比较线性模型和Probit模型Logit模型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比较线性模型和P r o b i t 模型L o g i t模型
Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-
研究生考试录取相关因素的实验报告
一,研究目的
通过对南开大学国际经济研究所1999级研究生考试分数及录取情况的研究,引入录取与未录取这一虚拟变量,比较线性概率模型与Probit模型,Logit模型,预测正确率。
二,模型设定
表1,南开大学国际经济研究所1999级研究生考试分数及录取情况见数据表
定义变量SCORE:考生考试分数;Y:考生录取为1,未录取为0。
上图为样本观测值。
1.线性概率模型
根据上面资料建立模型
用Eviews得到回归结果如图:
Dependent Variable: Y
Method: Least Squares
Date: 12/10/10 Time: 20:38 Sample: 1 97
Included observations: 97
Variable Coefficient Std. Error
t-Statistic
Prob.
C
SCORE
R-squared
Mean dependent var
Adjusted R-squared . dependent var . of regression
Akaike info criterion Sum squared resid Schwarz criterion Log likelihood
F-statistic
Durbin-Watson stat
Prob(F-statistic)
参数估计结果为: i
Y ˆ+ i SCORE Se=( t=
p=
预测正确率:
Forecast: YF Actual: Y
Forecast sample: 1 97 Included observations: 97
Root Mean Squared Error
Mean Absolute Error
Mean Absolute Percentage Error Theil Inequality Coefficient Bias Proportion
Variance Proportion Covariance Proportion
模型
Dependent Variable: Y
Method: ML - Binary Logit (Quadratic hill climbing)
Date: 12/10/10 Time: 21:38
Sample: 1 97
Included observations: 97
Convergence achieved after 11 iterations
Covariance matrix computed using second derivatives Variable
Coefficient Std. Error
z-Statistic
Prob.
C SCORE
Mean dependent var
. dependent var
. of regression
Akaike info criterion Sum squared resid Schwarz criterion Log likelihood
Hannan-Quinn criter. Restr. log likelihood Avg. log likelihood LR statistic (1 df) McFadden R-squared
Probability(LR stat)
Obs with Dep=0
83 Total obs
97
Obs with Dep=1
14
得Logit 模型估计结果如下 p i = F (y i ) =
)
6794.07362.243(11
i x e
+--+ 拐点坐标 ,
其中Y=+
预测正确率
Forecast: YF Actual: Y
Forecast sample: 1 97 Included observations: 97
Root Mean Squared Error
Mean Absolute Error
Mean Absolute Percentage Error Theil Inequality Coefficient Bias Proportion
Variance Proportion Covariance Proportion
模型
Dependent Variable: Y
Method: ML - Binary Probit (Quadratic hill climbing)
Date: 12/10/10 Time: 21:40
Sample: 1 97
Included observations: 97
Convergence achieved after 11 iterations
Covariance matrix computed using second derivatives
Variable Coefficient Std. Error
z-Statistic
Prob.
C
SCORE