2014年数学中考说明

合集下载

2014年湖南省长沙市中考数学试题及参考答案(word及解析版)

2014年湖南省长沙市中考数学试题及参考答案(word及解析版)

2014年湖南省长沙市中考数学试题及参考答案一、选择题(本大题共10小题,每小题3分,共30分) 1.12的倒数是( ) A .2 B .-2 C .12 D .-122.下列几何体中,主视图、左视图、俯视图完全相同的是( ) A . 圆锥 B .六棱柱 C .球 D . 四棱锥3.一组数据3,3,4,2,8的中位数和平均数分别是( ) A .3和3 B .3和4 C .4和3 D .4和4 4.平行四边形的对角线一定具有的性质是( )A .相等B .互相平分C .互相垂直D .互相垂直且相等 5.下列计算正确的是( )A B .()224ab ab = C .236a a a += D .34a a a ⋅=6.如图,C 、D 是线段AB 上的两点,且D 是线段AC 的中点,若10cm AB =,4cm BC =,则AD 的长为( )A .2cmB .3cmC .4cmD .6cm7.一个关于x 的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是( )A .1x >B .1x ≥C .3x >D .3x ≥8.如图,已知菱形ABCD 的边长为2,60DAB ∠=︒,则对角线BD 的长是( )A .1BC .2D .9.下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是( )A .B .C .D .10.函数ay x=与()20y ax a =≠在同一平面直角坐标系中的图象可能是( ) A .B .C .D .11.如图,直线a b ∥,直线c 分别与a b ,相交,若170∠=︒,则2∠=__________度.12.抛物线()2325y x =-+的顶点坐标是__________.13.如图,A 、B 、C 是O 上的三点,100AOB ∠=︒,则ACB ∠=__________度.14.已知关于x 的一元二次方程22340x kx -+=的一个根是1,则k =__________.15.100件外观相同的产品中有5件不合格,现从中任意抽取1件进行检测,抽到不合格产品的概率是__________.16.如图,在ABC △中,DE BC ∥,23DE BC =,ADE △的面积是8,则ABC △面积为__________.17.如图,点B 、E 、C 、F 在一条直线上,AB DF ∥,AB DE =,BE CF =,6AC =,则DF =__________.18.如图,在平面直角坐标系中,已知点()23A ,,点()21B -,,在x 轴上存在点P 到A ,B 两点的距离之和最小,则P 点的坐标是__________.19.(6分)计算:()1201411453-⎛⎫-++︒ ⎪⎝⎭.20.(6分)先简化,再求值:22121124x x x x -+⎛⎫++⎪--⎝⎭,其中3x =. 四、解答题(本大题共2小题,每小题8分,共16分)21.(8分)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的长沙-我最喜爱的长沙小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图: 请根据所给信息解答以下问题:(1)请补全条形统计图;(2)若全校有2000名同学,请估计全校同学中最喜爱“臭豆腐”的同学有多少人?(3)在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为四种小吃的序号A 、B 、C 、D ,随机地摸出一个小球然后放回,再随机地摸出一个小球,请用列表或画树形图的方法,求出恰好两次都摸到“A ”的概率. 22.(8分)如图,四边形ABCD 是矩形,把矩形沿对角线AC 折叠,点B 落在点E 处,CE 与AD 相交于点O .(1)求证:AOE COD △≌△;(2)若30OCD ∠=︒,AB =,求AOC △的面积.五、解答题(本大题共2小题,每小题9分,共18分) 23.(9分)为建设“秀美幸福之市”,长沙市绿化提质改造工程正如火如荼地进行,某施工队计划购买甲、乙两种树苗共400棵对芙蓉路的某标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买一中树苗的金额,至少应购买甲种树苗多少棵? 24.(9分)如图,以ABC △的一边AB 为直径作O ,O 与BC 边的交点恰好为BC 的中点D ,过点D 作O 的切线交AC 于点E .(1)求证:DE AC ⊥;(2)若3AB DE =,求tan ACB ∠的值.六、解答题(本大题共2小题,每小题10分,共20分) 25.(10分)在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为“梦之点”,例如点(-1,-1),(0,0),,…都是“梦之点”,显然,这样的“梦之点”有无数个.(1)若点()2P m ,是反比例函数ny x=(n 为常数,0n ≠)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数31y kx s =+-(k ,s 是常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标;若不存在,请说明理由;(3)若二次函数21y ax bx =++(a ,b 是常数,0a >)的图象上存在两个不同的“梦之点”()11A x x ,,()22B x x ,,且满足122x -<<,122x x -=,令2157248t b b =-+,试求出t 的取值范围. 26.(10分)如图,抛物线2y ax bx c =++(a ,b ,c 是常数,0a ≠)的对称轴为y 轴,且经过(0,0)和116⎫⎪⎭,两点,点P 在该抛物线上运动,以点P 为圆心的P 总经过定点()02A ,.(1)求a ,b ,c 的值;(2)求证:在点P 运动的过程中,P 始终与x 轴相交;(3)设P 与x 轴相交于()10M x ,,()20N x ,()12x x <两点,当AMN △为等腰三角形时,求圆心P 的纵坐标.参考答案与解析一、选择题(本大题共10小题,每小题3分,共30分)1.12的倒数是()A.2 B.-2 C.12D.-12【知识考点】倒数.【思路分析】根据乘积为的1两个数倒数,可得一个数的倒数.【解答过程】解:12的倒数是2,故选:A.【总结归纳】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.下列几何体中,主视图、左视图、俯视图完全相同的是()A.圆锥B.六棱柱C.球D.四棱锥【知识考点】简单几何体的三视图.【思路分析】找到从物体正面、左面和上面看得到的图形全等的几何体即可.【解答过程】解:A.圆锥的主视图、左视图、俯视图分别为等腰三角形,等腰三角形,圆及圆心,故A选项不符合题意;B.六棱柱的主视图、左视图、俯视图分别为四边形,四边形,六边形,故B选项不符合题意;C.球的主视图、左视图、俯视图分别为三个全等的圆,故C选项符合题意;D.四棱锥的主视图、左视图、俯视图分别为三角形,三角形,四边形,故D选项不符合题意;故选C.【总结归纳】考查三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.3.一组数据3,3,4,2,8的中位数和平均数分别是()A.3和3 B.3和4 C.4和3 D.4和4【知识考点】中位数;算术平均数.【思路分析】根据中位数及平均数的定义求解即可.【解答过程】解:将数据从小到大排列为:2,3,3,4,8,则中位数是3,平均数2334845++++==.故选B.【总结归纳】本题考查了平均数及中位数的知识,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.4.平行四边形的对角线一定具有的性质是()A.相等B.互相平分C.互相垂直D.互相垂直且相等【知识考点】平行四边形的性质.【思路分析】根据平行四边形的对角线互相平分可得答案.【解答过程】解:平行四边形的对角线互相平分,故选:B.【总结归纳】此题主要考查了平行四边形的性质,关键是掌握平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分.5.下列计算正确的是()。

知其源 得其法——2014年天津市中考数学第18题第(2)小题的思考

知其源 得其法——2014年天津市中考数学第18题第(2)小题的思考
所 以 S正 方 形A c 皿=| s 母
出,故要 想 办法寻找 与之 相 关的 点 ) .
由题 意 ,易证 AB E A一 △AT D .
又 因为 口 C Q与 G K J等底 等 高 ,
所以 . s 硎∞=S 鲫 所 以 S正 方 形A ∞ =5 酬附
所 以 筹= .
位置,
P分 别 交 AF ,B H 于 点 ,. s ,则 四边 形 A B S T 基 于 已有 经验 解 决 数 学 问 题 ,是 我 们 学 习数 学知 直 线 G
识 的重 要 途 径 .无 论 是 从 给 定 的图 形 ,还 是 从 所 给 的 即为所求 .
收稿 日期 :2 0 1 4 —0 9 —1 6
计 算
例 如 ,如 图 2 ,在 R t AA B C中 ,将 正 方形 AC E D, 正 方形 B C N M 做 等 积 变形 ,


原 题 呈现
得 口AC Q S和 c z T B C Q T , 则
1 1,
_ _ I l I ห้องสมุดไป่ตู้

● ●
E / \
● -


作者 简介 :沈德辉 ( 1 9 7 8 - ) ,男,中学一级教 师 ,主要从事 中学数学教育及 中考试题研 究
匿L——一 2 …期
《试 题 研 究

§ ! T _ l
J }
N l Q . M
- — — 一




-- — —
问题 ,而更可能是通过变化 、转换或修改叙述的方式 ,
理论 验 证如 下 :
形 ,且使矩形 的面积等于 A c 2 + c 2 ,所以可知矩形 的

2014年河北省中考数学试卷(附答案与解析)

2014年河北省中考数学试卷(附答案与解析)

绝密★启用前河北省2014年初中毕业生升学文化课考试数学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题共42分)一、选择题(本大题共16小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2-是2的()A.倒数B.相反数C.绝对值D.平方根2.如图,ABC△中,D,E分别是边AB,AC的中点.若2DE=,则BC=( )A.2B.3C.4D.53.计算:228515-= ()A.70B.700C.4900D.70004.如图,平面上直线a,b分别过线段OK两端点(数据如图),则a,b相交所成的锐角是( )A.20B.30C.70D.805.a,b是两个连续整数,若7a b<<,则a,b分别是()A.2,3B.3,2C.3,4D.6,86.如下右图,直线l经过第二、三、四象限,l的解析式是(2)y m x n=-+,则m的取值范围在数轴上表示为()A BC D7.化简:2x=11xx x---( )A.0B.1C.x D.1xx-8.如图,将长为2、宽为1的矩形纸片分割成n个三角形后,拼成面积为2的正方形,则n≠( )A.2B.3C.4D.59.某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米,当3x=时,18y=,那么当成本为72元时,边长为()A.6厘米B.12厘米C.24厘米D.36厘米10.如图1是边长为1的六个小正方形组成的图形,它可以围成如图2的正方体,则图1中正方形顶点A,B在围成的正方体上的距离是()图1图2A.0B.1C.2D.311.某小组作“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的实验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第1页(共26页)数学试卷第2页(共26页)数学试卷第4页(共26页)C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一个质地均匀的正六面体骰子,向上的面点数是412.如下右图,已知()ABC AC BC△<,用尺规在BC上确定一点P,使PA PC BC+=,则符合要求的作图痕迹是( )A BC D13.在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3,4,5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距均为1,则新三角形与原三角形相似.图1乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.图2对于两人的观点,下列说法正确的是( )A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对14.定义新运算:(0),=(0).abba babb⎧⎪⎪⊕⎨⎪-⎪⎩><例如:445=5⊕,44(5)5⊕-=,则函数2(0)y x x=⊕≠的图象大致是( )A B C D15.如图,边长为a的正六边形内有两个三角形,(数据如图),则SS=阴影空白( )A.3B.4C.5D.616.五名学生投篮球,规定每人投20次,统计他们每人投中的次数,得到五个数据.若这五个数据的中位数是6,唯一众数是7,则他们投中次数的总和可能是( )A.20B.28C.30D.31第Ⅱ卷(非选择题共78分)二、填空题(本大题共4小题,每小题3分,共12分.把答案填写在题中的横线上)17.计算:18=2⨯.18.若实数m,n满足2|2|(2014)0m n-+-=,则10m n-+=.19.如图,将长为8cm的铁丝AB首尾相接围成半径为2cm的扇形,则=S扇形.数学试卷第3页(共26页)数学试卷 第5页(共26页) 数学试卷 第6页(共26页)20.如图,点O ,A 在数轴上表示的数分别是0,0.1.将线段OA 分成100等份,其分点由左向右依次为1M ,2M …,99M ; 再将线段1OM 分成100等份,其分点由左向右依次为1N ,2N …,99N ; 继续将线段1ON 分成100等份,其分点由左向右依次为1P ,2P …,99P , 则点37P 所表示的数用科学记数法表示为 .三、解答题(本大题共6小题,共66分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分10分)嘉淇同学用配方法推导一元二次方程20(0)ax bx c a ++=≠的求根公式时,对于2(1)嘉淇的解法从第 步开始出现错误;事实上,当240b ac ->时,方程20(0)ax bx c a ++=≠的求根公式是 ;(2)用配方法解方程:22240x x --=.22.(本小题满分10分)如图1,A ,B ,C 是三个垃圾存放点,点B ,C 分别位于点A 的正北和正东方向,100AC =米.四人分别测得的度数如下表:他们又调查了各点的垃圾量,并绘制了下列尚不完整的统计图2、图3:各点垃圾量条形统计图 各点垃圾量扇形统计图图1图2 图3(1)求表中C ∠度数的平均数x ;(2)求A 处的垃圾量,并将图2补充完整;(3)用(1)中的x 作为C ∠的度数,要将A 处的垃圾沿道路AB 都运到B 处,已知运送1千克垃圾每米的费用为0.005元,求运垃圾所需的费用. (注:sin37=0.6,cos37=0.8,tan37=0.75)毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共26页) 数学试卷 第8页(共26页)23.(本小题满分11分)如图,ABC △中,AB AC =,40BAC ∠=,将ABC △绕点A 按逆时针方向旋转100得到ADE △,连接BD ,CE 交于点F . (1)求证:ABD ACE △≌△; (2)求ACE ∠的度数;(3)求证:四边形ABFE 是菱形.24.(本小题满分11分)如图,22⨯网格(每个小正方形的边长为1)中有A ,B ,C ,D ,E ,F ,G ,H ,O 九个格点.抛物线l 的解析式为2(1)n y x bx c =-++(n 为整数).(1)n 为奇数,且l 经过点H (0,1)和C (2,1),求b ,c 的值,并直接写出哪个格点是该抛物线的顶点;(2)n 为偶数,且l 经过点A (1,0)和B (2,0),通过计算说明点F (0,2)和H (0,1)是否在该抛物线上;(3)若l 经过这九个格点中的三个,直接写出所有满足这样条件的抛物线条数.数学试卷 第9页(共26页) 数学试卷 第10页(共26页)25.(本小题满分11分)图1和图2中,优弧AB 所在O 的半径为2,AB =点P 为优弧AB 上一点(点P 不与A ,B 重合),将图形沿BP 折叠,得到点A 的对称点A '.图1图2(1)点O 到弦AB 的距离是 ,当BP 经过点O 时,ABA '∠= ; (2)当BA '与O 相切时,如图2,求折痕BP 的长;(3)若线段BA '与优弧AB 只有一个公共点B ,设ABP α∠=,确定α的取值范围.26.(本小题满分13分)某景区内的环形路是边长为800米的正方形ABCD ,如图1和图2.现有1号、2号两游览车分别从出口A 和景点C 同时出发,1号车顺时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车的速度均为200米/分.图1图2探究 设行驶时间为t 分.(1)当08t ≤≤时,分别写出1号车、2号车在左半环线离出口A 的路程1y ,2y (米)与t (分)的函数关系式,并求出当两车相距的路程是400米时t 的值;(2)t 为何值时,1号车第三次恰好经过景点C ?,并直接写出这一段时间内它与2号车相遇过的次数.发现 如图2,游客甲在BC 上一点K (不与点B ,C 重合)处候车,准备乘车到出口A .设CK x =米.情况一:若他刚好错过2号车,便搭乘即将到来的1号车; 情况二:若他刚好错过1号车,便搭乘即将到来的2号车. 比较哪种情况用时较多?(含候车时间)决策 已知游客乙在DA 上从D 向出口A 走去,步行的速度是50米/分.当行进到DA 上一点P (不与D ,A 重合)时,刚好与2号车迎面相遇.(1)他发现,乘1号车会比乘2号车到出口A 用时少,请你简要说明理由;(2)设(0800)PA s s =<<米.若他想尽快到达出口A ,根据s 的大小,在等候乘1号车还是步行这两种方式中,他该如何选择?数学试卷 第11页(共26页)数学试卷 第12页(共26页)河北省2014年初中毕业生升学文化课考试数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】只有符号不同的两个数互为相反数,故选B 。

2014年天津市中考数学试卷(含解析版)

2014年天津市中考数学试卷(含解析版)

2014年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2014年天津市)计算(﹣6)×(﹣1)的结果等于()A.6 B.﹣6 C.1D.﹣12.(3分)(2014年天津市)cos60°的值等于()A.B.C.D.3.(3分)(2014年天津市)下列标志中,可以看作是轴对称图形的是()A.B.C.D.4.(3分)(2014年天津市)为了市民出行更加方便,天津市政府大力发展公共交通,2013年天津市公共交通客运量约为1608000000人次,将1608000000用科学记数法表示为()A.160.8×107B.16.08×108C.1.608×109D.0.1608×10105.(3分)(2014年天津市)如图,从左面观察这个立体图形,能得到的平面图形是()A.B.C.D.6.(3分)(2014年天津市)正六边形的边心距为,则该正六边形的边长是()A. B. 2 C. 3 D.27.(3分)(2014年天津市)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A.20°B.25°C.40°D.50°8.(3分)(2014年天津市)如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:29.(3分)(2014年天津市)已知反比例函数y=,当1<x<2时,y的取值范围是()A.0<y<5 B.1<y<2 C.5<y<10 D.y>1010.(3分)(2014年天津市)要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=28 B.x(x﹣1)=28 C.x(x+1)=28 D.x(x﹣1)=28 11.(3分)(2014年天津市)某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:4的权.根据四人各自的平均成绩,公司将录取()A.甲B.乙C.丙D.丁12.(3分)(2014年天津市)已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m>2.其中,正确结论的个数是()A.0 B.1C.2D.3二、填空题(本大题共6小题,每小题3分,满分18分)13.(3分)(2014年天津市)计算x5÷x2的结果等于.14.(3分)(2014年天津市)已知反比例函数y=(k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条件的k的值为.15.(3分)(2014年天津市)如图,是一副普通扑克牌中的13张黑桃牌,将它们洗匀后正面向下放在桌子上,从中任意抽取一张,则抽出的牌点数小于9的概率为.16.(3分)(2014年天津市)抛物线y=x2﹣2x+3的顶点坐标是.17.(3分)(2014年天津市)如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为(度).18.(3分)(2014年天津市)如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.(Ⅰ)计算AC2+BC2的值等于;(Ⅱ)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AC2+BC2,并简要说明画图方法(不要求证明).三、解答题(本大题共7小题,共66分)19.(8分)(2014年天津市)解不等式组请结合题意填空,完成本题的解答:(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为.20.(8分)(2014年天津市)为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为,图①中m的值为;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?21.(10分)(2014年天津市)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB 的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(Ⅱ)如图②,若∠CAB=60°,求BD的长.22.(10分)(2014年天津市)解放桥是天津市的标志性建筑之一,是一座全钢结构的部分可开启的桥梁.(Ⅰ)如图①,已知解放桥可开启部分的桥面的跨度AB等于47m,从AB的中点C处开启,则AC开启至A′C′的位置时,A′C′的长为m;(Ⅱ)如图②,某校数学兴趣小组要测量解放桥的全长PQ,在观景平台M处测得∠PMQ=54°,沿河岸MQ前行,在观景平台N处测得∠PNQ=73°,已知PQ⊥MQ,MN=40m,求解放桥的全长PQ(tan54°≈1.4,tan73°≈3.3,结果保留整数).23.(10分)(2014年天津市)“黄金1号”玉米种子的价格为5元/kg,如果一次购买2kg以上的种子,超过2kg部分的种子的价格打8折.(Ⅰ)根据题意,填写下表:(Ⅲ)若小张一次购买该种子花费了30元,求他购买种子的数量.24.(10分)(2014年天津市)在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.(Ⅰ)如图①,当α=90°时,求AE′,BF′的长;(Ⅱ)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;(Ⅲ)若直线AE′与直线BF′相交于点P,求点P的纵坐标的最大值(直接写出结果即可).25.(10分)(2014年天津市)在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.2014年天津市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2014年天津市)计算(﹣6)×(﹣1)的结果等于()A.6 B.﹣6 C.1D.﹣1【考点】有理数的乘法.【分析】根据有理数的乘法运算法则进行计算即可得解.【解答】解:(﹣6)×(﹣1),=6×1,=6.故选A.【点评】本题考查了有理数的乘法运算,是基础题,熟记运算法则是解题的关键.2.(3分)(2014年天津市)cos60°的值等于()A.B.C.D.【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值解题即可.【解答】解:cos60°=.故选A.【点评】本题考查特殊角的三角函数值,准确掌握特殊角的函数值是解题关键.3.(3分)(2014年天津市)下列标志中,可以看作是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.【点评】此题主要考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.4.(3分)(2014年天津市)为了市民出行更加方便,天津市政府大力发展公共交通,2013年天津市公共交通客运量约为1608000000人次,将1608000000用科学记数法表示为()A.160.8×107B.16.08×108C.1.608×109D.0.1608×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1608000000用科学记数法表示为:1.608×109.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)(2014年天津市)如图,从左面观察这个立体图形,能得到的平面图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从左面看得到的图形是左视图,可得答案.【解答】解;从左面看下面一个正方形,上面一个正方形,故选:A.【点评】本题考查了简单组合体的三视图,从左面看得到的图形是左视图.6.(3分)(2014年天津市)正六边形的边心距为,则该正六边形的边长是()A. B. 2 C. 3 D.2【考点】正多边形和圆.【分析】运用正六边形的性质,正六边形边长等于外接圆的半径,再利用勾股定理解决.【解答】解:∵正六边形的边心距为,∴OB=,AB=OA,∵OA2=AB2+OB2,∴OA2=(OA)2+()2,解得OA=2.故选B.【点评】本题主要考查了正六边形和圆,注意:外接圆的半径等于正六边形的边长.7.(3分)(2014年天津市)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A.20°B.25°C.40°D.50°【考点】切线的性质.【分析】连接OA,根据切线的性质,即可求得∠C的度数.【解答】解:如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵OA=OB,∴∠B=∠OAB=25°,∴∠AOC=50°,∴∠C=40°.【点评】本题考查了圆的切线性质,以及等腰三角形的性质,已知切线时常用的辅助线是连接圆心与切点.8.(3分)(2014年天津市)如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2【考点】平行四边形的性质;相似三角形的判定与性质.【分析】根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.【解答】解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.【点评】此题主要考查了平行四边形的性质以及相似三角形的判定与性质等知识,得出△DEF∽△BCF是解题关键.9.(3分)(2014年天津市)已知反比例函数y=,当1<x<2时,y的取值范围是()A.0<y<5 B.1<y<2 C.5<y<10 D.y>10【考点】反比例函数的性质.【分析】将x=1和x=2分别代入反比例函数即可确定函数值的取值范围.【解答】解:∵反比例函数y=中当x=1时y=10,当x=2时,y=5,∴当1<x<2时,y的取值范围是5<y<10,故选C.【点评】本题考查了反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.10.(3分)(2014年天津市)要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=28 B.x(x﹣1)=28 C.x(x+1)=28 D.x(x﹣1)=28 【考点】由实际问题抽象出一元二次方程.【分析】关系式为:球队总数×每支球队需赛的场数÷2=4×7,把相关数值代入即可.【解答】解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=4×7.故选B.【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.11.(3分)(2014年天津市)某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙丙丁测试成绩(百分制)面试86 92 90 83笔试90 83 83 92 如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取()A.甲B.乙C.丙D.丁【考点】加权平均数.【分析】根据题意先算出甲、乙、丙、丁四位候选人的加权平均数,再进行比较,即可得出答案.【解答】解:甲的平均成绩为:(86×6+90×4)÷10=87.6(分),乙的平均成绩为:(92×6+83×4)÷10=88.4(分),丙的平均成绩为:(90×6+83×4)÷10=87.2(分),丁的平均成绩为:(83×6+92×4)÷10=86.6(分),因为乙的平均分数最高,所以乙将被录取.故选B.【点评】此题考查了加权平均数的计算公式,注意,计算平均数时按6和4的权进行计算.12.(3分)(2014年天津市)已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m>2.其中,正确结论的个数是()A.0 B.1C.2D.3【考点】二次函数图象与系数的关系.【分析】由图象可知二次函数y=ax2+bx+c与x轴有两个交点,进而判断①;先根据抛物线的开口向下可知a<0,由抛物线与y轴的交点判断c与0的关系,根据对称轴在y轴右侧得出b与0的关系,然后根据有理数乘法法则判断②;一元二次方程ax2+bx+c﹣m=0没有实数根,则可转化为ax2+bx+c=m,即可以理解为y=ax2+bx+c和y=m没有交点,即可求出m的取值范围,判断③即可.【解答】解:①∵二次函数y=ax2+bx+c与x轴有两个交点,∴b2﹣4ac>0,故①正确;②∵抛物线的开口向下,∴a<0,∵抛物线与y轴交于正半轴,∴c>0,∵对称轴x=﹣>0,∴ab<0,∵a<0,∴b>0,∴abc<0,故②正确;③∵一元二次方程ax2+bx+c﹣m=0没有实数根,∴y=ax2+bx+c和y=m没有交点,由图可得,m>2,故③正确.故选D.【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(本大题共6小题,每小题3分,满分18分)13.(3分)(2014年天津市)计算x5÷x2的结果等于x3.【考点】同底数幂的除法.【分析】同底数幂相除底数不变,指数相减,【解答】解:x5÷x2=x3故答案为:x3.【点评】此题考查了同底数幂的除法,解题要注意细心明确指数相减.14.(3分)(2014年天津市)已知反比例函数y=(k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条件的k的值为1.【考点】反比例函数的性质.【专题】开放型.【分析】反比例函数y=(k为常数,k≠0)的图象在第一,三象限,则k>0,符合上述条件的k的一个值可以是1.(正数即可,答案不唯一)【解答】解:∵反比例函数的图象在一、三象限,∴k>0,只要是大于0的所有实数都可以.例如:1.故答案为:1.【点评】此题主要考查反比例函数图象的性质:(1)k>0时,图象是位于一、三象限;(2)k<0时,图象是位于二、四象限.15.(3分)(2014年天津市)如图,是一副普通扑克牌中的13张黑桃牌,将它们洗匀后正面向下放在桌子上,从中任意抽取一张,则抽出的牌点数小于9的概率为.【考点】概率公式.【分析】抽出的牌的点数小于9有1,2,3,4,5,6,7,8共8个,总的样本数目为13,由此可以容易知道事件抽出的牌的点数小于9的概率.【解答】解:∵抽出的牌的点数小于9有1,2,3,4,5,6,7,8共8个,总的样本数目为13,∴从中任意抽取一张,抽出的牌点数小于9的概率是:.故答案为:.【点评】此题主要考查了概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.16.(3分)(2014年天津市)抛物线y=x2﹣2x+3的顶点坐标是(1,2).【考点】二次函数的性质.【专题】计算题.【分析】已知抛物线的解析式是一般式,用配方法转化为顶点式,根据顶点式的坐标特点,直接写出顶点坐标.【解答】解:∵y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2,∴抛物线y=x2﹣2x+3的顶点坐标是(1,2).【点评】此题考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴为x=h,此题还考查了配方法求顶点式.17.(3分)(2014年天津市)如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为45(度).【考点】等腰三角形的性质.【分析】设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°﹣∠ACE=90°﹣x﹣y,根据等边对等角得出∠ACE=∠AEC=x+y,∠BDC=∠BCD=∠BCE+∠DCE=90°﹣y.然后在△DCE中,利用三角形内角和定理列出方程x+(90°﹣y)+(x+y)=180°,解方程即可求出∠DCE的大小.【解答】解:设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°﹣∠ACE=90°﹣x﹣y.∵AE=AC,∴∠ACE=∠AEC=x+y,∵BD=BC,∴∠BDC=∠BCD=∠BCE+∠DCE=90°﹣x﹣y+x=90°﹣y.在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,∴x+(90°﹣y)+(x+y)=180°,解得x=45°,∴∠DCE=45°.故答案为45.【点评】本题考查了等腰三角形的性质及三角形内角和定理,设出适当的未知数列出方程是解题的关键.18.(3分)(2014年天津市)如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.(Ⅰ)计算AC2+BC2的值等于11;(Ⅱ)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AC2+BC2,并简要说明画图方法(不要求证明)如图所示:.【考点】作图—应用与设计作图.【分析】(1)直接利用勾股定理求出即可;(2)首先分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;进而得出答案.【解答】解:(Ⅰ)AC2+BC2=()2+32=11;故答案为:11;(2)分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;延长DE交MN于点Q,连接QC,平移QC至AG,BP位置,直线GP分别交AF,BH于点T,S,则四边形ABST即为所求.【点评】此题主要考查了应用设计与作图,借助网格得出正方形是解题关键.三、解答题(本大题共7小题,共66分)19.(8分)(2014年天津市)解不等式组请结合题意填空,完成本题的解答:(Ⅰ)解不等式①,得x≥﹣1;(Ⅱ)解不等式②,得x≤1;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为﹣1≤x≤1.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:(I)解不等式①,得x≥﹣1;(II)解不等式②得,x≤1,(III)在数轴上表示为:;(IN)故此不等式的解集为:﹣1≤x≤1.故答案分别为:x≥﹣1,x≤1,﹣1≤x≤1.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(8分)(2014年天津市)为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为40,图①中m的值为15;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?【考点】条形统计图;用样本估计总体;扇形统计图;中位数;众数.【专题】计算题.【分析】(Ⅰ)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;(Ⅱ)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;(Ⅲ)根据题意列出算式,计算即可得到结果.【解答】解:(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100﹣30﹣25﹣20﹣10=15;故答案为:40;15;(Ⅱ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为5;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36;(Ⅲ)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60双为35号.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.21.(10分)(2014年天津市)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB 的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(Ⅱ)如图②,若∠CAB=60°,求BD的长.【考点】圆周角定理;等边三角形的判定与性质;勾股定理.【分析】(Ⅰ)利用圆周角定理可以判定△CAB和△DCB是直角三角形,利用勾股定理可以求得AC的长度;利用圆心角、弧、弦的关系推知△DCB也是等腰三角形,所以利用勾股定理同样得到BD=CD=5;(Ⅱ)如图②,连接OB,OD.由圆周角定理、角平分线的性质以及等边三角形的判定推知△OBD是等边三角形,则BD=OB=OD=5.【解答】解:(Ⅰ)如图①,∵BC是⊙O的直径,∴∠CAB=∠BDC=90°.∵在直角△CAB中,BC=10,AB=6,∴由勾股定理得到:AC===8.∵AD平分∠CAB,∴=,∴CD=BD.在直角△BDC中,BC=10,CD2+BD2=BC2,∴易求BD=CD=5;(Ⅱ)如图②,连接OB,OD.∵AD平分∠CAB,且∠CAB=60°,∴∠DAB=∠CAB=30°,∴∠DOB=2∠DAB=60°.又∵OB=OD,∴△OBD是等边三角形,∴BD=OB=OD.∵⊙O的直径为10,则OB=5,∴BD=5.【点评】本题综合考查了圆周角定理,勾股定理以及等边三角形的判定与性质.此题利用了圆的定义、有一内角为60度的等腰三角形为等边三角形证得△OBD是等边三角形.22.(10分)(2014年天津市)解放桥是天津市的标志性建筑之一,是一座全钢结构的部分可开启的桥梁.(Ⅰ)如图①,已知解放桥可开启部分的桥面的跨度AB等于47m,从AB的中点C处开启,则AC开启至A′C′的位置时,A′C′的长为23.5m;(Ⅱ)如图②,某校数学兴趣小组要测量解放桥的全长PQ,在观景平台M处测得∠PMQ=54°,沿河岸MQ前行,在观景平台N处测得∠PNQ=73°,已知PQ⊥MQ,MN=40m,求解放桥的全长PQ(tan54°≈1.4,tan73°≈3.3,结果保留整数).【考点】解直角三角形的应用.【专题】应用题.【分析】(1)根据中点的性质即可得出A′C′的长;(2)设PQ=x,在Rt△PMQ中表示出MQ,在Rt△PNQ中表示出NQ,再由MN=40m,可得关于x的方程,解出即可.【解答】解:(I)∵点C是AB的中点,∴A'C'=AB=23.5m.(II)设PQ=x,在Rt△PMQ中,tan∠PMQ==1.4,∴MQ=,在Rt△PNQ中,tan∠PNQ==3.3,∴NQ=,∵MN=MQ﹣NQ=40,即﹣=40,解得:x≈97.答:解放桥的全长约为97m.【点评】本题考查了解直角三角形的应用,解答本题的关键是熟练锐角三角函数的定义,难度一般.23.(10分)(2014年天津市)“黄金1号”玉米种子的价格为5元/kg,如果一次购买2kg以上的种子,超过2kg部分的种子的价格打8折.(Ⅰ)根据题意,填写下表:购买种子的数量/kg 1.5 2 3.5 4 …付款金额/元7.5 1016 18…(Ⅱ)设购买种子数量为xkg,付款金额为y元,求y关于x的函数解析式;(Ⅲ)若小张一次购买该种子花费了30元,求他购买种子的数量.【考点】一次函数的应用;一元一次方程的应用.【分析】(1)根据单价乘以数量,可得答案;(2)根据单价乘以数量,可得价格,可得相应的函数解析式;(3)根据函数值,可得相应的自变量的值.【解答】解:(Ⅰ)10,8;(Ⅱ)根据题意得,当0≤x≤2时,种子的价格为5元/千克,∴y=5x,当x>2时,其中有2千克的种子按5元/千克计价,超过部分按4元/千克计价,∴y=5×2+4(x﹣2)=4x+2,y关于x的函数解析式为y=;(Ⅲ)∵30>2,∴一次性购买种子超过2千克,∴4x+2=30.解得x=7,答:他购买种子的数量是7千克.【点评】本题考查了一次函数的应用,分类讨论是解题关键.24.(10分)(2014年天津市)在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.(Ⅰ)如图①,当α=90°时,求AE′,BF′的长;(Ⅱ)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;(Ⅲ)若直线AE′与直线BF′相交于点P,求点P的纵坐标的最大值(直接写出结果即可).【考点】几何变换综合题;三角形的外角性质;全等三角形的判定与性质;含30度角的直角三角形;勾股定理.【专题】综合题.【分析】(1)利用勾股定理即可求出AE′,BF′的长.(2)运用全等三角形的判定与性质、三角形的外角性质就可解决问题.(3)首先找到使点P的纵坐标最大时点P的位置(点P与点D′重合时),然后运用勾股定理及30°角所对的直角边等于斜边的一半等知识即可求出点P的纵坐标的最大值.【解答】解:(Ⅰ)当α=90°时,点E′与点F重合,如图①.∵点A(﹣2,0)点B(0,2),∴OA=OB=2.∵点E,点F分别为OA,OB的中点,∴OE=OF=1∵正方形OE′D′F′是正方形OEDF绕点O顺时针旋转90°得到的,∴OE′=OE=1,OF′=OF=1.在Rt△AE′O中,AE′=.在Rt△BOF′中,BF′=.∴AE′,BF′的长都等于.(Ⅱ)当α=135°时,如图②.∵正方形OE′D′F′是由正方形OEDF绕点O顺时针旋转135°所得,∴∠AOE′=∠BOF′=135°.在△AOE′和△BOF′中,,∴△AOE′≌△BOF′(SAS).∴AE′=BF′,且∠OAE′=∠OBF′.∵∠ACB=∠CAO+∠AOC=∠CBP+∠CPB,∠CAO=∠CBP,∴∠CPB=∠AOC=90°∴AE′⊥BF′.(Ⅲ)在第一象限内,当点D′与点P重合时,点P的纵坐标最大.过点P作PH⊥x轴,垂足为H,如图③所示.∵∠AE′O=90°,E′O=1,AO=2,∴∠E′AO=30°,AE′=.∴AP=+1.∵∠AHP=90°,∠PAH=30°,∴PH=AP=.∴点P的纵坐标的最大值为.【点评】本题是在图形旋转过程中,考查了全等三角形的判定与性质、勾股定理、三角形的外角性质、30°角所对的直角边等于斜边的一半等知识,而找到使点P的纵坐标最大时点P的位置是解决最后一个问题的关键.25.(10分)(2014年天津市)在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.【考点】一次函数综合题.【分析】(Ⅰ)①利用待定系数法求得直线OF与EA的直线方程,然后联立方程组,求得该方程组的解即为点P的坐标;②由已知可设点F的坐标是(1,t).求得直线OF、EA的解析式分别是y=tx、直线EA的解析式为:y=(2+t)x﹣2(2+t).则tx=(2+t)x﹣2(2+t),整理后即可得到y关于x的函数关系式y=x2﹣2x;(Ⅱ)同(Ⅰ),易求P(2﹣,2t﹣).则由PQ⊥l于点Q,得点Q(1,2t﹣),则OQ2=1+t2(2﹣)2,PQ2=(1﹣)2,所以1+t2(2﹣)2=(1﹣)2,化简得到:t(t ﹣2m)(t2﹣2mt﹣1)=0,通过解该方程可以求得m与t的关系式.【解答】解:(Ⅰ)①∵点O(0,0),F(1,1),∴直线OF的解析式为y=x.设直线EA的解析式为:y=kx+b(k≠0)、∵点E和点F关于点M(1,﹣1)对称,∴E(1,﹣3).又A(2,0),点E在直线EA上,∴,解得,∴直线EA的解析式为:y=3x﹣6.∵点P是直线OF与直线EA的交点,则,解得,∴点P的坐标是(3,3).②由已知可设点F的坐标是(1,t).∴直线OF的解析式为y=tx.设直线EA的解析式为y=cx+dy(c、d是常数,且c≠0).由点E和点F关于点M(1,﹣1)对称,得点E(1,﹣2﹣t).又点A、E在直线EA上,∴,解得,∴直线EA的解析式为:y=(2+t)x﹣2(2+t).∵点P为直线OF与直线EA的交点,∴tx=(2+t)x﹣2(2+t),即t=x﹣2.则有 y=tx=(x﹣2)x=x2﹣2x;(Ⅱ)由(Ⅰ)可得,直线OF的解析式为y=tx.直线EA的解析式为y=(t﹣2m)x﹣2(t﹣2m).∵点P为直线OF与直线EA的交点,∴tx=(t﹣2m)x﹣2(t﹣2m),化简,得 x=2﹣.有 y=tx=2t﹣.∴点P的坐标为(2﹣,2t﹣).∵PQ⊥l于点Q,得点Q(1,2t﹣),∴OQ2=1+t2(2﹣)2,PQ2=(1﹣)2,∵OQ=PQ,∴1+t2(2﹣)2=(1﹣)2,化简,得 t(t﹣2m)(t2﹣2mt﹣1)=0.又t≠0,∴t﹣2m=0或t2﹣2mt﹣1=0,解得 m=或m=.则m=或m=即为所求.【点评】本题考查了一次函数的综合题型.涉及到了待定系数法求一次函数解析式,一次函数与直线的交点问题.此题难度不大,掌握好两直线间的交点的求法和待定系数法求一次函数解析式就能解答本题.。

2014年河北省中考数学试卷附详细答案(原版+解析版)

2014年河北省中考数学试卷附详细答案(原版+解析版)

2014年河北省中考数学试题一、选择题(共16小题,1~6小题,每小题2分;7~16小题,每小题2分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)(2014•河北)﹣2是2的()A.倒数B.相反数C.绝对值D.平方根2.(2分)(2014•河北)如图,△ABC中,D,E分别是边AB,AC的中点.若DE=2,则BC=()A.2 B.3 C.4 D. 53.(2分)(2014•河北)计算:852﹣152=()A.70 B.700 C.4900 D. 70004.(2分)(2014•河北)如图,平面上直线a,b分别过线段OK两端点(数据如图),则a,b相交所成的锐角是()A.20°B.30°C.70°D. 80°5.(2分)(2014•河北)a,b是两个连续整数,若a<<b,则a,b分别是()A.2,3 B.3,2 C.3,4 D. 6,86.(2分)(2014•河北)如图,直线l经过第二、三、四象限,l的解析式是y=(m﹣2)x+n,则m的取值范围在数轴上表示为()A.B.C.D.7.(3分)(2014•河北)化简:﹣=()A.0 B.1 C.x D.8.(3分)(2014•河北)如图,将长为2、宽为1的矩形纸片分割成n个三角形后,拼成面积为2的正方形,则n≠()A.2 B.3 C.4 D. 5A.6厘米B.12厘米C.24厘米D. 36厘米9.(3分)(2014•河北)某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米.当x=3时,y=18,那么当成本为72元时,边长为()10.(3分)(2014•河北)如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A,B围成的正方体上的距离是()A.0 B.1 C.D.11.(3分)(2014•河北)某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的实验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一个质地均匀的正六面体骰子,向上的面点数是412.(3分)(2014•河北)如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使P A+PC=BC,则符合要求的作图痕迹是()A、B、C、D、13.(3分)(2014•河北)在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对14.(3分)(2014•河北)定义新运算:a⊕b=例如:4⊕5=,4⊕(﹣5)=.则函数y=2⊕x(x≠0)的图象大致是()A.B.C.D.15.(3分)(2014•河北)如图,边长为a的正六边形内有两个三角形(数据如图),则=()A.3 B.4 C.5 D. 616.(3分)(2014•河北)五名学生投篮球,规定每人投20次,统计他们每人投中的次数.得到五个数据.若这五个数据的中位数是6.唯一众数是7,则他们投中次数的总和可能是()A.20 B.28 C.30 D. 31二、填空题(共4小题,每小题3分,满分12分)17.(3分)(2014•河北)计算:=.18.(3分)(2014•河北)若实数m,n满足|m﹣2|+(n﹣2014)2=0,则m﹣1+n0=.19.(3分)(2014•河北)如图,将长为8cm的铁丝尾相接围成半径为2cm的扇=cm2.形.则S扇形20.(3分)(2014•河北)如图,点O,A在数轴上表示的数分别是0,0.1.将线段OA分成100等份,其分点由左向右依次为M1,M2,…,M99;再将线段OM1,分成100等份,其分点由左向右依次为N1,N2,…,N99;继续将线段ON1分成100等份,其分点由左向右依次为P1,P2.…,P99.则点P37所表示的数用科学记数法表示为.三、解答题(共6小题,满分66分,解答应写出文字说明、证明过程或演算步骤)21.(10分)(2014•河北)嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时,对于b2﹣4ac>0的情况,她是这样做的:由于a≠0,方程ax2++bx+c=0变形为:x2+x=﹣,…第一步x2+x+()2=﹣+()2,…第二步(x+)2=,…第三步x+=(b2﹣4ac>0),…第四步x=,…第五步嘉淇的解法从第四步开始出现错误;事实上,当b2﹣4ac>0时,方程ax2+bx+c=0(a≠O)的求根公式是.用配方法解方程:x2﹣2x﹣24=0.22.(10分)(2014•河北)如图1,A,B,C是三个垃圾存放点,点B,C分别位于点A的正北和正东方向,AC=100米.四人分别测得∠C的度数如下表:甲乙丙丁∠C(单位:度)34 36 38 40他们又调查了各点的垃圾量,并绘制了下列尚不完整的统计图2,图3:(1)求表中∠C度数的平均数:(2)求A处的垃圾量,并将图2补充完整;(3)用(1)中的作为∠C的度数,要将A处的垃圾沿道路AB都运到B处,已知运送1千克垃圾每米的费用为0.005元,求运垃圾所需的费用.(注:sin37°=0.6,cos37°=0.8,tan37°=0.75)23.(11分)(2014•河北)如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求∠ACE的度数;(3)求证:四边形ABEF是菱形.24.(11分)(2014•河北)如图,2×2网格(每个小正方形的边长为1)中有A,B,C,D,E,F,G、H,O九个格点.抛物线l的解析式为y=(﹣1)n x2+bx+c (n为整数).(1)n为奇数,且l经过点H(0,1)和C(2,1),求b,c的值,并直接写出哪个格点是该抛物线的顶点;(2)n为偶数,且l经过点A(1,0)和B(2,0),通过计算说明点F(0,2)和H(0,1)是否在该抛物线上;(3)若l经过这九个格点中的三个,直接写出所有满足这样条件的抛物线条数.25.(11分)(2014•河北)图1和图2中,优弧所在⊙O的半径为2,AB=2.点P为优弧上一点(点P不与A,B重合),将图形沿BP折叠,得到点A的对称点A′.(1)点O到弦AB的距离是,当BP经过点O时,∠ABA′=°;(2)当BA′与⊙O相切时,如图2,求折痕的长:(3)若线段BA′与优弧只有一个公共点B,设∠ABP=α.确定α的取值范围.26.(13分)(2014•河北)某景区内的环形路是边长为800米的正方形ABCD,如图1和图2.现有1号、2号两游览车分别从出口A和景点C同时出发,1号车顺时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200米/分.探究:设行驶吋间为t分.(1)当0≤t≤8时,分别写出1号车、2号车在左半环线离出口A的路程y1,y2(米)与t(分)的函数关系式,并求出当两车相距的路程是400米时t的值;(2)t为何值时,1号车第三次恰好经过景点C?并直接写出这一段时间内它与2号车相遇过的次数.发现:如图2,游客甲在BC上的一点K(不与点B,C重合)处候车,准备乘车到出口A,设CK=x米.情况一:若他刚好错过2号车,便搭乘即将到来的1号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车.比较哪种情况用时较多?(含候车时间)决策:己知游客乙在DA上从D向出口A走去.步行的速度是50米/分.当行进到DA上一点P(不与点D,A重合)时,刚好与2号车迎面相遇.(1)他发现,乘1号车会比乘2号车到出口A用时少,请你简要说明理由:(2)设PA=s(0<s<800)米.若他想尽快到达出口A,根据s的大小,在等候乘1号车还是步行这两种方式中.他该如何选择?2014年河北省中考数学试题参考答案与试题解析一、选择题(共16小题,1~6小题,每小题2分;7~16小题,每小题2分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)(2014•河北)﹣2是2的()A.倒数B.相反数C.绝对值D.平方根考点:相反数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:﹣2是2的相反数,故选:B.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(2分)(2014•河北)如图,△ABC中,D,E分别是边AB,AC的中点.若DE=2,则BC=()A.2 B.3 C.4 D. 5考点:三角形中位线定理.分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得BC=2DE.解答:解:∵D,E分别是边AB,AC的中点,∴DE是△ABC的中位线,∴BC=2DE=2×2=4.故选C.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键.3.(2分)(2014•河北)计算:852﹣152=()A.70 B.700 C.4900 D. 7000考点:因式分解-运用公式法.分析:直接利用平方差进行分解,再计算即可.解答:解:原式=(85+15)(85﹣15)=100×70=7000.故选:D.点评:此题主要考查了公式法分解因式,关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).4.(2分)(2014•河北)如图,平面上直线a,b分别过线段OK两端点(数据如图),则a,b相交所成的锐角是()A.20°B.30°C.70°D. 80°考点:三角形的外角性质分析:根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:a,b相交所成的锐角=100°﹣70°=30°.故选B.点评:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.5.(2分)(2014•河北)a,b是两个连续整数,若a<<b,则a,b分别是()A.2,3 B.3,2 C.3,4 D. 6,8考点:估算无理数的大小.分析:根据,可得答案.解答:解:,故选:A.点评:本题考查了估算无理数的大小,是解题关键.6.(2分)(2014•河北)如图,直线l经过第二、三、四象限,l的解析式是y=(m﹣2)x+n,则m的取值范围在数轴上表示为()A.B.C.D.考点:一次函数图象与系数的关系;在数轴上表示不等式的解集专题:数形结合.分析:根据一次函数图象与系数的关系得到m﹣2<0且n<0,解得m<2,然后根据数轴表示不等式的方法进行判断.解答:解:∵直线y=(m﹣2)x+n经过第二、三、四象限,∴m﹣2<0且n<0,∴m<2且n<0.故选C.点评:本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).也考查了在数轴上表示不等式的解集.7.(3分)(2014•河北)化简:﹣=()A.0 B.1 C.x D.考点:分式的加减法.专题:计算题.分析:原式利用同分母分式的减法法则计算,约分即可得到结果.解答:解:原式==x.故选C点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.8.(3分)(2014•河北)如图,将长为2、宽为1的矩形纸片分割成n个三角形后,拼成面积为2的正方形,则n≠()A.2 B.3 C.4 D. 5考点:图形的剪拼分析:利用矩形的性质以及正方形的性质,结合勾股定理得出分割方法即可.解答:解:如图所示:将长为2、宽为1的矩形纸片分割成n个三角形后,拼成面积为2的正方形,则n可以为:3,4,5,故n≠2.故选:A.点评:此题主要考查了图形的剪拼,得出正方形的边长是解题关键.A.6厘米B.12厘米C.24厘米D. 36厘米9.(3分)(2014•河北)某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米.当x=3时,y=18,那么当成本为72元时,边长为()考点:一次函数的应用.分析:设y与x之间的函数关系式为y=kx2,由待定系数法就可以求出解析式,当y=72时代入函数解析式就可以求出结论.解答:解:设y与x之间的函数关系式为y=kx2,由题意,得18=9k,解得:k=2,∴y=2x2,当y=72时,72=2x2,∴x=6.故选A.点评:本题考查了待定系数法求函数的解析式的运用,根据解析式由函数值求自变量的值的运用,解答时求出函数的解析式是关键.10.(3分)(2014•河北)如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A,B围成的正方体上的距离是()A.0 B.1 C.D.考点:展开图折叠成几何体分析:根据展开图折叠成几何体,可得正方体,根据勾股定理,可得答案.解答:解;AB是正方体的边长,AB=1,故选:B.点评:本题考查了展开图折叠成几何体,勾股定理是解题关键.11.(3分)(2014•河北)某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的实验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一个质地均匀的正六面体骰子,向上的面点数是4考点:利用频率估计概率;折线统计图.分析:根据统计图可知,试验结果在0.17附近波动,即其概率P≈0.17,计算四个选项的概率,约为0.17者即为正确答案.解答:解:A、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀“的概率为,故此选项错误;B、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率是:=;故此选项错误;C、暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球的概率为,故此选项错误;D、掷一个质地均匀的正六面体骰子,向上的面点数是4的概率为≈0.17,故此选项正确.故选:D.点评:此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.12.(3分)(2014•河北)如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使P A+PC=BC,则符合要求的作图痕迹是()A、B、C、D、考点:作图—复杂作图分析:要使P A+PC=BC,必有P A=PB,所以选项中只有作AB的中垂线才能满足这个条件,故D正确.解答:解:D选项中作的是AB的中垂线,∴P A=PB,∵PB+PC=BC,∴P A+PC=BC故选:D.点评:本题主要考查了作图知识,解题的关键是根据作图得出P A=PB.13.(3分)(2014•河北)在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对考点:相似三角形的判定;相似多边形的性质分析:甲:根据题意得:AB∥A′B′,AC∥A′C′,BC∥B′C′,即可证得∠A=∠A′,∠B=∠B′,可得△ABC∽△A′B′C′;乙:根据题意得:AB=CD=3,AD=BC=5,则A′B′=C′D′=3+2=5,A′D′=B′C′=5+2=7,则可得,即新矩形与原矩形不相似.解答:解:甲:根据题意得:AB∥A′B′,AC∥A′C′,BC∥B′C′,∴∠A=∠A′,∠B=∠B′,∴△ABC∽△A′B′C′,∴甲说法正确;乙:∵根据题意得:AB=CD=3,AD=BC=5,则A′B′=C′D′=3+2=5,A′D′=B′C′=5+2=7,∴,,∴,∴新矩形与原矩形不相似.∴乙说法正确.故选A.点评:此题考查了相似三角形以及相似多边形的判定.此题难度不大,注意掌握数形结合思想的应用.14.(3分)(2014•河北)定义新运算:a⊕b=例如:4⊕5=,4⊕(﹣5)=.则函数y=2⊕x(x≠0)的图象大致是()A.B.C.D.考点:反比例函数的图象专题:新定义.分析:根据题意可得y=2⊕x=,再根据反比例函数的性质可得函数图象所在象限和形状,进而得到答案.解答:解:由题意得:y=2⊕x=,当x>0时,反比例函数y=在第一象限,当x<0时,反比例函数y=﹣在第二象限,又因为反比例函数图象是双曲线,因此D选项符合,故选:D.点评:此题主要考查了反比例函数的性质,关键是掌握反比例函数的图象是双曲线.15.(3分)(2014•河北)如图,边长为a的正六边形内有两个三角形(数据如图),则=()A.3 B.4 C.5 D. 6考点:正多边形和圆分析:先求得两个三角形的面积,再求出正六边形的面积,求比值即可.解答:解:如图,∵三角形的斜边长为a,∴两条直角边长为a,a,=a•a=a2,∴S空白∵AB=a,∴OC=a,∴S正六边形=6×a•a=a2,∴S阴影=S正六边形﹣S空白=a2﹣a2=a2,∴==5,故选C.点评:本题考查了正多边形和圆,正六边形的边长等于半径,面积可以分成六个等边三角形的面积来计算.16.(3分)(2014•河北)五名学生投篮球,规定每人投20次,统计他们每人投中的次数.得到五个数据.若这五个数据的中位数是6.唯一众数是7,则他们投中次数的总和可能是()A.20 B.28 C.30 D. 31考点:众数;中位数.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.则最大的三个数的和是:6+7+7=20,两个较小的数一定是小于5的非负整数,且不相等,则可求得五个数的和的范围,进而判断.解答:解:中位数是6.唯一众数是7,则最大的三个数的和是:6+7+7=20,两个较小的数一定是小于5的非负整数,且不相等,则五个数的和一定大于20且小于29.故选B.点评:本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.二、填空题(共4小题,每小题3分,满分12分)17.(3分)(2014•河北)计算:=2.考点:二次根式的乘除法.分析:本题需先对二次根式进行化简,再根据二次根式的乘法法则进行计算即可求出结果.解答:解:,=2×,=2.故答案为:2.点评:本题主要考查了二次根式的乘除法,在解题时要能根据二次根式的乘法法则,求出正确答案是本题的关键.18.(3分)(2014•河北)若实数m,n满足|m﹣2|+(n﹣2014)2=0,则m﹣1+n0=.考点:负整数指数幂;非负数的性质:绝对值;非负数的性质:偶次方;零指数幂.分析:根据绝对值与平方的和为0,可得绝对值与平方同时为0,根据负整指数幂、非0的0次幂,可得答案.解答:解:|m﹣2|+(n﹣2014)2=0,m﹣2=0,n﹣2014=0,m=2,n=2014.m﹣1+n0=2﹣1+20140=+1=,故答案为:.点评:本题考查了负整指数幂,先求出m、n的值,再求出负整指数幂、0次幂.19.(3分)(2014•河北)如图,将长为8cm的铁丝尾相接围成半径为2cm的扇=4cm2.形.则S扇形考点:扇形面积的计算.=×弧长×半径求出即可.分析:根据扇形的面积公式S扇形解答:解:由题意知,弧长=8cm﹣2cm×2=4 cm,扇形的面积是×4cm×2cm=4cm2,故答案为:4.点评:本题考查了扇形的面积公式的应用,主要考查学生能否正确运用扇形的面积公式进行计算,题目比较好,难度不大.20.(3分)(2014•河北)如图,点O,A在数轴上表示的数分别是0,0.1.将线段OA分成100等份,其分点由左向右依次为M1,M2,…,M99;再将线段OM1,分成100等份,其分点由左向右依次为N1,N2,…,N99;继续将线段ON1分成100等份,其分点由左向右依次为P1,P2.…,P99.则点P37所表示的数用科学记数法表示为 3.7×10﹣6.考点:规律型:图形的变化类;科学记数法—表示较小的数.分析:由题意可得M1表示的数为0.1×=10﹣3,N1表示的数为0×10﹣3=10﹣5,P1表示的数为10﹣5×=10﹣7,进一步表示出点P37即可.解答:解:M1表示的数为0.1×=10﹣3,N1表示的数为0×10﹣3=10﹣5,P1表示的数为10﹣5×=10﹣7,P37=37×10﹣7=3.7×10﹣6.故答案为:3.7×10﹣6.点评:此题考查图形的变化规律,结合图形,找出数字之间的运算方法,找出规律,解决问题.三、解答题(共6小题,满分66分,解答应写出文字说明、证明过程或演算步骤)21.(10分)(2014•河北)嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时,对于b2﹣4ac>0的情况,她是这样做的:由于a≠0,方程ax2++bx+c=0变形为:x2+x=﹣,…第一步x2+x+()2=﹣+()2,…第二步(x+)2=,…第三步x+=(b2﹣4ac>0),…第四步x=,…第五步嘉淇的解法从第四步开始出现错误;事实上,当b2﹣4ac>0时,方程ax2+bx+c=0(a≠O)的求根公式是x=.用配方法解方程:x2﹣2x﹣24=0.考点:解一元二次方程-配方法专题:阅读型.分析:第四步,开方时出错;把常数项24移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.解答:解:在第四步中,开方应该是x+=±.所以求根公式为:x=.故答案是:四;x=;用配方法解方程:x2﹣2x﹣24=0解:移项,得x2﹣2x=24,配方,得x2﹣2x+1=24+1,即(x﹣1)2=25,开方得x﹣1=±5,∴x1=6,x2=﹣4.点评:本题考查了解一元二次方程﹣﹣配方法.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.22.(10分)(2014•河北)如图1,A,B,C是三个垃圾存放点,点B,C分别位于点A的正北和正东方向,AC=100米.四人分别测得∠C的度数如下表:甲乙丙丁∠C(单位:度)34 36 38 40他们又调查了各点的垃圾量,并绘制了下列尚不完整的统计图2,图3:(1)求表中∠C度数的平均数:(2)求A处的垃圾量,并将图2补充完整;(3)用(1)中的作为∠C的度数,要将A处的垃圾沿道路AB都运到B处,已知运送1千克垃圾每米的费用为0.005元,求运垃圾所需的费用.(注:sin37°=0.6,cos37°=0.8,tan37°=0.75)考点:解直角三角形的应用;扇形统计图;条形统计图;算术平均数分析:(1)利用平均数求法进而得出答案;(2)利用扇形统计图以及条形统计图可得出C处垃圾量以及所占百分比,进而求出垃圾总量,进而得出A处垃圾量;(3)利用锐角三角函数得出AB的长,进而得出运垃圾所需的费用.解答:解:(1)==37;(2)∵C处垃圾存放量为:320kg,在扇形统计图中所占比例为:50%,∴垃圾总量为:320÷50%=640(kg),∴A处垃圾存放量为:(1﹣50%﹣37.5%)×640=80(kg),占12.5%.补全条形图如下:(3)∵AC=100米,∠C=37°,∴tan37°=,∴AB=ACtan37°=100×0.75=75(m),∵运送1千克垃圾每米的费用为0.005元,∴运垃圾所需的费用为:75×80×0.005=30(元),答:运垃圾所需的费用为30元.点评:此题主要考查了平均数求法以及锐角三角三角函数关系以及条形统计图与扇形统计图的综合应用,利用扇形统计图与条形统计图获取正确信息是解题关键.23.(11分)(2014•河北)如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求∠ACE的度数;(3)求证:四边形ABEF是菱形.考点:全等三角形的判定与性质;菱形的判定;旋转的性质专题:计算题.分析:(1)根据旋转角求出∠BAD=∠CAE,然后利用“边角边”证明△ABD和△ACE全等.(2)根据全等三角形对应角相等,得出∠ACE=∠ABD,即可求得.(3)根据对角相等的四边形是平行四边形,可证得四边形ABEF是平行四边形,然后依据邻边相等的平行四边形是菱形,即可证得.解答:(1)证明:∵ABC绕点A按逆时针方向旋转100°,∴∠BAC=∠DAE=40°,∴∠BAD=∠CAE=100°,又∵AB=AC,∴AB=AC=AD=AE,在△ABD与△ACE中∴△ABD≌△ACE(SAS).(2)解:∵∠CAE=100°,AC=AE,∴∠ACE=(180°﹣∠CAE)=(180°﹣100°)=40°;(3)证明:∵∠BAD=∠CAE=140°AB=AC=AD=AE,∴∠ABD=∠ADB=∠ACE=∠AEC=20°.∵∠BAE=∠BAD+∠DAE=160°,∴∠BFE=360°﹣∠DAE﹣∠ABD﹣∠AEC=160°,∴∠BAE=∠BFE,∴四边形ABEF是平行四边形,∵AB=AE,∴平行四边形ABEF是菱形.点评:此题考查了全等三角形的判定与性质,等腰三角形的性质以及菱形的判定,熟练掌握全等三角形的判定与性质是解本题的关键.24.(11分)(2014•河北)如图,2×2网格(每个小正方形的边长为1)中有A,B,C,D,E,F,G、H,O九个格点.抛物线l的解析式为y=(﹣1)n x2+bx+c (n为整数).(1)n为奇数,且l经过点H(0,1)和C(2,1),求b,c的值,并直接写出哪个格点是该抛物线的顶点;(2)n为偶数,且l经过点A(1,0)和B(2,0),通过计算说明点F(0,2)和H(0,1)是否在该抛物线上;(3)若l经过这九个格点中的三个,直接写出所有满足这样条件的抛物线条数.考点:二次函数综合题专题:压轴题.分析:(1)根据﹣1的奇数次方等于﹣1,再把点H、C的坐标代入抛物线解析式计算即可求出b、c的值,然后把函数解析式整理成顶点式形式,写出顶点坐标即可;(2)根据﹣1的偶数次方等于1,再把点A、B的坐标代入抛物线解析式计算即可求出b、c的值,从而得到函数解析式,再根据抛物线上点的坐标特征进行判断;(3)分别利用(1)(2)中的结论,将抛物线平移,可以确定抛物线的条数.解答:解:(1)n为奇数时,y=﹣x2+bx+c,∵l经过点H(0,1)和C(2,1),∴,解得,∴抛物线解析式为y=﹣x2+2x+1,y=﹣(x﹣1)2+2,∴顶点为格点E(1,2);(2)n为偶数时,y=x2+bx+c,∵l经过点A(1,0)和B(2,0),∴,解得,∴抛物线解析式为y=x2﹣3x+2,当x=0时,y=2,∴点F(0,2)在抛物线上,点H(0,1)不在抛物线上;(3)所有满足条件的抛物线共有8条.当n为奇数时,由(1)中的抛物线平移又得到3条抛物线,如答图3﹣1所示;当n为偶数时,由(2)中的抛物线平移又得到3条抛物线,如答图3﹣2所示.点评:本题是二次函数综合题型,主要利用了待定系数法求二次函数解析式,二次函数图象上点的坐标特征,二次函数的对称性,要注意(3)抛物线有开口向上和开口向下两种情况.25.(11分)(2014•河北)图1和图2中,优弧所在⊙O的半径为2,AB=2.点P为优弧上一点(点P不与A,B重合),将图形沿BP折叠,得到点A的对称点A′.(1)点O到弦AB的距离是1,当BP经过点O时,∠ABA′=60°;(2)当BA′与⊙O相切时,如图2,求折痕的长:(3)若线段BA′与优弧只有一个公共点B,设∠ABP=α.确定α的取值范围.考点:圆的综合题;含30度角的直角三角形;勾股定理;垂径定理;切线的性质;翻折变换(折叠问题);锐角三角函数的定义专题:综合题.分析:(1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出∠ABA′.(2)根据切线的性质得到∠OBA′=90°,从而得到∠ABA′=120°,就可求出∠ABP,进而求出∠OBP=30°.过点O作OG⊥BP,垂足为G,容易求出OG、BG的长,根据垂径定理就可求出折痕的长.(3)根据点A′的位置不同,分点A′在⊙O内和⊙O外两种情况进行讨论.点A′在⊙O内时,线段BA′与优弧都只有一个公共点B,α的范围是0°<α<30°;当点A′在⊙O的外部时,从BA′与⊙O相切开始,以后线段BA′与优弧都只有一个公共点B,α的范围是60°≤α<120°.从而得到:线段BA′与优弧只有一个公共点B时,α的取值范围是0°<α<30°或60°≤α<120°.解答:解:(1)①过点O作OH⊥AB,垂足为H,连接OB,如图1①所示.∵OH⊥AB,AB=2,∴AH=BH=.∵OB=2,∴OH=1.∴点O到AB的距离为1.②当BP经过点O时,如图1②所示.∵OH=1,OB=2,OH⊥AB,∴sin∠OBH==.∴∠OBH=30°.由折叠可得:∠A′BP=∠ABP=30°.∴∠ABA′=60°.故答案为:1、60.(2)过点O作OG⊥BP,垂足为G,如图2所示.∵BA′与⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.∵∠OBH=30°,∴∠ABA′=120°.∴∠A′BP=∠ABP=60°.∴∠OBP=30°.∴OG=OB=1.∴BG=.∵OG⊥BP,∴BG=PG=.∴BP=2.∴折痕的长为2.(3)若线段BA′与优弧只有一个公共点B,Ⅰ.当点A′在⊙O的内部时,此时α的范围是0°<α<30°.Ⅱ.当点A′在⊙O的外部时,此时α的范围是60°≤α<120°.综上所述:线段BA′与优弧只有一个公共点B时,α的取值范围是0°<α<30°或60°≤α<120°.点评:本题考查了切线的性质、垂径定理、勾股定理、三角函数的定义、30°角所对的直角边等于斜边的一半、翻折问题等知识,考查了用临界值法求α的取值范围,有一定的综合性.第(3)题中α的范围可能考虑不够全面,需要注意.26.(13分)(2014•河北)某景区内的环形路是边长为800米的正方形ABCD,如图1和图2.现有1号、2号两游览车分别从出口A和景点C同时出发,1号车顺时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200米/分.。

2014年四川省南充市中考数学试卷附详细答案(原版+解析版)

2014年四川省南充市中考数学试卷附详细答案(原版+解析版)

2014年四川省南充市中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.(2014年四川南充)=()A.3 B.﹣3 C.D.﹣2.(2014年四川南充)下列运算正确的是()A.a3•a2=a5B.(a2)3=a5C.a3+a3=a6D.(a+b)2=a2+b2 3.(2014年四川南充)下列几何体的主视图既是中心对称图形又是轴对称图形的是()A.B.C.D.4.(2014年四川南充)如图,已知AB∥CD,∠C=65°,∠E=30°,则∠A的度数为()A.30°B.32.5°C.35°D.37.5°5.(2014年四川南充)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)6.(2014年四川南充)不等式组的解集在数轴上表示正确的是()A.B.C.D.7.(2014年四川南充)为积极响应南充市创建“全国卫生城市”的号召,某校1500名学生参加了卫生知识竞赛,成绩记为A、B、C、D四等.从中随机抽取了部分学生成绩进行统计,绘制成如图两幅不完整的统计图表,根据图表信息,以下说法不正确的是()A.样本容量是200B.D等所在扇形的圆心角为15°C.样本中C等所占百分比是10%D.估计全校学生成绩为A等大约有900人8.(2014年四川南充)如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30° B.36° C.40°D.45°9.(2014年四川南充)如图,矩形ABCD中,AB=5,AD=12,将矩形ABCD按如图所示的方式在直线l上进行两次旋转,则点B在两次旋转过程中经过的路径的长是()A.B.13πC.25πD. 25 10.(2014年四川南充)二次函数y=ax2+bx+c(a≠0)图象如图,下列结论:①abc>0;②2a+b=0;③当m≠1时,a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,x1+x2=2.其中正确的有()A.①②③B.②④C.②⑤D.②③⑤二、填空题(本大题共6个小题,每小题3分,共18分)11.(2014年四川南充)分式方程=0的解是.12.(2014年四川南充)分解因式:x3﹣6x2+9x=.13.(2014年四川南充)一组数据按从小到大的顺序排列为1,2,3,x,4,5,若这组数据的中位数为3,则这组数据的方差是.14.(2014年四川南充)如图,两圆圆心相同,大圆的弦AB与小圆相切,AB=8,则图中阴影部分的面积是.(结果保留π)15.(2014年四川南充)一列数a1,a2,a3,…a n,其中a1=﹣1,a2=,a3=,…,a n=,则a1+a2+a3+…+a2014=.16.(2014年四川南充)如图,有一矩形纸片ABCD,AB=8,AD=17,将此矩形纸片折叠,使顶点A落在BC边的A′处,折痕所在直线同时经过边AB、AD(包括端点),设BA′=x,则x的取值范围是.三、解答题(本大题共9个小题,共72分)17.(2014年四川南充)计算:(﹣1)0﹣(﹣2)+3tan30°+()﹣1.18.(2014年四川南充)如图,AD、BC相交于O,OA=OC,∠OBD=∠ODB.求证:AB=CD.19.(2014年四川南充)在学习“二元一次方程组的解”时,数学张老师设计了一个数学活动.有A、B 两组卡片,每组各3张,A组卡片上分别写有0,2,3;B组卡片上分别写有﹣5,﹣1,1.每张卡片除正面写有不同数字外,其余均相同.甲从A组中随机抽取一张记为x,乙从B 组中随机抽取一张记为y.(1)若甲抽出的数字是2,乙抽出的数是﹣1,它们恰好是ax﹣y=5的解,求a的值;(2)求甲、乙随机抽取一次的数恰好是方程ax﹣y=5的解的概率.(请用树形图或列表法求解)20.(2014年四川南充)已知关于x的一元二次方程x2﹣2x+m=0,有两个不相等的实数根.(1)求实数m的最大整数值;(2)在(1)的条下,方程的实数根是x1,x2,求代数式x12+x22﹣x1x2的值.21.(2014年四川南充)如图,一次函数y1=kx+b的图象与反比例函数y2=的图象相交于点A(2,5)和点B,与y轴相交于点C(0,7).(1)求这两个函数的解析式;(2)当x取何值时,y1<y2.22.(2014年四川南充)马航MH370失联后,我国政府积极参与搜救.某日,我两艘专业救助船A、B同时收到有关可疑漂浮物的讯息,可疑漂浮物P在救助船A的北偏东53.50°方向上,在救助船B的西北方向上,船B在船A正东方向140海里处.(参考数据:sin36.5°≈0.6,cos36.5°≈0.8,tan36.5°≈0.75).(1)求可疑漂浮物P到A、B两船所在直线的距离;(2)若救助船A、救助船B分别以40海里/时,30海里/时的速度同时出发,匀速直线前往搜救,试通过计算判断哪艘船先到达P处.23.(2014年四川南充)今年我市水果大丰收,A、B两个水果基地分别收获水果380件、320件,现需把这些水果全部运往甲、乙两销售点,从A基地运往甲、乙两销售点的费用分别为每件40元和20元,从B基地运往甲、乙两销售点的费用分别为每件15元和30元,现甲销售点需要水果400件,乙销售点需要水果300件.(1)设从A基地运往甲销售点水果x件,总运费为w元,请用含x的代数式表示w,并写出x的取值范围;(2)若总运费不超过18300元,且A地运往甲销售点的水果不低于200件,试确定运费最低的运输方案,并求出最低运费.24.(8分)(2014年四川南充)如图,已知AB是⊙O的直径,BP是⊙O的弦,弦CD⊥AB 于点F,交BP于点G,E在CD的延长线上,EP=EG,(1)求证:直线EP为⊙O的切线;(2)点P在劣弧AC上运动,其他条件不变,若BG2=BF•BO.试证明BG=PG;(3)在满足(2)的条件下,已知⊙O的半径为3,sinB=.求弦CD的长.25.(2014年四川南充)如图,抛物线y=x2+bx+c与直线y=x﹣1交于A、B两点.点A的横坐标为﹣3,点B在y轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC⊥x轴于C,交直线AB于D.(1)求抛物线的解析式;(2)当m为何值时,S四边形OBDC=2S△BPD;(3)是否存在点P,使△PAD是直角三角形?若存在,求出点P的坐标;若不存在,说明理由.2014年四川省南充市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.(2014年四川南充)=()A.3 B.﹣3 C.D.﹣【分析】按照绝对值的性质进行求解.【解析】根据负数的绝对值是它的相反数,得:|﹣|=.故选C.【点评】绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(2014年四川南充)下列运算正确的是()A.a3•a2=a5B.(a2)3=a5C.a3+a3=a6D.(a+b)2=a2+b2【分析】根据同底数幂的乘法,可判断A;根据幂的乘方,可判断B;根据合并同类项,可判断C;根据完全平方公式,可判断D.【解析】A、底数不变指数相加,故A正确;B、底数不变指数相乘,故B错误;C、系数相加字母部分不变,故C错误;D、和的平方等于平方和加积的二倍,故D错误;故选:A.【点评】本题考查了完全平方公式,和的平方等于平方和加积的二倍.3.(2014年四川南充)下列几何体的主视图既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】先判断主视图,再根据轴对称图形与中心对称图形的概念求解.【解析】A、主视图是扇形,扇形是轴对称图形,不是中心对称图形,故错误;B、主视图是等腰三角形,是轴对称图形,不是中心对称图形,故错误;C、主视图是等腰梯形,是轴对称图形,不是中心对称图形,故错误;D、主视图是矩形,是轴对称图形,也是中心对称图形,故正确.故选D.【点评】掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.(2014年四川南充)如图,已知AB∥CD,∠C=65°,∠E=30°,则∠A的度数为()A.30°B.32.5°C.35°D.37.5°【分析】根据平行线的性质求出∠EOB,根据三角形的外角性质求出即可.【解析】设AB、CE交于点O.∵AB∥CD,∠C=65°,∴∠EOB=∠C=65°,∵∠E=30°,∴∠A=∠EOB﹣∠E=35°,故选C.【点评】本题考查了平行线的性质和三角形的外角性质的应用,解此题的关键是求出∠EOB 的度数和得出∠A=∠EOB﹣∠E.5.(2014年四川南充)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)【分析】过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.【解析】如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选A.【点评】本题考查了全等三角形的判定与性质,正方形的性质,坐标与图形性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.6.(2014年四川南充)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】根据不等式的基本性质解不等式得解集为﹣2<x≤3,所以选D.【解析】解不等式得:x≤3.解不等式x﹣3<3x+1得:x>﹣2所以不等式组的解集为﹣2<x≤3.故选D.【点评】考查了在数轴上表示不等式的解集,不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.(2014年四川南充)为积极响应南充市创建“全国卫生城市”的号召,某校1500名学生参加了卫生知识竞赛,成绩记为A、B、C、D四等.从中随机抽取了部分学生成绩进行统计,绘制成如图两幅不完整的统计图表,根据图表信息,以下说法不正确的是()A.样本容量是200 B.D等所在扇形的圆心角为15°C.样本中C等所占百分比是10%D.估计全校学生成绩为A等大约有900人【分析】根据条形统计图和扇形统计图提供的数据分别列式计算,再对每一项进行分析即可.【解析】A、=200(名),则样本容量是200,故本选项正确;B、成绩为A的人数是:200×60%=120(人),成绩为D的人数是200﹣120﹣50﹣20=10(人),D等所在扇形的圆心角为:360°×=18°,故本选项错误;C、样本中C等所占百分比是1﹣60%﹣25%﹣=10%,故本选项正确;D、全校学生成绩为A等大约有1500×60%=900人,故本选项正确;故选:B.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.8.(2014年四川南充)如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30° B.36° C.40°D.45°【分析】求出∠BAD=2∠CAD=2∠B=2∠C的关系,利用三角形的内角和是180°,求∠B,【解析】∵AB=AC,∴∠B=∠C,∵AB=BD,∴∠BAD=∠BDA,∵CD=AD,∴∠C=∠CAD,∵∠BAD+∠CAD+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°故选:B.【点评】本题主要考查等腰三角形的性质,解题的关键是运用等腰三角形的性质得出∠BAD=2∠CAD=2∠B=2∠C关系.9.(2014年四川南充)如图,矩形ABCD中,AB=5,AD=12,将矩形ABCD按如图所示的方式在直线l上进行两次旋转,则点B在两次旋转过程中经过的路径的长是()A.B.13πC.25πD. 25【分析】连接BD,B′D,首先根据勾股定理计算出BD长,再根据弧长计算公式计算出,的长,然后再求和计算出点B在两次旋转过程中经过的路径的长即可.【解析】连接BD,B′D,∵AB=5,AD=12,∴BD==13,∴==,∵==6π,∴点B在两次旋转过程中经过的路径的长是:+6π=,故选:A.【点评】此题主要考查了弧长计算,以及勾股定理的应用,关键是掌握弧长计算公式l=.10.(2014年四川南充)二次函数y=ax2+bx+c(a≠0)图象如图,下列结论:①abc>0;②2a+b=0;③当m≠1时,a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,x1+x2=2.其中正确的有()A.①②③B.②④C.②⑤D.②③⑤【分析】根据抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣=1,得到b=﹣2a>0,即2a+b=0,由抛物线与y轴的交点位置得到c>0,所以abc<0;根据二次函数的性质得当x=1时,函数有最大值a+b+c,则当m≠1时,a+b+c>am2+bm+c,即a+b>am2+bm;根据抛物线的对称性得到抛物线与x轴的另一个交点在(﹣1,0)的右侧,则当x=﹣1时,y<0,所以a﹣b+c<0;把ax12+bx1=ax22+bx2先移项,再分解因式得到(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,则a(x1+x2)+b]=0,即x1+x2=﹣,然后把b=﹣2a代入计算得到x1+x2=2.【解析】∵抛物线开口向下,∴a<0,∵抛物线对称轴为性质x=﹣=1,∴b=﹣2a>0,即2a+b=0,所以②正确;∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①错误;∵抛物线对称轴为性质x=1,∴函数的最大值为a+b+c,∴当m≠1时,a+b+c>am2+bm+c,即a+b>am2+bm,所以③正确;∵抛物线与x轴的一个交点在(3,0)的左侧,而对称轴为性质x=1,∴抛物线与x轴的另一个交点在(﹣1,0)的右侧∴当x=﹣1时,y<0,∴a﹣b+c<0,所以④错误;∵ax12+bx1=ax22+bx2,∴ax12+bx1﹣ax22﹣bx2=0,∴a(x1+x2)(x1﹣x2)+b(x1﹣x2)=0,∴(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,∴a(x1+x2)+b]=0,即x1+x2=﹣,∵b=﹣2a,∴x1+x2=2,所以⑤正确.故选D.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(本大题共6个小题,每小题3分,共18分)11.(2014年四川南充)分式方程=0的解是.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解析】去分母得:x+1+2=0,解得:x=﹣3经检验x=﹣3是分式方程的解.故答案为:x=﹣3【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.12.(2014年四川南充)分解因式:x3﹣6x2+9x=.【分析】先提取公因式x,再对余下的多项式利用完全平方公式继续分解.【解析】x3﹣6x2+9x=x(x2﹣6x+9)=x(x﹣3)2.【点评】本题考查提公因式法分解因式和利用完全平方公式分解因式,关键在于需要进行二次分解因式.13.(2014年四川南充)一组数据按从小到大的顺序排列为1,2,3,x,4,5,若这组数据的中位数为3,则这组数据的方差是.【分析】先根据中位数的定义求出x的值,再求出这组数据的平均数,最后根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]进行计算即可.【解析】∵按从小到大的顺序排列为1,2,3,x,4,5,若这组数据的中位数为3,∴x=3,∴这组数据的平均数是(1+2+3+3+4+5)÷6=3,∴这组数据的方差是:[(1﹣3)2+(2﹣3)2+(3﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=.故答案为:.【点评】本题考查了中位数和方差:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2];中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).14.(2014年四川南充)如图,两圆圆心相同,大圆的弦AB与小圆相切,AB=8,则图中阴影部分的面积是.(结果保留π)【分析】设AB于小圆切于点C,连接OC,OB,利用垂径定理即可求得BC的长,根据圆环(阴影)的面积=π•OB2﹣π•OC2=π(OB2﹣OC2),以及勾股定理即可求解.【解析】设AB于小圆切于点C,连接OC,OB.∵AB于小圆切于点C,∴OC⊥AB,∴BC=AC=AB=×8=4cm.∵圆环(阴影)的面积=π•OB2﹣π•OC2=π(OB2﹣OC2)又∵直角△OBC中,OB2=OC2+BC2∴圆环(阴影)的面积=π•OB2﹣π•OC2=π(OB2﹣OC2)=π•BC2=16πcm2.故答案是:16π.【点评】此题考查了垂径定理,切线的性质,以及勾股定理,解题的关键是正确作出辅助线,注意到圆环(阴影)的面积=π•OB2﹣π•OC2=π(OB2﹣OC2),利用勾股定理把圆的半径之间的关系转化为直角三角形的边的关系.15.(2014年四川南充)一列数a1,a2,a3,…a n,其中a1=﹣1,a2=,a3=,…,a n=,则a1+a2+a3+…+a2014=.【分析】分别求得a1、a2、a3、…,找出数字循环的规律,进一步利用规律解决问题.【解析】a1=﹣1,a2==,a3==2,a4==﹣1,…,由此可以看出三个数字一循环,2004÷3=668,则a1+a2+a3+…+a2014=668×(﹣1++2)=1002.故答案为:1002.【点评】此题考查了找规律的题目,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,找出规律是解题的关键.16.(2014年四川南充)如图,有一矩形纸片ABCD,AB=8,AD=17,将此矩形纸片折叠,使顶点A落在BC边的A′处,折痕所在直线同时经过边AB、AD(包括端点),设BA′=x,则x的取值范围是.【分析】作出图形,根据矩形的对边相等可得BC=AD,CD=AB,当折痕经过点D时,根据翻折的性质可得A′D=AD,利用勾股定理列式求出A′C,再求出BA′;当折痕经过点B时,根据翻折的性质可得BA′=AB,此两种情况为BA′的最小值与最大值的情况,然后写出x的取值范围即可.【解析】如图,∵四边形ABCD是矩形,AB=8,AD=17,∴BC=AD=17,CD=AB=8,①当折痕经过点D时,由翻折的性质得,A′D=AD=17,在Rt△A′CD中,A′C===15,∴BA′=BC﹣A′C=17﹣15=2;②当折痕经过点B时,由翻折的性质得,BA′=AB=8,∴x的取值范围是2≤x≤8.故答案为:2≤x≤8.【点评】本题考查了翻折变换的性质,勾股定理的应用,难点在于判断出BA′的最小值与最大值时的情况,作出图形更形象直观.三、解答题(本大题共9个小题,共72分)17.(2014年四川南充)计算:(﹣1)0﹣(﹣2)+3tan30°+()﹣1.【分析】本题涉及零指数幂、负整指数幂、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果【解析】原式=1﹣+2++3=6.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(2014年四川南充)如图,AD、BC相交于O,OA=OC,∠OBD=∠ODB.求证:AB=CD.【分析】根据等角对等边可得OB=OC,再利用“边角边”证明△ABO和△CDO全等,根据全等三角形对应边相等证明即可.证明:∵∠OBD=∠ODB,∴OB=OD,在△ABO和△CDO中,,∴△ABO≌△CDO(SAS),∴AB=CD.【点评】本题考查了全等三角形的判定与性质,准确识图确定出全等的三角形并求出OB=OD 是解题的关键.19.(2014年四川南充)在学习“二元一次方程组的解”时,数学张老师设计了一个数学活动.有A、B 两组卡片,每组各3张,A组卡片上分别写有0,2,3;B组卡片上分别写有﹣5,﹣1,1.每张卡片除正面写有不同数字外,其余均相同.甲从A组中随机抽取一张记为x,乙从B 组中随机抽取一张记为y.(1)若甲抽出的数字是2,乙抽出的数是﹣1,它们恰好是ax﹣y=5的解,求a的值;(2)求甲、乙随机抽取一次的数恰好是方程ax﹣y=5的解的概率.(请用树形图或列表法求解)【分析】(1)将x=2,y=﹣1代入方程计算即可求出a的值;(2)列表得出所有等可能的情况数,找出甲、乙随机抽取一次的数恰好是方程ax﹣y=5的解的情况数,即可求出所求的概率.【解析】(1)将x=2,y=﹣1代入方程得:2a+1=5,即a=2;(2)列表得:所有等可能的情况有9种,其中(x,y)恰好为方程2x﹣y=5的解的情况有(0,﹣5),(2,﹣1),(3,1),共3种情况,则P==.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.20.(2014年四川南充)已知关于x的一元二次方程x2﹣2x+m=0,有两个不相等的实数根.(1)求实数m的最大整数值;(2)在(1)的条下,方程的实数根是x1,x2,求代数式x12+x22﹣x1x2的值.【分析】(1)若一元二次方程有两不等实数根,则根的判别式△=b2﹣4ac>0,建立关于m的不等式,求出m的取值范围,进而得出m的最大整数值;(2)根据(1)可知:m=1,继而可得一元二次方程为x2﹣2x+1=0,根据根与系数的关系,可得x1+x2=2,x1x2=1,再将x12+x22﹣x1x2变形为(x1+x2)2﹣3x1x2,则可求得答案.【解析】∵一元二次方程x2﹣2x+m=0有两个不相等的实数根,∴△=8﹣4m>0,解得m<2,故整数m的最大值为1;(2)∵m=1,∴此一元二次方程为:x2﹣2x+1=0,∴x1+x2=2,x1x2=1,∴x12+x22﹣x1x2=(x1+x2)2﹣3x1x2=8﹣3=5.【点评】此题考查了一元二次方程根与系数的关系与根的判别式.此题难度不大,解题的关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.掌握根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.21.(2014年四川南充)如图,一次函数y1=kx+b的图象与反比例函数y2=的图象相交于点A(2,5)和点B,与y轴相交于点C(0,7).(1)求这两个函数的解析式;(2)当x取何值时,y1<y2.【分析】(1)将点C、点A的坐标代入一次函数解析式可得k、b的值,将点A的坐标代入反比例函数解析式可得m的值,继而可得两函数解析式;(2)寻找满足使一次函数图象在反比例函数图象下面的x的取值范围.【解析】(1)将点(2,5)、(0,7)代入一次函数解析式可得:,解得:.∴一次函数解析式为:y=﹣x+7;将点(2,5)代入反比例函数解析式:5=,∴m=10,∴反比例函数解析式为:y=.(2)由题意,得:,解得:或,∴点D的坐标为(5,2),当0<x<2或x>5时,y1<y2.【点评】本题考查了反比例函数与一次函数的交点问题,解答本题的关键是联立解析式,求出交点坐标.22.(2014年四川南充)马航MH370失联后,我国政府积极参与搜救.某日,我两艘专业救助船A、B同时收到有关可疑漂浮物的讯息,可疑漂浮物P在救助船A的北偏东53.50°方向上,在救助船B的西北方向上,船B在船A正东方向140海里处.(参考数据:sin36.5°≈0.6,cos36.5°≈0.8,tan36.5°≈0.75).(1)求可疑漂浮物P到A、B两船所在直线的距离;(2)若救助船A、救助船B分别以40海里/时,30海里/时的速度同时出发,匀速直线前往搜救,试通过计算判断哪艘船先到达P处.【分析】(1)过点P作PE⊥AB于点E,在Rt△APE中解出PE即可;(2)在Rt△BPF中,求出BP,分别计算出两艘船需要的时间,即可作出判断.【解析】(1)过点P作PE⊥AB于点E,由题意得,∠PAE=36.5°,∠PBA=45,设PE为x海里,则BE=PE=x海里,∵AB=140海里,∴AE=(140﹣x)海里,在Rt△PAE中,,即:解得:x=60海里,∴可疑漂浮物P到A、B两船所在直线的距离为60海里;(2)在Rt△PBE中,PE=60海里,∠PBE=45°,则BP=PE=60≈84.8海里,B船需要的时间为:≈2.83小时,在Rt△PAE中,=sin∠PAE,∴AP=PE÷sin∠PAE=60÷0.6=100海里,∴A船需要的时间为:100÷40=2.5,∵2.83>2.5,∴A船先到达.【点评】本题考查了解直角三角形的应用,解答本题的关键是理解仰角的定义,能利用三角函数值计算有关线段,难度一般.23.(2014年四川南充)今年我市水果大丰收,A、B两个水果基地分别收获水果380件、320件,现需把这些水果全部运往甲、乙两销售点,从A基地运往甲、乙两销售点的费用分别为每件40元和20元,从B基地运往甲、乙两销售点的费用分别为每件15元和30元,现甲销售点需要水果400件,乙销售点需要水果300件.(1)设从A基地运往甲销售点水果x件,总运费为w元,请用含x的代数式表示w,并写出x的取值范围;(2)若总运费不超过18300元,且A地运往甲销售点的水果不低于200件,试确定运费最低的运输方案,并求出最低运费.【分析】(1)表示出从A基地运往乙销售点的水果件数,从B基地运往甲、乙两个销售点的水果件数,然后根据运费=单价×数量列式整理即可得解,再根据运输水果的数量不小于0列出不等式求解得到x的取值范围;(2)根据一次函数的增减性确定出运费最低时的运输方案,然后求解即可.【解析】(1)设从A基地运往甲销售点水果x件,则从A基地运往乙销售点的水果(380﹣x)件,从B基地运往甲销售点水果(400﹣x)件,运往乙基地(x﹣80)件,由题意得,W=40x+20(380﹣x)+15(400﹣x)+30(x﹣80),=35x+11000,即W=35x+11000,∵,∴80≤x≤380,即x的取值范围是80≤x≤380;(2)∵A地运往甲销售点的水果不低于200件,∴x≥200,∵35>0,∴运费W随着x的增大而增大,∴当x=200时,运费最低,为35×200+11000=18000元,此时,从A基地运往甲销售点水果200件,从A基地运往乙销售点的水果180件,从B基地运往甲销售点水果200件,运往乙基地120件.【点评】本题考查了一次函数的应用,一元一次不等式组的应用,读懂题目信息,准确表示出从A、B两个基地运往甲、乙两个销售点的水果的件数是解题的关键.24.(8分)(2014年四川南充)如图,已知AB是⊙O的直径,BP是⊙O的弦,弦CD⊥AB 于点F,交BP于点G,E在CD的延长线上,EP=EG,(1)求证:直线EP为⊙O的切线;(2)点P在劣弧AC上运动,其他条件不变,若BG2=BF•BO.试证明BG=PG;(3)在满足(2)的条件下,已知⊙O的半径为3,sinB=.求弦CD的长.【分析】(1)连接OP,先由EP=EG,证出∠EPG=∠BGF,再由∠BFG=∠BGF+∠OBP=90°,推出∠EPG+∠OPB=90°来求证,(2)连接OG,由BG2=BF•BO,得出△BFG∽△BGO,得出∠BGO=∠BFG=90°得出结论.(3)连接AC、BC、OG,由sinB=,求出r,由(2)得出∠B=∠OGF,求出OF,再求出BF,FA,利用直角三角形来求斜边上的高,再乘以2得出CD长度.(1)证明:连接OP,∵EP=EG,∴∠EPG=∠EGP,又∵∠EPG=∠BGF,∴∠EPG=∠BGF,∵OP=OB,∴∠OPB=∠OBP,∵CD⊥AB,∴∠BFG=∠BGF+∠OBP=90°,∴∠EPG+∠OPB=90°,∴直线EP为⊙O的切线;(2)证明:如图,连接OG,∵BG2=BF•BO,∴=,∴△BFG∽△BGO,∴∠BGO=∠BFG=90°,∴BG=PG;(3)【解析】如图,连接AC、BC、OG,∵sinB=,∴=,∵OB=r=3,∴OG=,由(2)得∠EPG+∠OPB=90°,∠B+∠BGF=∠OGF+∠BGO=90°,∴∠B=∠OGF,∴sin∠OGF==∴OF=1,∴BF=BO﹣OF=3﹣1=2,FA=OF+OA=1+3=4,在RT△BCA中,CF2=BF•FA,∴CF===2.∴CD=2CF=4.【点评】本题主要考查了圆的综合题,解题的关键是通过作辅助线,找准角之间的关系,灵活运用直角三角形中的正弦值.25.(2014年四川南充)如图,抛物线y=x2+bx+c与直线y=x﹣1交于A、B两点.点A的横坐标为﹣3,点B在y轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC⊥x轴于C,交直线AB于D.(1)求抛物线的解析式;(2)当m为何值时,S四边形OBDC=2S△BPD;(3)是否存在点P,使△PAD是直角三角形?若存在,求出点P的坐标;若不存在,说明理由.【分析】(1)由x=0时带入y=x﹣1求出y的值求出B的坐标,当x=﹣3时,代入y=x﹣1求出y的值就可以求出A的坐标,由待定系数法就可以求出抛物线的解析式;(2)连结OP,由P点的横坐标为m可以表示出P、D的坐标,可以表示出S四边形OBDC和2S△BPD建立方程求出其解即可.(3)如图2,当∠APD=90°时,设出P点的坐标,就可以表示出D的坐标,由△APD∽△FCD 就可与求出结论,如图3,当∠PAD=90°时,作AE⊥x轴于E,就有,可以表示出AD,再由△PAD∽△FEA由相似三角形的性质就可以求出结论.【解析】(1)∵y=x﹣1,∴x=0时,y=﹣1,∴B(0,﹣1).当x=﹣3时,y=﹣4,∴A(﹣3,﹣4).∵y=x2+bx+c与直线y=x﹣1交于A、B两点,∴,∴,∴抛物线的解析式为:y=x2+4x﹣1;(2)∵P点横坐标是m(m<0),∴P(m,m2+4m﹣1),D(m,m﹣1)如图1①,作BE⊥PC于E,∴BE=﹣m.CD=1﹣m,OB=1,OC=﹣m,CP=1﹣4m﹣m2,∴PD=1﹣4m﹣m2﹣1+m=﹣3m﹣m2,∴,解得:m1=0(舍去),m2=﹣2,m3=﹣;如图1②,作BE⊥PC于E,∴BE=﹣m.PD=1﹣4m﹣m2+1﹣m=2﹣4m﹣m2,∴,解得:m=0(舍去)或m=﹣3,∴m=﹣,﹣2或﹣3时S四边形OBDC=2S△BPD;(3))如图2,当∠APD=90°时,设P(a,a2+4a﹣1),则D(a,a﹣1),∴AP=m+4,CD=1﹣m,OC=﹣m,CP=1﹣4m﹣m2,∴DP=1﹣4m﹣m2﹣1+m=﹣3m﹣m2.在y=x﹣1中,当y=0时,x=1,∴(1,0),∴OF=1,∴CF=1﹣m.AF=4.∵PC⊥x轴,∴∠PCF=90°,∴∠PCF=∠APD,∴CF∥AP,∴△APD∽△FCD,,∴,解得:m=1舍去或m=﹣2,∴P(﹣2,﹣5)如图3,当∠PAD=90°时,作AE⊥x轴于E,∴∠AEF=90°.CE=﹣3﹣m,EF=4,AF=4,PD=1﹣m﹣(1﹣4m﹣m2)=3m+m2.∵PC⊥x轴,∴∠DCF=90°,∴∠DCF=∠AEF,∴AE∥CD.∴,∴AD=(﹣3﹣m).∵△PAD∽△FEA,∴,∴,∴m=﹣2或m=﹣3∴P(﹣2,﹣5)或(﹣3,﹣4)与点A重合,舍去,∴P(﹣2,﹣5).【点评】本题考查了待定系数法求二次函数的解析式的运用,四边形的面积公式的运用,三角形的面积公式的运用,相似三角形的判定及性质的运用,解答时函数的解析式是关键,用相似三角形的性质求解是难点.。

2014年四川省绵阳市中考数学试卷附详细答案(原版+解析版)

2014年四川省绵阳市中考数学试卷附详细答案(原版+解析版)

2014年四川省绵阳市中考数学试卷一、选择题(共12小题,每小题3分,满分36分) 1.(3分)(2014•绵阳)2的相反数是( )2.(3分)(2014•绵阳)下列四个图案中,属于中心对称图形的是( ) ..3.(3分)(2014•绵阳)下列计算正确的是( )4.(3分)(2014•绵阳)若代数式有意义,则x 的取值范围是()5.(3分)(2014•绵阳)一儿童行走在如图所示的地板上,当他随意停下时,最终停在地板上阴影部分的概率是( )..6.(3分)(2014•绵阳)如图所示的正三棱柱,它的主视图是( )A .B .C .D .7.(3分)(2014•绵阳)线段EF 是由线段PQ 平移得到的,点P (﹣1,4)的对应点为E (4,7),则点Q (﹣3,1)的对应点F 的坐标为( )8.(3分)(2014•绵阳)如图,一艘海轮位于灯塔P 的北偏东30°方向,距离灯塔80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45°方向上的B 处,这时,海轮所在的B 处与灯塔P 的距离为( )海里9.(3分)(2014•绵阳)下列命题中正确的是()10.(3分)(2014•绵阳)某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足()11.(3分)(2014•绵阳)在边长为正整数的△ABC中,AB=AC,且AB边上的中线CD将△ABC的周长分为1:2的两部分,则△ABC面积的最小值为()..12.(3分)(2014•绵阳)如图,AB是半圆O的直径,C是半圆O上一点,OQ⊥BC于点Q,过点B作半圆O的切线,交OQ的延长线于点P,PA交半圆O于R,则下列等式中正确的是().=.===二、填空题(共6小题,每小题4分,满分24分)13.(4分)(2014•绵阳)2﹣2=.14.(4分)(2014•绵阳)“五一”小长假,以生态休闲为特色的绵阳近郊游倍受青睐.假期三天,我市主要景区景点人气火爆,据市旅游局统计,本次小长假共实现旅游收入5610万元,将这一数据用科学记数法表示为元.15.(4分)(2014•绵阳)如图,l∥m,等边△ABC的顶点A在直线m上,则∠α=.16.(4分)(2014•绵阳)如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为cm2.(结果保留π)17.(4分)(2014•绵阳)如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为.18.(4分)(2014•绵阳)将边长为1的正方形纸片按图1所示方法进行对折,记第1次对折后得到的图形面积为S1,第2次对折后得到的图形面积为S2,…,第n次对折后得到的图形面积为S n,请根据图2化简,S1+S2+S3+…+S2014=.三、解答题(共7小题,满分90分)19.(16分)(2014•绵阳)(1)计算:(2014﹣)0+|3﹣|﹣;(2)化简:(1﹣)÷(﹣2)20.(12分)(2014•绵阳)四川省“单独两孩”政策于2014年3月20日正式开始实施,该政策的实施可能给我们的生活带来一些变化,绵阳市人口计生部门抽样调查了部分市民(每个参与调查的市民必须且只能在以下6种变化中选择一项),并将调查结果绘制成统计图:根据统计图,回答下列问题:(1)参与调查的市民一共有人;(2)参与调查的市民中选择C的人数是人;(3)∠α=;(4)请补全条形统计图.21.(12分)(2014•绵阳)绵州大剧院矩形专场音乐会,成人票每张20元,学生票每张5元,暑假期间,为了丰富广大师生的业余文化生活,影剧院制定了两种优惠方案,方案1:购买一张成人票赠送一张学生票;方案2:按总价的90%付款,某校有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为x(人),付款总金额为y(元),分别建立两种优惠方案中y与x的函数关系式;(2)请计算并确定出最节省费用的购票方案.22.(12分)(2014•绵阳)如图,已知反比例函数y=(k>0)的图象经过点A(1,m),过点A作AB⊥y轴于点B,且△AOB的面积为1.(1)求m,k的值;(2)若一次函数y=nx+2(n≠0)的图象与反比例函数y=的图象有两个不同的公共点,求实数n的取值范围.23.(12分)(2014•绵阳)如图,已知△ABC内接于⊙O,AB是⊙O的直径,点F在⊙O 上,且满足=,过点C作⊙O的切线交AB的延长线于D点,交AF的延长线于E点.(1)求证:AE⊥DE;(2)若tan∠CBA=,AE=3,求AF的长.24.(12分)(2014•绵阳)如图1,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△DEC≌△EDA;(2)求DF的值;(3)如图2,若P为线段EC上一动点,过点P作△AEC的内接矩形,使其定点Q落在线段AE上,定点M、N落在线段AC上,当线段PE的长为何值时,矩形PQMN的面积最大?并求出其最大值.25.(14分)(2014•绵阳)如图,抛物线y=ax2+bx+c(a≠0)的图象过点M(﹣2,),顶点坐标为N(﹣1,),且与x轴交于A、B两点,与y轴交于C点.(1)求抛物线的解析式;(2)点P为抛物线对称轴上的动点,当△PBC为等腰三角形时,求点P的坐标;(3)在直线AC上是否存在一点Q,使△QBM的周长最小?若存在,求出Q点坐标;若不存在,请说明理由.2014年四川省绵阳市中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)..4.(3分)(2014•绵阳)若代数式有意义,则x的取值范围是().5.(3分)(2014•绵阳)一儿童行走在如图所示的地板上,当他随意停下时,最终停在地板上阴影部分的概率是()...6.(3分)(2014•绵阳)如图所示的正三棱柱,它的主视图是()..7.(3分)(2014•绵阳)线段EF是由线段PQ平移得到的,点P(﹣1,4)的对应点为E8.(3分)(2014•绵阳)如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P的距离为()海里CP=AP=40PB==40(海里)10.(3分)(2014•绵阳)某商品的标价比成本价高m%,根据市场需要,该商品需降价n%.11.(3分)(2014•绵阳)在边长为正整数的△ABC中,AB=AC,且AB边上的中线CD将..或×<,其中××n=12.(3分)(2014•绵阳)如图,AB是半圆O的直径,C是半圆O上一点,OQ⊥BC于点Q,过点B作半圆O的切线,交OQ的延长线于点P,PA交半圆O于R,则下列等式中正确的是().=.===得到也就有,,所以,,,易得=,=2,得到及,OQ=OR==,=2≠.二、填空题(共6小题,每小题4分,满分24分)13.(4分)(2014•绵阳)2﹣2=..故答案为:.14.(4分)(2014•绵阳)“五一”小长假,以生态休闲为特色的绵阳近郊游倍受青睐.假期三天,我市主要景区景点人气火爆,据市旅游局统计,本次小长假共实现旅游收入5610万元,将这一数据用科学记数法表示为 5.61×107元.15.(4分)(2014•绵阳)如图,l∥m,等边△ABC的顶点A在直线m上,则∠α=20°.16.(4分)(2014•绵阳)如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为cm2.(结果保留π)=故答案为:.17.(4分)(2014•绵阳)如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为2.18.(4分)(2014•绵阳)将边长为1的正方形纸片按图1所示方法进行对折,记第1次对折后得到的图形面积为S1,第2次对折后得到的图形面积为S2,…,第n次对折后得到的图形面积为S n,请根据图2化简,S1+S2+S3+…+S2014=1﹣.+++﹣三、解答题(共7小题,满分90分)19.(16分)(2014•绵阳)(1)计算:(2014﹣)0+|3﹣|﹣;(2)化简:(1﹣)÷(﹣2)=1+2,然后合并即可;=1+2÷•.20.(12分)(2014•绵阳)四川省“单独两孩”政策于2014年3月20日正式开始实施,该政策的实施可能给我们的生活带来一些变化,绵阳市人口计生部门抽样调查了部分市民(每个根据统计图,回答下列问题:(1)参与调查的市民一共有2000人;(2)参与调查的市民中选择C的人数是400人;(3)∠α=54°;(4)请补全条形统计图.21.(12分)(2014•绵阳)绵州大剧院矩形专场音乐会,成人票每张20元,学生票每张5元,暑假期间,为了丰富广大师生的业余文化生活,影剧院制定了两种优惠方案,方案1:购买一张成人票赠送一张学生票;方案2:按总价的90%付款,某校有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为x(人),付款总金额为y(元),分别建立两种优惠方案中y与x的函数关系式;(2)请计算并确定出最节省费用的购票方案.22.(12分)(2014•绵阳)如图,已知反比例函数y=(k>0)的图象经过点A(1,m),过点A作AB⊥y轴于点B,且△AOB的面积为1.(1)求m,k的值;(2)若一次函数y=nx+2(n≠0)的图象与反比例函数y=的图象有两个不同的公共点,求实数n的取值范围.的图象有两个不同的公共点,则方程=nx+2×,=nx+2且23.(12分)(2014•绵阳)如图,已知△ABC内接于⊙O,AB是⊙O的直径,点F在⊙O 上,且满足=,过点C作⊙O的切线交AB的延长线于D点,交AF的延长线于E点.(1)求证:AE⊥DE;(2)若tan∠CBA=,AE=3,求AF的长.,=,易证得=,CBA=AC=2AF=OA=,CBA=24.(12分)(2014•绵阳)如图1,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△DEC≌△EDA;(2)求DF的值;(3)如图2,若P为线段EC上一动点,过点P作△AEC的内接矩形,使其定点Q落在线段AE上,定点M、N落在线段AC上,当线段PE的长为何值时,矩形PQMN的面积最大?并求出其最大值.,所以=,求得,.=5,则PQ==EG==,即PN=﹣x﹣,即PE=时,矩形25.(14分)(2014•绵阳)如图,抛物线y=ax2+bx+c(a≠0)的图象过点M(﹣2,),顶点坐标为N(﹣1,),且与x轴交于A、B两点,与y轴交于C点.(1)求抛物线的解析式;(2)点P为抛物线对称轴上的动点,当△PBC为等腰三角形时,求点P的坐标;(3)在直线AC上是否存在一点Q,使△QBM的周长最小?若存在,求出Q点坐标;若不存在,请说明理由.,,)代入,得x x+=2,)y=,直线x+,然后解方程组,)代入,得+﹣x x+x x+,)时,﹣x x+=2CP==2±;BP==2.,+,﹣)))2,解得,x+﹣.,解得,即(﹣,(﹣,。

2014年河南省中考数学试题(含答案)

2014年河南省中考数学试题(含答案)

2014年河南省中招考试数学试卷一、选择题(每小题3分,共24分)1.下列各数中,最小的数是()(A). 0 (B).13(C).-13(D).-35×10n,则n等于()(A) 10 (B) 11 (C).12 (D).133.如图,直线AB、CD相交于O,射线OM平分∠AOC,O N⊥OM,若∠AOM =350,则∠CON的度数为()(A) .350(B). 450(C) .550(D). 6504.下列各式计算正确的是()(A)a +2a =3a2(B)(-a3)2=a6(C)a3·a2=a6(D)(a+b)2=a2 + b25.下列说法中,正确的是()(A)“打开电视,正在播放河南新闻节目”是必然事件(B)某种彩票中奖概率为10%是指买十张一定有一张中奖(c)神州飞船发射前钻要对冬部件进行抽样检查(D)了解某种节能灯的使用寿命适合抽样调查6:将两个长方体如图放置,则所构成的几何体的左视图可能是()7.如图,ABCD的对角线AC与BD相交于点O,AB⊥AC.若AB =4,AC =6,则BD的长是()(A)8 (B) 9 (C)10 (D)118.如图,在Rt △ABC中,∠C=900,AC=1cm,BC=2cm,点P从A出发,以1cm/s的速沿折线AC →CB →BA运动,最终回到A点。

设点P的运动时间为x(s),线段AP的长度为y(cm),则能反映y与x之间函数关系的图像大致是()二、填空题(每小题3分,共21分)9.计算:3272--= .10.不等式组3x6042x0+≥⎧⎨-⎩>的所有整数解的和是.11.在△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于12BC的长为半径作弧,两弧相交于两点M、N;②作直线MN交AB于点D,连接CD. 若CD=AC,∠B=250,则∠ACB的度数为.12.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点.若点A的坐标为(-2,0),抛物线的对称轴为直线x=2.则线段AB的长为.13.一个不进明的袋子中装有仅颇色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,到第一个人摸到红球且第二个人摸到白球的概率是.14.如图,在菱形ABCD中,AB =1,∠DAB=600,把菱形ABCD绕点A顺时针旋转300得到菱形AB'C'D',其中点C的运动能路径为/CC,则图中阴影部分的面积为.15.如图,矩形ABCD 中,AD=5,AB=7.点E 为DC 上一个动点,把△ADE 沿AE 折叠,当点D 的对应点D /落在∠ABC 的角平分线上时,DE 的长为 . 三、解答题(本大题共8个,满分75分) 16.(8分)先化简,再求值:222x 1x 12x x x ⎛⎫-+÷+ ⎪-⎝⎭,其中x=2-117.(9分)如图,CD 是⊙O 的直径,且CD=2cm ,点P 为CD 的延长线上一点,过点P 作⊙O 的切线PA 、PB ,切点分别为点A 、B.(1)连接AC,若∠APO =300,试证明△ACP 是等腰三角形;(2)填空:①当DP= cm 时,四边形AOBD 是菱形;②当DP= cm 时,四边形AOBP 是正方形.北京初中数学周老师的博客:l18.(9分)某兴趣小组为了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图. 请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为 ; (2)请补全条形统计图;(3)该校共有1200名男生,请估什全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×27300=108”,请你判断这种说法是否正确,并说明理由.19.(9分)在中俄“海上联合—2014”反潜演习中,我军舰A 测得潜艇C 的俯角为300.位于军舰A 正上方1000米的反潜直升机B 侧得潜艇C 的俯角为680.试根据以上数据求出潜艇C 离开海平面的下潜深度.(结果保留整数。

2014年天津市中考数学试卷(附答案与解析)

2014年天津市中考数学试卷(附答案与解析)

数学试卷 第1页(共28页)数学试卷 第2页(共28页)绝密★启用前天津市2014年初中毕业生学业考试数 学本试卷满分120分,考试时间100分钟.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算(6)(1)-⨯-的结果等于( )A .6B .6-C .1D .1- 2.cos60的值等于( )A .12B .33C .32D .3 3.下列标志中,可以看作是轴对称图形的是( )ABCD4.为让市民出行更加方便,天津市政府大力发展公共交通.2013年天津市公共交通客运量约为1608000000人次.将1608000000用科学记数法表示应为( )A .7160.810⨯B .816.0810⨯C .91.60810⨯D .100.160810⨯ 5.如图,从左面观察这个立体图形,能得到的平面图形是( )AB CD6.正六边形的边心距为3,则该正六边形的边长是( )A .3B .2C .3D .237.如图,AB 是O 的弦,AC 是O 的切线,A 为切点,BC 经过圆心.若25B ∠=,则C ∠的大小等于( )A .20B .25C .40D .508.如图,在□ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则:EF FC 等于 ( ) A .3:2 B .3:1 C .1:1D .1:29.已知反比例函数10y x=,当12x <<时,y 的取值范围是( )A .05y <<B .12y <<C .510y <<D .10y >10.要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( )A .1(1)282x x += B .1(1)282x x -=C .(1)28x x +=D .(1)28x x -=11.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表所示:候选人甲 乙 丙 丁 测试成绩 (百分制)面试 86 92 90 83 笔试90838392如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取( ) A .甲B .乙C .丙D .丁12.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,且关于x的一元二次方程20ax bx c m ++-=没有实数根,有下列结论: ①240b ac ->;②0abc <; ③2m >.其中,正确结论的个数是( )A .0B .1C .2D .3毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共28页) 数学试卷 第4页(共28页)第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上) 13.计算52x x ÷的结果等于 . 14.已知反比例函数ky x=(k 为常数,0k ≠)的图象位于第一、第三象限,写出一个符合条件的k 的值为 .15.如图是一副普通扑克牌中的13张黑桃牌.将它们洗匀后正面向下放在桌子上,从中任意抽取一张,则抽出的牌点数小于9的概率为 .16.抛物线223y x x =-+的顶点坐标是 .17.如图,在Rt ABC △中,,D E 为斜边AB 上的两个点,且,BD BC AE AC ==,则DCE ∠的大小为 (度).18.如图,将ABC △放在每个小正方形的边长为1的网格中,点A ,点B ,点C 均落在格点上.(1)计算22AC BC +的值等于 ;(2)请在如图所示的网格中,用无刻度的直尺,画出一个以AB 为一边的矩形,使该矩形的面积等于22AC BC +,并简要说明画图方法(不要求证明) .三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分) 解不等式组21,21.x x +⎧⎨+⎩≥-1①≤3②请结合题意填空,完成本小题的解答. (1)解不等式①,得 ; (2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 . 20.(本小题满分8分)为了推动阳光体育运动的广泛开展,引导学生走向操场、走进大自然、走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用.现从各年级随机抽取了部分学生的鞋号,绘制出如下的统计图1和图2,请根据有关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为 ,图1中m 的值是 ; (2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?数学试卷 第5页(共28页) 数学试卷 第6页(共28页)21.(本小题满分10分)已知O 的直径为10,点A ,点B ,点C 是在O 上,CAB ∠的平分线交O 于点D .(1)如图1,若BC 为O 的直径,6AB =,求,,AC BD CD 的长; (2)如图2,若60CAB ∠=,求BD 的长.22.(本小题满分10分)解放桥是天津市的标志性建筑之一,是一座全钢结构的部分可开启的桥梁.(1)如图1,已知解放桥可开启部分的桥面的跨度AB 等于47m ,从AB 的中点C 处开启,则AC 开启至A C ''的位置时,A C ''的长为 m ;(2)如图2,某校兴趣小组要测量解放桥的全长PQ ,在观景平台M 处测得=54PMQ ∠,沿河岸MQ 前行,在观景平台N 处测得73PNQ ∠=.已知PQ MQ ⊥,=40m MN ,求解放桥的全长PQ (tan54 1.4,tan73 3.3≈≈,结果保留整数).毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共28页) 数学试卷 第8页(共28页)23.(本小题满分10分)“黄金1号”玉米种子的价格为5元/kg .如果一次购买2kg 以上的种子,超过2kg 的部分的种子的价格打8折.(1)根据题意,填写下表:购买种子的数量/kg1.5 2 3.54 … 付款金额/元7.516…(2)设购买种子的数量为kg x ,付款金额为y 元,求y 关于x 的函数解析式; (3)若小张一次购买该种子花费了30元,求他购买种子的数量.24.(本小题满分10分)在平面直角坐标系中,O 为原点,点(2,0)A -,点(0,2)B ,点E ,点F 分别为,OA OB 的中点.若正方形OEDF 绕点O 顺时针旋转,得正方形OE D F ''',记旋转角为α.(1)如图1,当90α=时,求,AE BF ''的长;(2)如图2,当135α=时,求证:AE BF ''=,且AE BF ''⊥; (3)若直线AE '与直线BF '相交于点P ,求点P 的纵坐标的最大值(直接写出结果即可).25.(本小题满分10分)在平面直角坐标系中,O 为原点,直线:1l x =,点(2,0)A ,点E 、点F 、点M 都在直线l 上,且点E 和点F 关于点M 对称,直线EA 与直线OF 交于点P . (1)若点M 的坐标为(1,1)-.①当点F 的坐标为(1,1)时,如图,求点P 的坐标;②当点F 为直线l 上的动点时,记为(,)P x y ,求y 关于x 的函数解析式;(2)若点(1,)M m ,点(1,)F t ,其中0t ≠.过点P 作PQ l ⊥于点Q ,当=OQ PQ 时,试用含t 的式子表示m .5 / 14天津市2014年初中毕业生学业考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】两数相乘,同号得正,异号得负,并把绝对值相乘,(6)(1)6-⨯-=,故选A. 【考点】有理数的计算 2.【答案】A 【解析】1cos602︒=. 【考点】特殊角的三角函数值 3.【答案】D【解析】轴对称图形沿对称轴折叠,直线两旁的部分能够重合,图形D 沿竖直的直线折叠两旁的部分能重合,D 是轴对称图形,故选D. 【考点】轴对称图形的概念 4.【答案】C【解析】科学计数法是将一个数写成10n a ⨯的形式,其中11|0|a ≤<,n 为整数.当原数的绝对值10≥时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值1<时,n 为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位上的零),91 608 000 000 1.60810=⨯,故选C. 【考点】科学计数法 5.【答案】A【解析】此立体图形从左面能看到的图形是,故选A.【考点】三视图 6.【答案】B【解析】正多边形的边长等于正六边形外接圆的半径,正六边形的边心距、外接圆的半径、边长的一半三条线段可以构成含有30︒角的直角三角形,由三角函数求得正六边形外接圆的半径为2,即边长为2,故选B.数学试卷 第11页(共28页)数学试卷 第12页(共28页)【考点】正多边形的性质 7.【答案】C【解析】连接OA ,则OA OC ⊥,由25B ∠=︒知50AOC ∠=︒,所以40C ∠=︒,故选C. 【考点】切线的性质 8.【答案】D【解析】因为E 是平行四边形ABCD 中边AD 的中点,所以EDF CBF △∽△,所以::1:2EF FC ED BC ==,故选D.【考点】相似三角形的性质 9.【答案】C【解析】由反比例函数的性质结合图像写出取值范围.当1x =时,10y =;当2x =时,5y =,所以y 的取值范围是510y <<,故选C. 【考点】反比例函数的性质 10.【答案】B【解析】根据题意得共可进行28场比赛,由于每两个队都要进行比赛,所以1(1)282x x -=,故选B.【考点】一元二次方程解决实际问题 11.【答案】B【解析】首先根据权重计算四人的平均成绩,再根据平均成绩的大小确定录取人,甲的平均成绩:860.6900.487.6⨯+⨯=,乙的平均成绩:920.6830.488.4⨯+⨯=,丙的平均成绩:900.6830.487.2⨯+⨯=,丁的平均成绩:830.6920.486.6⨯+⨯= ,因为乙的平均成绩最高,所以公司将录取乙,故选B. 【考点】加权平均数的计算 12.【答案】D【解析】二次函数2y ax bx c =++的图像与x 轴有两个交点,所以240b ac ∆=->,故①正确;由图像知0a <,0b >,0c >,所以0abc <,故②正确;由二次函数2y ax bx c =++的最大值为2,20ax bx c m ++-=没有实根,知220ax bx c m m ++-≤-<,2m >,故③正确,所以正确的结论有三个,故选D.【考点】二次函数的图像和性质第Ⅱ卷7 / 14二、填空题 13.【答案】3x【解析】同底数幂相除,底数不变,指数相减,所以523x x x ÷=. 【考点】同底数幂的除法14.【答案】1(满足0k >即可)【解析】反比例函数(0)ky k x =≠位于第一、第三象限,只需0k >,故k 的值可以为1.【考点】反比例函数的性质15.【答案】813【解析】此13张牌中小于9的有8张,故从中任意抽取一张,抽到的牌的点数小于9的概率是813. 【考点】概率的计算 16.【答案】(1,2)【解析】顶点坐标的计算有两种方法,一是公式法24(,)224b ac b a a --;二是配方法,2223(1)2y x x x =-+=-+,故顶点坐标为1,2(). 【考点】二次函数顶点坐标的计算 17.【答案】45【解析】设A a ∠=,由题意知o o 1(180)2902ACE a a ∠=-÷=-,o o o 1[180(90)]2452DCB a a ∠=--÷=+,o o o o 11(90)(45)1359022ACE DCB a a ACB DCE DCE ∠+∠=-++==∠+∠=+∠,所以o 45DCE ∠=.【考点】三角形内角和,等腰三角形的性质 18.【答案】(1)11(2)分别以AC ,BC ,AB 为一遍作正方形ACED ,正方形BCNM ,正方形ABHF ;延长DE 交NM 于点Q ,连接QC ;平移QC 至AG ,BP 位置;直线GP 分别交AF ,BH 于点T ,S ,则四边形ABST 即为所求数学试卷 第15页(共28页)数学试卷 第16页(共28页)【解析】(1)2222311AC BC +=+=(2)连接DG ,利用切割补形,可以得到四边形DGPB 中,平行四边形AGPB 的面积为11,再作矩形ATSB使之与平行四边形AGPB 等高即可. 【考点】勾股定理,尺规作图 三、解答题19.【答案】(1)1x ≥-. (2)1x ≤.(3)【解析】解:(1)211x +≥- 则22x ≥-,解得1x ≥-. (2)213x +≤,则22x ≤,解得1x ≤. (3)如图所示【考点】不等式组的解法 20.【答案】(1)40,15 (2)36 (3)60【解析】解:(1)40,15(2)在这组样本数据中,35出现了12次,出现的次数最多,∴这组样本数据的众数为35.将这组样本数据从大到小的顺序排列,其中处于中间的两个数都是361有3636362+=, ∴这组样本数据的中位数为36.(3)在40名学生中,鞋号为35的学生人数比例为30%,9 / 14∴由样本数据,估计学校各年级学生中鞋号为35的人数比例约为30%于是,计划购买200双运动鞋时,有20030%60⨯=.∴建议购买35号运动鞋60双【考点】扇形统计图,条形统计图解决实际问题 21.【答案】(1)8AC =,50BD =,CD = (2)5BD =【解析】解:(1)由已知,BC 为O 的直径,得90CAB BDC ∠=∠=.在Rt CAB △中,10BC =,6AB =,∴8AC ===.AD 平分CAB ∠. ∴CD BD =. ∴CD BD =.在Rt BDC △中,10BC =,222CD BD BC +=,∴2250BD CD ==,BD CD ∴==(2)如图,连接,OB OD .AD 平分CAB ∠,且60CAB ∠=,数学试卷 第19页(共28页)数学试卷 第20页(共28页)∴130.2DAB CAB ∠=∠=260.DOB DAB ∴∠=∠=又O 中OB OD =,OBD ∴△是等边三角形.O 的直径为10,有5OB =,5BD ∴=【考点】圆周角定理及其推论,勾股定理,等边三角形的判定及性质 22.【答案】(1)23.5 (2)解放桥的全长约为97 m. 【解析】解:(1)123.52A C AC AB ''===(2)如图,根据题意,54PMQ ∠=︒, 73,90,40.PNQ PQM MN ∠=︒∠=︒= 在Rt MPQ △中,tan PQPMQ MQ∠=, tan54PQ MQ ∴=︒.在Rt NPM △中,tan PQPNQ NQ∠=, tan73PQ NQ =︒.tan54tan73MQ NQ ∴︒=︒.又NQ MN NQ =+.(40)tan54tan73NQ NQ ∴+︒=︒即40tan54tan73tan54NQ ︒︒︒=-40tan54tan73401.43.3tan 7397tan73tan54 3.31.4PQ NQ ︒︒︒︒⨯⨯∴=︒=≈≈-+.答,解放桥的全长PQ 约为97m【考点】直角三角形的应用.23.【答案】(1)10,18(2)y 关于x 的函数解析式为5,02,42, 2.x x y x x ≤≤⎧=⎨+>⎩(3)小张购买了7 kg 种子.【解析】解:(1)10,18.(2)根据题意,当02x ≤≤时,种子的价格为5元/kg 计价,5;y x ∴=当2x >时,其中有2kg 的种子按5元/kg 计价,其余的(2)kg x -种子按4元/kg (即8折)计价,524(2)42y x x ∴=⨯+-=+.y ∴关于x 的函数解析式为5,02,42, 2.x x y x x ≤≤⎧=⎨+>⎩(3)3010>,∴一次性购买种子的数量超过2kg .3042x ∴=+,解得7x =.【考点】利用一次函数解决实际问题24.【答案】(1)AE '=BF '=(2)略(3 【解析】解:(1)当90α=︒时,如图,点E '与点F '重合.点(2,0)A -,点(0,2)B , 2OA OB ∴==.点E ,点F 分别为,OA OB 的中点,1OE OF ∴==.正方形OE D F '''是正方形OEDF 旋转后得到的,1,1OE OE OF OF ''∴====.在Rt AE O '△中,AE '=在Rt BOF '△中,BF '===.(2)当135α=︒时,如图,正方形OE D F '''是正方形OEDF 旋转后得到的,AOE BOD ''∴∠=∠.又OE OF ''=,OA OB =,AOE BOF ''∴△≌△.AE BF ''∴=,且12∠=∠.AE '与OB 相交,可得34∠=∠.1324∴∠+∠=∠+∠.记AE '与BF '相交于点P .180(24)APB ∴∠=︒-∠+∠.又180(13)AOB ∠=︒-∠+∠.90APB AOB ∴∠=∠=︒.即AE BF ''⊥.(3)12+. 【考点】图形的旋转25.【答案】(1)①(3,3)P②y 关于x 的函数解析式为22y x x =-.(2)2t m =或212t m t -= 【解析】解:(1)①点(0,0)O ,点(1,1)F ,∴直线OD 的解析式为y x =.设直线EA 的解析式为y kx b =+,由点E 和点F 关于点(1,1)M -对称,得点(1,3)E -.又点(2,0)A ,点E 在直线EA 上,02,3,k b k b =+⎧∴⎨-=+⎩解得3,6.k b =⎧⎨=-⎩∴直线EA 的解析式为36y x =-.直线点P 是直线OF 与直线EA 的交点,有,3 6.y x y x =⎧⎨=-⎩解得3,3.x y =⎧⎨=⎩∴点P 的坐标为(3,3).②由已知,设点(1,)F t ,∴直线OF 的解析式为y tx =,设直线EA 的解析式为y kx b =+,由点E 和点F 关于点(1,1)M -对称,得点(1,2)E t --.又点A 、点E 在直线EA 上,∴02,2.k b t k b =+⎧⎨--=+⎩解得22(2).k t b t =+⎧⎨=-+⎩∴直线EA 的解析式为(2)2(2)y t x t =+-+,点P 为直线OF 与直线EA 的交点,(2)2(2)tx t x t ∴=+-+,化简,得 2.t x =-有2(2)2y tx x x x x ==-=-.y ∴关于x 的函数解析式为22y x x =-.(2)根据题意,同(1)可得直线OF 的解析式为y tx =,直线EA 的解析式为(2)2(2)y t m x t m =---.点P 为直线OF 与直线EA 的交点,(2)2(2),0.tx t m x t m m ∴=---≠ 化简,得2.t x m=-有22t y tx t m ==-. ∴点P 的坐标为2(2,2t )t t m m--. PQ l ⊥于点Q ,得点2(1,2)t Q t m-. 2221(2)t OQ t M ∴=+-,22(1)t PQ m=-. OQ PQ ∴=,2221(2)(1)t t t m m∴+-=-. 化简,得2(2)(21)0t t m t mt ---=.又0t ≠,20t m ∴-=或2210t mt --=.2t m ∴=或212t m t -=即为所求. 【考点】点的运动变化,待定系数法求函数解析式,一元二次方程的应用。

2014年山西省中考数学试卷(附答案与解析)

2014年山西省中考数学试卷(附答案与解析)

数学试卷 第1页(共28页) 数学试卷 第2页(共28页)绝密★启用前山西省2014年高中阶段教育学校招生统一考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算23-+的结果是( )A .1B .1-C .5-D .6-2.如图,直线AB ,CD 被直线EF 所截,AB CD ∥,1110∠=,则2∠等于( )A .65B .70C .75D .80 3.下列运算正确的是( )A .224358a a a += B .6212aa a =C .222()a b a b +=+D .20(1)1a += 4.如图是我国古代数学家赵爽在为《周髀算经》作注解时给出的 “弦图”,它解决的数学问题是( )A .黄金分割B .垂径定理C .勾股定理D .正弦定理5.下右图是由三个小正方体叠成的一个几何体,它的左视图是( )ABCD6.我们学习了一次函数、二次函数和反比例函数,回顾学习过程,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质.这种研究方法主要体现的数学思想是( )A .演绎B .数形结合C .抽象D .公理化7.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是 ( )A .频率就是概率B .频率与试验次数无关C .概率是随机的,与频率无关D .随着试验次数的增加,频率一般会越来越接近概率8.如图,O 是ABC △的外接圆,连接OA ,OB ,50OBA ∠=,则C ∠的度数为( )A .30B .40C .50D .809. 2.5PM 是指大气中直径小于或等于2.5μm 1μm=0.0000(01m)的颗粒物,也称为可入肺颗粒物.它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm 用科学记数法可表示为( )A .52.510m -⨯B .70.2510m -⨯C .62.510m -⨯D .52510m -⨯10.如图,点E 在正方形ABCD 的对角线AC 上,且2EC AE =,Rt FEG △的两直角边EF ,EG 分别交BC ,DC 于点M ,N .若正方形ABCD 的边长为a ,则重叠部分四边形EMCN 的面积为( )A.223aB .214aC .259aD .249a 第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填在题中的横线上) 11.计算:23232a b a b = . 12.化简21639x x ++-的结果是 . 毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共28页) 数学试卷 第4页(共28页)13.如图,已知一次函数4y kx =-的图象与x 轴、y 轴分别交于A ,B 两点,与反比例函数8y x=在第一象限内的图象交于点C ,且A 为BC 的中点,则k = .14.甲、乙、丙三位同学打乒乓球,想通过“手心手背”游戏来决定其中哪两人先打.规则如下:三人同时各用一只手随机出示手心或手背,若只有两个人手势相同(都是手心或都是手背),则这两人先打;若三人手势相同,则重新决定.那么通过一次“手心手背”游戏能决定甲打乒乓球的概率是 .15.一走廊拐角的横截面如图所示,已知AB BC ⊥,AB DE ∥,BC FG ∥,且两组平行墙壁间的走廊宽度都是1m .EF 的圆心为O ,半径为1m ,且90EOF ∠=,DE ,FG 分别与O 相切于E ,F 两点.若水平放置的木棒MN 的两个端点M ,N 分别在AB 和BC 上,且MN 与O 相切于点P ,P 是EF 的中点,则木棒MN 的长度为m .16.如图,在ABC △中,30BAC ∠=,AB AC =,AD 是BC 边上的中线,12ACE BAC ∠=∠,CE 交AB 于点E ,交AD 于点F ,若2BC =,则EF 的长为 .三、解答题(本大题共8小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分10分,每题5分)(1)计算:211(2)sin60()122---⨯;(2)分解因式:(1)(3)1x x --+.18.(本小题满分6分)解不等式组并求出它的正整数解.5229,12 3.x x x --⎧⎨--⎩>①≥②19.(本小题满分6分)阅读以下材料,并按要求完成相应的任务.几何中,平行四边形、矩形、菱形、正方形和等腰梯形都是特殊的四边形,大家对于它们的性质都非常熟悉.生活中还有一种特殊的四边形——筝形.所谓筝形,它的形状与我们生活中风筝的骨架相似. 定义:两组邻边分别相等的四边形,称之为筝形.如图,四边形ABCD 是筝形,其中AB AD =,CB CD =.判定:①两组邻边分别相等的四边形是筝形.②有一条对角线垂直平分另一条对角线的四边形是筝形.显然,菱形是特殊的筝形,就一般筝形而言,它与菱形有许多相同点和不同点.如果只研究一般的筝形(不包括菱形),请根据以上材料完成下列任务:数学试卷 第5页(共28页) 数学试卷 第6页(共28页)(1)请说出筝形和菱形的相同点和不同点各两条;(2)请仿照图1的画法,在图2所示的88⨯网格中重新设计一个由四个全等的筝形和四个全等的菱形组成的新图案,具体要求如下: ①顶点都在格点上;②所设计的图案既是轴对称图形又是中心对称图形;③将新图案中的四个筝形都涂上阴影(建议用一系列平行斜线表示阴影).图1图220.(本小题满分10分)某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用? (2)根据实际需要,公司将阅读、思维和表达能力三项测试得分按3:5:2的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?(3)公司按照(2)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值,如最右边一组分数x 为8590x ≤<),并决定由高分到低分录用8名员工,甲、乙两人能否被录用?请说明理由,并求出本次招聘人才的录用率.21.(本小题满分7分)如图,点A ,B ,C 表示某旅游景区三个缆车站的位置,线段AB ,BC 表示连接缆车站的钢缆,已知A ,B ,C 三点在同一铅直平面内,它们的海拔高度'AA ,'BB ,'CC 分别为110米,310米,710米,钢缆AB 的坡度11:2i =,钢缆BC 的坡度21:1i =,景区因改造缆车线路,需要从A 到C 直线架设一条钢缆,那么钢缆AC 的长度是多少米?(注:坡度i 是指坡面的铅直高度与水平宽度的比)22.(本小题满分9分)某新建火车站站前广场需要绿化的面积为246000米,施工队在绿化了222000米后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程. (1)该项绿化工程原计划每天完成多少2米?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为562米,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?23.(本小题满分11分)课题学习:正方形折纸中的数学.动手操作:如图1,四边形ABCD 是一张正方形纸片,先将正方形ABCD 对折,使BC 与AD 重合,折痕为EF ,把这个正方形展平,然后沿直线CG 折叠,使B 点落在EF 上,对应点为'B .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效--数学试卷 第7页(共28页) 数学试卷 第8页(共28页)图1图2图3数学思考:(1)求'CB F ∠的度数;(2)如图2,在图1的基础上,连接'AB ,试判断'B AE ∠与'GCB ∠的大小关系,并说明理由. 解决问题:(3)如图3,按以下步骤进行操作:第一步:先将正方形ABCD 对折,使BC 与AD 重合,折痕为EF ,把这个正方形展平,然后继续对折,使AB 与DC 重合,折痕为MN ,再把这个正方形展平,设EF 和MN 相交于点O ;第二步:沿直线CG 折叠,使B 点落在EF 上,对应点为'B ;再沿直线AH 折叠,使D 点落在EF 上,对应点为'D ;第三步:设CG ,AH 分别与MN 相交于点P ,Q ,连接'B P ,'PD ,'D Q ,'QB .试判断四边形''B PD Q 的形状,并证明你的结论.24.(本小题满分13分)综合与探究:如图,在平面直角坐标系xOy 中,四边形OABC 是平行四边形,A ,C 两点的坐标分别为(4,0),(2,3)-,抛物线W 经过O ,A ,C 三点,D 是抛物线W 的顶点.(1)求抛物线W 的解析式及顶点D 的坐标;(2)将抛物线W 和□OABC 一起先向右平移4个单位后,再向下平移(03)m m <<个单位,得到抛物线'W 和□O A B C ''''.在向下平移的过程中,设□O A B C ''''与□OABC 的重叠部分的面积为S ,试探究:当m 为何值时S 有最大值,并求出S 的最大值;(3)在(2)的条件下,当S 取最大值时,设此时抛物线W '的顶点为F ,若点M 是x 轴上的动点,点N 时抛物线W '上的动点,试判断是否存在这样的点M 和点N ,使得以D ,F ,M ,N 为顶点的四边形是平行四边形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.5 / 14山西省2014年高中阶段教育学校招生统一考试数学答案解析第Ⅰ卷(选择题)一、选择题 1.【答案】A【解析】23(32)1-+=+-=,故选A. 【考点】有理数的加法运算 2.【答案】B【解析】2∠的补角是1∠的内错角(同位角),根据“两直线平行,内错角(同位角)相等”可得2∠的补角1110=∠=︒,所以218011070∠=︒-︒=︒,故选A. 【考点】平行线的性质 3.【答案】D【解析】根据合并同类项法则,222358a a a +=,A 错;根据同底数幂的乘法法则,62628aa a a +==,B错;根据完全平方公式222()2a b a ab b +=++,C 错;因为210a +≠,根据非零数的零次幂等于1,D正确,故选D. 【考点】整式的计算 4.【答案】C【解析】根据勾股定理的证明方法可知应选C. 【考点】勾股定理 5.【答案】C【解析】从左边看只能看到上下两个小正方形,故选C. 【考点】几何体的三视图 6.【答案】B【解析】所谓演绎推理,就是从一般性的前提出发,通过推导即“演绎”,得出具体陈述或个别结论的过程;所谓数形结合,就是根据数形之间的对应关系,通过数形的相互转化来解决数学问题的思想,实现数形结合;所谓抽象是从众多的事物中抽取出共同的、本质性的特征,而舍弃其非本质的特征;数学上所说的“公理”就是一些不加证明而公认的前提,然后以此为基础,推演出所讨论对象的进一步内容,故选B.数学试卷 第11页(共28页)数学试卷 第12页(共28页)【解析】OA OB =是圆心角的一半,【考点】等腰三角形的性质,圆周角定理【答案】C科学计数法是将一个数写成第Ⅱ卷(非选择题)222344232()()6a b a a b b a b =⨯=.【考点】整式的运算中单项式乘以单项式13- 1633(3)(3)(3)(3)(x x x x x x -=+=+++-+-分别于O相切于与O相切于点行墙壁间的走廊宽度相等,由对称性可知.连接OP,则OE于点H,则PH的延长线于点22MK=7/ 14数学试卷第15页(共28页)数学试卷第16页(共28页)(2)本小题是开放题,答案不唯一,参考答案如下:)93=x+甲=85(分)乙将被录用.)933865=3+5+2x⨯+⨯+'甲953+815+793+5+2⨯⨯x乙>,∴甲将被录用由直方图知成绩最高一组分数段【解析】解:9/ 14数学试卷 第19页(共28页)数学试卷 第20页(共28页)11:2i =,又FE BD =AE AF ∴=+∴在Rt AEC △2AC AE =答:钢缆AC 四边形30CB F '∴∠=︒.四边形.EF CD ⊥12CB D '=⨯GCB '∠,连接B D '为等边三角形,.四边形DB DA '=DAB '∴∠=B AE '∴∠=由(1)知EF BC ∥由折叠知,B AE '∴∠=证法二:如图四边形90.BKC=.又由折叠知,GCB GCB'∠=∠,B AE GCB''∴∠=∠.又四边形数学试卷第23页(共28页)PCN ∠=PCN GBC △.PN CN GB CB ∴=12PN ∴=以下同证法一)抛物线抛物线2 14y x=∴顶点D的坐标为(2)由OABC得又C点的坐标为∴B点的坐标为(2,3)如图,过点B作BE x⊥轴于点E,C B x BC G BEA'''∴∥轴,△△.BC C GBE EA''∴=,即32BC C G''=,2233C G BC m''∴==.由平移知,O A B C''''与OABC的重叠部分四边形222)3233)22G C E m mm mm'=-+-+23-<,且0m<<∴当32m=(3)点M【考点】求抛物线解析式,相似三角形的判定与性质,最值问题,点的存在性数学试卷第27页(共28页)。

2014年北京市中考数学试卷(附答案与解析)

2014年北京市中考数学试卷(附答案与解析)

数学试卷 第1页(共28页) 数学试卷 第2页(共28页)绝密★启用前北京市2014年高级中等学校招生考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共32分)一、选择题(本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.2的相反数是( )A .2B .2-C .12-D .122.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300000吨.将300000用科学记数法表示应为( )A .60.310⨯B .5310⨯C .6310⨯D .43010⨯ 3.如图,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是( )A .16B .14C .13D .124.如图是某几何体的三视图,该几何体是( )A .圆锥B .圆柱C .正三棱柱D .正三棱锥5.某篮球队12名队员的年龄如下表所示:年龄18 19 20 21 人数5 41 2 则这12名队员年龄的众数和平均数分别是( ) A .18,19B .19,19C .18,19.5D .19,19.56.园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S (单位:平方米)与工作时间t (单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为 ( ) A .40平方米 B .50平方米 C .80平方米 D .100平方米7.如图,O 的直径AB 垂直于弦CD ,垂足是E ,22.5A ∠=,4OC =,CD 的长为( ) A .22 B .4 C .42 D .88.已知点A 为某封闭图形边界上一定点,动点P 从点A 出发,沿其边界顺时针匀速运动一周.设点P 运动的时间为x ,线段AP 的长为y ,表示y 与x 的函数关系的图象大致如图所示,则该封闭图形可能是( )ABCD第Ⅱ卷(非选择题 共88分)二、填空题(本大题共4小题,每小题4分,共16分.请把答案填在题中的横线上) 9.分解因式:429ax ay -= .10.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为 m .11.如图,在平面直角坐标系xOy 中,正方形OABC 的边长为2.写出一个函数(0)ky k x=≠,使它的图象与正方形OABC 有公共点,这个函数的表达方式为 .毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共28页) 数学试卷 第4页(共28页)12.在平面直角坐标系xOy 中,对于点(,)P x y ,我们把点(1,1)P y x '-++叫做点P 的伴随点.已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得到点1A ,2A ,3A ,…,n A ,….若点1A 的坐标为(3,1),则点3A 的坐标为 ,点2014A 的坐标为 ;若点1A 的坐标为(),a b ,对于任意的正整数n ,点n A 均在x 轴上方,则a ,b 应满足的条件为 .三、解答题(本大题共13小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤)13.(本小题满分5分)如图,点B 在线段AD 上,BC DE ∥,AB ED =,BC DB =. 求证:A E ∠=∠.14.(本小题满分5分)计算:011(6π)()3tan30|5--+--+-.15.(本小题满分5分)解不等式1211232x x --≤,并把它的解集在数轴上表示出来.16.(本小题满分5分)已知x y -=,求代数式2(1)2(2)x x y y x +-+-的值.17.(本小题满分5分)已知关于x 的方程2(2)20(0)mx m x m -++=≠. (1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m 的值.18.(本小题满分5分) 列方程或方程组解应用题:小马自驾私家车从A 地到B 地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元.已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.19.(本小题满分5分)如图,在□ABCD 中,AE 平分BAD ∠,交BC 于点E ,BF 平分ABC ∠,交AD 于点F ,AE 与BF 交于点P ,连接EF ,PD .(1)求证:四边形ABEF 是菱形;(2)若4AB =,6AD =,60ABC ∠=,求tan ADP ∠的值.20.(本小题满分5分)根据某研究院公布的2009—2013年我国成年国民阅读调查报告的部分相关数据,绘制的统计图表如下:2013年成年国民倾向的阅读方式人数分布统计图FPECBADECBAD数学试卷 第5页(共28页) 数学试卷 第6页(共28页)根据以上信息解答下列问题: (1)直接写出扇形统计图中m 的值;(2)从2009到2013年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2014年成年国民年人均阅读图书的数量约为 本;(3)2013年某小区倾向图书阅读的成年国民有990人,若该小区2014年与2013年成年国民的人数基本持平,估算2014年该小区成年国民阅读图书的总数量约为 本.21.(本小题满分5分)如图,AB 是O 的直径,C 是AB 的中点,O 的切线BD 交AC 的延长线于点D ,E 是OB 的中点,CE 的延长线交切线DB 于点F ,AF 交O 于点H ,连接BH .(1)求证:AC CD =; (2)若2OB =,求BH 的长.22.(本小题满分5分) 阅读下面材料:小腾遇到这样一个问题:如图1,在ABC △中,点D 在线段BC 上,75BAD ∠=,30CAD ∠=,2AD =,2BD DC =,求AC 的长.小腾发现,过点C 作CE AB ∥,交AD 的延长线于点E ,通过构造ACE △,经过推理和计算能够使问题得到解决(如图2).请回答:ACE ∠的度数为 ,AC 的长为 . 参考小腾思考问题的方法,解决问题:如图3,在四边形ABCD 中,90BAC ∠=,30CAD ∠=,75ADC ∠=,AC 与BD 交于点E ,2AE =,2BE ED =,求BC 的长.23.(本小题满分7分)在平面直角坐标系xOy 中,抛物线22y x mx n =++经过点2(0,)A -,(3,4)B . (1)求抛物线的表达式及对称轴;(2)设点B 关于原点的对称点为C ,点D 是抛物线对称轴上一动点,记抛物线在A ,B 之间的部分为图象G (包含A ,B 两点).若直线CD 与图象G 有公共点,结合函数图象,求点D 纵坐标t 的取值范围.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共28页) 数学试卷 第8页(共28页)24.(本小题满分7分)在正方形ABCD 外侧作直线AP ,点B 关于直线AP 的对称点为E ,连接,BE DE ,其中DE 交直线AP 于点F .(1)依题意补全图1;(2)若20PAB ∠=,求ADF ∠的度数;(3)如图2,若4590PAB ∠<<,用等式表示线段,,AB FE FD 之间的数量关系,并证明.25.(本小题满分8分)对某一个函数给出如下定义:若存在实数0M >,对于任意的函数值y ,都满足M y M -≤≤,则称这个函数是有界函数.在所有满足条件的M 中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.(1)分别判断函数1y x=(0)x >和1(42)y x x =+-<≤是不是有界函数?若是有界函数,求其边界值;(2)若函数1y x =-+(,)a x b b a ≤≤>的边界值是2,且这个函数的最大值也是2,求b 的取值范围;(3)将函数2(1,0)y x x m m =-≤≤≥的图象向下平移m 个单位,得到的函数的边界值是t ,当m 在什么范围时,满足314t ≤≤?北京市2014年高级中等学校招生考试数学答案解析5/ 14数学试卷 第11页(共28页)数学试卷 第12页(共28页)【解析】22.5A =∠sin OC COE =∠,又AB CD ⊥【考点】圆周角定理,垂径定理,解直角三角形. 【答案】A【解析】因为由图象看,点AP 是先增大再减小,直到半周的位置而当点动半周时,AP 是先增大再减小再增大;当点P 沿正方形边界运动半周时,第Ⅱ卷【答案】证明:BC DE∥EDB中,ABABCBC⎧⎪⎨⎪⎩∠,A∴=∠【考点】平行线的性质,全等三角形的判定和性质不等式的解集在数轴上表示如下:7/ 14数学试卷 第15页(共28页)数学试卷 第16页(共28页)x y -=【考点】代数式的化简求值17.【答案】)证明:0m ≠,2(mx m ∴-是关于x 的一元二次方程(2)m m =-2(2)m -≥∴方程总有两个实数根(2)由求根公式,得11x ∴=,方程的两个根都是整数,且19.【答案】(1)证明:BF 是ABC ∠的平分线,AD BC ∥AFB ∴=∠同理AB =∴四边形ABEF AB AF =9 / 14(2)过点P 作PG AD ⊥于点G ,如图.四边形4AB =,12AP ∴=在Rt AGP △cos601AG AP ∴==,sin 603GP AP ==. 6AD =,5DG ∴=3tan 5ADP ∴=∠. 【考点】角平分线的定义,平行四边形及菱形的判定和性质,解直角三角形等20.【答案】(2)5.00AB 是O 的直径,C 是AB 的中点,AC BC ∴=.CAB CBA ∴∠=∠=BD 是O 的切线,可证CBD D ∠=∠=BC CD ∴=.AC ∴=数学试卷 第19页(共28页)数学试卷 第20页(共28页)OA OC =COE ∴∠=E 是OB CEO ∠=BF OC ∴=.2OB =,由勾股定理,得AF =90ABF AHB ∠=∠=4=55AB BF BH AF ∴=【考点】切线的性质,等腰直角三角形的性质,全等角形的判定与性质,勾股定理等22.【答案】解:ACE ∠解决问题:过点D 作DF AB ∥交AC 于点F .如图.2 BE ED=CAD∠=2ABFD=,ADC∠=AC AD∴=在Rt ABC△【考点】相似三角形的判定与性质,勾股定理等23.【答案】)点∴抛物线的对称轴为1x=.24.【答案】(1)补全图形,如图1所示.(2)连接AE,如图2.点AB AD=AED∴∠=2ADF∴∠ADF∴∠=(3)AB,数学试卷第23页(共28页)点=AB AD∴∠=ADE∠=又DGF22∴+FB FD22=BD AB【解析】轴对称的性质,等腰三角形的性质,三角形的内角和定理,勾股定理等25.【答案】(1(=+-y xy函数的最大值是又函数的边界值是数学试卷第27页(共28页)。

浙江省金华市2014年中考数学试卷及答案【Word解析版】

浙江省金华市2014年中考数学试卷及答案【Word解析版】

浙江省金华市2014年中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2014•金华)在数1,0,﹣1,﹣2中,最小的数是()A.1B.0C.﹣1 D.﹣2考点:有理数大小比较.分析:根据正数大于0,0大于负数,可得答案.解答:解:﹣2<﹣1<0<1,故选:D.点评:本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.2.(3分)(2014•金华)如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直考点:直线的性质:两点确定一条直线.专题:应用题.分析:根据公理“两点确定一条直线”来解答即可.解答:解:经过刨平的木板上的两个点,能弹出一条笔直的墨线此操作的依据是两点确定一条直线.故选A.点评:此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.3.(3分)(2014•金华)一个几何体的三视图如图,那么这个几何体是()A.B.C.D.考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:由于俯视图为圆形可得几何体为球、圆柱或圆锥,再根据主视图和左视图可知几何体为圆柱与圆锥的组合体.故选:D.点评:考查学生对圆锥三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.4.(3分)(2014•金华)一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是()A.B.C.D.考点:概率公式.分析:用红球的个数除以球的总个数即可.解答:解:∵布袋里装有5个球,其中3个红球,2个白球,∴从中任意摸出一个球,则摸出的球是红球的概率是:.故选D.点评:本题考查了概率公式:概率=所求情况数与总情况数之比.5.(3分)(2014•金华)在式子,,,中,x可以取2和3的是()A.B.C.D.考点:二次根式有意义的条件;分式有意义的条件.分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求得x的范围,进行判断.解答:解:A、x﹣2≠0,解得:x≠2,故选项错误;B、x﹣3≠0,解得:x≠3,选项错误;C、x﹣2≥0,解得:x≥2,则x可以取2和3,选项正确;D、x﹣3≥0,解得:x≥3,x不能取2,选项错误.故选C.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.6.(3分)(2014•金华)如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是()A.1B.1.5 C.2D.3考点:锐角三角函数的定义;坐标与图形性质.分析:根据正切的定义即可求解.解答:解:∵点A(t,3)在第一象限,∴AB=3,OB=t,又∵tanα==,∴t=2.故选C.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.7.(3分)(2014•金华)把代数式2x2﹣18分解因式,结果正确的是()A.2(x2﹣9)B.2(x﹣3)2C.2(x+3)(x﹣3)D.2(x+9)(x﹣9)考点:提公因式法与公式法的综合运用.分析:首先提取公因式2,进而利用平方差公式分解因式得出即可.解答:解:2x2﹣18=2(x2﹣9)=2(x+3)(x﹣3).故选:C.点评:此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.8.(3分)(2014•金华)如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数是()A.70°B.65°C.60°D.55°考点:旋转的性质.分析:根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C,然后根据旋转的性质可得∠B=∠A′B′C.解答:解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,由旋转的性质得,∠B=∠A′B′C=65°.故选B.点评:本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.9.(3分)(2014•金华)如图是二次函数y=﹣x2+2x+4的图象,使y≤1成立的x的取值范围是()A.﹣1≤x≤3 B.x≤﹣1 C.x≥1 D.x≤﹣1或x≥3考点:二次函数与不等式(组).分析:根据函数图象写出直线y=1下方部分的x的取值范围即可.解答:解:由图可知,x≤﹣1或x≥3时,y≤1.故选D.点评:本题考查了二次函数与不等式,此类题目,利用数形结合的思想求解是解题的关键.10.(3分)(2014•金华)一张圆心角为45°的扇形纸板盒圆形纸板按如图方式分别剪成一个正方形,边长都为1,则扇形和圆形纸板的面积比是()A.5:4 B.5:2 C.:2 D.:考点:正多边形和圆;勾股定理.分析:先画出图形,分别求出扇形和圆的半径,再根据面积公式求出面积,最后求出比值即可.解答:解:如图1,连接OD,∵四边形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=1,∵∠AOB=45°,∴OB=AB=1,由勾股定理得:OD==,∴扇形的面积是=π;如图2,连接MB、MC,∵四边形ABCD是⊙M的内接四边形,四边形ABCD是正方形,∴∠BMC=90°,MB=MC,∴∠MCB=∠MBC=45°,∵BC=1,∴MC=MB=,∴⊙M的面积是π×()2=π,∴π÷(π)=,故选A.点评:本题考查了正方形性质,圆内接四边形性质,扇形的面积公式的应用,解此题的关键是求出扇形和圆的面积,题目比较好,难度适中.二、填空题(共6小题,每小题4分,满分24分)11.(4分)(2014•金华)写出一个解为x≥1的一元一次不等式x+1≥2.考点:不等式的解集.专开放型.题:分析:根据不等式的解集,可得不等式.解答:解:写出一个解为x≥1的一元一次不等式 x+1≥2,故答案为:x+1≥2.点评:本题考查了不等式的解集,注意符合条件的不等式有无数个,写一个即可.12.(4分)(2014•金华)分式方程=1的解是x=2.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:2x﹣1=3,解得:x=2,经检验x=2是分式方程的解.故答案为:x=2.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13.(4分)(2014•金华)小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的函数图象,则小明回家的速度是每分钟步行80米.考点:函数的图象.分析:先分析出小明家距学校800米,小明从学校步行回家的时间是15﹣5=10(分),再根据路程、时间、速度的关系即可求得.解答:解:通过读图可知:小明家距学校800米,小明从学校步行回家的时间是15﹣5=10(分),所以小明回家的速度是每分钟步行800÷10=80(米).故答案为:80.点评:本题主要考查了函数图象,先得出小明家与学校的距离和回家所需要的时间,再求解.14.(4分)(2014•金华)小亮对60名同学进行节水方法选择的问卷调查(每人选择一项),人数统计如图,如果绘制成扇形统计图,那么表示“一水多用”的扇形圆心角的度数是240°.考点:扇形统计图.分析:用周角乘以一水多用的所占的百分比即可求得其所占的圆心角的度数.解答:解:表示“一水多用”的扇形圆心角的度数是360°×=240°,故答案为:240°.点评:本题考查了扇形统计图的知识,能够从统计图中整理出进一步解题的信息是解答本题的关键.15.(4分)(2014•金华)如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是7.考点:全等三角形的判定与性质;线段垂直平分线的性质;勾股定理;矩形的性质.分析:根据线段中点的定义可得CG=DG,然后利用“角边角”证明△DEG和△CFG全等,根据全等三角形对应边相等可得DE=CF,EG=FG,设DE=x,表示出BF,再利用勾股定理列式求EG,然后表示出EF,再根据线段垂直平分线上的点到两端点的距离相等可得BF=EF,然后列出方程求出x的值,从而求出AD,再根据矩形的对边相等可得BC=AD.解答:解:∵G是CD的中点,AB=8,∴CG=DG=×8=4,在△DEG和△CFG中,,∴△DEG≌△CFG(ASA),∴DE=CF,EG=FG,设DE=x,则BF=BC+CF=AD+CF=4+x+x=4+2x,在Rt△DEG中,EG==,∴EF=2,∵FH垂直平分BE,∴BF=EF,∴4+2x=2,解得x=3,∴AD=AE+DE=4+3=7,∴BC=AD=7.故答案为:7.点评:本题考查了全等三角形的判定与性质,矩形的性质,线段垂直平分线上的点到两端点的距离相等的性质,勾股定理,熟记各性质并利用勾股定理列出方程是解题的关键.16.(4分)(2014•金华)如图2是装有三个小轮的手拉车在“爬”楼梯时的侧面示意图,定长的轮架杆OA,OB,OC抽象为线段,有OA=OB=OC,且∠AOB=120°,折线NG﹣GH﹣HE﹣EF表示楼梯,GH,EF是水平线,NG,HE是铅垂线,半径相等的小轮子⊙A,⊙B与楼梯两边都相切,且AO∥GH.(1)如图2①,若点H在线段OB时,则的值是;(2)如果一级楼梯的高度HE=(8+2)cm,点H到线段OB的距离d满足条件d≤3cm,那么小轮子半径r的取值范围是(11﹣3)cm≤r≤8cm.考点:圆的综合题.分析:(1)作P为⊙B的切点,连接BP并延长,作OL⊥BP于点L,交GH于点M,求出ML,OM,根据=求解,(2)作HD⊥OB,P为切点,连接BP,PH的延长线交BD延长线为点L,由△LDH∽△LPB,得出=,再根据30°的直角三角形得出线段的关系,得到DH和r的关系式,根据0≤d≤3的限制条件,列不等式组求范围.解答:解:(1)如图2①,P为⊙B的切点,连接BP并延长,作OL⊥BP于点L,交GH 于点M,∴∠BPH=∠BPL=90°,∵AO∥GH,∴BL∥AO∥GH,∵∠AOB=120°,∴∠OBL=60°,在RT△BPH中,HP=BP=r,∴ML=HP=r,OM=r,∵BL∥GH,∴===,故答案为:.(2)作HD⊥OB,P为切点,连接BP,PH的延长线交BD延长线为点L,∴∠LDH=∠LPB=90°,∴△LDH∽△LPB,∴=,∵AO∥PB,∠AOD=120°∴∠B=60°,∴∠BLP=30°,∴DL=DH,LH=2DH,∵HE=(8+2)cm∴HP=8+2﹣r,PL=HP+LH=8+2﹣r+2DH,∴=,解得DH=r﹣4﹣1,∵0cm≤DH≤3cm,∴0≤r﹣4﹣1≤3,解得:(11﹣3)cm≤r≤8cm.故答案为:(11﹣3)cm≤r≤8cm.点评:本题主要考查了圆的综合题,解决本题的关键是作出辅助线,运用30°的直角三角形得出线段的关系.三、解答题(共8小题,满分66分)17.(6分)(2014•金华)计算:﹣4cos45°+()﹣1+|﹣2|.考点:实数的运算;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项化为最简二次根式,第二项利用特殊角的三角函数值计算,第三项利用负指数幂法则计算,最后一项利用负指数幂法则计算即可得到结果.解答:解:原式=2﹣4×+2+2=4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2014•金华)先化简,再求值:(x+5)(x﹣1)+(x﹣2)2,其中x=﹣2.考点:整式的混合运算—化简求值.专题:计算题.分析:原式第一项利用多项式乘以多项式法则计算,第二项利用完全平方公式展开,去括号合并得到最简结果,将x的值代入计算即可求出值.解答:解:原式=x2﹣x+5x﹣5+x2﹣4x+4=2x2﹣1,当x=﹣2时,原式=8﹣1=7.点评:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.19.(6分)(2014•金华)在棋盘中建立如图的直角坐标系,三颗棋子A,O,B的位置如图,它们分别是(﹣1,1),(0,0)和(1,0).(1)如图2,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴;(2)在其他格点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个轴对称图形,请直接写出棋子P的位置的坐标.(写出2个即可)考利用轴对称设计图案;坐标与图形性质.点:分析:(1)根据A,B,O,C的位置,结合轴对称图形的性质进而画出对称轴即可;(2)利用轴对称图形的性质得出P点位置.解答:解:(1)如图2所示:直线l即为所求;(2)如图1所示:P(0,﹣1),P′(﹣1,﹣1)都符合题意.点评:此题主要考查了利用轴对称设计图案,正确把握轴对称图形的性质是解题关键.20.(8分)(2014•金华)一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式进行拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?(2)若用餐的人数有90人,则这样的餐桌需要多少张?考点:规律型:图形的变化类.分析:(1)根据图形可知,每张桌子有4个座位,然后再加两端的各一个,于是n张桌子就有(4n+2)个座位;由此进一步求出问题即可;(2)由(1)中的规律列方程解答即可.解答:解:(1)1张长方形餐桌的四周可坐4+2=6人,2张长方形餐桌的四周可坐4×2+2=10人,3张长方形餐桌的四周可坐4×3+2=14人,…n张长方形餐桌的四周可坐4n+2人;所以4张长方形餐桌的四周可坐4×4+2=18人,8张长方形餐桌的四周可坐4×8+2=34人.(2)设这样的餐桌需要x张,由题意得4x+2=90解得x=22答:这样的餐桌需要22张.点评:此题考查图形的变化规律,首先应找出哪些部分发生了变化,是按照什么规律变化的,找出规律解决问题.21.(8分)(2014•金华)九(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲乙两组,进行了四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘制成如图统计图.根据统计图,解答下列问题:(1)第三次成绩的优秀率是多少?并将条形统计图补充完整;(2)已求得甲组成绩优秀人数的平均数=7,方差=1.5,请通过计算说明,哪一组成绩优秀的人数较稳定?考点:折线统计图;条形统计图;加权平均数;方差.分析:(1)利用优秀率求得总人数,根据优秀率=优秀人数除以总人数计算;(2)先根据方差的定义求得乙班的方差,再根据方差越小成绩越稳定,进行判断.解答:解:(1)总人数:(5+6)÷55%=20,第三次的优秀率:(8+5)÷20×100%=65%,20×85%﹣8=17﹣8=9.补全条形统计图,如图所示:(2)=(6+8+5+9)÷4=7,S2乙组=×【(6﹣7)2+(8﹣7)2+(5﹣7)2+(9﹣7)2】=2.5,S2甲组<S2乙组,所以甲组成绩优秀的人数较稳定.点评:本本题考查了优秀率、平均数和方差等概念以及运用.它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.22.(10分)(2014•金华)【合作学习】如图,矩形ABCD的两边OB,OD都在坐标轴的正半轴上,OD=3,另两边与反比例函数y=(k≠0)的图象分别相交于点E,F,且DE=2.过点E作EH⊥x轴于点H,过点F作FG⊥EH于点G.回答下面的问题:①该反比例函数的解析式是什么?②当四边形AEGF为正方形时,点F的坐标时多少?(1)阅读合作学习内容,请解答其中的问题;(2)小亮进一步研究四边形AEGF的特征后提出问题:“当AE>EG时,矩形AEGF与矩形DOHE能否全等?能否相似?”针对小亮提出的问题,请你判断这两个矩形能否全等?直接写出结论即可;这两个矩形能否相似?若能相似,求出相似比;若不能相似,试说明理由.考点:反比例函数综合题.专题:综合题.分析:(1)①先根据矩形的性质得到D(2,3),然后利用反比例函数图象上点的坐标特征计算出k=6,则得到反比例函数解析式为y=;②设正方形AEGF的边长为a,则AE=AF=6,根据坐标与图形的关系得到B(2+a,0)),A(2+a,3),所以F点坐标为(2+a,3﹣a),于是利用反比例函数图象上点的坐标特征得(2+a)(3﹣a)=6,然后解一元二次方程可确定a的值,从而得到F点坐标;(2)当AE>EG时,假设矩形AEGF与矩形DOHE全等,则AE=OD=3,AF=DE=2,则得到F点坐标为(3,3),根据反比例函数图象上点的坐标特征可判断点F(3,3)不在反比例函数y=的图象上,由此得到矩形AEGF与矩形DOHE不能全等;当AE>EG时,若矩形AEGF与矩形DOHE相似,根据相似的性质得AE:OD=AF:DE,即==,设AE=3t,则AF=2t,得到F点坐标为(2+3t,3﹣2t),利用反比例函数图象上点的坐标特征得(2+3t)(3﹣2t)=6,解得t1=0(舍去),t2=,则AE=3t=,于是得到相似比==.解答:解:(1)①∵四边形ABOD为矩形,EH⊥x轴,而OD=3,DE=2,∴E点坐标为(2,3),∴k=2×3=6,∴反比例函数解析式为y=(x>0);②设正方形AEGF的边长为a,则AE=AF=6,∴B点坐标为(2+a,0)),A点坐标为(2+a,3),∴F点坐标为(2+a,3﹣a),把F(2+a,3﹣a)代入y=得(2+a)(3﹣a)=6,解得a1=1,a2=0(舍去),∴F点坐标为(3,2);(2)当AE>EG时,矩形AEGF与矩形DOHE不能全等.理由如下:假设矩形AEGF与矩形DOHE全等,则AE=OD=3,AF=DE=2,∴A点坐标为(5,3),∴F点坐标为(3,3),而3×3=9≠6,∴F点不在反比例函数y=的图象上,∴矩形AEGF与矩形DOHE不能全等;当AE>EG时,矩形AEGF与矩形DOHE能相似.∵矩形AEGF与矩形DOHE能相似,∴AE:OD=AF:DE,∴==,设AE=3t,则AF=2t,∴A点坐标为(2+3t,3),∴F点坐标为(2+3t,3﹣2t),把F(2+3t,3﹣2t)代入y=得(2+3t)(3﹣2t)=6,解得t1=0(舍去),t2=,∴AE=3t=,∴相似比===.点评:本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、矩形的性质和图形全等的性质、相似的性质;理解图形与坐标的关系;会解一元二次方程.23.(10分)(2014•金华)等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.(1)若AE=CF;①求证:AF=BE,并求∠APB的度数;②若AE=2,试求AP•AF的值;(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.考点:相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的性质.分析:(1)①证明△ABE≌△CAF,借用外角即可以得到答案;②利用勾股定理求得AF 的长度,再用平行线分线段成比例定理或者三角形相似及求得的比值,即可以得到答案.(2)当点F靠近点C的时候点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形,继而求得半径和对应的圆心角的度数,求得答案.点F靠近点B时,点P的路径就是过点B向AC做的垂线段的长度;解答:(1)①证明:∵△ABC为等边三角形,∴AB=AC,∠C=∠CAB=60°,又∵AE=CF,在△ABE和△CAF中,,∴△ABE≌△CAF(SAS),∴AF=BE,∠ABE=∠CAF.又∵∠APE=∠ABP+∠BAP,∴∠APE=∠BAP+∠CAF=60°.∴∠APB=120°.②如图,过点E作EH∥BC,交AF于H,AM⊥BC,垂足为M,∵AE=CF=2,△ABC为等边三角形,AB=BC=AC=6,∴MF=1,AM=,根据勾股定理,AF=;∵EH∥BC,∴,∴,∴,∴AP•AF===12.(2)①当点F靠近点C的时候点P的路径是一段弧,由题目不难看出当E为AC 的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形,且∠ABP=∠ABP=30°,∴∠AOB=120°,又∵AB=6,∴OA=,点P的路径是.(2)点F靠近点B时,点P的路径就是过点B向AC做的垂线段的长度;因为等边三角形ABC的边长为6,所以点P的路径的长度为:.点评:本题考查了等边三角形性质的综合应用以及相似三角形的判定及性质的应用,解答本题的关键是注意转化思想的运用.24.(12分)(2014•金华)如图,直角梯形ABCO的两边OA,OC在坐标轴的正半轴上,BC∥x轴,OA=OC=4,以直线x=1为对称轴的抛物线过A,B,C三点.(1)求该抛物线的函数解析式;(2)已知直线l的解析式为y=x+m,它与x轴交于点G,在梯形ABCO的一边上取点P.①当m=0时,如图1,点P是抛物线对称轴与BC的交点,过点P作PH⊥直线l于点H,连结OP,试求△OPH的面积;②当m=﹣3时,过点P分别作x轴、直线l的垂线,垂足为点E,F.是否存在这样的点P,使以P,E,F为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)利用待定系数法求出抛物线的解析式;(2)①如答图1,作辅助线,利用关系式S△OPH=S△OMH﹣S△OMP求解;②本问涉及复杂的分类讨论,如答图2所示.由于点P可能在OC、BC、BK、AK、OA上,而等腰三角形本身又有三种情形,故讨论与计算的过程比较复杂,需要耐心细致、考虑全面.解答:解:(1)由题意得:A(4,0),C(0,4).设抛物线的解析式为y=ax2+bx+c,则有,解得,∴抛物线的函数解析式为:y=﹣x2+x+4.(2)①当m=0时,直线l:y=x.∵抛物线对称轴为x=1,∴CP=1.如答图1,延长HP交y轴于点M,则△OMH、△CMP均为等腰直角三角形.∴CM=CP=1,∴OM=OC+CM=5.S△OPH=S△OMH﹣S△OMP=(OM)2﹣OM•OP=×(×5)2﹣×5×1=﹣=,∴S△OPH=.②当m=﹣3时,直线l:y=x﹣3.设直线l与x轴、y轴交于点G、点D,则G(3,0),D(﹣3,0).假设存在满足条件的点P.a)当点P在OC边上时,如答图2﹣1所示,此时点E与点O重合.设PE=a(0<a≤4),则PD=3+a,PF=PD=(3+a).过点F作FN⊥y轴于点N,则FN=PN=PF,∴EN=|PN﹣PE|=|PF﹣PE|.在Rt△EFN中,由勾股定理得:EF==.若PE=PF,则:a=(3+a),解得a=3(+1)>4,故此种情形不存在;若PF=EF,则:PF=,整理得PE=PF,即a=3+a,不成立,故此种情形不存在;若PE=EF,则:PE=,整理得PF=PE,即(3+a)=a,解得a=3.∴P(0,3).b)当点P在BC边上时,如答图2所示,此时PE=4.设CP=a(0≤a≤2),则P(a,4);设直线PE与直线l交点为Q,则Q(a,a﹣3),∴PQ=7﹣a.∴PF=(7﹣a).与a)同理,可求得:EF=.若PE=PF,则(7﹣a)=4,解得a=7﹣4>2,故此种情形不存在;若PF=EF,则PF=,整理得PE=PF,即4=•(7﹣a),解得a=3>2,故此种情形不存在;若PE=EF,则PE=,整理得PF=PE,即(7﹣a)=4,解得a=﹣1,故此种情形不存在.∵A(4,0),B(2,4),∴可求得直线AB解析式为:y=﹣2x+8;联立y=﹣2x+8与y=x﹣3,解得x=,y=.设直线BC与直线l交于点K,则K(,).c)当点P在线段BK上时,如答图2﹣3所示.设P(a,8﹣2a)(2≤a≤),则Q(a,a﹣3),∴PE=8﹣2a,PQ=11﹣3a,∴PF=(11﹣3a).与a)同理,可求得:EF=.若PE=PF,则8﹣2a=(11﹣3a),解得a=1﹣2<0,故此种情形不存在;若PF=EF,则PF=,整理得PE=PF,即8﹣2a=•(11﹣3a),解得a=3,符合条件,此时P(3,2);若PE=EF,则PE=,整理得PF=PE,即(11﹣3a)=(8﹣2a),解得a=5>,故此种情形不存在.d)当点P在线段KA上时,如答图2﹣4所示.∵PE、PF夹角为135°,∴只可能是PE=PF成立.∴点P在∠KGA的平分线上.设此角平分线与y轴交于点M,过点M作MN⊥直线l于点N,则OM=MN,MD=MN,由OD=OM+MD=3,可求得M(0,3﹣3).又G(3,0),可求得直线MG的解析式为:y=(﹣1)x+3﹣3.联立直线MG:y=(﹣1)x+3﹣3与直线AB:y=﹣2x+8,可求得:P(1+2,6﹣4).e)当点P在OA边上时,此时PE=0,等腰三角形不存在.综上所述,存在满足条件的点P,点P坐标为:(0,3)、(3,2)、(1+2,6﹣4).点评:本题是二次函数压轴题,涉及二次函数的图象与性质、待定系数法、图形面积、勾股定理、角平分线性质等知识点,重点考查了分类讨论的数学思想.第(2)②问中涉及复杂的分类讨论,使得试题的难度较大.。

2014年河北中考《数学考试说明》数与式部分详解及配套中考题

2014年河北中考《数学考试说明》数与式部分详解及配套中考题

一、数与式(一)有理数考试要求1.理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小.2.借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值,知道|a|的含义(a表示有理数)并解决简单的化简计算问题,会用有理数表示具有相反意义的量,掌握相反数的性质.3.理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主).4.理解有理数的运算律,并能运用运算律简化运算.5.能运用有理数的运算解决简单的问题.6.能对含有较大数的信息作出合理的解释和推断.(二)实数考试要求1.了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根和立方根.2.了解开方与乘方互为逆运算,会用平方运算及计算器求某些非负数的平方根,会用立方运算及计算器求某些数的立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,会求无理数的相反数和绝对值.4.能用有理数估计一个无理数的大致范围.5.了解近似数与有效数字的概念;在解决实际问题中,能按问题的要求对结果取近似值.6.了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算(不要求分母有理化),会确定二次根式有意义的条件.(三)代数式考试要求1.理解用字母表示数的意义.2.能分析简单问题中的数量关系,并用代数式表示.3.能解释一些简单代数式的实际背景或几何意义.4.会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的数值进行计算.能通过代数式的适当变形求代数式的值,能根据代数式的值或特征推断代数式反应的规律.(四)整式与分式考试要求1.了解整数指数幂的意义和基本性质,会用科学记数法表示数.2.了解整式的概念,理解单项式的系数和次数,多项式的次数、项和项数的概念,明确他们之间的关系,会进行简单的整式加、减运算和乘法运算(其中的多项式相乘仅指一次式相乘).能合理运用整式加、减运算构造多项式,进一步解决问题.3.会推导乘法公式(平方差公式和完全平方公式),了解公式的几何背景,并能进行简单的计算,能根据需要进行相应的变形.4.会用提公因式法、公式法(直接用公式不超过二次)进行因式分解(指数是正整数).能运用因式分解的知识进行代数式的变形,从而解决有关问题.5.了解分式的概念,会确定分式有意义的条件,掌握分式的基本性质,会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算,能灵活运用恰当的方法解决与分式有关的问题.(1)“数与代数”领域,删除了一些内容:①对“大数”的认识与应用——“能对含有较大数字的信息作出合理的解释与推断”(实验稿P31)②对有效数字的要求——“了解有效数字的概念”(实验稿P32)(2)新增加的内容▲“数与代数”中既有必学的内容,也有选学的内容①知道|a|的含义(这里a表示有理数)②最简二次根式和最简分式的概念③能进行简单的整式乘法运算中增加了一次式与二次式相乘近几年考试题目实数1.下列各数中,为负数的是()1A.0 B.2C.1D.22.计算30的结果是( )A.3 B.30 C.1 D.03.计算 3³(-2) 的结果是( )A .5B 。

2014年重庆市中考数学试卷(附答案与解析)

2014年重庆市中考数学试卷(附答案与解析)

数学试卷 第1页(共30页) 数学试卷 第2页(共30页)绝密★启用前重庆市2014年初中毕业暨高中招生考试数 学本试卷满分150分,考试时间120分钟.参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24(,)24b ac b a a --,对称轴为2b x a=-第Ⅰ卷(选择题 共48分)一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.实数17-的相反数是( ) A .17B .117C .17-D .117- 2.计算642x x ÷的结果是( ) A .2xB .22xC .42x D .102x 3.中,a 的取值范围是( ) A .0a ≥ B .0a ≤C .0a >D .0a < 4.五边形的内角和是( ) A .°180B .°360C .°540D .°6005.2014年1月1日零点,北京、上海、重庆、宁夏的气温分别是4568--℃,℃,℃,℃,当时这四个城市中,气温最低的是( ) A .北京B .上海C .重庆D .宁夏 6.关于x 的方程211x =-的解是( )A .4x =B .3x =C .2x =D .1x =7.2014年8月26日,第二届青奥会将在南京举行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极准备.在某天“110米跨栏”训练中,每人各跑5次,据统计,它们的平均成绩都是13.2秒,甲、乙、丙、丁成绩的方差分别是0.110.030.050.02,,,,则当天这四位运动员“110米跨栏”的训练成绩最稳定的是( ) A .甲B .乙C .丙D .丁8.如图,直线AB CD ∥,直线EF 分别交直线,AB CD 于点,E F ,过点F 作FG FE ⊥,交直线AB 于点G .若142∠=,则2∠的大小是( )A .56B .48C .46D .409.如图,ABC △的顶点,,A B C 均在O 上,若90AOC ∠=,则AOC ∠的大小是( )A .30B .45C .60D .7010.2014年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文章,录入一段时间后因事暂停,过了一会儿,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x ,录入字数为y ,下面能反映y 与x 的函数关系的大致图象是( )ABCD11.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共30页) 数学试卷 第4页(共30页)积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律,则第(6)个图形中面积为1的正方形的个数为( )A .20B .27C .35D .4012.如图,反比例函数6y x=-在第二象限的图象上有两点,A B ,它们的横坐标分别为1,3--,直线AB 与x 轴交于点C ,则AOC △的面积为( ) A .8B .10C .12D .24第Ⅱ卷(非选择题 共102分)二、填空题(本大题共6小题,每小题4分,共24分.请把答案填在题中的横线上) 13.方程组3,5x x y =⎧⎨+=⎩的解是 .14.据有关部门统计,截止到2014年5月1日,重庆市私家小轿车已达到563000辆,将563000这个数用科学记数法表示为 .15.如图,菱形ABCD 中,60A ∠=,7BD =,则菱形ABCD 的周长为 .16.如图,OAB △中,4,30,OA OB A AB ==∠=与O 相切于点C ,则图中阴影部分的面积为 (结果保留π).17.从1,1,2-这三个数字中,随机抽取一个数,记为a .那么,使关于x 的一次函数2y x a =+的图象与x 轴、y 轴围成的三角形面积为14,且使关于x 的不等式组212x a x a +⎧⎨-⎩≤,≤有解的概率为 . 18.如图,正方形ABCD 的边长为6,点O 是对角线,AC BD 的交点,点E 在CD 上,且2DE CE =,连接BE .过点C 作CF BE ⊥,垂足为F ,连接OF ,则OF 的长为 .三、解答题(本大题共8小题,共78分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分7分)2011(3)2014|4|()6---⨯-+.20.(本小题满分7分)如图,ABC △中,AD BC ⊥,垂足为D ,若314,12,tan 4BC AD BAD ==∠=,求sin C 的值.数学试卷 第5页(共30页) 数学试卷 第6页(共30页)21.(本小题满分10分)先化简,再求值:221121()11x x x x x x +÷-+-++,其中x 的值为方程251x x =-的解.22.(本小题满分10分)为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生.某镇统计了该镇2014年1-5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇2014年1-5月新注册小型企业一共有 家,请将折线统计图补充完整; (2)该镇2014年3月新注册的小型企业中,只有2家是餐饮企业.现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.23.(本小题满分10分)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a %(其中0a >),则每户平均集资的资金在150元的基础上减少了109a %,求a 的值.24.(本小题满分10分)如图,ABC △中,90,,BAC AB AC AD BC ∠==⊥,垂足是,D AE 平分BAD ∠,交BC 于点E .在ABC △外有一点F ,使,FA AE FC BC ⊥⊥.(1)求证:BE CF =;(2)在AB 上取一点M ,使2BM DE =,连接MC ,交AD 于点N ,连接ME .求证: ①ME BC ⊥; ②DE DN =.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共30页) 数学试卷 第8页(共30页)25.(本小题满分12分)如图,抛物线223y x x =--+的图象与x 轴交于,A B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点. (1)求,,A B C 的坐标;(2)点M 为线段AB 上一点(点M 不与点,A B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ AB ∥交抛物线于点Q ,过点Q 作QN x ⊥轴于点N ,若点P 在点Q 左边,当矩形PMNQ 的周长最大时,求AEM △的面积;(3)在(2)的条件下,当矩形PMNQ 的周长最大时,连接DQ .过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若FC =,求点F 的坐标.26.(本小题满分12分)已知:如图1,在矩形ABCD 中,205,,3AB AD AE BD ==⊥,垂足是E .点F 是点E 关于AB 的对称点,连接,AF BF .(1)求AE 和BE 的长;(2)若将ABF △沿着射线BD 方向平移,设平移的距离为m (平移距离指点B 沿BD 方向所经过的线段长度),当点F 分别平移到线段AB AD ,上时,直接写出相应的m 值;(3)如图2,将ABF △绕点B 顺时针旋转一个角α(0180α<<),记旋转中的ABF △为A BF ''△,在旋转过程中,设A F ''所在的直线与直线AD 交于点P ,与直线BD 交于点Q .是否存在这样的P ,Q 两点,使DPQ △为等腰三角形?若存在,求出此时DQ 的长;若不存在,请说明理由.5 / 15重庆市2014年初中毕业暨高中招生考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】根据相反数的定义:只有符号不同的两个数是互为相反数,可知17-的相反数是17,故选A . 【考点】相反数的定义 2.【答案】B【解析】根据同底数幂的除法法则:底数不变,指数相减得64642222x x x x -÷==,故选B . 【考点】同底数幂的除法运算 3.【答案】A【解析】因为二次根式中被开方数是非负数,即0a ≥,故选A 【考点】二次根式中被开方数的取值范围 4.【答案】C【解析】n 边形的内角和是(2)180n -⨯︒,将5n =代人即得五边形的内角和是540,故选C . 【考点】多边形的内角和 5.【答案】D【解析】气温最低即数值最小,8-在这四个数中处在数轴的最左边,故8-最小,故选D 【考点】有理数的大小比较 6.【答案】B【解析】将方程的两边向时乘最简公分母1x -得整式方程21x =-,解得3x =.经检验,3x =是原分式方程的解,故选B . 【考点】分式方程的解法 7.【答案】D【解析】根据方差越小越稳定,而0.020.03 0.050.11<<<,故丁的成绩最稳定,故选D 【考点】方差的意义 8.【答案】B【解析】因为//AB CD ,根据“两直线平行,同位角相等”得142EFD ∠=∠=︒,又因为FG FE ⊥,所以2180904248∠=︒-︒-︒=︒,故选B .【考点】平行线的性质及垂直的定义数学试卷第11页(共30页)数学试卷第12页(共30页)7 / 15,OA OB =43=,43S AB OC ∴=242=3π.所以,DC BC =62210BC CE CF BE ⨯==CF BE ⊥45OCB ∠=OBM CBF ∠+∠△≌△O B M O C F数学试卷 第15页(共30页)数学试卷 第16页(共30页)【解析】解:AD BC ⊥3tan 4BAD ∠=,12AD =9BD ∴=2(1)(x 1)x x -+-11+补图如下:(2)用1A,2A表示餐饮企业,1B,2B表示非餐饮企业,画树状图如下:9 / 15数学试卷 第19页(共30页)数学试卷 第20页(共30页)10%)150(19-则3(1)(1x +24.【答案】证明:如图) BAC ∠=1EAC ∴∠+∠12∴∠=∠,AB AC =B FCA ∠=∠ABF ∴≅△BE CF ∴=45B ∠=︒BG EG ∴=AD BC ⊥2BM ED =⊥②AD BC ∠=∠,∴∠15=MC MC∴∠=∠78∠=BAC∴∠=ACB∴∠=∠57∠=ADE∴=DE DN 【解析】1ME=⨯12x=-,(3)由(2)知,当矩形PMNQ的周长最大时,2)5AB =,2BD AB =+1122ABD AB AD S BD AE ==△ 解得4AE =若点Q 在线段BD 的延长线上时,如图1,34∠=∠4+Q ∴∠∠'A Q A ∴=若点Q 在线段BD 上,如图2:1=3∠∠,3=5+∠∠35∴∠=∠4A ∴∠=∠'1A ∠=∠4A ∴∠=∠设QB QA =③当PD PQ =时,如图4,有1=2=3∠∠∠1A ∠=∠BQ A ∴=253DQ ∴=。

2014年安徽省中考数学试卷(含解析版)

2014年安徽省中考数学试卷(含解析版)

(3)如图 3,点 O 是 AD 的中点,OG 平分∠MON,判断四边形 OMGN 是否为特殊
四边形?并说明理由.
2014 年安徽省中考数学试卷
参考答案与试题解析
一、选择题(本大题共 10 小题,每小题 4 分,满分 40 分)
1.(4 分)(2014 年安徽省)(﹣2)×3 的结果是( )
A.﹣5
∴8< <9,
∵n< <n+1,
∴n=8,
故选;D.
【点评】此题主要考查了估算无理数,得出 < < 是解题关键.
7.(4 分)(2014 年安徽省)已知 x2﹣2x﹣3=0,则 2x2﹣4x 的值为( )
A.﹣6
B.6
C.﹣2 或 6
D. ﹣2 或 30
【考点】代数式求值.菁优网版权所有
【分析】方程两边同时乘以 2,再化出 2x2﹣4x 求值.
【点评】本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是
解题关键.
5.(4 分)(2014 年安徽省)某棉纺厂为了解一批棉花的质量,从中随机抽取了 20 根棉花纤维进行测量,其长度 x(单位:mm)的数据分布如下表所示,则棉花 纤维长度的数据在 8≤x<32 这个范围的频率为( )
棉花纤维长度 x 频数
16.观察下列关于自然数的等式:
32 4 12 5

52 4 22 9

72 4 32 13

……
根据上述规律解决下列问题:
(1)完成第四个等式: 92 4 ( )2=( ) (2)写出你猜想的第 n 个等式(用含 n 的式子表示),并验证其正确性.
四、(本大题共 2 小题,每小题 8 分,满分 16 分) 17.如图,在边长为 1 个单位长度的小正方形组成的网格中,给出了格点△ABC (顶点是网格线的交点).

专题 压轴题--湖南省2014-2017年中考数学试题分项解析(解析版)

专题 压轴题--湖南省2014-2017年中考数学试题分项解析(解析版)

一、选择题1.(2014年,湖南省长沙市,3分)函数y=ax与y=ax2(a≠0)在同一平面直角坐标系中的图象可能是()【考点】1.二次函数的图象;2.反比例函数的图象.2.(2014年湖南省株洲市,3分)在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)3.(2016年湖南省娄底市,3分)如图,已知在Rt△ABC中,∠ABC=90°,点D沿BC自B向C运动(点D与点B、C不重合),作BE⊥AD于E,CF⊥AD于F,则BE+CF的值()A.不变B.增大C.减小D.先变大再变小【答案】C.考点:锐角三角函数的增减性.4.(2016年湖南省永州市,4分)我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:3根据上表规律,某同学写出了三个式子:①log 216=4,②log 525=5,③log 2=﹣1.其中正确的是( ) A .①② B .①③ C .②③ D .①②③ 【答案】B. 【解析】试题分析:根据表格中的规律可得:①因为24=16,此选项正确;②因为55=3125≠25,所以此选项错误;③因为2﹣1=21,所以此选项正确;故答案选B . 考点:实数的运算.5. (2016年湖南省岳阳市,3分)对于实数a ,b ,我们定义符号max{a ,b}的意义为:当a ≥b 时,max{a ,b}=a ;当a <b 时,max{a ,b]=b ;如:max{4,﹣2}=4,max{3,3}=3,若关于x 的函数为y=max{x+3,﹣x+1},则该函数的最小值是( ) A .0B .2C .3D .4【答案】B 【解析】考点:分段函数6.(2016年湖南省长沙市,3分)已知抛物线y=ax 2+bx+c (b >a >0)与x 轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y 轴左侧; ②关于x 的方程ax 2+bx+c+2=0无实数根; ③a ﹣b+c ≥0; ④的最小值为3.其中,正确结论的个数为( ) A .1个 B .2个 C .3个 D .4个 【答案】D .考点:二次函数的图象与系数的关系.1.(2014年,湖南省衡阳市,3分)如图,在平面直角坐标系xOy中,已知点M0的坐标为(1,0),将线段OM0绕原点O逆时针方向旋转45°,再将其延长到M1,使得M1M0⊥OM0,得到线段OM1;又将线段OM1绕原点O逆时针方向旋转45°,再将其延长到M2,使得M2M1⊥OM1,得到线段OM2;如此下去,得到线段OM3,OM4,OM5,…根据以上规律,请直接写出OM2014的长度为▲ .2.(2015·湖南常德)取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1。

2014年山东省济南市中考数学试卷与答案(word整理版)

2014年山东省济南市中考数学试卷与答案(word整理版)

2014年山东省济南市中考数学试卷一、选择题(共15小题,每小题3分,满分45分) 1.4的算术平方根是( )A .2B .-2C .±2D .16 2.如图,点O在直线AB 上,若401=∠,则2∠的度数是( )A . 50B . 60C . 140D . 1503.下列运算中,结果是5a 的是( )A .23a a ⋅B .210a a ÷C .32)(aD .5)(a -4.我国成功发射了嫦娥三号卫星,是世界上第三个实现月面软着陆和月面巡视探测的国家.嫦娥三号探测器的发射总质量约3700千克,3700用科学计数法表示为( )A .2107.3⨯ B .3107.3⨯ C .21037⨯ D .41037.0⨯10.在□ABCD 中,延长AB 到E ,使BE =AB ,连接DE 交BC 于F ,则下列结论不一定成立的是( )A .CDF E ∠=∠B .DF EF =C .BF AD 2= D .CF BE 2= 11.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率为( )A .32B .21C .31D .4112.如图,直线233+-=x y 与x 轴,y 轴分别交于B A ,两点,把AOB ∆沿着直线AB 翻折后得到B O A '∆,则点O '的坐标是( )A .)3,3(B .)3,3(C .)32,2(D .)4,32(13.如图,O ⊙的半径为1,ABC ∆是O ⊙的内接等边三角形,点D ,E 在圆上,四边形BCDE 为矩形,这个矩形的面积是( )到红球的概率为51,那么口袋中球的总个数为____________.19.若代数式21-x 和123+x 的值相等,则=x .20.如图,将边长为12的正方形ABCD 是沿其对角线AC 剪开,再把ABC ∆沿着AD 方向平移,得到C B A '''∆,当两个三角形重叠的面积为32时,它移动的距离A A '等于________.21.如图,OAC ∆和BAD ∆都是等腰直角三角形, 90=∠=∠ADB ACO ,反比例函数xy =在第一象限的图象经过点B ,若1222=-AB OA ,则k 的值为________.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤) 22. (7分)(1)化简:)4()3)(3(a a a a -+-+. (2)解不等式组:⎩⎨⎧+≥-<-24413x x x .23.(7分)(1)如图,在四边形ABCD 是矩形,点E 是AD 的中点,求证:EC EB =..(2)如图,AB 与O ⊙相切于C ,B A ∠=∠,O ⊙的半径为6,AB =16,求OA 的长.24.(8分)2014年世界杯足球赛在巴西举行,小李在网上预订了小组赛和淘汰赛两个阶段的球票共10张,总价为5800元.其中小组赛球票每张550元,淘汰赛球票每张700元,问小李预定了小组赛和淘汰赛的球票各多少张?A D CB ’第20题图 AB CDE 第23题(1)图 A BC O 第23题(2)图25.(8分)在济南市开展的“美丽泉城,创卫我同行”活动中,某校倡议七年级学生利用双休日在各自社区参加义务劳动.为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成不完整的统计图表,如下图所示:(1)统计表中的=m,=x,=y;(2)被调查同学劳动时间的中位数是时;(3)请将频数分布直方图补充完整;(4)求所有被调查同学的平均劳动时间.26.(9分)如图1,反比例函数)0(>=xxky的图象经过点A(32,1),射线AB与反比例函数图象交与另一点B(1,a),射线AC与y轴交于点C,yADBAC⊥=∠,75 轴,垂足为D.(1)求k的值;(2)求DAC∠tan的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线xl⊥轴,与AC相交于N,连接CM,求CMN∆面积的最大值.27.(9分)如图1,有一组平行线4321l l l l ∥∥∥,正方形ABCD 的四个顶点分别在4321,,,l l l l 上,EG 过点D且垂直于1l 于点E,分别交42,l l 于点F,G,2,1===DF DG EF . (1)=AE ,正方形ABCD 的边长= ;(2)如图2,将A E G ∠绕点A 顺时针旋转得到D E A ''∠,旋转角为)900( <<αα,点D '在直线3l 上,以D A '为边在的D E ''左侧作菱形B C D A ''',使点C B '',分别在直线42,l l 上. ①写出D A B ''∠与α的函数关系并给出证明; ②若 30=α,求菱形B C D A '''的边长.28.(9分)如图1,抛物线2163x y -=平移后过点A (8,,0)和原点,顶点为B ,对称轴与x 轴相交于点C ,与原抛物线相交于点D .(1)求平移后抛物线的解析式并直接写出阴影部分的面积阴影S ;(2)如图2,直线AB 与y 轴相交于点P ,点M 为线段OA 上一动点,PMN ∠为直角,边MN 与AP 相交于点N ,设t OM =,试探求: ①t 为何值时MAN ∆为等腰三角形;②t 为何值时线段PN 的长度最小,最小长度是多少.1l 2l 3l4lABCDEF G1l 2l 3l4lAE ’D ’B ’C ’G ’2014年山东省济南市中考数学试卷答案A .A .B .D .B . A . B .C .D .C .A .B . D .C . 16. 10.17.2)1(+x .18.15.19.7.20. 4或8.21. 6. 22.(1)9449)4()3)(3(22-=-+-=-+-+a a a a a a a a (2)由13<-x 得4<x ;由244+≥-x x 得2≥x . 所以原不等式组的解为42<≤x . 23.(1)在ABE ∆和DCE ∆中,EDC EAB DE AE DC AB ∠=∠==,,,于是有 DCE ABE ∆≅∆,所以EC EB =. (2)在OAB ∆中,OB OA B A =∴∠=∠, ,连接OC ,则有8,6,===⊥BC AC OC AB OC , 所以10862222=+=+=AC OC OA .24.设小李预定了小组赛球票x 张,淘汰赛球票y 张,由题意有⎩⎨⎧=+=+580070055010y x y x ,解之⎩⎨⎧==28y x .所以,小李预定了小组赛球票8张,淘汰赛球票2张.25.解:(1)由于频率为0.12时,频数为12,所以频率为0.4时,频数为40,即40=x ; 频数为18,频率应为0.18时,即18.0=y ;10018403012=+++=m . (2)被调查同学劳动时间的中位数为1.5时; (3)略(4)所有被调查同学的平均劳动时间为 32.118.024.05.13.0112.05.0=⨯+⨯+⨯+⨯时. 26.(1)由反比例函数)0(>=x xky 的 图象经过点A (32,1),得32132=⨯=k ;(2)由反比例函数)0(32>=x xy 得 点B 的坐标为(1,32),于是有30,45=∠∴=∠DAC BAD ,33tan =∠DAC , AD =32,则由33tan =∠DAC 可得CD =2,C 点纵坐标是-1,直线AC 的截距是-1,而且过点A (32,1)则直线解析式为133-=x y . (3)设点M 的坐标为)1)(,32(>m m m, 则点N 的坐标为)12,32(-mm ,于是CMN ∆面积为 )12(3221+-⨯⨯=∆m m m S CMN])422(89[3)112(322--=++-⨯=m m m , 所以,当4=m 时,CMN ∆面积取得最大值839. 27.(1)在RT RT AED GDC ∆∆,中,AD=DC,又有ADE ∠和DAE ∠互余,ADE ∠和CDG ∠互余,故DAE ∠和CDG ∠相等,GDC AED ∆≅∆,知1==GD AE ,又321=+=AD ,所以正方形ABCD 的边长为103122=+.(2)①过点B '作B M '垂直于1l 于点M ,在RT RT ’AE D ABM ∆∆'',中, =’B M AE ',=AD AB '',故RT RT ’AE D AB M ∆∆''≅,所以A ,’D E B AM ''∠∠互余,D A B ''∠与α之和为90︒,故D A B ''∠=90︒-α.②过E 点作ON 垂直于1l 分别交12l ,l 于点O ,N ,若30=α,60E D N ''∠=︒,=1AE ',故1=2E O ', 5=2E N ', E D ''=3=. 28.(1)设平移后抛物线的解析式2316y x bx =-+, 将点A (8,,0)代入,得233162y x x =-+.顶点B (4,3), 阴影S =OC ×CB =12.(2)直线AB 的解析式为364y x =-+,作NQ 垂直于x 轴于点Q ,①当MN =AN 时, N 点的横坐标为82t +,纵坐标为2438t-,由三角形NQM 和三角形MOP 相似可知NQ MQ OM OP =,得2438826t tt --=,解得982t ,=(舍去). 当AM =AN 时,AN =8t -,由三角形ANQ 和三角形APO 相似可知()385NQ t =-()485AQ t =-,MQ =85t -,由三角形NQM 和三角形MOP 相似可知NQ MQ OM OP =得:()388556t t t --=,解得:t =12(舍去).当MN =MA 时,45MNA MAN ∠=∠<︒故AMN ∠是钝角,显然不成立.故92t =.②方法一:作PN 的中点C ,连接CM ,则CM =PC =21P N,当CM 垂直于x 轴且M 为OQ 中点时PN 最小, 此时t =3,证明如下:假设t =3时M 记为0M ,C 记为0C 若M 不在0M 处,即M 在0M 左侧或右侧,若C 在0C 左侧或者C 在0C 处,则CM 一定大于00C M ,而PC 却小于0PC ,这与CM =PC 矛盾, 故C 在0C 右侧,则PC 大于0PC ,相应PN 也会增大, 故若M 不在0M 处时 PN 大于0M 处的PN 的值,故当t =3时,MQ =3, 3=2NQ ,根据勾股定理可求出PM=与MN15=2PN . 故当t =3时,PN 取最小值为152.方法二:由MN 所在直线方程为662t x t y -=,与直线AB 的解析式364y x =-+联立,得点N 的横坐标为tt x N 292722++=,即029362=-+-N N x t x t ,由判别式0)2936(42≥--=∆N N x x ,得6≥N x 或14-≤N x ,又80<<N x , 所以N x 的最小值为6,此时t =3, 当t =3时,N 的坐标为(6,23),此时PN 取最小值为152.。

2014年安徽省中考数学试卷(附答案与解析)

2014年安徽省中考数学试卷(附答案与解析)

数学试卷第2页(共22页)绝密★启用前安徽省2014年初中毕业学业考试数学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2)3-⨯的结果是()A.5-B.1C.6-D.62.23x x=()A.5xB.6xC.8xD.9x3.如下左图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是 ()A B C D4.下列四个多项式中,能因式分解的是()A.2+1a B.269a a-+C.25x y+D.25x y-5.某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表,则棉花纤维长度的数据在832x≤<这个范围的频率为()棉花纤维长度x频数08x≤<1816x≤<21624x≤<82432x≤<63240x≤<3A.0,8B.0,7C.0,4D.0,26.设n为正整数,且651n n+<<,则n的值为()A.5B.6C.7D.87.已知2230x x--=,则224x x-的值为()A.6-B.6C.2-或6D.2-或308.如图,Rt ABC△中,9AB=,6BC=,90B∠=,将ABC△折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为( )A.53B.52C.4D.59.如下左图,矩形ABCD中,3AB=,4BC=,动点P从A点出发,按A B C→→的方向在AB和BC上移动,记PA x=,点D到直线PA的距离为y,则y关于x的函数图象大致是()A B C D10.如图,正方形ABCD的对角线BD长为22,若直线l满足:①点D到直线l的距离为3;②A,C两点到直线l的距离相等,则符合题意的直线l的条数为( )A.1B.2C.3D.4毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第1页(共22页)数学试卷 第3页(共22页) 数学试卷 第4页(共22页)第Ⅱ卷(非选择题 共110分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在题中的横线上) 11.据报载,2014年我国将发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为 .12.某厂今年一月份新产品的研发资金为a 元,以后每月新产品的研发资金与上月相比增长率都是x ,则该厂今年三月份新产品的研发资金y (元)关于x 的函数关系式为y = .13.方程41232x x -=-的解是x = .14.如图,在□ABCD 中,2AD AB =,F 是AD 的中点,作CE AB ⊥,垂足E 在线段AB 上,连接EF ,CF ,则下列结论中一定成立的是 (把所有正确结论的序号都填在横线上).①12DCF BCD ∠=∠;②EF CF =;③2BEC CEF S S =△△;④3DFE AEF ∠=∠.三、解答题(本大题共9小题,共90分.解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分8分)0|3|(π)2013---+.16.(本小题满分8分)观察下列关于自然数的等式: (1)223415-⨯= ① (2)225429-⨯= ② (3)2274313-⨯=③……根据上述规律解决下列问题:(1)完成第四个等式:294-⨯( )2=( ); (2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性.17.(本小题满分8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点ABC △(顶点是网格线的交点).(1)将ABC △向上平移3个单位得到111A B C △,请画出111A B C △; (2)请画一个格点222A B C △,使222A B C ABC △∽△,且相似比不为1.数学试卷 第5页(共22页) 数学试卷 第6页(共22页)18.(本小题满分8分)如图,在同一平面内,两条平行高速公路1l 和2l 间有一条“Z ”型道路连通,其中AB 段与高速公路1l 成30,长为20km ;BC 段与AB ,CD 段都垂直,长为10km ;CD 段长为30km ,求两高速公路间的距离(结果保留根号).19.(本小题满分10分)如图,在O 中,半径OC 与弦AB 垂直,垂足为E ,以OC 为直径的圆与弦AB 的一个交点为F ,D 是CF 延长线与O 的交点.若4OE =,6OF =.求O 的半径和CD 的长.20.(本小题满分10分)2013年某企业按餐厨垃圾处理费25元/吨,建筑垃圾处理费16元/吨标准,共支付餐厨和建筑垃圾处理费5200元.从2014年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨,若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元. (1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划2014年将上述两种垃圾处理量减少到240吨,且建筑垃圾处理费不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?21.(本小题满分12分)如图,管中放置着三根同样绳子1AA ,1BB ,1CC .(1)小明从这三根绳子中随机选一根,恰好选中绳子1AA 的概率是多少?(2)小明先从左端A ,B ,C 三个绳头中随机选两个打一个结,再从右端1A ,1B ,1C 三个绳头中随机选两个打一个结,求这三根绳子连结成一根长绳的概率.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________数学试卷 第7页(共22页) 数学试卷 第8页(共22页)22.(本小题满分12分)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x 的二次函数2212421y x mx m =-++,和225y ax bx =++,其中1y 的图象经过点(1,1)A ,若12y y +与1y 为“同簇二次函数”,求函数2y 的表达式,并求当03x ≤≤时,2y 的最大值.23.(本小题满分14分)如图1,正六边形ABCDEF 的边长为a ,P 是BC 边上一动点,过P 作PM AB ∥交AF 于M ,作PN CD ∥交DE 于N .图1图2图3(1)①MPN ∠=;②求证:3PM PN a +=;(2)如图2,点O 是AD 的中点,连接OM ,ON .求证:OM ON =;(3)如图3,点O 是AD 的中点,OG 平分MON ∠,判断四边形OMGN 是否为特殊四边形,并说明理由.安徽省2014年初中毕业学业考试数学答案解析第Ⅰ卷一、选择题35x x=,故选【解析】根据题目给定图形的形状即可确定其俯视图是一个半圆,故选5/ 11数学试卷 第11页(共22页)数学试卷 第12页(共22页)【解析】根据题目可分段考虑,当点P 在A B →运动时,4y AD ==(03x <≤);当点P 在B C →运动时,ABP △与以边AD 为斜边的直角三角形相似,可得=AB xy AD,3412yx AB AD =⨯=⨯=,所以12y x=(35x <≤),故选B. 【考点】动点问题,相似三角形,反比例函数图象. 10.【答案】B【解析】根据①得,直线l 与以D 为圆心,D 相切;根据②可判断,这样的直线l 有2条,分别与D 相切且垂直于直线BD ,故选B.【考点】圆的概念,点到直线的距离.第Ⅱ卷二、填空题11.【答案】72.510⨯【解析】科学计数法是将一个数写成10n a ⨯的形式,其中110a ≤<,n 为整数,其中a 是只有一位整数的数;当原数的绝对值10≥时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值1<时,n 为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位上的零).所以725000000 2.510=⨯.【考点】科学计数法. 12.【答案】2(1)a x +【解析】2(1)(1)(1)y a x x a x =++=+7 / 11【考点】二次函数的实际的应用. 13.【答案】6【解析】去分母得4123(2)x x -=-,去括号得41236x x -=-,移项得43612x x -=-+,合并同类项得6x =,经检验,6x =是原方程的根,所以原方程的根是6x =.【考点】解分式方程. 14.【答案】①②④ 【解析】12FD AD CD ==,CFD DCF ∴=∠∠,而BCF CFD =∠∠,12DCF BCF BCD ∴==∠∠∠,故①正确;延长EF 交CD 的延长线于点G ,A FDG =∠∠,AF FD =,AFE DFG =∠∠,AFE DFG ∴△≌△(ASA ),12EF GF EG ∴==在Rt ECG △中,斜边上的中线12CF EG =,EF CF ∴=,故②正确;过点F 作FM EC ⊥,垂足为点M ,CE AB ⊥,如果③正确,则2BE FM =,而12EF EG =,FM CG ∥,12FM CG ∴=,BE CG CD DG AB AE ∴==+=+,而BE AB ≤,得出0AE ≤,这显然是错误的,所以③不正确;EF FC =,∴在等腰EFC △中,EFM CFM =∠∠,FM CG ∥,CFM FCD DFC ∴==∠∠∠,13EFM CFM DFC DFE ∴===∠∠∠∠,又AB FM ∥,13AFE EFM DFE ∴==∠∠∠,故④正确.综上,故填①②④.【考点】平行四边形,直角三角形中线的性质,三角形面积.【提示】本题应善于观察图形和题目中给定的条件“点F 为AD 的中点”,构建CF 为直角三角形的中线,这样很自然地想到辅助线的作法. 三、解答题15.【答案】解:原式53120132014=--+=. 【考点】二次根式、绝对值和零指数幂的运算. 16.【答案】(1)4;17.(2)第n 个等式为22(21)441n n n +-⨯=+.左边22441441n n n n =++-=+=右边,∴第n 个等式成立.【考点】归纳探究的能力.17.【答案】(1)作出111A B C △如图所示.数学试卷 第15页(共22页)数学试卷 第16页(共22页)(2)本题是开放题,答案不唯一,只要作出的222A B C △满足条件即可. 【考点】平移,相似,作图.18.【答案】如图,过点A 作AB 的垂线交DC 延长线于点E ,过点E 作1l 的垂线与1l ,2l 分别交于点H ,F ,则2HF l ⊥.由题意知AB BC ⊥,BC CD ⊥,又AE AB ⊥,∴四边形ABCE 为矩形.=AE BC ∴,AB EC =.50DE DC CE DC AB ∴=+=+=.又AB 与1l 成30︒角,30EDF ∴=︒∠,60EAH =︒∠.在Rt DEF △中,1sin30=50=252EF DE =︒⨯在Rt AEH △中,sin 6010EH AE =︒==25HF EF HE =+=+即两高速公路间距离为.【考点】直角三角形的应用. 19.【答案】OC 为小圆的直径,90OFC ∴=∠,CF DF =.OE AB ⊥,90OEF OFC ∴==∠∠,又=FOE COF ∠∠,OEF OFC ∴△△,则OE OF OF OC =.22694OF OC OE ∴===.又CF ===2CD CF ∴==.【考点】垂径定理和相似三角形的应用.20.【答案】(1)设 2 013年该企业处理的餐厨垃圾为x 吨,建筑垃圾为y 吨,根据题意,得9 / 1125165200,1003052008800.x y x y +=⎧⎨+=+⎩解得80,200.x y =⎧⎨=⎩即2 013年该企业处理的餐厨垃圾为80吨,建筑垃圾为200吨.(2)设2 014年该企业处理的餐厨垃圾为x 吨,建筑垃圾为y 吨,需要支付的这两种垃圾处理费是z 元. 根据题意,得240x y +=,且3y x ≤,解得60x ≥.1003010030(240)707200z x y x x x =+=+-=+,由于z 的值随x 的增大而增大,所以当60x =时,z 最小,最小值7060720011400=⨯+=元,即2 014年该企业最少需要支付这两种垃圾处理费共11 400元. 【考点】二元一次方程组和一次函数的应用.21.【答案】(1)小明可选择的情况有三种,每种发生的可能性相等,恰好选中绳子1AA 的情况为一种,所以小明恰好选中绳子1AA 概率13P =. (2)依题意,分别在两端随机任选两个绳头打结,总共有三类9种情况,列表或画树状图表如下,每种发生的可能性相等.其中左、右打结是相同字母(不考虑下标)的情况,不可能连接成为一根长绳.所以能连接成为一根长绳的情况有6种:①左端连接AB ,右端连接11A C ,或11B C ;②左端连接BC ,右端连接11A B 或11A C ;③左端连接AC ,右端连接11A B 或11B C .故这三根绳子连接成为一根长绳的概率6293P ==. 【考点】可能情形下的随机事件的概率,列表法或画树状图计算随机事件的概率. 22.【答案】(1)本题是开放题,答案不唯一,符合题意即可.(2)∵函数1y 的图象经过点(1,1)A ,则224211m m -++=,解得=1m .2212432(1)1y x x x ∴=-+=-+.解法一:12y y +与1y 为“同簇二次函数”,∴可设212(1)1y y k x +=-+(0k >),则2221(1)1(2)(1)y k x y k x =-+-=-- .由题可知函数2y 的图象经过点(0,5),则2(2)15k -⨯=,25k ∴-=,数学试卷 第19页(共22页)数学试卷 第20页(共22页)2225(1)5105y x x x ∴=-=-+.当03x ≤≤时,根据2y 的函数图象可知,2y 的最大值25(31)20=⨯-=.解法二:12y y +与1y 为“同簇二次函数”,则212(2)(4)8y y a x b x +=++-+(20a +>).412(2)b a -∴=+-,化简得2b a =-.又232(2)(4)14(2)a b a +--=+,将2b a =-代入,解得5a =,10b =-.所以22=5105y x x -+.当03x ≤≤时,根据2y 的函数图象可知,2y 的最大值253103520=⨯-⨯+=. 【考点】二次函数的性质、新函数的定义性问题. 23.【答案】(1)②证明:如图1,连接BE 交MP 于H 点.在正六边形ABCDEF 中,PN CD ∥,又BE CD AF ∥∥,所以BE PN AF ∥∥.又PM AB ∥,所以四边形AM HB 、四边形HENP 为平行四边形,BPH △为等边三角形.所以3PM PN MH HP PN AB BH HE AB BE a +=++=++=+=. (2)证明:如图2,由(1)知AM EN =且AO EO =,60MAO NEO ==∠∠,所以MAO NEO ≅△△.所以OM ON =. (3)四边形OMGN 是菱形.理由如下:如图3,连接OE ,OF ,由(2)知MOA NOE =∠∠.11 / 11又因为120AOE =︒∠,所以120MON AOE MOA NOE =-+=︒∠∠∠∠.由已知OG 平分MON ∠,所以 60MOG =∠.又60FOA =∠,所以MOA GOF =∠∠.又AO FO =,==60MAO GFO ∠∠,所以MAO GFO ≅△△.所以MO GO =.又60MOG =∠,所以MGO △为等边三角形.同理可证NGO △为等边三 角形,所以四边形OMGN 为菱形.【考点】正六边形的性质,三角形的全等,等边三角形的性质,菱形的判断.。

2014年全国中考数学试题分类汇编04 一元一次方程及其应用(含解析)

2014年全国中考数学试题分类汇编04 一元一次方程及其应用(含解析)

一元一次方程及其应用一、选择题1.(2014·台湾,第19题3分)桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15公分,各装有10公分高的水,且表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为3︰4︰5.若不计杯子厚度,则甲杯内水的高度变为多少公分?()A.5.4 B.5.7 C.7.2 D.7.5分析:根据甲、乙、丙三杯内水的高度比变为3︰4︰5,设后来甲、乙、丙三杯内水的高度为3x、4x、5x,由表格中的数据列出方程,求出方程的解得到x的值,即可确定出甲杯内水的高度.解:设后来甲、乙、丙三杯内水的高度为3x、4x、5x,根据题意得:60×10+80×10+100×10=60×3x+80×4x+100×5x,解得:x=2.4,则甲杯内水的高度变为3×2.4=7.2(公分).故选C.点评:此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.2.(2014•滨州,第4题3分)方程2x﹣1=3的解是().二、填空题1.(2014•浙江湖州,第11题4分)方程2x﹣1=0的解是x=.分析:此题可有两种方法:(1)观察法:根据方程解的定义,当x=时,方程左右两边相等;(2)根据等式性质计算.即解方程步骤中的移项、系数化为1.解:移项得:2x=1,系数化为1得:x=.点评:此题虽很容易,但也要注意方程解的表示方法:填空时应填x=,不能直接填.2. (2014•湘潭,第15题,3分)七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x人,可列方程为2x+56=589﹣x.三、解答题1. (2014•益阳,第18题,8分)“中国﹣益阳”网上消息,益阳市为了改善市区交通状况,计划在康富路的北端修建通往资江北岸的新大桥.如图,新大桥的两端位于A、B两点,小张为了测量A、B之间的河宽,在垂直于新大桥AB的直线型道路l上测得如下数据:∠BAD=76.1°,∠BCA=68.2°,CD=82米.求AB的长(精确到0.1米).参考数据:sin76.1°≈0.97,cos76.1°≈0.24,tan76.1°≈4.0;sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5.(第1题图),,==4×2. (2014•益阳,第19题,10分)某电器超市销售每台进价分别为200元、170元的A、B 两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.依题意得:,解得:3. (2014•株洲,第20题,6分)家住山脚下的孔明同学想从家出发登山游玩,据以往的经验,他获得如下信息:(1)他下山时的速度比上山时的速度每小时快1千米;(2)他上山2小时到达的位置,离山顶还有1千米;(3)抄近路下山,下山路程比上山路程近2千米;(4)下山用1个小时;根据上面信息,他作出如下计划:(1)在山顶游览1个小时;(2)中午12:00回到家吃中餐.若依据以上信息和计划登山游玩,请问:孔明同学应该在什么时间从家出发?4. (2014年江苏南京,第25题)从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图中的折线OABCDE表示y与x之间的函数关系.(1)小明骑车在平路上的速度为km/h;他途中休息了h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?(第4题图)考点:一次函数的解析式的运用,一元一次方程的运用分析:(1)由速度=路程÷时间就可以求出小明在平路上的速度,就可以求出返回的时间,进而得出途中休息的时间;(2)先由函数图象求出小明到达乙地的时间就可以求出B的坐标和C的坐标就可以由待定系数法求出解析式;(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,根据距离甲地的距离相等建立方程求出其解即可.解答:(1)小明骑车在平路上的速度为:4.5÷0.3=15,∴小明骑车在上坡路的速度为:15﹣5=10,小明骑车在上坡路的速度为:15+5=20.∴小明返回的时间为:(6.5﹣4.5)÷2+0.3=0.4小时,∴小明骑车到达乙地的时间为:0.3+2÷10=0.5.∴小明途中休息的时间为:1﹣0.5﹣0.4=0.1小时.故答案为:15,0.1(2)小明骑车到达乙地的时间为0.5小时,∴B(0.5,6.5).小明下坡行驶的时间为:2÷20=0.1,∴C(0.6,4.5).设直线AB的解析式为y=k1x+b1,由题意,得,解得:,∴y=10x+1.5(0.3≤x≤0.5);设直线BC的解析式为y=k2+b2,由题意,得,解得:,∴y=﹣20x+16.5(0.5<x≤0.6)(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,由题意,得10t+1.5=﹣20(t+0.15)+16.5,解得:t=0.4,∴y=10×0.4+1.5=5.5,∴该地点离甲地5.5km.点评:本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一元一次方程的运用,解答时求出一次函数的解析式是关键.5. (2014•泰州,第20题,8分)某篮球运动员去年共参加40场比赛,其中3分球的命中率为0.25,平均每场有12次3分球未投中.(1)该运动员去年的比赛中共投中多少个3分球?(2)在其中的一场比赛中,该运动员3分球共出手20次,小亮说,该运动员这场比赛中一定投中了5个3分球,你认为小亮的说法正确吗?请说明理由.=126.(2014·浙江金华,第20题8分)一种长方形餐桌的四周可坐6 从用餐,现把若干张这样的餐桌按如图方式拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?(2)若用餐的人数有90人,则这样的餐桌需要多少张?【答案】(1)18,34;(2)22.【解析】7.(2014•浙江宁波,第24题10分)用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用)A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)用x的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?,∴盒子的个数为:=308.(2014•滨州,第19题3分)(1)解方程:2﹣=9.(2014•德州,第20题8分)目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?10.(2014•菏泽,第17题7分)(1)食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输,某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?。

2014年贵州省六盘水市中考数学试题及参考答案(word解析版)

2014年贵州省六盘水市中考数学试题及参考答案(word解析版)

2014年贵州省六盘水市中考数学试题及参考答案与解析一、选择题(共10小题,每小题3分,满分30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是()A.﹣3的倒数是13B.﹣2的倒数是﹣2C.﹣(﹣5)的相反数是﹣5 D.x取任意实数时,4x都有意义2.如图是由几个小立方体快所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的小数,这个几何体的主视图是()A.B.C.D.3.某商场对上月笔袋销售的情况进行统计如下表所示:160经理决定本月进笔袋时多进一些蓝色的,经理的这一决定应用了哪个统计知识()A.平均数B.方差C.中位数D.众数4.下面图形中,是中心对称图形的是()A.B.C.D.5.下列运算正确的是()A.(﹣2mn)2=4m2n2B.y2+y2=2y4C.(a﹣b)2=a2﹣b2D.m2+m=m36.将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是()A .B .C .D .7.青蛙是我们人类的朋友,为了了解某池塘里青蛙的数量,先从池塘里捕捞20只青蛙,作上标记后放回池塘,经过一段时间后,再从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,请你估计一下这个池塘里有多少只青蛙?( )A .100只B .150只C .180只D .200只8.六盘水市“琼都大剧院”即将完工,现需选用同一批地砖进行装修,以下不能镶嵌的地板是( ) A .正五边形地砖 B .正三角形地砖 C .正六边形地砖 D .正四边形地砖9.如图是一个运算程序的示意图,若开始输入x 的值为81,则第2014次输出的结果为( )A .3B .27C .9D .110. “横看成岭侧成峰”从数学的角度解释为( ) A .从不同的方向观察同一建筑物时,看到的图形不一样 B .从同一方向观察同一建筑物时,看到的图形不一样 C .从同一的方向观察不同的建筑物时,看到的图形一样 D .以上答案都不对二、填空题(本大题共8小题,每小题4分,满分32分) 11.绝对值最小的实数是 .12. PM2.5是指大气中的直径小于或等于0.0000025米(2.5微米)的有毒有害物质.0.0000025米用科学记数法表示为: 米. 13.分解因式:m 3﹣2m 2n+mn 2= .14.在△ABC 中,点D 是AB 边的中点,点E 是AC 边的中点,连接DE ,若B C=4,则DE= .15 12(用“>”、“<”“=”填空)16.如图,一次函数y 1=k 1x+b (k 1≠0)的图象与反比例函数22k y x=(k 2≠0)的图象交于A ,B 两点,观察图象,当y 1>y 2时,x 的取值范围是 .17.如图,在△ABC 中,∠A=90°,AB=6,AC=8,分别以点B 和C 为圆心的两个等圆外切,则图中阴影部分面积为 (结果保留π)18.如图是长为40cm ,宽为16cm 的矩形纸片,M 点为一边上的中点,沿过M 的直线翻折.若中点M 所在边的一个顶点不能落在对边上,那么折痕长度为 cm .三、解答题(本大题8小题,满分88分.答题时写出必要的文字说明,证明过程或演算步骤)19.(8分)计算:()21120142sin 452π-⎛⎫+--︒+ ⎪⎝⎭.20.(8分)先化简代数式23224aa a a a a ⎛⎫-÷ ⎪-+-⎝⎭,再从0,1,2三个数中选择适当的数作为a 的值代入求值.21.(8分)如图,在△ABC 中,利用尺规作图,画出△ABC 的外接圆或内切圆(任选一个.不写作法,必须保留作图痕迹)22.(10分)如图是某数学兴趣小组参加“奥数”后所得成绩绘制成的频数,频率分布表和频数分布直方图.请你根据图表提供的信息,解答下列问题(成绩取整数,满分为100分)(1)频数、频率分布表中a= ,b= . (2)补全频数分布直方图.(3)若在80分以上的小组成员中选3人参加下一轮竞赛,小明本次竞赛的成绩为90分,他被选中的概率是多少?(4)从该图中你还能获得哪些数学信息?(填写一条即可)23.(12分)(1)三角形内角和等于.(2)请证明以上命题.24.(12分)某校选派一部分学生参加“六盘水市马拉松比赛”,要为每位参赛学生购买一顶帽子.商场规定:凡一次性购买200顶或200顶以上,可按批发价付款;购买200顶以下只能按零售价付款.如果为每位参赛学生购买1顶,那么只能按零售价付款,需用900元;如果多购买45顶,那么可以按批发价付款,同样需用900元.问:(1)参赛学生人数x在什么范围内?(2)若按批发价购买15顶与按零售价购买12顶的款相同,那么参赛学生人数x是多少?25.(14分)为践行党的群众路线,六盘水市教育局开展了大量的教育教学实践活动,如图是其中一次“测量旗杆高度”的活动场景抽象出的平面几何图形.活动中测得的数据如下:①小明的身高DC=1.5m②小明的影长CE=1.7cm③小明的脚到旗杆底部的距离BC=9cm④旗杆的影长BF=7.6m⑤从D点看A点的仰角为30°请选择你需要的数据,求出旗杆的高度.(计算结果保留到0.1)26.(16分)如图,二次函数y=12x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点的坐标是(8,6).(1)求二次函数的解析式.(2)求函数图象的顶点坐标及D点的坐标.(3)该二次函数的对称轴交x轴于C点.连接BC,并延长BC交抛物线于E点,连接BD,DE,求△BDE的面积.(4)抛物线上有一个动点P,与A,D两点构成△ADP,是否存在S△ADP=12S△BCD?若存在,请求出P点的坐标;若不存在.请说明理由.参考答案与解析一、选择题(共10小题,每小题3分,满分30分。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年绥化市初中毕业学业考试数学学科考试说明一、命题指导思想(一)体现“稳定、改革、创新”原则稳定:试题更注重对学生基础知识、基本技能、基本活动经验和基本思想的考查。

在难度上保持与上一年相当,符合《数学课程标准》(2011版)要求,选拔与毕业考试两者兼顾。

改革:体现《数学课程标准》(2011版)的基本思想,减少死记硬背内容,杜绝繁、难、偏题,改变延续多年的固定式、格式化的中考命题模式。

继续设置开放性和综合性试题,紧密联系学生生活实际,加大学生探究、创新和综合实践能力的考查。

几何证明重在基础;继续增加圆与二次函数的考查力度;不命理想化试题,遵循教学大纲,但不拘泥于课本。

创新:创设新题型。

增加信息给予题,尝试增设“学生自主学习能力”的考查试题。

注重对学生阅读理解能力、综合运用知识分析、解决问题能力的考查。

(二)考试内容改革实现“三个有利于”有利于促进数学教学,全面落实《数学课程标准(2011版)》所设立的课程目标;有利于改变学生的数学学习方式,提高学习效率;有利于高中阶段学生数学学习及终身学习。

二、命题原则(一)命题范围人教版义务教育课程标准实验教科书的七年级、八年级、九年级教材内容,但2011版新课标中要求有变化或删除的内容除外。

具体有下列内容不在命题范围内:1.有效数字的概念2.列一元一次不等式组解决简单的问题。

3.探索两圆位置关系。

4.等腰梯形的内容。

5.镜面对称的问题。

6.关于影子、视角、视点、盲区等内容以及对雪花曲线和莫比乌斯带等图形的欣赏。

7.极差、频数折线图。

8.计算器的使用操作。

(二)命题的难易度试题既要注重基础,又要有区分度。

难易程度具体分为五个档次其具体情况见下表:(三)命题的具体要求1.体现义务教育的性质,命题应面向全体学生,关注每个学生的发展。

2.重视对学生学习数学“四基”的结果与过程的评价,重视对学生数学思考能力和解决问题能力的发展性评价,重视对学生数学认识水平的评价。

3.试题的考查内容、素材选取、试卷形式对每个学生而言要体现其公平性。

参考答案与评分标准制定要科学、严谨,尊重不同的解答方式和表现形式。

4.试题背景具有现实性。

试题背景应来自学生所能理解的生活现实,符合学生所具有的数学现实和其他学科现实。

5.试卷的有效性。

关注学生学习数学结果与过程的考查,加强对学生思维水平与思维特征的考查。

中考试卷要有效发挥选择题、填空题、计算(求解)题、证明题、开放性问题、应用性问题、阅读分析题、探索性问题及其它各种题型的功能,试题设计必须与其评价的目标相一致。

试题的求解思考过程力求体现《数学课程标准》(2011版)所倡导的数学活动方式及数学思想,如观察、实验、猜测、验证、计算、推理等活动过程和数学抽象、数学推理、数学模型思想。

三、考试形式及试卷结构(一)考试形式及分值:初中毕业生数学学业考试,采用闭卷笔试形式。

试卷长度十六开纸8页;全卷满分120分;考试时间120分钟。

(二)试卷题型结构试卷包含有选择题、填空题和解答题等题型,小题个数控制在26到28个之间。

四、考试内容与要求初中毕业生数学学业考试主要考查学生基础知识与基本技能的掌握;数学活动过程、数学思考、问题解决的能力以及对数学的基本认识等。

数与代数、图形与几何、统计与概率、综合与实践四个知识领域的具体考试内容与要求如下:(一)数与代数1.数与式(1)有理数考试要求:①理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小。

②借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法,知道|a|的含义(这里a表示有理数)③理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主)。

④理解有理数的运算律,能运用运算律简化运算。

⑤能运用有理数的运算解决简单的问题。

(2)实数考试要求:①了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方根、立方根。

②了解乘方与开方互为逆运算,会用平方运算求百以内整数的平方根,会用立方运算求百以内整数(对应的负整数)的立方根,会用计算器求平方根和立方根。

③了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值。

④能用有理数估计一个无理数的大致范围。

⑤了解近似数,在解决实际问题中,能用计算器进行近似计算,并会按问题的要求对结果取近似值。

⑥了解二次根式的概念,了解二次根式(根号下仅限于数)加、减、乘、除运算法则,会用它们进行有关的简单四则运算。

(3)代数式考试要求:①借助现实情境了解代数式,进一步理解用字母表示数的意义。

②能分析简单问题中的数量关系,并用代数式表示。

③会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算。

(4)整式与分式考试要求:①了解整数指数幂的意义和基本性质;会用科学记数法表示数(包括在计算器上表示)。

②理解整式的概念,掌握合并同类项和去括号的法则,能进行简单的整式加法和减法运算;能进行简单的整式乘法运算(其中多项式相乘仅指一次式之间③能推导乘法公式:(a+b)( a- b) = a2- b2; (a±b)2 = a 2±2ab + b 2,了解公式的几何背景,并能利用公式进行简单计算。

④能用提公因式法、公式法(直接利用公式不超过二次)进行因式分解(指数是正整数)。

⑤了解分式的概念,能利用分式的基本性质进行约分和通分;能进行简单的分式加、减、乘、除运算。

2.方程与不等式(1)方程与方程组考试要求:①能根据具体问题中的数量关系列出方程,体会方程是刻画现实世界数量关系的有效模型。

②经历估计方程解的过程。

③)掌握等式的基本性质。

④能解一元一次方程、可化为一元一次方程的分式方程。

⑤掌握代入消元法和加减消元法,能解二元一次方程组。

⑥理解配方法,能用配方法、公式法、因式分解法解数字系数的一元二次方程。

⑦能根据具体问题的实际意义,检验方程的解是否合理。

(2)不等式与不等式组考试要求:①结合具体问题,了解不等式的意义,探索不等式的基本性质。

②能解数字系数的一元一次不等式,并能在数轴上表示出解集;会用数轴确定由两个一元一次不等式组成的不等式组的解集。

③能根据具体问题中的数量关系,列出一元一次不等式,解决简单的问题。

3.函数(1)函数考试要求:①探索简单实例中的数量关系和变化规律,了解常量、变量的意义。

②结合实例,了解函数的概念和三种表示法,能举出函数的实例。

③能结合图像对简单实际问题中的函数关系进行分析。

④能确定简单实际问题中函数自变量的取值范围,并会求出函数值。

⑤能用适当的函数表示法刻画简单实际问题中变量之间的关系。

⑥结合对函数关系的分析,能对变量的变化情况进行初步讨论。

(2)一次函数考试要求:①结合具体情境体会一次函数的意义,能根据已知条件确定一次函数的表达式。

②会利用待定系数法确定一次函数的表达式。

③能画出一次函数的图像,根据一次函数的图像和表达式 y = kx+ b (k ≠0)探索并理解k >0和k <0时,图像的变化情况。

④理解正比例函数。

⑤体会一次函数与二元一次方程的关系。

⑥能用一次函数解决简单实际问题。

(3)反比例函数考试要求:①结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的表达式。

②能画出反比例函数的图像,根据图像和表达式 y = x k(k ≠0)探索并理解k >0和k <0时,图像的变化情况。

③能用反比例函数解决简单实际问题。

(4)二次函数 考试要求:①通过对实际问题的分析,体会二次函数的意义。

②会用描点法画出二次函数的图像,通过图像了解二次函数的性质。

③会用配方法将数字系数的二次函数的表达式化为的形式,并能由此得到二次函数图像的顶点坐标,说出图像的开口方向,画出图像的对称轴,并能解决简单实际问题。

④会利用二次函数的图像求一元二次方程的近似解。

(二)图形与几何1.图形的性质(1)点、线、面、角考试要求:①通过实物和具体模型,了解从物体抽象出来的几何体、平面、直线和点等。

②掌握基本事实:两点确定一条直线。

③掌握基本事实:两点之间线段最短。

④理解两点间距离的意义,能度量两点间的距离。

⑤理解角的概念,能比较角的大小。

⑥认识度、分、秒,会对度、分、秒进行简单的换算,并会计算角的和、差。

(2)相交线与平行线考试要求:①理解对顶角、余角、补角等概念,探索并掌握对顶角相等、同角(等角)的余角相等,同角(等角)的补角相等的性质。

②理解垂线、垂线段等概念,能用三角尺或量角器过一点画已知直线的垂线。

③理解点到直线的距离的意义,能度量点到直线的距离。

④掌握基本事实:过一点有且只有一条直线与已知直线垂直。

⑤识别同位角、内错角、同旁内角。

⑥理解平行线概念;掌握基本事实:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。

⑦掌握基本事实:过直线外一点有且只有一条直线与这条直线平行。

⑧掌握平行线的性质定理:两条平行直线被第三条直线所截,同位角相等。

⑨能用三角尺和直尺过已知直线外一点画这条直线的平行线。

⑩探索并证明平行线的判定定理:两条直线被第三条直线所截,如果内错角相等(或同旁内角互补),那么两直线平行;平行线的性质定理:两条平行直线被第三条直线所截,内错角相等(或同旁内角互补)。

(3)三角形考试要求:①理解三角形及其内角、外角、中线、高线、角平分线等概念,了解三角形的稳定性。

②探索并证明三角形的内角和定理。

掌握它的推论:三角形的外角等于与它不相邻的两个内角的和。

证明三角形的任意两边之和大于第三边。

③理解全等三角形的概念,能识别全等三角形中的对应边、对应角。

④掌握基本事实:两边及其夹角分别相等的两个三角形全等。

⑤掌握基本事实:两角及其夹边分别相等的两个三角形全等。

⑥掌握基本事实:三边分别相等的两个三角形全等。

⑦证明定理:两角分别相等且其中一组等角的对边相等的两个三角形全等。

⑧探索并证明角平分线的性质定理:角平分线上的点到角两边的距离相等;反之,角的内部到角两边距离相等的点在角的平分线上。

⑨理解线段垂直平分线的概念,探索并证明线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等;反之,到线段两端距离相等的点在线段的垂直平分线上。

⑩了解等腰三角形的概念,探索并证明等腰三角形的性质定理:等腰三角形的两底角相等;底边上的高线、中线及顶角平分线重合。

探索并掌握等腰三角形的判定定理:有两个角相等的三角形是等腰三角形。

探索等边三角形的性质定理:等边三角形的各角都等于60°,及等边三角形的判定定理:三个角都相等的三角形(或有一个角是60°的等腰三角形)是等边三角形。

⑪了解直角三角形的概念,探索并掌握直角三角形的性质定理:直角三角形的两个锐角互余,直角三角形斜边上的中线等于斜边的一半。

相关文档
最新文档