新人教版八年级上《整式的乘法》综合检测试卷及答案2
人教版八年级上册数学 整式的乘法与因式分解综合测试卷(word含答案)
人教版八年级上册数学整式的乘法与因式分解综合测试卷(word含答案)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.248﹣1能被60到70之间的某两个整数整除,则这两个数是()A.61和63 B.63和65 C.65和67 D.64和67【答案】B【解析】【分析】248﹣1=(224+1)(224﹣1)=(224+1)(212+1)(212﹣1)=(224+1)(212+1)(26+1)(26﹣1)=(224+1)(212+1)(26+1)(23+1)(23﹣1),即可求解.【详解】解:248﹣1=(224+1)(224﹣1)=(224+1)(212+1)(212﹣1)=(224+1)(212+1)(26+1)(26﹣1)=(224+1)(212+1)(26+1)(23+1)(23﹣1)=(224+1)(212+1)×65×63,故选:B.【点睛】此题考察多项式的因式分解,将248﹣1利用平方差公式因式分解得到(224+1)(212+1)×65×63,即可得到答案2.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2-ab-ac-bc 的值是( )A.0B.1C.2D.3【答案】D【解析】【分析】把已知的式子化成12[(a-b)2+(a-c)2+(b-c)2]的形式,然后代入求解即可.【详解】原式=12(2a2+2b2+2c2-2ab-2ac-2bc)=12[(a2-2ab+b2)+(a2-2ac+c2)+(b2-2bc+c2)]=12[(a-b)2+(a-c)2+(b-c)2]=12×(1+4+1)=3,故选D.本题考查了因式分解的应用,代数式的求值,正确利用因式分解的方法把所求的式子进行变形是关键. 3.对二次三项式4x 2﹣6xy ﹣3y 2分解因式正确的是( ) A .3213214()()44x y x y +-++ B .2132134()()44x y x y +--- C .(321)(321)x y y x y y ---+D .321213(2)(2)22x y x y -- 【答案】D【解析】【分析】【详解】 解:4x 2﹣6xy ﹣3y 2=4[x 2﹣32xy +(34y )2]﹣3y 2﹣94y 2 =4(x ﹣34y )2﹣214y 2 =(2x ﹣32y 21y )(2x ﹣32y 21y ) =(2x ﹣3212+y )(2x ﹣3212) 故选D .【点睛】本题主要是用配方法来分解因式,但本题的计算,分数,根式多,所以学生还是很容易出错的,注意计算时要细心.4.如果多项式29x kx -+能用公式法分解因式,那么k 的值是( )A .3B .6C .3±D .6±【答案】D【解析】由于可以利用公式法分解因式,所以它是一个完全平方式222a ab b ±+,所以236k =±⨯=±.故选D.5.已知(x -2015)2+(x -2017)2=34,则(x -2016)2的值是( )A .4B .8C .12D .16【解析】(x -2 015)2+(x -2 017)2=(x -2 016+1)2+(x -2 016-1)2=22(2016)2(2016)1(2016)2(2016)1x x x x -+-++---+=22(2016)2x -+=34∴2(2016)16x -=故选D.点睛:本题主要考查了完全平方公式的应用,把(x -2 015)2+(x -2 017)2化为 (x -2 016+1)2+(x -2 016-1)2,利用完全平方公式展开,化简后即可求得(x -2 016)2的值,注意要把x-2016当作一个整体.6.已知4821-可以被在0~10之间的两个整数整除,则这两个数是( )A .1、3B .3、5C .6、8D .7、9【答案】D【解析】248-1=(224+1)(224-1)= (224+1)(212+1)(212-1)= (224+1)(212+1)(26+1)(26-1)=(224+1)(212+1)(26+1)(23+1) (23-1) , 23+1=9, 23-1=7,所以这两个数是7、9.故选D.点睛:平方差公式:a 2-b 2=(a +b )(a -b ).7.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是 ( )A .30B .20C .60D .40【答案】A【解析】【分析】 设大正方形的边长为x ,小正方形的边长为y ,表示出阴影部分的面积,结合大正方形与小正方形的面积之差是60即可求解.【详解】设大正方形的边长为x ,小正方形的边长为y ,则2260x y -=,∵S 阴影=S △AEC +S △AED=11()()22x y x x y y -+-=1()()2x y x y -+ =221()2x y - =1602⨯ =30.故选A.【点睛】 此题主要考查了平方差公式的应用,读懂图形和熟练掌握平方差公式是解此题的关键.8.下列变形,是因式分解的是( )A .2(1)x x x x -=-B .21(1)1x x x x -+=-+C .2(1)x x x x -=-D .2()22a b c ab ac +=+【答案】C【解析】分析:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解. 详解:A 、右边不是整式积的形式,不是因式分解,故本选项错误;B 、右边不是整式积的形式,不是因式分解,故本选项错误;C 、是符合因式分解的定义,故本选项正确;D 、右边不是整式积的形式,不是因式分解,故本选项错误;故选:C .点睛:本题考查了因式分解的知识,理解因式分解的定义是解题关键.9.不论x ,y 为何有理数,x 2+y 2﹣10x+8y+45的值均为( )A .正数B .零C .负数D .非负数【答案】A【解析】【详解】因为x 2+y 2-10x +8y +45=()()225440x y -+++>, 所以x 2+y 2-10x +8y +45的值为正数,故选A.10.观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x +a )(x +b )=x 2-7x +12,则a ,b 的值可能分别是( )A .3-,4-B .3-,4C .3,4-D .3,4 【答案】A【解析】【分析】根据题意可得规律为712a b ab +=-⎧⎨=⎩,再逐一判断即可. 【详解】 根据题意得,a ,b 的值只要满足712a b ab +=-⎧⎨=⎩即可, A.-3+(-4)=-7,-3×(-4)=12,符合题意;B.-3+4=1,-3×4=-12,不符合题意;C.3+(-4)=-1,3×(-4)=-12,不符合题意;D.3+4=7,3×4=12,不符合题意.故答案选A.【点睛】本题考查了多项式乘多项式,解题的关键是根据题意找出规律.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.“元旦”期间小明去永辉超市购物,恰逢永辉超市“满1400减99元”促销活动,小明准备提前购置一些年货A 和B ,已知A 和B 的单价总和是100到200之间的整数,小明粗略测算了一下发现自己所购年货总价为1305元,不能达到超市的促销活动金额. 于是小明又购买了A 、B 各一件,这样就能参加超市的促销活动,最后刚好付款1305元. 小明经仔细计算发现前面粗略测算时把A 和B 的单价看反了,那么小明实际总共买了______件年货.【答案】22【解析】【分析】设A 单价为a 元,实际购买x 件,B 单价为b 元,实际购买y 元,根据题意列出方程组130599(1)(1)1305ax by a y b x +=+⎧⎨-+-=⎩,将两个方程相加得到(1)(1)2709a x y b x y +-++-=,分解因式得()(1)33743a b x y ++-=⨯⨯⨯,由A 和B 的单价总和是100到200之间的整数得到()(1)12921a b x y ++-=⨯,由此求得答案.【详解】设A 单价为a 元,实际购买x 件,B 单价为b 元,实际购买y 元,130599(1)(1)1305ax by a y b x +=+⎧⎨-+-=⎩, ∴(1)(1)2709a x y b x y +-++-=,∴()(1)33743a b x y ++-=⨯⨯⨯,∵A 和B 的单价总和是100到200之间的整数,即100a b 200<+<,∴()(1)12921a b x y ++-=⨯,即129a b +=, 121x y +-=,∴x+y=22,故答案为:22.【点睛】此题考查因式分解,设未知数列出方程组后将两个方程相加再因式分解是关键的步骤,根据A 和B 的单价总和确定出x+y 的值.12.已知a 1•a 2•a 3•…•a 2007是彼此互不相等的负数,且M=(a 1+a 2+…+a 2006)(a 2+a 3+…+a 2007),N=(a 1+a 2+…+a 2007)(a 2+a 3+…+a 2006),那么M 与N 的大小关系是M N .【答案】M >N【解析】解:M ﹣N=(a 1+a 2+…+a 2006)(a 2+a 3+…+a 2007)﹣(a 1+a 2+…+a 2007)(a 2+a 3+…+a 2006) =(a 1+a 2+…+a 2006)(a 2+a 3+…+a 2006)+(a 1+a 2+…+a 2006)a 2007﹣(a 1+a 2+…+a 2006)(a 2+a 3+…+a 2006)﹣a 2007(a 2+a 3+…+a 2006)=(a 1+a 2+…+a 2006)a 2007﹣a 2007(a 2+a 3+…+a 2006)=a 1a 2007>0∴M >N【点评】本题主要考查了整式的混合运算.13.x+1x=3,则x 2+21x =_____. 【答案】7【解析】【分析】 直接利用完全平方公式将已知变形,进而求出答案.【详解】解:∵x +1x =3, ∴(x +1x )2=9, ∴x 2+21x +2=9, ∴x 2+21x =7. 故答案为7.【点睛】此题主要考查了分式的混合运算,正确应用完全平方公式是解题关键.14.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=______.【答案】()()2a b a b ++.【解析】【分析】根据图形中的正方形和长方形的面积,以及整体图形的面积进而得出恒等式.【详解】解:由面积可得:()()22a 3ab 2b a 2b a b ++=++. 故答案为:()()a 2b a b ++.【点睛】此题主要考查了十字相乘法分解因式,正确利用面积得出等式是解题关键.15.已知:如图,△ACB 的面积为30,∠C 90=︒,BC a =,AC b =,正方形ADEB 的面积为169,则2()a b -的值为_____________.【答案】49【解析】首先根据三角形的面积可知12ab=30,可得ab=60,再利用勾股定理和正方形的面积公式求出a 2+b 2=169,因此可知(a-b )2= a 2+b 2-2ab=169-120=49.故答案为:49. 点睛:此题主要考查了勾股定理,关键是掌握在任何直角三角形中,两条直角边的平方和等于斜边的平方,同时考查了三角形的面积计算和完全平方公式的计算.16.已知x 、y 为正偶数,且2296x y xy +=,则22x y +=__________.【答案】40【解析】【分析】根据22x y xy 96+=可知xy(x+y)=96,由x 、y 是正偶数可知xy≥4,x+y≥4,进而可知96 可分解成3种乘积的形式,分别计算即可得只有一种情况符合题意,即可求出x 、y 的值,根据x 、y 的值求得答案即可.【详解】∵22x y xy 96+=,∴xy(x+y)=96,∵x 、y 为正偶数,xy≥4,x+y≥4,∴96=2⨯2⨯2⨯2⨯2⨯3=6⨯16=8⨯12=4⨯24当xy(x+y)= 4⨯24时,无解,当xy(x+y)= 6⨯16时,无解,当xy(x+y)=8⨯12时,x+y=8,xy=12,解得:x=2,y=6,或x=6,y=2,∴x 2+y 2=22+62=40.故答案为:40【点睛】本题考查因式分解,把96分解成所有约数的积再分情况求解是解题关键.17.(m+n+p+q) (m-n-p-q)=(__________) 2-(__________) 2.【答案】m n+p+q【解析】(m+n+p+q)(m-n-p-q)=[m+(n+p+q)][m-(n+p+q)]=()22m n p q -++,故答案为(1)m ,(2)n+p+q. 点睛:本题主要考查了平方差公式,平方差公式是两个数的和与这两个数的差的积,等于这两个数的平方差,多项式与多项相乘时,要注意观察能否将其中符号相同的项结合成为一项后,再运用平方差公式运算.18.若a+b=4,ab=1,则a 2b+ab 2=________.【答案】4【解析】【分析】分析式子的特点,分解成含已知式的形式,再整体代入.【详解】解:a 2b+ab 2=ab(a+b)=1×4=4.故答案为:4.【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.19.分解因式:3x2-6x+3=__.【答案】3(x-1)2【解析】【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【详解】()()222-+=-+=-.x x x x x36332131故答案是:3(x-1)2.【点睛】考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.20.光的速度约为3×105 km/s,太阳系以外距离地球最近的一颗恒星(比邻星)发出的光需要4年的时间才能到达地球.若一年以3×107 s计算,则这颗恒星到地球的距离是_______km.【答案】3.6×1013【解析】【分析】根据题意列出算式,再根据单项式的运算法则进行计算.【详解】依题意,这颗恒星到地球的距离为4×3×107×3×105,=(4×3×3)×(107×105),=3.6×1013km.故答案为:3.6×1013.【点睛】本题考查了根据实际问题列算式的能力,科学记数法相乘可以运用单项式相乘的法则进行计算.。
人教版八年级上册数学 整式的乘法与因式分解综合测试卷(word含答案)
人教版八年级上册数学 整式的乘法与因式分解综合测试卷(word含答案)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.将多项式24x +加上一个整式,使它成为完全平方式,则下列不满足条件的整式是( ) A .4-B .±4xC .4116xD .2116x 【答案】D【解析】【分析】分x 2是平方项与乘积二倍项,以及单项式的平方三种情况,根据完全平方公式讨论求解.【详解】解:①当x 2是平方项时,4士4x+x ²=(2士x )2,则可添加的项是4x 或一4x ; ②当x 2是乘积二倍项时,4+ x 2+4116x =(2+214x )2,则可添加的项是4116x ; ③若为单项式,则可加上-4.故选:D.【点睛】本题考查了完全平方式,比较复杂,需要我们全面考虑问题,首先考虑三个项分别充当中间项的情况,就有三种情况,还有就是第四种情况加上一个数,得到一个单独的单项式,也是可以成为一个完全平方式,这种情况比较容易忽略,要注意.2.下列能用平方差公式分解因式的是( )A .21x -B .()21x x +C .21x +D .2x x - 【答案】A【解析】根据平方差公式:()()22a b a b a b -=+-,A 选项:()()2111x x x -=+-,可知能用平方差公式进行因式分解.故选:A.3.若(x +y )2=9,(x -y )2=5,则xy 的值为( )A .-1B .1C .-4D .4 【答案】B【解析】试题分析:根据完全平方公式,两数和(或差)的平方,等于两数的平方和,加减两数积的2倍,分别化简可知(x+y )2=x 2+2xy+y 2=9①,(x ﹣y )2= x 2-2xy+y 2=5②,①-②可得4xy=4,解得xy=1.故选B点睛:此题主要考查了完全平方公式的应用,解题关键是抓住公式的特点:两数和(或差)的平方,等于两数的平方和,加减两数积的2倍,然后比较各式的特点,直接进行计算,再两式相减即可求解..4.若代数式x 2+ax +64是一个完全平方式,则a 的值是( )A .-16B .16C .8D .±16【答案】D【解析】试题分析:根据完全平方式的意义,首平方,尾平方,中间加减积的2倍,可知a=±2×8=16.故选:D点睛:此题主要考查了完全平方式的意义,解题关键是明确公式的特点,即:完全平方式分两种,一种是完全平方和公式,就是两个整式的和括号外的平方。
人教版八年级数学上册 整式的乘法与因式分解综合测试卷(word含答案)
【详解】
解;(1)根据题意可得最大的四位“半期数”应该是千位最大,最大只能为4,所以百位是1,十位最大是9,个位是2,所以最大半期数为:4192.
∵3247的所有可能为,2473,4732,7324.
=(1+x)[1+x+x(1+x)+…+x(x+1)2003]
⋯
=
=(1+x)2005,
故分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2004,,则需应用上述方法2004次,结果是:(x+1)2005.
(3)分解因式:1+x+x(x+1)+x(x+1)2…+x(x+1)n(n为正整数)的结果是:(x+1)n+1.
(1)最大的四位“半期数”为;“半期数”3247的“伴随数”是.
(2)已知四位数P= 是“半期数”,三位数Q= ,且441Q﹣4P=88991,求F(P')的最大值.
【答案】(1)4192,7324;(2)42.
【解析】
【分析】
(1)根据“半期数”的定义分析最大的四位“半期数”应该是千位最大,最大只能为4,所以百位是1,十位最大是9,个位是2,所以最大半期数为:4192,分析3247的所有可能为,2473,4732,7324.根据题意|b+2c﹣a﹣d|最小的数是7324,所以3247的“伴随数”是:7324.
例如: . .
试用上述方法分解因式
《整式的乘法与因式分解》单元综合检测题含答案
A.a+3B.a-3C.a+1D.a-1
【答案】B
【解析】
a2-9= ,a2-3a= ,故选B.
8.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是()
A B.
C. D.
【答案】A
【解析】
【分析】
根据阴影部分面积的两种表示方法,即可解答.
【详解】图1中阴影部分的面积为: ,
22.已知:(x+y)2=6,(x-y)2=2,试求:
(1)x2+y2 值;
(2)xy的值.
23.如图,某市有一块长为(3a+b)米、宽为(2a+b)米的长方形地,规划部门计划将阴影部分进行绿化,中间将修建一座边长为(a+b)米的正方形雕像.
(1)试用含a、b的式子表示绿化部分的面积(结果要化简).
A.5B.-5C. D.
【答案】B
【解析】
【分析】
把式子展开,找到所有x项的系数,令其为0,求解即可.
【详解】解:∵(x+1)(5x+a)=5x2+ax+5x+a=5x2+(a+5)x+a,
又∵乘积中不含x一次项,
∴a+5=0,解得a=-5.
故选B.
【点睛】本题主要考查了多项式乘多项式,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.
【答案】C
【解析】
试题分析:A、右边不是整式积的形式,不是因式分解,故本选项错误;
B、右边不是整式积的形式,不是因式分解,故本选项错误;
C、是符合因式分解的定义,故本选项正确;
D、右边不是整式积的形式,不是因式分解,故本选项错误;
新人教版初中数学八年级数学上册第四单元《整式的乘法与因式分解》测试(含答案解析)(2)
一、选择题1.下列因式分解正确的是( )A .m 2+n 2=(m+n)(m-n)B .a 3-a=a(a+1)(a-1)C .a 2-2a+1=a(a-2)+1D .x 2+2x-1=(x-1)22.对于①2(2)(1)2x x x x +-=+-,②4(14)x xy x y -=-,从左到右的变形,表述正确的是( )A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解 3.若2()(2)3x a x x x b +-=-+,则实数b 等于( )A .2-B .2C .12-D .124.下列各式由左边到右边的变形中,是分解因式的为( )A .2105525x x x x x -=⋅-B .()a x y ax ay +=+C .()22442x x x -+=-D .()()2163443x x x x x -+=-++ 5.已知: 13m m +=, 则: 331m m +的值为( ) A .15B .18C .21D .9 6.计算()201920180.52-⨯的值( ) A .2 B .2- C .12 D .12- 7.将11n n x x +--因式分解,结果正确的是( )A .()121n xx -- B .()11n x x -- C .()1n x x x --D .()()111n x x x -+- 8.下列运算中,正确的个数是( ) ①2352x x x +=;②()326x x =;③03215⨯-=;④538--+=A .1个B .2个C .3个D .4个 9.已知552a =,443b =,334c =,则a ,b ,c 的大小关系是( ) A .a b c >>B .b c a >>C .c a b >>D .a c b >> 10.下列各多项式中,能用平方差公式分解因式的是( ) A .21x -+ B .21x + C .21x -- D .221x x -+ 11.下列各式计算正确的是( )A .5210a a a =B .()428=a aC .()236a b a b =D .358a a a += 12.已知代数式2a -b =7,则-4a +2b +10的值是( )A .7B .4C .-4D .-7二、填空题13.若2330x x --=,则()()()123x x x x ---的值为______.14.已知18m x =,16n x =,则2m n x +的值为________. 15.已知2m a =,5n a =,则2m n a -=___________.16.若(2x +1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a ,则a 2+a 4=____17.分解因式:32520=x xy -________________.18.如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第6个图形需要黑色棋子的个数是______,第n 个图形需要的黑色棋子的个数是______.(n 为正整数)19.如果关于x 的多项式24x bx ++是一个完全平方式,那么b =________.20.下列说法:①用两个钉子就可以把木条固定在墙上依据的是“两点之间,线段最短”;②若2210m m +-=,则2425m m ++的值为7;③若a b >,则a 的倒数小于b 的倒数;④在直线上取A 、B 、C 三点,若5cm AB =,2cm BC =,则7cm AC =.其中正确的说法有________(填号即可).三、解答题21.阅读下面的材料:常用的分解因式的方法有提取公因式法、公式法等,但有的多项式只用上述方法无法分解.如22926a b a b --+,细心观察这个式子,会发现前两项符合平方差公式,后两项可提取公因式,前、后两部分分别因式分解后又出现新的公因式,提取公因式就可以完成整个式子的分解因式.具体过程如下:()()2222926926a b a b a b a b --+=---()()()3323a b a b a b =+---()()332a b a b =-+-.像这种将一个多项式适当分组后,进行分解因式的方法叫做分组分解法.利用分组分解法解决下面的问题:(1)分解因式:22222x xy y x y -+-+;(2)已知ABC 的三边长a ,b ,c 满足220a bc b ac +--=,判断ABC 的形状并说明理由.22.在日历上,我们可以发现其中某些数满足一定的规律,如下图是2021年1月份的日历,我们任意用一个22⨯的方框框出4个数,将其中4个位置上的数两两交叉相乘,再用较大的数减去较小的数,你发现了什么规律?(1)图中方框框出的四个数,按照题目所说的计算规律,结果为______.(2)换一个位置试一下,是否有同样的规律?如果有,请你利用整式的运算对你发现的规律加以证明;如果没有,请说明理由.23.我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图(1)可以 用来解释()2222a ab b a b ++=+,实际上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式分解.如图(2),将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m 的大正方形,两块是边长都为n 的小正方形,五块是长为m ,宽为n 的全等小长方形,且m n >.(以上长度单位: cm )(1)观察图形,可以发现代数式22252m mn n ++可以分解因式为_________(2)若每块小长方形的面积为210cm ,四个正方形的面积和为258,cm 试求图中所有裁剪线(虚线部分)长之和.24.如果关于x 的多项式2x a +与22x bx --的乘积展开式中没有二次项,且常数项为10,求2+a b 的值.25.两个边长分别为a 和b 的正方形如图放置(图1),其未叠合部分(阴影)面积为1S ;若再在图1中大正方形的右下角摆放一个边长为b 的小正方形(如图2),两个小正方形叠合部分(阴影)面积为2S .(1)用含a b 、的代数式分别表示1S 、2S ;(2)若10,23a b ab +==,求12S S +的值;(3)当1229S S +=时,求出图3中阴影部分的面积3S .26.先化简,再求值:[(2a ﹣1)2﹣(2a+1)(2a ﹣1)+(2a ﹣1)(a+2)]÷2a ,其中a =12.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据因式分解的定义判断即可.【详解】解:A 、等号左右两边不相等,故错误;B 、a 3-a=a(a+1)(a-1),故正确;C 、右边不是整式的积,故错误;D 、等号左右两边不相等,故错误.故选:B .【点睛】因式分解与整式的乘法互为逆变形,并且因式分解是等式的恒等变形,变形前后一定相等.2.D解析:D【分析】根据因式分解的定义(把一个多项式化成几个整式积的形式,叫因式分解,也叫分解因式判断即可.将多项式×多项式变得多项式,是乘法运算.【详解】解:①2(2)(1)2x x x x +-=+-,从左到右的变形是整式的乘法;②4(14)x xy x y -=-,从左到右的变形是因式分解;所以①是乘法运算,②因式分解.故选:D .【点睛】此题考查了因式分解与乘法运算的定义的认识,解题的关键是掌握因式分解及乘法运算的定义.3.B解析:B【分析】等式左边去括号后两边经过比对可以得解 .【详解】解:原等式可变为:()22223x a x a x x b +--=-+,∴可得:232a b a -=-⎧⎨=-⎩, 解之得:a=-1,b=2,故选B .【点睛】本题考查二元一次方程组的应用和多项式的乘法,熟练掌握代数式相等的意义、多项式的乘法法则及二元一次方程组的解法是解题关键.4.C解析:C【分析】将多项式写成整式的积的形式,叫做将多项式分解因式,根据定义解答.【详解】解:A 、2105525x x x x x -=⋅-,不是分解因式;B 、()a x y ax ay +=+,不是分解因式;C 、()22442x x x -+=-,是分解因式;D 、()()2163443x x x x x -+=-++,不是分解因式; 故选:C .【点睛】此题考查多项式的分解因式,熟记定义及分解因式后式子的特点是解题的关键. 5.B解析:B【分析】 把13m m +=两边平方得出221m m +的值,再把331m m+变形代入即可得出答案 【详解】 解:∵13m m+=, ∴219⎛⎫+= ⎪⎝⎭m m , ∴221=7+m m ∴()3232111=m+m 1+=371=18m m ⎛⎫⎛⎫+-⨯- ⎪⎪⎝⎭⎝⎭m m 故选:B【点睛】本题考查了完全平方公式的应用,熟练掌握公式是解题的关键6.D解析:D【分析】 将原式变形为201920181-22⎛⎫⨯ ⎪⎝⎭,再利用同底数幂的乘法逆运算变为2018201811--222⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭,然后运用乘法交换律及积的乘方的逆运算计算即可. 【详解】 解:原式=201920181-22⎛⎫⨯ ⎪⎝⎭=2018201811--222⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭=2018201811-2-22⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭=201811-2-22⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭ =()20181-1-2⎛⎫⨯ ⎪⎝⎭=1×1-2⎛⎫ ⎪⎝⎭=12- 故选:D .【点睛】本题主要考查了整式的乘法,熟练掌握同底数幂的乘法、积的乘方的逆运算是解题的关键.7.D解析:D【分析】先提公因式x n-1,再用平方差公式进行分解即可.【详解】x n+1−x n-1=x n-1(x 2-1)=x n−1(x+1)(x−1),故选:D【点睛】此题考查了提公因式法和公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键. 8.A解析:A【分析】①根据同类项的定义判断计算;②根据幂的乘方公式计算;③利用零指数幂和有理数的混合运算法则计算;④根据同类项的定义判断计算.【详解】∵2x 与3x 不是同类项,无法合并,∴①是错误的;∵()326x x =,∴②是正确的; ∵032112-1=1⨯-=⨯,∴③是错误的; ∵53-5+3=-2--+=,∴④是错误的;综上所述,只有一个正确,故选:A.【点睛】本题考查了合并同类项,幂的乘方,零指数幂,绝对值,有理数的混合运算,熟练掌握公式及其运算法则是解题的关键.9.B解析:B【分析】由552a =,443b =,334c =,比较5432,3,4的大小即可.【详解】解:∵555112=(2)a =,444113(3)b == ,333114(4)c == ,435342>> , ∴411311511(3)(4)(2)>>,即b c a >>,故选B .【点睛】本题考查了幂的乘方的逆运算及数的大小的比较,解题的关键是熟练掌握幂的乘方运算法则.10.A解析:A【分析】根据平方差公式:两个数平方的差,等于这两个数的和与差的平方解答.【详解】A 、21x -+,能用平方差公式分解因式;B 、21x +,不能用平方差公式分解因式;C 、21x --,不能用平方差公式分解因式;D 、221x x -+,不能用平方差公式分解因式;故选:A .【点睛】此题考查平方差公式:22()()a b a b a b -=+-,掌握公式中多项式的特点是解题的关键. 11.B解析:B【分析】根据同底数幂相乘、幂的乘方、积的乘方、合并同类项法则逐一计算即可判断.【详解】解:A 、a 5•a 2=a 7,此选项计算错误,故不符合题意;B 、(a 2)4=a 8,此选项计算正确,符合题意;C 、(a 3b )2=a 6b 2,此选项计算错误,故不符合题意;D 、a 3与a 5不能合并,此选项计算错误,故不符合题意.故选:B .【点睛】本题主要考查幂的运算,合并同类项,解题的关键是熟练掌握同底数幂相乘、幂的乘方与积的乘方的运算法则.12.C解析:C【分析】直接将原式变形,进而把已知代入求出答案.【详解】解:∵-4a+2b+10=10-2(2a-b),把2a-b=7代入上式得:原式=10-2×7=10-14=-4.故选:C.【点睛】此题主要考查了代数式求值,正确将原式变形是解题关键.二、填空题13.15【分析】原式利用多项式乘以多项式以及单项式乘以多项式法则化简把已知等式代入计算即可求出值【详解】∵x2−3x−3=0∴x2=3x+3则原式=(x2−x)(x2−5x+6)=(2x+3)(−2x+解析:15【分析】原式利用多项式乘以多项式,以及单项式乘以多项式法则化简,把已知等式代入计算即可求出值.【详解】∵x2−3x−3=0,∴x2=3x+3,则原式=(x2−x)(x2−5x+6)=(2x+3)(−2x+9)=−4x2+12x+27=−4(3x+3)+12x+27=−12x−12+12x+27=15.故答案为:15【点睛】此题考查了多项式乘多项式,以及单项式乘多项式,熟练掌握运算法则是解本题的关键.14.【分析】根据同底数幂的乘法可得再根据幂的乘方可得然后再代入求值即可【详解】解:故答案为【点睛】此题主要考查了同底数幂的乘法和幂的乘方关键是掌握同底数幂的乘法法则:同底数幂相乘底数不变指数相加;幂的乘解析:1 4【分析】根据同底数幂的乘法可得22m n m n x x x +=⋅,再根据幂的乘方可得()22m m x x =,然后再代入18m x =,16n x =求值即可. 【详解】 解:()2222111684m n m n m n x x x xx +⎛⎫=⋅=⋅=⨯= ⎪⎝⎭ , 故答案为14. 【点睛】 此题主要考查了同底数幂的乘法和幂的乘方,关键是掌握同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘.15.【分析】根据幂的乘方与同底数幂的除法法则解答即可【详解】∵(am )2÷an =22÷5=4÷5=故答案为:【点睛】本题主要考查了幂的乘方与同底数幂的除法熟记幂的运算法则是解答本题的关键解析:45【分析】根据幂的乘方与同底数幂的除法法则解答即可.【详解】∵2m a =,5n a =,2m n a -=(a m )2÷a n =22÷5=4÷5=45. 故答案为:45. 【点睛】 本题主要考查了幂的乘方与同底数幂的除法,熟记幂的运算法则是解答本题的关键. 16.120【分析】令x=0可求得a=1;令x=1可求得a5a4a3a2a1a=243①;令x=-1可求得-a5a4-a3a2-a1a=-1②把①和②相加即可求出a2+a4的值【详解】解:解析:120【分析】令x=0,可求得a=1;令x=1,可求得a 5+a 4+a 3+a 2+a 1+a=243①;令x=-1,可求得-a 5+a 4-a 3+a 2-a 1+a=-1②,把①和②相加即可求出a 2+a 4的值.【详解】解:当x=0时, a=1;当x=1时, a 5+a 4+a 3+a 2+a 1+a=243①,当x=-1时,-a 5+a 4-a 3+a 2-a 1+a=-1②,①+②,得2a 4+2a 2+2a=242,∴a 2+a 4=120.故答案为:120.【点睛】本题考查了求代数式的值,正确代入特殊值是解答本题的关键.17.【分析】原式提取公因式再利用平方差公式分解即可【详解】解:原式=5x (x2-4y2)=故答案为:【点睛】本题考查了提公因式法与公式法的综合运用熟练掌握因式分解的方法是解题的关键解析:()()5 +2 -2x x y x y【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:原式=5x (x 2-4y 2)=5(+2)(-2)x x y x y ,故答案为:5(+2)(-2)x x y x y【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键. 18.【分析】根据题意分析可得第一个图形需要黑色棋子的个数为2×3-3第二个图形需要黑色棋子的个数为3×4-4第三个图形需要黑色棋子的个数为4×5-5依此类推可得第n 个图形需要黑色棋子的个数为计算可得答案解析:()2n n +【分析】根据题意分析可得第一个图形需要黑色棋子的个数为2×3-3,第二个图形需要黑色棋子的个数为3×4-4,第三个图形需要黑色棋子的个数为4×5-5,依此类推可得第n 个图形需要黑色棋子的个数为()()()122n n n ++-+,计算可得答案.【详解】解:观察图形可得:第1个图形是三角形,有3条边,每条边上有2个点,重复了3个点,需要黑色棋子2×3-3个,第2个图形是四边形,有4条边,每条边上有3个点,重复了4个点,需要黑色棋子3×4-4个,第3个图形是五边形,有5条边,每条边上有4个点,重复了5个点,需要黑色棋子4×5-5个,按照这样的规律下去:则第n 个图形需要黑色棋子的个数是()()()()1222n n n n n ++-+=+,∴当n=6时,()26848n n +=⨯=;故答案为48;()2n n +.【点睛】本题主要考查图形规律及整式乘法的应用,关键是根据图形得到一般规律,然后问题可求解.19.【分析】多项式的首项和末项分别是x 和2的平方那么中间一项是加上或减去x 与2积的2倍由此得到答案【详解】∵∴b=故答案为:【点睛】此题考查完全平方式掌握完全平方式的构成特点是解题的关键解析:4±【分析】多项式的首项和末项分别是x 和2的平方,那么中间一项是加上或减去x 与2积的2倍,由此得到答案.【详解】∵222(2)444x x x x bx ±±=+=++,∴b=4±,故答案为:4±.【点睛】此题考查完全平方式,掌握完全平方式的构成特点是解题的关键.20.②【分析】①用两个钉子可以把木条固定的依据是两点确定一条直线;②利用整体代换的思想可以求出代数式的值;③根据倒数的定义举出反例即可;④直线上ABC 三点的位置关系要画图分情况讨论【详解】①用两个钉子可解析:②【分析】①用两个钉子可以把木条固定的依据是“两点确定一条直线”;②利用“整体代换”的思想,可以求出代数式的值;③根据倒数的定义,举出反例即可;④直线上A 、B 、C 三点的位置关系,要画图,分情况讨论.【详解】①用两个钉子可以把木条固定的依据是“两点确定一条直线”,故①错误;②∵2210m m +-=,∴()2242522172077m m m m ++=+-+=⨯+=,故②正确;③∵a >b ,取a=1,b=-1, ∴11a =,11b=-,11a b >,故③错误; ④当点C 位于线段AB 上时,AC=AB -BC=5-2=3cm ;当点C 位于线段AB 的延长线上时,AC=AB+BC=5+2=7cm ,则AC 的长为3cm 或7cm ,故④错误;综上可知,答案为:②.【点睛】本题考查了两点确定一条直线、整体代换思想、求代数式的值、倒数的有关计算及数形结合法求线段的长度,综合性较强,需要学生熟练掌握相关的知识点.三、解答题21.(1)()()2x y x y ---;(2)ABC 为等腰三角形,理由见解析【分析】(1)前三项符合完全平方公式,最后一项用提公因式法进行分解因式,最后再提公因式(x-y )即可.(2)通过因式分解22a bc b ac +--()()0a b a b c =-+-=,因为0a b c +->,所以得0a b -=,则a b =,那么ABC 为等腰三角形.【详解】解:(1)原式()()22222x xy y x y =-+--()()22x y x y =--- ()()2x y x y =---.(2)结论:ABC 为等腰三角形理由:∵22a bc b ac +--()()22a b ac bc =---()()()a b a b c a b =+---()()a b a b c =-+-0=又∵0a b c +->∴0a b -=∴a b =∴ABC 为等腰三角形.【点睛】 此题主要考查了因式分解的应用,要熟练掌握,用因式分解的方法将式子变形时,根据已知条件,变形的可以是整个代数式,也可以是其中的一部分.22.(1)7;(2)有同样的规律,(a+1)(a+7)-a(a+8)=7,理由见解析【分析】(1)根据题意列出算式11×5-4×12,再进一步计算即可;(2)如换为3,4,10,11,按要求计算即可;设方框框出的四个数分别为a ,a+1,a+7,a+8,列出算式(a+1)(a+7)-a(a+8),再进一步计算即可得.【详解】(1)11×5-4×12=55-48=7,故答案为:7;(2)换为3,4,10,11,则10×4-3×11=40-33=7;设方框框出的四个数分别为a ,a+1,a+7,a+8,则(a+1)(a+7)-a(a+8)=a 2+7a+a+7-a 2-8a=7.【点睛】本题主要考查整式的混合运算,解题的关键是根据题意列出算式,并熟练掌握整式的混合运算顺序和运算法则.23.(1)()()22m n m n ++;(2)42cm .【分析】(1)根据图形的面积直接可以得到;(2)根据222258m n +=,10mn =,可得2229m n +=,可求得7m n +=,根据图形可知,图中所有裁剪线(虚线部分)长之和是66m n +,据此求解即可.【详解】(1)根据图形,依题意可得:2225222m mn n m n m n(2)依题意得222258m n +=,10mn =2229m n ∴+=2222m n m mn n2292049m n0m n +>7m n ∴+=,根据图形可知,图中所有裁剪线(虚线部分)长之和是:6666742m n m n ∴图中所有裁剪线(虚线部分)长之和为42cm .【点睛】本题考查完全平方公式和因式分解的应用,理解题意,从题目中获取信息,列出正确的代数式,再由图形的特点求解是解题的关键.24.10-【分析】先根据多项式的乘法法则计算,然后根据展开式中没有二次项,且常数项为10列方程组求解即可.【详解】解:∵()()2322222242x a x bx x bx x ax abx a +--=--+-- ()()322242x b a x ab x a =---+-,∵乘积展开式中没有二次项,且常数项为10,∴20210a b a -=⎧⎨-=⎩, 解得:5a =-,52b =-, ∴5252102a b ⎛⎫+=-+⨯-=- ⎪⎝⎭. 【点睛】 本题考查了多项式与多项式的乘法运算,多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.也考查了二元一次方程组的解法. 25.(1)S 1=a 2-b 2,S 2=2b 2-ab ;(2)31;(3)292 【分析】(1)根据正方形的面积之间的关系,即可用含a 、b 的代数式分别表示S 1、S 2; (2)根据S 1+S 2=a 2-b 2+2b 2-ab =a 2+b 2-ab ,将a +b =10,ab =23代入进行计算即可; (3)根据S 3=12(a 2+b 2﹣ab ),S 1+S 2=a 2+b 2-ab =29,即可得到阴影部分的面积S 3. 【详解】解:(1)由图可得,S 1=a 2-b 2,S 2=2b 2-ab ;(2)S 1+S 2=a 2-b 2+2b 2-ab =a 2+b 2-ab ,∵a +b =10,ab =23,∴S 1+S 2=a 2+b 2-ab =(a +b )2-3ab =100-3×23=31;(3)由图可得,S 3=a 2+b 2-12b (a +b )-12a 2=12(a 2+b 2-ab ), ∵S 1+S 2=a 2+b 2-ab =29,∴S 3=12×29=292. 【点睛】本题主要考查了完全平方公式的几何背景的应用,解决问题的关键是根据图形之间的面积关系进行推导计算.26.a ﹣12,0 【分析】先根据完全平方公式和多项式乘以多项式算括号内的乘法,再合并同类项,算除法,最后代入求出即可.【详解】解:[(2a ﹣1)2﹣(2a+1)(2a ﹣1)+(2a ﹣1)(a+2)]÷2a=[4a 2﹣4a+1﹣4a 2+1+2a 2+4a ﹣a ﹣2]÷2a=[2a 2﹣a]÷2a=a﹣12,当a=12时,原式=0.【点睛】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.。
新人教版八年级数学上册《整式的乘法与因式分解》单元测试卷含有答案详细解析
新人教版八年级数学上册《整式的乘法与因式分解》单元测试卷一、选择题1、下列等式从左到右的变形,属于因式分解的是()A.a(x﹣y)=ax﹣ay B.x2+2x+1=x(x+2)+1C.(x+1)2=x2+2x+1 D.x2﹣x=x(x﹣1)2、下列因式分解正确的是()A.x2﹣4=(x+4)(x﹣4)B.x2﹣2x﹣15=(x+3)(x﹣5)C.3mx﹣6my=3m(x﹣6y)D.2x+4=2(x+4)3、下列运算正确的是()A.3x2+2x3=5x6B.50=0C.2﹣3=D.(x3)2=x64、若是一个完全平方式,那么的值是()A.B.-12 C.D.-245、若等式成立,则M是()A.B.C.-D.-6、下列各式中,运算结果为的是( )A.B.C.D.7、如果(x+1)(x2-5ax+a)的乘积中不含x2项,则a为()A.5 B.C.-D.-58、计算(﹣ab)(3a2b2)3的结果是()A.﹣3a3b3B.27a7b7C.﹣27a7b7D.﹣3a7b79、把多项式分解因式结果正确的是()A.B.C.D.10、计算的结果是()A.4 B.﹣4 C.16 D.﹣16二、填空题11、分解因式:3a3-3a=______.12、计算:-24x2y4÷(-3x2y)·3x3 =________________________13、计算:(6x2﹣3x)÷3x=___________.14、如图,两个正方形的边长分别为a,b(a>b),如果a+b=17,ab=60,则阴影部分的面积是________.15、若,,则__________.16、()2013×1.52012×(﹣1)2014=_____.17、设一个正方形的边长为acm,若边长增加3cm,则新正方形的面积增加了_________。
18、若4x2-kx+9(k为常数)是完全平方式,则k=________.19、计算:(+)(-)=_________20、在实数范围内因式分解:=______________________;三、计算题21、计算:22、因式分解:⑴⑵⑶⑷四、解答题23、先化简,再求值:,其中.24、先化简,再求值:(a﹣b)2+(2a﹣b)(a﹣2b)-a(3a-b),其中│a-1│+(2+b)2 =025、已知:,.求:(1)的值;(2)的值.26、已知a,b,c是△ABC的三边长,且满足a2+2ab=c2+2bc,试判断这个三角形的形状.27、请根据小明和小红的对话解答下面的问题:小红:如图是由边长分别为a,b的两个正方形拼成的图形;小明:阴影部分的面积等于图中两个正方形的面积和减去3个不同的直角三角形的面积.(1)用含有a,b的整式表示如图所示的阴影部分的面积;(2)当a=3 cm时,求这个阴影部分的面积.参考答案1、D2、B3、D4、C5、B6、A.7、B.8、D9、D10、B11、3a(a+1)(a-1)12、2413、2x﹣114、或15、4516、17、18、±1219、-320、21、22、⑴==⑵==⑶===4⑷===23、,.24、3b2-6ab,24.25、(1)31;(2)3726、等腰三角形27、(1);(2)4.5.答案详细解析【解析】1、分析:根据因式分解的意义,可得答案.详解:A、是整式的乘法,故A不符合题意;B、没把一个多项式转化成几个整式积的形式,故B不符合题意;C、是整式的乘法,故C不符合题意;D、把一个多项式转化成几个整式积的形式,故D符合题意;故选:D.点睛:本题考查了因式分解的意义,把一个多项式转化成几个整式的积的形式是解题的关键.2、解:A.x2﹣4=(x+2)(x﹣2);故本选项错误;B.x2﹣2x﹣15=(x+3)(x﹣5);故本选项正确;C.3mx﹣6my=3m(x﹣2y);故本选项错误;D.2x+4=2(x+2);故本选项错误.故选B.3、试题分析:根据合并同类项,可判断A,根据非0的0次幂,可判断B,根据负整指数幂,可判断C,根据幂的乘方,可判断D.解:A、系数相加字母部分不变,故A错误;B、非0的0次幂等于1,故B错误;C、2,故C错误;D、底数不变指数相乘,故D正确;故选:D.考点:幂的乘方与积的乘方;合并同类项;零指数幂;负整数指数幂.4、试题分析:完全平方式是指:,根据题意可得:m=2×3×4=24,则选项C.5、根据等式可得:M=因此正确选项是B.6、试题分析:观察式子特点发现该式为完全平方式的展开式,通过完全平方公式并结合互为相反数的两个数的平方相等,注意符号问题,即可得到答案.由完全平方公式可以得到:,所以A为正确答案. 考点:完全平方公式.7、试题分析:原式=x3-5ax2+ax+x2-5ax+a,=x3+(1-5a)x2-4ax+a,∵不含x2项,∴1-5a=0,解得a=.故选B.考点:多项式乘多项式.8、先运用积的乘方,再运用单项式乘单项式求解即可.解:(﹣ab)(3a2 b2)3=﹣ab•27a6b6=﹣27a7b7,故选:D.9、试题分析:.故应选A.考点:分解因式.10、试题解析::(-4)2012×(-)2011=(-4)2011×(-)2011×(-4)=-4,故选B.11、分析:提取公因式法和公式法相结合进行因式分解即可.详解:原式故答案为:点睛:考查因数分解,提取公因式法和公式法相结合进行因式分解.注意分解一定要彻底.12、-24x2y4÷(-3x2y)·3x3=8y3·3x3=24.故答案是:24.13、试题解析:(6x2-3x)÷3x,=6x2÷3x-3x÷3x,=2x-1.14、∵a+b=17,ab=60,∴S阴影=a2+b2-a2-b(a+b)=(a2+b2-ab)=[(a+b)2-3ab]=,故答案为:.点睛:此题考查了整式的混合运算以及化简求值,涉及的知识有:单项式乘多项式法则,去括号法则,合并同类项法则,熟练掌握法则是解本题的关键.15、试题解析:∵,,∴2m+2n=2m•22n=5×9=45.16、()2013×1.52012×(﹣1)2014=×()2012×()2012×1=×(×)2012×1=,故答案为:.【点睛】本题考查了积的乘方的逆用,将指数化成相同数字是解题的关键.17、由题意知新正方形的边长是,新正方形的面积为,原来正方形的边长是,则添加的面积等于=.18、试题解析:是完全平方式.故答案为:19、原式=()2−()2=2−5=−3.故答案为:−3.20、原式=x(x2-8)=x[x2-]=.【点睛】本题考查了在实数范围内分解因式的知识.在进行分解时要注意观察是否有公因式,然后再观察是否可用公式,注意分解要彻底.21、试题分析:利用多项式乘以多项式法则及平方差公式进行计算即可得到结果.试题解析:=2x2+8x-3x-12-x2+1=(2x2-x2)+(8x-3x)+(1-12)=22、试题解析:点睛:因式分解:把一个多项式分解成几个整式的积的形式.因式分解的主要方法:提公因式法,公式法,十字相乘法,分组分解法.23、分析:原式利用完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x与y的值代入计算即可求出值.详解:原式=x2+2xy+y2﹣2xy﹣2y2=x2﹣y2当x=﹣1,y=时,原式=3﹣2﹣3=﹣2.点睛:本题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解答本题的关键.24、试题分析:先将原式去括号化简,再由│a-1│+(2+b)2 =0可以求出a、b的值,将a、b的值代入化简后的式子即可.试题解析:原式=a2-2ab+b2+2a2-4ab-ab+2b2-3a2+ab=3b2-6ab;∵│a-1│+(2+b)2 =0,∴a-1=0,2+b=0,∴a=1,b=-2;将a=1,b=-2代入化简后的式子可得:原式=3×(-2)2-6×1×(-2)=24.点睛:非负数之和为0,那么对应的每一个非负数必为0.25、试题分析:把原式变形为与完全平方公式有关的式子求解.试题解析:(1)x2+y2=x2+y2+2xy-2xy,=(x+y)2-2xy,=25+6,=31;(2)(x-y)2=x2+y2+2xy-4xy,=(x+y)2-4xy,=25+12,=37.26、试题分析:根据题目中a2+2ab=c2+2bc,移项可以得到a2+2ab-c2-2bc=0,然后根据平方差公式和提公因式法进行因式分解得:,再利用提公因式法进行因式分解得:,题中a,b,c是△ABC的三边长,都是正数,所以,即可得到a-c=0,即a=c,所以这个三角形是等腰三角形.试题解析:∵a2+2ab=c2+2bc,∴a2+2ab-c2-2bc=0,∴,∴,∵a>0,b>0,c>0,∴, a-c=0,∴a=c,∴△ABC为等腰三角形.点睛:本题主要考查等式的变形,解决本题的关键在于利用平方差公式和提公因式法对多项式进行因式分解.27、试题分析:阴影部分的面积等于图中两个正方形的面积和减去3个不同的直角三角形的面积.把代入即可求出阴影部分的面积.试题解析:阴影部分的面积为:当时,阴影部分的面积为。
人教版八年级上册数学 整式的乘法与因式分解单元综合测试(Word版 含答案)
人教版八年级上册数学 整式的乘法与因式分解单元综合测试(Word版 含答案)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .3 【答案】D【解析】【分析】 把已知的式子化成12[(a-b )2+(a-c )2+(b-c )2]的形式,然后代入求解即可. 【详解】原式=12(2a 2+2b 2+2c 2-2ab-2ac-2bc ) =12[(a 2-2ab+b 2)+(a 2-2ac+c 2)+(b 2-2bc+c 2)] =12[(a-b )2+(a-c )2+(b-c )2] =12×(1+4+1) =3,故选D.【点睛】本题考查了因式分解的应用,代数式的求值,正确利用因式分解的方法把所求的式子进行变形是关键.2.若()(1)x m x +-的计算结果中不含x 的一次项,则m 的值是( )A .1B .-1C .2D .-2.【答案】A【解析】【分析】根据多项式相乘展开可计算出结果.【详解】 ()()1x m x +-=x 2+(m-1)x-m ,而计算结果不含x 项,则m-1=0,得m=1.【点睛】本题考查多项式相乘展开系数问题.3.已知(x -2015)2+(x -2017)2=34,则(x -2016)2的值是( )A .4B .8C .12D .16【答案】D【解析】 (x -2 015)2+(x -2 017)2=(x -2 016+1)2+(x -2 016-1)2=22(2016)2(2016)1(2016)2(2016)1x x x x -+-++---+=22(2016)2x -+=34∴2(2016)16x -=故选D.点睛:本题主要考查了完全平方公式的应用,把(x -2 015)2+(x -2 017)2化为 (x -2 016+1)2+(x -2 016-1)2,利用完全平方公式展开,化简后即可求得(x -2 016)2的值,注意要把x-2016当作一个整体.4.下列多项式中,能分解因式的是:A .224a b -+B .22a b --C .4244x x --D .22a ab b -+【答案】A【解析】根据因式分解的意义,可知A 、224a b -+能用平方差公式()()22a b a b a b -=+-分解,故正确;B 、22a b --=-(22a b +),不能进行因式分解,故不正确;C 、4244x x --不符合完全平方公式()2222a ab b a b ±+=±,故不正确;D 、22a ab b -+既没有公因式,也不符合公式,故不正确.故选:A.点睛:此题主要考查了因式分解,解题时利用因式分解的方法:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解).5.化简()22x 的结果是( )A .x 4B .2x 2C .4x 2D .4x 【答案】C【解析】【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘即可.【详解】(2x)²=2²·x²=4x²,故选C.【点睛】本题考查了积的乘方,解题的关键是掌握积的乘方的运算法则.6.下列各式中,不能运用平方差公式进行计算的是( )A .(21)(12)x x --+B .(1)(1)ab ab -+C .(2)(2)x y x y ---D .(5)(5)a a -+--【答案】A【解析】【分析】运用平方差公式(a+b )(a-b )=a 2-b 2时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.【详解】A. 中不存在互为相反数的项,B. C. D 中均存在相同和相反的项,故选A.【点睛】此题考查平方差公式,解题关键在于掌握平方差公式结构特征.7.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( )A .a=2,b=3B .a=-2,b=-3C .a=-2,b=3D .a=2,b=-3【答案】B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a 、b 即可.详解:(x+1)(x-3)=x 2-3x+x-3=x 2-2x-3所以a=2,b=-3,故选B .点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.8.若(x 2-x +m )(x -8)中不含x 的一次项,则m 的值为( )A .8B .-8C .0D .8或-8【答案】B【解析】(x 2-x +m )(x -8)=322328889(8)8x x mx x x m x x m x m -+-+-=-++-由于不含一次项,m+8=0,得m=-8.9.下列从左到右的变形中,属于因式分解的是( )A .()()2224x x x +-=-B .2222()a ab b a b -+=-C .()11am bm m a b +-=+-D .()21(1)1111x x x x ⎛⎫--=--- ⎪-⎝⎭【答案】B【解析】【分析】 把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案.【详解】A .属于整式的乘法运算,不合题意;B .符合因式分解的定义,符合题意;C .右边不是乘积的形式,不合题意;D .右边不是几个整式的积的形式,不合题意;故选:B .【点睛】本题考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,掌握定义是解题的关键.10.小淇用大小不同的 9 个长方形拼成一个大的长方形 ABCD ,则图中阴影部分的面积是( )A .(a + 1)(b + 3)B .(a + 3)(b + 1)C .(a + 1)(b + 4)D .(a + 4)(b + 1)【答案】B【解析】【分析】 通过平移后,根据长方形的面积计算公式即可求解.【详解】平移后,如图,易得图中阴影部分的面积是(a+3)(b+1).故选B.【点睛】本题主要考查了列代数式.平移后再求解能简化解题.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.(1)已知32m a =,33n b =,则()()332243mn m n m a b a b a +-⋅⋅=______. (2)对于一切实数x ,等式()()212x px q x x -+=+-均成立,则24p q -的值为______.(3)已知多项式2223286x xy y x y +--+-可以分解为()()22x y m x y n ++-+的形式,则3211m n +-的值是______. (4)如果2310x x x +++=,则232016x x x x +++⋅⋅⋅+=______.【答案】(1)5-; (2)9; (3)78-; (4)0. 【解析】【分析】(1)根据积的乘方和幂的乘方,将32m a =整体代入即可;(2)将等式后面部分展开,即可求出p 、q 的值,代入即可;(3)根据多项式乘法法则求出()()22x y m x y n ++-+,即可得到关于m 、n 的方程组,解之即可求得m 、n 、的值,代入计算即可;(4)4个一组提取公因式,整体代入即可.【详解】(1)32m a =,33n a =,()()()()332222343333m n m n m m n m n a b a b a a b a b ∴+-⋅⋅=+-22232343125=+-⨯=+-=-(2)222x px q x x -+=--对一切实数x 均成立,1p ∴=,2q =-249p q ∴-=(3)()()222223286x y m x y n x xy y x y ++-+=+--+-,()()22222322223286x xy y m n x n m y mn x xy y x y ∴+-+++-+=+--+- 21,28,6,m n n m mn +=-⎧⎪∴-=⎨⎪=-⎩解得2,3.m n =-⎧⎨=⎩ 321718m n +∴=-- (4)2310x x x +++=,232016x x x x ∴+++⋅⋅⋅+()()2320132311x x x x x x x x =++++⋅⋅⋅++++000=+⋅⋅⋅+=故答案为: −5;9;78-;0. 【点睛】本题主要考察幂的运算及整式的乘法,掌握其运算法则是关键.12.分解因式212x 123y xy y -+-=___________【答案】()232x 1y --【解析】根据因式分解的方法,先提公因式-3y ,再根据完全平方公式分解因式为:()()22212x 12334x 41321y xy y y x y x -+-=--+=--. 故答案为()232x 1y --.13.已知a m =3,a n =2,则a 2m ﹣n 的值为_____.【答案】4.5【解析】分析:首先根据幂的乘方的运算方法,求出a 2m 的值;然后根据同底数幂的除法的运算方法,求出a 2m-n 的值为多少即可.详解:∵a m =3,∴a 2m =32=9,∴a 2m-n =292m n a a ==4.5. 故答案为:4.5. 点睛:此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a 可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.14.分解因式2242xy xy x ++=___________【答案】22(1)x y +【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】原式=2x (y 2+2y +1)=2x (y +1)2,故答案为2x (y +1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.分解因式:4ax 2-ay 2=________________.【答案】a (2x+y )(2x-y )【解析】【分析】首先提取公因式a ,再利用平方差进行分解即可.【详解】原式=a (4x 2-y 2)=a (2x+y )(2x-y ),故答案为a (2x+y )(2x-y ).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.16.因式分解:223ax 12ay -=______.【答案】()()3a x 2y x 2y +-【分析】先提公因式3a ,然后再利用平方差公式进行分解即可得.【详解】原式()223a x 4y =-()()3a x 2y x 2y =+-,故答案为:()()3a x 2y x 2y +-.【点睛】本题考查了综合提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.17.已知2x +3y -5=0,则9x •27y 的值为______.【答案】243【解析】【分析】先将9x •27y 变形为32x+3y ,然后再结合同底数幂的乘法的概念和运算法则进行求解即可.【详解】∵2x+3y−5=0,∴2x+3y=5,∴9x ⋅27y =32x ⋅33y =32x+3y =35=243.故答案为:243.【点睛】本题考查了同底数幂的乘法,解题的关键是熟练的掌握同底数幂乘法的概念和运算法则.18.分解因式:2x 2﹣8=_____________【答案】2(x+2)(x ﹣2)【解析】【分析】先提公因式,再运用平方差公式.【详解】2x 2﹣8,=2(x 2﹣4),=2(x+2)(x ﹣2).【点睛】考核知识点:因式分解.掌握基本方法是关键.19.若3a b +=,则226a b b -+的值为__________.【答案】9分析:先将226a b b -+化为()()6a b a b b +-+,再将3a b +=代入所化式子计算即可. 详解:∵3a b +=,∴226a b b -+=()()6a b a b b +-+=3()6a b b -+=336a b b -+=3()a b +=9.故答案为:9.点睛:“能够把226a b b -+化为()()6a b a b b +-+”是解答本题的关键.20.因式分解34x x -= .【答案】()()x x 2x 2-+-【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式x -后继续应用平方差公式分解即可:()()()324x x x x 4x x 2x 2-=--=-+-.。
八年级数学上册《第十四章 整式的乘法》单元测试题及答案(人教版)
八年级数学上册《第十四章 整式的乘法》单元测试题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列运算中,结果是a 5的是( )A .a 2•a 3B .a 10÷a 2C .(a 2)3D .(﹣a )52.下列计算中正确的是( )A .a ×a 2×a 3=a 6B .a 3+a 3=2a 6C .a 6÷a 3=a 2D .(a 2)3=a 53.若(x-5)(x+4)=x 2+ax-20,则a 的值为( )A .-5B .-1C .1D .44.若a 为正整数,则(a⋅a⋯⋯a)2a 个=( )A .a 2aB .2aaC .aaD .a 25.(−x +2y)(x −2y)2[−(−x +2y)]3 =( )A .−(x −2y)6B .(x −2y)6C .(−x +2y)6D .−(x +2y)66.若(x 2+px+8)(x 2-3x+q)乘积中不含 x 2 项和 x 3 项,则p 、q 的值为( )A .p=0,q=0B .p=3,q=1C .p=–3, q=–9D .p=–3,q=17.已知x a =2,x b =4则x 2a−b 的值为( ).A .0B .1C .8D .168.某些代数恒等式可用几何图形的面积来验证,如图所示的几何图形的面积可验证的代数恒等式是()A .2a(a +b)=2a 2+2abB .2a(2a +b)=4a 2+2abC .(a +b)2=a 2+2ab +b 2D .(a +b)(a −b)=a 2−b 2二、填空题9.﹣2a (a ﹣b )= .10.计算 6m 6n 3÷3m 2n 211.(x ﹣1)(x+a )的结果是关于x 的二次二项式,则a= .12.已知(x+1)x+4=1,则x= .13.若(x+3)(x2−ax+7)的乘积中不含x的一次项,则a=.三、解答题14.先化简,再求值:4xy﹣[(x2+5xy﹣y2)﹣(x2+3xy﹣2y2)],其中x=- 14,y=- 12.15.计算:(1)(5a2b2c3)4÷(﹣5a3bc)2;(2)(2a2b)4•3ab2c÷3ab2•4b.16.若x=2m+1,y=3+4m.(1)请用含x的代数式表示y;(2)如果x=−2时,求此时y的值.17.如图,将一个长小形铁皮剪去一个小正方形.(1)用含有a,b的代数式表示余下阴影部分的面积;(2)当a=6,b=2时,求余下阴影部分的面积.18.题目:若a2+a﹣4=0,求代数式(a+2)2+3(a+1)(a﹣1)的值.小明的解法如下:原式=a2+4a+4+3(a2﹣1)(第一步)=a2+4a+4+3a2﹣1(第二步)=4a2+4a+3(第三步)由a2+a﹣4=0得a2+a=4,(第四步)所以原式=4a2+4a+3=4(a2+a)+3=4×4+3=19(第五步)根据小明的解法解答下列问题:(1)小明的解答过程在第步上开始出现了不符合题意,错误的原因是;(2)请你借鉴小明的解题方法,写出此题的符合题意解答过程.19.(1)计算下面两组算式:①(3×5)2与32×52;②[(−2)×3]2与(−2)2×32;(2)根据以上计算结果想开去:(ab)3等于什么?(直接写出结果)(3)猜想与验证:当n为正整数时,(ab)n等于什么? 请你利用乘方的意义说明理由.(4)利用上述结论,求(−4)2020×0.252021的值.参考答案1.A2.A3.B4.A5.A6.B7.B8.A9.﹣2a2+2ab 10.2m4n11.0或1 12.-4或-2或013.7314.解:4xy﹣[(x2+5xy﹣y2)﹣(x2+3xy﹣2y2)].=2xy-y2当x=- 14,y=- 12时,原式=0.15.(1)解:(5a2b2c3)4÷(﹣5a3bc)2=54a8b8c12÷52a6b2c2=25a2b6c10(2)解:(2a2b)4•3ab2c÷3ab2•4b=16a8b4•3ab2c÷3ab2•4b=(16×3÷3×4)(a8+1﹣1b4+2﹣2+1c)=64a8b5c16.(1)解:∵x=2m+1∴2m=x−1∴y=3+(22)m=3+(2m)2=3+(x−1)2=x2−2x+4(2)解:当x=−2时17.解:(1)根据图形可得:S阴影部分的面积=(a+b)(2a+b)﹣a2=2a2+ab+2ab+b2﹣a2=a2+3ab+b2;(2)当a=6,b=2时S阴影部分的面积=62+3×6×2+22=36+36+4=76.18.(1)二;去括号时,未将﹣1也乘以3(2)解:原式=a2+4a+4+3(a2﹣1)(第一步)=a2+4a+4+3a2﹣3(第二步)=4a2+4a+1(第三步)由a2+a﹣4=0得a2+a=4,(第四步)所以原式=4a2+4a+1=4(a2+a)+1=4×4+1=17(第五步).19.(1)解:①(3×5)2 =152=22532×52 =9×25=225(3×5)2 = 32×52②[(−2)×3]2 =(-6)2=36(−2)2×32 =4×9=36[(−2)×3]2 = (−2)2×32(2)(ab)3=a3b3(3)解:(ab)n=(ab)·(ab)·⋯·(ab)︸n个=(a·a·⋯·a︸n个)·(b·b·⋯·b︸n个)=a n b n(4)解:(−4)2020×0.252021 = (−4×0.25)2020×0.25=1×0.25=0.25。
新人教版八年级数学上14.1整式的乘法同步检测试卷含答案
整式的乘法一、选择题(共28小题)1.计算(ab)2的结果是()A.2ab B.a2b C.a2b2D.ab22.下列运算正确的是()A.(﹣2mn)2=4m2n2B.y2+y2=2y4C.(a﹣b)2=a2﹣b2D.m2+m=m3 3.下列计算正确的是()A.a3+a4=a7B.a3•a4=a7C.a6÷a3=a2 D.(a3)4=a74.下列计算正确的是()A.3a﹣2a=1 B.a2+a5=a7C.a2•a4=a6D.(ab)3=ab35.下列运算正确的是()A.3x﹣x=3 B.x2•x3=x5C.(x2)3=x5D.(2x)2=2x26.下列计算正确的是()A. +=B.(ab2)2=ab4C.2a+3a=6a D.a•a3=a47.下列计算正确的是()A.(a3)2=a5B.a6÷a3=a2 C.(ab)2=a2b2D.(a+b)2=a2+b2 8.下列计算正确的是()A.a+2a2=3a3B.a3•a2=a6C.a6+a2=a3D.(ab)3=a3b39.下列运算正确的是()A.3x2+2x3=5x6B.50=0 C.2﹣3=D.(x3)2=x610.下列各运算中,计算正确的是()A.4a2﹣2a2=2 B.(a2)3=a5C.a3•a6=a9D.(3a)2=6a2 11.下列计算中正确的是()A. +=B.=3 C.a6=(a3)2D.b﹣2=﹣b2 12.(x4)2等于()A.x6B.x8C.x16D.2x413.计算(﹣a2)3的结果是()A.a5B.﹣a5C.a6D.﹣a614.下列计算错误的是()A.a•a2=a3B.a2b﹣ab2=ab(a﹣b)C.2m+3n=5mn D.(x2)3=x615.下列运算中,计算结果正确的是()A.m﹣(m+1)=﹣1 B.(2m)2=2m2C.m3•m2=m6D.m3+m2=m516.下面计算正确的是()A.3a﹣2a=1 B.3a2+2a=5a3C.(2ab)3=6a3b3D.﹣a4•a4=﹣a817.下列计算正确的是()A.3﹣1=﹣3 B.x3•x4=x7C.•=D.﹣(p2q)3=﹣p5q318.下列计算正确的是()A.a2+a3=a5B.C.(a2)3=a5D.(a3)2=a619.计算(2a2)3的结果是()A.2a6B.6a6C.8a6D.8a520.下列代数运算正确的是()A.(x3)2=x5B.(2x)2=2x2C.x3•x2=x5D.(x+1)2=x2+121.计算(3ab)2的结果是()A.6ab B.6a2b C.9ab2D.9a2b222.下列计算正确的是()A.a+2a=3a2B.(a2b)3=a6b3 C.(a m)2=a m+2D.a3•a2=a623.下列运算正确的是()A.2a2+3a=5a3B.a2•a3=a6C.(a3)2=a6D.a3﹣a3=a24.下列运算正确的是()A.(﹣a3)2=a5B.(﹣a3)2=﹣a6C.(﹣3a2)2=6a4D.(﹣3a2)2=9a4 25.下列计算正确的是()A.x4•x4=x16 B.(a3)2=a5C.(ab2)3=ab6D.a+2a=3a26.下列计算正确的是()A.a•a=a2B.(﹣a)3=a3C.(a2)3=a5D.a0=127.计算(﹣xy2)3,结果正确的是()A.x3y5B.﹣x3y6 C.x3y6D.﹣x3y5 28.计算(a3)2的结果是()A.a9B.a6C.a5D.a二、填空题(共2小题)29.化简:(﹣a2b3)3=______.30.计算:(﹣3)•(﹣)=______.参考答案一、选择题(共28小题)1.C;2.A;3.B;4.C;5.B;6.D;7.C;8.D;9.D;10.C;11.C;12.B;13.D;14.C;15.A;16.D;17.B;18.D;19.C;20.C;21.D;22.B;23.C;24.D;25.D;26.A;27.B;28.B;二、填空题(共2小题)29.-a6b9;30.9;。
人教版八年级数学上册 整式的乘法与因式分解单元综合测试(Word版 含答案)
人教版八年级数学上册 整式的乘法与因式分解单元综合测试(Word版 含答案)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.已知226a b ab +=,且a>b>0,则a b a b+-的值为( )A B C .2 D .±2 【答案】A【解析】【分析】已知a 2+b 2=6ab ,变形可得(a+b )2=8ab ,(a-b )2=4ab ,可以得出(a+b )和(a-b )的值,即可得出答案.【详解】∵a 2+b 2=6ab ,∴(a+b )2=8ab ,(a-b )2=4ab ,∵a >b >0,∴∴a b a b +-= 故选A.【点睛】本题考查了分式的化简求值问题,观察式子可以得出应该运用完全平方式来求解,要注意a 、b 的大小关系以及本身的正负关系.2.利用平方差公式计算(25)(25)x x ---的结果是A .245x -B .2425x -C .2254x -D .2425x + 【答案】C【解析】【分析】平方差公式是(a+b )(a-b )=a 2-b 2.【详解】解:()()()()()2225252525425254x x x x x x ---=--+=--=-, 故选择C.【点睛】本题考查了平方差公式,应牢记公式的形式.3.已知(x -2015)2+(x -2017)2=34,则(x -2016)2的值是( )A .4B .8C .12D .16【答案】D【解析】(x -2 015)2+(x -2 017)2=(x -2 016+1)2+(x -2 016-1)2 =22(2016)2(2016)1(2016)2(2016)1x x x x -+-++---+=22(2016)2x -+=34∴2(2016)16x -=故选D.点睛:本题主要考查了完全平方公式的应用,把(x -2 015)2+(x -2 017)2化为 (x -2 016+1)2+(x -2 016-1)2,利用完全平方公式展开,化简后即可求得(x -2 016)2的值,注意要把x-2016当作一个整体.4.因式分解x 2-ax +b ,甲看错了a 的值,分解的结果是(x +6)(x -1),乙看错了b 的值,分解的结果为(x -2)(x +1),那么x 2+ax +b 分解因式正确的结果为( )A .(x -2)(x +3)B .(x +2)(x -3)C .(x -2)(x -3)D .(x +2)(x +3)【答案】B【解析】【分析】【详解】因为(x +6)(x -1)=x 2+5x-6,所以b=-6;因为(x -2)(x +1)=x 2-x-2,所以a=1.所以x 2-ax +b=x 2-x-6=(x-3)(x+2).故选B.点睛:本题主要考查了多项式的乘法和因式分解,看错了a ,说明b 是正确的,所以将看错了a 的式子展开后,可得到b 的值,同理得到a 的值,再把a ,b 的值代入到x 2+ax +b 中分解因式.5.计算,得( ) A . B .C .D .【答案】C【解析】【分析】直接提取公因式(-3)m-1,进而分解因式即可.【详解】(-3)m +2×(-3)m-1=(-3)m-1(-3+2)=-(-3)m-1.故选C .【点睛】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.6.如果x m=4,x n=8(m、n为自然数),那么x3m﹣n等于()A.B.4 C.8 D.56【答案】C【解析】【分析】根据同底数幂的除法法则可知:指数相减可以化为同底数幂的除法,故x3m﹣n可化为x3m÷x n,再根据幂的乘方可知:指数相乘可化为幂的乘方,故x3m=(x m)3,再代入x m=4,x n=8,即可得到结果.【详解】解:x3m﹣n=x3m÷x n=(x m)3÷x n=43÷8=64÷8=8,故选:C.【点睛】此题主要考查了同底数幂的除法,幂的乘方,关键是熟练掌握同底数幂的除法与幂的乘方的计算法则,并能进行逆运用.7.如果是个完全平方式,那么的值是()A.8 B.-4 C.±8 D.8或-4【答案】D【解析】试题解析:∵x2+(m-2)x+9是一个完全平方式,∴(x±3)2=x2±2(m-2)x+9,∴2(m-2)=±12,∴m=8或-4.故选D.8.已知三个实数a,b,c满足a-2b+c=0,a+2b+c<0,则()A.b>0,b2-ac≤0 B.b<0,b2-ac≤0C.b>0,b2-ac≥0 D.b<0,b2-ac≥0【答案】D【解析】【分析】根据题意得a+c=2b,然后将a+c替换掉可求得b<0,将b2-ac变形为()24a c-,可根据平方的非负性求得b2-ac≥0.【详解】解:∵a-2b+c=0,∴a+c=2b,∴a+2b+c=4b<0,∴b<0,∴a2+2ac+c2=4b2,即22 224a ac c b++=∴b2-ac=()22222220 444a ca ac c a ac cac-++-+-==≥,故选:D.【点睛】本题考查了等式的性质以及完全平方公式的应用,熟练掌握完全平方公式是解题关键.9.下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a2【答案】D【解析】【分析】根据同底数幂的除法、积的乘方、完全平方公式、单项式乘法的法则逐项计算即可得.【详解】A、原式=a9,故A选项错误,不符合题意;B、原式=27a6,故B选项错误,不符合题意;C、原式=a2﹣2ab+b2,故C选项错误,不符合题意;D、原式=6a2,故D选项正确,符合题意,故选D.【点睛】本题考查了同底数幂的除法、积的乘方、完全平方公式、单项式乘法等运算,熟练掌握各运算的运算法则是解本题的关键.10.小淇用大小不同的 9 个长方形拼成一个大的长方形ABCD ,则图中阴影部分的面积是()A.(a + 1)(b + 3)B.(a + 3)(b + 1)C.(a + 1)(b + 4)D.(a + 4)(b + 1) 【答案】B【解析】【分析】通过平移后,根据长方形的面积计算公式即可求解.【详解】平移后,如图,易得图中阴影部分的面积是(a+3)(b+1).故选B.【点睛】本题主要考查了列代数式.平移后再求解能简化解题.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.在边长为a 的正方形中剪掉一个边长为b 的小正方形()a b ,再沿虚线剪开,如图①,然后拼成一个梯形,如图②.根据这两个图形的面积关系,用等式表示是____________.【答案】a 2-b 2=(a+b)(a-b)【解析】【分析】根据正方形的面积公式和梯形的面积公式,即可求出答案.【详解】∵第一个图形的面积是a 2-b 2,第二个图形的面积是12(b +b +a +a )(a -b )=(a +b )(a -b ), ∴根据两个图形的阴影部分的面积相等得:a 2-b 2=(a+b)(a-b).故答案为a 2-b 2=(a+b)(a-b).【点睛】本题考查了平方差公式得几何背景,熟练掌握平方差公式的定义是本题解题的关键.12.在实数范围内因式分解:231x x +-=____________【答案】x x ⎛++ ⎝⎭⎝⎭【解析】【分析】利用一元二次方程的解法在实数范围内分解因式即可.【详解】令2310x x +-=∴132x +=-,232x -=-∴231x x +-=3322x x ⎛⎫⎛⎫-++ ⎪⎪ ⎪⎪⎝⎭⎝⎭故答案为:3322x x ⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭【点睛】本题考查实数范围内的因式分解,利用一元二次方程的解法即可解答,熟练掌握相关知识点是解题关键.13.(m+n+p+q) (m-n-p-q)=(__________) 2-(__________) 2.【答案】m n+p+q【解析】(m+n+p+q)(m-n-p-q)=[m+(n+p+q)][m-(n+p+q)]=()22m n p q -++,故答案为(1)m ,(2)n+p+q. 点睛:本题主要考查了平方差公式,平方差公式是两个数的和与这两个数的差的积,等于这两个数的平方差,多项式与多项相乘时,要注意观察能否将其中符号相同的项结合成为一项后,再运用平方差公式运算.14.把多项式(x -2)2-4x +8分解因式,哪一步开始出现了错误( )解:原式=(x -2)2-(4x -8)…A=(x -2)2-4(x -2)…B=(x -2)(x -2+4)…C=(x -2)(x +2)…D【答案】C根据题意,第一步应是添括号(注意符号变化),解法正确,第二步先对后面因式提公因式4,再提取公因式(x-2)这时出现符号错误,所以从C步出现错误.故选C.15.已知3a b+=,2ab=-,(1)则22a b+=____;(2)则a b-=___.【答案】13;17±【解析】试题解析:将a+b=-3两边平方得:(a+b)2=a2+b2+2ab=9,把ab=-2代入得:a2+b2-4=9,即a2+b2=13;(a-b)2=a2+b2-2ab=13+4=17,即a-b=±17.16.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a、b的代数式表示).【答案】ab【解析】【分析】【详解】设大正方形的边长为x1,小正方形的边长为x2,由图①和②列出方程组得,12122{2x x ax x b+=-=解得,122{4a bxa bx+=-=②的大正方形中未被小正方形覆盖部分的面积=(2a b+)2-4×(4a b-)2=ab.故答案为ab.17.分解因式2242xy xy x++=___________【答案】22(1)x y+【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】原式=2x(y2+2y+1)=2x(y+1)2,故答案为2x(y+1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18.分解因式6xy2-9x2y-y3 = _____________.【答案】-y(3x-y)2【解析】【分析】先提公因式-y,然后再利用完全平方公式进行分解即可得.【详解】6xy2-9x2y-y3=-y(9x2-6xy+y2)=-y(3x-y)2,故答案为:-y(3x-y)2.【点睛】本题考查了利用提公因式法与公式法分解因式,熟练掌握因式分解的方法及步骤是解题的关键.因式分解的一般步骤:一提(公因式),二套(套用公式),注意一定要分解到不能再分解为止.19.若a+b=4,ab=1,则a2b+ab2=________.【答案】4【解析】【分析】分析式子的特点,分解成含已知式的形式,再整体代入.【详解】解:a2b+ab2=ab(a+b)=1×4=4.故答案为:4.【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.20.光的速度约为3×105 km/s,太阳系以外距离地球最近的一颗恒星(比邻星)发出的光需要4年的时间才能到达地球.若一年以3×107 s计算,则这颗恒星到地球的距离是_______km.【答案】3.6×1013【分析】根据题意列出算式,再根据单项式的运算法则进行计算.【详解】依题意,这颗恒星到地球的距离为4×3×107×3×105,=(4×3×3)×(107×105),=3.6×1013km.故答案为:3.6×1013.【点睛】本题考查了根据实际问题列算式的能力,科学记数法相乘可以运用单项式相乘的法则进行计算.。
人教版数学八年级上册 整式的乘法与因式分解综合测试卷(word含答案)
人教版数学八年级上册 整式的乘法与因式分解综合测试卷(word含答案)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.有5张边长为2的正方形纸片,4张边长分别为2、3的矩形纸片,6张边长为3的正方形纸片,从其中取出若干张纸片,且每种纸片至少取一张,把取出的这些纸片拼成一个正方形(原纸张进行无空隙、无重叠拼接),则拼成正方形的边长最大为 ( )A .6B .7C .8D .9【答案】C【解析】【分析】设2为a ,3为b ,则根据5张边长为2的正方形纸片的面积是5a 2,4张边长分别为2、3的矩形纸片的面积是4ab ,6张边长为3的正方形纸片的面积是6a 2,得出a 2+4ab+4b 2=(a+2b )2,再根据正方形的面积公式将a 、b 代入,即可得出答案.【详解】解:设2为a ,3为b ,则根据5张边长为2的正方形纸片的面积是5a 2,4张边长分别为2、3的矩形纸片的面积是4ab ,6张边长为3的正方形纸片的面积是6b 2,∵a 2+4ab+4b 2=(a+2b )2,(b >a )∴拼成的正方形的边长最长可以为a+2b=2+6=8,故选C .【点睛】此题考查了完全平方公式的几何背景,关键是根据题意得出a 2+4ab+4b 2=(a+2b )2,用到的知识点是完全平方公式.2.若999999a =,990119b =,则下列结论正确是( ) A .a <bB .a b =C .a >bD .1ab =【答案】B【解析】 ()9999999909990909119991111===99999a b +⨯⨯==⨯, 故选B. 【点睛】本题考查了有关幂的运算、幂的大小比较的方法,一般说来,比较几个幂的大小,或者把它们的底数变得相同,或者把它们的指数变得相同,再分别比较它们的指数或底数.3.利用平方差公式计算(25)(25)x x ---的结果是A .245x -B .2425x -C .2254x -D .2425x + 【答案】C【解析】【分析】平方差公式是(a+b )(a-b )=a 2-b 2.【详解】解:()()()()()2225252525425254x x x x x x ---=--+=--=-, 故选择C.【点睛】本题考查了平方差公式,应牢记公式的形式.4.因式分解x 2-ax +b ,甲看错了a 的值,分解的结果是(x +6)(x -1),乙看错了b 的值,分解的结果为(x -2)(x +1),那么x 2+ax +b 分解因式正确的结果为( )A .(x -2)(x +3)B .(x +2)(x -3)C .(x -2)(x -3)D .(x +2)(x +3)【答案】B【解析】【分析】【详解】因为(x +6)(x -1)=x 2+5x-6,所以b=-6;因为(x -2)(x +1)=x 2-x-2,所以a=1.所以x 2-ax +b=x 2-x-6=(x-3)(x+2).故选B.点睛:本题主要考查了多项式的乘法和因式分解,看错了a ,说明b 是正确的,所以将看错了a 的式子展开后,可得到b 的值,同理得到a 的值,再把a ,b 的值代入到x 2+ax +b 中分解因式.5.如果x m =4,x n =8(m 、n 为自然数),那么x 3m ﹣n 等于( )A .B .4C .8D .56 【答案】C【解析】【分析】根据同底数幂的除法法则可知:指数相减可以化为同底数幂的除法,故x 3m ﹣n 可化为x 3m ÷x n ,再根据幂的乘方可知:指数相乘可化为幂的乘方,故x 3m =(x m )3,再代入x m =4,x n =8,即可得到结果.【详解】解:x 3m ﹣n =x 3m ÷x n =(x m )3÷x n =43÷8=64÷8=8, 故选:C .【点睛】此题主要考查了同底数幂的除法,幂的乘方,关键是熟练掌握同底数幂的除法与幂的乘方的计算法则,并能进行逆运用.6.已知a ,b ,c 是△ABC 的三条边的长度,且满足a 2-b 2=c (a -b ),则△ABC 是( )A .锐角三角形B .钝角三角形C .等腰三角形D .等边三角形【答案】C【解析】【分析】已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b ,即可确定出三角形形状.【详解】已知等式变形得:(a+b )(a-b )-c (a-b )=0,即(a-b )(a+b-c )=0,∵a+b-c≠0,∴a-b=0,即a=b ,则△ABC 为等腰三角形.故选C .【点睛】此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.7.下列运算正确的是( )A .()2224a a -=-B .()222a b a b +=+C .()257a a =D .()()2224a a a -+--=- 【答案】D【解析】【分析】按照积的乘方运算、完全平方公式、幂的乘方、平方差公式分别计算,再选择.【详解】22(2)4a a -=,故选项A 不合题意;222()2a b a ab b +=++,故选项B 不合题意;5210()a a =,故选项C 不合题意;2-+--=-,故选项D符合题意.)()a a a2(24故选D.【点睛】此题考查整式的运算,掌握各运算法则是关键,还要注意符号的处理.8.若33×9m=311,则m的值为()A.2 B.3 C.4 D.5【答案】C【解析】【分析】根据同底数幂的乘法的性质,幂的乘方的性质,可得关于m的方程,解方程即可求得答案.【详解】∵33×9m=311,∴33×(32)m=311,∴33+2m=311,∴3+2m=11,∴2m=8,解得m=4,故选C.【点睛】本题考查了同底数幂的乘法,幂的乘方,理清指数的变化是解题的关键.9.下列等式由左边向右边的变形中,属于因式分解的是 ( )A.x2+5x-1=x(x+5)-1 B.x2-4+3x=(x+2)(x-2)+3xC.(x+2)(x-2)=x2-4 D.x2-9=(x+3)(x-3)【答案】D【解析】【分析】根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,判断求解.【详解】解:A、右边不是积的形式,故A错误;B、右边不是积的形式,故B错误;C、是整式的乘法,故C错误;D、x2-9=(x+3)(x-3),属于因式分解.故选D.【点睛】此题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.10.下列式子从左至右的变形,是因式分解的是( )A .21234x y x xy -=B .11(1)x x x -=-C .2221(1)x x x -+=-D .22()()a b a b a b +-=- 【答案】C【解析】【分析】根据因式分解的意义进行判断即可.【详解】因式分解是指将一个多项式化为几个整式的积的形式.A .21234x y x xy -=,结果是单项式乘以单项式,不是因式分解,故选项A 错误;B .11(1)x x x-=-,结果应为整式因式,故选项B 错误;C .2221(1)x x x -+=-,正确;D .22()()a b a b a b +-=-是整式的乘法运算,不是因式分解,故选项D 错误. 故选:C .【点睛】本题考查了因式分解的意义,解题的关键是正确理解因式分解的意义,涉及完全平方公式,本题属于基础题型.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.如果关于x 的二次三项式24x x m -+在实数范围内不能因式分解,那么m 的值可以是_________.(填出符合条件的一个值)【答案】5【解析】【分析】根据前两项,此多项式如用十字相乘方法分解,m 应是3或-5;若用完全平方公式分解,m 应是4,若用提公因式法分解,m 的值应是0,排除3、-5、4、0的数即可.【详解】当m=5时,原式为245x x -+,不能因式分解,故答案为:5.【点睛】此题考查多项式的因式分解方法,熟记每种分解的因式的特点及所用因式分解的方法,掌握技巧才能熟练运用解题.12.将4个数a ,b ,c ,d 排列成2行、2列,两边各加一条竖直线记成a b c d ,定义a bad bc c d =-,上述记号就叫做2阶行列式.若11611x x x x --=-+,则x=_________.【答案】4【解析】【分析】根据题目中所给的新定义运算方法可得方程 (x-1)(x+1)- (x-1)2=6,解方程求得x 即可.【详解】由题意可得,(x-1)(x+1)- (x-1)2=6,解得x=4.故答案为:4.【点睛】本题考查了新定义运算,根据新定义运算的运算方法列出方程是解本题的关键.13.已知25,23a b==,求2a b +的值为________.【答案】15.【解析】【分析】逆用同底数幂的乘法运算法则将原式变形得出答案.【详解】解:∵2a =5,2b =3,∴2a+b =2a ×2b =5×3=15.故答案为:15.【点睛】此题主要考查了同底数幂的乘法运算,正确将原式变形是解题关键.14.(1)已知32m a =,33nb =,则()()332243m n m n m a b a b a +-⋅⋅=______. (2)对于一切实数x ,等式()()212x px q x x -+=+-均成立,则24p q -的值为______.(3)已知多项式2223286x xy y x y +--+-可以分解为()()22x y m x y n ++-+的形式,则3211m n +-的值是______. (4)如果2310x x x +++=,则232016x x x x +++⋅⋅⋅+=______.【答案】(1)5-; (2)9; (3)78-; (4)0.【分析】(1)根据积的乘方和幂的乘方,将32m a =整体代入即可;(2)将等式后面部分展开,即可求出p 、q 的值,代入即可;(3)根据多项式乘法法则求出()()22x y m x y n ++-+,即可得到关于m 、n 的方程组,解之即可求得m 、n 、的值,代入计算即可;(4)4个一组提取公因式,整体代入即可.【详解】(1)32m a =,33n a =,()()()()332222343333m n m n m m n m n a b a b a a b a b ∴+-⋅⋅=+-22232343125=+-⨯=+-=-(2)222x px q x x -+=--对一切实数x 均成立,1p ∴=,2q =-249p q ∴-=(3)()()222223286x y m x y n x xy y x y ++-+=+--+-,()()22222322223286x xy y m n x n m y mn x xy y x y ∴+-+++-+=+--+- 21,28,6,m n n m mn +=-⎧⎪∴-=⎨⎪=-⎩解得2,3.m n =-⎧⎨=⎩ 321718m n +∴=-- (4)2310x x x +++=,232016x x x x ∴+++⋅⋅⋅+()()2320132311x x x x x x x x =++++⋅⋅⋅++++000=+⋅⋅⋅+=故答案为: −5;9;78-;0. 【点睛】本题主要考察幂的运算及整式的乘法,掌握其运算法则是关键.15.计算:=_____.【答案】1【分析】根据平方差公式可以使本题解答比较简便.【详解】解:====1.【点睛】本题应根据数字特点,灵活运用运算定律会或运算技巧,灵活简算.16.因式分解:2()4()a a b a b ---=___.【答案】()()()22a b a a -+-【解析】分析:先提公因式,再利用平方差公式因式分解即可.详解:a 2(a-b )-4(a-b )=(a-b )(a 2-4)=(a-b )(a-2)(a+2),故答案为:(a-b )(a-2)(a+2).点睛:本题考查的是因式分解,掌握提公因式法、平方差公式进行因式分解是解题的关键.17.分解因式:x 3y ﹣2x 2y+xy=______.【答案】xy (x ﹣1)2【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=xy (x 2-2x+1)=xy (x-1)2.故答案为:xy (x-1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18.若(x+p)与(x+5)的乘积中不含x 的一次项,则p =_____.【解析】【分析】根据多项式乘以多项式的法则,可表示为(a +b )(m +n )=am +an +bm +bn 计算,再根据乘积中不含x 的一次项,得出它的系数为0,即可求出p 的值.【详解】解:(x +p )(x +5)=x 2+5x +px +5p =x 2+(5+p )x +5p ,∵乘积中不含x 的一次项,∴5+p =0,解得p =﹣5,故答案为:﹣5.19.因式分解:=______. 【答案】2(x +3)(x ﹣3).【解析】试题分析:先提公因式2后,再利用平方差公式分解即可,即=2(x 2-9)=2(x+3)(x-3).考点:因式分解.20.已知(2x 21)(3x 7)(3x 7)(x 13)-----可分解因式为(3x a)(x b)++,其中a 、b 均为整数,则a 3b +=_____.【答案】31-.【解析】首先提取公因式3x ﹣7,再合并同类项即可根据代数式恒等的条件得到a 、b 的值,从而可算出a+3b 的值:∵()()()()(2x 21)(3x 7)(3x 7)(x 13)3x 72x 21x 133x 7x 8-----=---+=--, ∴a=-7,b=-8.∴a 3b 72431+=--=-.。
人教版八上数学《整式的乘法》练习及答案
《整式的乘法》同步测试一、选择题:1.下列各式中,正确的是()A.t2·t3 = t5 B.t4+t2 = t 6 C.t3·t4 = t12 D.t5·t5 = 2t52.下列计算错误的是()A.−a2·(−a)2 = −a4 B.(−a)2·(−a)4 = a6C.(−a3)·(−a)2 = a5 D.(−a)·(−a)2 = −a33.下列计算中,运算正确的个数是()①5x3−x3 = x3 ② 3m·2n = 6m+n③a m+a n = a m+n ④x m+1·x m+2 = x m·x m+3A.1 B. 2 C.3 D.44.计算a6(a2)3的结果等于()A.a11 B.a 12 C.a14 D.a365.下列各式计算中,正确的是()A.(a3)3 = a6 B.(−a5)4 = −a 20 C.[(−a)5]3 = a15 D.[(−a)2]3 = a6 6.下列各式计算中,错误的是()A.(m6)6 = m36 B.(a4)m = (a 2m) 2 C.x2n = (−x n)2 D.x2n = (−x2)n 7.下列计算正确的是()A.(xy)3 = xy3 B.(2xy)3 = 6x3y3C.(−3x2)3 = 27x5 D.(a2b)n = a2n b n8.下列各式错误的是()A.(23)4 = 212 B.(− 2a)3 = − 8a3C.(2mn2)4 = 16m4n8 D.(3ab)2 = 6a2b29.下列计算中,错误的是()A.m n·m2n+1 = m3n+1 B.(−a m−1)2 = a 2m−2C.(a2b)n = a2n b n D.(−3x2)3 = −9x610.下列计算中,错误的是()A.(−2ab2)2·(− 3a2b)3 = − 108a8b7B.(2xy)3·(−2xy)2 = 32x5y5C.(m2n)(−mn2)2 =m4n4D.(−xy)2(x2y) = x4y311.下列计算结果正确的是()A.(6ab2− 4a2b)•3ab = 18ab2− 12a2bB.(−x)(2x+x2−1) = −x3−2x2+1C.(−3x2y)(−2xy+3yz−1) = 6x3y2−9x2y2z2+3x2yD.(34a3−12b)•2ab=32a4b−ab212.若(x−2)(x+3) = x2+a+b,则a、b的值为()A.a = 5,b = 6 B.a = 1,b = −6C.a = 1,b = 6 D.a = 5,b = −6二、解答题:1.计算(1)(− 5a3b2)·(−3ab 2c)·(− 7a2b);(2)− 2a2b3·(m−n)5·13ab2·(n−m)2+13a2(m−n)·6ab2;(3) 3a2(13ab2−b)−( 2a2b2−3ab)(− 3a);(4)(3x2−5y)(x2+2x−3).2.当x = −3时,求8x2−(x−2)(x+1)−3(x−1)(x−2)的值.3.把一个长方形的长减少3,宽增加2,面积不变,若长增加1,宽减少1,则面积减少6,求长方形的面积.4.(x+my−1)(nx−2y+3)的结果中x、y项的系数均为0,求3m+n之值.参考答案:一、选择题1.A说明:t4与t2不是同类项,不能合并,B错;同底数幂相乘,底不变,指数相加,所以t3·t4 = t3+4 = t7≠t12,C错;t5•t5 = t5+5 = t10≠2t5,D错;t2•t3 = t2+3 = t5,A 正确;答案为A.2.C说明:−a2·(−a)2 = −a2·a2 = −a2+2 = −a4,A计算正确;(−a)2·(−a)4 = a2·a4 = a2+4 = a6,B计算正确;(−a3)·(−a)2 = −a3·a2 = −a5≠a5,C计算错误;(−a)·(−a)2 = −a·a2 = −a3,D计算正确;所以答案为C3.A说明:5x3−x3 = (5−1)x3 = 4x3≠x3,①错误;3m与2n不是同底数幂,它们相乘把底数相乘而指数相加显然是不对的,比如m = 1,n = 2,则3m·2n = 31·22 = 3·4 = 12,而6m+n = 61+2 = 63= 216≠12,②错误;a m与a n只有在m = n时才是同类项,此时a m+a n = 2a m≠a m+n,而在m≠n时,a m与a n无法合并,③错;x m+1·x m+2 = x m+1+m+2 = x m+m+3 =x m·x m+3,④正确;所以答案为A.4.B说明:a6(a2)3 = a6·a2×3 = a6·a6 = a6+6 = a12,所以答案为B.5.D说明:(a3)3 = a3×3 = a9,A错;(−a5)4 = a5×4 = a20,B错;[(−a)5]3 = (−a)5×3 = (−a)15 = −a15,C错;[(−a)2]3 = (−a)2×3 = (−a)6 = a6,D正确,答案为D.6.D说明:(m6)6 = m6×6 = m36,A计算正确;(a4)m = a 4m,(a 2m)2 = a 4m,B计算正确;(−x n)2 = x2n,C计算正确;当n为偶数时,(−x2)n = (x2)n = x2n;当n为奇数时,(−x2)n = −x2n,所以D不正确,答案为D.7.D说明:(xy)3 = x3y3,A错;(2xy)3 = 23x3y3 = 8x3y3,B错;(−3x2)3 = (−3)3(x2)3 = −27x6,C错;(a2b)n = (a2)n b n = a2n b n,D正确,答案为D.8.C9.D 10.C 11.D 12.B二、解答题1.解:(1)(− 5a3b2)·(−3ab 2c)·(− 7a2b) = [(−5)×(−3)×(−7)](a3·a·a2)(b2·b2·b)c = −105a6b 5c.(2)− 2a2b3·(m−n)5·13ab2·(n−m)2+13a2(m−n)·6ab2= (−2·13)·(a2·a)·(b3·b2)[(m−n)5·(m−n)2]+(13·6)(a2·a)(m−n)b2 = −23a3b5(m−n)7+2a3b2(m−n).(3) 3a2(13ab2−b)−( 2a2b2−3ab)(− 3a) = 3a2·13ab2− 3a2b+ 2a2b2· 3a−3ab· 3a= a3b2− 3a2b+ 6a3b2− 9a2b = 7a3b2− 12a2b.(4)(3x2−5y)(x2+2x−3) = 3x2·x2−5y·x2+3x2·2x−5y·2x+3x2·(−3)−5y·(−3)= 3x4−5x2y+6x3−10xy−9x2+15y= 3x4+6x3−5x2y−9x2−10xy+15y.2. 解:8x2−(x−2)(x+1)−3(x−1)(x−2) = 8x2−(x2−2x+x−2)−3(x2−x−2x+2)= 8x2−x2+x+2−3x2+9x−6 = 4x2+10x−4.当x = −3时,原式= 4·(−3)2+10·(−3)−4 = 36−30−4 = 2.3. 解:设长方形的长为x,宽为y,则由题意有即解得xy = 36.答:长方形的面积是36.4. 解:(x+my−1)(nx−2y+3) = nx2−2xy+3x+mnxy−2my2+3my−nx+2y−3= nx2−(2−mn)xy−2my2+(3−n)x+( 3m+2)y−3∵x、y项系数为0,∴得故3m+n = 3·(−23)+3 = 1.。
《整式的乘法与因式分解》单元综合检测(附答案)
人教版数学八年级上学期《整式的乘法与因式分解》单元测试(时间:120分钟满分:150分)一、选择题(每小题3分,共30分)1.下列计算正确的是()A. a3-a2=aB. a2·a3=a6C. (3a)3=9a3D. (a2)2=a42.计算(-x3y)2的结果是()A. -x5yB. x6yC. -x3y2D. x6y23.下列计算错误的是()A. (-2)0=1B. 28x4y2÷7x3=4xy2C. (4xy2-6x2y+2xy)÷2xy=2y-3xD. (a-5)(a+3)=a2-2a-154.下列因式分解正确的是()A. a4b-6a3b+9a2b=a2b(a2-6a+9)B. x2-x+=(x-)2C. x2-2x+4=(x-2)2D. 4x2-y2=(4x+y)(4x-y)5.将(2x)n-81分解因式后得(4x2+9)(2x+3)(2x-3),则n等于()A. 2B. 4C. 6D. 86.计算:(a-b+3)(a+b-3)=()A. a2+b2-9B. a2-b2-6b-9C. a2-b2+6b-9D. a2+b2-2ab+6a+6b+97.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个长方形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()学_科_网...学_科_网...A. (a+b)2=a2+2ab+b2B. (a-b)2=a2-2ab+b2C. a2-b2=(a+b)(a-b)D. (a+2b)(a-b)=a2+ab-2b28.若m=2200,n=2550,则m,n的大小关系是()A. m>nB. m<nC. m=nD. 无法确定9.多项式77x2-13x-30可分解成(7x+a)(bx+c),其中a,b,c均为整数,求a+b+c之值为何?()A. 0B. 10C. 12D. 2210.观察下列各式及其展开式:(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+4a3b+6a2b2+4ab3+b4;(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;……请你猜想(a+b)10的展开式第三项的系数是()A. 36B. 45C. 55D. 66二、填空题(每小题3分,共24分)11.计算:(-5a4)·(-8ab2)=______.12.分解因式:ab4-4ab3+4ab2=_______.13.若(2x+1)0=(3x-6)0,则x的取值范围是_______.14.已知|x-y+2|+(x+y-2)2=0,则x2-y2的值为_____.15.已知a m=3,a n=2,则a2m-3n=_____.16.若一个正方形的面积为a2+a+,则此正方形的周长为______.17.已知△ABC的三边长为整数a,b,c,且满足a2+b2-6a-4b+13=0,则c为_____.18.观察下列各式:22﹣1=1×3,32﹣1=2×4,42﹣1=3×5,52﹣1=4×6,…,根据上述规律,第n个等式应表示为______.三、解答题(共66分)19.计算:(1) y(2x-y)+(x+y)2;(2)(-2a2b3)÷(-6ab2)·(-4a2b).20.用乘法公式计算:(1)982;(2)899×901+1.21.分解因式:(1)18a3-2a;(2)ab(ab-6)+9;(3)m2-n2+2m-2n.22.先化简,再求值:(1)(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,其中ab=-;(2)[(x+2y)(x-2y)-(x+4y)2]÷4y,其中x=-5,y=2.23.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.24.已知m2=n+2,n2=m+2(m≠n),求m3-2mn+n3的值.25.已知a,b,c为△ABC的三条边的长,试判断代数式a2-2ac+c2-b2的值的符号,并说明理由.26.阅读材料并回答问题:课本中多项式与多项式相乘是利用平面几何图形中的面积来表示的,例如:(2a+b)(a+b)=2a2+3ab+b2就可以用如图①②所示的图形的面积来表示.(1)请写出如图③所示的图形的面积表示的代数恒等式;(2)试画出一个几何图形,使它的面积能表示为(a+b)(a+3b)=a2+4ab+3b2;(3)请仿照上述方法另写一个含有a,b的代数恒等式,并画出与之对应的几何图形.参考答案一、选择题(每小题3分,共30分)1.下列计算正确的是()A. a3-a2=aB. a2·a3=a6C. (3a)3=9a3D. (a2)2=a4【答案】D【解析】A.a3与a2不能合并,故A错误;B. a2⋅a3=a5,故B错误;C. (3a)3=27a3,故C错误;D. (a2)2=a4,故D正确.故选:D.2.计算(-x3y)2的结果是()A. -x5yB. x6yC. -x3y2D. x6y2【答案】D【解析】【分析】根据积的乘方的运算法则即可解答.【详解】根据积的乘方的运算法则可得:(-x3y)2= x6y2.故选D.【点睛】本题主要考查了积的乘方的运算法则:积的乘方,先把积中的每一个因数分别乘方,再把所得的幂相乘.3.下列计算错误的是()A. (-2)0=1B. 28x4y2÷7x3=4xy2C. (4xy2-6x2y+2xy)÷2xy=2y-3xD. (a-5)(a+3)=a2-2a-15【答案】C【解析】【分析】根据零指数幂的性质、单项式除以单项式的运算法则、多项式除以单项式的运算法则、多项式乘以多项式的运算法则依次计算各项,即可解答.【详解】选项A,根据零指数幂的性质可得(-2)0=1,选项A正确;选项B,根据单项式除以单项式的运算法则可得28x4y2÷7x3=4xy2,选项B正确;选项C,根据多项式除以单项式的运算法则可得(4xy2-6x2y+2xy)÷2xy=2y-3x+1,选项C错误;选项D,根据多项式乘以多项式的运算法则可得(a-5)(a+3)=a2-2a-15,选项D正确.故选C.【点睛】本题考查了零指数幂的性质、单项式除以单项式的运算法则、多项式除以单项式的运算法则、多项式乘以多项式的运算法则,熟记法则是解题的关键.4.下列因式分解正确的是()A. a4b-6a3b+9a2b=a2b(a2-6a+9)B. x2-x+=(x-)2C. x2-2x+4=(x-2)2D. 4x2-y2=(4x+y)(4x-y)【答案】B【解析】试题解析:A、原式=a2b(a2-6a+9)=a2b(a-3)2,错误;B、原式=(x-)2,正确;C、原式不能分解,错误;D、原式=(2x+y)(2x-y),错误,故选B考点:因式分解-运用公式法;因式分解-提公因式法.5.将(2x)n-81分解因式后得(4x2+9)(2x+3)(2x-3),则n等于()A. 2B. 4C. 6D. 8【答案】B【解析】试题分析:把等式右边根据平方差公式去括号后即可得到结果。
人教版 八年级数学上册14.1 整式的乘法达标检测(含答案)
人教版 八年级数学第十四章达标检测(含答案)14.1 整式的乘法一、选择题1. 化简(x 3)2,结果正确的是() A .-x 6 B .x 6C .x 5D .-x 52. 下列计算正确的是()A .3515a a a ⋅=B .623a a a ÷=C .358a a a +=D .()43a a a -÷=3. 若a 3=b ,b 4=m ,则m 为( )A .a 7B .a 12C .a 81D .a 644. 今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-3xy (4y -2x -1)=-12xy 2+6x 2y +□,□的地方被弄污了,你认为□内应填写( ) A .3xy B .-3xy C .-1 D .15. 如果a 2-2a -1=0,那么式子(a -3)(a +1)的值是( )A .2B .-2C .4D .-46. 若(x +1)(2x 2-ax +1)的运算结果中,x 2的系数为-6,则a 的值是( )A .4B .-4C .8D .-87. 下列计算错误的是( )A .()333327ab a b -=- B .2326411416a b a b ⎛⎫-= ⎪⎝⎭C .()326xy xy -=- D .()24386a b a b -=8. 已知x a =2,x b =3,则x 3a +2b 的值() A .48 B .54C .72D .179. 通过计算,比较图①、图②中阴影部分的面积,可以验证的算式是( )A .a (b -x )=ab -axB .(a -x )(b -x )=ab -ax -bx +x 2C .(a -x )(b -x )=ab -ax -bxD .b (a -x )=ab -bx10. 若n 是自然数,并且有理数,a b 满足10a b+=,则必有( ) A .21()0n n a b += B .2211()0n n a b++=C .221()0n n a b+=D .21211()0n n a b+++=二、填空题11. 计算:a 3·(a 3)2=________.12. 填空:()()2322a b b ⋅-=;13. 计算:(2x +1)·(-6x )=____________.14. 一个长方体的长、宽、高分别是3x -4,2x ,x ,它的体积等于________.15. 计算:(x -2y )·(-3xy )2=________________.16. 若a 2b =2,则式子2ab (a -2)+4ab =________.17. 如图①,有多个长方形和正方形的卡片,图②是选取了2块不同的卡片拼成的一个图形,借助图中阴影部分面积的不同表示方法可以验证等式a (a +b )=a 2+ab 成立,根据图③,利用面积的不同表示方法,仿照上面的式子写出一个等式:____________________.三、解答题18. 计算:53(3)(3)a b b a --19. 同学在计算一个多项式乘-3x 2时,因抄错符号,算成了加上-3x 2,得到的答案是x 2-0.5x +1,那么正确的计算结果是多少?20. 数形结合长方形的长为a 厘米,宽为b 厘米(a >b >8),如果将原长方形的长和宽各增加2厘米,得到的新长方形的面积记为S 1平方厘米;如果将原长方形的长和宽分别减少3厘米,得到的新长方形的面积记为S 2平方厘米. (1)如果S 1比S 2大100,求原长方形的周长;(2)如果S 1=2S 2,求将原长方形的长和宽分别减少8厘米后得到的新长方形的面积; (3)如果用一个面积为S 1的长方形和两个面积为S 2的长方形恰好能没有缝隙、没有重叠地拼成一个正方形,求a ,b 的值.21. 整体代入阅读下面文字,并解决问题.已知x 2y =3,求2xy (x 5y 2-3x 3y -4x )的值.分析:考虑到满足x 2y =3的x ,y 的可能值较多,不可能逐一代入求解,故考虑整体思想,将x 2y =3整体代入. 解:2xy (x 5y 2-3x 3y -4x ) =2x 6y 3-6x 4y 2-8x 2y =2(x 2y )3-6(x 2y )2-8x 2y =2×33-6×32-8×3 =2×27-6×9-8×3 =-24.请你用上述方法解决问题:已知ab =3,求(2a 3b 2-3a 2b +4a )·(-2b )的值.22. 已知有理数x ,y ,z 满足2|2|(367)|334|0x z x y y z --+--++-=,求3314n n n x y z x--的值.人教版 九年级八年级数学14.1 整式的乘法 突破训练-答案一、选择题1. 【答案】B2. 【答案】D【解析】根据同底数幂相乘除的法则,应选D3. 【答案】B[解析] 因为a 3=b ,b 4=m ,所以m =(a 3)4=a 12.4. 【答案】A [解析] 因为左边=-3xy(4y -2x -1)=-12xy 2+6x 2y +3xy ,右边=-12xy 2+6x 2y +□, 所以□内应填写3xy.5. 【答案】B [解析] 因为a 2-2a -1=0,所以a 2-2a =1.所以(a -3)(a +1)=a 2-2a -3=1-3=-2.6. 【答案】C [解析] (x +1)(2x 2-ax +1)=2x 3-ax 2+x +2x 2-ax +1=2x 3+(-a +2)x 2+(1-a)x +1.因为运算结果中,x 2的系数是-6,所以-a +2=-6,解得a =8.7. 【答案】C【解析】根据积的乘方运算法则,应选C8. 【答案】C[解析] 因为x a =2,x b =3,所以x 3a +2b =(x a )3·(x b )2=23×32=72.9. 【答案】B [解析] 图①中阴影部分的面积=(a -x)·(b -x),图②中阴影部分的面积=ab-ax -bx +x 2,所以(a -x)(b -x)=ab -ax -bx +x 2.10. 【答案】D【解析】由10a b +=知1,a b两数为相反数,且不为0,易得答案二、填空题11. 【答案】a 9[解析] a 3·(a 3)2=a 3·a 6=a 9.12. 【答案】458a b -【解析】原式()4234588a b b a b =⋅-=-13. 【答案】-12x 2-6x14. 【答案】6x 3-8x 215. 【答案】9x 3y 2-18x 2y 3 [解析] (x -2y)·(-3xy)2=9x 2y 2(x -2y)=9x 3y 2-18x 2y 3.16. 【答案】4 [解析] 2ab(a -2)+4ab=2a 2b -4ab +4ab =2a 2b.当a 2b =2时,原式=2×2=4.17. 【答案】(a +b)(a +2b)=a 2+3ab +2b 2三、解答题18. 【答案】()83a b --【解析】[]3535538(3)(3)(3)(3)(3)(3)a b b a a b a b a b a b +--=---=--=--19. 【答案】解:这个多项式是(x 2-0.5x +1)-(-3x 2)=4x 2-0.5x +1, 正确的计算结果是(4x 2-0.5x +1)·(-3x 2)=-12x 4+1.5x 3-3x 2.20. 【答案】解:(1)100=S 1-S 2=(a +2)(b +2)-(a -3)(b -3)=ab +2a +2b +4-ab +3a +3b -9=5a +5b -5,所以5a +5b =100+5.所以a +b =21. 所以2(a +b)=42.所以原长方形的周长为42厘米.(2)因为S 1=2S 2,所以(a +2)(b +2)=2(a -3)(b -3),即ab +2a +2b +4=2(ab -3a -3b +9). 所以ab -8a -8b +14=0. 所以ab -8a -8b =-14.所以将原长方形的长和宽分别减少8厘米后得到的新长方形的面积为(a -8)(b -8)=ab -8a -8b +64=-14+64=50(厘米2).(3)因为a>b ,所以a +2>b +2,a -3>b -3.因为拼成的是一个正方形,所以面积为S 2的两个长方形只能并排拼接在面积为S 1的长方形的长为a +2的边上,示意图如图.所以可得方程组⎩⎪⎨⎪⎧a +2=2(a -3),b +2+b -3=a +2,解得⎩⎪⎨⎪⎧a =8,b =112;或方程组⎩⎪⎨⎪⎧a +2=2(b -3),a -3+b +2=a +2,解得⎩⎪⎨⎪⎧a =-2,b =3,该方程组的解不符合题意,舍去.所以a ,b 的值分别为8,112.21. 【答案】解:(2a 3b 2-3a 2b +4a)·(-2b)=-4a 3b 3+6a 2b 2-8ab =-4(ab)3+6(ab)2-8ab =-4×33+6×32-8×3 =-108+54-24 =-78.22. 【答案】 0【解析】由题意得2036703340x z x y y z --=⎧⎪--=⎨⎪+-=⎩,解方程组得3131x y z =⎧⎪⎪=⎨⎪⎪=⎩,代入所求代数式得313133143411313331333033n n nn nnnx yz x ---⎛⎫⎛⎫-=⋅⋅-=⋅⨯⋅-=-= ⎪⎪⎝⎭⎝⎭.14.2 乘法公式一、选择题1. 将202×198变形正确的是 ( )A .2002-4B .2022-4C .2002+2×200+4D .2002-2×200+42. 如果22()()4a b a b +--=,则一定成立的是()A .a 是b 的相反数B .a 是b -的相反数C .a 是b 的倒数D .a 是b -的倒数3. 若M ·(2x -y 2)=y 4-4x 2,则M 应为 ( ) A .-(2x +y 2)B .-y 2+2xC .2x +y 2D .-2x+y 24. 若a 2+ab +b 2=(a -b )2+X ,则整式X 为( )A .abB .0C .2abD .3ab5. 若(2x +3y )(mx -ny )=9y 2-4x 2,则m ,n 的值分别为( )A .2,3B .2,-3C .-2,-3D .-2,36. 将9.52变形正确的是 ( )A .9.52=92+0.52B .9.52=(10+0.5)×(10-0.5)C .9.52=92+9×0.5+0.52D .9.52=102-2×10×0.5+0.527. 若(x +a )2=x 2+bx +25,则()A .a =3,b =6B .a =5,b =5或a =-5,b =-10C .a =5,b =10D .a =-5,b =-10或a =5,b =108. 若n 为正整数,则(2n +1)2-(2n -1)2的值( )A .一定能被6整除B .一定能被8整除C .一定能被10整除D .一定能被12整除9. 如图①,边长为a 的大正方形中有四个边长均为b 的小正方形,小华将阴影部分拼成了一个长方形(如图②),则这个长方形的面积为 ( )A .a 2-4b 2B .(a +b )(a -b )C .(a +2b )(a -b )D .(a +b )(a -2b )10. 如果a ,b ,c 是ABC △三边的长,且22()a b ab c a b c +-=+-,那么ABC △是( )A. 等边三角形.B. 直角三角形.C. 钝角三角形.D. 形状不确定.二、填空题11. 用平方差公式计算:(ab -2)(ab +2)=________.12. 如果(x +my )(x -my )=x 2-9y 2,那么m =________.13. 多项式x 2+1添加一个单项式后可变为完全平方式,则添加的单项式可以是________(任写一个符合条件的即可).14. 如图,四张全等的矩形纸片拼成的图形,请利用图中空白部分面积的不同表示方法,写出一个关于a 、b 的恒等式___________.a bb a15. 如图,在边长为a 的正方形中剪去一个边长为b 的小正方形(a b >),把剩下的部分拼成一个梯形,分别计算这两个图形的面积,验证了公式_________________.16.根据图①到图②的变化过程可以写出一个整式的乘法公式,这个公式是____________________.三、解答题17. 计算:()()a b c a b c +--+18. 计算2244()()()()a b a b a b a b -+++19. 阅读材料后解决问题.小明遇到一个问题:计算(2+1)×(22+1)×(24+1)×(28+1).经过观察,小明发现将原式进行适当的变形后,可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:(2+1)×(22+1)×(24+1)×(28+1)=(2-1)×(2+1)×(22+1)×(24+1)×(28+1)=(22-1)×(22+1)×(24+1)×(28+1)=(24-1)×(24+1)×(28+1)=(28-1)×(28+1)=216-1.请你根据小明解决问题的方法,试着解决下列问题:(1)计算:(2+1)×(22+1)×(24+1)×(28+1)×(216+1);(2)计算:(3+1)×(32+1)×(34+1)×(38+1)×(316+1);(3)化简:(m+n)(m2+n2)(m4+n4)(m8+n8)(m16+n16).人教版八年级数学上册14.2 乘法公式同步训练-答案一、选择题1. 【答案】A[解析] 202×198=(200+2)×(200-2)=2002-4.2. 【答案】C【解析】将原式展开,合并后得到1ab ,选择C.3. 【答案】A[解析] M与2x-y2的相同项应为-y2,相反项应为-2x与2x,所以M为-2x-y2,即-(2x+y2).4. 【答案】D5. 【答案】C[解析] 因为(2x+3y)(mx-ny)=2mx2-2nxy+3mxy-3ny2=9y2-4x2,所以2m=-4,-3n=9,-2n+3m=0,解得m =-2,n =-3.6. 【答案】D [解析] 9.52=(10-0.5)2=102-2×10×0.5+0.52.7. 【答案】D[解析] 因为(x +a)2=x 2+bx +25, 所以x 2+2ax +a 2=x 2+bx +25.所以⎩⎨⎧2a =b ,a 2=25,解得⎩⎨⎧a =5,b =10或⎩⎨⎧a =-5,b =-10.8. 【答案】B [解析] 原式=(4n 2+4n +1)-(4n 2-4n +1)=8n ,则原式的值一定能被8整除.9. 【答案】A [解析] 根据题意得(a +2b )(a -2b )=a 2-4b 2.10. 【答案】A【解析】已知关系式可化为2220a b c ab bc ac ++---=,即2221(222222)02a b c ab bc ac ++---=, 所以2221[()()()]02a b b c a c -+-+-=,故a b =,b c =,c a =.即a b c ==.选A .二、填空题11. 【答案】a 2b 2-4 [解析] (ab -2)(ab +2)=a 2b 2-4.12. 【答案】±3 [解析] (x +my)(x -my)=x 2-m 2y 2=x 2-9y 2,所以m 2=9.所以m =±3.13. 【答案】2x (或-2x 或14x 4) 【解析】x 2+2x +1=(x +1)2;x 2-2x +1=(x -1)2;14x 4+x 2+1=(12x 2+1)2.14. 【答案】224()()ab a b a b =+--【解析】22()()4a b a b ab -=+-或224()()ab a b a b =+--15. 【答案】22()()a b a b a b +-=-【解析】左图中阴影部分的面积为22a b -,右图中阴影部分的面积为1(22)()()()2b a a b a b a b +-=+-,故验证了公式22()()a b a b a b +-=-(反过来写也可)16. 【答案】(a+b)(a-b)=a2-b2三、解答题17. 【答案】222-+-2a b bc c【解析】原式()()()22222=+---=--=-+-2a b c a b c a b c a b bc c⎡⎤⎡⎤⎣⎦⎣⎦18. 【答案】88a b-【解析】原式222244444488=-++=-+=-a b a b a b a b a b a b()()()()()19. 【答案】解:(1)原式=(2-1)×(2+1)×(22+1)×(24+1)×(28+1)×(216+1)=232-1.(2)原式=×(3-1)×(3+1)×(32+1)×(34+1)×(38+1)×(316+1)=.(3)若m≠n,则原式=(m-n)(m+n)(m2+n2)(m4+n4)(m8+n8)(m16+n16)=;若m=n,则原式=2m·2m2·……·2m16=32m31.14.3《因式分解》一.选择题1.下列多项式能用平方差公式分解的是()A.a2+a B.a2﹣2ab+b2C.x2﹣4y2D.x2+y22.下列各式从左到右的变形是分解因式的是()A.2a2﹣b2=(a+b)(a﹣b)+a2B.2a(b+c)=2ab+2acC.x3﹣2x2+x=x(x﹣1)2D.(x﹣1)(y﹣1)=xy﹣x﹣y+13.把2x2﹣2x+分解因式,其结果是()A.2(x﹣)2B.(x﹣)2C.(x﹣1)2D.(2x﹣)2 4.若多项式x2+mx+36因式分解的结果是(x﹣2)(x﹣18),则m的值是()A.﹣20B.﹣16C.16D.205.若x+y=﹣1,则x2+y2+2xy的值为()A.1B.﹣1C.3D.﹣36.下列多项式在实数范围内不能因式分解的是()A.x3+2x B.a2+b2C.D.m2﹣4n27.下列各式中,不含因式a+1的是()A.2a2+2a B.a2+2a+1C.a2+5a﹣6D.a2﹣5a﹣68.多项式6ab2+18a2b2﹣12a3b2c的公因式是()A.6ab2c B.ab2C.6ab2D.6a3b2c二.填空题9.分解因式:6xy2﹣8x2y3=.10.在实数范围内分解因式:ab3﹣5ab=.11.因式分解a(b﹣c)﹣3(c﹣b)=.12.把多项式3ax2﹣12a分解因式的结果是.13.把多项式ax2﹣4ax+4a因式分解的结果是.14.若实数a、b满足a+b=﹣2,a2b+ab2=﹣10,则ab的值是.15.已知a、b、c是△ABC的三边长,且满足a3+ab2+bc2=b3+a2b+ac2,则△ABC的形状是.三.解答题16.把下列多项式分解因式:(1)27xy2﹣3x(2)2x2+12x+18(3)(a﹣b)(a﹣4b)+ab.17.因式分解:(1)3ma2+18mab+27mb2(2)21a2b(2x﹣3y)2﹣14a(3y﹣2x)2.18.分解因式:(m﹣n)(3m+n)2+(m+3n)2(n﹣m)19.已知△ABC的三边长分别是a、b、c(1)当b2+2ab=c2+2ac时,试判断△ABC的形状;(2)判断式子a2﹣b2+c2﹣2ac的值的符号.20.观察“探究性学习”小组的甲、乙两名同学进行的分解因式:甲:x2﹣xy+4x﹣4y=(x2﹣xy)+(4x﹣4y)(分成两组)=x(x﹣y)+4(x﹣y)(直接提公因式)=(x﹣y)(x+4).乙:a2﹣b2﹣c2+2bc=a2﹣(b2+c2+2bc)(分成两组)=a2﹣(b﹣c)2(直接运用公式)=(a+b﹣c)(a﹣b+c)(再用平方差公式)请你在他们解法的启发下,把下列各式分解因式:(1)m2﹣mn+mx﹣nx.(2)x2﹣2xy+y2﹣9.21.对于二次三项式x2+2ax+a2可以直接用公式法分解为(x+a)2的形式,但对于二次三项式x2+2ax﹣3a2,就不能直接用公式法了,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2,使其成为完全平方式,再减去a2这项,使整个式子的值不变.于是有x2+2ax ﹣3a2=x2+2ax+a2﹣a2﹣3a2=(x+a)2﹣4a2.=(x+a)2﹣(2a)2=(x+3a)(x﹣a)像上面这样把二次三项式分解因式的方法叫做添(拆)项法.(1)请用上述方法把x2﹣4x+3分解因式.(2)多项式x2+2x+2有最小值吗?如果有,那么当它有最小值时x的值是多少?参考答案一.选择题1.解:平方差公式为a2﹣b2=(a+b)(a﹣b),x2﹣4y2=x2﹣(2y)2=(x+2y)(x﹣2y),故选:C.2.解:∵x3﹣2x2+x=x(x﹣1)2,∴C是因式分解,故选:C.3.解:原式=2(x2﹣x+)=2(x﹣)2,故选:A.4.解:x2+mx+36=(x﹣2)(x﹣18)=x2﹣20x+36,可得m=﹣20,故选:A.5.解:∵x2+y2+2xy=(x+y)2,∵x+y=﹣1,∴x2+y2+2xy的值为:(﹣1)2=1,故选:A.6.解:A、x3+2x=x(x2+2),故此选项错误;B、a2+b2无法分解因式,故此选项正确.C、=(y+)2,故此选项错误;D、m2﹣4n2=(m+2n)(m﹣2n),故此选项错误;故选:B.7.解:A、原式=2a(a+1),不符合题意;B、原式=(a+1)2,不符合题意;C、原式=(a﹣1)(a+6),符合题意;D、原式=(x﹣6)(x+1),不符合题意.故选:C.8.解:系数的最大公约数是6,相同字母的最低指数次幂是ab2,∴公因式为6ab2.故选:C.二.填空题9.解:6xy2﹣8x2y3=2xy2(3﹣4xy).故答案为:2xy2(3﹣4xy).10.解:原式=ab(b2﹣5)=ab(b+)(b﹣),故答案为:ab(b+)(b﹣).11.解:原式=a(b﹣c)+3(b﹣c)=(b﹣c)(a+3).故答案为:(b﹣c)(a+3)12.解:3ax2﹣12a=3a(x2﹣4)=3a(x+2)(x﹣2),故答案为:3a(x+2)(x﹣2).13.解:ax2﹣4ax+4a=a(x2﹣4x+4)=a(x﹣2)2.故答案为:a(x﹣2)2.14.解:∵a+b=﹣2,a2b+ab2=ab(a+b)=﹣10,∴ab=5,故答案为:515.解:∵a3+ab2+bc2=b3+a2b+ac2,∴(a3﹣a2b)+(ab2﹣b3)+(bc2﹣ac2)=0,a2(a﹣b)+b2(a﹣b)﹣c2(a﹣b)=0,(a﹣b)(a2+b2﹣c2)=0,∴a=b或a2+b2=c2,则三角形是等腰三角形或直角三角形.故答案为:等腰三角形或直角三角形.三.解答题16.解:(1)27xy2﹣3x=3x(9y2﹣1)=3x(3y+1)(3y﹣1);(2)2x2+12x+18=2(x2+6x+9)=2(x+3)2;(3)(a﹣b)(a﹣4b)+ab=a2﹣5ab+4b2+ab=a2﹣4ab+4b2=(a﹣2b)2.17.解:(1)3ma2+18mab+27mb2=3m(a2+6ab+9b2)=3m(a+3b)2;(2)21a2b(2x﹣3y)2﹣14a(3y﹣2x)2=7a(2x﹣3y)2(3ab﹣2)18.解:(m﹣n)(3m+n)2+(m+3n)2(n﹣m)=(m﹣n)[(3m+n)2﹣(m+3n)2]=(m﹣n)(3m+n+m+3n)(3m+n﹣m﹣3n)=8(m﹣n)2(m+n)19.解:(1)b2+2ab=c2+2ac可变为b2﹣c2=2ac﹣2ab,(b+c)(b﹣c)=2a(c﹣b),因为a,b,c为△ABC的三条边长,所以b,c的关系要么是b>c,要么b<c,当b>c时,b﹣c>0,c﹣b<0,不合题意;当b<c时,b﹣c<0,c﹣b>0,不合题意.那么只有一种可能b=c.所以此三角形是等腰三角形.(2)a2﹣b2+c2﹣2ac=(a﹣c)2﹣b2=(a﹣c+b)(a﹣c﹣b)∵a、b、c为△ABC三边的长,∴(a﹣c+b)>0,(a﹣c﹣b)<0,∴a2﹣b2+c2﹣2ac<0.20.解:(1)m2﹣mn+mx﹣nx=m(m﹣n)+x(m﹣n)=(m﹣n)(m+x);(2)x2﹣2xy+y2﹣9=(x﹣y)2﹣32=(x﹣y+3)(x﹣y﹣3).21.解:(1)x2﹣4x+3=x2﹣2×2x+22﹣22+3=(x﹣2)2﹣12=(x﹣1)(x﹣3);(2)x2+2x+2=x2+2x+12﹣12+2=(x+1)2+1,故当它有最小值时x的值是﹣1.。
新人教版八年级上《整式的乘法》综合检测试卷及答案2
《整式的乘法》同步测试一、填空题(每小题3分,共24分)1.若a b c x x x x =2008x ,则c b a ++=______________.2.(2)(2)a b ab --=__________,2332()()a a --=__________.3.如果2423)(a a a x =⋅,则______=x .4.计算:(12)(21)a a ---= .5.有一个长9104⨯mm ,宽3105.2⨯mm ,高3610⨯mm 的长方体水箱,这个水箱的容积是______________2mm .6.通过计算几何图形的面积可表示一些代数恒等式(一定成立的等式),请根据右图写出一个代数恒等式是:________________.7.若3230123)x a a x a x a x =+++,则220213()()a a a a +-+的值为. 8.已知:A =-2ab ,B =3ab (a +2b ),C =2a 2b -2ab 2 ,3AB -AC 21=__________.二、选择题(每小题3分,共24分)9.下列运算正确的是( ).A .236x x x =B .2242x x x +=C .22(2)4x x -=-D .358(3)(5)15a a a --=10.如果一个单项式与3ab -的积为234a bc -,则这个单项式为( ). A .14ac B .214a c C .294a c D .94ac 11.计算233[()]()a b a b ++的正确结果是( ).A .8()a b +B .9()a b +C .10()a b +D .11()a b +12.长方形的长为(a -2)cm ,宽为(3a +1) cm ,那么它的面积是多少?( ).A .2(352)a a cm --B .2(352)a a cm -+C .2(352)a a cm +-D .2(32)a a cm +-13.下列关于301300)2(2-+的计算结果正确的是( ). A .3003013003016012(2)(2)(2)(2)+-=-+-=-B .1301300301300222)2(2-=-=-+C .300300300301300301300222222)2(2-=⨯-=-=-+D .601301300301300222)2(2=+=-+14.下列各式中,计算结果是2718x x +-的是( ).A .(1)(18)x x -+B .(2)(9)x x -+C .(3)(6)x x -+D .(2)(9)x x ++15.下列各式,能够表示图中阴影部分的面积的是( ).①()at b t t +- ②2at bt t +- ③()()ab a t b t --- ④2()()a t t b t t t -+-+A .只有①B .①和②C .①、②和③D .①、②、③、④16.已知:有理数满足0|4|)4(22=-++n n m ,则33m n 的值为( ). A.1 B.-1 C. ±1 D. ±2三、解答题(共52分)17.计算:(1)3243-ab c 2⎛⎫ ⎪⎝⎭ (2)()2232315x y-xy -y -4xy 426⎛⎫ ⎪⎝⎭18.解方程:2(10)(8)100x x x +-=-19.先化简,再求值:(1)()()()2221414122x x x x x x ----+-,其中x =-2.(2)()()()()5.0232143++--+a a a a ,其中a =-3.20.一个长方形的长为2xcm ,宽比长少4cm ,若将长方形的长和宽都扩大3cm ,用这种方法不仅可比大小,也能解计算题哟!长方形比原来增大的面积是多少?拓广探索21.在计算时我们如果能总结规律,并加以归纳,得出数学公式, 一定会提高解题的速度,在解答下面问题中请留意其中的规律.(1)计算后填空:()()=++21x x ; ()()=-+13x x ;(2)归纳、猜想后填空:()()()()++=++x x b x a x 2(3)运用(2)猜想的结论,直接写出计算结果:()()=++m x x 2 .22.有些大数值问题可以通过用字母代替数转化成整式问题来解决,请先阅读下面的解题过程,再解答下面的问题.例 若x =123456789×123456786,y =123456788×123456787,试比较x 、y 的大小.解:设123456788=a ,那么()()2122x a a a a =+=---,()21y a a a a ==--, ∵()()222x y a a a a =-----=-2,∴x <y看完后,你学到了这种方法吗?再亲自试一试吧,你准行!问题:若x=20072007200720112007200820072010⨯-⨯,y=20072008200720122007200920072011⨯-⨯,试比较x、y的大小.参考答案一、填空题1.2007 2.2242a b ab -+、12a - 3.18 4.214a -5.16610⨯ 6.()ab a b a a 2222+=+ 7.1 8.32231638a b a b --二、选择题9.D 10.A 11.B 12.A 13.C 14.B 15.D 16.B三、解答题(共56分)17.(1)3612278a b c - (2)3324510323x y x y xy -++ 18.2281080100x x x x -+-=-,220x =-,∴10x =-.19.(1)324864x x x +--,8 (2)26a --,020.(23)(21)x x +--2(24)x x -=2(4623)x x x +---2(48)x x -=2244348x x x x +--+=123x -答:增大的面积是(123)x cm -.21.(1)232x x ++、223x x +- (2)a b +、ab (3)2(2)2x m x m +++ 拓广探索22.设20072007=a ,x =(4)(1)(3)a a a a +-++=224(43)a a a a +-++=-3, y =(1)(5)(2)(4)a a a a ++-++=2265(68)a a a a ++-++=-3,∴x =y .。
八年级上册数学整式的乘法综合练习题 含答案
整式的乘法综合练习题一、选择题(共9小题)1.下列计算正确的是( )A.3a + 2b = 5ab B.3a 一 2a =1 C.a6a2 = a3 D.(一a3b)2 = a6b2 2.计算x(3x2 一 2x2 ) 的结果是( )A.x B. x3 C. x5 D.5x33.把2a(ab 一 b + c)化简后得( )A.2a2b一ab+ac B.2a2一2ab+2ac C.2a2b+2ab+2ac D.2a2b一2ab+2ac 4.如(y + a) 与(y 一 7) 的乘积中不含y 的一次项,则a 的值为( )A. 7 B.一7 C. 0 D. 145.下列计算正确的是( )A.a3 + a4 = a7 B.a4 a5 = a9 C.4m 5m = 9m D.a3 + a3 = 2a6 6.计算a3 a3 结果是( )A.2a3 B.a9 C.a5 D.a67.若(x + 4)(x 一 2) = x2 + ax + b ,则ab的积为( )A.一10 B.一16 C. 10 D.一68.下列运算正确的是( )A.a2 a3 = a6 B.2a3 3a2 = 6a6 C.(一2x3 )4 = 8x12 D.(一x6 ) x3 = 一x3 9.下列计算结果等于a5 的是( )A.a3 + a2 B.a3 a2 C. (a3 )2 D.a10 a2二、填空题(共5小题)10.计算:x5 x3 的结果等于.11.计算:(一6a2b5)(一2a2b2)=.12.已知10x = 8,10y = 16 ,则102x y = .13.计算6x 3 (2x 2 y) = .14.计算:(0.25)2019 (4)2018 = .三、解答题(共5小题)15 .解方程:2x(x 1) x(2x + 3) =15.16.已知x3m = 2, y2m = 3 ,求(x2m)3 + (y m )6 (x2 y)3my m 的值.17 .计算:(1) 32 (2) + 42 (2)3 | 22 |;(2) 3a6 a2 a3 . ( a) + (2a2 )2.18.规定a *b = 2a 2b ,求:(1) 求2 * 3;(2) 若2 * (x +1) =16 ,求x 的值.19.规定两数a,b 之间的一种运算,记作(a,b) :如果a c = b ,那么(a,b) = c.例如:因为23 = 8,所以(2,8) = 3.(1)根据上述规定,填空:(3,9) = ,(5,125) = ,(一1, 1 ) = ,(一2,一32) = .2 16(2) 令(4,5) = a,(4,6) = b,(4,30) = c,试说明下列等式成立的理由:(4 ,5) + (4,6) = (4,30).参考答案一、选择题(共9小题)1.【解答】解:A 、3a + 2b ,无法计算,故此选项错误;B 、3a 一 2a = a ,故此选项错误;C 、a6 a2 = a4 ,故此选项错误;D 、(一a3b)2= a6b2,正确.故选:D.2.【解答】解:x(3x2 一 2x2 ) = 3x3 一 2x3 = x3.故选:B.3.【解答】解:原式= 2a2b 一 2ab + 2ac.故选:D.4.【解答】解:(y + a)(y 一 7) = y2+ (a 一 7)y 一 7a,由结果不含y 的一次项,得到a 一 7 = 0,解得:a = 7.故选:A.5.【解答】解: A 、a3 + a4 ,无法计算,故此选项错误;B 、a4 a5 = a9 ,正确;C 、4m 5m = 20m ,故此选项错误;D 、a3 + a3 = 2a3 ,故此选项错误.故选:B.6.【解答】解:a3 a3 = a6.故选:D.7.【解答】解:(x+4)(x一2)=x2一2x+4x一8=x2+2x一8,:a=2,b=一8,:ab=一16,故选:B.8.【解答】解: A 、原式= a5 ,故本选项错误.B 、原式= 6a5 ,故本选项错误.C 、原式=16x12 ,故本选项错误.D 、原式计算正确,故本选项正确.故选:D.9.【解答】解: A 、不是同底数幂的乘法,故A 不符合题意;B 、a3 a2 = a5 ,故B 符合题意;C 、 (a3 )2 = a6 ,故C 不符合题意;D 、a10 a2 = a8 ,故D 不符合题意;故选:B.二、填空题(共5小题)10.【解答】解:x5 x3 = x5+3 = x8故答案为:x8.11.【解答】解:原式= 3b3.故答案为:3b3.12.【解答】解:10x=8,10y= 16,:102x = 64,:102x y =102x 10y = 64 16 = 4.故答案为: 4.13.【解答】解:6x3 (2x2 y)= (6 2)x3+2 y= 12x5 y.故答案为:12x5 y.14.【解答】解:(0.25)2019 (4)2018= (0.25) (0.25)2018 (4)2018= (0.25) (0.25 4)2018= 0.25故答案为:0.25.三、解答题(共5小题)15.【解答】解:2x(x 1) x(2x + 3) =15 2x2 2x 2x2 3x =15,整理得:5x =15,解得:x = 3.16.【解答】解:x3m = 2, y2m = 3,:(x2m)3 + (y m )6 (x2 y)3m y m= (x 3m )2 + (y 2m )3 (x 6m y 3m y m )= (x 3m )2 + (y 2m )3 (x 3m y 2m )2= 22 + 33 (2 3)2 = 5.17.【解答】解: (1)原式 = 9 (2)+16 (8) 4 =18 2 4=12;(2)原式 = 3a 62 + a 3+1 + 4a 4 = 3a 4 + a 4 + 4a 4= 8a 4.18.【解答】解: (1) a*b = 2a 2b ,:2*3 = 22 23 = 48 = 32;(2) 2*(x +1) =16,:22 2x+1 = 24 则 2 +x +1= 4, 解得: x =1. 19.【解答】解: (1) 32 = 9, 53 = 125, ( )4 = , (2)5 = 32, 2 16:(3,9) = 2, (5,125) = 3, ( 1, 1) = 4, (2, 32) = 5,2 16 故选: 2, 3, 4, 5;(2) 令 (4,5) = a , (4,6) = b , (4,30) = c ,, 1 1则 4a = 5, 4b = 6, 4c = 30, 56 = 30, :4a 4b = 4c:4a+b = 4c :a + b = c , :(4, 5) + (4, 6) = (4, 30). , ,。
人教版八年级上册数学整式的乘法与因式分解综合测试卷(word含答案)
人教版八年级上册数学整式的乘法与因式分解综合测试卷(word含答案)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1. 下列能用平方差公式分解因式的是()A. x2-lB. X2(X + 1)C. √ + lD. X2-X【答案】A【解析】根据平方差公式:a2-b2=(a+b)(a-b)t A选项:X2-1=(Λ:+I)(X-1),可知能用平方差公式进行因式分解.故选:A.2. 当x = -3时,多项式α√+加+ x = 3∙那么当X = 3时,它的值是()A. —3B. —5C. 7D. —17【答案】A【解析】【分析】首先根据x = -3时,多项式衣+加+ x = 3,找到a、b之间的关系,再代入χ = 3求值即可.【详解】"1 X = —3 时,tιx3 +bx +X = 3tιx i +bx +X =一27" — 3b —3 = 3.∙.27α + 3b = -6当x = 3 时,原式二27α + M+3 = -6+3 = -3故选A.【点睛】本题考查代数式求值问题,难度较大,解题关键是找到a、b之间的关系.3. 若x-y = 3,则x2-j2-6y = ()A. 3B. 6C. 9D. 12【答案】C【解析】【分析】由x-y = 3得x=3+y,然后,代入所求代数式,即可完成解答.【详解】解:由X-y = 3得x=3+y代入(3 + y)2 - y2 -6y = 9 + 6y + y2 -y2 -6y = 9故答案为C.【点睛】本题主要考査了完全平方公式的应用,灵活对代数式进行变形是解答本题的关键•4. (2 + l)(22 + l)(24+l)......(22Π+1)=( )A. 24H-1B. 24W +1C. 44f,-1D. 44"+l【答案】A【解析】【分析】先乘以(2-1)值不变,再利用平方差公式进行化简即可.【详解】(2 + l)(22+l)(24 + l)......(22n+l)= (2-1) (2 + l)(22+l)(24+l)……(22n+l)=24π-l.故选A.【点睛】本题考查乘法公式的应用,熟练掌握并灵活运用平方差公式是解题关键.5. 因式分解X2-ax + b,甲看错了a的值,分解的结果是(x + 6)(x-l),乙看错了b的值,分解的结果为(X -2)(x十1),那么×2 + ax + b分解因式正确的结果为()A. (X - 2)(× + 3)B. (x + 2)(× - 3)C. (X - 2)(× - 3)D. (× + 2)(× + 3)【答案】B【解析】【分析】【详解】因为(× + 6)(X - l)=×2+5x-6,所以b=-6 ;因为(X - 2)(× + l)=×2-×-2 ,所以a=l.所以×2-ax 十b=×2-×-6=(×-3)(×+2).故选B.点睛:本题主要考査了多项式的乘法和因式分解,看错了a,说明b是正确的,所以将看错了a的式子展开后,可得到b的值,同理得到a的值,再把a , b的值代入到×2 + ax + b 中分解因式.6. 边长为α, b的长方形周长为12,面积为10,则a2b+ab2的值为( )A. 120B. 60C. 80D. 40【答案】B【解析】【分析】直接利用提取公因式法分解因式,进而求岀答案・【详解】解:•••边长为α, b的长方形周长为12,面积为10,∙'∙α+b=6, Qb = I0,则cPb十QbZ = Qb(cr+b) =10×6 = 60.故选:B.【点睛]本题考查了提取公因式法分解因式,正确找岀公因式是解题关键・7.若4疋+ kx—是完全平方式P则实数R的值为()94141 A. — B.— C. ±— D. ±—3333【答案】C【解析】【分析】本题是已知平方项求乘积项,根据完全平方式的形式可得出k的值.【详解】由完全平方式的形式(a±b)2=a2±2ab+b2可得:k×=±2∙2x∙-,34 解得k=±y.故选:C【点睛】本题关键是有平方项求乘积项,掌握完全平方式的形式(a±b〉2=a⅛2ab+b2是关键・8•不论)0 y为何有理数,x2+y2 - 10x+8y+45的值均为()A.正数B.零C.负数D.非负数【答案】A【解析】【详解】因7jx2+y2 - 10x+8y+45=(X—5)" +(y + 4)' +4>0,所以×2+y2 - 10x+8y+45的值为正数,故选A.9.已知三个实数abc满足a-2b+c=0, a+2b+c<0,贝Ij ( )A. b>0t b2-ac≤0B・ b<0, b2-ac≤0C. b>0t b2-ac≥0D. bV0, b2-ac⅛0【答案】D 【解析】【分析】根据题意得a+c=2b,然后将a+c替换掉可求得b<0,将b"ac变形为⑴一「丿,可根据平方的非负性求得b2-ac>0.【详解】解:Va-2b+c=0t.∖a+c=2b,Λa+2b+c=4b<0,∙∙∙b<0,【点睛】本题考査了等式的性质以及完全平方公式的应用,熟练掌握完全平方公式是解题关键・10.下列各运算中,计算正确的是( )B. ( 3a2 ) 3=9a6-b ) 2=a2 - ab+b2【答案】D【解析】【分析】根据同底数幕的除法、枳的乘方、完全平方公式、单项式乘法的法则逐项计算即可得.【详解】A、原式=a9,故A选项错误,不符合题意;B、原式=27a6,故B选项错误,不符合题意:C、原式=a2 - 2ab+b2,故C选项错误,不符合题意:D、原式=6a2,故D选项正确,符合题意,故选D .【点睛】本题考查了同底数幕的除法、积的乘方、完全平方公式、单项式乘法等运算,熟练掌握各运算的运算法则是解本题的关键•二、八年级数学整式的乘法与因式分解填空题压轴题(难)已知aι∙a2∙a3∙...∙a2007是彼此互不相等的负数,且M二(ai+a2+...+a2oo6)(a2+a3+...+a2007) , N= (a 1+82+...+32007)(a2+a3+∙∙∙÷a2006)9那么M 与N 的大小关系是 MN.A. a12÷a3=a4Λa2+2ac+c2=4b2,即b2 ="故选:D.4【答案】M>N【解析】解:M - N= (a1+a2+...÷a2006) (a2÷a 3÷∙∙∙+a 2007) ~ (a1+a2÷...+a2007) ( a2+a 3+∙∙∙+a 2006)=(ai+a2+...+a2θO6) ■ a2÷θ3÷...÷θ2006) + 31+82÷...÷θ2006) θ2∞7 ~ ( a 1+a2+ (32006)(θ2+θ3+∙∙∙+a 2∞6) ■ θ2007( θ2+θ3+∙∙∙+θ20O6)=(31+θ2+...+θ20O6)32007 " 32007( θ2÷θ3÷∙..÷θ2O06)=θlθ20O7>0・•・M>N【点评】本题主要考查了整式的混合运算.12 ・ x+ — =3,则 X 2+—- = ________ ・【答案】7【解析】【分析】直接利用完全平方公式将已知变形,进而求出答案.【详解】解:Vx+ — = 3,X/. (X+— ) 2=9,X∕∙ ×2 + -5" +2 = 9 9X∙*∙ X 2 + -~ = 7 ・Jr故答案为7.【点睛】此题主要考查了分式的混合运算,正确应用完全平方公式是解题关键.a b13・将4个数a, b, c, d 排列成2行.2列,两边各加一条竖直线记成 J 立义C a【答案】4【解析】【分析】根据题目中所给的新泄义运算方法可得方程(X-D (x+l) -(X-I) 2=6,解方程求得X 即可.【详解】 由题意可得, = Ud-be t d 上述记号就叫做2阶行列式•若X ~\X-I =6, 则X=(X-I) (x+l) - (x-l) 2=6,解得x=4.故答案为:4.【点睛】本题考查了新上义运算,根据新怎义运算的运算方法列出方程是解本题的关键.14.在实数范用内因式分解:9x 2y 2 -6xy-7 = ________________________【点睛]本题考查在实数范带I 内因式分解,利用分组分解法将原多项式“三一”分组后采用公式法 因式分解,注意在实数范围内因式分解是指系数可以是根式・15・(1)已知O ym = 2, b in =3,则沪.(2)对于一切实数■等式x 2-px+^ = (x+l)(x-2)均成立,则p 2 -4q 的值为【解析】【分析】2 18 将原多项式提取9,然后拆项分组为9疋尸一 + 利用完全平方公式将前一组分解后,再利用平方差公式继续在实数范用内分解・【详解】解:9兀)2一6与一 7【答案】92 7 —XV ——3 ‘ 9(3)已知多项式2√+3^-2y 2-x + 8y-6可以分解为(x+2y + m)(2x-y + n)的形式,则殳二的值是 _____________ ・Zi 2-I⑷如果 1 + X + F+F=O,则χ + χ2+χ3+... + χ2°,6= ____________________•7【答案】(1) -5;(2) 9; (3) 一一; (4) 0.8 【解析】【分析】 (1) 根据积的乘方和幕的乘方,将F" =2整体代入即可;(2) 将等式后面部分展开,即可求岀p 、q 的值,代入即可:(3) 根据多项式乘法法则求出(x+2y + m)(2x-y + n),即可得到关于m 、n 的方程组,解之即可求得m 、n 、的值,代入计算即可:(4) 4个一组提取公因式,整体代入即可.【详解】⑴・・・沪=2,・・・宀3,.∙.(α2m )3 +(町-Cr m ∙b 3n ∙a 4m =(/'”)‘ + 宀(丹『b 3n= 22 +3-22×3 = 4+3-12 = -5(2) V X 2 - px + q = x 2 -x-2对一切实数X 均成立,/. P = It q = -2:.Ir _4g = 9(3) ∙.∙(x+2y + m)(2x -y + n) = 2x' + 3Λ>T — 2y 2 —x+8y-6,.∙. 2X 2 + 3xy — 2y 2 + (2nι + /?)%+(2n —m) y + mn = 2x 2 + 3xy — 2y 2 —x+Sy —6 2m + n = -I 5 .β. In -Hi = &nιn = 一6,⑷∙.∙l + x + x 2 +χ3 =Ot= x(l + x+x 2 +X 3)+∙∙∙ + x 20,3(l + x+x 2+x 3)=OH ------0 = 0.∖x+x 2 +x 3 + ∙∙∙ + x20167故答案为:_5: 9:: 0.【点睛】 本题主要考察幕的运算及整式的乘法,掌握英运算法则是关键.16. 5 (m —n)匚(n-m)5可以? j 成 ___________ 与 _________ 的乘积.【答案】(m-n)4 I ( 5+m-n )【解析】把多项式5(m-n)「(n-m)'运用提取公因式法因式分解即可得5(m-n)」(n-m)‘二缶 —π)1 (5+m-n)・故答案为:(m-n) ∖ (5+m-n)・17. 一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的而积是 _________________ (用冬b 的代数式表示)・【答案】ab【解析】【分析】【详解】设大正方形的边长为X 】,小正方形的边长为X2,由图①和②列岀方程组得,X I + 2X 2 = a ∖ -2X 2 =b解得,②的大正方形中未被小正方形覆盖部分的面积=(畔)2-4χ (乎)2=ab. 故答案为ab.18. ______________________________________________ 若a + b = 3,则a 2-b 2+6b 的值为【答案】9【解析】分析:先将/ _h2 + 6b化为(U + b)(a-b) + 6/7,再将d+b = 3代入所化式子计算即可.详解:■/ a + b = 3 I.∙. a2-b2+6b= (α + ")(α-b) + 6Z?=3(a -b) + 6b= 3α-3b + 6∕?=3(α+Z?)=9.故答案为:9.点睛:"能够把小一,+6b化为("+b)("—b) + 6b”是解答本题的关键.19. 已知/+2χ=3,则代数式(x+l) 2- (x+2) (χ-2) +√ 的值为__________________________ .【答案】8【解析】【分析】利用完全平方公式及平方差公式把原式第一项和第二项展开,去括号合并同类项得到最简结果,把×2+2X=3代入即可得答案.【详解】原式=x2+2×+l-(×2-4)+×2=×2+2×+1-X2+4+×2=X2+2×+5.∙.∙×2+2x=3,.∙.原式=3+5=8.故答案为8【点睛】此题考查了整式的混合运算-化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.20. 若対二2, 0二3,则Z,+2π的值为______________ .【答案】18【解析】【分析】先把χm+2n变形为X m(X n) 2,再把Xm=2 , X n=3代入计算即可.【详解】VX m=2 , ×n=3 ,Λ×m+2n=×m×2n=×m ( X n ) 2=2×32=2×9=18 ;故答案为18 .【点睛]本题考查同底数幕的乘法、幫的乘方,熟练掌握运算性质和法则是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《整式的乘法》同步测试
一、填空题(每小题3分,共24分)
1.若a b c x x x x =2008x ,则c b a ++=______________.
2.(2)(2)a b ab --=__________,2332()()a a --=__________.
3.如果2423)(a a a x =⋅,则______=x .
4.计算:(12)(21)a a ---= .
5.有一个长9104⨯mm ,宽3105.2⨯mm ,高3610⨯mm 的长方体水箱,这个水箱的容积是______________2mm .
6.通过计算几何图形的面积可表示一些代数恒等式(一定成立的等式),请根据右图写出一个代数恒等式是:________________.
7.若3230123)x a a x a x a x =+++,则220213()()a a a a +-+的值为
. 8.已知:A =-2ab ,B =3ab (a +2b ),C =2a 2b -2ab 2 ,3AB -AC 21=__________.
二、选择题(每小题3分,共24分)
9.下列运算正确的是( ).
A .236x x x =
B .2242x x x +=
C .22(2)4x x -=-
D .358(3)(5)15a a a --=
10.如果一个单项式与3ab -的积为234
a bc -,则这个单项式为( ). A .14ac B .214a c C .294a c D .94
ac 11.计算233[()]()a b a b ++的正确结果是( ).
A .8()a b +
B .9()a b +
C .10()a b +
D .11()a b +
12.长方形的长为(a -2)cm ,宽为(3a +1) cm ,那么它的面积是多少?( ).
A .2(352)a a cm --
B .2(352)a a cm -+
C .2(352)a a cm +-
D .2(32)a a cm +-
13.下列关于301300)2(2-+的计算结果正确的是( ). A .3003013003016012(2)(2)(2)(2)+-=-+-=-
B .1301300301300222)2(2-=-=-+
C .300300300301300301300222222)2(2-=⨯-=-=-+
D .601301300301300222)2(2=+=-+
14.下列各式中,计算结果是2718x x +-的是( ).
A .(1)(18)x x -+
B .(2)(9)x x -+
C .(3)(6)x x -+
D .(2)(9)x x ++
15.下列各式,能够表示图中阴影部分的面积的是( ).
①()at b t t +- ②2at bt t +- ③()()ab a t b t --- ④2()()a t t b t t t -+-+
A .只有①
B .①和②
C .①、②和③
D .①、②、③、④
16.已知:有理数满足0|4|)4
(22=-++n n m ,则33m n 的值为( ). A.1 B.-1 C. ±1 D. ±2
三、解答题(共52分)
17.计算:
(1)3243-ab c 2⎛⎫ ⎪⎝⎭ (2)()
2232315x y-xy -y -4xy 426⎛⎫ ⎪⎝⎭
18.解方程:2(10)(8)100x x x +-=-
19.先化简,再求值:
(1)()()()
2221414122x x x x x x ----+-,其中x =-2.
(2)()()()()5.0232143++--+a a a a ,其中a =-3.
20.一个长方形的长为2xcm ,宽比长少4cm ,若将长方形的长和宽都扩大3cm ,
用这种方法不仅可比大小,也能解计算题哟! 长方形比原来增大的面积是多少?
拓广探索
21.在计算时我们如果能总结规律,并加以归纳,得出数学公式, 一定会提高解题的速度,在解答下面问题中请留意其中的规律.
(1)计算后填空:()()=++21x x ; ()()=-+13x x ;
(2)归纳、猜想后填空:()()()()++=++x x b x a x 2
(3)运用(2)猜想的结论,直接写出计算结果:()()=++m x x 2 .
22.有些大数值问题可以通过用字母代替数转化成整式问题来解决,请先阅读下面的解题过程,再解答下面的问题.
例 若x =123456789×123456786,
y =123456788×123456787,试比较x 、y 的大小. 解:设123456788=a ,那么
()()2122x a a a a =+=---,()21y a a a a ==--,
∵()()222x y a a a a =-----=-2,∴x <y
看完后,你学到了这种方法吗?再亲自试一试吧,你准行!
问题:若x=20072007200720112007200820072010
⨯-⨯,
⨯-⨯,试比较x、y的大小.y=20072008200720122007200920072011
参考答案
一、填空题
1.2007 2.2242a b ab -+、12a - 3.18 4.214a -
5.16610⨯ 6.()ab a b a a 2222+=+ 7.1 8.32231638a b a b --
二、选择题
9.D 10.A 11.B 12.A 13.C 14.B 15.D 16.B
三、解答题(共56分)
17.(1)3612278a b c - (2)3324510323
x y x y xy -++ 18.2281080100x x x x -+-=-,220x =-,∴10x =-.
19.(1)324864x x x +--,8 (2)26a --,0
20.(23)(21)x x +--2(24)x x -
=2(4623)x x x +---2(48)x x -
=2244348x x x x +--+
=123x -
答:增大的面积是(123)x cm -.
21.(1)232x x ++、223x x +- (2)a b +、ab (3)2(2)2x m x m +++ 拓广探索
22.设20072007=a ,x =(4)(1)(3)a a a a +-++=224(43)a a a a +-++=-3, y =(1)(5)(2)(4)a a a a ++-++=2265(68)a a a a ++-++=-3,∴x =y .。