化工设备机械基础习题解答内压薄壁容器的应力分析一

合集下载

化工设备机械基础课后答案.

化工设备机械基础课后答案.

《化工设备机械基础》习题解答第一篇: 化工设备材料第一章化工设备材料及其选择一. 名词解释A 组:1. 蠕变:在高温时,在一定的应力下,应变随时间而增加的现象。

或者金属在高温和应力的作用下逐渐产生塑性变形的现象。

2. 延伸率:试件受拉力拉断后,总伸长的长度与原始长度之比的百分率。

3. 弹性模数(E:材料在弹性范围内,应力和应变成正比,即σ=Eε, 比例系数E 为弹性模数。

4. 硬度:金属材料表面上不大的体积内抵抗其他更硬物体压入表面发生变形或破裂的能力。

5. 冲击功与冲击韧性:冲击功是冲击负荷使试样破断所做的功。

冲击韧性是材料在外加动载荷突然袭击时的一种及时和迅速塑性变形的能力。

6. 泊桑比(μ):拉伸试验中试件单位横向收缩与单位纵向伸长之比。

对于钢材,μ=0.3 。

7. 耐腐蚀性:金属和合金对周围介质侵蚀(发生化学和电化学作用引起的破坏)的抵抗能力。

8. 抗氧化性:金属和合金抵抗被氧化的能力。

9. 屈服点:金属材料发生屈服现象的应力,即开始出现塑性变形的应力。

它代表材料抵抗产生塑性变形的能力。

10. 抗拉强度:金属材料在受力过程中,从开始加载到发生断裂所能达到的最大应力值。

B 组:1. 镇静钢:镇静钢在用冶炼时用强脱氧剂 Si, Al等完全脱氧脱氧,是脱氧完全的钢。

把FeO 中的氧还原出来,生成SiO 2和Al 2O 3。

钢锭膜上大下小,浇注后钢液从底部向上,向中心顺序地凝固。

钢锭上部形成集中缩孔,内部紧密坚实。

2. 沸腾钢:沸腾钢在冶炼时用弱脱氧剂Mn 脱氧,是脱氧不完全的钢。

其锭模上小下大,浇注后钢液在锭模中发生自脱氧反应,放出大量CO 气体,造成沸腾现象。

沸腾钢锭中没有缩孔,凝固收缩后气体分散为很多形状不同的气泡,布满全锭之中,因而内部结构疏松。

3. 半镇静钢:介于镇静钢和沸腾钢之间,锭模也是上小下大,钢锭内部结构下半部像沸腾钢,上半部像镇静钢。

4. 低碳钢:含碳量低于0.25%的碳素钢。

化工设备机械基础习题答案

化工设备机械基础习题答案

化工设备机械基础习题答案【篇一:化工设备机械基础作业答案】txt>二、填空题1、钢板卷制的筒体和成型封头的公称直径是指它们的(内)径。

2、无缝钢管做筒体时,其公称直径是指它们的(外)径。

第三章内压薄壁容器的应力分析一、名词解释a组:⒈薄壁容器:容器的壁厚与其最大截面圆的内径之比小于0.1的容器。

⒋薄膜理论:薄膜应力是只有拉压正应力没有弯曲正应力的一种两向应力状态,也称为无力矩理论。

⒌第一曲率半径:中间面上任一点m处经线的曲率半径。

⒍小位移假设:壳体受力以后,各点位移都远小于壁厚。

⒎区域平衡方程式:计算回转壳体在任意纬线上径向应力的公式。

⒏边缘应力:内压圆筒壁上的弯曲应力及连接边缘区的变形与应力。

⒐边缘应力的自限性:当边缘处的局部材料发生屈服进入塑性变形阶段时,弹性约束开始缓解,原来不同的薄膜变形便趋于协调,边缘应力就自动限制。

二、判断题(对者画√,错着画╳)a组:1. 下列直立薄壁容器,受均匀气体内压力作用,哪些能用薄膜理论求解壁内应力?哪些不能?(2)横截面为圆的轴对称柱壳。

(√)(4)横截面为圆的椭球壳。

(√)(6)横截面为圆的锥形壳。

(√)3. 薄壁回转壳体中任一点,只要该点的两个曲率半径r?r,则该点的两向应力?m???。

(√)5. 按无力矩理论求得的应力称为薄膜应力,薄膜应力是沿壁厚均匀分布的。

(√)b组:1. 卧式圆筒形容器,其内介质压力,只充满液体,因为圆筒内液体静载荷不是沿轴线对称分布的,所以不能用薄膜理论应力公式求解。

(√)2. 由于圆锥形容器锥顶部分应力最小,所以开空宜在锥顶部分。

(√)123. 凡薄壁壳体,只要其几何形状和所受载荷对称于旋转轴,则壳体上任何一点用薄膜理论应力4. 椭球壳的长,短轴之比a/b越小,其形状越接近球壳,其应力分布也就越趋于均匀。

(√)5. 因为从受力分析角度来说,半球形封头最好,所以不论在任何情况下,都必须首先考虑采用第四章内压薄壁圆筒与封头的强度设计二、填空题a组:1. 有一容器,其最高气体工作压力为1.6mpa,无液体静压作用,工作温度≤150℃且装有安全阀,试确定该容器的设计压力p=(1.76)mpa;计算压力pc=( 1.76 )mpa;水压试验压力pt=(2.2)mpa.2. 有一带夹套的反应釜,釜内为真空,夹套内的工作压力为0.5mpa,工作温度200℃,试确定:(1)釜体的计算压力(外压)pc=( -0.6 )mpa;釜体水压试验压力pt=( 0.75 )mpa.(2)夹套的计算压力(内压)pc=( 0.5 )mpa;夹套的水压试验压力pt=( 0.625 )mpa.0.5mpa,工作温度≤100℃,试确定该容器的设计压力p=( 0.5 )mpa;计算压力pc=( 0.617 )mpa;水压试验压力pt=(0.625)mpa.4. 标准碟形封头之球面部分内径ri=( 0.9 )di;过渡圆弧部分之半径r=( 0.17 )di.5. 承受均匀压力的圆平板,若周边固定,则最大应力是(径向)弯曲应力,且最大应力在圆平板的(边缘 )处;若周边简支,最大应力是( 径向 )和( 切向)弯曲应力,且最大应力在圆平板的( 中心)处.6. 凹面受压的椭圆形封头,其有效厚度se不论理论计算值怎样小,当k≤1时,其值应小于封头内直径的( 0.15)%;k1时,se应不小于封头内直径的( 0.3)%.7. 对于碳钢和低合金钢制的容器,考虑其刚性需要,其最小壁厚smin=( 3)mm;对于高合金钢制容器,其最小壁厚smin=(2 )mm.8. 对碳钢,16mnr,15mnnbr和正火的15mnvr钢板制容器,液压试验时,液体温度不得低于( 5) ℃,其他低合金钢制容器(不包括低温容器),液压试验时,液体温度不得低于( 15) ℃.容器已经”失效”. ( √ )3. 安全系数是一个不断发展变化的数据,按照科学技术发展的总趋势,安全系数将逐渐变小.( √ )力状态,在建立强度条件时,必须借助于强度理论将其转换成相当于单向拉伸应力状态的相当应力. ( √ )四、工程应用题a组:1、有一dn2000mm的内压薄壁圆筒,壁厚sn=22mm,承受的最大气体工作压力pw=2mpa,容器上【解】(1)确定参数:pw =2mpa; pc=1.1pw =2.2mpa(装有安全阀);di= dn=2000mm( 钢板卷制); sn =22mm; se = sn -c=20mm (2)最大工作应力:?t?p(d?s)2.2?(2000?20)??111.1mpa 2se2?20se = sn -c=20mm.(2)最大工作压力:球形容器.[p]w4[?]t?se4?147?1.0?20???1.17mpa di?se10000?203、某化工厂反应釜,内径为1600mm,工作温度为5℃~105℃,工作压力为1.6mpa,釜体材料选用0cr18ni9ti。

《化工设备机械基础》习题解答.

《化工设备机械基础》习题解答.
均为30 mm,工作压力为3Mpa,试求;⑴圆筒壁内的最大工作压力;
⑵若封头椭圆长,短半轴之比分别为2,2,2.5时,计算封头上薄膜应力的σ
σθ
和m
的最大值并确定其所在的
位置。
【解】(1圆筒P=3Mpa D=2030mm S=30mm
1. 00148. 0203030<==
D
S属薄壁容器MP S
PD m
cr
e cr 2. 1625]
[ (
(295. 12215517. 10
(1)A,B,C三个圆筒各属于哪一类圆筒?它们失稳时的波形数n等于(或大于)几?(2)如果将圆筒改为铝合金制造(σs =108MPa,E=68.7GPa),它的许用外压力有何变化?变化的幅度大概是多少?(用比值[P]铝/[P]铜=?表示)
【解】
(1)A —长圆筒,L/D0值较大,临界压力P cr仅与S e /D0有关,而与L/D0无关,失稳时的波形数n=2。
2
15.2 (16002.672
(=⨯+⨯=
+=e
e i T T S S D P σ
应力校核
MPa 8. 15685. 02059. 0 9. 0=⨯⨯=φσs
φσσS T 9. 0 < ∴水压试验强度足够
4、有一圆筒形乙烯罐,内径D i =1600mm,壁厚S n =16mm,计算压力为p c =2.5MPa,工作温度为-3.5℃,材质为
25
. 210153 (2 (max =⨯⨯⨯==σ
在x=a,y=0点(边缘处)
MP b
a S
Pa 69. 215 2(2 (2
2max -=-
=
σθ
第四章内压薄壁圆筒与封头的强度设计

化工设备机械基础作业答案

化工设备机械基础作业答案

《化工设备机械基础》习题解答二、填空题1、钢板卷制的筒体和成型封头的公称直径是指它们的( 内)径。

2、无缝钢管做筒体时,其公称直径是指它们的( 外)径。

第三章 内压薄壁容器的应力分析一、名词解释A 组:⒈薄壁容器:容器的壁厚与其最大截面圆的内径之比小于的容器。

⒉回转壳体:壳体的中间面是直线或平面曲线绕其同平面内的固定轴线旋转360°而成的壳体。

⒊经线:若通过回转轴作一纵截面与壳体曲面相交所得的交线。

⒋薄膜理论:薄膜应力是只有拉压正应力没有弯曲正应力的一种两向应力状态,也称为无力矩理论。

⒌第一曲率半径:中间面上任一点M 处经线的曲率半径。

⒍小位移假设:壳体受力以后,各点位移都远小于壁厚。

⒎区域平衡方程式:计算回转壳体在任意纬线上径向应力的公式。

⒏边缘应力:内压圆筒壁上的弯曲应力及连接边缘区的变形与应力。

⒐边缘应力的自限性:当边缘处的局部材料发生屈服进入塑性变形阶段时,弹性约束开始缓解,原来不同的薄膜变形便趋于协调,边缘应力就自动限制。

二、判断题(对者画√,错着画╳)A 组:1. 下列直立薄壁容器,受均匀气体内压力作用,哪些能用薄膜理论求解壁内应力?哪些不能?(1) 横截面为正六角形的柱壳。

(×)(2) 横截面为圆的轴对称柱壳。

(√)(3) 横截面为椭圆的柱壳。

(×)(4) 横截面为圆的椭球壳。

(√)(5) 横截面为半圆的柱壳。

(×)(6) 横截面为圆的锥形壳。

(√)2. 在承受内压的圆筒形容器上开椭圆孔,应使椭圆的长轴与筒体轴线平行。

(×)3. 薄壁回转壳体中任一点,只要该点的两个曲率半径R R 21=,则该点的两向应力σσθ=m。

(√)4. 因为内压薄壁圆筒的两向应力与壁厚成反比,当材质与介质压力一定时,则壁厚大的容器,壁内的应力总是小于壁厚小的容器。

(×)5. 按无力矩理论求得的应力称为薄膜应力,薄膜应力是沿壁厚均匀分布的。

化工设备机械基本作业任务答案解析

化工设备机械基本作业任务答案解析

《化工设备机械基础》习题解答二、填空题1、钢板卷制的筒体和成型封头的公称直径是指它们的(内)径。

2、无缝钢管做筒体时,其公称直径是指它们的(外)径。

3、查手册找出下列无封钢管的公称直径DN是多少毫米?4、压力容器法兰标准中公称压力PN有哪些等级?5、管法兰标准中公称压力PN有哪些等级?第三章内压薄壁容器的应力分析一、名词解释A组:⒈薄壁容器:容器的壁厚与其最大截面圆的内径之比小于0.1的容器。

⒉回转壳体:壳体的中间面是直线或平面曲线绕其同平面内的固定轴线旋转360°而成的壳体。

⒊经线:若通过回转轴作一纵截面与壳体曲面相交所得的交线。

⒋薄膜理论:薄膜应力是只有拉压正应力没有弯曲正应力的一种两向应力状态,也称为无力矩理论。

⒌第一曲率半径:中间面上任一点M处经线的曲率半径。

⒍小位移假设:壳体受力以后,各点位移都远小于壁厚。

⒎区域平衡方程式:计算回转壳体在任意纬线上径向应力的公式。

⒏边缘应力:内压圆筒壁上的弯曲应力及连接边缘区的变形与应力。

⒐边缘应力的自限性:当边缘处的局部材料发生屈服进入塑性变形阶段时,弹性约束开始缓解,原来不同的薄膜变形便趋于协调,边缘应力就自动限制。

二、判断题(对者画√,错着画╳)A 组:1. 下列直立薄壁容器,受均匀气体内压力作用,哪些能用薄膜理论求解壁内应力?哪些不能?(1) 横截面为正六角形的柱壳。

(×)(2) 横截面为圆的轴对称柱壳。

(√)(3) 横截面为椭圆的柱壳。

(×)(4) 横截面为圆的椭球壳。

(√)(5) 横截面为半圆的柱壳。

(×)(6) 横截面为圆的锥形壳。

(√)2. 在承受内压的圆筒形容器上开椭圆孔,应使椭圆的长轴与筒体轴线平行。

(×)3. 薄壁回转壳体中任一点,只要该点的两个曲率半径R R 21=,则该点的两向应力σσθ=m 。

(√)4. 因为内压薄壁圆筒的两向应力与壁厚成反比,当材质与介质压力一定时,则壁厚大的容器,壁内的应力总是小于壁厚小的容器。

化工设备机械基础:第三章 内压薄壁容器的应力分析

化工设备机械基础:第三章  内压薄壁容器的应力分析

上一内容 下一内容 回主目录
返回
2020/12/14
第二节 薄膜理论的应用
代入微体平衡方程式及区域平衡方程式并求解得:
m
PD
4
,
PD
4
推论:对相同的内压,球壳的环向应力要比同直径、 同厚度的圆筒壳的环向应力小一半,这是球壳显著的 优点。
三、受气体内压的椭球壳(椭圆形封头)
上一内容 下一内容 回主目录
(一)壳体理论的基本概念 壳体在外载荷作用下,
要引起壳体的弯曲,这种变 形由壳体内的弯曲和中间面 上的拉或压应力共同承担, 求出这些内力或内力矩的理 论称为一般壳体理论或有力 矩理论,比较复杂;
上一内容 下一内容 回主目录
返回
2020/12/14
第一节 薄膜应力理论
但是,对于壳体很薄,壳体具有连续的几何曲面,所 受外载荷连续,边界支承是自由的,壳体内的弯曲应 力与中间面的拉或压应力相比,可以忽略不计, 认为壳体的外载荷只是由中间面的应力来平衡,这种 处理方法,称为薄膜理论或无力矩理论。 1、有力矩理论 2、无力矩理论(应用无力矩理论,要假定壳体完全弹 性,材料具有连续性、均匀性各各向同性,此外,对 于薄壁壳体,通常采用以下三点假设使问题简化) 1)小位移假设 2)直法线假设 3)不挤压假设
上一内容 下一内容 回主目录
返回
2020/12/14
第二节 薄膜理论的应用
一、受气体内压的圆筒形壳体
R1
R2
r
D 2
上一内容 下一内容 回主目录
返回
2020/12/14
第二节 薄膜理论的应用
由区域平衡方程式
m
pR2
2
PD
4
代入微体平衡方程式

《化工设备机械基础》习题解答08773

《化工设备机械基础》习题解答08773

《化⼯设备机械基础》习题解答08773《化⼯设备机械基础》习题解答第⼀章化⼯设备材料及其选择⼀. 名词解释A组:1.蠕变:在⾼温时,在⼀定的应⼒下,应变随时间⽽增加的现象。

或者⾦属在⾼温和应⼒的作⽤下逐渐产⽣塑性变形的现象。

2.延伸率:试件受拉⼒拉断后,总伸长的长度与原始长度之⽐的百分率。

3.弹性模数(E):材料在弹性范围内,应⼒和应变成正⽐,即σ=Eε,⽐例系数E为弹性模数。

4.硬度:⾦属材料表⾯上不⼤的体积内抵抗其他更硬物体压⼊表⾯发⽣变形或破裂的能⼒。

5.冲击功与冲击韧性:冲击功是冲击负荷使试样破断所做的功。

冲击韧性是材料在外加动载荷突然袭击时的⼀种及时和迅速塑性变形的能⼒。

6.泊桑⽐(µ):拉伸试验中试件单位横向收缩与单位纵向伸长之⽐。

对于钢材,µ=0.3 。

7.耐腐蚀性:⾦属和合⾦对周围介质侵蚀(发⽣化学和电化学作⽤引起的破坏)的抵抗能⼒。

8.抗氧化性:⾦属和合⾦抵抗被氧化的能⼒。

9.屈服点:⾦属材料发⽣屈服现象的应⼒,即开始出现塑性变形的应⼒。

它代表材料抵抗产⽣塑性变形的能⼒。

10.抗拉强度:⾦属材料在受⼒过程中,从开始加载到发⽣断裂所能达到的最⼤应⼒值。

B组:1.镇静钢:镇静钢在⽤冶炼时⽤强脱氧剂 Si, Al等完全脱氧脱氧,是脱氧完全的钢。

把FeO中的氧还原出来,⽣成SiO2和Al2O3。

钢锭膜上⼤下⼩,浇注后钢液从底部向上,向中⼼顺序地凝固。

钢锭上部形成集中缩孔,内部紧密坚实。

2.沸腾钢:沸腾钢在冶炼时⽤弱脱氧剂Mn脱氧,是脱氧不完全的钢。

其锭模上⼩下⼤,浇注后钢液在锭模中发⽣⾃脱氧反应,放出⼤量CO ⽓体,造成沸腾现象。

沸腾钢锭中没有缩孔,凝固收缩后⽓体分散为很多形状不同的⽓泡,布满全锭之中,因⽽内部结构疏松。

3.半镇静钢:介于镇静钢和沸腾钢之间,锭模也是上⼩下⼤,钢锭内部结构下半部像沸腾钢,上半部像镇静钢。

4.低碳钢:含碳量低于0.25%的碳素钢。

5.低合⾦钢:⼀般合⾦元素总含量⼩于5%的合⾦钢。

化工设备机械基础作业问题详解

化工设备机械基础作业问题详解

《化工设备机械基础》习题解答二、填空题1、钢板卷制的筒体和成型封头的公称直径是指它们的( )径。

2、无缝钢管做筒体时,其公称直径是指它们的( 外)径。

第三章 压薄壁容器的应力分析一、名词解释A 组:⒈薄壁容器:容器的壁厚与其最大截面圆的径之比小于0.1的容器。

⒉回转壳体:壳体的中间面是直线或平面曲线绕其同平面的固定轴线旋转360°而成的壳体。

⒊经线:若通过回转轴作一纵截面与壳体曲面相交所得的交线。

⒋薄膜理论:薄膜应力是只有拉压正应力没有弯曲正应力的一种两向应力状态,也称为无力矩理论。

⒌第一曲率半径:中间面上任一点M 处经线的曲率半径。

⒍小位移假设:壳体受力以后,各点位移都远小于壁厚。

⒎区域平衡方程式:计算回转壳体在任意纬线上径向应力的公式。

⒏边缘应力:压圆筒壁上的弯曲应力及连接边缘区的变形与应力。

⒐边缘应力的自限性:当边缘处的局部材料发生屈服进入塑性变形阶段时,弹性约束开始缓解,原来不同的薄膜变形便趋于协调,边缘应力就自动限制。

二、判断题(对者画√,错着画╳)A 组:1. 下列直立薄壁容器,受均匀气体压力作用,哪些能用薄膜理论求解壁应力?哪些不能?(1) 横截面为正六角形的柱壳。

(×)(2) 横截面为圆的轴对称柱壳。

(√)(3) 横截面为椭圆的柱壳。

(×)(4) 横截面为圆的椭球壳。

(√)(5) 横截面为半圆的柱壳。

(×)(6) 横截面为圆的锥形壳。

(√)2. 在承受压的圆筒形容器上开椭圆孔,应使椭圆的长轴与筒体轴线平行。

(×)3. 薄壁回转壳体中任一点,只要该点的两个曲率半径R R 21=,则该点的两向应力σσθ=m。

(√)4. 因为压薄壁圆筒的两向应力与壁厚成反比,当材质与介质压力一定时,则壁厚大的容器,壁的应力总是小于壁厚小的容器。

(×)5. 按无力矩理论求得的应力称为薄膜应力,薄膜应力是沿壁厚均匀分布的。

(√)B 组:1. 卧式圆筒形容器,其介质压力,只充满液体,因为圆筒液体静载荷不是沿轴线对称分布的,所以不能用薄膜理论应力公式求解。

《化工设备机械基础》(第六版)习题解答

《化工设备机械基础》(第六版)习题解答

《化⼯设备机械基础》(第六版)习题解答《化⼯设备机械基础》习题解答第⼀篇: 化⼯设备材料第⼀章化⼯设备材料及其选择⼀. 名词解释A组:1.蠕变:在⾼温时,在⼀定的应⼒下,应变随时间⽽增加的现象。

或者⾦属在⾼温和应⼒的作⽤下逐渐产⽣塑性变形的现象。

2.延伸率:试件受拉⼒拉断后,总伸长的长度与原始长度之⽐的百分率。

3.弹性模数(E):材料在弹性范围内,应⼒和应变成正⽐,即σ=Eε,⽐例系数E为弹性模数。

4.硬度:⾦属材料表⾯上不⼤的体积内抵抗其他更硬物体压⼊表⾯发⽣变形或破裂的能⼒。

5.冲击功与冲击韧性:冲击功是冲击负荷使试样破断所做的功。

冲击韧性是材料在外加动载荷突然袭击时的⼀种及时和迅速塑性变形的能⼒。

6.泊桑⽐(µ):拉伸试验中试件单位横向收缩与单位纵向伸长之⽐。

对于钢材,µ=0.3 。

7.耐腐蚀性:⾦属和合⾦对周围介质侵蚀(发⽣化学和电化学作⽤引起的破坏)的抵抗能⼒。

8.抗氧化性:⾦属和合⾦抵抗被氧化的能⼒。

9.屈服点:⾦属材料发⽣屈服现象的应⼒,即开始出现塑性变形的应⼒。

它代表材料抵抗产⽣塑性变形的能⼒。

10.抗拉强度:⾦属材料在受⼒过程中,从开始加载到发⽣断裂所能达到的最⼤应⼒值。

B组:1.镇静钢:镇静钢在⽤冶炼时⽤强脱氧剂 Si, Al等完全脱氧脱氧,是脱氧完全的钢。

把FeO中的氧还原出来,⽣成SiO2和Al2O3。

钢锭膜上⼤下⼩,浇注后钢液从底部向上,向中⼼顺序地凝固。

钢锭上部形成集中缩孔,内部紧密坚实。

2.沸腾钢:沸腾钢在冶炼时⽤弱脱氧剂Mn脱氧,是脱氧不完全的钢。

其锭模上⼩下⼤,浇注后钢液在锭模中发⽣⾃脱氧反应,放出⼤量CO ⽓体,造成沸腾现象。

沸腾钢锭中没有缩孔,凝固收缩后⽓体分散为很多形状不同的⽓泡,布满全锭之中,因⽽内部结构疏松。

3.半镇静钢:介于镇静钢和沸腾钢之间,锭模也是上⼩下⼤,钢锭内部结构下半部像沸腾钢,上半部像镇静钢。

4.低碳钢:含碳量低于0.25%的碳素钢。

课后题《化工设备机械基础》习题解答

课后题《化工设备机械基础》习题解答

课后题《化⼯设备机械基础》习题解答《化⼯设备机械基础》习题解答第⼀章化⼯设备材料及其选择⼀. 名词解释A 组:2-7 图(a)所⽰⽀架ABC 由均质等长杆AB 和BC 组成,杆重为G 。

试求A 、B 、C 处的约束⼒。

解:(1)根据题意,画出整个⽀架ABC 的受⼒图和⽀架AB 的受⼒图,如图(b )和图(c )所⽰。

(a )(b )(c )题2-7图(2)设两均质杆的长度为l ,取整个⽀架ABC 作为研究对象,则有:∑=0xF ,0=-CX AX N N (1)由⽅程(1)解得 CX AX N N =∑=0yF,02=+-CY AY N G N (2)∑=0AM,0)45cos 45cos ()45cos 245cos (45cos 2=+?++?-?- l l N ll G l G CY (3)由⽅程(3)解得 G N CY = 代⼊⽅程(2)得 G N AY = (3)取AB 杆为研究对象:∑=0BM , 045sin 45cos 45cos 2=+- l N l N lG AX AY 02=+-l N Gl lG AX22G l lGGl N AX =-=∑=0xF, 0=-BX AX N N2G N N BX AX == ∑=0yF, 0=--BY AY N G N0=BY N1.蠕变:在⾼温时,在⼀定的应⼒下,应变随时间⽽增加的现象。

或者⾦属在⾼温和应⼒的作⽤下逐渐产⽣塑性变形的现象。

2.延伸率:试件受拉⼒拉断后,总伸长的长度与原始长度之⽐的百分率。

3.弹性模数(E):材料在弹性范围内,应⼒和应变成正⽐,即σ=E ε,⽐例系数E 为弹性模数。

4.硬度:⾦属材料表⾯上不⼤的体积内抵抗其他更硬物体压⼊表⾯发⽣变形或破裂的能⼒。

5.冲击功与冲击韧性:冲击功是冲击负荷使试样破断所做的功。

冲击韧性是材料在外加动载荷突然袭击时的⼀种及时和迅速塑性变形的能⼒。

6.泊桑⽐(µ):拉伸试验中试件单位横向收缩与单位纵向伸长之⽐。

《化工设备机械基础》第三章习题解答

《化工设备机械基础》第三章习题解答

第三章 内压薄壁容器的应力分析一、 名词解释 A 组:⒈薄壁容器:容器的壁厚与其最大截面圆的内径之比小于0.1的容器。

⒉回转壳体:壳体的中间面是直线或平面曲线绕其同平面内的固定轴线旋转360°而成的壳体。

⒊经线:若通过回转轴作一纵截面与壳体曲面相交所得的交线。

⒋薄膜理论:薄膜应力是只有拉压正应力没有弯曲正应力的一种两向应力状态,也称为无力矩理论。

⒌第一曲率半径:中间面上任一点M 处经线的曲率半径。

⒍小位移假设:壳体受力以后,各点位移都远小于壁厚。

⒎区域平衡方程式:计算回转壳体在任意纬线上径向应力的公式。

⒏边缘应力:内压圆筒壁上的弯曲应力及连接边缘区的变形与应力。

⒐边缘应力的自限性:当边缘处的局部材料发生屈服进入塑性变形阶段时,弹性约束开始缓解,原来不同的薄膜变形便趋于协调,边缘应力就自动限制。

二、 判断题(对者画√,错着画╳) A 组:1. 下列直立薄壁容器,受均匀气体内压力作用,哪些能用薄膜理论求解壁内应力?哪些不能?(1) 横截面为正六角形的柱壳。

(×) (2) 横截面为圆的轴对称柱壳。

(√) (3) 横截面为椭圆的柱壳。

(×) (4) 横截面为圆的椭球壳。

(√) (5) 横截面为半圆的柱壳。

(×) (6) 横截面为圆的锥形壳。

(√)2. 在承受内压的圆筒形容器上开椭圆孔,应使椭圆的长轴与筒体轴线平行。

(×)3. 薄壁回转壳体中任一点,只要该点的两个曲率半径R R 21=,则该点的两向应力σσθ=m 。

(√)4. 因为内压薄壁圆筒的两向应力与壁厚成反比,当材质与介质压力一定时,则壁厚大的容器,壁内的应力总是小于壁厚小的容器。

(×)5. 按无力矩理论求得的应力称为薄膜应力,薄膜应力是沿壁厚均匀分布的。

(√) B 组:1. 卧式圆筒形容器,其内介质压力,只充满液体,因为圆筒内液体静载荷不是沿轴线对称分布的,所以不能用薄膜理论应力公式求解。

《化工设备机械基础》课后习题解答.

《化工设备机械基础》课后习题解答.
被的薄膜应力σσθ
和m

【解】P=2.5Mpa D=816mm S=16mm
1. 00196. 0816
16
<==D S属薄壁容器MPa S PD m 875. 311648165. 24=⨯⨯==σ MPa S PD m 75. 631628165. 22=⨯⨯==σ
2.有一平均直径为10020 mm的球形容器,其工作压力为0.6Mpa,厚度为20 mm,试求该球形容器壁内的工作压力
⒐边缘应力的自限性:当边缘处的局部材料发生屈服进入塑性变形阶段时,弹性约束开始缓解,原来不同的薄膜变形便趋于协调,边缘应力就自动限制。二、判断题(对者画√,错着画╳)A组:
1.下列直立薄壁容器,受均匀气体内压力作用,哪些能用薄膜理论求解壁内应力?哪些不能?
(1)横截面为正六角形的柱壳。(×)(2)横截面为圆的轴对称柱壳。(√)(3)横截面为椭圆的柱壳。(×)(4)横截面为圆的椭球壳。(√)(5)横截面为半圆的柱壳。(×)(6)横截面为圆的锥形壳。(√)
5.冲击功与冲击韧性:冲击功是冲击负荷使试样破断所做的功。冲击韧性是材料在外加动载荷突然袭击时的一种及
时和迅速塑性变形的能力。
6.泊桑比(μ):拉伸试验中试件单位横向收缩与单位纵向伸长之比。对于钢材,μ=0.3。7.耐腐蚀性:金属和合金对周围介质侵蚀(发生化学和电化学作用引起的破坏)的抵抗能力。8.抗氧化性:金属和合金抵抗被氧化的能力。
t
F p p K 1
0=
(g/m2
·h)
K:腐蚀速度,g/cm2
·h;p 0:腐蚀前试件的重量,g;p 1:腐蚀后试件的重量,g;F:试件与腐蚀介质接触的面积,m 2

t:腐蚀作用的时间,h;
(2)根据金属的腐蚀深度评定金属的腐蚀速度。根据重量变化表示腐蚀速度时,没有考虑金属的相对密

化工设备设计基础第7章内压薄壁容器的应力分析

化工设备设计基础第7章内压薄壁容器的应力分析

微体平衡方程
σm σθ p R1 R2 S
三、环向应力计算-微体平衡方程
4.薄膜理论
上述推导和分析的前提是应力沿壁厚方向均匀分布,这 种情况只有当器壁较薄以及边缘区域稍远才是正确的。 这种应力与承受内压的薄膜非常相似,又称之为薄膜理 论或无力矩理论。
四、轴对称回转壳体薄膜理论的应用范围
二、经向应力计算公式-区域平衡方程
2.静力分析

作用在分离体上外力在轴向的合力Pz为:
pz


4
D2
p
截面上应力的合力在Z轴上的投影Nz为: Nz m DS sin

平衡条件 Fz 0 得:Pz-Nz=0,即:

4
D2 p
- mDSsin

0

由几何关系知
一、基本概念与基本假设
1.基本概念
⑴回转壳体:壳体的中间面是直线或平面曲线绕其同平 面内的固定轴线旋转3600而成的壳体。
⑵轴对称:壳体的几何形状、约束条件和所受外力都是 对称于回转轴的。
一、基本概念与基本假设
1.基本概念
⑶ 中间面:中间面是与壳体内外表面等距离的中曲面, 内外表面间的法向距离即为壳体壁厚。
2. 第二曲率半径R2
R2
x2 l2
x2


x tgθ
2
为圆锥面的半顶角,它
在数值上等于椭圆在同一 点的切线与x轴的夹角。
tgθ dy y' dx
椭圆上某点的第二曲率半径为:
R2
x2


x y'
2
1 b
a4-x 2 a2-b2

化工设备机械基础课后答案

化工设备机械基础课后答案

化⼯设备机械基础课后答案《化⼯设备机械基础》习题解答第⼀章化⼯设备材料及其选择⼀. 名词解释A组:1.蠕变:在⾼温时,在⼀定的应⼒下,应变随时间⽽增加的现象。

或者⾦属在⾼温和应⼒的作⽤下逐渐产⽣塑性变形的现象。

2.延伸率:试件受拉⼒拉断后,总伸长的长度与原始长度之⽐的百分率。

3.弹性模数(E):材料在弹性范围内,应⼒和应变成正⽐,即ζ=Eε,⽐例系数E为弹性模数。

4.硬度:⾦属材料表⾯上不⼤的体积内抵抗其他更硬物体压⼊表⾯发⽣变形或破裂的能⼒。

5.冲击功与冲击韧性:冲击功是冲击负荷使试样破断所做的功。

冲击韧性是材料在外加动载荷突然袭击时的⼀种及时和迅速塑性变形的能⼒。

6.泊桑⽐(µ):拉伸试验中试件单位横向收缩与单位纵向伸长之⽐。

对于钢材,µ=0.3 。

7.耐腐蚀性:⾦属和合⾦对周围介质侵蚀(发⽣化学和电化学作⽤引起的破坏)的抵抗能⼒。

8.抗氧化性:⾦属和合⾦抵抗被氧化的能⼒。

9.屈服点:⾦属材料发⽣屈服现象的应⼒,即开始出现塑性变形的应⼒。

它代表材料抵抗产⽣塑性变形的能⼒。

10.抗拉强度:⾦属材料在受⼒过程中,从开始加载到发⽣断裂所能达到的最⼤应⼒值。

B组:1.镇静钢:镇静钢在⽤冶炼时⽤强脱氧剂 Si, Al等完全脱氧脱氧,是脱氧完全的钢。

把FeO中的氧还原出来,⽣成SiO2和Al2O3。

钢锭膜上⼤下⼩,浇注后钢液从底部向上,向中⼼顺序地凝固。

钢锭上部形成集中缩孔,内部紧密坚实。

2.沸腾钢:沸腾钢在冶炼时⽤弱脱氧剂Mn脱氧,是脱氧不完全的钢。

其锭模上⼩下⼤,浇注后钢液在锭模中发⽣⾃脱氧反应,放出⼤量CO ⽓体,造成沸腾现象。

沸腾钢锭中没有缩孔,凝固收缩后⽓体分散为很多形状不同的⽓泡,布满全锭之中,因⽽内部结构疏松。

3.半镇静钢:介于镇静钢和沸腾钢之间,锭模也是上⼩下⼤,钢锭内部结构下半部像沸腾钢,上半部像镇静钢。

4.低碳钢:含碳量低于0.25%的碳素钢。

5.低合⾦钢:⼀般合⾦元素总含量⼩于5%的合⾦钢。

化工设备机械基础课后答案.

化工设备机械基础课后答案.

《化工设备机械基础》习题解答第一篇: 化工设备材料第一章化工设备材料及其选择一. 名词解释A 组:1. 蠕变:在高温时,在一定的应力下,应变随时间而增加的现象。

或者金属在高温和应力的作用下逐渐产生塑性变形的现象。

2. 延伸率:试件受拉力拉断后,总伸长的长度与原始长度之比的百分率。

3. 弹性模数(E:材料在弹性范围内,应力和应变成正比,即σ=Eε, 比例系数E 为弹性模数。

4. 硬度:金属材料表面上不大的体积内抵抗其他更硬物体压入表面发生变形或破裂的能力。

5. 冲击功与冲击韧性:冲击功是冲击负荷使试样破断所做的功。

冲击韧性是材料在外加动载荷突然袭击时的一种及时和迅速塑性变形的能力。

6. 泊桑比(μ):拉伸试验中试件单位横向收缩与单位纵向伸长之比。

对于钢材,μ=0.3 。

7. 耐腐蚀性:金属和合金对周围介质侵蚀(发生化学和电化学作用引起的破坏)的抵抗能力。

8. 抗氧化性:金属和合金抵抗被氧化的能力。

9. 屈服点:金属材料发生屈服现象的应力,即开始出现塑性变形的应力。

它代表材料抵抗产生塑性变形的能力。

10. 抗拉强度:金属材料在受力过程中,从开始加载到发生断裂所能达到的最大应力值。

B 组:1. 镇静钢:镇静钢在用冶炼时用强脱氧剂 Si, Al等完全脱氧脱氧,是脱氧完全的钢。

把FeO 中的氧还原出来,生成SiO 2和Al 2O 3。

钢锭膜上大下小,浇注后钢液从底部向上,向中心顺序地凝固。

钢锭上部形成集中缩孔,内部紧密坚实。

2. 沸腾钢:沸腾钢在冶炼时用弱脱氧剂Mn 脱氧,是脱氧不完全的钢。

其锭模上小下大,浇注后钢液在锭模中发生自脱氧反应,放出大量CO 气体,造成沸腾现象。

沸腾钢锭中没有缩孔,凝固收缩后气体分散为很多形状不同的气泡,布满全锭之中,因而内部结构疏松。

3. 半镇静钢:介于镇静钢和沸腾钢之间,锭模也是上小下大,钢锭内部结构下半部像沸腾钢,上半部像镇静钢。

4. 低碳钢:含碳量低于0.25%的碳素钢。

《化工设备机械基础》习题解答.

《化工设备机械基础》习题解答.
15MnVR:假设钢板厚度: 6~16mm,则:
[σ]t =177MPa,[σ] =177MPa,σs = 390 MPa
(2)筒体壁厚设计:
mm p D p S c
t
i c 16. 78
. 10. 1177214008. 1][2=-⨯⨯⨯=
-=
φσ
C 1=0.25mm(按教材表4-9取值,GB6654-94《压力容器用钢板》)C=C1+C2=1.25mm.
是多少。
【解】P=0.6Mpa D=10020mm S=20mm
1. 0001996. 01002020<==
D
S属薄壁容器MPa S
PD m
15. 7520
4100206. 04=⨯⨯=
==σ
σ
θ
3.有一承受气体内压的圆筒形容器,两端封头均为椭圆形封头,已知:圆筒平均直径为2030 mm,筒体与封头厚度
接接头系数υ=0.85,厚度附加量为C=2mm,试求筒体的最大工作应力.【解】(1)确定参数:p w =2MPa; p c =1.1p w =2.2MPa(装有安全阀);
D i = DN=2000mm(钢板卷制; S n =22mm; S e = Sn -C=20mm
υ=0.85(题中给定); C=2mm(题中给定).
【解】(1)确定参数:D i =10m; S n =22mm; υ=1.0; C=2mm; [σ]t =147MPa.
S e = Sn -C=20mm.
(2)最大工作压力:球形容器.
a e
i e t
w MP S D S P 17. 120
1000020
0. 11474][4][=+⨯⨯⨯=
+=

化工设备机械基础习题解答内压薄壁容器的应力分析一

化工设备机械基础习题解答内压薄壁容器的应力分析一

《化工设备机械基础》习题解答第三章 内压薄壁容器的应力分析一、名词解释A 组:⒈薄壁容器:容器的壁厚与其最大截面圆的内径之比小于0.1的容器。

⒉回转壳体:壳体的中间面是直线或平面曲线绕其同平面内的固定轴线旋转360°而成的壳体。

⒊经线:若通过回转轴作一纵截面与壳体曲面相交所得的交线。

⒋薄膜理论:薄膜应力是只有拉压正应力没有弯曲正应力的一种两向应力状态,也称为无力矩理论。

⒌第一曲率半径:中间面上任一点M 处经线的曲率半径。

⒍小位移假设:壳体受力以后,各点位移都远小于壁厚。

⒎区域平衡方程式:计算回转壳体在任意纬线上径向应力的公式。

⒏边缘应力:内压圆筒壁上的弯曲应力及连接边缘区的变形与应力。

⒐边缘应力的自限性:当边缘处的局部材料发生屈服进入塑性变形阶段时,弹性约束开始缓解,原来不同的薄膜变形便趋于协调,边缘应力就自动限制。

二、判断题(对者画√,错着画╳)A 组:1. 下列直立薄壁容器,受均匀气体内压力作用,哪些能用薄膜理论求解壁内应力?哪些不能?(1) 横截面为正六角形的柱壳。

(×)(2) 横截面为圆的轴对称柱壳。

(√)(3) 横截面为椭圆的柱壳。

(×)(4) 横截面为圆的椭球壳。

(√)(5) 横截面为半圆的柱壳。

(×)(6) 横截面为圆的锥形壳。

(√)2. 在承受内压的圆筒形容器上开椭圆孔,应使椭圆的长轴与筒体轴线平行。

(×)3. 薄壁回转壳体中任一点,只要该点的两个曲率半径R R 21=,则该点的两向应力σσθ=m 。

(√)4. 因为内压薄壁圆筒的两向应力与壁厚成反比,当材质与介质压力一定时,则壁厚大的容器,壁内的应力总是小于壁厚小的容器。

(×)5. 按无力矩理论求得的应力称为薄膜应力,薄膜应力是沿壁厚均匀分布的。

(√) B 组:1. 卧式圆筒形容器,其内介质压力,只充满液体,因为圆筒内液体静载荷不是沿轴线对称分布的,所以不能用薄膜理论应力公式求解。

化工设备机械基础习题答案

化工设备机械基础习题答案

化工设备机械基础习题答案【篇一:化工设备机械基础作业答案】txt>二、填空题1、钢板卷制的筒体和成型封头的公称直径是指它们的(内)径。

2、无缝钢管做筒体时,其公称直径是指它们的(外)径。

第三章内压薄壁容器的应力分析一、名词解释a组:⒈薄壁容器:容器的壁厚与其最大截面圆的内径之比小于0.1的容器。

⒋薄膜理论:薄膜应力是只有拉压正应力没有弯曲正应力的一种两向应力状态,也称为无力矩理论。

⒌第一曲率半径:中间面上任一点m处经线的曲率半径。

⒍小位移假设:壳体受力以后,各点位移都远小于壁厚。

⒎区域平衡方程式:计算回转壳体在任意纬线上径向应力的公式。

⒏边缘应力:内压圆筒壁上的弯曲应力及连接边缘区的变形与应力。

⒐边缘应力的自限性:当边缘处的局部材料发生屈服进入塑性变形阶段时,弹性约束开始缓解,原来不同的薄膜变形便趋于协调,边缘应力就自动限制。

二、判断题(对者画√,错着画╳)a组:1. 下列直立薄壁容器,受均匀气体内压力作用,哪些能用薄膜理论求解壁内应力?哪些不能?(2)横截面为圆的轴对称柱壳。

(√)(4)横截面为圆的椭球壳。

(√)(6)横截面为圆的锥形壳。

(√)3. 薄壁回转壳体中任一点,只要该点的两个曲率半径r?r,则该点的两向应力?m???。

(√)5. 按无力矩理论求得的应力称为薄膜应力,薄膜应力是沿壁厚均匀分布的。

(√)b组:1. 卧式圆筒形容器,其内介质压力,只充满液体,因为圆筒内液体静载荷不是沿轴线对称分布的,所以不能用薄膜理论应力公式求解。

(√)2. 由于圆锥形容器锥顶部分应力最小,所以开空宜在锥顶部分。

(√)123. 凡薄壁壳体,只要其几何形状和所受载荷对称于旋转轴,则壳体上任何一点用薄膜理论应力4. 椭球壳的长,短轴之比a/b越小,其形状越接近球壳,其应力分布也就越趋于均匀。

(√)5. 因为从受力分析角度来说,半球形封头最好,所以不论在任何情况下,都必须首先考虑采用第四章内压薄壁圆筒与封头的强度设计二、填空题a组:1. 有一容器,其最高气体工作压力为1.6mpa,无液体静压作用,工作温度≤150℃且装有安全阀,试确定该容器的设计压力p=(1.76)mpa;计算压力pc=( 1.76 )mpa;水压试验压力pt=(2.2)mpa.2. 有一带夹套的反应釜,釜内为真空,夹套内的工作压力为0.5mpa,工作温度200℃,试确定:(1)釜体的计算压力(外压)pc=( -0.6 )mpa;釜体水压试验压力pt=( 0.75 )mpa.(2)夹套的计算压力(内压)pc=( 0.5 )mpa;夹套的水压试验压力pt=( 0.625 )mpa.0.5mpa,工作温度≤100℃,试确定该容器的设计压力p=( 0.5 )mpa;计算压力pc=( 0.617 )mpa;水压试验压力pt=(0.625)mpa.4. 标准碟形封头之球面部分内径ri=( 0.9 )di;过渡圆弧部分之半径r=( 0.17 )di.5. 承受均匀压力的圆平板,若周边固定,则最大应力是(径向)弯曲应力,且最大应力在圆平板的(边缘 )处;若周边简支,最大应力是( 径向 )和( 切向)弯曲应力,且最大应力在圆平板的( 中心)处.6. 凹面受压的椭圆形封头,其有效厚度se不论理论计算值怎样小,当k≤1时,其值应小于封头内直径的( 0.15)%;k1时,se应不小于封头内直径的( 0.3)%.7. 对于碳钢和低合金钢制的容器,考虑其刚性需要,其最小壁厚smin=( 3)mm;对于高合金钢制容器,其最小壁厚smin=(2 )mm.8. 对碳钢,16mnr,15mnnbr和正火的15mnvr钢板制容器,液压试验时,液体温度不得低于( 5) ℃,其他低合金钢制容器(不包括低温容器),液压试验时,液体温度不得低于( 15) ℃.容器已经”失效”. ( √ )3. 安全系数是一个不断发展变化的数据,按照科学技术发展的总趋势,安全系数将逐渐变小.( √ )力状态,在建立强度条件时,必须借助于强度理论将其转换成相当于单向拉伸应力状态的相当应力. ( √ )四、工程应用题a组:1、有一dn2000mm的内压薄壁圆筒,壁厚sn=22mm,承受的最大气体工作压力pw=2mpa,容器上【解】(1)确定参数:pw =2mpa; pc=1.1pw =2.2mpa(装有安全阀);di= dn=2000mm( 钢板卷制); sn =22mm; se = sn -c=20mm (2)最大工作应力:?t?p(d?s)2.2?(2000?20)??111.1mpa 2se2?20se = sn -c=20mm.(2)最大工作压力:球形容器.[p]w4[?]t?se4?147?1.0?20???1.17mpa di?se10000?203、某化工厂反应釜,内径为1600mm,工作温度为5℃~105℃,工作压力为1.6mpa,釜体材料选用0cr18ni9ti。

《化工设备机械基础》习题解答.

《化工设备机械基础》习题解答.
2505
1010
==b
a
标准椭圆形封头
b b
b y x A R R
2
22
1
, :
, 0=
=
==点(
MP S
Pa m
5. 5020
10101=⨯=
=
=θσσ
MPa sb
P B b a x a
m
3. 43 (2 2
2
2
4
=--
=
σ
点:
MPa b a x a a sb
P b
a
x a
7. 27 (2 (2 22244
二.指出下列钢材的种类、含碳量及合金元素含量A组
B组:
第二章
容器设计的基本知识
一.、指出下列压力容器温度与压力分级范围
第三章内压薄壁容器的应力分析
和MP S
m
638
44=⨯=
=
σ
S
P R
R
m =
+
2
1
θ
MP S
PD
634==
σ
θ
2.圆锥壳上之A点和B点,已知:p=0.5Mpa,D=1010mm,S=10mm,a=30o。
cr
e cr 2. 1625]
[ (
(295. 12215517. 10
【解】(1)确定参数:D i =10m; S n =22mm; υ=1.0; C=2mm; [σ]t =147MPa.
S e = Sn -C=20mm.
(2)最大工作压力:球形容器.
a e
i e t
w MP S D S P 17. 120
1000020
0. 11474][4][=+⨯⨯⨯=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《化工设备机械基础》习题解答
第三章 内压薄壁容器的应力分析
一、名词解释
A 组:
⒈薄壁容器:容器的壁厚与其最大截面圆的内径之比小于0.1的容器。

⒉回转壳体:壳体的中间面是直线或平面曲线绕其同平面内的固定轴线旋转360°而成的壳体。

⒊经线:若通过回转轴作一纵截面与壳体曲面相交所得的交线。

⒋薄膜理论:薄膜应力是只有拉压正应力没有弯曲正应力的一种两向应力状态,也称为无力矩理论。

⒌第一曲率半径:中间面上任一点M 处经线的曲率半径。

⒍小位移假设:壳体受力以后,各点位移都远小于壁厚。

⒎区域平衡方程式:计算回转壳体在任意纬线上径向应力的公式。

⒏边缘应力:内压圆筒壁上的弯曲应力及连接边缘区的变形与应力。

⒐边缘应力的自限性:当边缘处的局部材料发生屈服进入塑性变形阶段时,弹性约束开始缓解,原来不同的薄膜变形便趋于协调,边缘应力就自动限制。

二、判断题(对者画√,错着画╳)
A 组:
1. 下列直立薄壁容器,受均匀气体内压力作用,哪些能用薄膜理论求解壁内应力?哪些不能?
(1) 横截面为正六角形的柱壳。

(×)
(2) 横截面为圆的轴对称柱壳。

(√)
(3) 横截面为椭圆的柱壳。

(×)
(4) 横截面为圆的椭球壳。

(√)
(5) 横截面为半圆的柱壳。

(×)
(6) 横截面为圆的锥形壳。

(√)
2. 在承受内压的圆筒形容器上开椭圆孔,应使椭圆的长轴与筒体轴线平行。

(×)
3. 薄壁回转壳体中任一点,只要该点的两个曲率半径R R 2
1=,则该点的两向应力σσθ=m 。

(√)
4. 因为内压薄壁圆筒的两向应力与壁厚成反比,当材质与介质压力一定时,则壁厚大的容器,壁内的应力总是小于壁厚小的容器。

(×)
5. 按无力矩理论求得的应力称为薄膜应力,薄膜应力是沿壁厚均匀分布的。

(√) B 组:
1. 卧式圆筒形容器,其内介质压力,只充满液体,因为圆筒内液体静载荷不是沿轴线对称分布的,所以不能用薄膜理论应力公式求解。

(√)
2. 由于圆锥形容器锥顶部分应力最小,所以开空宜在锥顶部分。

(√)
3. 凡薄壁壳体,只要其几何形状和所受载荷对称于旋转轴,则壳体上任何一点用薄膜理论应力公式求解的应力都是真实的。

(×)
4. 椭球壳的长,短轴之比a/b 越小,其形状越接近球壳,其应力分布也就越趋于均匀。

(√)
5. 因为从受力分析角度来说,半球形封头最好,所以不论在任何情况下,都必须首先考虑采用半球形封头。

(×)
三、指出和计算下列回转壳体上诸点的第一和第二曲率半径
A 组:
图 3-31图图 3-29
1、 球壳上任一点 R R R ==21
2、圆锥壳上之M 点 ∞=1R αcos 22D R m
=
3、碟形壳上之连接点A 与B
A 点: 在球壳上:R C A R R ==→21:)(
在弧面上:R B A R r R ==→ 211,:)(
B 点: 在弧面上:r A B R r R ==→ 211,:)(
在圆柱壳上:r B B R R =∞=→ 21,:)'(
2. 圆锥壳与柱壳的连接点A 及锥顶点B
αcos ,:)(21R
B A R R =∞=→
R B R R =∞=→21,:)(柱
0,:21=∞=R R B
MP PD m 63841008
24=⨯⨯
==δσ
δ
σσθP R R m
=+21
MP PD
634==δσθ
2. 圆锥壳上之A 点和B 点,已知:p=0.5Mpa ,D=1010mm ,S=10mm ,a=30o 。

αcos 2,:21D
A R R =∞=点
MP PD m 58.14866.01041010
5.0cos 4=⨯⨯⨯==αδσ
δσσθ
P
R R m =+21
MP PD
16.29866.01021010
5.0cos 2=⨯⨯⨯==αδσθ
0,:21=∞=R R B 点
0==σσθm
3. 椭球壳上之A ,B ,C 点,已知:p=1Mpa ,a=1010mm ,b=505mm ,δ=20mm 。

B 点处坐标x=600mm 。

2505
1010==b a 标准椭圆形封头 b b b y x A a R a R 2221,:),0====点(
MP Pa
m 5.5020
10101=⨯===δσθσ MPa b
P B b a x a m 3.43)(2 2224=--=δσ点:
MPa b a x a a b P b a x a 7.27)(2)(2 222442224=⎥⎦
⎤⎢⎣⎡-----=δσθ
:)0,(==y a x C 点
MPa Pa m 25.2520
2101012=⨯⨯==δσ MPa Pa 5.5020
10101-=⨯-=-=δσθ 五、工程应用题
1. 某厂生产的锅炉汽包,其工作压力为
2.5Mpa ,汽包圆筒的平均直径为816 mm ,壁厚为16 mm ,试求汽包圆筒壁被的薄膜应力σσθ和m 。

【解】 P=2.5Mpa D=816mm δ=16mm
1.00196.0816
16<==D δ 属薄壁容器 MP PD m 875.311648165.24=⨯⨯==
δσ MP PD m 75.6316
28165.22=⨯⨯==δσ 2. 有一平均直径为10020 mm 的球形容器,其工作压力为0.6Mpa ,厚度为20 mm ,试求该球形容器壁内的工作压力是多少。

【解】 P=0.6Mpa D=10020mm δ=20mm
1.0001996.010020
20<==D δ 属薄壁容器 MP PD m 15.75204100206.04=⨯⨯==
=δσθσ 3. 有一承受气体内压的圆筒形容器,两端封头均为椭圆形封头,已知:圆筒平均直径为2030 mm ,筒体与封头厚度均为30 mm ,工作压力为3Mpa ,试求;
⑴圆筒壁内的最大工作压力;
⑵若封头椭圆长,短半轴之比分别为2,2,2.5时,计算封头上薄膜应力的σσθ和m 的最大值并确定其所在的位置。

【解】(1) 圆筒 P=3Mpa D=2030mm δ=30mm
1.00148.02030
30<==D δ 属薄壁容器 MP PD m 75.5030
4203024=⨯⨯==δσ 最大工作应力:
MP PD 5.101302203022=⨯⨯==δσθ
(2)椭圆形封头:
① 时 2=b
a 在x=0,y=b,(顶点处)有最大值 MP
b a Pa m 78.71302210153)(2)(max =⨯⨯⨯===δσσ
θ
② 时 2=b
a ,在x=0,y=
b 处(顶点处) MP b a Pa m 5.10130
2210153)(2)(max =⨯⨯⨯===δσσθ
在x=a,y=0点(边缘处)
MP b a Pa 5.101302210153)(2)(max -=⨯⨯⨯-=-
=δσθ
③ 时 5.2=b
a ,在x=0,y=
b 处(顶点处) MP b a Pa m 88.1263025.210153)(2)(max =⨯⨯⨯==δσ
在x=a,y=0点(边缘处)
MP b
a Pa 69.215)2(2)(22max -=-=δσθ 4.有一半顶角为45º的圆锥形封头,其内气体压力为2MPa ,封头厚度为14mm ,所求应力点M 处的平均直径为1014mm ,试求M 点处的σσθ和m 。

【解】 P=2Mpa D=1014mm S=14mm
1.00138.0101414
<==D δ
属薄壁容器
MPa pD
m 2.5145cos 1
1441014
2cos 1
4=⋅⨯⨯=⋅= αδσ
MPa pD 4.10245cos 1
14210142cos 12=⋅⨯⨯=⋅= αδσθ。

相关文档
最新文档