2018-201X年考研数学的重要考点-实用word文档 (2页)

合集下载

考研数学一考点汇总

考研数学一考点汇总

考研数学一考点汇总高等数学序号考点重要级别1极限的概念和性质★★★2极限的计算方法(数列、函数)★★★★★3无穷小的性质和计算,无穷小阶的比较★★★★★4连续的定义、性质,间断点的分类★★★★5导数的定义及几何意义★★★★★6导函数、高阶导数的计算★★★★7微分的定义及几何意义、计算★★8微分中值定理★★★★★9导数的应用(单调性、极值、凹凸性、拐点、渐近线)★★★★★10不定积分的计算★★★11定积分的概念、计算、性质★★★12变限积分函数、微积分基本定理★★★★★13反常积分★★14定积分的几何应用★★★★★15二元函数的极限和连续★★★16偏导数、全微分的定义和计算★★★★★17多元函数的极值和最值★★★★★18方向导数和梯度,空间曲线的切线和法平面,曲面的切平面和法线★★19二重积分的概念、性质、计算★★★★★20三重积分的概念、性质及计算★★★21曲线积分的概念、性质及计算★★★★★22曲面积分的概念、性质及计算★★★★★23多元函数积分学的应用★★★24数项级数的性质与审敛法★★★25幂级数的收敛半径、收敛区间、收敛域★★★★★26幂级数的和函数及将函数展开为幂级数★★★★★27傅里叶级数★★★28一阶微分方程★★★★★29二阶及二阶以上的微分方程★★★★★30欧拉方程★★线性代数序号考点重要级别1行列式的基本性质、计算★★★★★2矩阵的运算及其运算规律★★★★★3方阵的幂及方阵行列式的性质★★★★4逆矩阵的概念、性质,矩阵可逆的充要条件★★★★★5伴随矩阵★★★★6矩阵的初等变换和初等矩阵★★★★★7矩阵的秩★★★★8矩阵的分块及其运算★★★9向量的线性组合与线性表示★★★★★10向量组的线性相关与线性无关★★★★★11向量组的极大无关组、向量组的秩★★★★12等价向量组★★13基底间的过渡矩阵★★★★★14线性无关向量组正交规范化的施密特正交化方法★★★★★15规范正交基★16正交矩阵的定义及性质★★17克拉默法则★★18线性方程组有解、无解的判定★★★★★19齐次线性方程组的基础解系和通解★★★★★20非齐次线性方程组解的结构及通解★★★★★21矩阵的特征值与特征向量★★★★★22相似矩阵的概念、性质及可相似对角化的充分必要条件★★★23实对称矩阵的相似对角化★★★★★24实对称矩阵的特征值与特征向量的性质★★★★★25二次型的矩阵表示、二次型的秩★★★26正交变换化二次型为标准形★★★★★27配方法化二次型为标准形★★28二次型的规范形及惯性定理★★★29正定二次型的判定★★★★概率论与数理统计序号考点重要级别1随机事件的关系与运算★★★2概率的概念★★3概率的基本性质★★★4古典型概率与几何型概率★★★5条件概率★★★★6随机事件的独立性★★★★7概率的基本公式(加法公式、减法公式、乘法公式、全概率公式、贝叶斯公式)★★★★8随机变量分布函数的概念及性质★★★★9离散型随机变量的概率分布★★★★10离散型随机变量常见分布(0—1分布、二项分布、几何分布、泊松分布)★★★★11连续型随机变量的概率密度★★★★12连续型随机变量常见分布(均匀分布、指数分布、正态分布)★★★★13随机变量函数的分布★★★★14多维随机变量及其分布★★15二维离散型随机变量的概率分布、边缘分布和条件分布★★★★★16二维连续型随机变量的概率密度、边缘概率密度和条件密度★★★★★17随机变量的独立性和不相关性★★★★18常用二维随机变量的分布(二维均匀分布和二维正态分布)★★★★19随机变量函数的分布★★★★★20随机变量的数学期望、方差、标准差及其性质★★★21随机变量函数的数学期望★★★★22矩、协方差、相关系数及其性质★★★★23切比雪夫不等式★★★24大数定律(切比雪夫大数定律、辛钦大数定律、伯努利大数定律)★★25中心极限定理(棣莫弗—拉普拉斯定理、列维—林德伯格定理)★★26简单随机样本、统计量、样本均值、样本方差及样本矩的概念★★★27三大统计分布(分布、分布和分布)的概念及其性质★★★★28分位数的概念★★29正态总体的常用抽样分布★★★★30点估计、估计量和估计值的概念★★31矩估计法(一阶矩、二阶矩)和似然估计法★★★★★32估计量的评选标准(无偏性、有效性、一致性)★★★33单个正态总体的均值和方差的置信区间★★34两个正态总体的均值差和方差比的置信区间★★35假设检验的两类错误★★36单个及两个正态总体的均值和方差的假设检验★★。

2018考研数一数二数三必看重点

2018考研数一数二数三必看重点

2018考研数一数二数三必看重点考研数学一数学二数学三复习要抓哪些重点?文都网校考研频道整理如下,五星重点知识,请2018考研考生复习时多关注!数学一必看五星重点知识点题型重要度等级等价无穷小代换、洛必达法则、泰勒展开式求函数的极限★★★★★闭区间上连续函数的性质、罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理微分中值定理及其应用★★★★★积分上限的函数及其导数变限积分求导问题★★★★★二重积分的概念、性质及计算二重积分的计算及应用★★★★★一阶线性微分方程、齐次方程,微分方程的简单应用用微分方程解决一些应用问题★★★★★矩阵的初等变换、初等矩阵与初等变换有关的命题★★★★★向量组的线性相关及无关的有关性质及判别法向量组的线性相关性★★★★★实对称矩阵特征值和特征向量的性质,化为相似对角阵的方法有关实对称矩阵的问题★★★★★数学二必看五星重点知识点题型重要度等级等价无穷小代换、洛必达法则、泰勒展开式求函数的极限★★★★★闭区间上连续函数的性质、罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理微分中值定理及其应用★★★★★积分上限的函数及其导数变限积分求导问题★★★★★二重积分的概念、性质及计算二重积分的计算及应用★★★★★一阶线性微分方程、齐次方程,微分方程的简单应用用微分方程解决一些应用问题★★★★★矩阵的初等变换、初等矩阵与初等变换有关的命题★★★★★向量组的线性相关及无关的有关性质及判别法向量组的线性相关性★★★★★实对称矩阵特征值和特征向量的性质,化为相似对角阵的方法有关实对称矩阵的问题★★★★★数学三必看五星重点知识点题型重要度等级等价无穷小代换、洛必达法则、泰勒展开式求函数的极限★★★★★闭区间上连续函数的性质、罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理微分中值定理及其应用★★★★★积分上限的函数及其导数变限积分求导问题★★★★★二重积分的概念、性质及计算二重积分的计算及应用★★★★★矩阵的初等变换、初等矩阵与初等变换有关的命题★★★★★向量组的线性相关及无关的有关性质及判别法向量组的线性相关性★★★★★实对称矩阵特征值和特征向量的性质,化为相似对角阵的方法有关实对称矩阵的问题★★★★★两个随机变量函数的分布二维随机变量函数的分布★★★★★随机变量的数学期望、方差、标准差及其性质,常用分布的数字特征有关数学期望与方差的计算★★★★★2018考研学子想要了解更多考研资讯、复习资料与备考经验,可以搜索文都网校进入考研频道,查看2018考研辅导课程,咨询专业老师考研相关内容。

高数考研重点罗列

高数考研重点罗列

考研数学高等数学重难点第一章函数与极限(考研必考章节,其中求极限是本章最重要题型,要掌握求极限的几种经典方法)第一节映射与函数(一般章节)一集合(不用看)二映射(不用看)三函数(了解)第二节数列的极限(一般章节)(本节用极限定义证明极限的题目考纲不作要求,可不看)一数列极限的定义(了解)二收敛数列的性质(了解)第三节函数的极限(一般章节)一函数极限的定义(了解)二函数极限的性质(了解)第四节无穷小与无穷大(重要)一无穷小(重要)二无穷大(了解)第五节极限运算法则(注意运算法则的前提条件是极限存在)第六节极限存在准则(理解)两个重要极限(重要两个重要极限要会证明)第七节无穷小的比较(重要)第八节函数的连续性与间断点(重要基本必考小题)一函数的连续性二函数的间断点第九节连续函数的运算与初等函数的连续性(了解)一连续函数的和、差、积、商的连续性二反函数与复合函数的连续性三初等函数的连续性第十节闭区间上连续函数的性质(重要,不单独考大题,但考大题会用到)一有界性与最大值最小值定理(重要)二零点定理与介值定理(重要)三一致连续性。

(不用看)第二章导数与微分(小题的必考章节)第一节导数概念(重要)一引例(数三可只看切线问题举例)二导数的定义(重难点,考的频率很高)三导数的几何意义(理解)另外:数一数二要知道导数的物理意义,数三要知道导数的经济意义(边际与弹性)四函数可导性与连续性的关系(重要,要会证明)第二节函数的求导法则(考小题)一函数的和、差、积、商求导法则二反函数的求导法则三复合函数的求导法则四基本求导法则与求导公式(要非常熟)第三节高阶导数(重要,考的可能性大)第四节隐函数及由参数方程所确定的函数的导数(考小题)、相关变化率(不用看)一隐函数的导数二由参数方程所确定的函数的导数三相关变化率(不用看)第五节函数的微分(考小题)一微分的定义二微分的几何意义三基本初等函数的微分公式与微分运算法则四微分在近似计算中的应用(不用看,基本上只要有近似两个字,考纲俊不作要求)第三章微分中值定理与导数的应用(考大题、难题经典章节)第一节微分中值定理(最重要,与中值定理的应用有关的证明题)一罗尔定理(要会证)二拉格朗日中值定理(要会证)三柯西中值定理(要会证)另外要会证明费马定理第二节洛比达法则(重要,基本上必定要考)第三节泰勒公式(掌握其应用,可以不用证明公式本身)第四节函数的单调性与曲线的凹凸性(考小题)一函数单调性的判定法二曲线的凹凸性与拐点第五节函数的极值与最大值最小值(考小题为主)一函数的极值及其求法二最大值最小值问题第六节函数图形的描绘(重要)第七节曲率(了解,只有数一数二考,数三不用看)一弧微分(不用看)二曲率及其计算公式(了解)三曲率圆与曲率半径(了解)四曲率中心的计算公式渐屈线与渐伸线(不用看)第八节方程的近似解(只要有近似,考研不考,不用看)第四章不定积分(重要)相对于数一、数三,本章数二考大题的可能性更大第一节不定积分的概念与性质一原函数与不定积分的概念(理解)二基本积分表(全背且熟练准确)三不定积分的性质(理解)第二节换元积分法(重要,其中第二类换元积分法更加重要)一第一类换元法二第二类换元法第三节分部积分法(考研必考)第四节有理函数的积分(重要)一有理函数的积分二可化为有理函数积分的习题举例第五节积分表的使用(不用看)第五章定积分(重要,考研必考)第一节定积分的概念与性质(理解)一定积分问题举例(了解)其中“变速直线运动的路程”数三不用看二定积分定义(理解)三定积分的近似计算(不用看)四定积分的性质(理解)第二节微积分基本公式(重要)一变速直线运动中位置函数与速度函数之间的联系(了解)数三不用看二积分上限的函数及其导数(极其重要,要会证明)三牛顿-莱布尼茨公式(重要,要会证明)第三节定积分的换元积分法与分部积分法(重要,分部积分法更重要)一定积分的换元法二定积分的分部积分法第四节反常积分(考小题)一无穷限的反常积分二无界函数的反常积分第五节反常积分的审敛法T函数(不用看)第六章定积分的应用(考小题为主)第一节定积分的元素法(理解)第二节定积分在几何学上的应用(面积最重要)一平面图形的面积二体积(数三只看旋转体的体积)三平面曲线的弧长(数三不用看,数一数二记住公式即可)第三节定积分在物理学上的应用(数三不用看,数一数二了解)一变力引直线所作的功二水压力三引力第七章微分方程(必考章节,本章相对于数学二相对最重要)第一节微分方程的基本概念(了解)第二节可分离变量的微分方程(理解)第三节齐次方程(理解)一齐次方程二可化为齐次的方程(不用看)第四节一阶线性微分方程(重要,熟记公式)一线性方程二伯努利方程(只有数一考,记住公式即可)第五节可降阶的高阶微分方程(只有数一数二考,理解)一型的微分方程二型的微分方程三型的微分方程第六节高阶线性微分方程(理解)一二阶线性微分方程举例(不用看)二线性微分方程的解的结构(重要)三常数变易法(不用看)第七节常系数齐次线性微分方程(最重要,考大题的备选章节)第八节常系数非齐次线性微分方程(最重要,考大题的备选章节)一型二第九节欧拉方程(只有数一考,了解)第九节常系数线性微分方程的解法举例(不用看)第八章空间解析几何与向量代数(只有数一考,考小题,了解)第一节向量及其线性运算一向量概念二向量的线性运算三空间向量坐标系四利用坐标作向量的线性运算五向量的模、方向角、投影第二节数量积、向量积、混合积一两向量的数量积二两向量的向量积三向量的混合积第三节曲面及其方程一曲面方程的概念二旋转曲面三柱面四二次曲面第四节空间曲线及其方程一空间曲线的一般方程二空间曲线的参数方程三空间曲线在坐标面上的投影第五节平面及其方程一平面的点法式方程二平面的一般方程三两平面的夹角第六节空间直线及其方程一空间直线的一般方程二空间直线的对称式方程与参数方程三两直线的夹角四直线与平面的夹角第九章多元函数微分法及其应用(考大题经典章节,但难度不大)第一节多元函数的基本概念(了解)一平面点集 n维空间二多元函数概念三多元函数的极限四多元函数的连续性第二节偏导数(理解)一偏导数的定义及其计算法二高阶偏导数(重要)第三节全微分(理解)一全微分的定义二全微分在近似计算中的应用(不用看)第四节多元复合函数的求导法则第五节隐函数的求导公式(理解小题)一一个方程的情形二方程组的情形(不用看)第六节多元函数微分学的几何应用(只有数一考,考小题)一一元向量值函数及其导数(不用看)二空间曲线的切线与法平面三曲面的切平面与法线第七节方向导数与梯度(只有数一考,考小题)一方向导数二梯度第八节多元函数的极值及其求法(重要,大题的常考题型)一多元函数的极值及最大值最小值二条件极值、拉格朗日乘数法第九节二元函数的泰勒公式(只有数一考,了解)一二元函数的泰勒公式(了解)二极值充分条件的证明(不用看)第十节最小二乘法(不用看)第十章重积分(重要,数二数三相对于数一,本章更加重要.数二数三基本必考大题)第一节二重积分的概念与性质(了解)一二重积分的概念(了解)二二重积分的性质(了解)第二节二重积分的计算法(重要,数二数三极其重要)一利用直角坐标计算二重积分二利用极坐标计算二重积分三二重积分的换元法(不用看)第三节三重积分(只有数一考,理解)一三重积分的概念(了解)二三重积分的计算(重要)第四节重积分的应用(只有数一考,了解)一曲面的面积二质心三转动惯量四引力第五节含参变量的积分(不用看)第十一章曲线积分与曲面积分(只有数一考,数二数三均不考;数一考大题、考难题经典章节)第一节对弧长的曲线积分(重要)一对弧长的曲线积分的概念(理解)与性质(了解)二对弧长的曲线积分的计算法(重要)第二节对坐标的曲线积分(重要)一对坐标的曲线积分的概念(理解)与性质(了解)二对坐标的曲线积分的计算法(重要)第三节格林公式及其应用(重要)一格林公式(重要)二平面上曲线积分与路径无关的条件(重要)三二元函数的全微分求积(理解)四曲线积分的基本定理(不用看)第四节对面积的曲面积分(重要)一对坐标的曲面积分的概念与性质(了解)二对坐标的曲面积分的计算法(重要)三两类曲面积分之间的联系(了解)第五节对坐标的曲面积分(重要)一对坐标的曲面积分的概念与性质(了解)二对面积的曲面积分的计算法(重要)第六节高斯公式(重要)、通量(不用看)与散度(了解)一高斯公式(重要)二沿任意闭曲面的曲面积分为零的条件(不用看)三通量与散度(了解)第七节斯托克斯公式(重要)环流量与旋度(了解)一斯托克斯公式(重要)二空间曲面积分与路径无关的条件(不用看)三环流量与旋度第十二章无穷级数(数学二不考,不用看;数一数三考大题、考难题的经典章节)第一节常数项级数的概念与性质(一般考点)一常数项级数的概念(了解)二收敛级数的基本性质(考选择题章节)三柯西审敛原理(不用看)第二节常数项级数的审敛法(理解)一正项级数及其审敛法二交错级数及其审敛法三绝对收敛与条件收敛四绝对收敛级数的性质(不用看)第三节幂级数(重要)一函数项级数的概念(了解)二幂级数及其收敛性(最重要)三幂级数的运算(乘或除不用看)第四节函数展开为幂级数(数一相对数三本节更重要)第五节函数的幂级数展开式的应用(不用看)一近似计算二微分方程的幂级数解法三欧拉公式第六节函数项级数的一致收敛性及一致收敛级数的基本性质(不用看)一函数项级数的一致收敛性二一致收敛级数的基本性质第七节傅里叶级数(数三不用看,数一了解)一三角函数系的正交性二函数展开为傅里叶级数三正弦级数和余弦级数第八节一般周期函数的傅里叶级数(数三不用看,数一了解)一周期为2l的周期函数的傅里叶级数二傅里叶级数的复数形式(不用看)。

2018年考研数学(高数、线代、概率论)最全公式手册

2018年考研数学(高数、线代、概率论)最全公式手册

dy (ln x) 1 x
1 dx x ln a d (ln x) 1 dx x
特例 y ln x (5) y sin x (6) y cos x (7) y tan x (8) y cot x (9) y sec x (10) y csc x
y cos x y sin x
x x0
f ( x) f ( x0 ) x x0
(2)
2 函数 f ( x) 在 x0 处的左、右导数分别定义为: 左导数:
f ( x0 ) lim
x 0
f ( x0 x) f ( x0 ) f ( x) f ( x0 ) lim , ( x x0 x) x x0 x x x0
x 的复合函数.例如
1 , y 2 , ln y , e y 等均是 x 的复合函数. y
F ( x, y) dy ,其中, Fx( x, y) , x dx Fy( x, y )
对 x 求导应按复合函数连锁法则做. (2)公式法.由 F ( x, y) 0 知
Fy( x, y) 分别表示 F ( x, y) 对 x 和 y 的偏导数
常用的等阶无穷小:当x 0时 sin x arcsin x tan x x, arctan x ln(1 x) ex 1
1 cos x
1 2 x 2 1 1 (1 x) n 1 x n
无穷小的性质 (1) 有限个无穷小的代数和为无穷小 (2) 有限个无穷小的乘积为无穷小 (3) 无穷小乘以有界变量为无穷小 Th 在同一变化趋势下,无穷大的倒数为无穷小;非零的 无穷小的倒数为无穷大
设函数f ( x)在x x0处可导,则f ( x)在M ( x0 , y0 )处的

【优质文档】2018年考研数一数二数三必看重点-推荐word版 (2页)

【优质文档】2018年考研数一数二数三必看重点-推荐word版 (2页)

【优质文档】2018年考研数一数二数三必看重点-推荐word版本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==2018年考研数一数二数三必看重点考研数学一数学二数学三复习要抓哪些重点?欢迎阅读!数学一必看五星重点知识点题型重要度等级等价无穷小代换、洛必达法则、泰勒展开式求函数的极限★★★★★闭区间上连续函数的性质、罗尔定理、拉格朗微分中值定理及其应用★★★★★日中值定理、柯西中值定理和泰勒定理积分上限的函数及其导数变限积分求导问题★★★★★二重积分的概念、性质及计算二重积分的计算及应用★★★★★一阶线性微分方程、齐次方程,微分方程的简用微分方程解决一些应用问题★★★★★单应用矩阵的初等变换、初等矩阵与初等变换有关的命题★★★★★向量组的线性相关及无关的有关性质及判别法向量组的线性相关性★★★★★实对称矩阵特征值和特征向量的性质,化为相有关实对称矩阵的问题★★★★★似对角阵的方法数学二必看五星重点知识点题型重要度等级等价无穷小代换、洛必达法则、泰勒展开式求函数的极限★★★★★闭区间上连续函数的性质、罗尔定理、拉格朗微分中值定理及其应用★★★★★日中值定理、柯西中值定理和泰勒定理积分上限的函数及其导数变限积分求导问题★★★★★二重积分的概念、性质及计算二重积分的计算及应用★★★★★一阶线性微分方程、齐次方程,微分方程的简用微分方程解决一些应用问题★★★★★单应用矩阵的初等变换、初等矩阵与初等变换有关的命题★★★★★向量组的线性相关及无关的有关性质及判别法向量组的线性相关性★★★★★实对称矩阵特征值和特征向量的性质,化为相有关实对称矩阵的问题★★★★★似对角阵的方法。

2018-201X是国庆节多少周年 今年是国庆节几周年-实用word文档 (2页)

2018-201X是国庆节多少周年 今年是国庆节几周年-实用word文档 (2页)

2018-201X是国庆节多少周年今年是国庆节几周年-实用word文档本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! == 201X是国庆节多少周年今年是国庆节几周年导读: 10月1日国庆节,是我们伟大祖国的生日,在这节日里,普天同庆,到处都是张灯结彩,到处洋溢着喜庆的气息。

如今我国在繁荣发展,我们在祖国母亲的怀抱里茁壮成长。

那么你知道201X是国庆节多少周年吗?今年是国庆节建国第几周年呢?下面,就和万年历小编一起往下了解吧!201X年国庆是第几周年201X是国庆节多少周年今年是国庆节几周年1949年10月1日是第一个国庆节,因此201X年国庆是第67周年。

1949年9月的政协第一届一次会议上决定把10月1日定为国庆节。

在1949年10月1日宣告中华人民共和国成立,这是中国历史上一个最伟大的转变。

1949年10月1日下午3时,北京30万人在天安门广场隆重举行典礼,庆祝中华人民共和国中央人民政府成立。

201X年国庆放假安排根据《国务院关于201X放假安排表的通知》,201X年国庆节放假:放假7天,即10月1日至10月7日。

10月8号(星期六),10月9号(星期天)正常上班。

其中:10月1日(星期六)、10月2日(星期日)、10月3日(星期一)为国庆节法定节假日10月6日星期四补休10月1日星期六(国庆节法定节假日占用的这一天)10月7日星期五补休10月2日星期日(国庆节法定节假日占用的这一天)10月8号(星期六)、10月9号(星期天)公休调至10月4号(星期二),10月5号(星期三)201X国庆放假加班工资怎么算按照国务院放假规定,201X年国庆节从10月1日至10月7日,共放假7天。

这7天,只有前三天是法定假日,后四天是双休日调休。

因此,劳动者在。

2018-201X中秋节月亮什么时候最圆最亮 今年中秋十五的月亮十七圆-实用word文档 (2页)

2018-201X中秋节月亮什么时候最圆最亮 今年中秋十五的月亮十七圆-实用word文档 (2页)

2018-201X中秋节月亮什么时候最圆最亮今年中秋十五的月亮十七圆-实用word文档本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==201X中秋节月亮什么时候最圆最亮今年中秋十五的月亮十七圆中秋节我们除了会吃月饼,还有很重要的一项活动就是赏月。

每年中秋节上月已经是很传统的一种习俗了。

201X中秋节月亮什么时候最圆最亮呢?下面随小编看看。

201X中秋节月亮什么时候最圆最亮今年中秋月十五的月亮十七圆,中国的月亮比外国圆。

中秋月亮最圆时将出现在10月6日2时40分(望),中国各地不仅可观赏到最圆的中秋月,而且目睹到月亮的视直径更大,原因是月亮距离地球更近了。

但在西半球的加拿大、美国和秘鲁等部分地区,就看不到最圆的中秋月。

据介绍,农历八月十七月最圆,上一次发生在201X年9月17日3时05分,下一次将出现在2026年9月27日0时48分。

201X年中秋节赏月的最佳时间最佳的赏月时间是20时到21时,此时“月上柳梢头”,很容易让人心生感慨。

如果用肉眼细观月亮,可以看到月亮表面有些地方较明亮,有些地方较暗淡。

这明暗交错的图案,给人们丰富的想象空间。

随着时间的推移,月亮也越来越亮。

到了晚23时30分,一轮圆月“走”到天顶附近,这就是所谓的“月上中天顶空照”。

这时月亮的地平高度达到整夜最高,由于月光穿过的大气层最薄,因此月亮看起来也最晶莹剔透。

中秋节有哪些习俗1、吃月饼每到中秋节,月饼是必不可少的,它象征着团圆,寓意着圆满,是我们对亲情的寄托。

在中秋节来临之际,亲朋好友互相赠月饼,是一种亲情的体现,也是社会关系的联络。

在节日当晚,一家人会围在香案前切月饼吃,每个人都要吃,这代表了自己是这个家的一份子,象征着团员。

2、设香案。

2018年考研经济类联考数学必备知识点整理

2018年考研经济类联考数学必备知识点整理

2018年考研经济类联考数学必备知识点整理很多参加考研的考生对于数学三想必都不陌生,也了解经济类联考数学比数学三简单,但却不知道经济类联考数学考什么,所以凯程考研将经济类联考数学必考34点列举如下,供考生们参考。

正所谓知己知彼,百战不殆,在列举考点之前,同学们先看一下经济类联考数学试题特点:1、重基础:396经济类联考考题共70分,其中选择题10个,解答题10个;题目中80%的题目都是基础题,约占15个左右;所以要求考生对考研数学中的基本概念、基本理论、基本方法要非常熟悉。

2、知识面广:396经济类联考自2011年联考以来,时间不长,知识点还没有完全覆盖;所以对于考试大纲规定的考试范围内的,但试卷中还没有出现过的那部分内容,大家要尤为重视,它们可能作为未来考试中的考点出现。

3、重计算:396经济类联考的历年考试题目中还没有出现过考查证明题的,都是计算题,所以对考生的计算能力、计算的准确性、计算的方法要求较高,希望大家着重这方面的训练。

必考点:(一)微积分1、函数、极限、连续(1)求复合函数的定义域;(2)求函数表达式;(3)无穷小阶的比较;(4)利用等价无穷小替换、两个重要极限求极限;(5)求幂指函数的极限;(6)利用洛必达法则求极限;(7)分段函数在分段点处的连续性;(8)判断间断点类型;2、导数与微分(1)利用导数的四则运算法则、复合函数求导法则求导数与微分;(2)求分段函数在分段点处的导数;(3)一元函数隐函数求导;(4)一元函数的单调区间、极值、凹凸性、拐点、渐近线;(5)导数的经济应用;3、一元函数积分学(1)利用换元法与分部积分法计算不定积分;(2)利用换元法与分部积分法计算定积分;(3)变限积分求导;(4)定积分的几何应用;4、多元函数微分学(1)求二元函数的一阶偏导数;(2)求二元函数的全微分;(3)二元函数隐函数的求导。

(二)线性代数1、行列式和矩阵(1)矩阵的基本运算;(2)伴随矩阵的求法;(3)逆矩阵的求法。

考研高数知识点超强归纳

考研高数知识点超强归纳

(t )
连续,
公 式 2 . lim⎜⎛1 + 1 ⎟⎞n = e ; lim⎜⎛1 + 1 ⎟⎞u = e ;
n→∞⎝ n ⎠
u→∞⎝ u ⎠
lim (1
+
v
)1 v
=
e
v→0
则 dy dx
=
f [ϕ2 (x)]ϕ2′ (x) −
f [ϕ1(x)]ϕ1′(x)
4.用无穷小重要性质和等价无穷小代换 5.用泰勒公式(比用等价无穷小更深刻)(数学一和
2
( )e x ′ = e x
de x = e x dx
考研数学知识点-高等数学
ψ ′(t)存在,且ϕ ′(t) ≠ 0 ,则
(arcsin x)′ = 1
1− x2
d arcsin x = 1 dx 1− x2
(arccos x)′ = − 1
d arccos x = − 1 dx
1− x2
1− x2
连续,则 f (x) 必在 [a,b]上有界。
定理 2.(最大值和最小值定理)如果函数 f (x) 在闭
区间 [a, ]b 上连续,则在这个区间上一定存在最大值 M 和
最小值 m 。 其中最大值 M 和最小值 m 的定义如下:
定义 设 f (x0 ) = M 是区间 [a,b]上某点 x0 处的函数
且有
dy = dy du = f ′[ϕ(x)]ϕ ′(x)
dx du dx
对应地 dy = f ′(u)du = f ′[ϕ(x)]ϕ ′(x)dx
由于公式 dy = f ′(u)du 不管 u 是自变量或中间变量
6.隐函数运算法则
设 y = y(x) 是由方程 F (x, y) = 0 所确定,求 y′ 的方

2018考研数学三知识点总结

2018考研数学三知识点总结

2018考研数学三知识点总结考研数学三复习有哪些重要知识点需要看?结合大纲和历年真题来看,凯程网考研频道为2018考生总结分享考研数学三必看知识点,大家注意不要遗漏。

2018考研数学三知识点总结考研数学复习一定要打好基础,对于重要知识点一定要强化练习,深刻巩固。

下面凯程网考研频道整合了考研数学三在高数、线性代数及概率各部分的核心知识点、考察题型及重要度,2018考生注意参考。

2018考研数学三考前必看核心知识点科目大纲章节知识点题型高等数学第一章函数、极限、连续等价无穷小代换、洛必达法则、泰勒展开式求函数的极限函数连续的概念、函数间断点的类型判断函数连续性与间断点的类型第二章一元函数微分学导数的定义、可导与连续之间的关系按定义求一点处的导数,可导与连续的关系函数的单调性、函数的极值讨论函数的单调性、极值闭区间上连续函数的性质、罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理微分中值定理及其应用第三章一元函数积分学积分上限的函数及其导数变限积分求导问题定积分的应用用定积分计算几何量第四章多元函数微积分学隐函数、偏导数、全微分的存在性以及它们之间的因果关系函数在一点处极限的存在性,连续性,偏导数的存在性,全微分存在性与偏导数的连续性的讨论与它们之间的因果关系二重积分的概念、性质及计算二重积分的计算及应用第五章无穷级数级数的基本性质及收敛的必要条件,正项级数的比较判别法、比值判别法和根式判别法,交错级数的莱布尼茨判别法数项级数敛散性的判别第六章常微分方程一阶线性微分方程、齐次方程,微分方程的简单应用用微分方程解决一些应用问题线性代数第一章行列式行列式的运算计算抽象矩阵的行列式第二章矩阵矩阵的运算求矩阵高次幂等矩阵的初等变换、初等矩阵与初等变换有关的命题第三章向量向量组的线性相关及无关的有关性质及判别法向量组的线性相关性线性组合与线性表示判定向量能否由向量组线性表示第四章线性方程组齐次线性方程组的基础解系和通解的求法求齐次线性方程组的基础解系、通解第五章矩阵的特征值和特征向量实对称矩阵特征值和特征向量的性质,化为相似对角阵的方法有关实对称矩阵的问题相似变换、相似矩阵的概念相似矩阵的判定及逆问题及性质第六章二次型二次型的概念求二次型的矩阵和秩合同变换与合同矩阵的概念判定合同矩阵概率论与数理统计第一章随机事件和概率概率的加、减、乘公式事件概率的计算第二章随机变量及其分布常见随机变量的分布及应用常见分布的逆问题第三章多维随机变量及其分布两个随机变量函数的分布二维随机变量函数的分布随机变量的独立性和不相关性随机变量的独立性第四章随机变量的数字特征随机变量的数学期望、方差、标准差及其性质,常用分布的数字特征有关数学期望与方差的计算第五章大数定律大数定理用大数定理估计、计算概率和中心极限定理第六章数理统计常用统计量的性质求统计量的数字特征的基本概念第七章/ /参数估计。

2018年考研数学高频考点

2018年考研数学高频考点

2018年考研数学高频考点考研网为大家提供2018年考研数学高频考点,更多考研资讯请关注我们网站的更新!2018年考研数学高频考点考研数学的考点较分散,所以提醒考生打牢基础,作全面的复习。

在此基础上,那些真题中高频必考题型,考生须给予重视。

一、极限计算整张试卷共23题,其中第15题几乎是极限计算大题的代名词。

极限计算有8种武器,分别为:四则运算法则、等价无穷小替换、洛必达法则、幂指型函数的处理、单侧极限、夹逼定理、单调有界必有极限原理和泰勒公式。

考生在基础阶段要把前5种武器掌握好:内容是什么弄清楚,会应用。

后3种武器较难把握,我们可以分阶段啃下这几个硬骨头。

基础阶段弄清定理内容,会做基本题目。

对于夹逼定理,内容方面,考生要知晓它有数列和函数两种形式。

每种形式条件是什么,结论是什么要理解。

以数列形式为例,条件是一个数列夹在另两个数列之间(bn<= an<= cn, 只要n充分大时成立即可,因为考虑的是极限),且有n趋于无穷时,两边的数列收敛到相同的数,结论是夹在中间的数列极限存在且极限值也为相同的数。

应用方面,要熟悉夹逼定理推出的一个结论:无穷小乘有界量等于无穷小。

会用夹逼定理计算一种长得很有型的数列的极限——n项分母互不相同的分式的和的极限。

对于单调有界必有极限原理,内容不难理解。

应用方面,可以处理另一种长得很有型的数列的极限问题——递推式数列的极限的存在性问题中的简单题;也可以到了强化阶段再全面处理这种题。

泰勒公式可以说是算极限的最强大的武器。

万物对立统一,这么强大的武器理解和运用起来自然会有些难度。

基础阶段,要理解泰勒公式有两种形式——带皮亚诺余项的公式和带拉格朗日余项的公式,前者用来算极限,后者用来证明。

算极限,需要记忆常见函数的泰勒公式。

二、中值相关证明中值相关证明是考研数学公认的难点,考生得分率在30%以下。

该部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。

2018年考研数学一二三真题解析及点评(史上最强版)

2018年考研数学一二三真题解析及点评(史上最强版)

证明数列收敛只有唯一的方法:证明数列单调有界。 《金讲》17页予以重要说明并给出两道难度高于本题 的同型例题详解,本题再不济,直接用第一问的结论 求出第二问的结果应该是一丝难度都没有。
数一第20题 数三第20题 数二第22题
《金讲》403-405页不仅给出了通用性齐次 方程组的详细解题过程,还给予具体具体方 程解析示例,详细程度超越市面任何一本数 学参考书,足以解答任何复杂齐次方程组。
本质 一样
数一第18题
(Ⅰ)是简单一阶微分方程求解,直接套公式即得, 送分题;(Ⅱ)不定积分函数与变现积分函数的灵活 转换,需要对两者关系有较深度地掌握方可轻易转 换,稍有难度,本题完整证明出来的同学应该不超 过万分之一。
较 难 题
考查不等式的证明,具有天然的难题属性。但 《金讲》在142页对这类题型设了一个专题给予 了本质性的总结,任何不等式证明本质都可以归 结到两类情况,每类情况的证明有唯一思路,因 此,不等式证明对于《金讲》读者不太可能成为 难题,但《金讲》以外,没有任何参考书做过这 种深度总结,因此本道题对于有些人是难题。
数二第18题
数三第18题
简单函数的级数展开并求通项。展开部分直接套公 式,属于送分。求通项虽偶有难度,但任何求通项 都可以通过适当展开进行归纳这一万能方法,在 《金讲》 中有强调,所以也属于半送分。《金讲》 254页至259页用了一个重点专题予以详解本考点, 足以解决任何函数的展开式。
数一第19题 数三第19题 数二第21题
数二第20题
考查微分的基本应用,将题目 内容用数学式子表示出来,问 题就转化为了最简单的微分或 积分问题,本题几乎是《金 讲》配套暑期集训讲义中的原 题。
数一第11题
考查旋度公式的记忆,直接用 旋度公式计算即得答案。旋度 公式的详细计算公式参见《金 讲》288页,属送分题。

2018年201Xword表格居中-范文模板 (2页)

2018年201Xword表格居中-范文模板 (2页)

2018年201Xword表格居中-范文模板
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!
== 本文为word格式,下载后可方便编辑和修改! ==
201Xword表格居中
篇一:poi导出WORD表格居中
不废话,直接上代码
XWPFDocument doc = newXWPFDocument(); XWPFTabletable =
doc.createTable(5, 5);
CTTblPrtablePr =
table.getCTTbl().addNewTblPr();tablePr.addNewJc().setVal(STJc.CENTER);
篇二:WORD文档中绘制表格单元格内容居中的问题介绍
方法/步骤
绘制表格很简单,插入&mdash;&mdash;表格。

在制作表格的时候,应该会遇到要居中吧。

这个很简单,点击一下居中的按钮即可。

而这个想把它居中在单元格中间不能按上面的方法。

简单的可以回车,也可以
调整单元格拉动,但有时会拉错,弄得更复杂。

我们可以选中需要居中的内容,右击单元格对齐方式
点击中间那个,就能居中了。

也可以把单元格对齐方式拉出来。

方便等下的操作,还会遇到内容和单元格不
符的话。

以上就是word文档中绘制表格单元格内容居中的问题方法介绍,希望能对大家有所帮助!
篇三:怎么让WORD表格里的文字居中显示呢?。

考研高等数学基本知识点大全

考研高等数学基本知识点大全

高等数学基本知识点一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。

集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。

比如“身材较高的人”不能构成集合,因为它的元素不是确定的。

我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。

如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。

⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。

记作N⑵、所有正整数组成的集合叫做正整数集。

记作N+或N+。

⑶、全体整数组成的集合叫做整数集。

记作Z。

⑷、全体有理数组成的集合叫做有理数集。

记作Q。

⑸、全体实数组成的集合叫做实数集。

记作R。

集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。

集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。

⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。

⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。

⑷、空集:我们把不含任何元素的集合叫做空集。

记作,并规定,空集是任何集合的子集。

⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。

即A A②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。

③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。

集合的基本运算⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。

考研数学高数重要知识点

考研数学高数重要知识点

2018考研数学高数重要知识点2018考研数学高数重要知识点(一):第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算2018考研数学高数重要知识点(二):第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二))2018考研数学高数重要知识点(三):第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理2018考研数学高数重要知识点(四):第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)2018考研数学高数重要知识点(五):第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法2018考研数学高数重要知识点(六):第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)4、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线2018考研数学高数重要知识点(七):第七章多元函数积分学(除二重积分外,数一)1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)2018考研数学高数重要知识点(八):第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)2018考研数学高数重要知识点(九):第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)。

2018年考研数学二高数及线代考点

2018年考研数学二高数及线代考点

2018年考研数学二高数及线代考点
店铺高考网为大家提供2018年考研数学二高数及线代考点,更多高考资讯请关注我们网站的更新!
2018年考研数学二高数及线代考点
2018考研数学考什么?如何准备考研数学二?考研数学二考哪些?哪些不考?下面为同学们一一解答!
考研数学二考试科目:
只考高数(78%)和线代(22%) ,也就是不考概率。

一、【高数同济四版】带星号不考
上册:打星号的不考,第二章第八节不考,第三章第十节不考,第五章第六节不考,第七章不考,其他都考。

下册:打星号的不考,第八章第六、七节不考,第九章第三、四、五节不考,第十章,第十一章不考,第十二章5,6,11,12,13节不考。

总的来说,上册考的多下册只考三章,而且不是全考,但微分方程比较繁。

二、【线性代数】1-5章全考,第六章不考。

1.曲面和曲线积分不考。

2.空间解析几何不考。

3.级数不考。

3.三重积分不考。

2018-考研数学必考知识点总结-word范文 (5页)

2018-考研数学必考知识点总结-word范文 (5页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==考研数学必考知识点总结我们在进行考研数学的复习准备时,要知道必考的知识点有哪些,才能更好的提高自己的复习效率。

小编为大家精心准备了考研数学重要知识点汇总,欢迎大家前来阅读。

考研数学重要知识点高等数学:构建模型系统规划高等数学是一门很抽象的学科,理解的时候,不要纠结于表面的概念,要在思考的时候,在脑中构建一个模型,这个很像编程时,思考内存模型。

或者构建自己的复习思路,当复习到高数后面的知识点事,要结合前面的知识点,最后把学到的知识整体联系起来。

数学的复习是一项长期工程,关键在于恒心和坚持,只有如此,才能取得最后的成功,因此,希望你能严格要求自己,能够保证每天都完成相应的学习任务。

在寒假结束的时候,如果你都在稳扎稳打的看书了,高等数学的复习应该已经告一段落,考研数学复习的任务也就完成了三分之一。

线性代数:夯实知识点少量做题线性代数在考研数学中难度较高等数学来说要简单得多,但是考试题通常需要结合很多知识点才能解答出来。

所以考生要抓住寒假这段时间踏踏实实看一遍线性代数的参考书,然后自己做出总结,并将各知识点串联在一起,结合少量习题理解知识点考核重点即可。

概率论与数理统计:对照往年考纲少量题型概率论与数理统计在考研数学初试中题型比较固定,一般情况下难度中等,所以,虽然寒假难免有游玩的计划,同学们在复习这门课程时完全不必太过焦急。

花一周左右的时间对照往年考纲,安心看参考书,做少量题型就可以对后期的复习有很大帮助。

考研数学高分刷题技巧(一)单选题单选题的解题方法总结一下,也就下面这几种。

1.代入法也就是说将备选的一个答案用具体的数字代入,如果与假设条件或众所周知的事实发生矛盾则予以否定。

2.演算法它适用于题干中给出的条件是解析式子。

3.图形法它适用于题干中给出的函数具有某种特性,例如奇偶性、周期性或者给出的事件是两个事件的情形,用图示法做就显得格外简单。

2018考研数学概率论重要考点总结.doc

2018考研数学概率论重要考点总结.doc

2018考研数学概率论重要考点总结第一章随机事件和概率一、本章的重点内容:四个关系:包含,相等,互斥,对立﹔五个运算:并,交,差﹔四个运算律:交换律,结合律,分配律,对偶律(德摩根律)﹔概率的基本性质:非负性,规范性,有限可加性,逆概率公式﹔五大公式:加法公式、减法公式、乘法公式、全概率公式、贝叶斯公式﹔·条件概率﹔利用独立性进行概率计算﹔·重伯努利概型的计算。

近几年单独考查本章的考题相对较少,从考试的角度来说不是重点,但第一章是基础,大多数考题中将本章的内容作为基础知识来考核,都会用到第一章的知识。

二、常见典型题型:1.随机事件的关系运算﹔2.求随机事件的概率﹔3.综合利用五大公式解题,尤其是常用全概率公式与贝叶斯公式。

第二章随机变量及其分布一、本章的重点内容:随机变量及其分布函数的概念和性质(充要条件)﹔分布律和概率密度的性质(充要条件)﹔八大常见的分布:0-1分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、正态分布、指数分布及它们的应用﹔会计算与随机变量相联系的任一事件的概率﹔随机变量简单函数的概率分布。

近几年单独考核本章内容不太多,主要考一些常见分布及其应用、随机变量函数的分布二、常见典型题型:1.求一维随机变量的分布律、分布密度或分布函数﹔2.一个函数为某一随机变量的分布函数或分布律或分布密度的判定﹔3.反求或判定分布中的参数﹔4.求一维随机变量在某一区间的概率﹔5.求一维随机变量函的分布。

第三章二维随机变量及其分布一、本章的重点内容:二维随机变量及其分布的概念和性质,边缘分布,边缘密度,条件分布和条件密度,随机变量的独立性及不相关性,一些常见分布:二维均匀分布,二维正态分布,几个随机变量的简单函数的分布。

本章是概率论重点部分之一!应着重对待。

二、常见典型题型:1.求二维随机变量的联合分布律或分布函数或边缘概率分布或条件分布和条件密度﹔2.已知部分边缘分布,求联合分布律﹔3.求二维连续型随机变量的分布或分布密度或边缘密度函数或条件分布和条件密度﹔4.两个或多个随机变量的独立性或相关性的判定或证明﹔5.与二维随机变量独立性相关的命题﹔6.求两个随机变量的相关系数﹔7.求两个随机变量的函数的概率分布或概率密度或在某一区域的概率。

2018考研数学冲刺必看重要考点【三篇】

2018考研数学冲刺必看重要考点【三篇】

2018考研数学冲刺必看重要考点【三篇】导读:本文2018考研数学冲刺必看重要考点【三篇】,仅供参考,如果觉得很不错,欢迎点评和分享。

【第一篇】 1.极限问题的快速分析与处理;2.巧用极限的保序性、有界性与性,正确快速运用极限运算法则;3.准确快速判断分段函数特性(连续、可导与导数连续等);4.导数与微分的特别考点;5.等式与不等式证明技巧;6.处理积分计算与综合分析问题的有效方法;7.正确运用定积分性质,处理变限积分与含参积分的技巧;8.用积分表达与计算应用问题的技巧;9.级数收敛性分析与判断的快速程序化方法;10.级数展开与求和零部件组合安装法;11.“按类求解”和“观察侍定”是解微分方程的两把钥匙;12.“规律翻译”与“微量平衡分析”是解应用题的基本方法; 【第二篇】 1.用函数观点来考察微分方程问题;2.用“多元问题”“一元化”的方法研究多元函数;3.分析“函数结构”是“抽象函数”导数的计算的关键;4.多元极(最)值问题应抓住“三个什么”“三个步骤”;5.“三定”(坐标系、积分序和积分限)是计算重积分的三步曲;6.灵活运用“分块积分、对称性、几何和物理意义”是计算重积分的捷径;7.掌握曲面的定向是正确利用Guass公式、Stokes公式的前提;8.将矩阵按列分块之技巧及应用;9.利用矩阵的参数的技巧;10.利用初等矩阵表示矩阵的初等变换的技巧;11.应用行列式的展开定理的技巧;12.关于向量组的线性相关与线性无关的技巧;13.利用简化行阶梯形的技巧; 【第三篇】 1.关于矩阵对角化问题的技巧;2.判断二次型正定性的技巧;3.加减求逆乘法律,全概逆概独立性,事件化简是关键,三大概型应活用;4.变量分布特征清,参数确定容易定,重要分布记背景,离散变量靠列表;5.一维连续画密度,正态计算标准化,指数分布无记忆,函数分布直接求;6.由联合分布求边缘分布的技巧,判断独立性;由联合分布求概率;7.函数期望是关键,常用分布背特征,特征性质要牢记,二维特征定相关;8.大数中心规范记,收敛方式有区别,切比雪夫估概率,近似计算用中心;9.抽样分布定义明,正态抽样四式推,矩法似然原理清,无偏有效算特征;10.区间估计靠枢轴,分位定义应明确,假设检验步骤定,两类错误会计算。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-201X年考研数学的重要考点-实用word文档
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!
== 本文为word格式,下载后可方便编辑和修改! ==
201X年考研数学的重要考点
在考研数学中,有哪些考点是重要的呢。

下面小编为大家精心搜集了关于考研数学的重要考点,欢迎大家参考借鉴,希望可以帮助到大家!
高等数学是考研数学的重中之重,所占的比重较大,在数学一、三中占56%,数学二中占78%,重点难点较多。

具体说来,大家需要重点掌握的知识点有几以下几点:
1.函数、极限与连续:
主要考查极限的计算或已知极限确定原式中的常数;讨论函数连续性和判断间断点类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。

2.一元函数微分学:
主要考查导数与微分的定义;各种函数导数与微分的计算;利用洛比达法则求不定式极限;函数极值;方程的的个数;证明函数不等式;与中值定理相关的证明;最大值、最小值在物理、经济等方面实际应用;用导数研究函数性态和描绘函数图形;求曲线渐近线。

3.一元函数积分学:
主要考查不定积分、定积分及广义积分的计算;变上限积分的求导、极限等;积分中值定理和积分性质的证明;定积分的应用,如计算旋转面面积、旋转体体积、变力作功等。

4.多元函数微分学:
主要考查偏导数存在、可微、连续的判断;多元函数和隐函数的一阶、二阶偏导数;多元函数极值或条件极值在与经济上的应用;二元连续函数在有界平面区域上的最大值和最小值。

此外,数学一还要求会计算方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。

5.多元函数的积分学:。

相关文档
最新文档