北师大版九年级上册数学期末考试试题1[1]
北师大版九年级数学第一学期期末考试试题及答案
北师大版九年级数学第一学期期末考试试题及答案一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)有一个铁制零件(正方体中间挖去一个圆柱形孔)如图放置,它的左视图是()A.B.C.D.2.(4分)在△ABC中,∠C=90°,AB=5,BC=3,则sin A的值为()A.B.C.D.3.(4分)小明和小华玩“石头、剪子、布”的游戏,若随机出手一次,则小华获胜的概率是()A.B.C.D.4.(4分)如图,在同一时刻,身高1.6米的小丽在阳光下的影长为2.5米,一棵大树的影长为5米,则这棵树的高度为()A.7.8米B.3.2米C.2.3米D.1.5米5.(4分)一元二次方程x2﹣2x+3=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根6.(4分)若反比例函数y=﹣的图象上有两点A(﹣2,m),B(﹣1,n),则m,n的关系是()A.m>n B.m<n C.m=n D.无法确定7.(4分)如图,正方形ABCD的边长为7,在各边上顺次截取AE=BF=CG=DH=4,则四边形EFGH的面积为()A.20B.25C.30D.358.(4分)二次函数y=2(x﹣4)2+5的开口方向、对称轴、顶点坐标分别是()A.向下、直线x=﹣4、(﹣4,5)B.向上、直线x=﹣4、(﹣4,5)C.向上、直线x=4、(4,﹣5)D.向上、直线x=4、(4,5)9.(4分)已知矩形ABCD的周长为20cm,两条对角线AC,BD相交于点O,过点O作AC的垂线EF,分别交两边AD,BC于E,F(不与顶点重合),则以下关于△CDE与△ABF判断完全正确的一项为()A.△CDE与△ABF的周长都等于10cm,但面积不一定相等B.△CDE与△ABF全等,且周长都为10cmC.△CDE与△ABF全等,且周长都为5cmD.△CDE与△ABF全等,但它们的周长和面积都不能确定10.(4分)如图,小强从热气球上的A点测量一栋高楼顶部的仰角∠DAB=30°,测量这栋高楼底部的俯角∠DAC =60°,热气球与高楼的水平距离为AD=15米,则这栋高楼的高BC为()米.A.45B.60C.75D.9011.(4分)如图,点A的坐标是(2,0),△ABO是等边三角形,点B在第一象限.若反比例函数y=的图象经过点B,则k的值是()A.1B.2C.D.12.(4分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=1,下列结论:①abc<0②b<c③3a+c=0④当y>0时,﹣1<x<3其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(每小题4分,共24分)13.(4分)已知=,则=.14.(4分)如图,在正方形网格中,四边形ABCD为菱形,则tan等于.15.(4分)关于x的方程x2+mx﹣8=0的一个根是2,则m=,另一根是.16.(4分)两个相似多边形的周长之比为2,面积之比为m,则m为.17.(4分)如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为.18.(4分)矩形纸片ABCD中,AB=5,AD=4,将纸片折叠,使点B落在边CD上的B′处,折痕为AE.延长B′E交AB的延长线于M,折痕AE上有点P,下列五个结论中正确的是.①∠M=∠DAB';②PB=PB';③AE=;④MB'=CD;⑤若B'P⊥CD,则EB'=B'P.三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)19.(6分)计算:(﹣1)4﹣2cos60°+tan45°﹣(﹣)0.20.(6分)如图,在菱形ABCD中,点E,F分别是边AB和BC上的点,且BE=BF.求证:∠DEF=∠DFE.21.(6分)在一个不透明的盒子里,装有四个分别标有数字1、2、3、4的小球,它们的形状、大小、质地等完全相同,小明先从盒子里随机取出一个小球,记下数字为x,放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.请用列表法或画树状图法求出点(x,y)落在反比例函数y=的图象上的概率.22.(8分)如图,已知点C、D在线段AB上,且AC=4,BD=9,△PCD是边长为6的等边三角形.(1)求证:△P AC∽△BPD;(2)求∠APB的度数.23.(8分)一种竹制躺椅如图①所示,其侧面示意图如图②③所示,这种躺椅可以通过改变支撑杆CD的位置来调节躺椅舒适度,假设AB所在的直线为地面,已知AE=120cm,当把图②中的支撑杆CD调节至图③中的CD'的位置时,∠EAB由20°变为25°.(1)你能求出调节后该躺椅的枕部E到地面的高度增加了多少吗?(参考数据:sin20°≈0.34,sin25°≈0.42)(2)已知点O为AE的一个三等分点,根据人体工程学,当点O到地面的距离为26cm时,人体感觉最舒适.请你求出此时枕部E到地面的高度.24.(10分)如图,工人师傅用一块长为10分米,宽为6分米的矩形铁皮制作一个无盖长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)请在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;(2)求当长方体底面面积为12平方分米时,裁掉的正方形边长是多少?25.(10分)如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A、B两点,其中点A的坐标为(﹣1,4),点B的坐标为(4,n).(1)求这两个函数的表达式:(2)根据图象,直接写出满足k1x+b>的x的取值范围;(3)连接OA,OB,求△AOB的面积;(4)点P在线段AB上,且S△AOP:S△BOP=1:2,求点P的坐标.26.(12分)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.易证:CE=CF.(1)在图1中,若G在AD上,且∠GCE=45°.试猜想GE,BE,GD三线段之间的数量关系,并证明你的结论.(2)运用(1)中解答所积累的经验和知识,完成下面两题:①如图2,在四边形ABCD中∠B=∠D=90°,BC=CD,点E,点G分别是AB边,AD边上的动点.若∠BCD=α,∠ECG=β,试探索当α和β满足什么关系时,图1中GE,BE,GD三线段之间的关系仍然成立,并说明理由.②在平面直角坐标系中,边长为1的正方形OABC的两顶点A,C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y =x于点M,BC边交x轴于点N(如图3).设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?若不变,请直接写出结论.27.(12分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.2021-2022学年山东省济南市商河县九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)有一个铁制零件(正方体中间挖去一个圆柱形孔)如图放置,它的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可.【解答】解:左边看去是一个正方形,中间有一个圆柱形孔,圆柱的左视图是矩形,所以左视图的正方形里面还要两条虚线.故选:C.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图;注意看到的用实线表示,看不到的用虚线表示.2.(4分)在△ABC中,∠C=90°,AB=5,BC=3,则sin A的值为()A.B.C.D.【分析】根据正弦的定义得到sin A=,然后把AB=5,BC=3代入即可得到sin A的值.【解答】解:如图,∵∠C=90°,AB=5,BC=3,∴sin A==.故选:A.【点评】本题考查了正弦的定义:在直角三角形中,一锐角的正弦等于这个角的对边与斜边的比值.3.(4分)小明和小华玩“石头、剪子、布”的游戏,若随机出手一次,则小华获胜的概率是()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小华获胜的情况数,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,小华获胜的情况数是3种,∴小华获胜的概率是:=.故选:C.【点评】此题主要考查了列表法和树状图法求概率知识,用到的知识点为:概率=所求情况数与总情况数之比.4.(4分)如图,在同一时刻,身高1.6米的小丽在阳光下的影长为2.5米,一棵大树的影长为5米,则这棵树的高度为()A.7.8米B.3.2米C.2.3米D.1.5米【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【解答】解:∵同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似,∴,∴=,∴BC=×5=3.2米.故选:B.【点评】本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.5.(4分)一元二次方程x2﹣2x+3=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根【分析】代入一元二次方程中的系数求出根的判别式Δ=﹣8<0,由此即可得出结论.【解答】解:在方程x2﹣2x+3=0中,Δ=(﹣2)2﹣4×1×3=﹣8<0,∴该方程没有实数根.故选:D.【点评】本题考查了根的判别式,解题的关键是代入数据求出△的值.本题属于基础题,难度不大,解决该题型题目时,根据根的判别式的符号判断出方程根的个数是关键.6.(4分)若反比例函数y=﹣的图象上有两点A(﹣2,m),B(﹣1,n),则m,n的关系是()A.m>n B.m<n C.m=n D.无法确定【分析】把点的坐标代入函数解析式可分别求得m、n的值,比较其大小即可.【解答】解:把A(﹣2,m)与B(﹣1,n)代入反比例解析式得:m=1,n=2,则m<n,故选:B.【点评】此题考查了反比例函数图象上点的坐标特征,熟练掌握运算法则是解本题的关键.7.(4分)如图,正方形ABCD的边长为7,在各边上顺次截取AE=BF=CG=DH=4,则四边形EFGH的面积为()A.20B.25C.30D.35【分析】由正方形的性质得出∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,证出AH=BE=CF=DG,由SAS证明△AEH≌△BFE≌△CGF≌△DHG,得出EH=FE=GF=GH,∠AEH=∠BFE,证出四边形EFGH是菱形,再证出∠HEF=90°,即可得出四边形EFGH是正方形,由边长为7,AE=BF=CG=DH=4,可得AH =3,由勾股定理得EH,得正方形EFGH的面积.【解答】解:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,∵AE=BF=CG=DH,∴AH=BE=CF=DG.在△AEH、△BFE、△CGF和△DHG中,,∴△AEH≌△BFE≌△CGF≌△DHG(SAS),∴EH=FE=GF=GH,∠AEH=∠BFE,∴四边形EFGH是菱形,∵∠BEF+∠BFE=90°,∴∠BEF+∠AEH=90°,∴∠HEF=90°,∴四边形EFGH是正方形,∵AB=BC=CD=DA=7,AE=BF=CG=DH=4,∴AH=BE=DG=CF=3,∴EH=FE=GF=GH==5,∴四边形EFGH的面积是:5×5=25,故选:B.【点评】本题主要考查了正方形的性质和判定定理全等三角形的判断和性质以及勾股定理的运用,证得四边形EFGH是正方形是解答此题的关键.8.(4分)二次函数y=2(x﹣4)2+5的开口方向、对称轴、顶点坐标分别是()A.向下、直线x=﹣4、(﹣4,5)B.向上、直线x=﹣4、(﹣4,5)C.向上、直线x=4、(4,﹣5)D.向上、直线x=4、(4,5)【分析】根据二次函数顶点式解析式分别解答即可.【解答】解:二次函数y=2(x﹣4)2+5的开口方向向下;对称轴是直线x=4;顶点坐标是(4,5).故选:D.【点评】本题考查了二次函数的性质,熟练掌握利用二次函数顶点式形式求解对称轴和顶点坐标的方法是解题的关键.9.(4分)已知矩形ABCD的周长为20cm,两条对角线AC,BD相交于点O,过点O作AC的垂线EF,分别交两边AD,BC于E,F(不与顶点重合),则以下关于△CDE与△ABF判断完全正确的一项为()A.△CDE与△ABF的周长都等于10cm,但面积不一定相等B.△CDE与△ABF全等,且周长都为10cmC.△CDE与△ABF全等,且周长都为5cmD.△CDE与△ABF全等,但它们的周长和面积都不能确定【分析】根据矩形的性质,AO=CO,由EF⊥AC,得EA=EC,则△CDE的周长是矩形周长的一半,再根据全等三角形的判定方法可求出△CDE与△ABF全等,进而得到问题答案.【解答】解:∵AO=CO,EF⊥AC,∴EF是AC的垂直平分线,∴EA=EC,∴△CDE的周长=CD+DE+CE=CD+AD=矩形ABCD的周长=10cm,同理可求出△ABF的周长为10cm,根据全等三角形的判定方法可知:△CDE与△ABF全等,故选:B.【点评】本题考查了矩形的对角线互相平分的性质,还考查了线段垂直平分线的性质以及全等三角形的判定方法,题目的难度不大.10.(4分)如图,小强从热气球上的A点测量一栋高楼顶部的仰角∠DAB=30°,测量这栋高楼底部的俯角∠DAC =60°,热气球与高楼的水平距离为AD=15米,则这栋高楼的高BC为()米.A.45B.60C.75D.90【分析】在直角△ABD与直角△ACD中,根据三角函数即可求得BD和CD,即可求解.【解答】解:∵AD⊥BC,垂足为D,在Rt△ABD中,∵∠BAD=30°,AD=15m,∴BD=AD•tan30°=15×=15(m),在Rt△ACD中,∵∠CAD=60°,AD=15m,∴CD=AD•tan60°=15×=45(m),∴BC=15+45=60(m).故选:B.【点评】本题主要考查了解直角三角形的应用﹣仰角与俯角问题,一般三角形的计算,常用的方法是利用作高线转化为直角三角形的计算.11.(4分)如图,点A的坐标是(2,0),△ABO是等边三角形,点B在第一象限.若反比例函数y=的图象经过点B,则k的值是()A.1B.2C.D.【分析】首先过点B作BC垂直OA于C,根据AO=2,△ABO是等边三角形,得出B点坐标,进而求出反比例函数解析式.【解答】解:过点B作BC垂直OA于C,∵点A的坐标是(2,0),∴AO=2,∵△ABO是等边三角形,∴OC=1,BC=,∴点B的坐标是(1,),把(1,)代入y=,得k=.故选:C.【点评】此题主要考查了反比例函数的综合应用、等边三角形的性质以及图象上点的坐标特点等知识,根据已知表示出B点坐标是解题关键.12.(4分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=1,下列结论:①abc<0②b<c③3a+c=0④当y>0时,﹣1<x<3其中正确的结论有()A.1个B.2个C.3个D.4个【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①对称轴位于x轴的右侧,则a,b异号,即ab<0.抛物线与y轴交于正半轴,则c>0.∴abc<0.故①正确;②∵抛物线开口向下,∴a<0.∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a.∵x=﹣1时,y=0,∴a﹣b+c=0,而b=﹣2a,∴c=﹣3a,∴b﹣c=﹣2a+3a=a<0,即b<c,故②正确;③∵x=﹣1时,y=0,∴a﹣b+c=0,而b=﹣2a,∴c=﹣3a,∴3a+c=0.故③正确;④由抛物线的对称性质得到:抛物线与x轴的另一交点坐标是(3,0).∴当y>0时,﹣1<x<3故④正确.综上所述,正确的结论有4个.故选:D.【点评】考查了抛物线与x轴的交点,二次函数图象上点的坐标特征,二次函数图象与系数的关系.二次函数y =ax2+bx+c系数符号的确定由抛物线开口方向、对称轴、与y轴的交点有关.二、填空题(每小题4分,共24分)13.(4分)已知=,则=.【分析】根据=得到x=,代入代数式后约分即可求解.【解答】解:∵=,∴x=,∴==,故答案为:,【点评】本题考查了比例的性质,解题的关键是能够用一个字母表示另一个字母,难度不大.14.(4分)如图,在正方形网格中,四边形ABCD为菱形,则tan等于.【分析】根据菱形的对角线互相垂直平分、对角线平分对角以及锐角三角函数的定义进行解答.【解答】解:如图,设AC、BD交于点O.∵四边形ABCD是菱形,∴AC⊥BD,=∠BAO.∴tan=tan∠BAO=.故答案为:.【点评】本题考查了菱形的性质和解直角三角形,根据菱形的性质推AC⊥BD,=∠BAO是解题的关键.15.(4分)关于x的方程x2+mx﹣8=0的一个根是2,则m=2,另一根是﹣4.【分析】根据一元二次方程根与系数的关系,即可得到一个关于另一根与m的方程组,即可求解.【解答】解:∵方程x2+mx﹣8=0的一个根是2,设另一根是α,∴2α=﹣8,α=﹣4;2+α=﹣m,则2﹣4=﹣m,解得:m=2.故答案为:2,﹣4.【点评】考查了一元二次方程的解及根于系数的关系的知识,解答此题要熟知一元二次方程根与系数的关系.16.(4分)两个相似多边形的周长之比为2,面积之比为m,则m为4.【分析】根据相似多边形的周长比等于相似比,面积比等于相似比的平方,进行计算即可解答.【解答】解:由相似多边形的性质可得:相似多边形的周长比等于相似比,面积比等于相似比的平方,∴两个相似多边形的周长之比为2,面积之比为m,则m为4,故答案为:4.【点评】本题考查了相似多边形的性质,熟练掌握相似多边形的性质是解题的关键.17.(4分)如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为10.【分析】设点A的坐标为(a,b),点B的坐标为(c,d),根据反比例函数y=的图象过A,B两点,所以ab =4,cd=4,进而得到S△AOC=|ab|=2,S△BOD=|cd|=2,S矩形MCDO=3×2=6,根据四边形MAOB的面积=S△AOC+S△BOD+S矩形MCDO,即可解答.【解答】解:如图,设点A的坐标为(a,b),点B的坐标为(c,d),∵反比例函数y=的图象过A,B两点,∴ab=4,cd=4,∴S△AOC=|ab|=2,S△BOD=|cd|=2,∵点M(﹣3,2),∴S矩形MCDO=3×2=6,∴四边形MAOB的面积=S△AOC+S△BOD+S矩形MCDO=2+2+6=10,故答案为:10.【点评】本题主要考查反比例函数的对称性和k的几何意义,根据条件得出S△AOC=|ab|=2,S△BOD=|cd|=2是解题的关键,注意k的几何意义的应用.18.(4分)矩形纸片ABCD中,AB=5,AD=4,将纸片折叠,使点B落在边CD上的B′处,折痕为AE.延长B′E交AB的延长线于M,折痕AE上有点P,下列五个结论中正确的是①②③⑤.①∠M=∠DAB';②PB=PB';③AE=;④MB'=CD;⑤若B'P⊥CD,则EB'=B'P.【分析】根据∠M=∠CB'E,而∠CB'E+∠DB'A=∠DAB'+∠DB'A=90°可判断①;利用折叠的性质可判断出△B'AP≌△BAP,继而可判断出②;设AE=x,表示出EB'=EB=,在Rt△CEB'中利用勾股定理可求出AE的长度,继而可判断出③;利用反证法判断④,最后看得出的结果能证明出来;根据B′P⊥CD,判断出B'P ∥BC,从而有∠B'PE=∠BEP=∠B'EP,从而可判断出⑤.综合起来即可得出最终的答案.【解答】解:如图,连接AB',①由题意得∠M=∠CB'E,而∠CB'E+∠DB'A=∠DAB'+∠DB'A=90°,∴∠M=∠CB'E=∠DAB',故可得①正确;②根据折叠的性质可得AB'=AB,∠B'AP=∠BAP,在△B'AP和△BAP中,,∴△B'AP≌△BAP(SAS),∴PB=PB',故可得②正确;③在Rt△ADB'中,根据勾股定理,得:B'D===3,∴CB'=5﹣3=2,设AE=x,则EB'=EB=,在Rt△CEB'中,∵CE2+CB'2=EB'2,∴(4﹣)2+4=x2﹣25,解得:x=,∴AE=;故可得③正确;④假如MB′=CD,则可得MB'=AB=AB',∴∠M=∠BAB',由①得∠M=∠DAB′,故有∠BAB'=∠DAB',而本题不能判定∠BAB'=∠DAB',即假设不成立.故可得④错误.⑤若B′P⊥CD,则B'P∥BC,∴∠B'PE=∠BEP=∠B'EP,∴EB'=B'P,故可得⑤正确.综上可得①②③⑤正确,共四个.故答案为:①②③⑤.【点评】本题考查了翻折变换,解答过程中涉及了平行四边形的性质、勾股定理,属于综合性题目,解答本题的关键是根据翻折变换的性质得出对应角、对应边分别相等,然后分别判断每个结论,难度较大,注意细心判断.三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)19.(6分)计算:(﹣1)4﹣2cos60°+tan45°﹣(﹣)0.【分析】首先计算零指数幂、负整数指数幂、开方和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:(﹣1)4﹣2cos60°+tan45°﹣(﹣)0==1﹣1+1﹣1=0.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.20.(6分)如图,在菱形ABCD中,点E,F分别是边AB和BC上的点,且BE=BF.求证:∠DEF=∠DFE.【分析】根据菱形的性质和全等三角形的判定方法“SAS”即可证明△ADE≌△CDF,进而利用全等三角形的性质和等腰三角形的性质解答即可.【解答】证明:∵四边形ABCD是菱形,∴∠A=∠C,AB=CB,AD=DC,∵BE=BF,∴AE=CF,在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),∴DE=DF,∴∠DEF=∠DFE.【点评】本题主要考查菱形的性质,同时综合利用全等三角形的判定方法及等腰三角形的性质,解决本题的关键是熟记菱形的性质.21.(6分)在一个不透明的盒子里,装有四个分别标有数字1、2、3、4的小球,它们的形状、大小、质地等完全相同,小明先从盒子里随机取出一个小球,记下数字为x,放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.请用列表法或画树状图法求出点(x,y)落在反比例函数y=的图象上的概率.【分析】根据题意可以列出相应的表格,从而可以求得符合条件的概率,从而可以解答本题.【解答】解:由题意,可列表:1234第一次第二次1(1,1)(1,2)(1,3)(1,4)2(2,1)(2,2)(2,3)(2,4)3(3,1)(3,2)(3,3)(3,4)4(4,1)(4,2)(4,3)(4,4)由已知,共有16种结果,且每种结果出现的可能性相同,其中满足要求的有3种,∴P(点落在反比例函数y=的图象上)=.【点评】本题考查反比例函数图象上点的坐标特征、列表法与树状图法,解答本题的关键是明确题意,列出相应的表格,求出相应的概率.22.(8分)如图,已知点C、D在线段AB上,且AC=4,BD=9,△PCD是边长为6的等边三角形.(1)求证:△P AC∽△BPD;(2)求∠APB的度数.【分析】(1)根据相似三角形的判定证明即可;(2)利用相似三角形的性质对应角相等和等边三角形的性质可以求出∠APB的度数.【解答】证明:(1)∵等边△PCD的边长为6,∴PC=PD=6,∠PCD=∠PDC=60°,又∵AC=4,BD=9,∴,∵等边△PCD中,∠PCD=∠PDC=60°,∴∠PCA=∠PDB=120°,∴△ACP∽△PDB;(2)∵△ACP∽△PDB,∴∠APC=∠PBD,∵∠PDB=120°,∴∠DPB+∠DBP=60°,∴∠APC+∠BPD=60°,∴∠APB=∠CPD+∠APC+∠BPD=120°.【点评】此题考查相似三角形的判定和性质,要熟练运用相似三角形的性质和等边三角形的性质是关键.23.(8分)一种竹制躺椅如图①所示,其侧面示意图如图②③所示,这种躺椅可以通过改变支撑杆CD的位置来调节躺椅舒适度,假设AB所在的直线为地面,已知AE=120cm,当把图②中的支撑杆CD调节至图③中的CD'的位置时,∠EAB由20°变为25°.(1)你能求出调节后该躺椅的枕部E到地面的高度增加了多少吗?(参考数据:sin20°≈0.34,sin25°≈0.42)(2)已知点O为AE的一个三等分点,根据人体工程学,当点O到地面的距离为26cm时,人体感觉最舒适.请你求出此时枕部E到地面的高度.【分析】(1)分别计算出图①和图②中点E到AB的距离,再计算差即可;(2)过点O作OH⊥AB于点H,根据三角形相似可得EF的长度.【解答】解:(1)如图②,过点E作EF⊥AB于点F,∵∠EAF=20°,AE=120cm,∴sin20°=,即EF≈120×0.34=40.8(cm),如图③,过点E作EF⊥AB于点F,∵∠EAF=25°,AE=120cm,∴sin25°=,即EF≈120×0.42=50.4(cm),50.4﹣40.8=9.6(cm),答:高度增加了9.6cm;(2)如图③,过点O作OH⊥AB于点H,∵∠AHO=∠AFE=90°,∠A=∠A,∴△AHO∽△AFE,∴,∵AO=AE=40cm,AE=120cm,∴,即EF=78,答:枕部E到地面的高度是78cm.【点评】本题考查解直角三角形,解题的关键是正确理解题意以及灵活运用锐角三角函数的定义,本题属于中等题型.24.(10分)如图,工人师傅用一块长为10分米,宽为6分米的矩形铁皮制作一个无盖长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)请在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;(2)求当长方体底面面积为12平方分米时,裁掉的正方形边长是多少?【分析】(1)按题意画出图形;(2)由设裁掉的正方形的边长为x分米,用x的代数式表示长方体底面的长与宽,再根据矩形的面积公式列出方程,可求得答案.【解答】解:(1)如图所示,(2)设裁掉的正方形的边长为x分米,由题意可得(10﹣2x)(6﹣2x)=12,即x2﹣8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2分米.【点评】本题考查了一元二次方程的应用以及几何体的表面积,找准等量关系,正确列出一元二次方程是解题的关键.25.(10分)如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A、B两点,其中点A的坐标为(﹣1,4),点B的坐标为(4,n).(1)求这两个函数的表达式:(2)根据图象,直接写出满足k1x+b>的x的取值范围;(3)连接OA,OB,求△AOB的面积;(4)点P在线段AB上,且S△AOP:S△BOP=1:2,求点P的坐标.【分析】(1)将点A,点B坐标代入两个解析式可求k2,n,k1,b的值,从而求得解析式;(2)根据一次函数图象在反比例图象的上方,可求x的取值范围;(3)设直线AB与y轴的交点为C,根据S△AOB=S△AOC+S△BOC可得答案;(4)根据S△AOP:S△BOP=1:2,求得点P的横坐标,再根据一次函数解析式可得答案.【解答】解:(1)∵反比例函数y=的图象过点A(﹣1,4),B(4,n),∴k2=﹣1×4=﹣4,k2=4n,∴n=﹣1,∴B(4,﹣1),∵一次函数y=k1x+b的图象过点A、点B,∴,解得:k1=﹣1,b=3,∴一次函数的解析式y=﹣x+3,反比例函数的解析式为y=﹣;(2)∵点A的坐标为(﹣1,4),点B的坐标为(4,﹣1).由图象可得:k1x+b>的x的取值范围是x<﹣1或0<x<4;(3)如图,设直线AB与y轴的交点为C,∴C(0,3),∴S△AOB=S△AOC+S△BOC=×3×1+×3×4=;(4)如图,∵S△AOP:S△BOP=1:2,∴S△AOP=×=,∵S△AOC=×3×1=,∴S△AOC<S△AOP,S△COP=﹣=1,∴×3•x P=1,∴x P=,∵点P在线段AB上,∴y=﹣+3=,∴P(,).【点评】本题考查了反比例函数图象与一次函数图象的交点问题,熟练运用图象上的点的坐标满足图象的解析式是本题的关键.26.(12分)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.易证:CE=CF.(1)在图1中,若G在AD上,且∠GCE=45°.试猜想GE,BE,GD三线段之间的数量关系,并证明你的结论.(2)运用(1)中解答所积累的经验和知识,完成下面两题:①如图2,在四边形ABCD中∠B=∠D=90°,BC=CD,点E,点G分别是AB边,AD边上的动点.若∠BCD=α,∠ECG=β,试探索当α和β满足什么关系时,图1中GE,BE,GD三线段之间的关系仍然成立,并说明理由.②在平面直角坐标系中,边长为1的正方形OABC的两顶点A,C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y =x于点M,BC边交x轴于点N(如图3).设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?若不变,请直接写出结论.【分析】(1)由SAS证得△EBC≌△FDC,再由SAS证得△ECG≌△FCG,可得到EG=FG,即可得出结果;(2)①延长AD到F点,使DF=BE,连接CF,可证△EBC≌△FDC,结合条件可证得△ECG≌△FCG,故EG =GF,可得出结论;②延长BA交y轴于E点,可证得△OAE≌△OCN,进一步可证得△OME≌△OMN,可求得MN=AM+AE【解答】解:(1)GE=BE+GD,理由如下:∵四边形ABCD是正方形,F是AD延长线上一点,∴BC=DC,∠FDC=∠EBC=90°,在△EBC和△FDC中,,∴△EBC≌△FDC(SAS),∴∠DCF=∠BCE,CE=CF,∵∠GCE=45°,∴∠BCE+∠DCG=90°﹣45°=45°,∴∠DCG+∠DCF=45°,∴∠ECG=∠FCG,在△ECG和△FCG中,,∴△ECG≌△FCG(SAS),∴EG=GF,∴GE=BE+GD;(2)①α=2β时,GE=BE+GD;理由如下:延长AD到F点,使DF=BE,连接CF,如图(2)所示:∵∠B=∠D=90°,∴∠B=∠FDC=90°,在△EBC和△FDC中,,∴△EBC≌△FDC(SAS),∴∠DCF=∠BCE,CE=CF,∴∠BCE+∠DCG=∠GCF,当α=2β时,∠ECG=∠FCG,在△ECG和△FCG中,,∴△ECG≌△FCG(SAS),∴EG=GF,∴GE=BE+GD;②在旋转正方形OABC的过程中,P值无变化;延长BA交y轴于E点,如图(3)所示:则∠AOE=45°﹣∠AOM,∠CON=90°﹣45°﹣∠AOM=45°﹣∠AOM,∴∠AOE=∠CON.又∵OA=OC,∠OAE=180°﹣90°=90°=∠OCN.在△OAE和△OCN中,∴△OAE≌△OCN(ASA).∴OE=ON,AE=CN.在△OME和△OMN中,.∴△OME≌△OMN(SAS).∴MN=ME=AM+AE.∴MN=AM+CN,∴P=MN+BN+BM=AM+CN+BN+BM=AB+BC=2.∴在旋转正方形OABC的过程中,P值无变化.【点评】本题是四边形综合题,考查了一次函数的综合运用、正方形的性质、全等三角形的判定与性质、三角形的周长等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键.27.(12分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.【分析】(1)将B、C的坐标代入抛物线的解析式中即可求得待定系数的值;(2)由于菱形的对角线互相垂直平分,若四边形POP′C为菱形,那么P点必在OC的垂直平分线上,据此可求出P点的纵坐标,代入抛物线的解析式中即可求出P点的坐标;(3)由于△ABC的面积为定值,当四边形ABPC的面积最大时,△BPC的面积最大;过P作y轴的平行线,交直线BC于Q,交x轴于F,易求得直线BC的解析式,可设出P点的横坐标,然后根据抛物线和直线BC的解析式求出Q、P的纵坐标,即可得到PQ的长,以PQ为底,B点横坐标的绝对值为高即可求得△BPC的面积,由此可得到关于四边形ACPB的面积与P点横坐标的函数关系式,根据函数的性质即可求出四边形ABPC的最大面积及对应的P点坐标.【解答】解:(1)将B、C两点的坐标代入得,解得:;所以二次函数的表达式为:y=x2﹣2x﹣3(2)存在点P,使四边形POP′C为菱形;设P点坐标为(x,x2﹣2x﹣3),PP′交CO于E若四边形POP′C是菱形,则有PC=PO;。
北师大版九年级上册数学期末考试试卷带答案
北师大版九年级上册数学期末考试试题一、单选题1.一元二次方程x(x-3)=4的解是()A.1B.4C.-1或4D.1或-42.一个由5个相同的正方体组成的立体图形,如图所示,则这个立体图形的左视图是A.B.C.D.3.如图,在直角坐标系中,△OAB的顶点为O(0,0),A(4,3),B(3,0).以点O为位似中心,在第三象限内作与△OAB的位似比为13的位似图形△OCD,则点C坐标A.(﹣1,﹣1)B.(﹣43,﹣1)C.(﹣1,﹣43)D.(﹣2,﹣1)4.在Rt△ABC中,∠C=90°,BC=4,AC=3,则cosA的值是()A.45B.35C.54D.435.如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC =9,则BF的长为()A.4B.C.4.5D.56.如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=cx(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是()A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <27.如图,在直角三角形ABC 中,90ACB ∠=︒,3AC =,4BC =,点M 是边AB 上一点(不与点A ,B 重合),作ME AC ⊥于点E ,MF BC ⊥于点F ,若点P 是EF 的中点,则CP 的最小值是()A .1.2B .1.5C .2.4D .2.58.反比例函数4y x =和6y x =在第一象限的图象如图所示,点A 在函数6y x=图象上,点B 在函数4y x=图象上,AB ∥y 轴,点C 是y 轴上的一个动点,则△ABC 的面积为()A .1B .2C .3D .49.如图,正方形ABCD 的边长为2,E 为对角线AC 上一动点,90EDP ∠=︒,DE DP =,当点E 从点A 运动到点C 的过程中,EPC ∆的周长的最小值为()A .222B .42C .324D .22310.某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x .根据题意列方程,则下列方程正确的是A .22500(1)9100x +=B .22500(1%)9100x +=C .22500(1)2500(1)9100x x +++=D .225002500(1)2500(1)9100x x ++++=11.如图,某次课外实践活动中,小红在地面点B 处利用标杆FC 测量一旗杆ED 的高度.小红眼睛点A 与标杆顶端点F ,旗杆顶端点E 在同一直线上,点B ,C ,D 也在同一条直线上.已知小红眼睛到地面距离 1.6AB =米,标杆高 3.8FC =米,且1BC =米,7CD =米,则旗杆ED 的高度为()A .15.4米B .17米C .17.6米D .19.2米12.若0ab >,则一次函数y ax b =-与反比例函数aby x=在同一坐标系数中的大致图象是A .B .C .D .二、填空题13.一元二次方程220x x -+=的解是______.14.一个反比例函数的图象过点A(-3,2),则这个反比例函数的表达式是_____.15.如图,Rt △ABC 中,∠ACD=90°,直线EF BD ∥,交AB 于点E ,交AC 于点G ,交AD 于点F .若S △AEG=13S 四边形EBCG ,则CF AD=_________.16.如图,在ABC 中,D ,E 分别是边AB ,AC 的中点.若ADE 的面积为12.则四边形DBCE 的面积为_______.三、解答题17.解方程(1)2230x x --=(公式法);(2)23740x x -+=(配方法);(3)22(2)(23)x x -=+(因式分解法);(4)2(1)22x x -=-(适当的方法).18.现有5个质地、大小完全相同的小球上分别标有数字–1,–2,1,2,3.先将标有数字–2,1,3的小球放在第一个不透明的盒子里,再将其余小球放在第二个不透明的盒子里.现分别从两个盒子里各随机取出一个小球.(1)请利用列表或画树状图的方法表示取出的两个小球上数字之和所有可能的结果;(2)求取出的两个小球上的数字之和等于0的概率.19.如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P 从点O 开始沿OA 边向点A 以1厘米/秒的速度移动;点Q 从点B 开始沿BO 边向点O 以1厘米/秒的速度移动.如果P 、Q 同时出发,用t (秒)表示移动的时间(0≤t≤6),那么,当t 为何值时,△POQ 与△AOB 相似?20.如图,△ABC 是等边三角形,点D 在AC 上,连接BD 并延长,与∠ACF 的角平分线交于点E .(1)求证:△ABD ∽△CED ;(2)若AB=8,AD=2CD ,求CE 的长.21.如图,已知反比例函数y 1=1k x与一次函数y 2=k 2x+b 的图象交于点A (1,8)、B (﹣4,m ).(1)求一次函数和反比例函数的表达式;(2)求△AOB 的面积;(3)若y 1<y 2,直接写出x 的取值范围.22.如图,在菱形ABCD ,对角线AC,与BD 交于点O,过点C 作BD 的平行线,过点D 作AC 的平行线,两直线交于点E,(1)求证:四边形OCED 是矩形;(2)若CE=1,菱形ABCD的周长为ABCD 的面积.23.如图,反比例函数ky x(k≠0)的图象经过点A (1,2)和B (2,n ),(1)以原点O 为位似中心画出△A1B1O ,使11AB A B =12;(2)在y 轴上是否存在点P ,使得PA+PB 的值最小?若存在,求出P 的坐标;若不存在,请说明理由.24.某品牌童装平均每天可售出40件,每件盈利40元.为了迎接“元旦”,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出4件.要想平均每天销售这种童装盈利2400元,那么每件童装应降价多少元?25.如图,在正方形ABCD 中,点G 是对角线上一点,CG 的延长线交AB 于点E ,交DA 的延长线于点F ,连接AG .(1)求证:AG =CG ;(2)求证:△AEG ∽△FAG ;(3)若GE•GF =9,求CG 的长.参考答案1.C 2.A 3.B 4.B 5.A 6.C 7.A 8.A 9.A 10.D 11.D 12.C13.120,2x x ==【分析】利用因式分解法解一元二次方程即可得.【详解】解:220x x -+=,(2)0x x -+=,0,20x x =-+=,则120,2x x ==,故答案为:120,2x x ==.【点睛】本题考查了解一元二次方程,熟练掌握因式分解法解一元二次方程是解题关键.14.6y x=-【分析】根据反比例函数的意义待定系数法求解析式.【详解】解:∵反比例函数的图象过点A(-3,2),∴6k =-∴这个反比例函数的表达式是6y x=-故答案为:6y x=-15.12【详解】解:∵EF BD∥∴∠AEG=∠ABC ,∠AGE=∠ACB ,∴△AEG ∽△ABC ,且S △AEG=13S 四边形EBCG∴S △AEG :S △ABC=1:4,∴AG :AC=1:2,又EF BD∥∴∠AGF=∠ACD ,∠AFG=∠ADC ,∴△AGF ∽△ACD ,且相似比为1:2,∴S △AFG :S △ACD=1:4,∴S △AFG=13S 四边形FDCGS △AFG=14S △ADC ∵AF :AD=GF :CD=AG :AC=1:2∵∠ACD=90°∴AF=CF=DF∴CF :AD=1:2.故答案为:1216.32【分析】先根据三角形中位线定理得出1//,2DE BC DE BC =,再根据相似三角形的判定与性质得出2()ADE ABC S DE S BC= ,从而可得ABC 的面积,由此即可得出答案.【详解】 点D ,E 分别是边AB ,AC 的中点1//,2DE BC DE BC ∴=ADE ABC∴ 21(4ADE ABC S DE S BC ∴==△△,即4ABCADES S =△△又12ADES =1422ABCS ∴=⨯= 则四边形DBCE 的面积为13222ABC ADE S S -=-= 故答案为:32.17.(1)123,1x x ==-(2)124,13x x ==(3)121,53x x =-=-(4)123,1x x ==【分析】(1)利用公式法求解即可;(2)利用配方法求解即可;(3)利用因式分解法求解即可;(4)利用因式分解法求解即可.(1)解:∵2230x x --=,∴1a =,2b =-,3c =-,∴()()22=42413160b ac ∆-=--⨯⨯-=>,∴242x ±==,∴13x =,21x =-;(2)解:∵23740x x -+=,∴2374x x -=-,∴27433x x -=-,∴22277473636x x ⎛⎫⎛⎫-+=-+ ⎪ ⎪⎝⎭⎝⎭,∴271636x ⎛⎫-= ⎪⎝⎭,∴7166x -=±,∴143x =,21x =;(3)解:∵22(2)(23)x x -=+∴22(2)(23)0x x -+-=,∴()(223)2230x x x x -++---=,∴()()3150x x ++=,∴113x =-,25x =-;(4)解:∵2(1)22x x -=-,∴()2(1)210x x --=-,∴()(12)10x x ---=,∴13x =,21x =.18.(1)详见解析;(2)13【分析】(1)首先根据题意列出表格,由表格即可求得取出的两个小球上数字之和所有等可能的结果;(2)首先根据(1)中的表格,求得取出的两个小球上的数字之和等于0的情况,然后利用概率公式即可求得答案.【详解】解:(1)列表得:-12-2-30103325则共有6种结果,且它们的可能性相同;(2)∵取出的两个小球上的数字之和等于0的有:(1,-1),(-2,2),∴两个小球上的数字之和等于0的概率为:2163=.19.当t=4或t=2时,△POQ 与△AOB 相似.【详解】试题分析:根据题意可知:OQ=6-t ,OP=t ,然后分OQ OP OB OA =和OQ OP OA OB=两种情况分别求出t 的值.试题解析:解:①若△POQ ∽△AOB 时,=,即=,整理得:12﹣2t=t ,解得:t=4.②若△POQ ∽△BOA 时,=,即=,整理得:6﹣t=2t ,解得:t=2.∵0≤t≤6,∴t=4和t=2均符合题意,∴当t=4或t=2时,△POQ 与△AOB 相似.20.(1)见解析;(2)CE=4【分析】(1)根据等边三角形的性质得到60A ACB ∠=∠=︒,则120ACF ∠=︒,根据角平分线的性质,得到60ACE ∠=︒,即可求证;(2)利用相似三角形的性质得到CD CE AD AB=,即可求解.【详解】(1)证明:∵△ABC 是等边三角形,∴∠BAC=∠ACB=60°,∠ACF=120°;∵CE 平分∠ACF ,∴∠ACE=60°;∴∠BAC=∠ACE ;又∵∠ADB=∠CDE ,∴△ABD ∽△CED ;(2)解:∵△ABD ∽△CED ,∴CD CE AD AB=,∵AD=2DC ,AB=8;∴1842CD CE AB AD =⨯=⨯=21.(1)18y x =,y 2=2x+6,过程见解析;(2)15,过程见解析;(3)﹣4<x <0或x >1,过程见解析.【分析】(1)利用待定系数法即可求得结论;(2)设直线AB 与x 轴交于点D ,与y 轴交于点C ,利用直线AB 解析式求得点C ,D 的坐标,用△AOC ,△OCD 和△OBD 的面积之和表示△AOB 的面积即可;(3)利用图象即可确定出x 的取值范围.(1)解:点A (1,8)在反比例函数11ky x =上,∴k 1=1×8=8.∴18y x =.∵点B (﹣4,m )在反比例函数18y x =上,∴﹣4m =8.∴m =﹣2.∴B (﹣4,﹣2).∵点A (1,8)、B (﹣4,﹣2)在一次函数y 2=k 2x+b 的图象上,∴22842k b k b +=⎧⎨-+=-⎩,解得:226k b =⎧⎨=⎩.∴y 2=2x+6.(2)解:设直线AB 与y 轴交于点C,如图,由直线AB:y 2=2x+6,令x =0,则y =6,∴C (0,6).∴OC =6.过点A 作AF ⊥y 轴于点F ,过点B 作BE ⊥y 轴于点E ,∵A (1,8),B (﹣4,﹣2),∴AF =1,BE =4.∴AOBAOC BOC S S S =+△△△11××22OC AF OC BE =+1=6(14)2⨯⨯+=15答:△AOB 的面积是15.(3)解:由图象可知,点A 右侧的部分和点B 与点C 之间的部分y 1<y 2,∴若y 1<y 2,x 的取值范围为:﹣4<x <0或x >1.【点睛】本题是一道反比例函数与一次函数图象的交点问题,主要考查了待定系数法,一次函数图象上点的坐标的特征,反比例函数图象上点的坐标的特征,利用点的坐标表示出相应线段的长和利用数形结合的思想方法求得x 的取值范围是解题的关键.22.(1)证明见解析;(2)4.【分析】(1)欲证明四边形OCED 是矩形,只需推知四边形OCED 是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【详解】(1)证明:因为四边形ABCD 是菱形,所以AC BD ⊥,90COD ︒∴∠=,//,//CE OD DE OC ,所以四边形OCED 是平行四边形,90COD ︒∠= ,∴四边形OCED 是矩形;(2)由(1)知,四边形OCED 是矩形,则CE=OD=1,∵四边形ABCD 是菱形,∴AB=AD=CD=BC ,∵菱形ABCD 的周长为CD ∴2OC∴==,24,22 AC OC BD OD==== ,∴菱形ABCD的面积为:11424 22AC BD⋅=⨯⨯=.23.(1)作图见解析;(2)存在,P(0,5 3).【分析】(1)有两种情形,分别画出图象即可;(2)存在.如图作点A关于y轴的对称点A′,连接BA′交y轴于P,连接PA,此时PA+PB 的值最小.求出直线BA′的解析式即可解决问题.【详解】(1)△A1B1O的图象如图所示.(2)存在.如图作点A关于y轴的对称点A′,连接BA′交y轴于P,连接PA,此时PA+PB 的值最小.∵点A(1,2)在反比例函数y=kx上,∴k=2,∴B (2,1),∵A′(﹣1,2),设最小BA′的解析式为y=kx+b ,则有221k b k b -+⎧⎨+⎩==,解得1253k b ⎧-⎪⎪⎨⎪⎪⎩==,∴直线BA′的解析式为y=﹣13x+53,∴P (0,53).24.每件童装应降价20元.【分析】设每件童装应降价x 元,再根据题意即可列出关于x 的一元二次方程,解出x ,最后舍去不合题意的解即可.【详解】解:设每件童装应降价x 元,依题意可列方程为(40)(404)2400x x -+=,解得:121020x x ==,,∵要减少库存,∴20x =,答:每件童装应降价20元.【点睛】本题考查一元二次方程的实际应用.根据题意找出等量关系,列出方程是解题关键.25.(1)见解析;(2)见解析;(3)CG =3【分析】(1)根据正方形的性质得到∠ADB =∠CDB =45°,AD =CD ,从而利用全等三角形的判定定理推出△ADG ≌△CDG (SAS ),进而利用全等三角形的性质进行证明即可;(2)根据正方形的性质得到AD ∥CB ,推出∠FCB =∠F ,由(1)可知△ADG ≌△CDG ,利用全等三角形的性质得到∠DAG =∠DCG ,结合图形根据角之间的和差关系∠DAB−∠DAG =∠DCB−∠DCG ,推出∠BCF =∠BAG ,从而结合图形可利用相似三角形的判定定理得到△AEG ∽△FAG ,(3)根据相似三角形的性质进行求解即可.【详解】(1)证明:∵BD 是正方形ABCD 的对角线,∴∠ADB =∠CDB =45°,又AD =CD ,在△ADG 和△CDG 中,AD CDADG CDG DG DG=⎧⎪∠=∠⎨⎪=⎩,∴△ADG ≌△CDG (SAS ),∴AG =CG ;(2)解:∵四边形ABCD 是正方形,∴AD ∥CB ,∴∠FCB =∠F ,由(1)可知△ADG ≌△CDG ,∴∠DAG =∠DCG ,∴∠DAB−∠DAG =∠DCB−∠DCG ,即∠BCF =∠BAG ,∴∠EAG =∠F ,又∠EGA =∠AGF ,∴△AEG ∽△FAG ;(3)∵△AEG ∽△FAG ,∴GEGAGA GF =,即GA 2=GE•GF ,∴GA =3或GA =−3(舍去),根据(1)中的结论AG =CG ,∴CG =3.。
2022-2023学年北师大版九年级上册数学期末模拟试卷+(1)
2022-2023年北师大版九年级上册数学期末模拟试卷 (1) 学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10个小题,每小题3分,共30分)1.下列函数是反比例函数的是()A.y=2x -1B.y=21xC.y=13xD.y=11x2.某学习小组做抛掷一枚纪念币的实验,整理同学们获得的实验数据,如下表.抛掷次数5010020050010002000300040005000“正面向上”的次数193868168349707106914001747“正面向上”的频率0.38000.38000.34000.33600.34900.35350.35630.35000.3494下面有三个推断:①通过上述实验的结果,可以推断这枚纪念币有很大的可能性不是质地均匀的;①如果再次做此实验,仍按上表抛掷的次数统计数据,那么在数据表中,“正面向上”的频率有更大的可能仍会在0.35附近摆动;①在用频率估计概率时,用实验5000次时的频率0.3494一定比用实验4000次时的频率0.3500更准确.其中正确的是()A.①①B.①①C.①①D.①①①3.下列几何体中,主视图是长方形的是()A.B.C.D.4.如图,①DEF和①ABC是位似图形点O是位似中心,点D,E,F,分别是OA,OB,OC 的中点,若①ABC的面积是8,①DEF的面积是()A.2B.4C.6D.85.把抛物线y=x2+1向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A.y=(x+3)2+1B.y=(x+1)2+3C.y=(x﹣1)2+4D.y=(x+1)2+46.为了方便行人推车过某天桥,市政府在10m高的天桥一侧修建了40m长的斜道(如图所示),我们可以借助科学计算器求这条斜道倾斜角的度数,具体按键顺序是()A.B.C.D .7.如图,已知:AB 是O 的直径,O 的半径为1,3BD sin C ∠的值等于( )A .12B 3C 3D 2 8.已知关于x 的一元二次方程2(1)410a x x ---=有两个实数根,则a 的取值范围是( ) A .4a ≥- B .3a >- C .3a ≥-且1a ≠ D .3a >-且1a ≠9.已知:如图,菱形ABCD 的周长为20cm ,对角线AC =8cm ,直线l 从点A 出发,以1c m/s 的速度沿AC 向右运动,直到过点C 为止在运动过程中,直线l 始终垂直于AC ,若平移过程中直线l 扫过的面积为S (cm 2),直线l 的运动时间为t (s ),则下列最能反映S 与t 之间函数关系的图象是( )A .B .C .D .10.下列计算错误的是( )A 236=B 236C 1232=D 822=二、填空题(本大题共5个小题,每小题3分,共15分)11.当2x =时,函数21y x =-+的值是______. 12.-1a b a b a b a a a a---=--=( ) 13.已知一个直角三角形的两条直角边的长恰好是方程x 2﹣6x=8(x ﹣6)的两个实数根,那么这个直角三角形的内切圆半径为_____.14.二次函数y=x 2+bx 图象的对称轴为直线x=1,若关于x 的一元二次方程x 2+bx ﹣t=0(t 为实数)在﹣1≤x≤2的范围内有解,则t 的取值范围是_____.15.如图,G 、H 分别是四边形ABCD 的边AD 、A B 上的点,①GCH =45°,CD =CB =2,①D =①DCB =①B =90°,则△AGH 的周长为_______.三、解答题(一)(本大题共3个小题,每小题8分,共24分)16.(本题8分)解下列方程(1)x 2-4x -1=0(配方法)(2)3x (x -1)=2-2x (因式分解法)17.(本题8分)如果四边形ABCD 的四个顶点坐标分别是A(2,1),B(4,3),C(6,2),D(3,-1). 试将此四边形缩小为原来的12 .18.(本题8分)如图,ABC 为等边三角形,BD AC ⊥交AC 于点D ,DE BC ∥交AB 于点E .(1)求证:ADE 是等边三角形.(2)求证:12AE AB =.四、解答题(二)(本大题共3个小题,每小题9分,共27分)19.(本题9分)学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.20.(本题9分)春节期间甲乙两商场搞促销活动.甲商场的方案是:在一个不透明的箱子里放4个完全相同的小球,球上分别标“0元”、“20元”、“30元”、“50元”,顾客每消费满300元,就可从箱子里不放回地摸出2个球,根据两个小球所标金额之和可获相应价格的礼品.乙商场的方案是:在一个不透明的箱子里放2个完全相同的小球,球上分别标“5元”、“30元”,顾客每消费满100元,就可从箱子里不放回地摸出1个球,根据两个小球所标金额之和可获相应价格的礼品. 某顾客准备消费300元,(1)若该顾客在甲商场消费,至少可得价值_________元的礼品,至多可得价值_________元的礼品;(2)请用画树状图或列表法,说明该顾客去哪个商场消费,获得礼品的总价值不低于50元的概率大.21.(本题9分)y=x+1x 是一种类似于反比例函数的对勾函数,形如y=ax+bx.其函数图像形状酷似双勾,故称“对勾函数”,也称“勾勾函数”、“海鸥函数”.y=x+1x函数图像如下图所示.根据y=x+1x 图像对函数y=|x|+1x的图像和性质进行了探究.(1)绘制函数图像:y=|x|+1 x列表:下表是x与y的几组对应值x………-3-2-1-12-131312123………y (10)35225210310352252103………描点:根据表中各组对应值,在平面直角坐标系中描出各点;连线:用平滑的曲线顺次连接各点,请你在平面直角坐标系中将y=|x|+1x图像补充完整;(2)观察发现:①写出函数y=|x|+1x的一条性质_________①函数图像与直线y=2有_________个交点,所以对应的方程|x|+120x-=有_________个实数根.(3)分析思考:①方程的|x-1|+11x--2=0的解为_________①不等式|x|+1x-52<0,x的取值范围为_________(4)延伸探究:①当x>0时,直线y=kx+3与y=|x|+1x只有一个交点,求k的值?五、解答题(三)(本大题共2个小题,每小题12分,共24分)22.(本题12分)综合与实践折纸是同学们喜欢的手工活动之一,通过折纸我们既可以得到许多美丽的图形,同时折纸的过程还蕴含着丰富的数学知识.折一折:把边长为4的正方形纸片ABCD对折,使边AB与CD 重合,展开后得到折痕EF.如图①:点M为CF上一点,将正方形纸片ABCD沿直线DM折叠,使点C落在EF上的点N处,展开后连接DN,MN,AN,如图①图①图①(一)填一填,做一做:(1)图①中,CMD∠=_______.线段NF=_______.(2)图①中,试判断AND∆的形状,并给出证明.剪一剪、折一折:将图①中的AND∆剪下来,将其沿直线GH折叠,使点A落在点A'处,分别得到图①、图①.(二)填一填图① 图①(3)图①中阴影部分的周长为_______.(4)图①中,若80A GN '∠=︒,则A HD '∠=_______°.(5)图①中的相似三角形(包括全等三角形)共有_______对;(6)如图①点A '落在边ND 上,若A N m A D n '='_______,则AG AH=_______用含m ,n 的代数式表示).23.(本题12分)如图,在Rt①ABC 中,①C=90°,AB=10cm,BC=6cm ,点P 、Q 同时从点C 出发,分别沿C→A 和 C→B 的方向运动,速度分别为2cm/s 和1cm/s.过点P 作PM①AC 交AB 于M ,分别连接PQ 、PM .当点Q 运动到B 时,两点都停止.设运动时间为t 秒.(1)当t= s 时,PQ①QM ?(2)将①PQM 沿PM 翻折,得到①PMQ /.①当t= s 时,点Q /恰好落在AB 上;①设①PMQ /与①ABC 重叠部分的面积为Scm 2,求:S 与t 的函数关系式,并指出t 的取值范围.。
北师大版九年级数学第一学期期末考试试题及答案
北师大版九年级数学第一学期期末考试试题及答案第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1.如图所示的六角螺栓,其俯视图是( )A. B. C. D.2.关于菱形的性质,以下说法不正确的是( )A. 四条边相等B. 对角线互相垂直C. 对角线相等D. 是轴对称图形3.关于x的一元二次方程x2−6x+m=0有两个不相等的实数根,则m的值可能是( )A. 8B. 9C. 10D. 114.对于反比例函数y=−5,给出下列结论:①图象经过点(1,−5);②图象位于第二、第四象限;③当x<0时,xy随x的增大减小;④当x>0时,y随x的增大而增大.其中正确的结论个数为( )A. 1个B. 2个C. 3个D. 4个5.如图,小明探究课本“综合与实践”板块“制作视力表”的相关内容:当测试距离为5m时,标准视力表中最大的“E”字高度为72.7mm,当测试距离为3m时,最大的“E”字高度为( )A. 4.36mmB. 29.08mmC. 43.62mmD. 121.17mm6.如图是某商场营业大厅自动扶梯的示意图.自动扶梯AB的倾斜角为37°,大厅两层之间的距离BC=6米,则自动扶梯AB的长约为(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)( )第2页,共21页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………A. 7.5米B. 8米C. 9米D. 10米7. 如图,在矩形ABCD 中,对角线AC 与BD 相交于点O.点E 、F 分别是AB ,AO 的中点,且AC =8.则EF 的长度为( )A. 2B. 4C. 6D. 88. 如图所示,E 是正方形ABCD 的对角线BD 上一点,EF ⊥BC ,EG ⊥CD ,垂足分别是F 、G ,若CG =4,CF =3,则AE 的长是( )A. 3B. 4C. 5D. 79. 如图,在正方形网格中:△ABC 、△EDF 的顶点都在正方形网格的格点上,△ABC∽△EDF ,则∠ABC +∠ACB 的度数为( )A. 30°B. 45°C. 60°D. 75°10. 两个相似三角形对应中线的长分别为6cm 和12cm ,若较大三角形的面积是12cm 2,则较小的三角形的面积为( )A. 6cm 2B. 4cm 2C. 3cm 2D. 1cm 211. 一次函数y =ax +b(a ≠0)与二次函数y =ax 2+bx +c(a ≠0)在同一平面直角坐标系中的图象可能是( )A. B.C. D.12.如图,二次函数y=ax2+bx+c的图象经过点A(−1,0),B(3,0),与y轴交于点C.给出下列结论:①a>0;②当x>0时,y随x的增大而增大;③3a+c=0;④a+b≥am2+bm.其中正确的结论个数为( )A. 1个B. 2个C. 3个D. 4个第II卷(非选择题)二、填空题(本大题共6小题,共24.0分)13.关于x的方程2x2+mx−4=0的一根为x=1,则另一根为______.14.从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高度y(单位:m)与它距离喷头的水平距离x(单位:m)之间满足函数关系式y=−2x2+4x+1喷出水珠的最大高度是______ m.15.《九章算术》中记载了一种测量古井水面以上部分深度的方法.如图所示,在井口A处立一根垂直于井口的木杆AB,从木杆的顶端B观察井水水面DF,视线BD与井口的直径AC交于点E,如果测得AB=1米,AC=1.6米,AE=0.4米,那么CD=______米.第4页,共21页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………16. 如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高 米.(结果保留根号)17. 如图,在矩形ABCD 中,AB =6,BC =10,以点B 为圆心、BC 的长为半径画弧交AD 于点E ,再分别以点C ,E 为圆心、大于12CE 的长为半径画弧,两弧交于点F ,作射线BF 交CD 于点G ,则CG 的长为______.18. 如图,点A ,B 在反比例函数y =kx(k >0)的图象上,点A 的横坐标为2,点B 的纵坐标为1,OA ⊥AB ,则k 的值为______.三、计算题(本大题共1小题,共8.0分)19. (1)计算:2sin30°+3cos60°+(14)−1−5tan45°;(2)用配方法求抛物线y =2x 2−4x −6的顶点坐标.四、解答题(本大题共6小题,共52.0分。
北师大版九年级上册数学期末试题含答案
北师大版九年级上册数学期末试题含答案下学期期末质量监测初三数学试题封一、选择题1.已知2x=3y(y≠0),则下面结论成立的是(。
),选项中只有一项正确。
A.x=y×3/2 B.x=y/3×2 C.x=y/2×3 D.x=y/2÷32.一元二次方程x²-x-1=0的解是(。
),选项中只有一项正确。
A.x=1+√5/2 B.x=5/2 C.x=1/2±√5/2 D.x=1-√5/23.当k>0,x<0时,反比例函数y=k/x的图象在(。
),选项中只有一项正确。
A.第一象限B.第二象限C.第三象限D.第四象限4.下列命题中,真命题是(。
),选项中只有一项正确。
A.对角线相等的四边形是矩形 B.对角线互相垂直平分的四边形是正方形C.对角线互相平分的四边形是平行四边形 D.对角线互相垂直的四边形是菱形5.下列四边形:①平行四边形;②矩形;③菱形;④正方形.其中,是中心对称图形,而不是轴对称图形的有(。
)个,选项中只有一项正确。
A.1 B.2 C.3 D.46.若2是方程x²-2x+c=0的一个根,则c的值为(。
),选项中只有一项正确。
A.2 B.1 C.-2 D.-17.如图,点F是平行四边形ABCD的边CD上一点,直线BF交AD的延长线于点E,则下列结论错误的是(。
),选项中只有一项错误。
A.ED/EA=DF/AB B.DE/BC=EF/FB C.BC/DE=BF/BE D.BF/BE=BC/AE8.若关于x的一元二次方程kx²-2x-1=0有两个不相等的实数根,则实数k的取值范围是(。
),选项中只有一项正确。
A.k>-1 B.k>-1且k≠0 XXX<-1 D.k<-1或k=09.如图,矩形ABCD的对角线AC与BD相交于点O,∠ADB=30°,AB=4,则OC=(。
),选项中只有一项正确。
北师大版九年级上册数学期末考试试卷含答案详解
北师大版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.如图所示的几何体,它的左视图是()A.B.C.D.2.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,矩形ABCD内的一个动点P落在阴影部分的概率是( )A.15B.14C.13D.3103.一元二次方程x2﹣2x+3=0的一次项和常数项分别是()A.2和3 B.﹣2和3 C.﹣2x和3 D.2x和34.若反比例函数y=Kx(k≠0)的图象经过(2,3),则k的值为()A.5 B.﹣5 C.6 D.﹣65.四条线段a,b,c,d成比例,其中b=3cm,c=8cm,d=12cm,则a=()A.2cm B.4cm C.6cm D.8cm6.下列判断错误的是()A.有两组邻边相等的四边形是菱形B.有一角为直角的平行四边形是矩形C.对角线互相垂直且相等的平行四边形是正方形 D.矩形的对角线互相平分且相等7.关于x的方程22370x x+-=的根的情况,正确的是().A.有两个不相等的实数根B.有两个相等的实数根C .只有一个实数根D .没有实数根8.在平面直角坐标系中,以原点O 为位似中心,把△ABC 放大得到△A 1B 1C 1,使它们的相似比为1:2,若点A 的坐标为(2,2),则它的对应点A 1的坐标一定是( ) A .(﹣2,﹣2)B .(1,1)C .(4,4)D .(4,4)或(﹣4,﹣4)9.如图,在矩形ABCD 中,点M 从点B 出发沿BC 向点C 运动,点E 、F 别是AM 、MC 的中点,则EF 的长随着M 点的运动( )A .不变B .变长C .变短D .先变短再变长 10.如图,边长为1的正方形ABCD 中,点E 在CB 的延长线上,连接ED 交AB 于点F ,AF =x (0.2≤x ≤0.8),EC =y .则在下面函数图象中,大致能反映y 与x 之间函数关系的是( )A .B .C .D .二、填空题11.若两个相似三角形的面积比为1∶4,则这两个相似三角形的周长比是__________. 12.双曲线m 2y x-=在每个象限内,函数值y 随x 的增大而增大,则m 的取值范围是__________13.已知543x y z ==(x 、y 、z 均不为零),则32x y y z +=-_____________. 14.已知点P 是线段AB 的黄金分割点,AP >PB .若AB =10.则AP =__(结果保留根号). 15.若12,x x 是方程2210x x --=的两个根,则12122x x x x ++的值为________16.如图,点P在函数y=kx的图象上,P A⊥x轴于点A,PB⊥y轴于点B,且△APB的面积为4,则k等于_____.17.如图,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.过点D作DG∥BE,交BC于点G,连接FG交BD于点O.若AB=6,AD=8,则DG的长为_____.三、解答题18.解方程:(x+2)(x-5)=18.19.已知线段AC(1)尺规作图:作菱形ABCD,使AC是菱形的一条对角线(保留作图痕迹,不要求写作法);(2)若AC=8,BD=6,求菱形的边长.20.粤东农批﹒2019球王故里五华马拉松赛于12月1日在广东五华举行,组委会为了做好运动员的保障工作,沿途设置了4个补给站,分别是:A(粤东农批)、B(奥体中心)、C (球王故里)和D(滨江中路),志愿者小明和小红都计划各自在这4个补给站中任意选择一个进行补给服务,每个补给站被选择的可能性相同.(1)小明选择补给站C(球王故里)的概率是多少?(2)用树状图或列表的方法,求小明和小红恰好选择同一个补给站的概率.21.在矩形ABCD中,AB=3,BC=4,E,F是对角线AC上的两个动点,分别从A,C 同时出发相向而行,速度均为1cm/s,运动时间为t秒,0≤t≤5.(1)AE=________,EF=__________(2)若G,H分别是AB,DC中点,求证:四边形EGFH是平行四边形.(E F、相遇时除外)(3)在(2)条件下,当t为何值时,四边形EGFH为矩形.22.如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=kx(k>0)的图象与BC边交于点E.(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EF A的面积最大,最大面积是多少?23.已知,如图,EF是矩形ABCD的对角线AC的垂直平分线,EF与对角线AC及边AD、BC分别交于点O,E,F(1)求证:四边形AFCE是菱形(2)如果FE=2ED,求AE:ED的值24.如图,在平面直角坐标系中,边长为2的正方形ABCD关于y轴对称,边AD在x轴上,点B在第四象限,直线BD与反比例函数myx的图象交于点B、E.(1)求反比例函数及直线BD的解析式;(2)求点E的坐标.25.如图1,在▱ABCD中,AB=14,AD=8,∠DAB=60°,对角线AC,BD交于点O.一动点P在边AB上由A向B运动(不与A,B重合),连接PO并延长,交CD于点Q.(1)求证:OP=OQ;(2)当AP=9时,求线段OP的长度;(3)连接AQ,PC,如图2,随着点P的运动,四边形APCQ可能是菱形吗?如果可能,请求出此时线段AP的长度;如果不可能,请说明理由.参考答案1.D【详解】分析:根据从左边看得到的图形是左视图,可得答案.详解:从左边看是等长的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选D .点睛:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.2.B【分析】根据矩形的性质,得△EBO ≌△FDO ,再由△AOB 与△OBC 同底等高,△AOB 与△ABC 同底且△AOB 的高是△ABC 高的12得出结论.【详解】解:∵四边形为矩形,∴OB=OD=OA=OC ,在△EBO 与△FDO 中,EOB DOF OB ODEBO FDO ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△EBO ≌△FDO ,∴阴影部分的面积=S △AEO +S △EBO =S △AOB ,∵△AOB 与△ABC 同底且△AOB 的高是△ABC 高的12,∴S △AOB =S △OBC =14S 矩形ABCD . 故选B .【点睛】本题考查了矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.3.C【分析】根据一元二次方程一次项和常数项的概念即可得出答案.【详解】一元二次方程x2﹣2x+3=0的一次项是﹣2x,常数项是3故选:C.【点睛】本题主要考查一元二次方程的一次项与常数项,注意在求一元二次方程的二次项,一次项,常数项时,需要先把一元二次方程化成一般形式.4.C【分析】反比例函数图象上的点(x,y)的横纵坐标的积是定值k,依据xy=k即可得出结论.【详解】解:∵反比例函数y=Kx(k≠0)的图象经过(2,3),∴k=2×3=6,故选:C.【点睛】本题主要考查了反比例函数图象上点的坐标特征,熟练掌握是解题的关键. 5.A【分析】由四条线段a、b、c、d成比例,根据比例线段的定义,即可得a cb d=,又由b=3cm,c=8cm,d=12cm,即可求得a的值.【详解】∵四条线段a、b、c、d成比例,∴a cb d =∵b=3cm,c=8cm,d=12cm,∴8 312 a=解得:a=2cm.故答案为A.【点睛】此题考查了比例线段的定义.解题的关键是熟记比例线段的概念.6.A【分析】根据菱形,矩形,正方形的判定逐一进行分析即可.【详解】A. 有两组邻边相等的四边形不一定是菱形,故该选项错误;B. 有一角为直角的平行四边形是矩形,故该选项正确;C. 对角线互相垂直且相等的平行四边形是正方形,故该选项正确;D. 矩形的对角线互相平分且相等,故该选项正确;故选:A.【点睛】本题主要考查菱形,矩形,正方形的判定,掌握菱形,矩形,正方形的判定方法是解题的关键.7.A【分析】根据一元二次方程根的判别式,即可得到方程根的情况.【详解】解:∵2x x+-=,2370∴2342(7)956650∆=-⨯⨯-=+=>,∴原方程有两个不相等的实数根;故选择:A.【点睛】本题考查了一元二次方程根的判别式,解题的关键是熟练掌握根的判别式.8.D【解析】【分析】根据如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k进行解答.【详解】∵以原点O为位似中心,相似比为:1:2,把△ABC放大得到△A1B1C1,点A的坐标为(2,2),则它的对应点A1的坐标一定为:(4,4)或(-4,-4),故选D.【点睛】本题考查了位似变换:位似图形与坐标,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.9.A【分析】由题意得EF为三角形AMC的中位线,由中位线的性质可得:EF的长恒等于定值AC的一半.【详解】解:∵E,F分别是AM,MC的中点,∴1EF=AC2,∵A、C是定点,∴AC的的长恒为定长,∴无论M运动到哪个位置EF的长不变,故选A.【点睛】此题考查的是三角形中位线的性质,即三角形的中位线平行且等于第三边的一半. 10.C【分析】通过相似三角形△EFB∽△EDC的对应边成比例列出比例式111x yy--=,从而得到y与x之间函数关系式,从而推知该函数图象.【详解】根据题意知,BF=1﹣x ,BE=y ﹣1,∵AD//BC ,∴△EFB ∽△EDC , ∴BF BE DC EC=,即111x y y --=, ∴y=1x (0.2≤x≤0.8),该函数图象是位于第一象限的双曲线的一部分. A 、D 的图象都是直线的一部分,B 的图象是抛物线的一部分,C 的图象是双曲线的一部分. 故选C .11.1:2【解析】试题分析:∵两个相似三角形的面积比为1:4,∴这两个相似三角形的相似比为1:2,∴这两个相似三角形的周长比是1:2,故答案为1:2.考点:相似三角形的性质.12.2m <【分析】根据反比例函数的性质可知 ,y 随x 的增大而增大则k 知小于0,即m-2<0,解得m 的范围即可.【详解】∵反比例函数y 随x 的增大而增大∴m-2<0则m <2【点睛】 本题考查了反比例函数k y x=的性质,函数值y 随x 的增大而增大则k 小于0,函数值y 随x 的增大而减小则k 大于0.13.32【分析】根据题意,可设x=5k ,y=4k ,z=3k ,将其代入分式即可.【详解】解:∵543x y z ==∴设x=5k ,y=4k ,z=3k ,将其代入分式中得:5k 4k 33212k 6k 2x y y z ++==--.故答案为32.【点睛】本题考查了比例的性质,解此类题可根据分式的基本性质先用未知数k 表示出x ,y ,z ,再代入计算.14. 5 【分析】根据黄金分割比的定义计算即可. 【详解】根据黄金分割比,有105AP AB ===故答案为:5. 【点睛】本题主要考查黄金分割比,掌握黄金分割比的定义是解题的关键. 15.0 【分析】先由根与系数的关系得出12122,1x x x x +==-,然后代入即可求解. 【详解】∵12,x x 是方程2210x x --=的两个根12122,1x x x x ∴+==- ∴原式=22(1)220+⨯-=-= 故答案为:0. 【点睛】本题主要考查一元二次方程根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键. 16.-8 【解析】【分析】由反比例函数系数k 的几何意义结合△APB 的面积为 4 即可得出k=±8,再根据反比例函数在第二象限有图象即可得出k=﹣8,此题得解.【详解】∵点P 在反比例函数y=kx的图象上,P A⊥x 轴于点A,PB⊥y 轴于点B,∴S△APB=12|k|=4,∴k=±8.又∵反比例函数在第二象限有图象,∴k=﹣8.故答案为﹣8.【点睛】本题考查了反比例函数系数k 的几何意义,熟练掌握“在反比例函数y=kx图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|是解题的关键.17.25 4【解析】【分析】根据折叠的性质求出四边形BFDG是菱形,假设DF=BF=x,∴AF=AD﹣DF=8﹣x,根据在直角△ABF中,AB2+AF2=BF2,即可求解.【详解】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠ADB=∠DBC∴FD∥BG,又∵DG∥BE,∴四边形BFDG是平行四边形,∵折叠,∴∠DBC=∠DBF,故∠ADB =∠DBF∴DF=BF,∴四边形BFDG是菱形;∵AB=6,AD=8,∴BD=10.∴OB=12BD=5.假设DF=BF=x,∴AF=AD﹣DF=8﹣x.∴在直角△ABF中,AB2+AF2=BF2,即62+(8﹣x)2=x2,解得x=254,即DG=BF=254,故答案为:25 4【点睛】此题主要考查矩形的折叠性质,解题的关键是熟知菱形的判定与性质及勾股定理的应用. 18.x1=7,x2=-4【分析】化为一般形式,利用因式分解法求得方程的解即可.【详解】解:(x+2)(x-5)=18,x2-3x-28=0,(x-7)(x+4)=0∴x-7=0,x+4=0解得:x1=7,x2=-4.【点睛】此题考查解一元二次方程的方法,根据方程的特点,灵活选用适当的方法求得方程的解即可.19.(1)详见解析;(2)5.【分析】(1)先画出AC的垂直平分线,垂足为O,然后截取OB=OD即可;(2)根据菱形的性质及勾股定理即可求出边长.【详解】解:(1)如图所示,四边形ABCD即为所求作的菱形;(2)∵AC=8,BD=6,且四边形ABCD是菱形,∴AO=12AC=4,DO=12BD=3,且∠AOD=90°则AD5.【点睛】本题主要考查菱形的画法及性质,掌握菱形的性质是解题的关键.20.(1 )14;(2)14【分析】(1)共有4个补给站,所以小明选择补给站C(球王故里)的概率是14;(2)用树状图或列表表示出所有的情况数,从中找出小明和小红恰好选择同一个补给站的情况数,利用概率公式求解即可.【详解】解:(1)在这4个补给站中任意选择一个补给站服务,每个补给站被选择的可能性相同,∴小明选择补给站C(球王故里)的概率是14;(2)画树状图分析如下:共有16种等可能的结果,小明和小红恰好选择同一个补给站的结果有4种,∴小明和小红恰好选择同一个补给站的概率为416=14. 【点睛】本题主要考查树状图或列表法求随机事件的概率,掌握概率公式是解题的关键. 21.(1)t ,52t - ;(2)详见解析;(3)当t 为0.5秒或4.5时,四边形EGFH 为矩形 【分析】(1)先利用勾股定理求出AC 的长度,再根据路程=速度×时间即可求出AE 的长度,而当0≤t≤2.5时,EF AC AE FC =-- ;当2.5<t≤5时,EF AE FC AC =+-即可求解;(2)先通过SAS 证明△AFG ≌△CEH ,由此可得到GF =HE ,AFG CEH ∠=∠,从而有//GF EH ,最后利用一组对边平行且相等即可证明;(3)利用矩形的性质可知FG=EF,求出GH ,用含t 的代数式表示出EF,建立方程求解即可. 【详解】(1)90,3,4ABC AB BC ∠=︒==5AC ∴ 1AE t t ∴==当0≤t≤2.5时,52EF AC AE FC t =--=- 当2.5<t≤5时,25EF AE FC AC t =+-=- ∴52EF t =-故答案为:t ,52t - (2)证明:∵四边形ABCD 是矩形, ∴AB =CD ,AB ∥CD ,AD ∥BC ,∠B =90°,∴AC 5,∠GAF =∠HCE , ∵ G 、H 分别是AB 、DC 的中点, ∴AG =BG ,CH =DH , ∴AG =CH , ∵AE =CF , ∴AF =CE ,在△AFG 与△CEH 中,AG CH GAF HCE AF CE =⎧⎪∠=∠⎨⎪=⎩,∴()AFG CEH SAS ≅, ∴ GF =HE ,AFG CEH ∠=∠ //GF EH ∴∴四 边 形 EGFH 是平行四边形. (3)解:如图所示,连接GH ,由(1)可知四边形EGFH 是平行四边形∵点 G 、H 分别是矩形ABCD 的边AB 、DC 的中点, ∴ GH =BC =4,∴ 当 EF =GH =4时,四边形EGFH 是矩形,分两种情况: ①当0≤t≤2.5时,AE =CF =t ,EF =5﹣2t =4, 解得:t =0.5②当2.5<t≤5时,,AE =CF =t ,EF =2t-5=4, 解得:t =4.5即:当t 为0.5秒或4.5时,四边形EGFH 为矩形 【点睛】本题主要考查平行四边形的判定及矩形的性质,掌握平行四边形的判定方法及矩形的性质是解题的关键.22.(1)y =3x (x >0);(2)当k =3时,S 有最大值.S 最大值=34.【分析】(1)当F 为AB 的中点时,点F 的坐标为(3,1),由此代入求得函数解析式即可; (2)根据图中的点的坐标表示出三角形的面积,得到关于k 的二次函数,利用二次函数求出最值即可. 【详解】(1)∵在矩形OABC 中,OA=3,OC=2,∴B (3,2), ∵F 为AB 的中点,∴F (3,1), 又∵点F 在反比例函数ky x=(k >0)的图象上,∴k=3, ∴该函数的解析式为y=3x(x >0) (2)由题意知E ,F 两点坐标分别为E (2k ,2),F (3,3k),∴11·(3)2232EFAk kSAF EB ==⨯- , =2212k k - =213(3)+124k --, ∴当k=3时,S 有最大值.S 最大=34.23.(1)见解析;(2)2:1 【分析】(1)要证明四边形AFEC 是菱形,只需要通过菱形的判定条件进行证明即可得到答案; (2)根据平行四边形的对角线互相平分知,FE =2EO ,则可以得到EO =ED ,则可以证明△OEC ≌△DEC ,得到∠3=∠4,再由四边形AFEC 是菱形得到∠2=∠3=∠4=13∠BCD =30°,即可得到2AE CE DE ==. 【详解】解:(1)证明:∵四边形ABCD 是矩形 ∴AD ∥BC ∴∠1=∠2 ∵EF 垂直平分AC∴AO =CO ,∠AOE =∠COF =90∘ ∴△AOE ≌△COF (ASA ) ∴OE =OF∴四边形AFEC 是平行四边形. 又EF ⊥AC∴四边形AFEC 是菱形 (2)由(1)知:FE =2EO又∵FE=2ED∴EO=ED又EO⊥AC,ED⊥DC∴△OEC≌△DEC∴∠3=∠4,由(1)知,四边形AFEC是菱形,∴AE=EC,∠2=∠3,∴∠2=∠3=∠4=13∠BCD=30°又∵∠D=90°∴EC=2ED∴AE=2ED,即AE:ED=2:1=2【点睛】本题主要考查了全等三角形的性质与判定,菱形的判定,矩形的性质,含30°直角三角形的性质,矩形的性质等等,解题的关键在于能够熟练掌握相关知识进行求解.24.(1)y=﹣2x,y=﹣x﹣1;(2)E(﹣2,1).【分析】(1)根据正方形的边长,正方形关于y轴对称,可得点A、B、D的坐标,根据待定系数法,可得函数解析式;(2)根据两个函数解析式,组成方程组,解方程组,即可得答案.【详解】解:(1)∵边长为2的正方形ABCD关于y轴对称,边AD在x轴上,点B在第四象限,∴A(1,0),D(-1,0),B(1,-2)∵反比例函数myx=的图象经过点B,∴m=1⨯(-2)=-2∴反比例函数解析式为2 yx =-(2)设直线BD的解析式为y kx b=+,∴2k bk b+=-⎧⎨-+=⎩,解得11 kb=-⎧⎨=-⎩∴直线BD的解析式为:y x1=--∵直线BD与反比例函数2yx=-的图象交于B、E两点,∴2x1 yy x⎧=-⎪⎨⎪=--⎩解得2,1,xy=-⎧⎨=⎩或1,2.xy=⎧⎨=-⎩∵B(1,-2).∴点E的坐标为(-2,1)【点睛】本题考查了反比例函数与一次函数的交点问题,利用待定系数法求函数的解析式,利用方程组求交点坐标,以及正方形的性质,熟练掌握相关知识是解题的关键.25.(1)见解析;(2)(3)有可能,AP=313.【分析】(1)先根据平行四边形的性质证得△AOP≌△COQ,再运用全等三角形的性质即可证明;(2)如图(2):过D作DE⊥AB,垂足为E,再根据直角三角形的性质求得AE=4,进而求得DE=然后再说明OP为△DBE的中位线,最后根据中位线的性质即可解答;(3)如图(3):过C作CF⊥AB交AB延长线于F,先说明四边形APCQ为平行四边形,当四边形APCQ为菱形时有AP=PC,然后在Rt△PCF中运用勾股定理解答即可.【详解】(1)证明:∵平行四边形ABCD∴CD//AB,OA=OC,OB=OD∴∠DCA=∠BAC,∠CQP=∠APQ∴△AOP≌△COQ(AAS)∴OP=OQ;(2)如图(2):过D作DE⊥AB,垂足为E∵∠DAB=60°∴AE=1AD=42∴DE∴BE=AB-AE=14-4=10,PE=AP-AE=9-4 =5,PB=AB-AP=5 ∴PE=PB∵OB=OD∴OP为△DBE的中位线DE=∴OP=12(3)有可能,理由如下:如图(3):过C作CF⊥AB交AB延长线于F∵平行四边形ABCD∴BC//AD,BC=AD∴∠CBF=∠DAB=60°BC=4∴BF=12∴CF=∵OP=OQ,OA=OC∴四边形APCQ为平行四边形当四边形APCQ为菱形时,则需AP=CP∵PF=AB+BF-AP=18-AP∴在Rt△PCF中,PC2=FC2+PF2∴AP2=(2+(18-AP)2,解得AP=313.【点睛】本题主要考查了平行四边形的性质、菱形的判定、全等三角形的判定与性质以及勾股定理等知识点,灵活应用相关性质、判定定理成为解答本题的关键.21。
北师大版九年级上册数学期末考试试卷含答案
北师大版九年级上册数学期末考试试题一、单选题1.下列命题是真命题的是()A .四个角都相等的四边形是菱形B .四条边都相等的四边形是正方形C .平行四边形、菱形、矩形都既是轴对称图形,又是中心对称图形D .顺次连接菱形各边中点得到的四边形是矩形2.如图,该几何体的俯视图是()A .B .C .D .3.如图,直线AB//CD//EF ,若BD :DF =3:4,AC =3.6,则AE 的长为()A .4.8B .6.6C .7.6D .8.44.已知在Rt △ABC 中,∠C =90°,若sinA cosA 等于()A .12B C D .15.若关于x 的一元二次方程21022kx x +=-有两个实数根,则实数k 的取值范围是()A .2k <B .2k ≥C .k 2≤且0k ≠D .2k <且0k ≠6.一个封闭的箱子中有两个红球和一个黄球,随机从中摸出两个球,即两个球均为红球的概率是()A.49B.23C.12D.137.已知正比例函数y1=kx的图象与反比例函数y2=mx的图象相交于点A(2,4),则下列说法正确的是()A.正比例函数y1与反比例函数y2都随x的增大而增大B.两个函数图象的另一交点坐标为(2,﹣4)C.当x<﹣2或0<x<2时,y1<y2D.反比例函数y2的解析式是y2=﹣8 x8.如图,在△ABC中,AD⊥BC于点D.若BD=9,DC=5,cos B=35,E为边AC的中点,则cos∠ADE的值为()A.45B.513C.512D.12139.如图,在平行四边形ABCD中,E为边AD的中点,连接AC,BE交于点F.若△AEF的面积为2,则△ABC的面积为()A.8B.10C.12D.1410.如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若DG=2,AD=6,则BE的长为()A.52B.73C.3D.3.511.如图,菱形ABCD的周长为16,∠ABC=120°,则AC的长为()A.43B.4C.23D.212.如图,△ABC中,DE∥BC,BE与CD交于点O,AO与DE,BC交于点N、M,则下列式子中错误的是()A.DN ADBM AB=B.AD DEAB BC=C.DO DEOC BC=D.AE AOEC OM=二、填空题13.方程x2=2x的解是_______.14.高为7米的旗杆在水平地面上的影子长为5米,同一时刻测得附近一个建筑物的影子长30米,则此建筑物的高度为_____米.15.小明要把一篇文章录入电脑,所需时间(min)y与录入文字的速度x(字/min)之间的反比例函数关系如图所示,如果小明要在9min内完成录入任务,则小明录入文字的速度至少为______字/min.16.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DH ⊥AB 于点H ,连接OH ,若OA =6,S 菱形ABCD =48,则OH 的长为___.17.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30角时,已知两次测量的影长相差8米,则树高AB 为多少?___.(结果保留根号)18.如图,在平面直角坐标系中,△ABC 和△A 1B 1C 1是以坐标原点O 为位似中心的位似图形,且点B (5,1),B 1(10,2),若△ABC 的面积为m ,则△A 1B 1C 1的面积为_____.19.如图,点A ,B 在反比例函数()10y x x=>的图象上,点C ,D 在反比例函数()0k y k x =>的图像上,AC BD y ∥∥轴,已知点A ,B 的横坐标分别为2,4,OAC 与ABD △的面积之和为3,则k的值为_______.三、解答题20.解方程:3x2+5(2x+1)=0.21.如图,CD是线段AB的垂直平分线,M是AC延长线上一点.(1)用直尺和圆规:作∠BCM的角平分线CN,过点B作CN的垂线,垂足为E;(保留作图痕迹,不要求写作法)(2)求证:四边形BECD是矩形.22.在甲乙两个不透明的口袋中,分别有大小、材质完全相同的小球,其中甲口袋中的小球上分别标有数字1,2,3,4,乙口袋中的小球上分别标有数字2,3,4,先从甲袋中任意摸出一个小球,记下数字为m,再从乙袋中摸出一个小球,记下数字为n.(1)请用列表或画树状图的方法表示出所有(m,n)可能的结果;(2)若m,n都是方程x2﹣5x+6=0的解时,则小明获胜;若m,n都不是方程x2﹣5x+6=0的解时,则小利获胜,问他们两人谁获胜的概率大?23.某学校计划利用一片空地建一个学生自行车车棚,其中一面靠墙,这堵墙的长度为12米.计划建造车棚的面积为80平方米,已知现有的木板材料可使新建板墙的总长为26米,(1)为了方便学生出行,学校决定在与墙平行的一面开一个2米宽的门,那么这个车棚的长和宽分别应为多少米?(2)如图,为了方便学生取车,施工单位决定在车棚内修建几条等宽的小路,使得停放自行车的面积为54米,那么小路的宽度是多少米?24.如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,点E ,F 分别在BD 和DB 的延长线上,且DE =BF ,连接AE ,CF .(1)求证:CF =AE ;(2)当BD 平分∠ABC 时,四边形AFCE 是什么特殊四边形?请说明理由.25.如图,一次函数y kx b =+的图象交反比例函数()0ay x x=>的图象于()4,8A -、(),2B m -两点,交x 轴于点C .(1)求反比例函数与一次函数的关系式;(2)根据图象回答:在第四象限内,当一次函数的值小于反比例函数的值时,x 的取值范围是什么?(3)若点P 在x 轴上,点Q 在坐标平内面,当以A 、B 、P 、Q 为顶点的四边形是矩形时,求出点P 的坐标.26.如图,已知正方形ABCD ,E 是AB 延长线上一点,F 是DC 延长线上一点,且满足BF =EF ,将线段EF 绕点F 顺时针旋转90°得FG ,过点B 作FG 的平行线,交DA 的延长线于点N ,连接NG .(1)求证:BE =2CF ;(2)试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.27.如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.(1)求证:△AGE≌△BGF;(2)试判断四边形AFBE的形状,并说明理由.参考答案1.D【分析】根据正方形、菱形、矩形、平行四边形的判定和性质一一判断即可【详解】解:A、若四个角都相等,则这四个角都为直角,有三个角是直角的四边形是矩形,故A选项为假命题,不符合题意;B、四条边都相等的四边形是菱形,故B选项为假命题,不符合题意;C、平行四边形是中心对称图形,但不是轴对称图形,菱形和矩形既是轴对称图形,又是中心对称图形,故C选项为假命题,不符合题意;D、顺次连接菱形各边中点得到的四边形是矩形,故D选项为真命题,符合题意,故选:D.【点睛】本题考查的是命题的真假判断以及正方形、菱形、矩形、平行四边形的判定和性质等知识,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.2.A 【分析】俯视图,从上面看到的平面图形,根据定义可得答案.【详解】解:从上面看这个几何体看到的是三个长方形,所以俯视图是:故选A【点睛】本题考查的是三视图,注意能看到的棱都要画成实线,掌握“三视图中的俯视图”是解本题的关键.3.D 【分析】根据平行线分线段成比例定理得到比例式,然后带入已知条件即可得到CE 的长,最后求得AE 的长.【详解】解:∵AB//CD//EF ,BD :DF =3:4,∴34AC B DF CE D ==,∵AC =3.6,∴ 4.8=CE ,∴ 3.6 4.88.4AE AC CE =+=+=.故选:D【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.4.A 【分析】利用60°的三角函数值解决问题.【详解】解:∵∠C =90°,sinA 2=,∴∠A =60°,∴cosA =cos60°12=.故选:A .【点睛】本题考查了特殊角的三角函数值,记住特殊角的三角函数值是解决此类问题的关键.5.C 【分析】根据根的判别式24b ac ∆=-是非负数,且二次项系数不等于0,列不等式求解即可.【详解】解:由题意得,21(2)402k --⨯≥且0k ≠解得k 2≤且0k ≠.故选:C .【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)根的判别式24b ac ∆=-与根的关系求参数,熟练掌握根的判别式与根的关系是解题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.6.D 【分析】根据题意画出树状图,由概率公式即可得两次都摸到红球的概率.【详解】解:画出树状图:根据树状图可知:所有等可能的结果共有6种,其中两次都摸到红球的有2种,∴两次都摸到红球的概率是26=13;故选:D .【点睛】本题考查了列表法与树状图法以及概率公式,解决本题的关键是画出树状图.7.C 【分析】由题意可求正比例函数解析式和反比例函数解析式,根据正比例函数和反比例函数的性质可判断求解.【详解】∵正比例函数1y kx =的图象与反比例函数2my x=的图象相交于点(2,4)A ,42k ∴=,42m =,解得:2k =,8m =,∴正比例函数12y x =,反比例函数28y x=,28y x y x =⎧⎪⎨=⎪⎩,解得:24x y =⎧⎨=⎩或24x y =-⎧⎨=-⎩,∴两个函数图象的另一个交点为(2,4)--,在正比例函数12y x =中,20k => ,∴y 随x 的增大而增大,在反比例函数28y x=中,80m => ,,∴在每个象限内y 随x 的增大而减小,∵当x <﹣2或0<x <2时,y 1<y 2,∴A 、B 、D 选项说法错误;选项C 说法正确.故选:C .【点睛】本题考查反比例函数与正比例函数,掌握函数的图像与性质是解题的关键.8.D 【分析】根据直角三角形勾股定理及余弦函数可得12AD =,再由勾股定理可得13AC =,根据直角三角形中斜边上中线等于斜边的一半可得12ED AC EC ==,依据等边对等角可得EDA DAE ∠=∠,由此计算角的余弦即可.【详解】解:∵AD BC ⊥于D ,9BD =,3cos 5B =,∴15cos BDAB B==,12AD ==,∵5DC =,∴13AC ==,∵E 为AC 中点,∴12ED AC EC ==,∴EDA DAE ∠=∠,∴12cos cos 13AD EDA DAE AC ∠=∠==,故选:D .【点睛】题目主要考查勾股定理、锐角三角函数解三角形,等腰三角形的判定和性质,理解题意,综合运用解三角形方法是解题关键.9.C 【分析】先利用平行四边形的性质得AD BC ∥,AD=BC ,由AE BC ∥可判断△AEF ∽△CBF ,根据相似三角形的性质得12EF AF AE BF CF BC ===,然后根据三角形面积公式得16AEF ABC S S ∆∆=,,则=6=12ABC AEF S S ∆∆.【详解】∵平行四边形ABCD∴AD BC ∥,AD=BC∵E 为边AD 的中点∴BC=2AE∵AE BC∥∴∠EAC=∠BCA又∵∠EFA=∠BFC∴△AEF ∽△CBF如图,过点F 作FH ⊥AD 于点H ,FG ⊥BC 于点G ,则12EF AF AE HF BF CF BC FG ====,∴111221362AEF ABC AE FH BC FH S S BC FH BC HG ∆∆⋅⋅⋅===⋅⋅⋅,∵△AEF 的面积为2∴66212ABCAEF S S ∆∆==⨯=故选C .【点睛】本题考查了相似三角形的性质,属于同步基础题.10.A 【分析】作EH ⊥BD 于H ,根据折叠的性质得到EG =EA ,根据菱形的性质、等边三角形的判定定理得到△ABD 为等边三角形,得到AB =BD ,根据勾股定理列出方程,解方程即可.【详解】解:作EH ⊥BD 于H ,由折叠的性质可知,EG=EA,∵四边形ABCD是菱形,∴AD=AB,∠ABD=∠CBD=12∠ABC=60°,∴△ABD为等边三角形,∴AB=BD=AD=6,设BE=x,则EG=AE=6﹣x,在Rt△EHB中,BH=12x,EH32,在Rt△EHG中,EG2=EH2+GH2,即(6﹣x)2=(32x)2+(4﹣12x)2,解得,x=5 2,∴BE=5 2,故选:A.【点睛】此题考查了菱形的性质,折叠的性质,等边三角形的判定及性质,勾股定理,熟记各知识点并综合运用是解题的关键.11.A【详解】∵菱形ABCD的周长为16,∠ABC=120°,∴∠BAD=60°,AC⊥BD,AD=AB=4∴△ABD为等边三角形,∴EB=11=2 22BD AB=在Rt△ABE中,2223AB BE-=故可得AC=2AE=3故选A.12.D【详解】试题分析:∵DE∥BC,∴△ADN∽△ABM,△ADE∽△ABC,△DOE∽△COB,∴DN ADBM AB=,AD DEAB BC=,DO DEOC BC=,所以A、B、C正确;∵DE∥BC,∴△AEN∽△ACM,∴AE AN AC AM=,∴AE AN EC NM=,所以D错误.故选D.点睛:本题考查了相似三角形的判定与性质.注意平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;相似三角形对应边成比例.注意数形结合思想的应用.13.x1=0,x2=2【分析】先移项得到x2﹣2x=0,再把方程左边进行因式分解得到x(x﹣2)=0,方程转化为两个一元一次方程:x=0或x﹣2=0,即可得到原方程的解为x1=0,x2=2.【详解】解:∵x2﹣2x=0,∴x(x﹣2)=0,∴x=0或x﹣2=0,∴x1=0,x2=2.故答案为:x1=0,x2=2.【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法,并能够根据方程的特征灵活选用合适的方法解答是解题的关键.14.42【分析】根据同一时刻物体的高度与影长成比例解答即可.【详解】解:设此建筑物的高度为x米,根据题意得:7530x=,解得:x=42.故答案为:42.【点睛】本题考查了平行投影,属于基础题型,明确同一时刻物体的高度与影长成比例是解题的关键.15.14009【分析】先利用待定系数法求出反比例函数的解析式,再求出9y =时,x 的值,然后根据反比例函数的增减性即可得.【详解】解:设反比例函数的解析式为(0)k y x x =>,将点(140,10)代入得:140101400k =⨯=,则反比例函数的解析式为1400y x =,当9y =时,14009x =, 反比例函数的1400y x=在0x >内,y 随x 的增大而减小,∴如果小明要在9min 内完成录入任务,则小明录入文字的速度至少为14009字/min ,故答案为:14009.【点睛】本题考查了反比例函数的图象与性质,熟练掌握待定系数法是解题关键.16.4【分析】由菱形的性质得出OA=OC=6,OB=OD ,AC ⊥BD ,则AC=12,由直角三角形斜边上的中线性质得出OH=12BD ,再由菱形的面积求出BD=8,即可得出答案.【详解】解:∵四边形ABCD 是菱形,∴OA=OC=6,OB=OD ,AC ⊥BD ,∴AC=12,∵DH ⊥AB ,∴∠BHD=90°,∴OH=12BD ,∵菱形ABCD 的面积=12AC•BD=12×12•BD=48,∴BD=8,∴OH=12BD=4,故答案为:4.【点睛】本题主要考查了菱形的性质,直角三角形的性质,菱形的面积公式,解题的关键是根据直角三角形斜边上的中线性质求得OH=12BD .17.AB x =,利用正切的定义以及特殊角的正切值,表示出BC 和CD ,然后求解即可.【详解】解:设AB x =米在Rt ABD △中,tan tan 60AB ADB BD ∠=︒==BD =在Rt ABC 中,tan tan 30AB ACB BC ∠=︒==BCCD BC BD =-8=,解得x =即AB =故答案为【点睛】本题考查了解直角三角形的实际应用,涉及正切的定义,解题的关键是掌握正切三角函数的定义以及特殊角的正切值.18.4m 【分析】根据面积比等于位似比的平方即可求得.【详解】 B (5,1),B 1(10,2)则2OB '==12OB OB '∴=,111:1:4ABC A B C S S ∴= ,△ABC 的面积为m ,则△A 1B 1C 1的面积为4m .故答案为4m .【点睛】本题考查了位似图形的性质,位似图形上任意一对对应点到位似中心的距离之比等于相似比,位似图形面积的比等于相似比的平方,掌握位似图形的性质是解题的关键.19.5【分析】根据题意求得A B C D 、、、四边的坐标,再根据OAC 与ABD △的面积之和为3,列方程求解即可.【详解】解:AC BD y ∥∥轴,点A ,B 的横坐标分别为2,4,点C ,D 的横坐标分别为2,4又∵点A ,B 在反比例函数()10y x x=>的图象上,点C ,D 在反比例函数()0k y k x =>的图像上∴1(2,)2A ,1(4,)4B ,(2,)2k C ,(4,)4k D∴12k AC -=,14k BD -=由图形可得,11222OAC k S AC AC -=⨯==△,11224ABD k S BD BD -=⨯==△由题意可得:3OAC ABD S S +=△△,即11342k k --+=解得5k =故答案为:5【点睛】此题考查了反比例函数的性质,解题的关键是掌握反比例函数的有关性质,根据题意正确列出方程.20.1x =2x =b 2-4ac 的值,再代入公式求出解即可.【详解】解:3x 2+5(2x+1)=0,整理得:3x 2+10x+5=0,∴a=3,b=10,c=5,∴22=410435400b ac ∆-=-⨯⨯=>,∴10563x -±-±=,则原方程的解为1x =,2x =21.(1)见解析(2)见解析【分析】(1)尺规作∠BCM 的角平分线CN 的作法:先以点C 为圆心,某一长度为半径作圆,交射线CM 、CN 于两点,再分别以这两点为圆心,大于这两点间距离的一半为半径作圆,在角的内部产生交点,连接交点与点C ,即为∠BCM 的角平分线CN ;尺规作过点B 作CN 的垂线段BE :先以点B 为圆心,某一长度为半径作圆,交CN 于两点,再分别以这两点为圆心,大于这两点间距离的一半为半径作圆,交CN 上方于一点,连接该点与点B ,与CN 交点即为点E .(2)由CD 是线段AB 的垂直平分线,可得AC =BC ,∠DCB =12∠ACB ,又因为CN 平分∠BCM ,易证∠DCN =12(∠ACB+∠BCM)=90°,再结合CD ⊥AB ,BE ⊥CN ,即可证明四边形BECD 是矩形.(1)如图所示,CN,BE为所求(2)证明:∵CD是AB的垂直平分线∴CD⊥BD,AD=BD∴∠CDB=90°,AC=BC∴∠DCB=12∠ACB∵CN平分∠BCM∴∠BCN=12∠BCM∵∠ACB+∠BCM=180°∴∠DCN=∠DCB+∠BCN=12(∠ACB+∠BCM)=90°∵BE⊥CN∴∠BEC=∠DCN=∠CDB=90°∴四边形BECD是矩形.【点睛】本题主要考查了尺规作图、矩形的判定,要求掌握5类基本尺规作图:作一条线段等于已知线段、作一个角等于已知角、作已知角的角平分线、作已知线段的垂直平分线、过一点作已知直线的垂线.22.(1)见解析;(2)小明获胜的概率大,见解析【分析】(1)首先根据题意画出树状图,然后由树状图可得所有可能的结果;(2)画树状图展示所有12种等可能的结果数,m,n都是方程x2﹣5x+6=0的解的结果有4个,m,n都不是方程x2﹣5x+6=0的解的结果有2个,然后根据概率公式求解.【详解】(1)树状图如图所示:所有(m ,n)可能的结果有(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,2),(3,3),(3,4),(4,2),(4,3),(4,4)共12种结果;(2)∵m ,n 都是方程x 2﹣5x+6=0的解,∴m =2,n =3,或m =3,n =2,由树状图得:共有12个等可能的结果,m ,n 都是方程x 2﹣5x+6=0的解的结果有4个(包括m =n =2,和m =n =3两种情况),m ,n 都不是方程x 2﹣5x+6=0的解的结果有2个,小明获胜的概率为41=123,小利获胜的概率为21=126,∴小明获胜的概率大.【点睛】本题考查了列表法与树状图法、一元二次方程的解法以及概率公式,画出树状图是解题的关键.23.(1)长为10米,宽为8米;(2)小路的宽为1米.【分析】(1)设与墙垂直的一面为x 米,然后可得另两面则为(26﹣2x+2)米,然后利用其面积为80,列出方程求解即可;(2)设小路的宽为a 米,利用去掉小路的面积为54平米列出方程求解即可得到答案.【详解】解:(1)设与墙垂直的一面为x 米,另一面则为(26﹣2x+2)米根据题意得:(282)80x x -=整理得:214400x x -+=解得4x =或10x =,当x =4时,28﹣2x =20>12,不符合题意,舍去当x =10时,28﹣5x =8<12,符合题意∴长为10米,宽为8米.(2)设宽为a 米,根据题意得:(8﹣2a )(10﹣a )=54,a 2﹣14a+13=0,解得:a =13>10(舍去),a =1,答:小路的宽为1米.【点睛】此题考查了一元二次方程与几何图形面积的应用,理解题意找到题中的等量关系是解题的关键.24.(1)见解析;(2)四边形AFCE 是菱形,理由见解析【分析】(1)由平行四边形的性质得AD =BC ,AD//BC ,则∠ADE =∠CBF ,再由SAS 证△ADE ≌△CBF 即可求解;(2)根据BD 平分∠ABC 和平行四边形的性质,可以证明▱ABCD 是菱形,从而可以得到AC ⊥BD ,然后即可得到AC ⊥EF ,再根据题目中的条件,可以证明四边形AFCE 是平行四边形,然后根据AC ⊥EF ,即可得到四边形AFCE 是菱形.【详解】解:(1)证明:∵四边形ABCD 是平行四边形,∴AD =BC ,AD//BC ,∴∠ADB =∠CBD ,∵∠ADB+∠ADE=180°,∠CBD+∠CBF=180°∴∠ADE =∠CBF ,在△ADE 和△CBF 中,=AD CBADE CBF DE BF=⎧⎪∠∠⎨⎪=⎩,∴△ADE ≌△CBF (SAS ),∴CF=AE;(2)四边形AFCE 是菱形,理由如下:∵BD 平分∠ABC ,∴∠ABD=∠CBD ,∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD ,AD//BC ,∴∠ADB=∠CBD ,∴∠ABD=∠ADB ,∴AB=AD ,∴平行四边形ABCD是菱形,∴AC⊥BD,∴AC⊥EF,∵DE=BF,∴OE=OF,又∵OA=OC,∴四边形AFCE是平行四边形,∵AC⊥EF,∴四边形AFCE是菱形.【点睛】本题考查平行四边形的判定与性质、菱形的性质与判定判定、全等三角形的性质与判定,角平分线的定义,解答本题的关键是明确题意,利用数形结合的思想解答.25.(1)32yx-=,1102y x=-;(2)当4<x<16时,(3)(0,0),(15,0),P(10+或(10-.【分析】(1)将点A(4,﹣8),B(m,﹣2)代入反比例函数yax=(x>0)中,可求m、a;再将点A(4,﹣8),B(m,﹣2)代入y=kx+b中,列方程组求k、b即可;(2)根据两函数图象的交点,图象的位置可确定一次函数的值小于反比例函数的值时x的范围;(3)根据矩形形的性质,分类讨论,即可得出结论.【详解】解:(1)∵反比例函数yax=(x>0)的图象于A(4,﹣8),∴k=4×(﹣8)=﹣32.∵双曲线yax=过点B(m,﹣2),∴m=16.由直线y =kx+b 过点A ,B 得:48162k b k b +=-⎧⎨+=-⎩,解得,1210k b ⎧=⎪⎨⎪=-⎩,∴反比例函数关系式为32y x -=,一次函数关系式为1102y x =-.(2)观察图象可知,当4<x <16时,一次函数的值小于反比例函数的值.(3)在直线y 12=x ﹣10中,令y =0,则x =20,∴C (20,0),∴OC =20,AC ==BC ==AO==∴22280320400AO AC OC +=+==∴△OAC 为直角三角形∴OA ⊥AB四边形是矩形时分三种情况①当PA ⊥AB 时∵OA ⊥AB∴P 点以O 点重合∴P 点坐标为(0,0)②当PB ⊥AB 时设P (m ,0),则PC =20﹣m ,∵∠PBC=∠OAC=90°,∠PCB=∠OCA ∴△BCP ∽△ACO ,∴PCBC OC AC=,即2020m-=,,∴m =15,此时P (15,0),③当∠APB=90°时设P (m ,0),作AM ⊥OC ,BN ⊥OC∴∠AMP=∠BNP=90°∵()4,8A -,()16,2B -∴AM=8,BN=2,PM=m-4,NP=16-m∵∠APB=90°∴∠APM+∠BPN=90°∵∠MAP+∠APM=90°∴∠MAP=∠BPN∴△APM ∽△PBN ,∴AM PM PN BN=,即84162m m =--,解得:1025m =±此时P (105,0)+或(105,0)-综上,四边形是矩形时P 点的坐标为(0,0),(15,0),P (1025,0)+或(1025,0)-.【点睛】本题考查了用待定系数法求函数解析式以及反比例函数和一次函数的交点问题,这里体现了数形结合的思想.26.(1)见解析;(2)四边形BFGN 是菱形,理由见解析.【分析】(1)过F 作FH ⊥BE 于点H ,可证明四边形BCFH 为矩形,可得到BH =CF ,且H 为BE 中点,可得BE =2CF ;(2)由条件可证明△ABN ≌△HFE ,可得BN =EF ,可得到BN =GF ,且BN ∥FG ,可证得四边形BFGN 为菱形.【详解】(1)证明:过F 作FH ⊥BE 于H 点,在四边形BHFC中,∠BHF=∠CBH=∠BCF=90°,所以四边形BHFC为矩形,∴CF=BH,∵BF=EF,FH⊥BE,∴H为BE中点,∴BE=2BH,∴BE=2CF;(2)四边形BFGN是菱形.证明:∵将线段EF绕点F顺时针旋转90°得FG,∴EF=GF,∠GFE=90°,∴∠EFH+∠BFH+∠GFB=90°∵BN∥FG,∴∠NBF+∠GFB=180°,∴∠NBA+∠ABC+∠CBF+∠GFB=180°,∵∠ABC=90°,∴∠NBA+∠CBF+∠GFB=180°−90°=90°,由BHFC是矩形可得BC∥HF,∴∠BFH=∠CBF,∴∠EFH=90°−∠GFB−∠BFH=90°−∠GFB−∠CBF=∠NBA,由BHFC是矩形可得HF=BC,∵BC=AB,∴HF=AB,在△ABN和△HFE中,NAB EHF90AB HFNBA EFH∠∠︒⎧⎪⎨⎪∠∠⎩====,∴△ABN≌△HFE,∴NB=EF,∵EF=GF,∴NB=GF,又∵NB∥GF,∴NBFG是平行四边形,∵EF=BF,∴NB=BF,∴平行四边NBFG是菱形.点睛:本题主要考查正方形的性质及全等三角形的判定和性质,矩形的判定与性质,菱形的判定等,作出辅助线是解决(1)的关键.在(2)中证得△ABN≌△HFE是解题的关键.27.(1)证明见解析;(2)四边形AFBE是菱形【分析】(1)由平行四边形的性质得出AD∥BC,得出∠AEG=∠BFG,由AAS证明△AGE≌△BGF即可;(2)由全等三角形的性质得出AE=BF,由AD∥BC,证出四边形AFBE是平行四边形,再根据EF⊥AB,即可得出结论.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠BFG,∵EF垂直平分AB,∴AG=BG,在△AGE和△BGF中,∵∠AEG=∠BFG,∠AGE=∠BGF,AG=BG,∴△AGE≌△BGF(AAS);(2)解:四边形AFBE是菱形,理由如下:∵△AGE≌△BGF,∴AE=BF,∵AD∥BC,∴四边形AFBE是平行四边形,又∵EF⊥AB,∴四边形AFBE是菱形.【点睛】考点:平行四边形的性质;全等三角形的判定与性质;线段垂直平分线的性质;探究型.。
北师大版九年级上册数学期末考试试卷及答案
北师大版九年级上册数学期末考试试题一、单选题1.下列给出的几何体中,主视图和俯视图都是圆的是( )A .球B .正方体C .圆锥D .圆柱2.若锐角A 满足cos A =∠A 的度数为( ) A .30° B .45° C .60° D .75°3.菱形、矩形、正方形都具有的性质是( )A .对角线互相垂直B .对角线相等C .四条边相等,四个角相等D .两组对边分别平行且相等 4.关于x 的一元二次方程x 2+(k ﹣2)x+k 2﹣1=0的一个根是0,则k 的值是( ) A .1 B .﹣1 C .±1 D .25.在平面直角坐标系中,点P 的坐标为(),m n ,从2-,0,2这三个数中任取一个数作为m 的值,再从余下的两个数中任取一个数作为n 的值,则点P 在坐标轴上的概率是( )A .13B .12 C .23 D .346.抛物线y =-3x 2-4的开口方向和顶点坐标分别是( )A .向下,(0,4)B .向下,(0,-4)C .向上,(0,4)D .向上,(0,-4)7.若点A (-1,1y ),B (2,2y ),C (3,3y )在反比例函数10y x =-图象上,则1y ,2y ,3y 的大小关系是( )A .1y >2y >3yB .1y >3y >2yC .3y >2y >1yD .3y >1y >2y8.已知∠PAQ=36°,点B 为射线AQ 上一固定点,按以下步骤作图:∠分别以A ,B 为圆心,大于12AB 的长为半径画弧,相交于两点M ,N ;∠作直线MN 交射线AP 于点D ,连接 BD ;∠以B 为圆心,BA 长为半径画弧,交射线AP 于点C ; 根据以上作图过程及所作图形,下列结论中错误的是( )A.∠CDB=72°B.∠ADB∠∠ABCC.CD:AD=2:1 D.∠ABC=3∠ACB9.如图,矩形ABCD中,AB=3,BC=10,点P是AD上的一个动点,若以A,P,B为顶点的三角形与∠PDC相似,则满足条件的点P的个数是()A.1个B.2个C.3个D.4个10.已知反比例函数y=abx的图象如图所示,则二次函数y =ax 2-2x和一次函数y=bx+a 在同一平面直角坐标系中的图象可能是()A.B.C.D.二、填空题11.一幅比例尺为1:300000的地图上,某道路的长度为2cm,则它的实际长度为______ km.12.若方程230x x c-+=没有实数根,则c的取值范围是_____________.13.如图,ABC的顶点都在方格纸的格点上,则sin ABC∠=______.14.在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同,小红通过多次试验发现,摸出红球的频率稳定在0.2左右,则袋子里红球的个数最有可能是__________.15.点P (m ,n )是函数3y x=和y =x +4图象的一个交点,则mn +n -m 的值为________.16.如图,二次函数2y ax bx c =++的图象开口向上,图象经过点(-1,2)和(1,0)且与y 轴交于负半轴,下列四个结论:∠abc <0;∠2a +b >0;∠a +b +c =0;∠a >1.其中正确的有________.(填序号)17.如图,OA OB OC ==且30ACB ∠=︒,则AOB ∠的大小是______度.三、解答题18.解方程:2233(1)x x x x --=-.19.如图所示,太阳光线AC 和A C ''是平行的,同一时刻两个建筑物在太阳下的影子一样长,那么建筑物是否一样高?说明理由.20.如图,直线l :34y x m =+与x 轴、y 轴分别交于点A 和点B (0,-1),抛物线212y x bx c =++经过点B ,且与直线l 的另一个交点为C (4,n ).(1)求n 的值和抛物线的解析式;(2)P 是直线AC 下方的抛物线上一动点,设其横坐标为a .过点P 作PD∠y 轴交AC 于点D ,点D 在线段AC 上,当a 为何值时,∠APC 的面积最大,并求出其最大值.21.如图,矩形OABC 的顶点A ,C 分别落在x 轴,y 轴的正半轴上,顶点B (2,2,反比例函数k y x=(x >0)的图象与BC ,AB 分别交于D ,E ,BD =12. (1)求反比例函数关系式和点E 的坐标;(2)写出DE 与AC 的位置关系并说明理由;(3)点F 在直线AC 上,点G 是坐标系内点,当四边形BCFG 为菱形时,求出点G 的坐标并判断点G 是否在反比例函数图象上.22.如图,在矩形ABCD中,E为AD的中点,EF∠EC交AB于F,延长FE与直线CD 相交于点G,连接FC(AB>AE).(1)求证:∠AEF∠∠DCE;(2)∠AEF与∠ECF是否相似?若相似,证明你的结论;若不相似,请说明理由;(3)设ABkBC,是否存在这样的k值,使得∠AEF与∠BFC相似?若存在,证明你的结论并求出k的值;若不存在,请说明理由.23.如图,矩形ABCD中,点E在边CD上,将∠BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∠CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.24.如图1,抛物线y=mx2﹣3mx+n(m≠0)与x轴交于点(﹣1,0)与y轴交于点B (0,3),在线段OA上有一动点E(不与O、A重合),过点E作x轴的垂线交直线AB 于点N,交抛物线于点P.(1)分别求出抛物线和直线AB的函数表达式;(2)连接PA、PB,求∠PAB面积的最大值,并求出此时点P的坐标.(3)如图2,点E(2,0),将线段OE绕点O逆时针旋转的到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E'A+23E'B的最小值.25.已知:如图,在平行四边形ABCD中,E,F分别是AB,CD的中点.求证:(1)∠AFD∠∠CEB;(2)四边形AECF是平行四边形.26.如图,点A、B在反比例函数kyx的图象上,且点A、B的横坐标分别为a、2a(a>0),AC∠x轴,垂足为点C,且∠AOC的面积为2(1)求该反比例函数的解析式;(2)若点(﹣a,y1),(﹣2a,y2)在该反比例函数的图象上,试比较y1与y2的大小;(3)求∠AOB的面积.参考答案1.A【分析】主视图是从正面看,俯视图是从上往下看,分别进行判断即可.【详解】A.球的主视图和俯视图都是圆,故选项A正确;B.正方体主视图和俯视图都是正方形,故选项B错误;C.圆锥的主视图是三角形,俯视图是圆,故选项C错误;D.圆柱的主视图是长方形,俯视图是圆,故选项D错误;故选:A.【点睛】本题考查了几何体的三视图,解题关键是明确主视图、俯视图、左视图分别是从物体的正面、上面、左面看所得到的图形.2.A【分析】根据特殊的锐角三角比值可确定∠A的度数.【详解】∠cos A∠∠A=30°,故选:A.【点睛】本题主要考查了特殊角的三角函数值,熟记特殊角的三角函数值是解答关键.3.D【分析】根据菱形、矩形、正方形的性质,逐项判断即可求解.【详解】解:A、矩形的对角线不一定互相垂直,故本选项不符合题意;B、菱形的对角线不一定相等,故本选项不符合题意;C、矩形的四条边不一定相等,菱形的四个角不应当相等,故本选项不符合题意;D、菱形、矩形、正方形的两组对边分别平行且相等,故本选项符合题意;故选:D【点睛】本题主要考查了菱形、矩形、正方形的性质,熟练掌握菱形、矩形、正方形的性质是解题的关键.4.C【分析】把x=0代入方程计算即可求出k的值.【详解】解:把x=0代入方程得:k2﹣1=0,解得:k=1或k=﹣1,故选:C.【点睛】此题考查了一元二次方程的解,以及一元二次方程的定义,熟练掌握解一元二次方程的方法是解本题的关键.5.C【分析】利用树状图得出所有的情况,从中找到使点P落在坐标轴上的结果数,再根据概率公式计算可得.【详解】解:画树状图如下由树状图知,共有6种等可能结果,其中使点P 在轴上的有4种结果,∠点P 在坐标轴上的概率是4263= 故选:C【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.6.B 【详解】试题分析:在抛物线y =-3x 2-4中a<0,所以开口向下;b=0,对称轴为x=0,所以顶点坐标为(0,-4),故选B.7.B 【分析】根据反比例函数表达式中的k 值可以确定函数图象所在的象限,再根据象限内点的坐标特征及函数增减性即可求解.【详解】解:∠反比例函数10y x =-,k=-10<0, ∠此函数经过第二、四象限,在每一象限内,y 随x 的增大而增大.∠A (-1,1y ),B (2,2y ),C (3,3y ),∠点A 在第二象限,10y >,点B 、点C 在第四象限,∠3>2∠230y y <<∠1y ,2y ,3y 的大小关系是:1y >3y >2y .故选:B【点睛】本题考查了反比例函数比大小,熟练掌握象限内点的坐标特征及反比例函数的增减性是解决本题的关键.8.C 【分析】根据垂直平分线的性质、等腰三角形的性质及判定,相似三角形的判定一一判断即可.【详解】解:由作图可知,MN 垂直平分AB ,AB =BC ,∠MN 垂直平分AB ,∠DA=DB,∠∠A=∠DBA,∠∠PAQ=36°,∠∠CDB=∠A+∠DBA=72°,(A正确)∠AB=BC,∠∠A=∠ACB=36°,∠∠ABD=∠ACB,又∠∠A=∠A,∠∠ADB∠∠ABC,(B正确)∠∠A=∠ACB=36°,∠∠ABC=180°-∠A-∠ACB=108°,∠∠ABC=3∠ACB,(D正确)∠∠ABD=36°,∠ABC=108°,∠∠CBD=∠ABC-∠ABD=72°,∠∠CBD=∠CDB=72°,∠CD=BC,∠∠A=∠ACB=36°,∠AB=BC,∠CD=AB,∠AD+DB>AB,AD=DB∠2AD>AB∠2AD>CD,(C错误)故选:C【点睛】本题考查作图﹣复杂作图,线段的垂直平分线的性质,等腰三角形的性质及判定、相似三角形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.C【分析】设AP=x,则PD=AD﹣AP=10﹣x,然后分类讨论:若∠APB=∠DPC,则Rt∠APB∠Rt∠DPC,得到比例式,代入求出即可;若∠APB=∠PCD,则Rt∠APB∠Rt∠DCP,得到比例式,代入求出即可.【详解】∠四边形ABCD是矩形,∠AB=DC=3,AD=BC=10,∠A=∠D=90°,设AP=x,则PD=AD﹣AP=10﹣x,若∠APB=∠DPC,则Rt∠APB∠Rt∠DPC,∠APPD=ABCD,即3103xx=-,解得:x=5;若∠APB=∠PCD,则Rt∠APB∠Rt∠DCP,∠ABDP=APCD,即3103xx=-,解得:x=1或9;所以当AP=1或5或9时,以P,A,B为顶点的三角形与以P,D,C为顶点的三角形相似,即这样的P点有三个.故选:C.【点睛】本题考查了矩形的性质及相似三角形的判定和性质,分类讨论的思想是解决问题的关键.10.C【分析】先根据抛物线y=ax2-2x过原点排除A,再由反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【详解】解:∠当x=0时,y=ax2-2x=0,即抛物线y=ax2-2x经过原点,故A错误;∠反比例函数y=abx的图象在第一、三象限,∠ab>0,即a、b同号,当a<0时,抛物线y=ax2-2x的对称轴x=1a<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误;C正确.故选C.【点睛】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.11.6【分析】根据比例尺=图上距离:实际距离即可求解.【详解】解:设实际距离为x厘米,则1:300000=2:x,解得:x=600000,600000厘米=6千米,故答案为:6.【点睛】本题考查了比例尺的定义、比例线段的性质,根据比例尺=图上距离:实际距离是解答的关键,注意单位的换算.12.94c >【分析】令方程230x x c -+=的0<即可. 【详解】230x x c -+=中a=1,b=-3,c=c则()22434194b ac c c =-=--⋅⋅=-△若方程230x x c -+=没有实数根则令940c =-<△ 即94c > 故答案为:94c >. 【点睛】本题考查了一元二次方程式根的判别式,使用一元二次方程根的判别式,应先将方程整理成一般形式,再确定a ,b ,c 的值.注意利用判别式可以判断方程的根的情况,反之,当方程有两个不相等的实数根时,0>;有两个相等的实数根时,0=;没有实数根时,0<.当240b ac =-=时,方程有两个相等的实数根,不能说方程只有一个根.13.35【分析】利用网格构造直角三角形,根据格点线段的长度求出斜边的长,再根据三角函数的意义求出答案.【详解】解:如图,由网格的特征可知,∠ADB 是直角三角形,∠AD=3,BD=4,∠由勾股定理得:5AB =, ∠3sin 5AD ABC AB ∠==, 故答案为:35. 【点睛】本题考查了直角三角形的边角关系,利用网格构造直角三角形是解题的关键.14.4【分析】设袋子中红球有x 个,根据摸出红球的频率稳定在0.2左右列出关于x 的方程,求出x 的值,从而得出答案.【详解】解:设袋子中红球有x 个, 根据题意,得:0.220=x 解得x=4,∠袋子中红球的个数最有可能是4个,故答案为:4.【点睛】本题主要考查利用频率估计概率,大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.15.7【分析】将点P (m ,n )分别代入3y x =和y =x +4得mn=3,n-m=4,再求值即可.【详解】解:∠点P (m ,n )是函数3y x =和y =x +4图象的一个交点, ∠3n m =,n=m+4, ∠mn=3,n-m=4,∠mn +n-m=3+4=7.故答案为:7.【点睛】本题考查反比例函数与一次函数图象的交点问题,解题关键是理解函数图象上点的坐标特征.16.∠∠∠【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】解:观察图象得:抛物线开口向上,对称轴02b a->,且与y 轴交于负半轴, ∠0,0a c ><,∠0b <,∠abc >0,故∠错误; 观察图象得:12b a-<,0a >, ∠2b a >-,∠20b a +>,故∠正确;观察图象得:当时x=1时,y=0,∠a +b +c =0,故∠正确;∠图象经过点(-1,2)和(1,0),∠a +b +c =0,a-b +c =2,∠2a+2c=2,即a=-c+1,∠0c <,∠0c ->,即11c -+>,∠a >1,故∠正确;∠正确的有∠∠∠.故答案为:∠∠∠【点睛】本题考查二次函数的图象与系数的关系,综合应用相关知识分析问题、解决问题的能力是关键.17.60.【分析】设∠OAC=x ,∠CAB=y ,根据等腰三角形的性质,则∠OCA=x ,∠OBA=x+y ,∠OBC=x+30°,利用三角形内角和定理计算即可.【详解】解:设∠OAC=x ,∠CAB=y ,∠OA=OC ,∠∠OCA=x ,∠OA=OB ,∠∠OBA=x+y ,∠OC=OB ,∠∠OBC=x+30°,∠30ACB ∠=︒,∠∠CAB+∠OBA+∠OBC=150°,∠y+x+y+ x+30°=150°,∠2(x+y)=120°,∠∠AOB=180°-2∠OBA=180°-2(x+y),∠∠AOB=180°-120°=60°,故答案为:60.【点睛】本题考查了等腰三角形的性质,三角形内角和定理,熟练应用性质,合理引进未知数,采用设而不求的思想计算是解题的关键.18.13x =,21x =-【分析】先把方程整理成一般形式,再用因式分解法解方程即可.【详解】解:2233(1)x x x x --=-整理2233(1)x x x x --=-得,2230x x --=,因式分解得,(x -3)(x +1)=0,∠x -3=0或x +1=0,解得13x =,21x =-.【点睛】此题考查了一元二次方程,熟练掌握一元二次方程的解法是解题的关键.19.一样高,理由见解析【分析】证明∠ABC =∠A B C ''',∠ACB =∠AC B ''',结合BC =B C '',推出∠ABC∠∠A B C ''',得到AB =A B ''.【详解】建筑物一样高.理由如下 :∠AB∠BC ,A B ''∠B C '',∠∠ABC =∠A B C '''=90°,∠AC∠A C '',∠∠ACB =∠AC B ''',又∠BC =B C ''∠∠ABC∠∠A B C '''∠AB =A B ''.即建筑物一样高.【点睛】本题主要考查了全等三角形,解决问题的关键是熟练掌握全等三角形的判定和性质.20.(1)n =2,215124y x x =--(2)a =2,最大值为83 【分析】(1)将点B 的坐标代入直线34y x m =+求出m ,得到直线解析式314y x =-,再将点C 的坐标代入求出n ,然后将点B 、C 的坐标代入二次函数表达求解;(2)先表示出点P 、D 、A 的坐标,进而求出PD ,再利用三角形面积公式求出∠APC 的面积=228(2)33a --+,再利用二次函数的性质求解. (1)解:∠直线l :34y x m =+过点B (0,-1),∠m = -1, ∠直线l :314y x =-, 将点C (4,n )代入314y x =-解得:n =2, ∠点C (4,2).将点B 、C 的坐标代入二次函数表达式得1216421b c c ⎧=⨯++⎪⎨⎪=-⎩, 解得:541b c ⎧=-⎪⎨⎪=-⎩, ∠抛物线的表达式为:215124y x x =--; (2)解:∠PD∠y 轴,点D 在线段AC 上,设其横坐标为a ,由题意得P (a ,215124a a --),则D (a ,314a -),A (43,0), ∠PD =314a -−2215112242a a a a ⎛⎫--=-+ ⎪⎝⎭. ∠A (43,0),C (4,2), ∠∠APC 的面积=214118(4)(2)23223PAD PDC S S PD a a ∆∆+=⨯⨯-=⨯-+⨯=228(2)33a --+, ∠a =2时,∠APC 的面积最大,最大值为83. 【点睛】本题主要考查了一次函数和二次函数解析式的求法,二次函数的最值,求出解析式是解答关键.21.(1)y E ⎛=⎝⎭;(2)//DE AC,理由见解析;(3)点G的坐标为(或(,这两个点都在反比例函数图象上【分析】(1)求出D(32,,再用待定系数法即可求解;(2)证明EB BDAB BC=,即可求解;(3)∠当点F在点C的下方时,求出FH=1,CHF(1,则点G (3,即可求解;∠当点F在点C的上方时,同理可解.【详解】解:(1)∠B(2,,则BC=2,而BD=12,∠CD=2﹣12=32,故点D(32,,将点D的坐标代入反比例函数表达式得:32K,解得k=故反比例函数表达式为y,当x=2时,yE(2;(2)由(1)知,D(32,,点E(2,点B(2,,则BD=12,BE故BDBC=122=14,EBAB=14=BDBC,∠DE∠AC;(3)∠当点F在点C的下方时,如下图,过点F 作FH∠y 轴于点H ,∠四边形BCFG 为菱形,则BC =CF =FG =BG =2,在RT∠OAC 中,OA =BC =2,OB =AB =则tan∠OCA =AOCO ∠OCA =30°,则FH =12FC =1,CH =CF•cos∠OCA =故点F (1,则点G (3,当x =3时,y G 在反比例函数图象上; ∠当点F 在点C 的上方时,同理可得,点G (1,,同理可得,点G 在反比例函数图象上;综上,点G 的坐标为(31,,这两个点都在反比例函数图象上.【点睛】本题主要考查反比例函数,解题关键是过点F 作FH∠y 轴于点H.22.(1)见解析(2)相似,证明见解析(3)存在,k 【分析】(1)由题意可得∠AEF +∠DEC =90°,又由∠AEF +∠AFE =90°,可得∠DEC =∠AFE ,据此证得结论;(2)根据题意可证得Rt∠AEF∠Rt∠DEG(ASA),可得EF =EG ,∠AFE =∠EGC ,可得CE 垂直平分FG ,∠CGF 是等腰三角形,据此即可证得∠AEF 与∠ECF 相似;(3)假设∠AEF 与∠BFC 相似,存在两种情况:∠当∠AFE =∠BCF ,可得∠EFC =90°,根据题意可知此种情况不成立;∠当∠AFE =∠BFC ,使得∠AEF 与∠BFC 相似,设BC =a ,则AB =ka ,可得AF =13ka ,BF =23ka ,再由∠AEF∠∠DCE ,即可求得k 值. (1)证明:∠EF∠EC ,∠∠FEC =90°,∠∠AEF +∠DEC =90°,∠∠AEF +∠AFE =90°,∠∠DEC=∠AFE,又∠∠A=∠EDC=90°,∠∠AEF∠∠DCE;(2)解:∠AEF∠∠ECF.理由:∠E为AD的中点,∠AE=DE,∠∠AEF=∠DEG,∠A=∠EDG,∠∠AEF∠∠DEG(ASA),∠EF=EG,∠AFE=∠EGC.又∠EF∠CE,∠CE垂直平分FG,∠∠CGF是等腰三角形.∠∠AFE=∠EGC=∠EFC.又∠∠A=∠FEC=90°,∠∠AEF∠∠ECF;(3)解:存在k∠AEF与∠BFC相似.理由:假设∠AEF与∠BFC相似,存在两种情况:∠当∠AFE=∠BCF,则有∠AFE与∠BFC互余,于是∠EFC=90°,因此此种情况不成立;∠当∠AFE=∠BFC,使得∠AEF与∠BFC相似,设BC=a,则AB=ka,∠∠AEF∠∠BCF,∠12 AF AEBF BC,∠AF=13ka,BF=23ka,∠∠AEF∠∠DCE,∠AE AFDC DE=,即113212kaaka a=,解得,k=.∠存在k=使得∠AEF与∠BFC相似.【点睛】本题考查了矩形的性质,相似三角形的判定及性质,全等三角形的判定与及性质,等腰三角形的判定及性质,采用分类讨论的思想是解决本题的关键.23.(1)见解析(2)四边形CEFG的面积为203.【分析】(1)根据题意和翻折的性质,可以得到∠BCE∠∠BFE,再根据全等三角形的性质和菱形的判定方法即可证明结论成立;(2)根据题意和勾股定理,可以求得AF的长,进而求得EF和DF的值,从而可以得到四边形CEFG的面积.(1)证明:由题意可得,∠BCE∠∠BFE,∠∠BEC=∠BEF,FE=CE,∠FG∠CE,∠∠FGE=∠CEB,∠∠FGE=∠FEG,∠FG=FE,∠FG=EC,∠四边形CEFG是平行四边形,又∠CE=FE,∠四边形CEFG是菱形;(2)解:∠矩形ABCD中,AB=6,AD=10,BC=BF,∠∠BAF=90°,AD=BC=BF=10,∠AF=8,∠DF=2,设EF=x ,则CE=x ,DE=6-x ,∠∠FDE=90°,∠22+(6-x )2=x 2,解得,x=103, ∠CE=103, ∠四边形CEFG 的面积是:CE•DF=103×2=203. 24.(1)239344y x x =-++,334y x =-+;(2)PAB S 最大值为6,点P 的坐标为(2,92);(3)E'A+23E'B【分析】(1)把点(-1,0),B (0,3)代入23y mx mx n =-+,即可求得m 的值,得到抛物线的解析式令0y =,求出抛物线与x 轴交点,根据待定系数法可以确定直线AB 的解析式;(2)设点P 的坐标为(a ,239344a a -++),则点N 的坐标为(a ,334a -+),利用PAB PBN PAN 12S S S PN OA =+=⨯,得到()2PAB 3262S a =--+,利用二次函数的性质即可求解;(3)在y 轴上 取一点M 使得OM′=43,构造相似三角形,可以证明AM′就是E'A+23E'B 的最小值.【详解】(1)∠抛物线23y mx mx n =-+(m≠0)与x 轴交于点(-1,0)与y 轴交于点B (0,3),则有303m m n n ++=⎧⎨=⎩, 解得:343m n ⎧=-⎪⎨⎪=⎩, ∠抛物线的解析式为:239344y x x =-++, 令0y =,得到2393044x x -++=, 解得:4x =或1-,∠A (4,0),B (0,3),设直线AB 解析式为y kx b =+,则403k b b +=⎧⎨=⎩, 解得343k b ⎧=-⎪⎨⎪=⎩,∠直线AB 解析式为334y x =-+;(2)如图,设点P 的坐标为(a ,239344a a -++),∠PE∠OA 交直线AB 于点N ,交x 轴于E ,∠点N 的坐标为(a ,334a -+), ∠PAB PBN PAN 111222S S S PN OE PN EA PN OA =+=⨯+⨯=⨯,∠2PAB 13933342444S a a a ⎛⎫=-+++-⨯ ⎪⎝⎭213933342444a a a ⎛⎫=-+++-⨯ ⎪⎝⎭()23262a =--+,∠302-<,∠当2a =时,PAB S 有最大值,最大值为6,此时点P 的坐标为(2,92);(3)如图中,在y 轴上 取一点M′使得OM′=43,连接AM′,在AM′上取一点E′使得OE′=OE .∠OE′=2,OM′•OB=4343⨯=, ∠OE′2=OM′•OB , ∠O OB O O E M E =''', ∠∠BOE′=∠M′OE′,∠∠M′OE′∠∠E′OB , ∠O 2B OB 3M E E E ''=='', ∠M′E′=23BE′, ∠E'A+23E'B=AE′+E′M′=AM′,此时E'A+23E'B 最小(两点间线段最短,A 、M′、E′共线时),最小值=. 【点睛】本题属于二次函数综合题,考查了相似三角形的判定和性质、待定系数法、两点间线段最短等知识,第(3)问解题的关键是构造相似三角形,找到线段AM′就是E'A+23E'B 的最小值.25.(1)见解析(2)见解析【分析】(1)由SAS 证明AFD CEB ∆≅∆即可;(2)由(1)知AE CF =,AFD CEB ∆≅∆,则AF CE =,即可得出结论.(1)解:证明:四边形ABCD 是平行四边形,AB CD ∴=,AD BC =,B D ∠=∠,又E ,F 分别是AB ,CD 的中点,12AE BE AB ∴==,12CF DF CD ==,BE DF ∴=,AE CF =,在AFD ∆和CEB ∆中,AD CB D B DF BE =⎧⎪∠=∠⎨⎪=⎩,()AFD CEB SAS ∴∆≅∆; (2)解:由(1)知AE CF =,AFD CEB ∆≅∆,AF CE ∴=,∴四边形AECF 是平行四边形.【点睛】本题考查了平行四边形的判定与性质、全等三角形的判定与性质等知识,解题的关键是熟练掌握平行四边形的判定与性质.26.(1)4y x =(2)y 1<y 2(3)3【分析】(1)由122AOC S xy ∆==,设反比例函数的解析式ky x =,则4k xy ==;(2)由于反比例函数的性质是:在0x <时,y 随x 的增大而减小,2a a ->-,则12y y <;(3)连接AB ,过点B 作BE x ⊥轴,交x 轴于E 点,通过分割面积法AOB AOC BOE ACEB S S S S ∆∆∆=+-梯形求得.(1)解:2AOC S ∆=,24AOC k S ∆∴==;4y x ∴=;(2)解:0k >,∴函数y 的值在各自象限内随x 的增大而减小;0a >,2a a ∴-<-;12y y ∴<;(3)解:连接AB ,过点B 作BE x ⊥轴,2AOC BOE S S ∆∆==, 4(,)A a a ∴,2(2,)B a a ; ()124232ACEB S a a a a ⎛⎫=+⨯-= ⎪⎝⎭梯形,3AOB AOC BOE ACEB S S S S ∆∆∆∴=+-=梯形.。
北师大版九年级数学第一学期期末试题及答案
北师大版九年级数学第一学期期末试题及答案一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.(3分)已知a、b、c、d是成比例线段,其中a=3,b=0.6,c=2,则线段d的长为()A.0.4B.0.6C.0.8D.42.(3分)如图所示的几何体,它的左视图是()A.B.C.D.3.(3分)如图,四边形ABCD与四边形AEFG是位似图形,点A是位似中心,且AC:AF=2:3,则四边形ABCD 与四边形AEFG的面积之比等于()A.2:3B.4:9C.1:4D.1:24.(3分)关于x的一元二次方程x2﹣3x+n=0没有实数根,则实数n的值可以为()A.0B.1C.2D.35.(3分)已知反比例函数y=,在下列结论中,不正确的是()A.图象必经过点(1,2)B.图象在第一、二象限C.图象在第一、三象限D.若x=2,则y=16.(3分)如图,在矩形ABCD中,AC,BD相交于点O,若△AOB的面积是3,则矩形ABCD的面积是()A.6B.9C.12D.157.(3分)笼子里关着一只小松鼠(如图).笼子主人决定把小松鼠放归大自然,将笼子所有的门都打开,松鼠要先过第一道门(A或B),再过第二道门(C,D或E)才能出去,则松鼠走出笼子的路线是“先经过A门、再经过D门”的概率为()A.B.C.D.8.(3分)如图,△ABC中,∠ACB=90°,分别以AB,AC为边作正方形ABPQ,ACFH,BP交FH于点O.若BC=BF=2,则OP的长为()A.B.2C.D.2二、填空题(共5小题,每小题3分,计15分)9.(3分)已知关于x的一元二次方程x2﹣mx+6=0.其中一个解x=3,则m的值为.10.(3分)地面上有一支蜡烛,蜡烛前面有一面墙,王涛同学在蜡烛与墙之间运动,则他在墙上的投影长度随着他离墙的距离变小而(增大、变小).11.(3分)在一个布袋中装有只有颜色不同的a个小球,其中红球的个数为2,随机摸出一个球记下颜色后再放回袋中,通过大量重复实验后发现,摸到红球的频率稳定于0.2,那么可以推算出a大约是.12.(3分)如图,点A在反比例函数的图象上,点B在反比例函数的图象上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为.13.(3分)如图,在平行四边形ABCD中,E是AB的中点,F在AD上,且AF:AD=1:3,EF交AC于G.若AC=40,则AG=.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)解方程:y(y﹣7)+2y﹣14=0.15.(5分)画出如图所示的正三棱柱的三视图.16.(5分)如图,菱形ABCD的边长为4,∠B=60°,以AC为边长作正方形ACEF,求这个正方形的周长.17.(5分)已知反比例函数y=,当x<0时,y随x的增大而减小,求正整数m的值.18.(5分)在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.求证:四边形BFDE是矩形.19.(5分)某游泳池有1200立方米水,设放水的平均速度为v立方米/小时,将池内的水放完需t小时.(1)求v关于t的函数表达式;(2)若要求在3小时之内把游泳池的水放完,则每小时应至少放水多少立方米?20.(5分)如图,延长正方形ABCD的一边CB至E,ED与AB相交于点F,过F作FG∥BE交AE于点G,求证:GF=FB.21.(6分)解读诗词(通过列方程算出周瑜去世时的年龄):大江东去浪淘尽,千古风流数人物,而立之年督东吴,早逝英年两位数,十位恰小个位三,个位平方与寿符,哪位学子算得快,多少年华属周瑜?诗词大意:周瑜三十岁当东吴都督,去世时的年龄是两位数,十位数字比个位数字小三,个位数字的平方等于他去世时的年龄.22.(7分)学习了相似三角形相关知识后,小明和同学们想利用“标杆”测量大楼的高度.如图,小明站立在地面点F处,他的同学在点B处竖立“标杆”AB,使得小明的头顶E、标杆顶端A、大楼顶端C在一条直线上(点F、B、D也在一条直线上).已知小明的身高EF=1.5米,“标杆“AB=2.5米,BD=23米,FB=2米,EF、AB、CD均垂直于地面BD.求大楼的高度CD.23.(7分)甲、乙两人去超市选购奶制品,有两个品牌的奶制品可供选购,其中蒙牛品牌有三个种类的奶制品:A:纯牛奶,B:酸奶,C:核桃奶;伊利品牌有两个种类的奶制品:D:纯牛奶,E:核桃奶.(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是;(2)若甲喜爱蒙牛品牌的奶制品,乙喜爱伊利品牌的奶制品,甲、乙两人从各自喜爱的品牌中随机选购一种奶制品,请用列表法或画树状图法求出两人选购到同一种类奶制品的概率.24.(8分)如图,在△ABC中,D为AC延长线上一点,AC=3CD,∠CBD=∠A,过点D作DE∥AB交BC的延长线于点E.(1)求证:△ECD∽△EDB;(2)求△DCE与△ACB的周长比.25.(8分)如图,直角坐标系中,点B坐标为(6,0),且AO=AB=5,AH⊥x轴于点H,过B作BC⊥x轴交过点A的双曲线于点C,连接OC交AB于点D,交AH于点M.(1)求双曲线的表达式;(2)求的值.26.(10分)如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长交AD于点E,交BA的延长线于点F.(1)求证:△APD≌△CPD;(2)求证:△APE∽△FP A;(3)若PE=4,PF=12,求PC的长.参考答案与试题解析一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.(3分)已知a、b、c、d是成比例线段,其中a=3,b=0.6,c=2,则线段d的长为()A.0.4B.0.6C.0.8D.4【分析】由a、b、c、d四条线段是成比例的线段,根据成比例线段的定义,即可得=,又由a=3,b=0.6,c=2,即可求得d的值.【解答】解:∵a、b、c、d四条线段是成比例的线段,∴=,∵a=3,b=0.6,c=2,∴=解得:d=0.4.故选:A.【点评】此题考查了比例线段,此题比较简单,解题的关键是注意掌握比例线段的定义.2.(3分)如图所示的几何体,它的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是两个同心圆,内圆要画成实线.故选:C.【点评】本题考查了简单几何体的三视图,从左边看得到的图形是左视图.3.(3分)如图,四边形ABCD与四边形AEFG是位似图形,点A是位似中心,且AC:AF=2:3,则四边形ABCD 与四边形AEFG的面积之比等于()A.2:3B.4:9C.1:4D.1:2【分析】根据位似图形的概念得到EF∥BC,证明△BAC∽△EAF,根据相似三角形的性质求出,根据相似多边形的性质计算即可.【解答】解:∵四边形ABCD与四边形AEFG是位似图形,∴四边形ABCD∽四边形AEFG,EF∥BC,∴△BAC∽△EAF,∴==,∴四边形ABCD与四边形AEFG的面积之比为4:9,故选:B.【点评】本题考查的是位似变换的概念和性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.4.(3分)关于x的一元二次方程x2﹣3x+n=0没有实数根,则实数n的值可以为()A.0B.1C.2D.3【分析】根据方程没有实数根得出(﹣3)2﹣4×1×n<0,解之求出n的范围,结合各选项可得答案.【解答】解:根据题意,得:(﹣3)2﹣4×1×n<0,解得:n>,∴n的值可以是3,故选:D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.5.(3分)已知反比例函数y=,在下列结论中,不正确的是()A.图象必经过点(1,2)B.图象在第一、二象限C.图象在第一、三象限D.若x=2,则y=1【分析】由k=2>0即可判断B,C;把x=2,代入y=可判断A,D.【解答】解:A.把(2,1)代入y=得:左边=右边,故本选项不符合题意;B.k=2>0,图象在第一、三象限内,故本选项符合题意;C.k=2>0,图象在第一、三象限内,故本选项不符合题意;D.把x=2,代入y=得y=1,故本选项不符合题意;故选:B.【点评】本题主要考查了反比例函数的性质,能熟练地根据反比例函数的性质进行判断是解此题的关键.6.(3分)如图,在矩形ABCD中,AC,BD相交于点O,若△AOB的面积是3,则矩形ABCD的面积是()A.6B.9C.12D.15【分析】由矩形的性质可得AO=CO=BO=DO,可得S△AOB=S△BOC=S△AOD=S△OCD=3,即可求解.【解答】解:∵四边形ABCD是矩形,∴AO=CO=BO=DO,∴S△AOB=S△BOC=S△AOD=S△OCD=3,∴矩形ABCD的面积=12,故选:C.【点评】本题考查了矩形的性质,掌握矩形的对角线互相平分且相等是解题的关键.7.(3分)笼子里关着一只小松鼠(如图).笼子主人决定把小松鼠放归大自然,将笼子所有的门都打开,松鼠要先过第一道门(A或B),再过第二道门(C,D或E)才能出去,则松鼠走出笼子的路线是“先经过A门、再经过D门”的概率为()A.B.C.D.【分析】画树状图,即可得出答案.【解答】解:画树状图如下:共有6种等可能的结果,先经过A门、再经过D门只有1种结果,所以先经过A门、再经过D门的概率为,故选:D.【点评】此题考查的是用树状图法.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;正确画出树状图是解题的关键.8.(3分)如图,△ABC中,∠ACB=90°,分别以AB,AC为边作正方形ABPQ,ACFH,BP交FH于点O.若BC=BF=2,则OP的长为()A.B.2C.D.2【分析】根据正方形的性质得到△FOB∽△CBA,根据相似三角形的性质得到OF,利用勾股定理分别求出OB,PB进而可求.【解答】解:∵四边形ABPQ,ACFH为正方形,∴PB=AB,AC=CF=CB+BF=4,∠F=∠C=90°,∠PBA=90°,∴∠FOB+∠FBO=90°,∠ABC+∠FBO=90°∴∠FOB=∠ABC,∴△FOB∽△CBA,∴=,即=,∴OF=1,在Rt△FBO中,由勾股定理得,OB===,在Rt△ABC中,由勾股定理得,AB===2,∴OP=PB﹣OB=,故选:A.【点评】本题考查了正方形的性质和相似三角形的性质与判定,利用正方形的性质得到△FOB∽△CBA,根据相似三角形的性质得到OF是解题的关键.二、填空题(共5小题,每小题3分,计15分)9.(3分)已知关于x的一元二次方程x2﹣mx+6=0.其中一个解x=3,则m的值为5.【分析】把x=3代入方程x2﹣mx+6=0得到关于m的方程,然后解关于m的方程即可.【解答】解:把x=3代入方程x2﹣mx+6=0得9﹣3m+6=0,解得m=5.故答案为:5.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.10.(3分)地面上有一支蜡烛,蜡烛前面有一面墙,王涛同学在蜡烛与墙之间运动,则他在墙上的投影长度随着他离墙的距离变小而变小(增大、变小).【分析】可连接光源和人的头顶可知,墙上的影长和人到墙的距离变化规律是:距离墙越近,影长越短,距离墙越远影长越长.【解答】解:连接光源和人的头顶可知,墙上的影长和人到墙的距离变化规律是:距离墙越近,影长越短,距离墙越远影长越长.则他在墙上投影长度随着他离墙的距离变小而变小.故答案为变小.【点评】本题综合考查了中心投影的特点和规律.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.11.(3分)在一个布袋中装有只有颜色不同的a个小球,其中红球的个数为2,随机摸出一个球记下颜色后再放回袋中,通过大量重复实验后发现,摸到红球的频率稳定于0.2,那么可以推算出a大约是10.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解答】解:由题意可得,=0.2,解得,a=10.故可以推算出a大约是10个.故答案为:10.【点评】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.12.(3分)如图,点A在反比例函数的图象上,点B在反比例函数的图象上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为2.【分析】首先延长BA交y轴于点E,易得四边形ADOE与四边形BCOE是矩形,又由点A在反比例函数的图象上,点B在反比例函数的图象上,即可得S矩形ADOE=1,S矩形BCOE=3,继而求得答案.【解答】解:延长BA交y轴于点E,∵四边形ABCD为矩形,且AB∥x轴,点C、D在x轴上,∴AE⊥y轴,∴四边形ADOE与四边形BCOE是矩形,∵点A在反比例函数的图象上,点B在反比例函数的图象上,∴S矩形ADOE=1,S矩形BCOE=3,∴S矩形ABCD=S矩形BCOE﹣S矩形ADOE=3﹣1=2.故答案为:2.【点评】此题考查了反比例函数的系数k的几何意义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.13.(3分)如图,在平行四边形ABCD中,E是AB的中点,F在AD上,且AF:AD=1:3,EF交AC于G.若AC=40,则AG=8.【分析】设AC的中点为O,连接EO,根据题意可得OE是△ABC的中位线,从而可得OE=BC,OE∥BC,进而可证8字模型相似三角形△AFG∽△OEG,然后利用相似三角形的性质进行计算即可解答.【解答】解:设AC的中点为O,连接EO,∴AO=AC=20,∵E是AB的中点,∴OE是△ABC的中位线,∴OE=BC,OE∥BC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴AD∥OE,∴∠F AG=∠AOE,∠AFG=∠OEG,∴△AFG∽△OEG,∴=,∵AF:AD=1:3,∴=,∴==,∴=,∴AG=8,故答案为:8.【点评】本题考查了平行四边形的性质,相似三角形的判定与性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)解方程:y(y﹣7)+2y﹣14=0.【分析】根据因式分解法即可求出答案.【解答】解:y(y﹣7)+2y﹣14=0,y(y﹣7)+2(y﹣7)=0,分解因式得:(y﹣7)(y+2)=0,则y﹣7=0或y+2=0,解得:y1=7,y2=﹣2.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.15.(5分)画出如图所示的正三棱柱的三视图.【分析】根据题意可得正三棱柱的主视图为中间有一条竖的实心线的矩形,左视图为矩形,俯视图为正三角形,从而可画出三视图.【解答】解:如图所示:【点评】此题考查了作图﹣三视图,属于基础题,解答本题的关键是掌握三视图的观察方法,要求一定的空间想象能力.16.(5分)如图,菱形ABCD的边长为4,∠B=60°,以AC为边长作正方形ACEF,求这个正方形的周长.【分析】根据已知可求得△ABC是等边三角形,从而得到AC=AB,再根据正方形的周长公式计算即可.【解答】解:∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=4,∴正方形ACEF的周长是16.【点评】本题考查菱形与正方形的性质,关键是根据已知可求得△ABC是等边三角形.17.(5分)已知反比例函数y=,当x<0时,y随x的增大而减小,求正整数m的值.【分析】先根据反比例函数的性质列出关于m的不等式,求出m的取值范围即可.【解答】解:∵反比例函数y=,当x<0时,y随x的增大而减小,∴3﹣2m>0,解得m<,∴正整数m的值是1.【点评】本题考查的是反比例函数的性质,即反比例函数y=(k≠0)的图象是双曲线;当k>0时,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小.18.(5分)在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.求证:四边形BFDE是矩形.【分析】根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形,∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形.【点评】本题考查了平行四边形的性质,矩形的判定,熟练掌握矩形的判定定理是解题关键.19.(5分)某游泳池有1200立方米水,设放水的平均速度为v立方米/小时,将池内的水放完需t小时.(1)求v关于t的函数表达式;(2)若要求在3小时之内把游泳池的水放完,则每小时应至少放水多少立方米?【分析】(1)由题意得vt=900,即v=,自变量的取值范围为t>0,(2)把t=3代入求出相应的v的值,即可求出放水速度.【解答】解:(1)由题意得:vt=1200,即:v=,答:v关于t的函数表达式为v=,自变量的取值范围为t>0.(2)当t=3时,v==400,所以每小时应至少放水400立方米.【点评】考查求反比例函数的应用,根据常用的数量关系得出函数关系式是解题的关键.20.(5分)如图,延长正方形ABCD的一边CB至E,ED与AB相交于点F,过F作FG∥BE交AE于点G,求证:GF=FB.【分析】结合条件可得到GF∥AD,则有=,由BF∥CD可得到=,又因为AD=CD,可得到GF =FB.【解答】证明:∵四边形ABCD为正方形,∴BF∥CD,∴=,∵FG∥BE,∴GF∥AD,∴=,∴=,且AD=CD,∴GF=BF.【点评】本题主要考查平行线分线段成比例及正方形的性质,掌握平行线分线段中的线段对应成比例是解题的关键,注意利用比例相等也可以证明线段相等.21.(6分)解读诗词(通过列方程算出周瑜去世时的年龄):大江东去浪淘尽,千古风流数人物,而立之年督东吴,早逝英年两位数,十位恰小个位三,个位平方与寿符,哪位学子算得快,多少年华属周瑜?诗词大意:周瑜三十岁当东吴都督,去世时的年龄是两位数,十位数字比个位数字小三,个位数字的平方等于他去世时的年龄.【分析】设周瑜去世时的年龄的个位数字为x,则十位数字为x﹣3.根据题意建立方程求出其值就可以求出其结论.【解答】解:设周瑜去世时的年龄的个位数字为x,则十位数字为x﹣3,依题意得:10(x﹣3)+x=x2,解得x1=5,x2=6,当x=5时,25<30,(不合题意,舍去),当x=6时,36>30(符合题意),答:周瑜去世时的年龄为36岁.【点评】本题是一道数字问题的运用题,考查了列一元二次方程解实际问题的运用,在解答中理解而立之年是一个人30岁的年龄是关键.22.(7分)学习了相似三角形相关知识后,小明和同学们想利用“标杆”测量大楼的高度.如图,小明站立在地面点F处,他的同学在点B处竖立“标杆”AB,使得小明的头顶E、标杆顶端A、大楼顶端C在一条直线上(点F、B、D也在一条直线上).已知小明的身高EF=1.5米,“标杆“AB=2.5米,BD=23米,FB=2米,EF、AB、CD均垂直于地面BD.求大楼的高度CD.【分析】如图1中,过点E作EH⊥CD于点H,交AB于点J.则四边形EFBJ,四边形EFDH都是矩形.利用相似三角形的性质求出CH,可得结论.【解答】解:如图中,过点E作EH⊥CD于点H,交AB于点J.则四边形EFBJ,四边形EFDH都是矩形.∴EF=BJ=DH=1.5米,BF=EJ=2米,DB=JH=23米,∵AB=2.5米.∴AJ=AB﹣BJ=2.5﹣1.5=1(米),∵AJ∥CH,∴△EAJ∽△ECH,∴=,∴=,∴CH=12.5(米),∴CD=CH+DH=12.5+1.5=14(米).答:大楼的高度CD为14米.【点评】本题考查相似三角形的应用,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.23.(7分)甲、乙两人去超市选购奶制品,有两个品牌的奶制品可供选购,其中蒙牛品牌有三个种类的奶制品:A:纯牛奶,B:酸奶,C:核桃奶;伊利品牌有两个种类的奶制品:D:纯牛奶,E:核桃奶.(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是;(2)若甲喜爱蒙牛品牌的奶制品,乙喜爱伊利品牌的奶制品,甲、乙两人从各自喜爱的品牌中随机选购一种奶制品,请用列表法或画树状图法求出两人选购到同一种类奶制品的概率.【分析】(1)根据概率公式求解即可;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【解答】解:(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是,故答案为:;(2)列表如下:A B CD(A,D)(B,D)(C,D)E(A,E)(B,E)(C,E)由表知,共有6种等可能结果,其中两人选购到同一种类奶制品的有2种结果,所以两人选购到同一种类奶制品的概率为=.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.24.(8分)如图,在△ABC中,D为AC延长线上一点,AC=3CD,∠CBD=∠A,过点D作DE∥AB交BC的延长线于点E.(1)求证:△ECD∽△EDB;(2)求△DCE与△ACB的周长比.【分析】(1)由DE∥AB得∠EDC=∠A,因为∠CBD=∠A,所以∠EDC=∠EBD,而∠A=∠A,可证明△ECD ∽△EDB;(2)由DE∥AB可证明△DCE∽△ACB,而AC=3CD,所以△DCE的周长:△ACB的周长=CD:AC=1:3,即可得出问题的答案.【解答】(1)证明:如图,∵DE∥AB,∴∠EDC=∠A,∵∠CBD=∠A,∴∠EDC=∠CBD,即∠EDC=∠EBD,∵∠E=∠E,∴△ECD∽△EDB;(2)解:∵DE∥AB,∴△DCE∽△ACB,∵AC=3CD,∴△DCE的周长:△ACB的周长=CD:AC=1:3=,∴△DCE与△ACB的周长比为.【点评】此题考查平行线的性质、相似三角形的判定与性质等知识,其中证明△DCE∽△ACB是解题的关键.25.(8分)如图,直角坐标系中,点B坐标为(6,0),且AO=AB=5,AH⊥x轴于点H,过B作BC⊥x轴交过点A的双曲线于点C,连接OC交AB于点D,交AH于点M.(1)求双曲线的表达式;(2)求的值.【分析】(1)根据B坐标为(6,0),得到OB=6,根据等腰三角形的性质得到OH=BH=OB=3,根据勾股定理得到AH===4,求得A坐标为(3,4),于是得到结论;(2)设C坐标为(6,m),根据y=(x>0)经过点C,求得BC=2,根据相似三角形的性质得到=,根据三角形的中位线定理得到MH=BC=×2=1于是得到结论.【解答】解:(1)∵B坐标为(6,0),∴OB=6,∵AO=AB=5,AH⊥x轴于点H,∴OH=BH=OB=3,在Rt△AOH中,AO2=AH2+OH2,∴AH===4,∴A坐标为(3,4),∵y=(x>0)经过点A,∴4=,∴k=12,∴双曲线表达式为y=(x>0);(2)设C坐标为(6,m),∵y=(x>0)经过点C,∴m==2,∴BC=2,∵AH⊥x轴,BC⊥x轴,∴AM∥CB,∴△ADM∼△ABC,∴=,∵OH=BH,∴OM=CM,∴MH是△OBC的中位线,∴MH=BC=×2=1,∴AM=AH﹣MH=3,∴=.【点评】本题考查了待定系数法求反比例函数的解析式,相似三角形的判定和性质,三角形的中位线定理,熟练掌握待定系数法求函数的解析式是解题的关键.26.(10分)如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长交AD于点E,交BA的延长线于点F.(1)求证:△APD≌△CPD;(2)求证:△APE∽△FP A;(3)若PE=4,PF=12,求PC的长.【分析】(1)由四边形ABCD是菱形,根据菱形的性质得AD=CD=AB=CB,还有BD是公共边,可证明△ADB ≌△CDB,得∠PDA=∠PDC,再证明△APD≌△CPD即可;(2)由CD∥AB得∠F=∠PCD,由△APD≌△CPD得∠P AE=∠PCD,所以∠P AE=∠F,而∠P AE=∠FP A,即可证明△APE∽△FP A;(3)由△APE∽△FP A得=,其中PE=4,PF=12,可求出P A的长,由△APD≌△CPD可知PC=P A,即可求得PC的长.【解答】(1)证明:如图,∵四边形ABCD是菱形,∴AD=CD=AB=CB,在△ADB和△CDB中,,∴△ADB≌△CDB(SSS),∴∠PDA=∠PDC,在△APD和△CPD中,,∴△APD≌△CPD(SAS).(2)证明:如图,∵CD∥AB,∴∠F=∠PCD,∵∠P AE=∠PCD,∴∠P AE=∠F,∵∠P AE=∠FP A,∴△APE∽△FP A.(3)解:如图,∵△APE∽△FP A,∴=,∵PE=4,PF=12,∴P A2=PE•PF=4×12=48,∴P A==4,∴PC=P A=4.∴PC的长为4.【点评】此题考查菱形的性质、全等三角形的判定与性质、相似三角形的判定与性质等知识,根据菱形的性质找出相等的角并证明角相等是解题的关键.。
北师大版九年级上册数学期末考试试题含答案
北师大版九年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.2.将代数式x2﹣10x+5配方后,发现它的最小值为()A.﹣30 B.﹣20 C.﹣5 D.03.已知a,b,c为常数,且点Q(b,a)在第三象限,则关于x的方程bx2﹣cx﹣a=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定4.若ba=25,则a ba b-+的值为()A.14B.37C.35D.755.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A.24 B.18 C.12 D.96.下列图形中不是位似图形的是A.B.C.D.7.如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A.10×6﹣4×6x=32 B.(10﹣2x)(6﹣2x)=32C.(10﹣x)(6﹣x)=32 D.10×6﹣4x2=328.同一时刻,身高2.26m的姚明在阳光下影长为1.13m;小林浩在阳光下的影长为0.64m,则小林浩的身高为()A.1.28m B.1.13m C.0.64m D.0.32m9.在同一平面直角坐标系中,函数y=mx+m(m≠0)与(m≠0)的图象可能是()A.B.C.D.10.如图,平面直角坐标系中,平行四边形OABC的顶点C(3,4),边OA落在x正半轴上,P为线段AC上一点,过点P分别作DE∥OC,FG∥OA交平行四边形各边如图.若反比例函数kyx的图象经过点D,四边形BCFG的面积为8,则k的值为()A.16 B.20 C.24 D.28 二、填空题11.一个三角形的两边长分别为3和6,第三边长是方程x2-10x+21=0的根,则三角形的周长为______________.12.如图,在△ABC中,点D,E分别在AB,AC上,∠AED=∠B,AB=2AE,若△ADE 的面积为2,则四边形BCED的面积为_____.13.在课外实践活动中,甲、乙、丙、丁四个小组用投掷啤酒瓶盖的方法估计落地时瓶盖“ 正面朝上”的概率,其试验次数分别为10次、50次、100次、500次,其中试验相对科学的是_____组.14.如图,在Rt△ABC中,∠C=90°,AB=10,BC=6,则sinA=_____.三、解答题15.解方程①(x+1)2=4x ②x2+3x﹣4=0(用配方法)③x2﹣2x﹣8=0 ④2(x+4)2=5(x+4)⑤2x2﹣7x=4 ⑥(x+1)(x+2)=2x+416.作图与推理:如图,是由一些大小相同的小正方体组合成的简单几何体(1)图中有块小正方体;(2)从正面看到该几何体的形状图如图所示,请在下面方格纸中分别画出从左面,上面看到该几何体的形状图17.如图,在平面直角坐标系中,四边形ABCD的顶点坐标分别是A(﹣2,0)、B(0,﹣2)、C(2,0)、D(0,2),求证:四边形ABCD是正方形。
北师大版九年级上册数学期末考试试卷及答案
北师大版九年级上册数学期末考试试题一、单选题1.下列关系式中y 是x 的反比例函数的是()A .5y x=B .k y x=C .25y x =D .3xy =2.如图,三视图正确的是()A .主视图B .左视图C .左视图D .俯视图3.用配方法解方程2250x x --=时,原方程应变形为()A .()216x +=B .()216x -=C .()229x +=D .()229x -=4.反比例函数ky x=的图象如图所示,则k 值可能是()A .-2B .2C .4D .85.已知四边形ABCD 是平行四边形,下列结论:①当AB =BC 时,它是菱形;②当AC ⊥BD 时,它是菱形;③当∠ABC =90°时,它是矩形;④当AC =BD 时,它是正方形,其中错误的有()A .1个B .2个C .3个D .4个6.如图,在△ABC 中,点D 、E 在边AB 上,点F 、G 在边AC 上,且DF ∥EG ∥BC ,AD=DE =EB ,若Δ1ADF S =,则EBCG S =四边形()A .3B .4C .5D .67.若关于x 的方程()()22222280x x x x +++-=有实数根,则22x x +的值为()A .-4B .2C .-4或2D .4或-28.在一只不透明的口袋中放入红球5个,黑球1个,黄球n 个,这些球除颜色不同外,其它无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为13,则放入口袋中的黄球总数n 是()A .3B .4C .5D .69.如图,O 是矩形ABCD 对角线AC 的中点,M 是AD 的中点,若BC =8,OB =5,则OM 的长为()A .1B .2C .3D .410.如图,将矩形ABCD 沿对角线BD 折叠,点A 落在点E 处,DE 交BC 于点F ,若∠CFD =40°,则∠ABD 的度数为()A .50°B .60°C .70°D .80°二、填空题11.反比例函数ky x=图象上有两点A (-3,4)、B (m ,2),则m =_____.12.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼_____条.13.已知一元二次方程(m -2)m x +3x -4=0,那么m 的值是_____.14.在平面直角坐标系中,△ABC 中点A 的坐标是(2,3),以原点O 为位似中心把△ABC 放大,使放大后的三角形与△ABC 的相似比为3:1,则点A 的对应点A′的坐标为_____.15.若一元二次方程220x -=的两根分别为m 与n ,则m nn m+=_____.16.在矩形ABCD 中,AB =6,BC =8,BD ⊥DE 交AC 的延长线于点E ,则DE =_____.17.如图,在平行四边形ABCD 中,CE ⊥AB 且E 为垂足,如果∠A =125°,则∠BCE =____.三、解答题18.如图,在矩形ABCD 中,对角线BD 的垂直平分线MN 与AD 相交于点M ,与BC 相交于点N ,连接BM ,DN .(1)求证:四边形BMDN 是菱形;(2)若AB =4,AD =8,求菱形BMDN 的面积.19.等腰三角形的三边长分别为a 、b 、c ,若6a =,b 与c 是方程22(31)220x m x m m -+++=的两根,求此三角形的周长.20.如图,一次函数2y kx =+与y 轴交于点A ,与反比例函数my x=的图象相交于B 、C 两点,BD ⊥y 轴交y 轴于点D ,OA =OD ,8ABDS ∆=.(1)求一次函数与反比例函数的表达式;(2)求点C 的坐标,并直接写出不等式2mkx x+>的解集;(3)在所在平面内,存在点E 使以点B 、C 、D 、E 为顶点的四边形为平行四边形,请直接写出所有满足条件的点E 的坐标.21.如图,在四边形ABCD 中,BD 为一条对角线,//AD BC ,2AD BC =,90ABD ∠=︒,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分BAD ∠,1BC =,求AC 的长.22.某数学小组为调查实验学校周五放学时学生的回家方式,随机抽取了部分学生进行调查,所有被调查的学生都需从“A :乘坐电动车,B :乘坐普通公交车或地铁,C :乘坐学校的定制公交车,D :乘坐家庭汽车,E :步行或其他”这五种方式中选择最常用的一种,随后该数学小组将所有调查结果整理后绘制成如图不完整的条形统计图和扇形统计图,请结合统计图回答下列问题.(1)本次调查中一共调查了名学生;扇形统计图中,E选项对应的扇形圆心角是度;(2)请补全条形统计图;(3)若甲、乙两名学生放学时从A、B、C三种方式中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两名学生恰好选择同一种交通工具上班的概率.23.如图,在▱ABCD中过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.(1)求证:△ABF∽△BEC;(2)若AD=5,AB=8,sinD=45,求AF的长.24.已知:如图,△ABO与△BCD都是等边三角形,点O为坐标原点,点B、D在x轴上,AO=2,点A、C在一反比例函数图象上.(1)求此反比例函数解析式;(2)求点C的坐标;(3)问:以点A为顶点,且经过点C的抛物线是否经过点(0?请说明理由.25.如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.26.如图,点A、B在反比例函数kyx的图象上,且点A、B的横坐标分别为a、2a(a>0),AC⊥x轴,垂足为点C,且△AOC的面积为2(1)求该反比例函数的解析式;(2)若点(﹣a,y1),(﹣2a,y2)在该反比例函数的图象上,试比较y1与y2的大小;(3)求△AOB的面积.参考答案1.D 【分析】根据反比例函数的定义:(0)ky k x=≠且k 为比例系数,即可作出判断.【详解】A 、此函数为一次函数,故不符合题意;B 、不一定反比例函数,当k=0时,则y=0,故不符合题意;C 、不是反比例函数,未知数x 的指数不满足反比例函数的定义,故不符合题意;D 、由3xy =得:3y x=,符合反比例函数的定义,故符合题意;故选:D【点睛】本题主要考查了反比例函数的定义,掌握其解析形式是关键,特别注意k 是不为零的常数.2.A 【分析】根据几何体的形状,从三个角度得到其三视图即可.【详解】解:主视图是一个矩形,内部有两条纵向的实线,故选项A 符合题意;左视图是一个矩形,内部有一条纵向的实线,故选项B 、C 不符合题意;俯视图是一个“T ”字,故选项D 不符合题意;故选:A .【点睛】此题主要考查了画三视图的知识,解题的关键是掌握主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.3.B 【分析】根据配方法解一元二次方程的步骤首先把常数项移到右边,方程两边同时加上一次项系数一半的平方配成完全平方公式.【详解】解:2250x x --=移项得:225x x -=方程两边同时加上一次项系数一半的平方得:22151x x -+=+配方得:()216x -=.故选:B .【点睛】此题考查了配方法解一元二次方程的步骤,解题的关键是熟练掌握配方法解一元二次方程的步骤.配方法的步骤:配方法的一般步骤为:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.4.B 【分析】根据函数所在象限和反比例函数上的点的横纵坐标的积小于4判断.【详解】解:∵反比例函数图象在第一、三象限,∴k >0,∵当图象上的点的横坐标为2时,纵坐标小于2,∴k <4,故选:B .【点睛】本题考查了反比例函数图象上点的坐标特点,反比例函数的图象与性质,比例系数等于在它上面的点的横纵坐标的积,熟练掌握反比例函数的图象与性质是解答本题的关键.5.A 【分析】根据矩形、菱形、正方形的判定可以判断题目中的各个小题的结论是否正确,从而可以解答本题.【详解】解: 四边形ABCD 是平行四边形,A 、当AB BC =时,它是菱形,选项不符合题意,B 、当AC BD ⊥时,它是菱形,选项不符合题意,C 、当90ABC ∠=︒时,它是矩形,选项不符合题意,D 、当AC BD =时,它是矩形,不一定是正方形,选项符合题意,故选:A .【点睛】本题考查正方形、菱形、矩形的判定,解答本题的关键是熟练掌握矩形、菱形、正方形的判定定理.6.C 【分析】利用////DF EG BC ,得到ADF ABC ∆∆∽,ADF AEG ∆∆∽,利用AD DE EB ==,得到13AD AB =,12AD AE =,利用相似三角形的性质,相似三角形的面积比等于相似比的平方,分别求得AEG ∆和ABC ∆的面积,利用ABC AEG EBCG S S S ∆∆=-四边形即可求得结论.【详解】解:AD DE EB == ,∴13AD AB =,12AD AE =.////DF EG BC ,ADF ABC ∴∆∆∽,ADF AEG ∆∆∽.∴2(ADF ABC S AD S AB∆∆=,2(ADF AEG S AD S AE ∆∆=.99ABC ADF S S ∆∆∴==,44AEG ADF S S ∆∆==.945ABC AEG EBCG S S S ∆∆∴=-=-=四边形.故选:C .【点睛】本题主要考查了相似三角形的判定与性质,解题的关键是利用相似三角形的面积比等于相似比的平方,用ABC AEG EBCGS S S ∆∆=-四边形解答.7.B 【分析】设22x x y +=,则原方程可化为2280y y +-=,解得y 的值,即可得到22x x +的值.【详解】解:设22x x y +=,则原方程可化为2280y y +-=,解得:14y =-,22y =,当4y =-时,224x x +=-,即2240x x ++=,△224140=-⨯⨯<,方程无解,当2y =时,222x x +=,即2220x x +-=,△()22412=120=-⨯⨯->,方程有实数根,22x x ∴+的值为2,故选:B .【点睛】本题考查了换元法解一元二次方程,的关键是把22x x +看成一个整体来计算,即换元法思想.8.A 【分析】根据概率公式列出关于n 的分式方程,解方程即可得.【详解】解:根据题意可得51n n ++=13,解得:n =3,经检验n =3是分式方程的解,即放入口袋中的黄球总数n =3,故选:A .【点睛】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n.9.C 【分析】由O 是矩形ABCD 对角线AC 的中点,可求得AC 的长,然后运用勾股定理求得AB 、CD 的长,又由M 是AD 的中点,可得OM 是△ACD 的中位线,即可解答.【详解】解:∵O 是矩形ABCD 对角线AC 的中点,OB =5,∴AC =2OB =10,∴CD =AB 6,∵M 是AD 的中点,∴OM =12CD =3.故答案为:C .【点睛】本题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.10.C 【分析】根据矩形的性质和平行线的性质得到∠FDA =40°,根据翻折变换的性质得到∠ADB =∠EDB =20°,根据直角三角形的性质可求出∠ABD 的度数,即可求出答案.【详解】∵四边形ABCD 是矩形,∴AD ∥BC ,∠A =90°,∴∠FDA =∠CFD =40°,由翻折变换的性质得到∠ADB =∠EDB =20°∴∠ABD =70°故选C .【点睛】本题考查平行线的性质、图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.11.6-【分析】由点A 的坐标得到反比例函数的解析式,再把点B 的坐标代入可得m 的值.【详解】解:把(3,4)A -代入ky x =可得3412k =-⨯=-,所以反比例函数的解析式是12y x=-,当2y =时,6m =-.故答案为:6-.【点睛】本题考查反比例函数图象上点的坐标特征,解题的关键是掌握待定系数法求得解析式.12.20000【详解】试题分析:1000÷10200=20000(条).考点:用样本估计总体.13.2-【分析】根据一元二次方程的定义进行计算即可.【详解】解:由题意可得:||2m =且20m -≠,2m ∴=±且2m ≠,2m ∴=-,故答案为:2-.【点睛】本题考查了绝对值,一元二次方程的定义,解题的关键是熟练掌握一元二次方程的定义,即()200ax bx c a ++=≠.14.(6,9)或(6,9)--【分析】根据如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或k -进行解答.【详解】解:以原点O 为位似中心,把ABC ∆放大,使放大后的三角形与ABC ∆的相似比为3:1,则点(2,3)A 的对应点A '的坐标为(6,9)或(6,9)--.故答案为:(6,9)或(6,9)--.【点睛】本题考查了位似变换:位似图形与坐标,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或k -.15.72-【分析】先根据根与系数的关系得m n +=mn=-2,再把原式变形为2()2m n mn mn+-,然后利用整体代入的方法计算.【详解】解:∵一元二次方程220x -=的两根分别为m 与n ,根据根与系数的关系得m n +=,mn=-2,所以原式=()(()2222222722m n mn m n mn mn -⨯-+-+===--.故答案为:72-.16.1207【分析】由勾股定理可求AC 的长,由矩形的性质可得5OD OB ==,由面积法可求DH 的长,通过证明OD DE OH DH =,即可求解.【详解】解:如图:过点D 作DH AC ⊥于H ,6AB = ,8BC =,10AC ∴==,四边形ABCD 是矩形,152AO CO BO DO AC ∴=====, 11··22ADC S AD CD AC DH == ,6810DH ∴⨯=,245DH ∴=,75OH ∴===,∵=90DOH ODH ∠+︒∠,=90DOH E ∠+︒∠,∴ODH E∠=∠90DHO EHD ∠=∠=︒Q ,ODH DEH ∴∆∆∽,∴OD DE OH DH=,∴572455DE =,1207DE ∴=,故答案为:1207.17.35【详解】分析:根据平行四边形的性质和已知,可求出∠B ,再进一步利用直角三角形的性质求解即可.详解:∵AD ∥BC ,∴∠A+∠B=180°,∴∠B=180°-125°=55°,∵CE ⊥AB ,∴在Rt △BCE 中,∠BCE=90°-∠B=90°-55°=35°.故答案为35.点睛:本题主要考查了平行四边形的性质,运用平行四边形对边平行的性质,得到邻角互补的结论,这是运用定义求四边形内角度数的常用方法.18.(1)见解析;(2)菱形BMDN 的面积是20【分析】(1)证△DMO ≌△BNO ,得出OM =ON ,根据对角线互相平分证四边形BMDN 是平行四边形,再根据对角线互相垂直证菱形即可;(2)设BM=x ,根据勾股定理列出方程,求出菱形边长,再用面积公式求解即可.【详解】解:(1)证明:∵四边形ABCD 是矩形,MN 垂直平分BD ,∴AD ∥BC ,∠A =90°,OB =OD ,∴∠MDO =∠NBO ,∠DMO =∠BNO ,∵在△DMO 和△BNO 中,DMO BNO MDO NBO OB OD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DMO ≌△BNO (AAS )∴OM =ON又∵OB =OD∴四边形BMDN 是平行四边形∵MN 垂直平分BD ,即MN ⊥BD∴平行四边形BMDN 是菱形.(2)解:∵四边形BMDN 是菱形∴MB =MD在Rt △AMB 中,设BM=x ,BM 2=AM 2+AB 2即x 2=(8﹣x )2+42解得:x =5,MD=5∴BN=MD=5∴5420BMDN S BN AB =⨯=⨯=菱形答:菱形BMDN 的面积是20.19.此三角形的周长为16或22.【分析】分两种情况进行讨论分析:①若6a =是三角形的腰,则b 与c 中至少有一边长为6;若6a =是三角形的底边,则b 、c 为腰,即b c =;根据题意,代入方程确定m 的值,然后代入方程求解,确定三边长度,考虑三边关系判定能否构成三角形,然后求周长即可得.【详解】解:①若6a =是三角形的腰,则b 与c 中至少有一边长为6,代入方程得:()226316220m m m -+⨯++=,解得3m =或5m =,∴当3m =时,方程可化为210240x x -+=,解得14x =,26x =,∴三角形三边长分别为4、6、6,周长为:46616++=;当5m =时,方程可化为216600x x -+=,解得16x =,210x =;三角形三边长分别为6、6、10,周长为:106622++=;∴三角形的周长为16或22;②若6a =是三角形的底边,则b 、c 为腰,即b c =,则方程有两个相等的实数根,∴()()22314220m m m ⎡⎤-+-+=⎣⎦,解得1m =,∴原方程可化为2440x x -+=,解得122x x ==,此时,6a =,2b c ==,不能构成三角形,舍去;综上所述,三角形的周长为16或22.【点睛】题目主要考查等腰三角形的定义及一元二次方程的解法,三角形的三边关系等,理解题意,进行分类讨论是解题关键.20.(1)一次函数的解析式为:2y x =+;反比例函数的解析式为:8y x=(2)40x -<<或2x >(3)(6,4)、(-6,-8)、(-2,4)【分析】(1)首先求出点D 的坐标,从而得出AD 的长,由8ABD S ∆=,得出BD 的长,从而得出点B 的坐标,从而解决问题;(2)由(1)可联立方程组28y x y x =+⎧⎪⎨=⎪⎩,解方程组得出点C 的坐标,根据图象可得答案;(3)分当BC 、CD 、BD 为对角线三种情形,分别通过对角互相平分进行求解.(1)解: 点A 是一次函数2y kx =+与y 轴的交点,∴令0x =,则022y k =⨯+=,即(0,2)A 2OA ∴=,又OD OA =Q ,2OD ∴=,(0,2)D ∴-,24AD OD ∴==.BD y ⊥ 轴,∴点B 的纵坐标为2-,8ABD S ∆= ,∴182AD BD ⋅=,∴1482BD ⨯⨯=,4BD ∴=,∴点B 的坐标为(4,2)--,把点(4,2)B --分别代入一次函数2y kx =+与反比例函数my x =,可得:422k -=-+,24m-=-,1k ∴=,8m =,∴一次函数的解析式为:2y x =+,反比例函数的解析式为:8y x =;(2)解:由(1)可联立方程组28y x y x=+⎧⎪⎨=⎪⎩,解这个方程组得:42x y =-⎧⎨=-⎩或24xy =⎧⎨=⎩,点C 在第一象限,故点C 坐标为(2,4),由图象可得当40x -<<或2x >时,2mkx x +>;(3)解:如图,当BC 为对角线时,取对角线的交点为(,)F x y ,根据对角线互相平分,即(,)F x y 为1,BC DE 的中点,(4,2),(2,4),(0.2)B C D --- ,42241,122x y -+-+==-==,设111(,)E x y ,11021,122x y+-+-==,解得:112,4x y =-=,1(2,4)E ∴-;如图,当CD 为对角线时,取对角线的交点为(,)F x y ,根据对角线互相平分,即(,)F x y 为2,CD BE 的中点,(4,2),(2,4),(0.2)B C D --- ,20421,122x y +-====,设222(,)E x y ,22421,122x y --==,解得:116,4x y ==,2(6,4)E ∴;如图,当BD 为对角线时,取对角线的交点为(,)F x y ,根据对角线互相平分,即(,)F x y 为3,BD CE 的中点,(4,2),(2,4),(0.2)B C D --- ,40222,222x y -+--==-==-,设333(,)E x y ,33242,222x y ++-=-=,解得:336,8x y =-=-,3(6,8)E ∴--;∴符合条件的点E 的坐标为:(6,4)、(6,8)--、(2,4)-.【点睛】本题是反比例函数综合题,主要考查了反比例函数图象与一次函数图象交点问题,平行四边形的性质,函数与不等式的关系等知识,解题的关键是运用分类思想来解答.21.(1)见解析;(2)AC =(1)根据2AD BC =,E 为AD 的中点,证得四边形BCDE 是平行四边形,再根据BE=DE 即可证得结论;(2)根据AD ∥BC ,AC 平分BAD ∠,求出AD=2BC=2=2AB ,得到30ADB ∠=︒,60ADC ∠=︒,90ACD ∠=︒,根据Rt ACD ∆求出答案即可.【详解】(1)证明:2AD BC = ,E 为AD 的中点,DE BC ∴=.//AD BC ,∴四边形BCDE 是平行四边形.90ABD ∠=︒ ,AE DE =,BE DE ∴=,则四边形BCDE 是菱形;(2)解:如答图所示,连接AC ,//AD BC ,AC 平分BAD ∠,BAC DAC BCA ∴∠=∠=∠.1AB BC ∴==.22AD BC ∴==,2AD AB ∴=,∴在Rt ABD ∆中,30ADB ∠=︒.30DAC ∴∠=︒,60ADC ∠=︒,90ACD ∠=︒.在Rt ACD ∆中2AD = ,1CD ∴=,∴AC ==.22.(1)200,72;(2)见解析;(3)13.【分析】(1)根据B 的人数以及百分比得到被调查的人数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;(2)求出C 组的人数即可补全图形;(3)列表得出所有等可能结果,即可运用概率公式得甲、乙两名学生恰好选择同一种交通工具回家的概率.【详解】解:(1)本次调查的学生人数为6030%200÷=(名),扇形统计图中,B项对应的扇形圆心角是40 36072200︒⨯=︒,故答案为:200;72;(2)C选项的人数为200(20603040)50-+++=(名),补全条形图如下:(3)画树状图如图:共有9个等可能的结果,甲、乙两名学生恰好选择同一种交通工具上班的结果有3个,∴甲、乙两名学生恰好选择同一种交通工具上班的概率为31 93=.【点睛】此题考查了列表法与树状图法、条形统计图、扇形统计图和概率公式,解题的关键是仔细观察统计图并从中整理出解题的有关信息,正确画出树状图.23.(1)证明见解析;(2)【分析】(1)由平行四边形的性质得出AB∥CD,AD∥BC,AD=BC,得出∠D+∠C=180°,∠ABF=∠BEC,证出∠C=∠AFB,即可得出结论;(2)由勾股定理求出BE,由三角函数求出AE,再由相似三角形的性质求出AF的长.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AD=BC,∴∠D+∠C=180°,∠ABF=∠BEC,∵∠AFB+∠AFE=180°,∴∠C=∠AFB ,∴△ABF ∽△BEC ;(2)解:∵AE ⊥DC ,AB ∥DC ,∴∠AED=∠BAE=90°,在Rt △ABE 中,根据勾股定理得:=在Rt △ADE 中,AE=AD•sinD=5×45=4,∵BC=AD=5,由(1)得:△ABF ∽△BEC ,∴AF AB BC BE=,即5AF =解得:.24.(1)y =(2)(1C -;(3)是,理由见解析.【分析】(1)首先过点A 、C 分别作AF ⊥OB 于点F ,CE ⊥DB 于点E ,根据AO =2,△ABO 与△BCD 是等边三角形,得出A 点坐标,进而求出反比例函数解析式;(2)首先表示出C 点坐标,进而代入函数解析式求出即可;(3)首先设y =a (x +1)2C 坐标代入得出a 的值,进而将点(0答案.【详解】解:(1)过点A 、C 分别作AF ⊥OB 于点F ,CE ⊥DB 于点E ,∵AO =2,△ABO 与△BCD 是等边三角形,∴OF =1,FAA 的坐标是(-1,把(-1k y x=,得k∴反比例函数的解析式是y =(2)设BE =a ,则CE∴点C 的坐标是(-2-a),把点C 的坐标代入y=2-a a 1,∴点C的坐标是(-1-);(3)过点C的抛物线是经过点(0.理由:设y=a(x+1)2把点C坐标代入得a,∴y(x+1)2当x=0时,代入上式得y=2,∴点C的抛物线是经过点(0,2).【点睛】此题主要考查了反比例函数的综合应用以及图象上点的坐标特点等知识,根据已知表示出C点坐标是解题关键.25.(1)见解析(2)四边形CEFG的面积为20 3.【分析】(1)根据题意和翻折的性质,可以得到△BCE≌△BFE,再根据全等三角形的性质和菱形的判定方法即可证明结论成立;(2)根据题意和勾股定理,可以求得AF的长,进而求得EF和DF的值,从而可以得到四边形CEFG的面积.(1)证明:由题意可得,△BCE≌△BFE,∴∠BEC=∠BEF,FE=CE,∵FG∥CE,∴∠FGE=∠CEB,∴∠FGE=∠FEG,∴FG=FE,∴FG=EC,∴四边形CEFG 是平行四边形,又∵CE=FE ,∴四边形CEFG 是菱形;(2)解:∵矩形ABCD 中,AB=6,AD=10,BC=BF ,∴∠BAF=90°,AD=BC=BF=10,∴AF=8,∴DF=2,设EF=x ,则CE=x ,DE=6-x ,∵∠FDE=90°,∴22+(6-x )2=x 2,解得,x=103,∴CE=103,∴四边形CEFG 的面积是:CE•DF=103×2=203.【点睛】本题考查翻折变化、菱形的性质和判定、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.26.(1)4y x =(2)y 1<y 2(3)3【分析】(1)由122AOC S xy ∆==,设反比例函数的解析式k y x =,则4k xy ==;(2)由于反比例函数的性质是:在0x <时,y 随x 的增大而减小,2a a ->-,则12y y <;(3)连接AB ,过点B 作BE x ⊥轴,交x 轴于E 点,通过分割面积法AOB AOC BOE ACEB S S S S ∆∆∆=+-梯形求得.(1)解:2AOC S ∆= ,24AOC k S ∆∴==;4y x ∴=;(2)解:0k > ,∴函数y 的值在各自象限内随x 的增大而减小;0a > ,2a a ∴-<-;12y y ∴<;(3)解:连接AB ,过点B 作BE x ⊥轴,2AOC BOE S S ∆∆==,4(,)A a a ∴,2(2,)B a a ;()124232ACEB S a a a a ⎛⎫=+⨯-= ⎪⎝⎭梯形,3AOB AOC BOE ACEB S S S S ∆∆∆∴=+-=梯形.。
北师大版九年级上册数学期末试题加答案
北师大版九年级上册数学期末试题加答案本试卷共分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,满分100分,考试时间为90分钟。
注意事项:1.在答题卡上填写学校、班级、姓名、座位号和考号,并用2B铅笔填涂相应的信息点。
2.选择题答案用2B铅笔涂在答题卡上,非选择题必须用黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上。
3.不准使用铅笔和涂改液,不按要求作答的答案无效。
4.考生必须保持答题卡的整洁,不折叠,不破损,考试结束后,将答题卡交回。
5.不允许使用计算器。
第Ⅰ卷选择题一、选择题(本题有12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上。
)1.一元二次方程3x²-x=的解是A。
x=B。
x=C。
x=0.x=3D。
x=3.x=32.顺次连结任意四边形各边中点所得到的四边形一定是A。
平行四边形B。
菱形C。
矩形D。
正方形3.若一个几何体的主视图、左视图、俯视图分别是三角形、三角形、圆,则这个几何体可能是A。
球B。
圆柱C。
圆锥D。
棱锥4.在同一时刻,身高1.6m的XXX,在太阳光线下影长是1.2m,旗杆的影长是15m,则旗杆高为A。
22mB。
20mC。
18mD。
16m5.下列说法不正确的是A。
对角线互相垂直的矩形是正方形B。
对角线相等的菱形是正方形C。
有一个角是直角的平行四边形是正方形D。
一组邻边相等的矩形是正方形6.直角三角形的两条直角边分别是6和8,则这三角形斜边上的高是A。
4.8B。
5C。
3D。
107.若点(3,4)是反比例函数y=图像上一点,则此函数图像必经过点x=m²+2m-1本试卷共分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,满分100分,考试时间为90分钟。
在答题卡上填写学校、班级、姓名、座位号和考号,并用2B铅笔填涂相应的信息点。
选择题答案用2B铅笔涂在答题卡上,非选择题必须用黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上。
北师大版初中数学九年级上册期末测试卷(较易)(含答案解析)
北师大版初中数学九年级上册期末测试卷考试范围:全册;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1.如图,四边形ABCD是菱形,点E,F分别在BC,DC边上,添加以下条件不能判定△ABE≌△ADF的是( )A. BE=DFB. ∠BAE=∠DAFC. AE=ADD. ∠AEB=∠AFD2.在四边形ABCD中,∠A=∠B=∠C=90∘,若要使该四边形是正方形,则添加的一个条件可以是( )A. ∠D=90∘B. AB=CDC. AD=BCD. BC=CD3.如图,某建筑工程队在工地一边靠墙处,用81米长的铁栅栏围成三个相连的长方形仓库,仓库总面积为440平方米.为了方便取物,在各个仓库之间留出了1米宽的缺口作通道,在平行于墙的一边留下一个1米宽的缺口作小门.若设AB=x米,则可列方程( )A. x(81−4x)=440B. x(78−2x)=440C. x(84−2x)=440D. x(84−4x)=4404.国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x,则可列方程为( )A. 500(1+2x)=7500B. 5000×2(1+x)=7500C. 5000(1+x)2=7500D. 5000+5000(1+x)+5000(1+x)2=75005.为了庆祝中国共产党成立100周年,某校举办了党史知识竞赛活动,在获得一等奖的学生中,有3名女学生,1名男学生,则从这4名学生中随机抽取2名学生,恰好抽到2名女学生的概率为( )A. 23B. 12C. 13D. 166.关于频率和概率的关系,下列说法正确的是( )A. 频率等于概率B. 当试验次数很大时,频率稳定在概率附近C. 当试验次数很大时,概率稳定在频率附近D. 试验得到的频率与概率不可能相等7.如图,在6×6的正方形网格中,连接小正方形中两个顶点A、B,如果线段AB与网格线的其中两个交点为M、N,那么AM:MN:NB的值是( )A. 3:5:4B. 3:6:5C. 1:3:2D. 1:4:28.下面四组线段中,不能成比例的是( )A. a=1,b=√2,c=√6,d=√3B. a=3,b=6,c=2,d=4C. a=4,b=6,c=5,d=10D. a=2,b=√5,c=√15,d=2√39.如图所示的工件,其俯视图是( )A. B. C. D.10.如图所示,夜晚路灯下同样高的旗杆,离路灯越近,它的影子( )A. 越长B. 越短C. 一样长D. 无法确定11.根据下表中,反比例函数的自变量x与函数y的对应值,可得p的值为( )x−21y3pA. 3B. 1C. −2D. −612.如图,在▱ABCD中,对角线AC与BD交于点O,添加下列条件不能判定▱ABCD为矩形的只有( )A. AC=BDB. AB=6,BC=8,AC=10C. AC⊥BDD. ∠1=∠2第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13.如图,在菱形ABCD中,AC=2,∠ABC=60°,则BD=________.14.将一元二次方程x2+8x+13=0通过配方转化成(x+n)2=p的形式(n,p为常数),则n=________,p=________.15.在同一时刻两根木杆在太阳光下的影子如图所示,其中木杆AB=2m,它的影子BC=1.6m,木杆PQ的影子有一部分落在了墙上,PM=1.2m,MN=0.8m,则木杆PQ的长度为m.16.已知函数y=5,当x=1时,y=;当x=时,y=1.x三、解答题(本大题共9小题,共72.0分。
北师大版九年级上册数学期末考试试题附标准答案
个人采集整理 -仅供参照北师大版九年级上册数学期末考试一试题及答案一、选择题(每题 4 分,共 24 分)以下各小题均有四个答案,此中只有一个是正确地,请将正确答案地代号字母填入题后括号内 .1.在Rt△ABC中,C=90 ,BAC 地角均分线AD交BC于点D,A CD=2 ,则点D到AB地距离是()A.1B.2C. 3 D . 42.一元二次方程3x2x 0 地解是()B D CA .x 0 B.x10,x23C.x111 0, x2D.x333.按序连结随意四边形各边中点所获得地四边形必定是()b5E2R。
A .平行四边形B .菱形C.矩形 D .正方形4.小明拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上形成地投影不行能...是A B C D p1Ean。
5.某农场所粮食总产量为1500吨,设该农场人数为x 人,均匀每人据有粮食数为y 吨,则y 与x之间地函数图象大概是()DXDiT。
y y y y0x0x0x0x A.B.C.D.6.在李咏主持地“好运52 ”栏目中,曾有一种竞猜游戏,游戏规则是:在20 个商标牌中,有5 个商标牌地反面注了然必定地奖金,其余商标牌地反面是一张“哭脸”,若翻到“哭脸”就不获奖 ,参加这个游戏地观众有三次翻牌地时机,且翻过地牌不可以再翻.有一位观众已翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖地概率是A .1B .2C.1D .5 59418二、填空题(每题 3 分,共 27 分)RTCrp。
C7.如图,地面 A 处有一支焚烧地蜡烛( 长度不计 ) ,一个人在 A 与墙BC 之间运动,则他在墙上地投影长度跟着他离墙地距离变小而.A B( 填“变大”、“变小”或“不变” ). 5PCzV。
8.反比率函数y k 20 )地图象位于第象限.( k 为常数, k9.依据天气预告,明日地降水概率为15%,后天地降水概率为70%,若是小明准备明日或者后天去放风筝,你建议他__________ 天去为好 . jLBHr。
北师大版九年级上册数学期末考试卷及答案【必考题】
北师大版九年级上册数学期末考试卷及答案【必考题】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.4的算术平方根为()A.2±D.2±B.2C.22.用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7 B.y=(x+4)2+7C.y=(x﹣4)2﹣25 D.y=(x+4)2﹣253.已知m=4+3,则以下对m的估算正确的()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<64.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A.﹣2 B.0 C.1 D.45.已知正多边形的一个外角为36°,则该正多边形的边数为(). A.12 B.10 C.8 D.66.已知:等腰直角三角形ABC的腰长为4,点M在斜边AB上,点P为该平面内一动点,且满足PC=2,则PM的最小值为()A.2 B.22﹣2 C.22+2 D.227.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A →B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A .B .C .D .8.如图,AB 、是函数12y x=上两点,P 为一动点,作//PB y 轴,//PA x 轴,下列说法正确的是( )①AOP BOP ∆≅∆;②AOP BOP S S ∆∆=;③若OA OB =,则OP 平分AOB ∠;④若4BOP S ∆=,则16ABP S ∆=A .①③B .②③C .②④D .③④9.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )A .16B .17C .18D .1910.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)1.计算368⨯-的结果是______________. 2.分解因式:34x x -=________.3.若代数式32x x +-有意义,则实数x 的取值范围是__________. 4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是__________.5.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为__________.6.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为____________.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--2.先化简,再求值:24211326x xx x-+⎛⎫-÷⎪++⎝⎭,其中21x=+.3.如图,在▱ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.4.如图,ABC中,点E在BC边上,AE AB=,将线段AC绕点A旋转到AF 的位置,使得CAF BAE∠=∠,连接EF,EF与AC交于点G(1)求证:EF BC=;(2)若65ABC∠=︒,28ACB∠=︒,求FGC∠的度数.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、C5、B6、B7、B8、B9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)12、x(x+2)(x﹣2).3、x≥-3且x≠24、425、12.6、454353 x yx y+=⎧⎨-=⎩三、解答题(本大题共6小题,共72分)1、2x=2.3、详略.4、(1)略;(2)78°.5、(1)30;(2)①补图见解析;②120;③70人.6、(1)4元或6元;(2)九折.。
北师大版九年级上册数学期末考试试卷附答案
北师大版九年级上册数学期末考试试题一、单选题1.下列方程中没有实数根的是()A .2220x x +=-B .2440x x -+=C .()20x x -=D .()213x -=2.矩形、菱形都具有的性质是()A .对角线互相垂直B .对角线互相平分C .对角线相等D .对角线互相垂直且相等3.已知反比例函数ky x=经过点A ()3,2、B ()1,m -,则m 的值为()A .6-B .23-C .23D .64.身高1.6m 的小刚在阳光下的影长是1.2m ,在同一时刻,阳光下旗杆的影长是l5m ,则旗杆高为()A .14米B .16米C .18米D .20米5.在一个不透明纸箱中放有除了数字不同外,其它完全相同的2张卡片,分别标有数字1、2,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之积为偶数的概率为()A .14B .13C .12D .346.如图,D 为△ABC 中AC 边上一点,则添加下列条件不能..判定△ABC ∽△BDC 的是A .2BC AC CD =⋅B .AB BDAC BC=C .∠ABC=∠BDC D .∠A=∠CBD7.用小正方体搭一个几何体,使它的主视图和俯视图如图所示,这样的几何体最少需要正方体个数为a ,最多需要正方体个数为b ,则a+b 的值为()A .14B .15C .16D .17820x x m -+=的一个根,则方程的另外一根为()ABCD.329.赵爽画的“弦图”(如图),体现了数学研究的继承和发展,弦图中四边形ABCD 与EFGH 均为正方形,若,AG BH CE DF a ====,AF BG CH DE b ====且正方形EFGH 的面积为正方形ABCD 的面积的一半,则a :b 的值为()A.2BC .2D.210.如图,已知E ,F 分别为正方形ABCD 的边AB 、BC 的中点,AF 与DE 交于点M ,则下列结论:①AF ⊥DE ;②AE EG =;③AM=23MF ;④14AEM ADM S S ∆∆=.其中正确的结论有()A .4个B .3个C .2个D .1个二、填空题11.已知32a b =,则a b a b +-=_______.12.矩形ABCD 的对角线AC 和BD 相交于点O ,∠ACB=40°,则∠AOB=_________°.13.一个不透明的袋子中放有若干个红球,小亮往其中放入10个黑球,并采用以下实验方式估算其数量:每次摸出一个小球记录下颜色并放回,实验数据如下表:实验次数100200300400摸出红球78161238321则袋中原有红色小球的个数约为__________个.14.正比例函数12y x =-和反比例函数2ky x=的图象都经过点A(-1,2),若12y y >,则x 的取值范围是__________________.15.已知22320x x --=.则221x x+=_______.16.如图,菱形ABCD 边长为4,∠B=60°,14DE AD =,14BF BC =,连接EF 交菱形的对角线AC 于点O ,则图中阴影部分面积等于________________.17.如图,△ABC 中AB=AC ,A (0,8),C (6,0),D 为射线AO 上一点,一动点P 从A 出发,运动路径为A→D→C ,点P 在AD 上的运动速度是在CD 上的53倍,要使整个运动时间最少,则点D 的坐标应为____________.18.如图,在平面直接坐标系中,将反比例函数()320y x x=>的图象绕坐标原点O 逆时针旋转45°得到的曲线l ,过点(A ,2B 的直线与曲线l 相交于点C 、D ,则sin ∠COD=___.19.如图,OA OB OC ==且30ACB ∠=︒,则AOB ∠的大小是______度.三、解答题20.解方程:()(333x x x +-=-21.小明家客厅里装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,按下任意一个开关均可打开对应的一盏电灯,因刚搬进新房不久,不熟悉情况.(1)若小明任意按下一个开关,则小明打开走廊灯的概率是多少?(2)若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图法或列表法加以说明.22.如图,△ABC 中,∠ACB=90°,CA=CB=22D 、E 为AB 上两点,且∠DCE=45°,(1)求证:△ACE ∽△BDC .(2)若AD=1,求DE 的长.23.如图,一次函数y=ax+b 的图像与反比例函数ky x=的图像交于C 、D 两点,与x 、y 轴分别交于B 、A 两点,CE ⊥x 轴,且OB=4,CE=3,12CE BE =(1)求一次函数的解析式和反比例函数的解析式.(2)求△OCD的面积.24.商场购进一批国产高档服装,进价为500元/件,售价为1000元/件时,每天可以出售40件,经市场调查发现每降价50元,一天可以多售出10件.(1)售价为850元时,当天的销售量为多少件?(2)如果每天的利润要比原来多4000元,并使顾客得到更大的优惠,问每件售价为多少元?25.如图,公路旁有两个高度相等的路灯AB、CD,小明上午上学时发现路灯AB在太阳光下的影子恰好落在路牌底部E处,他自己的影子恰好落在路灯CD的底部C处;晚自习放学时,站在上午同一个地方,发现在路灯CD的灯光下自己的影子恰好落在E处.(1)在图中画出小明的位置(用线段FG表示).(2)若上午上学时,高1米的木棒的影子为2米,小明身高为1.5米,他距离路牌底部E恰好2米,求路灯高.26.如图,四边形OABC为正方形,反比例函数kyx=的图象过AB上一点E,BE=2,35AEOE=.(1)求k的值.(2)反比例函数的图象与线段BC交于点D,直线y=ax+b过点D及线段AB的中点F,探究直线OF与直线DF的位置关系,并证明.(3)点P是直线OF上一点,当PD+PC的值最小时,求点P的坐标.27.为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为A、B、C、D四个等次,绘制成如图所示的不完整的统计图,请回答下列问题.(1)a=,b=;(2)请将条形统计图补充完整,并计算表示C等次的扇形所对的圆心角的度数为;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲乙两名男生同时被选中的概率.28.如图,矩形ABCD中,点E在边CD上,将BCE沿BE折叠,点C落在AD边上的点F处,过点F 作FG CD 交BE 于点G ,连接CG .(1)求证:四边形CEFG 是菱形;(2)若6,10AB AD ==,求四边形CEFG 的面积.参考答案1.A 【分析】分别计算四个方程的根的判别式的值,然后根据根的判别式的意义判断各方程根的情况即可.【详解】解:A .△2(2)4240=--⨯=-<,则方程没有实数解,所以选项符合题意;B .△2(4)440=--⨯=,则方程有两个相等的实数解,所以选项不符合题意;C .方程化为220x x -=,△2(2)4040=--⨯=>,则方程有两个不相等的实数解,所以选项不符合题意;D .方程化为2220x x --=,△2(2)4(2)120=--⨯-=>,则方程有两个不相等的实数解,所以选项不符合题意.故选:A .【点睛】本题考查了根的判别式,解题的关键是掌握一元二次方程20(a 0)++=≠ax bx c 的根与△=-24b ac 有如下关系:当△0>时,方程有两个不相等的实数根;当△0=时,方程有两个相等的实数根;当△0<时,方程无实数根.2.B 【分析】由矩形的性质和菱形的性质可直接求解.【详解】解: 菱形的对角线互相垂直平分,矩形的对角线互相平分且相等,∴矩形、菱形都具有的性质是对角线互相平分,故选:B .【点睛】本题考查了矩形的性质,菱形的性质,灵活运用这些性质解决问题是解题的关键.3.A 【分析】根据反比例函数图象上点的坐标的特征即可得出答案.【详解】解: 反比例函数ky x=经过点(3,2)A ,326k ∴=⨯=,6y x∴=,将点(1,)B m -代入反比例函数解析式得:6m =-,故选:A .【点睛】本题主要考查了反比例函数图象上点的坐标的特征,明确同一反比例函数图象上的点的坐标符合=k xy 是解题的关键.4.D 【分析】利用同一时刻身高和影长之比等于旗杆与其影长之比列式计算即可.【详解】解:设旗杆高为x 米,根据同一时刻身高和影长之比等于旗杆与其影长之比可得:1.61.215x=,解得:20x =,故旗杆高20米,故选:D .【点睛】本题考查了相似三角形的应用,能够把实际问题抽象到相似三角形中,利用相似三角形的相似比列出方程计算出结果,是解决本题的关键.5.D 【分析】根据题意画出树状图,共有4种等可能的情况,数出其中两次摸出的数字之积为偶数的情况数,求出概率即可.【详解】解:画树状图如下:∵共有4种等可能的结果,两次摸出的数字之积为偶数的结果有3种,∴两次摸出的数字之积为偶数的概率为34,故D 正确.故选:D .【点睛】本题主要考查了画树状图和列表求概率,根据题意画出树状图和列出表格是解题的关键.6.B 【分析】由相似三角形的判定方法依次进行判断,即可得到答案.【详解】解:∵BC 2=AC•CD ,∴BC CDAC BC=,又∵∠C=∠C ,∴△ABC ∽△BDC ,故选A 不合题意,∵∠ABC=∠BDC ,∠C=∠C ,∴△ABC ∽△BDC ,故选C 不合题意,∵∠A=∠CBD ,∠C=∠C ,∴△ABC ∽△BDC ,故选D 不合题意,故选:B .【点睛】本题考查了相似三角形的判定,掌握相似三角形判定方法是关键.7.C 【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】解:由俯视图可得最底层有5个小正方体,由主视图可得第一列和第三列最少有2个正方体,最多有4个正方体,那么最少需要527+=个正方体,即7a =.最多需要549+=个正方体,即9b =.则7916a b +=+=.故选:C .【点睛】此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,解题的关键是掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.8.C 【分析】利用一元二次方程根与系数的关系求出两根之和,再将已知解代入求出另一解即可.【详解】解:12x =是一元二次方程20x x m -+=的一个根,设方程的另一个根为n ,∵两根的和为:111b a --=-=,1n =,解得:n =,故选:C .【点睛】本题考查一元二次方程根与系数的关系,一次一元二次方程的解,数量掌握根与系数的关系式解决本题的关键.9.D 【分析】根据题意可得正方形EFGH 的面积为2()a b -,正方形ABCD 的面积为22()a b +,然后列出方程求解即可.【详解】解:AG BH CE DF a ==== ,AF BG CH DE b ====,∴正方形EFGH 的面积为2()a b -,正方形ABCD 的面积为22()a b +,正方形EFGH 的面积为正方形ABCD 的面积的一半,2221()()2a b a b ∴-=+,2240a ab b ∴-+=,∴40a bb a-+=,设a x b=,140x x∴-+=,2410x x ∴-+=,解得12x =+,22x =,0a b >> ,∴1ab>,:a b ∴的值为2+故选:D .【点睛】本题考查了勾股定理的应用,正方形的面积,一元二次方程,解题的关键是掌握勾股定理.10.B 【分析】先由E ,F 分别为正方形ABCD 的边AB 、BC 的中点得到AE=BE=BF 、∠DAE=∠ABF=90°、AD=AB ,从而得证△DAE ≌△ABF ,进而利用全等三角形的性质得到∠BAM+∠AEM=90°判定①;假设AE=EG ,则AE=BE=EG ,则∠EBG=∠EGB ,∠EAG=∠EGA ,从而推出∠EAG=45°判定②;由BF=AE=BE 得到,然后证明△AEM∽△AFB,进而利用相似三角形的性质得到AM=23MF判定③;先证明△AEM∽△DAM,然后利用AD=2AE得到14AEMADMSS∆∆=判定④.【详解】解:∵E,F分别为正方形ABCD的边AB、BC的中点,∴AE=BE=BF,∠DAE=∠ABF=90°,AD=AB,∴△DAE≌△ABF(SAS),∴∠BAF=∠ADE,∵∠ADE+∠AED=90°,∴∠BAM+∠AEM=90°,∴∠AME=90°,故①正确,符合题意;假设AE=EG,则AE=BE=EG,∴∠EBG=∠EGB,∠EAG=∠EGA,∵四边形ABCD是正方形,∴∠ABD=45°,∴∠EBG=∠EGB=45°,∴∠BEG=∠EAG+∠EGA=90°,∴∠EAG=45°,又∵∠EAG≠45°,∴AE≠EG,故②错误,不符合题意∵BF=AE=BE,AB=2AE,∴AF===,∵∠EAM+∠AEM=90°,∠BAF+∠AFB=90°,∴∠AEM=∠AFB,∵∠AME=∠ABF=90°,∴△AEM∽△AFB,∴AM AE EMAB AF BF==,即2AMAE=∴AE,∴MF=AF--,∴AM=23MF,故③正确,符合题意;∵∠AEM+∠EAM=90°,∠EAM+∠DAM=90°,∴∠AEM=∠DAM,∵∠EMA=∠AMD=90°,∴△AEM∽△DAM,∴2211()()24AEMADMS AES AD∆∆===,故④正确,符合题意;故选:B.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理,解题的关键是熟知相关知识.11.5【分析】根据比例设a=3k,b=2k,然后代入比例式进行计算即可得解.【详解】解:∵32 ab=,∴设a=3k,b=2k,则32532a b k ka b k k++==--,故答案为:5.【点睛】本题考查了比例的性质,利用“设k法”求解更简便.12.80【分析】根据矩形的对角线互相平分且相等可得OB OC=,再根据等边对等角可得OBC ACB∠=∠,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解: 矩形ABCD的对角线AC,BD相交于点O,OB OC∴=,40OBC ACB∴∠=∠=︒,404080AOB OBC ACB∴∠=∠+∠=︒+︒=︒.故答案为:80.【点睛】本题考查了矩形的性质,等边对等角的性质以及三角形的一个外角等于与它不相邻的两个内角的和的性质,解题的关键是熟记各性质.13.40【分析】先根据表格中的数据求出摸出红球概率,设袋中原有红色小球的个数为x ,根据求概率公式列出方程求解即可.【详解】解:由表可知,摸出红球的概率约为45,设袋中原有红色小球的个数为x ,根据题意,得:4105x x =+,解得:x=40,经检验,x=40是所列分式方程的解,故设袋中原有红色小球的个数为40,故答案为40.【点睛】本题考查用频率估计概率、简单的概率计算、解分式方程,求得摸出红球的概率是解答的概率.14.1x <-或01x <<##0<x<1或x<-1【分析】先利用待定系数法求出反比例函数的解析式,再画出两个函数的图象,然后根据正比例函数和反比例函数的图象与性质可得两个函数图象的另一个交点的坐标为(1,2)-,据此结合函数图象即可得出答案.【详解】解:将点(1,2)A -代入反比例函数2k y x =得:122k =-⨯=-,则反比例函数的解析式为22y x =-,画出两个函数的图象如下:由函数图象的对称性得:正比例函数12y x =-和反比例函数22y x=-的图象的另一个交点的坐标为(1,2)-,所以结合函数图象得:若12y y >,则x 的取值范围是1x <-或01x <<,故答案为:1x <-或01x <<.【点睛】本题考查了正比例函数和反比例函数的综合,熟练掌握正比例函数和反比例函数的图象与性质是解题关键.15.174【分析】根据22320x x --=.可得2223x x -=,且0x ≠,从而得到132x x -=,再利用完全平方公式,即可求解.【详解】解:∵22320x x --=.∴2223x x -=,且0x ≠,∴223x x -=,∴132x x -=,∴2213924x x ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,即221924x x +-=,∴221174x x +=.故答案为:174【点睛】本题主要考查了分式的混合运算,完全平方公式,根据题意得到132x x -=是解题的关键.16AD CD =,//AD BC ,60ABC ADC ∠=∠=︒,由“AAS ”可证AEO CFO ∆≅∆,可得AO CO =,由面积的和差关系可求解.【详解】解:连接CE ,四边形ABCD 是菱形,AD CD ∴=,//AD BC ,60ABC ADC ∠=∠=︒,ADC ∴∆是等边三角形,DAC ACB ∠=∠,24ADC S AD ∆∴=⨯=,14DE AD = ,14BF BC =,AE CF ∴=,在AEO ∆和CFO ∆中,AOE COF EAC BCA AE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AEO CFO AAS ∴∆≅∆,AO CO ∴=,14DE AD =,14CDE ADC S S ∆∆∴==,ACE S ∆=,AO CO =,2AOE COE S S ∆∆∴==,∴阴影部分面积=【点睛】本题考查了菱形的性质,等边三角形的性质,灵活运用这些性质解决问题是解题的关键.17.90,2⎛⎫ ⎪⎝⎭【分析】过B 点作BH AC ⊥交于H 点,交AO 于D 点,连接CD ,设P 点的运动时间为t ,在CD 上的运动速度为v ,1()53AD t CD v =+,只需53AD CD +最小即可,再证明ADH ACO ∆∆∽,可得53AD DH =,则当B 、D 、H 点三点共线时,此时t 有最小值,再由BDO ADH ∆∆∽,求出OD 即可求坐标.【详解】解:过B 点作BH AC ⊥交于H 点,交AO 于D 点,连接CD ,AB AC = ,BD CD ∴=,设P 点的运动时间为t ,在CD 上的运动速度为v ,点P 在AD 上的运动速度是在CD 上的53倍,1()5533AD CD AD t CDv v v ∴=+=+,90AHD AOC ∠=∠=︒ ,ADH ACO ∴∆∆∽,∴AD DHAC CO =,(0,8)A ,(6,0)C ,6OC ∴=,8OA =,10AC ∴=,∴106ADDH=,53AD DH ∴=,1()t DH CD v ∴=+,当B 、D 、H 点三点共线时,1t BH v =⨯,此时t 有最小值,BDO ADH ∠=∠ ,DBO OAC ∴∠=∠,BDO ADH ∴∆∆∽,∴DO OC BO AO =,即668DO=,92DO ∴=,9(0,)2D ∴,故答案为:(90,2).【点睛】本题考查轴对称求最短距离,三角形相似的判定及性质、解题的关键是熟练掌握轴对称求最短距离和胡不归求最短距离的方法.18.【分析】由题(A,(B ,可得OA ⊥OB ,建立如图新的坐标系,OB 为x′轴,OA 为y′轴,利用方程组求出C 、D 的坐标,根据勾股定理求得OC 、OD 的长,根据S △OCD =S △OBC -S △OBD 计算求得△OCD 的面积,根据三角形面积公式求得CE 的长,然后解直角三角形即可求得sin ∠COD 的值.【详解】∵((A B ,,∴A,,,∴222AO +BO =AB ,∴OA ⊥OB ,建立如图新的坐标系,OB 为x′轴,OA 为y′轴.在新的坐标系中,A (0,2),B (4,0),∴直线AB 解析式为y′=-12x′+2,由1'223'2y x y x ⎧=-+⎪⎪⎨⎪=⎩'⎪,解得'13'2x y =⎧⎪⎨=⎪⎩或'31'2x y =⎧⎪⎨=⎪⎩,∴C (1,32),D (3,12),∴S△OCD=S△OBC-S△OBD=1311442 2222⨯⨯-⨯⨯=,∵C(1,32),D(3,12),∴=2,2,作CE⊥OD于E,∵S△OCD=12OD•CE=2,∴∴sin∠故答案为481.【点睛】本题考查坐标与图形的性质、反比例函数的性质等知识,解题的关键是学会建立新的坐标系解决问题,属于中考填空题中的压轴题.19.60.【分析】设∠OAC=x,∠CAB=y,根据等腰三角形的性质,则∠OCA=x,∠OBA=x+y,∠OBC=x+30°,利用三角形内角和定理计算即可.【详解】解:设∠OAC=x,∠CAB=y,∵OA=OC,∴∠OCA=x,∵OA=OB,∴∠OBA=x+y,∵OC=OB,∴∠OBC=x+30°,∵30ACB ∠=︒,∴∠CAB+∠OBA+∠OBC=150°,∴y+x+y+x+30°=150°,∴2(x+y)=120°,∵∠AOB=180°-2∠OBA=180°-2(x+y),∴∠AOB=180°-120°=60°,故答案为:60.【点睛】本题考查了等腰三角形的性质,三角形内角和定理,熟练应用性质,合理引进未知数,采用设而不求的思想计算是解题的关键.20.1x =22x =-【分析】先把等号右边的项移到等号左边,再利用因式分解法求解.【详解】解:(3)((0x x x +-=,(3)1]0x x -+-=.即(2)0x x +=.∴0x -=或20x +=,∴1x =22x =-.21.(1)13;(2)13.【分析】(1)直接利用概率公式求解,即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与正好客厅灯和走廊灯同时亮的情况,再利用概率公式即可求得答案.【详解】解:(1)小明任意按下一个开关,正好楼梯灯亮的概率是:13;,(2)画树状图得:∵共有6种等可能的结果,正好客厅灯和走廊灯同时亮的有2种情况,∴正好客厅灯和走廊灯同时亮的概率是:2163=.22.(1)见解析(2)53DE =【分析】(1)由等腰直角三角形的性质得出A B ∠=∠,可证明ACE BDC ∽;(2)由勾股定理求出4AB =,由相似三角形的性质得出AC AE BD BC=,可求出DE 的长,则可得出答案.(1)解:证明:90ACB ∠=︒ ,CA CB =,1(18090)452A B ∴∠=∠=︒-︒=︒,又45CDB A ACD ACD ACE ACD DCE ∠=∠+∠=︒+∠=∠=∠+∠ ,ACE BDC ∴ ∽;(2)解:由勾股定理得4AB ==,设DE 长为x ,1AD = ,3BD ∴=,1AE x =+,ACE BDC ∽,∴AC AE BD BC =,=,解得53x =,即53DE =.23.(1)一次函数的解析式为122y x =-+,反比例函数的解析式为6y x =-(2)8【分析】(1)根据已知条件求出B 、C 点坐标,用待定系数法求出直线AB 和反比例函数的解析式;(2)由一次函数解析式求得A 的坐标,然后联立一次函数的解析式和反比例的函数解析式可得交点D 的坐标,从而根据三角形面积公式求解.(1)解: 12CE BE =,3CE =,26BE CE ∴==,4OB = 2OE BE OB ∴=-=,(2,3)C ∴-,(4,0)B 将(2,3)C -代入k y x=得:236k =-⨯=-;将(2,3)C -,(4,0)B 代入y ax b =+得2340a b a b -+=⎧⎨+=⎩,解得122a b ⎧=-⎪⎨⎪=⎩,∴一次函数的解析式为122y x =-+,反比例函数的解析式为6y x =-;(2)解: 122y x =-+(0,2)A ∴由1226y x y x ⎧=-+⎪⎪⎨⎪=-⎪⎩,解得1123x y =-⎧⎨=⎩,2261x y =⎧⎨=-⎩,(2,3)C - (6,1)D ∴-,∴114143822COD BOD BOC S S S ∆∆∆=+=⨯⨯+⨯⨯=.24.(1)售价为850元时,当天的销售量为70件(2)800元【分析】(1)降低50元增加10件,可知若售价为850元时,降低(1000850)50-÷元,进而即可列出算式求解.(2)利润=售价-进价,根据一件商品的利润乘以销售量得到总利润,列出方程求解即可.(1)解:40(1000850)501070+-÷⨯=(件).答:售价为850元时,当天的销售量为70件;(2)解:设每件服装售价x 元,10(500)[(40(1000)]40(1000500)400050x x -⨯+-=⨯-+,化简得2170072000x x -+=,解得:1800x =,2900x =,使顾客得到尽可能大的实惠,800x ∴=,答:每件应定价800元.25.(1)见解析(2)路灯高3.75米【分析】(1)作出太阳光线BE ,过点C 作BE 的平行线,与DE 的交点即为小明的位置;(2)易得小明的影长,利用EFG EDC ∆∆∽可得路灯CD 的长度.(1)解:如图,FG 就是所求作的线段.(2)上午上学时,高1米的木棒的影子为2米,23CG FG ∴==,//FG CD ,EFG D ∴∠=∠,EGF ECD ∠=∠,EFG EDC ∴∆∆∽,∴FG EG CD EC =,∴1.525CD =,解得 3.75CD =,∴路灯高3.75米.【点睛】综合考查了中心投影和平行投影的运用,注意平行投影的光线是平行的;用到的知识点为:在相同时间段,垂直于地面的物高与影长是成比例的;两三角形相似,对应边成比例.26.(1)48(2)OF⊥DF,见解析(3)4080, 1313⎛⎫ ⎪⎝⎭【分析】(1)设AE=3x,则OE=5x,由勾股定理得AO=4x,则3x+2=4x,求出x即可求点E坐标为(6,8),再由E点坐标即可求k值;(2)求出D(8,6),证明△AOF∽△BFD,则∠AOF=∠BFD,可得∠OFD=180°-(∠AFO+∠BFD)=90°,即可得到OF⊥DF;(3)延长DF交y轴于点G,连接CG交OF于点P,则点P为所求作点,证明△AFG≌△BFD (AAS),得到OF为线段DG的垂直平分线,C(8,0),G(0,10),求出直线CG解析式为y=-54x+10,直线OF为y=2x,联立,即可求出点P的坐标.(1)证明:∵四边形OABC是正方形,∴AO=AB,∠OAB=90°,∵35 AEOE=,设AE=3x,则OE=5x,由勾股定理得AO=4x,∴3x+2=4x,∴x=2,∴AE=3x=6,AO=4x=8,∴点E坐标为(6,8),∴k=6×8=48;(2)解:OF⊥DF,理由如下:将x=8代入y=48x得y=6,∴D(8,6),∴BD=BC-CD=8-6=2,∵点F是线段AB的中点,∴AF=BF=4,∵12AF BDAO BF==,∠OAF=∠FBD=90°,∴△AOF∽△BFD,∴∠AOF=∠BFD,∴∠AFO+∠BFD=∠AFO+∠AOF=90°,∴∠OFD=180°-(∠AFO+∠BFD)=90°,∴OF⊥DF;(3)(3)延长DF交y轴于点G,连接CG交OF于点P,则点P为所求作点,∵四边形OABC为正方形,∠AFG=∠BFD,AF=BF,∴△AFG≌△BFD(AAS),∴AG=BD=2,GF=DF,由(2)得OF⊥DF,∴OF为线段DG的垂直平分线,∴PD+PC的最小值=PG+PC=CG,∵OC=OA=8,∴C(8,0),G(0,10),设直线CG解析式为y=mx+n,代入C(8,0),G(0,10),得8010m nn+=⎧⎨=⎩,解得5410mn⎧=-⎪⎨⎪=⎩,∴5104y x=-+设直线OF为y=ax,代入F(4,8),∴a=2,∴y=2x,联立直线OF、CG得25104y xy x=⎧⎪⎨=-+⎪⎩,解得40138013xy⎧=⎪⎪⎨⎪=⎪⎩,∴点P的坐标为(4013,8013).【点睛】本题是反比例函数的综合题,熟练掌握反比例函数的图象及性质,三角形相似的判定与性质,线段垂直平分线的性质是解题的关键.27.(1)2,45;(2)条形统计图补充见解析;72°;(3)甲、乙两名男生同时被选中的概率为16.【分析】(1)用A等次的人数除以它所占的百分比得到调查的总人数,再分别求出a和B等次的人数,然后计算出b的值;(2)先补全条形统计图,然后用360°乘以C等次所占的百分比得到C等次的扇形所对的圆心角的度数;(3)画树状图展示所有12种等可能的结果数,再找出甲、乙两名男生同时被选中的结果数,然后根据概率公式求解.【详解】(1)∵被调查的总人数为12÷30%=40(人),∴a=40×5%=2;b%=40128240---×100%=45%,即b=45;故答案为:2、45;(2)表示C等次的扇形所对的圆心角的度数为360°×840=72°,B等次人数为40﹣12﹣8﹣2=18(人),条形统计图补充为:故答案为:72°;(3)画树状图为:共有12种等可能的结果数,其中甲、乙两名男生同时被选中的结果数为2,所以甲、乙两名男生同时被选中的概率为21126=.【点睛】本题考查了条形统计图和扇形统计图,概率的求法,解题关键是准确从统计图中获取信息,熟练运用树状图求概率.28.(1)详见解析;(2)203【分析】(1)根据题意可得BCE BFE ≌,因此可得FG EC =,又FG CE ,则可得四边形CEFG 是平行四边形,再根据,CE FE =可得四边形CEFG 是菱形.(2)设EF x =,则,6CE x DE x ==-,再根据勾股定理可得x 的值,进而计算出四边形CEFG 的面积.【详解】(1)证明:由题意可得,BCE BFE ∴ ≌,∴,BEC BEF FE CE ∠=∠=,∵FG CE ,∴FGE CEB ∠=∠,∴FGE FEG ∠=∠,∴FG FE =,∴FG EC =,∴四边形CEFG 是平行四边形,又∵,CE FE =∴四边形CEFG 是菱形;(2)∵矩形ABCD 中,6,10,AB AD BC BF ===,∴90,10BAF AD BC BF ∠=︒===,∴8AF =,∴2DF =,设EF x =,则,6CE x DE x ==-,∵90FDE ∠=︒,∴()22226x x +-=,解得,103x =,∴103CE =,∴四边形CEFG 的面积是:1020233CE DF ⋅=⨯=.。
北师大版九年级上册数学期末考试试题及答案
北师大版九年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.下面的几何体中,俯视图为三角形的是()A .B .C .D .2.下列函数关系式中,y 是x 的反比例函数的是()A .3y x=B .31y x =+C .3y x=D .23y x =3.方程(x ﹣3)(x +4)=0的解是()A .x =3B .x =﹣4C .x 1=3,x 2=﹣4D .x 1=﹣3,x 2=44.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是()A .12B .13C .14D .155.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则tan ∠ABC 的值为()A .35B .34C .5D .16.已知菱形的周长为40cm ,两条对角线的长度比为3:4,那么两条对角线的长分别为()A .6cm ,8cmB .3cm ,4cmC .12cm ,16cmD .24cm ,32cm7.如图所示,在平行四边形ABCD 中,AC 与BD 相交于点O ,E 为OD 的中点,连接AE 并延长交DC 于点F ,则DF :FC=()A .1:3B .1:4C .2:3D .1:28.函数21a y x--=(a 为常数)的图象上有三点(﹣4,y 1),(﹣1,y 2),(2,y 3),则函数值y 1,y 2,y 3的大小关系是()A .y 3<y 1<y 2B .y 3<y 2<y 1C .y 1<y 2<y 3D .y 2<y 3<y 19.如图,已知O 是矩形ABCD 的对角线的交点,∠AOB=60°,作DE ∥AC ,CE ∥BD ,DE 、CE 相交于点E.四边形OCED 的周长是20,则BC=()A .5B .C .10D .10.如图,△OA 1B 1,△A 1A 2B 2,△A 2A 3B 3,…是分别以A 1,A 2,A 3,…为直角顶点,一条直角边在x 轴正半轴上的等腰直角三角形,其斜边的中点C 1(x 1,y 1),C 2(x 2,y 2),C 3(x 3,y 3),…均在反比例函数4y x=(x >0)的图象上.则y 1+y 2+…+y 8的值为()A .B .6C .D .二、填空题11.如果x :y =1:2,那么x yy+=_____.12.若点(2)m -,在反比例函数6y x=的图像上,则m =______.13.若关于x 的一元二次方程2210x x a -+-=有实数根,则a 的取值范围为_______________.14.如图,Rt ABC ∆中,∠ACB=90°,AC=4,BC=3,CD AB ⊥则tan BCD ∠=_______.15.如图,l 是一条笔直的公路,道路管理部门在点A 设置了一个速度监测点,已知BC 为公路的一段,B 在点A 的北偏西30°方向,C 在点A 的东北方向,若AB=50米.则BC 的长为__________米.(结果保留根号)16.如图,等边△ABC 的边长为6,点D 在AC 上且DC =2,点E 在BC 上,连接AE 交BD 于点F ,且∠AFD =60°,若点M 是射线BC 上一点,当以B 、D 、M 为顶点的三角形与△ABF 相似时,则BM 的长为_____.17.如图,一次函数的图象y x b =-+与反比例函数的图象ay x=交于A(2,﹣4),B(m,2)两点.当x 满足条件______________时,一次函数的值大于反比例函数值.三、解答题1811tan 4512-⎛⎫+︒+ ⎪⎝⎭19.解方程2213x x+=20.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同.两辆汽车经过这个十字路口,求下列事件的概率:(1)两辆车全部继续直行(2)至少有一辆车向左转21.已知:x 2+3x +1=0.求(1)x +1x;(2)x 2+21x .22.如图,在ABC ∆中,点,E F 分别在,AB AC 上,且AE ABAF AC=.(1)求证:AEF ABC ∆∆ ;(2)若点D 在BC 上,AD 与EF 交于点G ,求证:EG FGBD CD=.23.“脱贫攻坚战”打响以来,全国贫困人口减少了8000多万人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级(二、五班)期末数学检测卷
一.选择题(本题有10小题,每小题2分,共20分)
1.方程中,是关于x 的一元二次方程的是
( )
A.()()12132
+=+x x
B.
021
12=-+x
x C.02
=++c bx ax
D. 122
2
-=+x x x
2.若反比例函数的图象经过(2,-2),(m ,1),则m =
( ) A .1 B .-1 C .4 D .-4
3.有一实物如图,那么它的主视图
( )
A B C D
4.在等腰梯形ABCD 中,AB ∥CD ,DC = 3 cm ,∠A=60°,BD 平分∠ABC ,则这个梯形的周长
A. 21 cm
B. 18 cm
C. 15 cm
D. 12 cm
5.三角形两边长分别为3和6,第三边是方程2
680x x -+=的解,则这个三角形的周长是 ( ) A .11 B.13 C.11或13 D.11和13
6.小明用两根同样长的竹棒做对角线,制作四边形的风筝,则该风筝的形状一定是
( )
A 矩形
B 正方形
C 等腰梯形
D 无法确定
7.既是轴对称,又是中心对称图形的是 ( )
A .矩形
B .平行四边形
C .正三角形
D .等腰梯形
8.如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是
( )
A.①②③④
B.④①③②
C.④②③①
D.④③②①
9.如图所示,在房子外的屋檐E 处安有一台监视器,房子前有一面落地的广告牌,那么 监视器的盲区在 ( )
A.△ACE
B.△BFD
C.四边形BCED
D.△ABD
10.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标的背面是一张哭脸,若翻到哭脸就不得奖金,参与这个游戏的观众有三次翻牌的机会(翻过的牌不能再翻)
.某观众前两次翻牌均获得
A
B
A B C 第4题
第9题
若干奖金,那么他第三次翻牌获奖的概率是 ( )
A.
41 B.51 C.61 D.20
3
二.填空题(每空3分,共30分)
11.若关于x 的方程0632=-++m mx x 有一根是0,则_____=m ; 12.双曲线x
k
y =
经过点(2 ,―3),则k = ; 13.口袋中有2个白球,1个黑球,从中任取一个球,用实验的方法估计摸到白球的概率 为_________;
14.菱形的两条对角线的长的比是2 : 3 ,面积是24cm 2,则它的两条对角线的长分别为__________;
15.请写出一个根为1=x ,另一根满足11<<-x 的一元二次方程 ; 16.如图,△ABC 中,∠C=Rt ∠,AD 平分∠BAC 交BC 于点D ,BD ∶DC=2∶1,BC=7.8cm , 则D 到AB 的距离为 cm.;
17.如图,反比例函数图象上一点A ,过A 作AB ⊥x 轴于B ,若S △AOB =3,则反比例函数解析式为
______ ___;
18.如图,已知,,,A B,A AB 4333222111A A E A A A D A A A C ====∠B =20°,
则∠4A = ; 19.等腰△ABC 一腰上的高为
3,这条高与底边的夹角为60°,则△ABC 的面
积 ;
20.如图,在一个房间内,有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA =5米,此时梯子的倾斜角为75°.如果梯子底端不动,顶端靠在对面墙上,此时梯子顶端距地面的垂直距离NB 为4米,梯子的倾斜角为45°.则这间房子的宽AB 是________米.
三.解答题:(共50分)
21.(本题6分)解方程:(1)x 2+4x -12=0;
第17题
第16题
A
A 1
B A 2A 3
4
第18题
第20题
(2) 3(x -5)2
=2(5-x ) .
22.(本题4分)三根垂直地面的木杆甲、乙、丙,在路灯下乙、丙的影子如图所示。
试确定路灯灯炮的位置,再作出甲的影子。
(不写作法,保留作图痕迹)
23.(本题4分)近视眼镜的度数与镜片焦距成反比.小明到眼镜店调查了一些数据如下表:
(1)求眼镜度数y(度)与镜片焦距x(cm)之间的函数关系式; (2)若小明所戴眼镜度数为500度,求该镜片的焦距.
24.(本题6分)已知:如图,D 是△ABC 的BC 边上的中点,DE ⊥AC ,DF ⊥AB ,垂足分别是E 、F ,且BF=CE. 求证:(1)△ABC 是等腰三角形;
(2)当∠A=90°时,试判断四边形AFDE 是怎样的四边形,证明你的结论.
甲乙丙
25.(本题10分)探索一个问题:“任意给定一个矩形A ,是否存在另一个矩形B ,它的周长和面
积分别是已知矩形周长和面积的一半?”(完成下列空格)
(1)当已知矩形A 的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是y x 和,
由题意得方程组:⎪⎩⎪⎨⎧
==+3
27xy y x ,消去y 化简得:06722
=+-x x ,
∵△=49-48>0,∴___________,21==x x .∴满足要求的矩形B 存在.
(2)如果已知矩形A 的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B .
(3)如果矩形A 的边长为m 和n ,请你研究满足什么条件时,矩形B 存在?
(4)附加题、如图,在同一平面直角坐标系中画出了一次函数和反比例函数的部分图象,其中x 和
y 分别表示矩形B 的两边长,请你结合刚才的研究,回答下列问题:
① 这个图象所研究的矩形A 的两边长为____ __和___ __; ② 满足条件的矩形B 的两边长为___ __和___ __.
O。