每层梁的竖向荷载对其它各层梁 的影响。 三、分层法计算要点 1、将N层框架划分成N个单层框架,柱 端假定为固端, 用力矩分配法计算。
三、柱的侧移刚度D 12ic D 2 h
—为柱侧移刚度修正系数,表示梁柱刚 度比对柱侧移刚度的影响。

四、剪力计算 有了D值后,与反弯点法类似,计算各柱分 配的剪力 Dij Vij V pj Dij 五、确定柱反弯点高度比 影响柱反弯点高度的主要因素是柱上下端的 约束条件。

框架结构内力与位移计算

框架结构内力与位移计算

《高层建筑结构与抗震》辅导材料四框架结构内力与位移计算学习目标1、熟悉框架结构在竖向荷载和水平荷载作用下的弯矩图形、剪力图形和轴力图形;2、熟悉框架结构内力与位移计算的简化假定及计算简图的确定;3、掌握竖向荷载作用下框架内力的计算方法——分层法;4、掌握水平荷载作用下框架内力的计算方法——反弯点法和D值法,掌握框架结构的侧移计算方法。

学习重点1、竖向荷载作用下框架结构的内力计算;2、水平荷载作用下框架结构的内力及侧移计算。

框架在结构力学中称为刚架,刚架的内力和位移计算方法很多,可分为精确算法和近似算法。

精确法是采用较少的计算假定,较为接近实际情况地考虑建筑结构的内力、位移和外荷载的关系,一般需建立大型的代数方程组,并用电子计算机求解;近似算法对建筑结构引入较多的假定,进行简化计算。

由于近似计算简单、易于掌握,又能反映刚架受力和变形的基本特点,因此近似的计算方法仍为工程师们所常用。

本章内容主要介绍框架结构在荷载作用下内力与位移的近似计算方法。

其中分层法用于框架结构在竖向荷载作用下的内力计算,反弯点法和D值法用于框架结构在水平荷载作用下的内力计算。

既然是近似计算,就需要熟悉框架结构的计算简图和各种计算方法的简化假定。

一、框架结构计算简图的确定一般情况下,框架结构是一个空间受力体系,可以按照第四章所述的平面结构假定的简化原则,忽略结构纵向和横向之间的空间联系,忽略各构件的抗扭作用,将框架结构简化为沿横方向和纵方向的平面框架,承受竖向荷载和水平荷载,进行内力和位移计算。

结构设计时一般取中间有代表性的一榀横向框架进行分析,若作用于纵向框架上的荷载各不相同,则必要时应分别进行计算。

框架结构的节点一般总是三向受力的,但当按平面框架进行结构分析时,则节点也相应地简化。

在常见的现浇钢筋混凝土结构中,梁和柱内的纵向受力钢筋都将穿过节点或锚入节点区,这时节点应简化为刚接节点;对于现浇钢筋混凝土柱与基础的连接形式,一般也设计成固定支座,即为刚性连接。

高层建筑结构,第五章框架-剪力墙结构的内力和位移计算

高层建筑结构,第五章框架-剪力墙结构的内力和位移计算

§ 5.2 铰结体系协同工作计算
3、计算图表的应用 (1)根据荷载形式(有三种)、刚度特征值和高度坐标查 图表得系数 y( ) / f
y H
m M W ( ) / M 0 V VW ( ) / V0
(2)根据荷载形式按悬臂杆计算顶点侧移fH,底截面弯矩M0 和底截面剪力V0 (3)计算结构顶点侧移y、总剪力墙弯矩Mw和剪力VW以及总框 架剪力VF
P
PW 图
PF图
高层建筑结构——框架-剪力墙结构
§ 5.5 讨论
2、框剪结构设计中应注意的问题 框剪结构容易满足平面布置灵活和有较大抗侧刚度的要求。 此外,由于框架与剪力墙协同工作,使框架层剪力分布,从 底到顶趋于均匀(与纯框架结构中,框架层剪力上小下大不 同),这对框架的设计十分有利-框架柱和梁的断面尺寸和 配筋可以上下比较均匀 由此可以看出三个值得注意的问题: (1)纯框架设计完毕后,如果又增加了一些剪力墙(例如电梯 井,楼梯井等改成剪力墙),就必须按框架-剪力墙结构重 新核算 (2)剪力墙与框架协同工作的基本条件是:传递剪力的楼板必 须有足够的整体刚度。因此框剪结构的楼板应优先采用现浇 楼面结构,剪力墙的最大间距不能超过规定限值
高层建筑结构——框架-剪力墙结构
框架-剪力墙结构中剪力墙的布置宜符合下列要求:
1.剪力墙宜均匀地布置在建筑物的周边附近、楼电梯间、平 面形状变化 恒载较大的部位;在伸缩缝、沉降缩、防震 缝两侧不宜同时设置剪力墙。 2.平面形状凹凸较大时,宜在凸出部分的端部附近布置剪力 墙; 3.剪力墙布置时,如因建筑使用需要,纵向或横向一个方向 无法设置剪力墙时,该方向采用壁式框架或支撑等抗侧力 构件,但是,两方向在水平力作用下的位移值应接近。壁 式框架的抗震等级应按剪力墙的抗震等级考虑。 4.剪力墙的布置宜分布均匀,各道墙的刚度宜接近,长度较 长的剪力墙宜设置洞口和连梁形成双肢墙或多肢墙,单肢 墙或多肢墙的墙肢长度不宜大于8m。单片剪力墙底部承 担水平力产生的剪力不宜超过结构底部总剪力的40%。

§13.3 框架结构的内力和位移计算

§13.3 框架结构的内力和位移计算

§13.3 框架结构的内力与位移计算一、竖向荷载作用下的内力近似计算方法——— 分层法1. 基本假定(1) 在竖向荷载作用下,多层多跨框架的侧移很小可忽略不计。

(2) 每层梁上的荷载只对本层的梁和上、下柱产生内力对其他各层梁及其他柱内力的影响可忽略不计。

2. 计算方法(1)将多层框架分层,以每层梁与上下柱组成的单层框架作为计算单元,柱远端假定为固端。

(2)用力矩分配法分别计算每个计算单元的内力。

(3)在分层计算时,假定上、下柱的远端是固定的,但实际上有转角产生,是弹性支承。

为消除由此所带来的误差,可令除底层柱外,其他每层柱的线刚度均乘以0.9的折减系数(底层铰结时为0.75) ,相应的弯矩传递系数取1/3,底层柱弯矩传递系数仍为1/2。

(4)分层计算所得的梁端弯矩即为最后弯矩,而每根柱分别属于上下两个计算单元,所以柱端弯矩要进行叠加。

叠加后节点上的弯矩可能不平衡,但一般误差不大,若欲进一步修正则可对节点的不平衡弯矩作一次弯矩分配,但不再传递。

二、水平荷载作用下的内力近似计算方法 (一) ——反弯点法对在水平荷载作用下的框架内力近似计算,一是需要确定各柱间的剪力分配比;二是要确定各柱的反弯点位置。

1.基本假定(1)梁的线刚度无限大,各柱上下两端只有水平位移没有角位移,且同一层柱中各端的水平位移相等。

(2)框架底层柱的反弯点在距柱底2/3柱高处,其余各层柱的反弯点在柱高的中点。

(3)梁端弯矩可由节点平衡条件求出。

2.计算方法(1)同层各柱剪力的确定首先求出同层每根框架柱的抗侧移刚度d = 12i c / h 2 ,式中i c = EI/ h 称为柱的线刚度,h 为层高。

柱的抗侧移刚度d 表示柱端产生单位水平位移Δu = 1时,在柱端所需施加的水平力大小。

设框架结构共有n 层,每层共有j 根柱子,则第i 层各柱在反弯点处剪力计算式为:i j j ji ji V dd ∑==1 Vij 式中 V ij ———第i 层第j 根柱子的剪力;d ij ———第i 层第j 根柱子的侧移刚度;∑d ij ———第i 层j 根柱子的侧移刚度总和;Vi ———第i 层楼层总剪力,为第i 层及第i 层以上所有水平荷载总和。

3-1框架内力计算

3-1框架内力计算

q=2.8kN/m (10.21) (1.79) q=3.4kN/m
H
(4.21)
I
3.80m
D
(9.53) (7.11) (4.84)
E
(12.77) (3.64)
F
4.40m
(括号内数字为线刚度相对值)
A
(i=EI/l) 7.50m
B
5.60m
C
解:
上层各柱线刚度×0.9,然后计算各节点的弯矩分配系数
多层与高层建筑结构设计
第三章 框架结构内力与位移计算
土木工程系
框架结构内力与位移计算
• 框架结构的布置与计算简图
• 竖向荷载作用下的近似计算——分层计算法 • 水平荷载作用下的近似计算——反弯点法 • 水平荷载作用下的改进反弯点法——D值法
• 水平荷载作用下侧移的近似计算
框架结构的布置与计算简图
装配整体式楼面
框架柱的截面尺寸估算
框架柱的截面尺寸一般根据柱的轴压比限值按下列公式估算:
N=βAGn
N Ac≤ [ N ] f c
框架柱轴压比限值,对 一级、二级和三级抗震 等级,分别取0.7, 0.8和 0.9。
其中β——考虑地震作用组合后柱轴压力增大系数,边 柱取1.3,不等跨内柱取1.25,等跨内柱取1.2; A——按简支状态计算的柱的负载面积; G——折算在单位建筑面积上的重力荷载代表值, 可根据实际荷载计算,也可近似取12~16 kN/m2; n——验算截面以上楼层层数;
-0.200 0.133
-0.267 0.231
-4.836
0.668
15.045
0.353 0.175
-13.585
0.472
0.733

框架结构内力和位移计算

框架结构内力和位移计算

-2.5% -24.8%
-15.825 -14.750
E
7.3%
0.733 1.71
-57.1%
I
-0.929 -1.710
-45.7%
1.924 3.440
-44.1%
F
-0.829 -1.610 -1.336 -1.830
-48.5% -27%
3.395
A
82.5% 1.860
分析结论:1)梁的误差较小; 2)柱的误差比较大。
竖向荷载作用下的近似计算(分层计算法)
在一般竖向荷载下,框架侧移比较小,可以按照弯矩分配法进行内力分析
第1页/共49页
多层多跨框架在一般竖向荷载作用下侧移是比较小的,可作为无侧移框架按力矩分 配法进行内力分析。由精确分析可知,各层荷载对其他层杆件内力影响不大。因此, 在近似方法中,可将多层框架简化为单层框架,即分层作力矩分配计算。 上述两点即为分层计算法的基本简化假定。
1
0 3 i13 z1
4i15z1
i14 z1 -1
4
i14 z1
1/2
5
2i15z1
第10页/共49页
弯矩分配法注意事项
第11页/共49页
3.80m
例题
G
(4.21)
D
(7.11)
q=2.8kN/m
(7.63) q=3.8kN/m
H
(4.21)
(9.53)
E
(4.84)
(括号内数字为线刚度相对值)
计算时候,假定上下柱远端均为固定,实际上除了底层柱外,其他均为弹性支撑,故为了 减小误差。特意作如下修正:
1、上层各柱线刚度乘以0.9加以修正。梁不变 2、除底层柱外,各柱传递系数修正为1/3。梁不变 计算结果中结点上弯矩可能不平衡,但是误差不会太大,可以不再计算,也可以为 提高精度,再进行一次弯矩分配。

框架结构内力及位移计算

框架结构内力及位移计算
框架结构的内力和位移计算
第一节 高层建筑结构计算的基本假定
高层建筑是一个复杂的空间结构,它不仅平面形状多变,立面体型也各种各样,而且结 构型式和结构体系均各不相同,高层建筑中,有框架、剪力墙和筒体等竖向抗侧力结构,又 有水平放置的楼板将它们连为整体;同时高层建筑的实际荷载也是很复杂的,钢筋混凝土结 构又会有开裂、屈服等现象,并不是弹性匀质材料。因此要对这种高次超静定、多种结构型 式组合在一起的空间结构进行精确的内力和位移计算是十分困难的,在设计计算时,就必须 作出一些简化假定,以便简化计算。
面形状复杂,抗侧力结构又斜向布置时,就需要经过计算才能确定主轴方向。
四、框架结构计算方法分类
框架在结构力学中称为刚架,刚架的内力和位移计算方法很多,通常有精确法(如力法
和位移法)、渐近法(如力矩分配法、迭代法和无剪力分配法)和近似法(分层法、反弯点
法和 D 值法)三种。
精确法计算假定少,较为接近实际状况,但需建立大型的代数方程组,一般均利用计算 机进行求解;渐近法通常是利用一般的数学运算,使解答逐步趋于正确值,渐近法的优点是: 运算简单,方法易于掌握,当计算精度达到应用要求时,即可停止计算,故渐近法兼有近似 法和精确法的功能,渐近法的缺点是在数值计算中,不能包含变量,故不能研究某些量改变 时对结构的影响;近似法对结构引入较多的假定,忽略了一些次要因素,进行简化计算,其 概念清楚、计算简单、易于掌握、精确度也足够。
V = 12ic δ h2
因此,柱的侧移刚度为:
d = V = 12ic δ h2
ic
=
EI h
图 14 柱剪力与水平位移的关系
上两式中:V 为柱剪力; δ 为柱层间位移; h 为层高; EI 为柱抗弯刚度; ic 为柱线刚度。 侧移刚度 d 的物理意义是柱上下两端相对有单位侧移时柱中产生的剪力。 设同层各柱剪力为V1,V2 ,L,Vi ,L, 根据层剪力平衡,有:

框架结构的内力和位移计算

框架结构的内力和位移计算

相同,皆为ic,且弦转角皆为φ。
9
V

F F
暂时假定梁的线刚
度相等,皆为ib,柱AB 的杆端有转角θ,加弦转 角φ=Δ/hAB。而梁只有转 H H 角θ。
B


M BD M BA Δ
6icθ 6ic hAB
A VAB
6ic (θ φ)
M BH M BF 6ibθ
10
k
2k
14
对中柱,且梁线刚度相等时
k 2ib ic
k
2k
对边柱,梁线刚度相等时,因 梁的根数减半
k ib
ic
15
对中柱,梁线刚度不相等时
ib

i1
i2
i3 4

i4
k i1 i2 i3 i4 2ic
对边柱,梁线刚度不相等时
k i1 i3 或 k i2 i4
与其余柱相比较,该柱的D值用D1表示,为
D1

α1
12E1I1 h13
同层其余柱的计算与一般柱类似。
各种支承和刚度分布情况下的α值可以通过查
表后确定。
18
确定框架柱子的反弯点比 (反弯点位置)
思路:
前面已经介绍,多层多跨 的框架结构可以简化为图示多 层半刚架模型,求框架反弯点 位置的问题变为用结构力学中 的力法求解该半刚架的问题。
是反弯点位置分布规律),整理成图表供人们查用。
8
D i1 ic
i2
Fi3 ic B i4 H
E A ic G
V

F F B
H H
C

i7
i5
i6
LJ M

地震作用下框架结构的内力和侧移计算

地震作用下框架结构的内力和侧移计算

地震作用下框架结构的内力和侧移计算4.1横向自振周期的计算横向自振周期的计算采用瑞利(Rayleigh )法。

瑞利法也称为能量法。

这个方法是根据体系在震动过程中能量守恒定 律导出的。

自振周期T 1(s )可按下式计算: 21112ni ii Tni i i G u T G u ψ===∑∑注:u i 为第i 层的侧移;T ψ0.5;u i 按照下式计算: δi = ∑G i /∑D i u i =∑δk注:∑D i 为第i 层的层间侧移刚度; δi 为第i 层的层间相对位移。

δk 为第k 层的层间侧移。

基本周期T 1就算表层次 G i (kN ) ∑G i (kN ) ∑D i (kN/m ) δi (m) u i (m ) G i u i (kN ·m)2i i G u ( kN ·m 2)4 8549.73 8549.73 375964 0.0227 0.1794 194.4279 275.0652 3 9593.83 18143.56 669856 0.0271 0.1566 491.4321 445.0913 2 9347.36 27490.92 669856 0.0410 0.1295 1128.229 461.3148 19827.22 37318.14 4218240.08850.0885 3301.48292.2850 统计∑11239.121473.756321112ni ii Tn i ii G uT G uψ===∑∑=2×0.5×=0.362(s )4.2水平地震作用及楼层地震剪力的计算本结构高度不超过40m,质量和刚度沿高度分布比较均匀,变形以剪切型为主,故可用底部剪力法计算水平地震作用,即:4.2.1结构等效总重力荷载代表值GeqG eq=0.85∑G i=0.85×37318.14=31720.419(kN)4.2.2计算水平地震影响系数а1查表得II类场地,设计地震分组第三组地震特征周期值T g=0.45s。

04 水平荷载作用下框架结构的内力及变形计算

04 水平荷载作用下框架结构的内力及变形计算

水平荷载作用下框架结构的计算
反弯点法
在确定柱的侧向刚度时,反弯点法假定各 柱上、下端都不产生转动,即认为梁柱线刚 度比为无限大。将趋近于无限大代入D值法 的公式,可得 c =1。因此,由式可得反弯 点法的柱侧向刚度,并用D0表示为:
D0

12ic h2
4 水平荷载作用下框架结构内力和侧移的近似计算

zH
q( y)dy( y B

z)
4 水平荷载作用下框架结构内力和侧移的近似计算
水平荷载作用下框架结构的计算
2

3
V0 H 3 EAB2
uN

1

4
V0 H 3 EAB2
11 30
V0 H 3 EAB2
(顶点集中荷载) (均匀分布荷载) (倒三角分布荷载)
V0 是水平外荷载在框架底面产生的总剪力。
Vi
Dij
j 1
该式即为层间剪力Vi在各柱间的分配公式,它适 用于整个框架结构同层各柱之间的剪力分配。可见, 每根柱分配到的剪力值与其侧向刚度成比例。
4 水平荷载作用下框架结构内力和侧移的近似计算
水平荷载作用下框架结构的计算
( 4)柱的反弯点高度比y
反弯点高度示意图
框架各柱的反弯点高度比y可用下式表示:
y = yn + y1 + y2 + y3
4 水平荷载作用下框架结构内力和侧移的近似计算
水平荷载作用下框架结构的计算
柱的反弯点高度比y
式中:yn表示标准反弯点高度比,可 由附表查得;
y1表示上、下层横梁线刚度变 化时反弯点高度比的修正值; y2、y3表示上、下层层高变化 时反弯点高度比的修正值。

框架结构内力与水平位移的近似计算方法

框架结构内力与水平位移的近似计算方法

风荷载 水平荷载
水平地震作用
一般简化成作用于节点处水平集中力
第二节 内力与水平位移的近似计算方法 竖向荷载作用下的框架内力分析—分层法 分层法假定
作用在某一层竖向荷载只对本层梁及 与之相连的柱产生弯矩和剪力,忽略对其 他楼层的框架梁和隔层的框架柱产生的弯 矩和剪力。
分层法计算
在多层竖向荷载同时作用下的框 架内力,看成是各层竖向荷载单独作 用下的内力的叠加
现浇楼盖
中框架梁取 I=2I0 边框架梁取 I=1.5I0
装配整体式楼盖 装配式楼盖
中框架梁取I=1.5I0 边框架梁取I=1.2I0
按实际截面计算I。
第二节 内力与水平位移的近似计算方法
框架结构的计算简图 6、荷载计算 作用于框架结构上的荷载有两种
一般为分布荷载
建筑结构自重
竖向荷载 楼面活荷载
h h
柱下端弯矩
Ml c jk
Vjk
yh
5、计算梁端弯矩 M b
M br
ibr ibl
ibr
Mcu Mcl
Mbl
ib l ibl ibr
Mcu Mcl
第二节 内力与水平位移的近似计算方法 水平荷载作用下的框架内力分析— D值法
计算步骤
6、计算梁端剪力Vb
Vb
M bl
M br l
7、计算柱轴力N
各柱上下端不发生角位移
梁柱线刚度比无限大
除底层以外,各柱上 下端节点转角均相同
底层柱反弯点在 距基础2/3层高处
其余各层框架柱的反 弯点位于层高的中点
第二节 内力与水平位移的近似计算方法 水平荷载作用下的框架内力分析—反弯点法
计算简图与基本公式
沿第j层各柱反弯点处 切开代以剪力和轴力
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《高层建筑结构与抗震》辅导材料四框架结构内力与位移计算学习目标1、熟悉框架结构在竖向荷载和水平荷载作用下的弯矩图形、剪力图形和轴力图形;2、熟悉框架结构内力与位移计算的简化假定及计算简图的确定;3、掌握竖向荷载作用下框架内力的计算方法——分层法;4、掌握水平荷载作用下框架内力的计算方法——反弯点法和D值法,掌握框架结构的侧移计算方法。

学习重点1、竖向荷载作用下框架结构的内力计算;2、水平荷载作用下框架结构的内力及侧移计算。

框架在结构力学中称为刚架,刚架的内力和位移计算方法很多,可分为精确算法和近似算法。

精确法是采用较少的计算假定,较为接近实际情况地考虑建筑结构的内力、位移和外荷载的关系,一般需建立大型的代数方程组,并用电子计算机求解;近似算法对建筑结构引入较多的假定,进行简化计算。

由于近似计算简单、易于掌握,又能反映刚架受力和变形的基本特点,因此近似的计算方法仍为工程师们所常用。

本章内容主要介绍框架结构在荷载作用下内力与位移的近似计算方法。

其中分层法用于框架结构在竖向荷载作用下的内力计算,反弯点法和D值法用于框架结构在水平荷载作用下的内力计算。

既然是近似计算,就需要熟悉框架结构的计算简图和各种计算方法的简化假定。

一、框架结构计算简图的确定一般情况下,框架结构是一个空间受力体系,可以按照第四章所述的平面结构假定的简化原则,忽略结构纵向和横向之间的空间联系,忽略各构件的抗扭作用,将框架结构简化为沿横方向和纵方向的平面框架,承受竖向荷载和水平荷载,进行内力和位移计算。

结构设计时一般取中间有代表性的一榀横向框架进行分析,若作用于纵向框架上的荷载各不相同,则必要时应分别进行计算。

框架结构的节点一般总是三向受力的,但当按平面框架进行结构分析时,则节点也相应地简化。

在常见的现浇钢筋混凝土结构中,梁和柱内的纵向受力钢筋都将穿过节点或锚入节点区,这时节点应简化为刚接节点;对于现浇钢筋混凝土柱与基础的连接形式,一般也设计成固定支座,即为刚性连接。

作用于框架结构上的荷载有竖向荷载和水平荷载两种。

竖向荷载包括结构自重及楼(屋)面活荷载,一般为分布荷载,有时也有集中荷载。

水平荷载包括风荷载和水平地震作用,一般均简化成节点水平集中力。

二、竖向荷载作用下框架内力的计算框架结构在竖向荷载作用下的内力计算采用分层法。

1.基本假定(1)在竖向荷载作用下,不考虑框架的侧移;(2)每层梁上的荷载对其他各层梁的影响可忽略不计。

2.计算步骤(1)计算单元的确定根据计算假定,计算时先将各层梁及其上下柱所组成的框架作为一个独立的计算单元,而按无侧移的框架进行计算(上下柱的远端均假设为固定端)。

(2)各杆件弯矩的计算一般用结构力学中的弯矩分配法,分别计算每个单层框架中梁与柱的弯矩。

在用弯矩分配法计算各杆件的弯矩之前,应先计算各杆件在节点处的弯矩分配系数及传递系数。

对底层基础处,可按原结构确定其支座形式,若为固定支座,传递系数为1/2;若为铰支座,传递系数为0。

至于其余柱端,在分层计算时,假定上下柱的远端为固定端,而实际上,上下柱端在荷载作用下会产生一定转角,是弹性约束端。

对这一问题,可在计算分配系数时,用调整柱的线刚度来考虑支座转动影响。

因此,对这类柱子的线刚度应乘一个折减系数0.9,相应的传递系数为1/3。

(3)弯矩汇总分层计算所得的梁的弯矩即为最后的弯矩,由于每一层柱属于上、下两层,因此每一根柱的弯矩需由上、下两层计算所得的弯矩值叠加得到。

(4)不平衡弯矩的再分配叠加后的弯矩图为原框架的近似弯矩图,由于柱为上、下两层之和,因此叠加后的弯矩图往往在框架节点处不平衡,一般相差很小,若欲进一步修正,则可将这些不平衡力矩再进行一次弯矩分配。

分层法的具体计算过程和计算要点,可参见课本中的例5-1。

三、水平荷载作用下框架内力的计算作用在框架上的水平荷载主要有风荷载和地震作用,它们均可简化成作用在框架节点上的水平集中力。

由于水平荷载均可简化为水平集中力的形式,所以高层多跨框架在水平荷载作用下的弯矩图通常如图X-1所示。

各杆的弯矩图均为直线,且均有一弯矩为零的点,称为反弯点。

该点弯矩为零,但有剪力,如图X-1中所示的V 。

如果能求出各柱的剪力及其反弯点位置,则各柱端弯矩就可算出,进而根据节点力矩平衡可算出梁端弯矩。

因此必须确定各柱间剪力的分配比和确定各柱的反弯点的位置。

图X-1 水平荷载作用下框架的弯矩图框架结构在水平荷载作用下的内力计算方法主要反弯点法和D 值法,两种计算方法的计算步骤相同,只是在确定各柱间剪力的分配比和确定各柱的反弯点的位置时有所区别。

下面通过反弯点法来具体介绍框架结构在水平力作用下的计算过程,至于D 值法,仅介绍其与反弯点法的不同之处。

1.反弯点法反弯点法的适用条件为梁的线刚度b i 与柱的线刚度c i 之比大于3,其计算过程如下:(1)反弯点位置的确定 若梁的线刚度无限大,则柱两端产生相对水平位移时,柱两端无任何转角,且弯矩相等,反弯点在柱中点处。

当梁柱线刚度之比大于3时,柱端转角很小,反弯点接近柱中。

因此反弯点法假定:对于上部各层柱,反弯点在柱中点;对于底层柱,由于柱脚为固定端,转角为零,但柱上端转角不为零,且上端弯矩较小,反弯点上移,故取反弯点在距固定端2/3高度处。

(2)柱的侧移刚度 侧移刚度d 表示框架柱两端有相对单位侧移时柱中产生的剪力,它与柱两端的约束情况有关。

由于反弯点法中梁的刚度非常大,可近似认为节点转角为零,则根据两端无转角但有单位水平位移时杆件的杆端剪力方程,最后得212h i Vd c ==δ (X-1) 式中,V 为柱中剪力,δ为柱层间位移,h 为层高。

(3)同一楼层各柱剪力的分配 根据力的平衡条件、变形协调条件和柱侧移刚度的定义,可以得出第j 层第i 根柱的剪力为:∑∑∑⋅=⋅==F d F d V ij m i ij ij ij ρ1(X-2) 式中,ij ρ为第j 层各柱的剪力分配系数,m 为第j 层柱子总数,∑F 为第j 层以上所有水平荷载的总和,即第j 层由外荷载引起的总剪力。

这里,需要特别强调的是,∑F 与第j 层所承担的水平荷载是有所区别的。

由式(X-2)可以看出,在同一楼层内,各柱按侧移刚度的比例分配楼层剪力。

(4)柱端弯矩的计算 由于前面已经求出了每一层中各柱的反弯点高度和柱中剪力,那么柱端弯矩可按下式计算:()⎭⎬⎫-⋅=⋅=ij j ij ij ij ij ij l h V M l V M 上下柱上端弯矩柱下端弯矩(X-3) 式中,ij l 为第j 层第i 根柱的反弯点高度,j h 为第j 层的柱高。

(5)梁端弯矩的计算 梁端弯矩可由节点平衡求出,如图X-2所示。

图X-2 节点弯矩对于边柱 下上c c b M M M += (X-4) 对于中柱 ()右左左下上左b b b c c b i i i M M M +⋅+= (X-5a )()右左右下上右b b b c c b i i i M M M +⋅+= (X-5b ) 式中,左b i 、右b i 分别为左边梁和右边梁的线刚度。

(6)其他内力的计算 进一步,还可根据力的平衡条件,由梁两端的弯矩求出梁的剪力;由梁的剪力,根据节点的平衡条件,可求出柱的轴力。

综上所述,反弯点法的要点,一是确定反弯点高度,一是确定剪力分配系数ij ρ。

在确定它们时都假设节点转角为零,即认为梁的线刚度为无穷大。

这些假设,对于层数不多的框架,误差不会很大。

但对于高层框架,由于柱截面加大,梁柱相对线刚度比值相应减小,反弯点法的误差较大。

2.修正反弯点法——D 值法反弯点法在考虑柱侧移刚度d 时,假设节点转角为0,亦即横梁的线刚度假设为无穷大。

对于高层建筑,由于各种条件的限制,柱子截面往往较大,经常会有梁柱相对线刚度比较接近,甚至有时柱的线刚度反而比梁大。

这样,上述假设将产生较大误差。

另外,反弯点法计算反弯点高度y 时,假设柱上下节点转角相等,这样误差也较大,特别在最上和最下数层。

此外,当上、下层的层高变化大,或者上、下层梁的线刚度变化较大时,用反弯法计算框架在水平荷载作用下的内力时,其计算结果误差也较大。

考虑到以上的影响因素和多层框架受力变形特点,可以对反弯点法进行修正,从而形成一种新的计算方法——D 值法。

D 值法相对于反弯点法,主要从以下两个方面做了修正:修正柱的侧移刚度和调整反弯点高度。

修正后的柱侧移刚度用D 表示,故该方法称为“D 值法”。

D 值法的计算步骤与反弯点法相同,计算简单、实用,精度比反弯点法高,因而在高层建筑结构设计中得到广泛应用。

D 值法也要解决两个主要问题:确定侧移刚度和反弯点高度。

(1)修正后柱的侧移刚度 考虑柱端的约束条件的影响,修正后的柱侧移刚度D 用下式计算:212hi D c α= (X-6) 式中,α为与梁、柱线刚度有关的修正系数,表X-1给出了各种情况下α值的计算公式。

由表X-1中的公式可以看到,梁、柱线刚度的比值愈大,α值也愈大。

当梁、柱线刚度比值为∞时,α=1,这时D 值等于反弯点法中采用的侧移刚度d 。

(2)同一楼层各柱剪力的计算 求出了D 值以后,与反弯点法类似,假定同一楼层各柱的侧移相等,则可求出各柱的剪力:∑∑==F D D V m i ij ijij 1 (X-7)式中,ij V 为第j 层第i 柱所受剪力,ij D 为第j 层第i 柱的侧移刚度。

表X-1 α值和K 值计算表边柱 中柱 α一般层 c b b i i i K 242+= cb b b b i i i i i K 24321+++= KK +=2α底层 c b i i K 1=cb b i i i K 21+= KK ++=25.0α (3)各层柱的反弯点位置 各层柱的反弯点位置与柱两端的约束条件或框架在节点水平荷载作用下,该柱上、下端的转角大小有关。

影响柱两端转角大小的因素(影响柱反弯点位置的因素)主要有三个:①该层所在的楼层位置,及梁、柱线刚度比;②上、下横梁相对线刚度比值;③上、下层层高的变化。

在D 值法中,通过力学分析求出标准情况下的标准反弯点刚度比0y (即反弯点到柱下端距离与柱全高的比值),再根据上、下梁线刚度比值及上、下层层高变化,对0y 进行调整。

因此,可以把反弯点位置用下式表达:()h y y y y yh ⋅+++=3210 (X-8)式中,y 为反弯点距柱下端的高度与柱全高的比值(简称反弯点高度比),y 1为考虑上、下横梁线刚度不相等时引入的修正值,y 2、y 3为考虑上层、下层层高变化时引入的修正值,h 为该柱的高度(层高)。

为了方便使用,系数0y 、1y 、2y 和3y 已制成表格,可通过查表的方式确定其数值。

(4)弯矩图的绘制 当各层框架柱的侧移刚度D 和各层柱反弯点位置yh 确定后,与反弯点法一样,就可求出框架的弯矩图。

相关文档
最新文档