人教版六年级数学上册知识点整理与复习
六年级上册数学知识点(概念)归纳与整理(人教版)
六年级数学上册知识点整理
第一单元位置
1、行和列的意义:竖排叫做列,横排叫做行。
2、数对可以表示物体的位置,也可以确定物体的位置。
3、数对表示位置的方法:先表示列,再表示行。用括号把代表列和行的数字或字母括起来,再用逗号隔开。例如:(7,9)表示第七列第九行。
4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。如:(2,4)和(2,7)都在第2列上。
5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。如:(3,6)和(1,6)都在第6行上。
6、物体向左、右平移,行数不变,列数减去或加上平移的各数。
物体向上、下平移,列数不变,行数减去或加上平移的各数。
第二单元分数乘法
(一)、分数乘法的意义。
1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:5
12×6,表示:6个
5
12
相加是多少,还表
示5
12
的6倍是多少。
2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×5
12,表示:6的
5
12
是多少。
2 7×
5
12
,表示:
2
7
的
5
12
是多少。
(二)、分数乘法的计算法则:
1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、分数大小的比较:
1、一个数(0除外)乘以一个真分数,所得的积小于它本身。一个数(0除外)乘以一个假分数,所得的积
人教版小学六年级数学上册各单元知识点总结归纳整理(完整版)
人教版六年级上册知识点总结
六年级上册数学知识点
第一单元 位置
1、什么是数对?
——数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即“先列后行”。
作用:确定一个点的位置。经度和纬度就是这个原理。
例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。 注:(1)在平面直角坐标系中X 轴上的坐标表示列,y 轴上的坐标表示行。
如:数对(3,2)表示第三列,第二行。
(2)数对(X ,5)的行号不变,表示一条横线,(5,Y )的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点)
( 列 , 行 )
↓ ↓
竖排叫列 横排叫行
(从左往右看)(从下往上看) (从前往后看)
2、图形左右平移行数不变;图形上下平移列数不变。
3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。
1
2 3 4 0
行号
一、确定物体位置的方法: 1、先找观测点;
2、再定方向(看方向夹角的度数);
3、最后确定距离(看比例尺)
二、描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。
三、位置关系的相对性:1、两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。 四、相对位置:东--西;南--北;南偏东--北偏西。
第二单元 分数乘法
(一)分数乘法意义:
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。 例如:5
3×7表示: 求7个5
人教版小学数学六年级上册知识点归纳全册
六年级上册数学知识点 第一单元 位置 1、什么是数对?
数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即“先列后行”。
作用:确定一个点的位置。经度和纬度就是这个原理。 2、图形左右平移行数不变;图形上下平移列数不变。
3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。 第二单元 分数乘法 (一)分数乘法意义:
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便
运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。 例如:
5
3×7表示: 求7个53的和是多少? 或表示:53
的7倍是多少?
2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以) (二)分数乘法计算法则:
1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)
(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与
分母相乘,计算结果必须是最简分数)
2、分数乘分数的运算法则是:
用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母) 注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,
再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)
六年级上册数学知识点(概念)归纳与整理(人教版)
六年级数学上册知识点整理
第一单元分数乘法
(一)、分数乘法的意义。
1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:5
12×6,表示:6个
5
12
相加是多少,还表示
5
12
的6
倍是多少。
2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×5
12,表示:6的
5
12
是多少。
2 7×
5
12
,表示:
2
7
的
5
12
是多少。
(二)、分数乘法的计算法则:
1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、分数大小的比较:
1、一个数(0除外)乘以一个真分数,所得的积小于它本身。一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。一个数(0除外)乘以一个带分数,所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)、解决实际问题。
1分数应用题一般解题步行骤。
(1)找出含有分率的关键句。
(2)找出单位“1”的量
(3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。
(4)根据已知条件和问题列式解答。
2.乘法应用题有关注意概念。
(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。当句子中的单位“1”不明显时,把原来的量看做单位“1”。
(完整版)人教版六年级数学上册知识点整理归纳
人教版六年级数学上册知识点整理归纳
第一单元位置
1、什么是数对?
——数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即“先列后行”。
作用:确定一个点的位置。经度和纬度就是这个原理。
例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。
注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。
(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点)
(列,行)
↓↓
竖排叫列横排叫行
(从左往右看)(从下往上看)
(从前往后看)
2、图形左右平移行数不变;图形上下平移列数不变。
3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。
第二单元分数乘法
(一)分数乘法意义:
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如:×7表示: 求7个的和是多少?或表示:的7倍是多少?
2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)
例如:× 表示: 求的是多少?
9 ×表示: 求9的是多少?
A ×表示: 求a的是多少?
(二)分数乘法计算法则:
1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)
人教版六年级数学上册知识点归纳与整理
4、画圆
(1)圆规两脚间的距离是圆的半径。
(2)画圆步骤:定半径、定圆心、旋转一周。
(二)圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母 C 表示。
1、圆的周长总是直径的三倍多一些。
2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。
即:圆周率π= 周长=周长÷直径≈3.14 直径
1 工作效率=
工作时间=1÷工作效率 合作时间 = 工作总量÷工作效率之和
工作时间
第四单元 比 1、两个数相除又叫做两个数的比。在两个数的比中,比号前面的数叫做比的前项,比号后面的 数叫做比的后项。比的前项除以后项所得的商,叫做比值。比的后项不能为 0. 例如 15 :10 = 15÷10=3/2(比值通常用分数表示,也可以用小数或整数表示) 2、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。 例: 路程÷速度=时间。 3、区分比和比值 比:表示两个数的关系,可以写成比的形式,也可以用分数表示。 比值:相当于商,是一个数,可以是整数,分数,也可以是小数。 4、比和除法、分数的联系与区别:(区别)除法是一种运算,分数是一个数,比表示两个数的 关系。 比的前项相当与除法中的被除数,分数中的分子;比的后项相当与除法中的除数,分 数中的分母;比号相当于除法中的除号,分数中的分数线;比值相当于除法的商,分数的分数
人教版六年级上册数学知识点归纳笔记
一、整除和余数
1. 整除的概念
整数a除以整数b(b≠0),当结果为整数时,称a能整除b,记作
b|a。
2. 余数的概念
整数a除以整数b(b≠0),所得到的未被整除的部分叫做余数,记作a mod b。17÷5=3(余2),则5|17,17 mod 5=2。
二、最小公倍数和最大公约数
1. 最小公倍数的概念
两个以上整数公有的倍数中最小的一个叫做这些整数的最小公倍数,记作a和b的最小公倍数=lcm(a,b)。
2. 最大公约数的概念
两个以上整数公有的约数中最大的数叫做这些整数的最大公约数,
记作a和b的最大公约数=gcd(a,b)。
三、分数
1. 分数的概念
形如a/b(b≠0)的数叫做分数,a叫做分子,b叫做分母。
2. 分数的大小比较
分数大小比较的方法:
(1)分子相等,分母越小,分数越大;
(2)分母相等,分子越大,分数越大。
四、质数和合数
1. 质数的概念
在大于1的自然数中,除了1和它本身以外,没有其他因数的数叫做质数。
2. 合数的概念
大于1的自然数中,除了1和它本身以外,还有其他因数的数叫做合数。
五、数字的读法
1. 十进位和百进位的读法
十进位以上的数字读法遵循“顺读”和“倒读”的规则,例如23读作“二十三”,32读作“三十二”。
2. 小数点后数字的读法
小数点后的数字读法遵循“分”的规则,例如0.32读作“三十二分”。
六、加法和减法
1. 加法的概念
两个数进行相加的运算叫做加法,加法运算遵循交换律和结合律。
2. 减法的概念
两个数进行相减的运算叫做减法,减法运算是加法运算的逆运算。
七、乘法和除法
1. 乘法的概念
新人教版小学数学六年级上册知识点整理归纳
新人教版小学数学六年级上册知识点整
理归纳
六年级上册知识点整理归纳非常完美的
1 六年级(上册)数学知识点归纳
第一单元分数乘法
(一)分数乘法意义:
1、分数乘整数的意义:(与整数乘法的意义相同)就是求几个相同加数的和的简便运算。◆“分数乘整数”指的是第二个因数必须是整数,不能是分数。例如:5
3×7表示: 求7个53的和是多少?或表示:53的7倍是多少?2、一个数乘分数的意义:就是求一个数的几分之几是多少。
◆“一个数乘分数”指的是第二个因数必须是分数,不能是整数。第一个因数是什么都可以。例如:53×61表示: 求53的61是多少?A× 61表示: 求A 的6
1是多少?(二)分数乘法计算法则:
1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。◆为了计算简便,能约分的先约分再计算。
3、分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:
1、一个数(0除外)乘大于1的数,积大于这个数。a ×b=c,当b 1时,ca.
2、一个数(0除外)乘小于1的数,积小于这个数。a ×b=c,当b 1时,ca (b ≠0).
3、一个数(0除外)乘等于1的数,积等于这个数。a ×b=c,当b =1时,c=a . ◆在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数混合运算
1、分数合运算顺序:(与整数相同),先乘、除后加、减,有括号的先算括号里面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。乘法交换律:a×b=b×a
六年级上册数学知识点(概念)归纳与整理(人教版)
六年级数学上册知识点整理
第一单元位置
1、行和列的意义:竖排叫做列,横排叫做行。
2、数对可以表示物体的位置,也可以确定物体的位置。
3、数对表示位置的方法:先表示列,再表示行。用括号把代表列和行的数字或字母括起来,再用逗号隔开。例如:(7,9)表示第七列第九行。
4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。如:(2,4)和(2,7)都在第2列上。
5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。如:(3,6)和(1,6)都在第6行上。
6、物体向左、右平移,行数不变,列数减去或加上平移的各数。
物体向上、下平移,列数不变,行数减去或加上平移的各数。
第二单元分数乘法
(一)、分数乘法的意义。
1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:5
12×6,表示:6个
5
12
相加是多少,还表
示5
12
的6倍是多少。
2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×5
12,表示:6的
5
12
是多少。
2 7×
5
12
,表示:
2
7
的
5
12
是多少。
(二)、分数乘法的计算法则:
1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、分数大小的比较:
1、一个数(0除外)乘以一个真分数,所得的积小于它本身。一个数(0除外)乘以一个假分数,所得的积
六年级上册数学知识点(概念)归纳与整理(人教版)
六年级数学上册概念整理
第一单元 位置
1、行和列的意义:竖排叫做列,横排叫做行。
2、数对可以表示物体的位置,也可以确定物体的位置。
3、数对表示位置的方法:先表示列,再表示行。用括号把代表列和行的数字或字母括起来,再用逗号隔开。例如:(7,9)表示第七列第九行。
4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。如:(2,4)和(2,7)都在第2列上。
5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。如:(3,6)和(1,6)都在第6行上。
6、物体向左、右平移,行数不变,列数减去或加上平移的各数。
物体向上、下平移,列数不变,行数减去或加上平移的各数。
第二单元 分数乘法
(一)、分数乘法的意义。
1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:512 ×6,表示:6个512 相加是多少,还表示512
的6倍是多少。 2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几
分之几是多少。例如:6×512 ,表示:6的512 是多少。 27 ×512 ,表示:27 的512
是多少。 (二)、分数乘法的计算法则:
1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、分数大小的比较:
1、一个数(0除外)乘以一个真分数,所得的积小于它本身。一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。一个数(0除外)乘以一个带分数,所得的积大于它本身。
六年级上册数学知识点归纳与整理人教版
六年级数学上册知识点整理
第一单元位置
行和列的意义:竖排叫做列,横排叫做行。
数对表示位置的方法:先表示列,再表示行。用括号把代表列和行的数字或字母括起来,再用逗号隔开。例如:(7,9)表示第七列第九行。
第二单元分数乘法
(一)、分数乘法的意义。
1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:5
12×6,表示:6个
5
12
相加是多少,还表
示5
12
的6倍是多少。
2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×5
12,表示:6的
5
12
是多少。
2 7×
5
12
,表示:
2
7
的
5
12
是多少。
(二)、分数乘法的计算法则:
1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、分数大小的比较:
1、一个数(0除外)乘以一个真分数,所得的积小于它本身。一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。一个数(0除外)乘以一个带分数,所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)、解决实际问题。
1分数应用题一般解题步行骤。
(1)找出含有分率的关键句。
(2)找出单位“1”的量(3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。
六年级上册数学知识点(概念)归纳与整理(人教版)
六年级数学上册知识点整理
第一单元位置
1、行和列的意义:竖排叫做列,横排叫做行。
2、数对可以表示物体的位置,也可以确定物体的位置。
3、数对表示位置的方法:先表示列,再表示行。用括号把代表列和行的数字或字母括起来,再用逗号隔开。例如:〔7,9〕表示第七列第九行。
4、两个数对,前一个数一样,说明它们所表示物体位置在同一列上。如:〔2,4〕和〔2,7〕都在第2列上。
5、两个数对,后一个数一样,说明它们所表示物体位置在同一行上。如:〔3,6〕和〔1,6〕都在第6行上。
6、物体向左、右平移,行数不变,列数减去或加上平移的各数。
物体向上、下平移,列数不变,行数减去或加上平移的各数。
第二单元分数乘法
〔一〕、分数乘法的意义。
1、分数乘整数:分数乘整数的意义与整数乘法的意义一样,就是求几个一样加数和得简便运算。
例如:5
12×6,表示:6个
5
12
相加是多少,还表
示5
12
的6倍是多少。
2、一个数〔小数、分数、整数〕乘分数:一个数乘分数的意义与整数乘法的意义不一样,是表示这个数的几分之几是多少。
例如:6×5
12
,表示:6的
5
12
是多少。
2 7×
5
12
,表示:
2
7
的
5
12
是多少。
〔二〕、分数乘法的计算法那么:
1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。当带分数进展乘法计算时,要先把带分数化成假分数再进展计算。
〔三〕、分数大小的比拟:1、一个数〔0除外〕乘以一个真分数,所得的积小于它本身。一个数〔0除外〕乘以一个假分数,所得的积等于或大于它本身。一个数〔0除外〕乘以一个带分数,所得的积大于它本身。
人教版六年级上册数学知识点汇总
人教版六年级上册数学知识点汇总
一、整数
1. 自然数、负整数和零的概念
2. 整数的比较大小
3. 整数相加、相减
4. 整数的乘法和除法
5. 整数的绝对值
6. 整数的加法和减法运算法则
7. 整数的乘法和除法运算法则
8. 整数的混合运算
二、分数
1. 分数的概念
2. 分数的比较大小
3. 分数的相加、相减
4. 分数的乘法和除法
5. 分数的化简
6. 分数的三个基本性质:相等性、倍数性、约分性
7. 分数的混合运算
三、小数
1. 小数的概念
2. 小数和分数的关系
3. 小数的读法和写法
4. 小数的比较大小
5. 小数的加法和减法
6. 小数的乘法和除法
7. 小数的化简
8. 小数的混合运算
四、数据与图形
1. 数据和调查的关系
2. 数据的整理和分类
3. 表格和柱形图的绘制和解读
4. 折线图和饼图的绘制和解读
五、数式与方程
1. 代数字母的认识和使用
2. 使用字母表示数的大小
3. 表达计算结果的数式
4. 数式的运算:加法、减法、乘法和除法
5. 解一元一次方程
新人教版六年级数学上册知识点总复习备课
六年级数学上册知识点总复习
第一单元 分数乘法
(一)分数乘法的意义:
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。 注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如: 53×7表示:求7个53 的和是多少?或表示:5
3 的7倍是多少? 2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以) 例如:53×61 表示: 求53的6
1是多少? 9 × 61 表示: 求9的6
1是多少? a × 61 表示: 求a 的6
1 是多少? (二)分数乘法计算法则:
1、分数乘整数的运算法则是
注:(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)
(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)
如:27 ×14 = 14
3×2= 2、
注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)
如:12×34 = 3×23
1= (4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:
一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b >1时,c>a.
最全面人教版数学六年级上册知识点归纳总结
最全面人教版数学六年级上册知识点归纳总结
人教版数学六年级上册知识点是学生在初中数学学习过程中的基本知识,需要学生认真掌握和理解。下面是数学六年级上册知识点的详细归纳总结。
第一章分类整数
知识点1.1 整数和自然数
自然数:1, 2, 3, 4, 5,…….(不包括0)
整数:…….-2, -1, 0, 1, 2, ……(自然数和负整数)
知识点1.2 整数的相加法则
同号两数相加,绝对值相加,符号不变;异号两数相加,绝对值相减,结果的符号与绝对值较大的数的符号相同。
知识点1.3 整数减法
整数减法可以转化为加法,即a - b = a + (-b)
知识点1.4 绝对值
数轴上数a的绝对值,表示为|a|,表示a到0的距离。
知识点1.5 整数的大小比较
两个整数比较大小,可以先比较绝对值,再根据符号确定大小。
知识点1.6 整数的拓展
绝对值可以是小数或分数,小数或分数的绝对值用绝对值符号表示。
第二章十进制小数
知识点2.1 小数的意义
小数是指有小数点的数,小数点是整数位和小数位的分界线。
知识点2.2 小数的读法
从小数点左起第一位到最后一位依次读出,小数点可以读作“点”.
知识点2.3 小数的比较
比较小数大小,可以先确定小数点后的整数大小,然后比较小数点后的小数位。
知识点2.4 小数的相加法则
小数相加,先让小数点对齐,然后按位相加,最后把小数点写在和的下方。
知识点2.5 小数的减法法则
小数相减,先让小数点对齐,然后按位相减,最后把小数点写在答案的下方。
知识点2.6 小数的乘法法则
小数相乘,先把小数前的数乘起来,再把总位数相加,最后把小数点放到乘积中位数的位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末考试:
综合测试
时间:元月6号
方式:笔试(90分钟),填空、判断、选择、计算、操作、应用。
人教版六年级上册新教材数学期末复习
一、复习目的
1、使学生进一步理解和掌握所学知识,使之更加系统和完善。
2、使学生进一步巩固和提高所学知识,并能应用所学知识解决一些实际问题。
3、使学生打好数学基础,提高学习能力,培养学习习惯,做好知识衔接准备。
二、复习原则
1、充分调动学生自主学习的积极性,鼓励学生自觉地进行整理和复习,提高复习能力。
2、充分体现教师的指导作用,知识的重点和难点要适时讲解点拨,保证复习效果。
3、充分体现因材施教分类推进的教育原则,针对不同层次的学生设计不同的教学内容和教学方法,查漏补缺,集中答疑,提高复习效果。
三、复习方法
1、带领学生按单元整理复习,巩固基础知识。
教师要按单元抓准知识的重难点,进行相关知识的整合与链接,使之形成完整的知识网络。
2、加强计算能力的训练
在过去考试中发现学生的计算能力普遍较低,所以在复习的时候
要特别加强计算能力的训练。学生计算能力的训练不只是机械重复的
练习,而是要让学生掌握正确的计算方法和策略。让学生记住“一看二想三算”看清题目中的数、符号;想好计算的顺序,什么地方可以口算什么地方要笔算,哪里可以简便计算;最后动笔算。
3、加强与实际的联系
适应新课标的精神加强知识的综合应用以及与生活的联系,提高学生解决实际问题的能力。
4、讲练结合
有讲有练,在练中发现问题。
5、分层指导
针对学生的具体情况有针对性的进行复习,对于中差生和优生在
复习上提出不同的要求,复习题分层,指导分层。
四、
复习内容要点:
领域一数与代数
一.分数乘法
(一)分数乘整数
1、分数乘整数的意义:表示求几个相同加数的和的简便运算,与整数乘法的意义相同。
2、计算方法:分母不变,分子乘整数。
(二)分数乘分数
1、意义:表示求一个分数的几分之几是多少。
2、计算方法:分子乘分子,分母乘分母,能约分的要先约分。
一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b >1时,c>a.