河北省保定市2014年中考二模数学试题(WORD版)
2014届中考二模数学试题含答案
2014年初中毕业班第二次模拟测试数 学 试 卷说明:1.全卷共4页,考试用时为100分钟,满分为120分。
2.考生务必用黑色字迹的签字笔或钢笔在答题卷密封线左边的空格里填写自己的学校、班级、姓名、准考证号,并在答题卷指定的位置里填写座位号。
3.选择题选出答案后,请将所选选项的字母填写在答题卷对应题目的空格内。
4.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上;如需改动,先画掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
5.考生务必保持答题卷的整洁。
考试结束时,将试卷和答题卷一并交回。
一、选择题(本大题共10小题,每小题3分,共30分。
在各题的四个选项中,只有—项是正确的,请将所选选项的字母填写在答题卷对应题目的空格内) 1、9的算术平方根是A .81B .3±C .3-D .32、据报道,肇庆团市委“情系农村”深化农村青年创业小额贷款工作,共发放贷款13 000 000多元,数字13 000 000用科学记数法表示为A .1.3×106B .1.3×107C .1.3×108D .1.3×1093、如图所示的几何体的主视图是4、下列计算正确的是 A.222)2(aa =- B.632a a a ÷= C.a a 22)1(2-=-- D.22a a a =⋅5、等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为 A . 12 B . 15 C . 12或15 D . 186、如图,线段DE 是△ABC 的中位线,∠B =60°,则∠ADE 的度数为 A .80° B .70° C .60° D .50°7、下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是8、在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的A .众数B .方差C .平均数D .中位数(第6题图)(第3题图)(第16题图)9、把不等式组2151x x -≤⎧⎨>⎩的解集在数轴上表示正确的是10、童童从家出发前往体育中心观看篮球比赛,先匀速步行至公交汽车站,等了一会儿,童童搭乘公交汽车至体育中心观看比赛,比赛结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x 表示童童从家出发后所用时间,y 表示童童离家的距离.下图中能反映y 与x 的函数关系式的大致图象是二、填空题:(本题共6个小题,每小题4分,共24分) 11、分解因式:24(1)x x --= ▲ .12、如果26a b -=,则42b a -= ▲ .13、已知菱形的两条对角线长分别为6和8,则菱形的边长为 ▲ .14、在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球然后放回,再随机摸出一个小球,则两次取出的小球标号相同的概率为 ▲ . 15x 的取值范围是 ▲ . 16、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,∠C = 30°,CD =. 则阴影部分的面积S 阴影= ▲ .三、解答题(一)(本大题3小题,每小题6分,共18分)17、计算:2014201(1)()(5)16sin 602π--⨯+---︒18、已知一次函数y x b =+的图象经过点B (0,),且与 反比例函数ky x=(k 为不等于0的常数)的图象有一交点 为点A (m ,1-) .求m 的值和反比例函数的解析式. 19、在图示的方格纸中(1)作出△ABC 关于MN 对称的图形△A 1B 1C 1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?四、解答题(二)(本大题3小题,每小题7分,共21分)20、如图,在小山的东侧A点处有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C点处,此时热气球上的人测得小山西侧B点的俯角为30°,求小山东西两侧A、B两点间的距离.(第20题图)21、为了了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在▲组,中位数在▲组;(2)求样本中,女生身高在E组的人数;(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有多少人?(第22题图)22、如图,在平行四边形ABCD 中,∠ABC =60°,E 、F 分别 在CD 和BC 的延长线上,AE ∥BD .(1)求证:点D 为CE 的中点; (2)若EF ⊥BC ,EF =,求AB 的长.五、解答题(三)(本大题3小题,每小题9分,共27分)23、现要把228吨物资从某地运往甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a 辆,前往甲、乙两地的总运费为w 元,求出w 与a 的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费。
2014年河北省中考数学试题(解析版)
2014年河北省中考数学试题(解析版)2014年河北省中考数学试题一、选择题(共16小题,1~6小题,每小题2分;7~16小题,每小题2分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)(2014•河北)﹣2是2的()A.倒数B.相反数C.绝对值D.平方根考点:相反数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:﹣2是2的相反数,故选:B.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(2分)(2014•河北)如图,△ABC中,D,E分别是边AB,AC的中点.若DE=2,则BC=()A.2 B. 3 C. 4 D. 5考点:三角形中位线定理.分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得BC=2DE.解答:解:∵D,E分别是边AB,AC的中点,∴DE是△ABC的中位线,∴BC=2DE=2×2=4.故选C.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键.3.(2分)(2014•河北)计算:852﹣152=()A.70 B.700 C. 4900 D.7000考点:因式分解-运用公式法.分析:直接利用平方差进行分解,再计算即可.解答:解:原式=(85+15)(85﹣15)=100×70=7000.故选:D.点评:此题主要考查了公式法分解因式,关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).4.(2分)(2014•河北)如图,平面上直线a,b分别过线段OK两端点(数据如图),则a,b相交所成的锐角是()A.20°B.30°C. 70°D. 80°考点:三角形的外角性质分析:根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:a,b相交所成的锐角=100°﹣70°=30°.故选B.点评:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.5.(2分)(2014•河北)a,b是两个连续整数,若a<<b,则a,b分别是()A.2,3 B.3,2 C.3,4 D. 6,8考点:估算无理数的大小.分析:根据,可得答案.解答:解:,故选:A.点评:本题考查了估算无理数的大小,是解题关键.6.(2分)(2014•河北)如图,直线l经过第二、三、四象限,l的解析式是y=(m﹣2)x+n,则m的取值范围在数轴上表示为()A.B.C.D.考点:一次函数图象与系数的关系;在数轴上表示不等式的解集专题:数形结合.分析:根据一次函数图象与系数的关系得到m﹣2<0且n<0,解得m<2,然后根据数轴表示不等式的方法进行判断.解答:解:∵直线y=(m﹣2)x+n经过第二、三、四象限,∴m﹣2<0且n<0,∴m<2且n<0.故选C.点评:本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).也考查了在数轴上表示不等式的解集.7.(3分)(2014•河北)化简:﹣=()A.0 B. 1 C.x D.考点:分式的加减法.专题:计算题.分析:原式利用同分母分式的减法法则计算,约分即可得到结果.解答:解:原式==x.故选C点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.8.(3分)(2014•河北)如图,将长为2、宽为1的矩形纸片分割成n个三角形后,拼成面积为2的正方形,则n≠()A.2 B.3 C. 4 D. 5考点:图形的剪拼分析:利用矩形的性质以及正方形的性质,结合勾股定理得出分割方法即可.解答:解:如图所示:将长为2、宽为1的矩形纸片分割成n个三角形后,拼成面积为2的正方形,则n可以为:3,4,5,故n≠2.故选:A.点评:此题主要考查了图形的剪拼,得出正方形的边长是解题关键.A.6厘米 B.12厘米 C.24厘米 D.36厘米9.(3分)(2014•河北)某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米.当x=3时,y=18,那么当成本为72元时,边长为()考点:一次函数的应用.分析:设y与x之间的函数关系式为y=kx2,由待定系数法就可以求出解析式,当y=72时代入函数解析式就可以求出结论.解答:解:设y与x之间的函数关系式为y=kx2,由题意,得18=9k,解得:k=2,∴y=2x2,当y=72时,72=2x2,∴x=6.故选A.点评:本题考查了待定系数法求函数的解析式的运用,根据解析式由函数值求自变量的值的运用,解答时求出函数的解析式是关键.10.(3分)(2014•河北)如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A,B围成的正方体上的距离是()A.0 B. 1 C.D.考点:展开图折叠成几何体分析:根据展开图折叠成几何体,可得正方体,根据勾股定理,可得答案.解答:解;AB是正方体的边长,AB=1,故选:B.点评:本题考查了展开图折叠成几何体,勾股定理是解题关键.11.(3分)(2014•河北)某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的实验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一个质地均匀的正六面体骰子,向上的面点数是4考点:利用频率估计概率;折线统计图.分析:根据统计图可知,试验结果在0.17附近波动,即其概率P≈0.17,计算四个选项的概率,约为0.17者即为正确答案.解答:解:A、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀“的概率为,故此选项错误;B、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率是:=;故此选项错误;C、暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球的概率为,故此选项错误;D、掷一个质地均匀的正六面体骰子,向上的面点数是4的概率为≈0.17,故此选项正确.故选:D.点评:此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.12.(3分)(2014•河北)如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A、 B、C、 D、考点:作图—复杂作图分析:要使PA+PC=BC,必有PA=PB,所以选项中只有作AB 的中垂线才能满足这个条件,故D正确.解答:解:D选项中作的是AB的中垂线,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC故选:D.点评:本题主要考查了作图知识,解题的关键是根据作图得出PA=PB.13.(3分)(2014•河北)在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是()A.两人都对 B.两人都不对 C.甲对,乙不对 D.甲不对,乙对考点:相似三角形的判定;相似多边形的性质分析:甲:根据题意得:AB∥A′B′,AC∥A′C′,BC∥B′C′,即可证得∠A=∠A′,∠B=∠B′,可得△ABC∽△A′B′C′;乙:根据题意得:AB=CD=3,AD=BC=5,则A′B′=C′D′=3+2=5,A′D′=B′C′=5+2=7,则可得,即新矩形与原矩形不相似.解答:解:甲:根据题意得:AB∥A′B′,AC∥A′C′,BC ∥B′C′,∴∠A=∠A′,∠B=∠B′,∴△ABC∽△A′B′C′,∴甲说法正确;乙:∵根据题意得:AB=CD=3,AD=BC=5,则A′B′=C′D′=3+2=5,A′D′=B′C′=5+2=7,∴,,∴,∴新矩形与原矩形不相似.∴乙说法正确.故选A.点评:此题考查了相似三角形以及相似多边形的判定.此题难度不大,注意掌握数形结合思想的应用.14.(3分)(2014•河北)定义新运算:a⊕b=例如:4⊕5=,4⊕(﹣5)=.则函数y=2⊕x(x≠0)的图象大致是()A. B. C.D.考点:反比例函数的图象专题:新定义.分析:根据题意可得y=2⊕x=,再根据反比例函数的性质可得函数图象所在象限和形状,进而得到答案.解答:解:由题意得:y=2⊕x=,当x>0时,反比例函数y=在第一象限,当x<0时,反比例函数y=﹣在第二象限,又因为反比例函数图象是双曲线,因此D选项符合,故选:D.点评:此题主要考查了反比例函数的性质,关键是掌握反比例函数的图象是双曲线.15.(3分)(2014•河北)如图,边长为a的正六边形内有两个三角形(数据如图),则=()A.3 B. 4 C. 5 D. 6考点:正多边形和圆分析:先求得两个三角形的面积,再求出正六边形的面积,求比值即可.解答:解:如图,∵三角形的斜边长为a,∴两条直角边长为a,a,∴S 空白=a•a=a2,∵AB=a,∴OC=a,∴S 正六边形=6×a•a=a2,∴S阴影=S正六边形﹣S空白=a2﹣a2=a2,∴==5,故选C.点评:本题考查了正多边形和圆,正六边形的边长等于半径,面积可以分成六个等边三角形的面积来计算.16.(3分)(2014•河北)五名学生投篮球,规定每人投20次,统计他们每人投中的次数.得到五个数据.若这五个数据的中位数是6.唯一众数是7,则他们投中次数的总和可能是()A.20 B.28 C. 30 D. 31考点:众数;中位数.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.则最大的三个数的和是:6+7+7=20,两个较小的数一定是小于5的非负整数,且不相等,则可求得五个数的和的范围,进而判断.解答:解:中位数是6.唯一众数是7,则最大的三个数的和是:6+7+7=20,两个较小的数一定是小于5的非负整数,且不相等,则五个数的和一定大于20且小于29.故选B.点评:本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.二、填空题(共4小题,每小题3分,满分12分)17.(3分)(2014•河北)计算:= 2 .考点:二次根式的乘除法.分析:本题需先对二次根式进行化简,再根据二次根式的乘法法则进行计算即可求出结果.解答:解:,=2×,=2.故答案为:2.点评:本题主要考查了二次根式的乘除法,在解题时要能根据二次根式的乘法法则,求出正确答案是本题的关键.18.(3分)(2014•河北)若实数m,n满足|m﹣2|+(n﹣2014)2=0,则m﹣1+n0= .考点:负整数指数幂;非负数的性质:绝对值;非负数的性质:偶次方;零指数幂.分析:根据绝对值与平方的和为0,可得绝对值与平方同时为0,根据负整指数幂、非0的0次幂,可得答案.解答:解:|m﹣2|+(n﹣2014)2=0,m﹣2=0,n﹣2014=0,m=2,n=2014.m﹣1+n0=2﹣1+20140=+1=,故答案为:.点评:本题考查了负整指数幂,先求出m、n的值,再求出负整指数幂、0次幂.19.(3分)(2014•河北)如图,将长为8cm的铁丝尾相接围成半径为2cm的扇形.则S扇形= 4 cm2.考点:扇形面积的计算.分析:根据扇形的面积公式S 扇形=×弧长×半径求出即可.解答:解:由题意知,弧长=8cm﹣2cm×2=4 cm,扇形的面积是×4cm×2cm=4cm2,故答案为:4.点评:本题考查了扇形的面积公式的应用,主要考查学生能否正确运用扇形的面积公式进行计算,题目比较好,难度不大.20.(3分)(2014•河北)如图,点O,A在数轴上表示的数分别是0,0.1.将线段OA分成100等份,其分点由左向右依次为M1,M2,…,M99;再将线段OM1,分成100等份,其分点由左向右依次为N1,N2,…,N99;继续将线段ON1分成100等份,其分点由左向右依次为P1,P2.…,P99.则点P37所表示的数用科学记数法表示为 3.7×10﹣6.考点:规律型:图形的变化类;科学记数法—表示较小的数.分析:由题意可得M 1表示的数为0.1×=10﹣3,N1表示的数为0×10﹣3=10﹣5,P 1表示的数为10﹣5×=10﹣7,进一步表示出点P37即可.解答:解:M 1表示的数为0.1×=10﹣3,N 1表示的数为0×10﹣3=10﹣5,P 1表示的数为10﹣5×=10﹣7,P37=37×10﹣7=3.7×10﹣6.故答案为:3.7×10﹣6.点评:此题考查图形的变化规律,结合图形,找出数字之间的运算方法,找出规律,解决问题.三、解答题(共6小题,满分66分,解答应写出文字说明、证明过程或演算步骤)21.(10分)(2014•河北)嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时,对于b2﹣4ac>0的情况,她是这样做的:由于a≠0,方程ax2++bx+c=0变形为:x2+x=﹣,…第一步x2+x+()2=﹣+()2,…第二步(x+)2=,…第三步x+=(b2﹣4ac>0),…第四步x=,…第五步嘉淇的解法从第四步开始出现错误;事实上,当b2﹣4ac >0时,方程ax2+bx+c=0(a≠O)的求根公式是x=.用配方法解方程:x2﹣2x﹣24=0.考点:解一元二次方程-配方法专题:阅读型.分析:第四步,开方时出错;把常数项24移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.解答:解:在第四步中,开方应该是x+=±.所以求根公式为:x=.故答案是:四;x=;用配方法解方程:x2﹣2x﹣24=0解:移项,得x2﹣2x=24,配方,得x2﹣2x+1=24+1,即(x﹣1)2=25,开方得x﹣1=±5,∴x1=6,x2=﹣4.点评:本题考查了解一元二次方程﹣﹣配方法.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.22.(10分)(2014•河北)如图1,A,B,C是三个垃圾存放点,点B,C分别位于点A的正北和正东方向,AC=100米.四人分别测得∠C的度数如下表:甲乙丙丁34 36 38 40∠C(单位:度)他们又调查了各点的垃圾量,并绘制了下列尚不完整的统计图2,图3:(1)求表中∠C 度数的平均数:(2)求A处的垃圾量,并将图2补充完整;(3)用(1)中的作为∠C的度数,要将A处的垃圾沿道路AB都运到B处,已知运送1千克垃圾每米的费用为0.005元,求运垃圾所需的费用.(注:sin37°=0.6,cos37°=0.8,tan37°=0.75)考点:解直角三角形的应用;扇形统计图;条形统计图;算术平均数分析:(1)利用平均数求法进而得出答案;(2)利用扇形统计图以及条形统计图可得出C处垃圾量以及所占百分比,进而求出垃圾总量,进而得出A处垃圾量;(3)利用锐角三角函数得出AB的长,进而得出运垃圾所需的费用.解答:解:(1)==37;(2)∵C处垃圾存放量为:320kg,在扇形统计图中所占比例为:50%,∴垃圾总量为:320÷50%=640(kg),∴A处垃圾存放量为:(1﹣50%﹣37.5%)×640=80(kg),占12.5%.补全条形图如下:(3)∵AC=100米,∠C=37°,∴tan37°=,∴AB=ACtan37°=100×0.75=75(m),∵运送1千克垃圾每米的费用为0.005元,∴运垃圾所需的费用为:75×80×0.005=30(元),答:运垃圾所需的费用为30元.点评:此题主要考查了平均数求法以及锐角三角三角函数关系以及条形统计图与扇形统计图的综合应用,利用扇形统计图与条形统计图获取正确信息是解题关键.23.(11分)(2014•河北)如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求∠ACE的度数;(3)求证:四边形ABEF是菱形.考点:全等三角形的判定与性质;菱形的判定;旋转的性质专题:计算题.分析:(1)根据旋转角求出∠BAD=∠CAE,然后利用“边角边”证明△ABD和△ACE全等.(2)根据全等三角形对应角相等,得出∠ACE=∠ABD,即可求得.(3)根据对角相等的四边形是平行四边形,可证得四边形ABEF是平行四边形,然后依据邻边相等的平行四边形是菱形,即可证得.解答:(1)证明:∵ABC绕点A按逆时针方向旋转100°,∴∠BAC=∠DAE=40°,∴∠BAD=∠CAE=100°,又∵AB=AC,∴AB=AC=AD=AE,在△ABD与△ACE中∴△ABD≌△ACE(SAS).(2)解:∵∠CAE=100°,AC=AE,∴∠ACE=(180°﹣∠CAE)=(180°﹣100°)=40°;(3)证明:∵∠BAD=∠CAE=140°AB=AC=AD=AE,∴∠ABD=∠ADB=∠ACE=∠AEC=20°.∵∠BAE=∠BAD+∠DAE=160°,∴∠BFE=360°﹣∠DAE﹣∠ABD﹣∠AEC=160°,∴∠BAE=∠BFE,∴四边形ABEF是平行四边形,∵AB=AE,∴平行四边形ABEF是菱形.点评:此题考查了全等三角形的判定与性质,等腰三角形的性质以及菱形的判定,熟练掌握全等三角形的判定与性质是解本题的关键.24.(11分)(2014•河北)如图,2×2网格(每个小正方形的边长为1)中有A,B,C,D,E,F,G、H,O九个格点.抛物线l的解析式为y=(﹣1)n x2+bx+c(n为整数).(1)n为奇数,且l经过点H(0,1)和C(2,1),求b,c 的值,并直接写出哪个格点是该抛物线的顶点;(2)n为偶数,且l经过点A(1,0)和B(2,0),通过计算说明点F(0,2)和H(0,1)是否在该抛物线上;(3)若l经过这九个格点中的三个,直接写出所有满足这样条件的抛物线条数.考点:二次函数综合题专题:压轴题.分析:(1)根据﹣1的奇数次方等于﹣1,再把点H、C的坐标代入抛物线解析式计算即可求出b、c的值,然后把函数解析式整理成顶点式形式,写出顶点坐标即可;(2)根据﹣1的偶数次方等于1,再把点A、B的坐标代入抛物线解析式计算即可求出b、c的值,从而得到函数解析式,再根据抛物线上点的坐标特征进行判断;(3)分别利用(1)(2)中的结论,将抛物线平移,可以确定抛物线的条数.解答:解:(1)n为奇数时,y=﹣x2+bx+c,∵l经过点H(0,1)和C(2,1),∴,解得,∴抛物线解析式为y=﹣x2+2x+1,y=﹣(x﹣1)2+2,∴顶点为格点E(1,2);(2)n为偶数时,y=x2+bx+c,∵l经过点A(1,0)和B(2,0),∴,解得,∴抛物线解析式为y=x2﹣3x+2,当x=0时,y=2,∴点F(0,2)在抛物线上,点H(0,1)不在抛物线上;(3)所有满足条件的抛物线共有8条.当n为奇数时,由(1)中的抛物线平移又得到3条抛物线,如答图3﹣1所示;当n为偶数时,由(2)中的抛物线平移又得到3条抛物线,如答图3﹣2所示.点评:本题是二次函数综合题型,主要利用了待定系数法求二次函数解析式,二次函数图象上点的坐标特征,二次函数的对称性,要注意(3)抛物线有开口向上和开口向下两种情况.25.(11分)(2014•河北)图1和图2中,优弧所在⊙O的半径为2,AB=2.点P为优弧上一点(点P不与A,B重合),将图形沿BP折叠,得到点A的对称点A′.(1)点O到弦AB的距离是 1 ,当BP经过点O时,∠ABA′= 60 °;(2)当BA′与⊙O相切时,如图2,求折痕的长:(3)若线段BA′与优弧只有一个公共点B,设∠ABP=α.确定α的取值范围.考点:圆的综合题;含30度角的直角三角形;勾股定理;垂径定理;切线的性质;翻折变换(折叠问题);锐角三角函数的定义专题:综合题.分析:(1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出∠ABA′.(2)根据切线的性质得到∠OBA′=90°,从而得到∠ABA′=120°,就可求出∠ABP,进而求出∠OBP=30°.过点O作OG⊥BP,垂足为G,容易求出OG、BG的长,根据垂径定理就可求出折痕的长.(3)根据点A′的位置不同,分点A′在⊙O内和⊙O外两种情况进行讨论.点A′在⊙O内时,线段BA′与优弧都只有一个公共点B,α的范围是0°<α<30°;当点A′在⊙O 的外部时,从BA′与⊙O相切开始,以后线段BA′与优弧都只有一个公共点B,α的范围是60°≤α<120°.从而得到:线段BA′与优弧只有一个公共点B时,α的取值范围是0°<α<30°或60°≤α<120°.解答:解:(1)①过点O作OH⊥AB,垂足为H,连接OB,如图1①所示.∵OH⊥AB,AB=2,∴AH=BH=.∵OB=2,∴OH=1.∴点O到AB的距离为1.②当BP经过点O时,如图1②所示.∵OH=1,OB=2,OH⊥AB,∴sin∠OBH==.∴∠OBH=30°.由折叠可得:∠A′BP=∠ABP=30°.∴∠ABA′=60°.故答案为:1、60.(2)过点O作OG⊥BP,垂足为G,如图2所示.∵BA′与⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.∵∠OBH=30°,∴∠ABA′=120°.∴∠A′BP=∠ABP=60°.∴∠OBP=30°.∴OG=OB=1.∴BG=.∵OG⊥BP,∴BG=PG=.∴BP=2.∴折痕的长为2.(3)若线段BA′与优弧只有一个公共点B,Ⅰ.当点A′在⊙O的内部时,此时α的范围是0°<α<30°.Ⅱ.当点A′在⊙O的外部时,此时α的范围是60°≤α<120°.综上所述:线段BA′与优弧只有一个公共点B时,α的取值范围是0°<α<30°或60°≤α<120°.点评:本题考查了切线的性质、垂径定理、勾股定理、三角函数的定义、30°角所对的直角边等于斜边的一半、翻折问题等知识,考查了用临界值法求α的取值范围,有一定的综合性.第(3)题中α的范围可能考虑不够全面,需要注意.26.(13分)(2014•河北)某景区内的环形路是边长为800米的正方形ABCD,如图1和图2.现有1号、2号两游览车分别从出口A和景点C同时出发,1号车顺时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200米/分.探究:设行驶吋间为t分.(1)当0≤t≤8时,分别写出1号车、2号车在左半环线离出口A的路程y1,y2(米)与t(分)的函数关系式,并求出当两车相距的路程是400米时t的值;(2)t为何值时,1号车第三次恰好经过景点C?并直接写出这一段时间内它与2号车相遇过的次数.发现:如图2,游客甲在BC上的一点K(不与点B,C重合)处候车,准备乘车到出口A,设CK=x米.情况一:若他刚好错过2号车,便搭乘即将到来的1号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车.比较哪种情况用时较多?(含候车时间)决策:己知游客乙在DA上从D向出口A走去.步行的速度是50米/分.当行进到DA上一点P(不与点D,A重合)时,刚好与2号车迎面相遇.(1)他发现,乘1号车会比乘2号车到出口A用时少,请你简要说明理由:考点:一次函数的应用;一元一次方程的应用;一元一次不等式组的应用.分析:探究:(1)由路程=速度×时间就可以得出y1,y2(米)与t(分)的函数关系式,再由关系式就可以求出两车相距的路程是400米时t的值;(2)求出1号车3次经过A的路程,进一步求出行驶的时间,由两车第一次相遇后每相遇一次需要的时间就可以求出相遇次数;发现:分别计算出情况一的用时和情况二的用时,在进行大小比较就可以求出结论决策:(1)根据题意可以得出游客乙在AD上等待乘1号车的距离小于边长,而成2号车到A出口的距离大于3个边长,进而得出结论;(2)分类讨论,若步行比乘1号车的用时少,就有,得出s<320.就可以分情况得出结论.解答:解:探究:(1)由题意,得y1=200t,y2=﹣200t+1600当相遇前相距400米时,﹣200t+1600﹣200t=400,t=3,当相遇后相距400米时,200t﹣(﹣200t+1600)=400,t=5.答:当两车相距的路程是400米时t的值为3分钟或5分钟;(2)由题意,得1号车第三次恰好经过景点C行驶的路程为:800×2+800×4×2=8000,∴1号车第三次经过景点C需要的时间为:8000÷200=40分钟,两车第一次相遇的时间为:1600÷400=4.第一次相遇后两车每相遇一次需要的时间为:800×4÷400=8,∴两车相遇的次数为:(40﹣4)÷8+1=5次.∴这一段时间内它与2号车相遇的次数为:5次;发现:由题意,得情况一需要时间为:=16﹣,情况二需要的时间为:=16+∵16﹣<16+∴情况二用时较多.决策:(1)∵游客乙在AD边上与2号车相遇,∴此时1号车在CD边上,∴乘1号车到达A的路程小于2个边长,乘2号车的路程大于3个边长,∴乘1号车的用时比2号车少.(2)若步行比乘1号车的用时少,,∴s<320.∴当0<s<320时,选择步行.同理可得当320<s<800时,选择乘1号车,当s=320时,选择步行或乘1号车一样.点评:本题考查了一次函数的解析式的运用,一元一次方程的运用,一元一次不等式的运用,分类讨论思想的运用,方案设计的运用,解答时求出函数的解析式是解答本题的关键.(2)设PA=s(0<s<800)米.若他想尽快到达出口A,根据s的大小,在等候乘1号车还是步行这两种方式中.他该如何选择?。
2014中考数学二模试卷及答案(最新两套)
13.已知一次函数 的图象过点 、 .若 ,则
▲.
14.如图,四边形ABCD内接于⊙O,AD∥BC,∠ACB=50°,则∠CBD=▲°.
15.如图,在函数 (x>0)的图象上有点P1、P2、P3…、Pn、Pn+1,点P1的横坐标为1,且后面每个点的横坐标与它前面相邻点的横坐标的差都是1,过点P1、P2、P3…、Pn、Pn+1分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3…、Sn,则Sn=▲.(用含n的代数式表示)
∴△ABD的外接圆⊙O的圆心O在AC上.…………………………2分
∵OD=OB,OC=OC,CB=CD,∴△OBC≌△ODC.
∴∠OBC=∠ODC=90°.………………………………………………3分
又∵OB为半径,∴⊙O与BC相切.……………………………………4分
(没有说明圆心在AC上,扣1分.)
(2)∵AD=CD,∴∠ACD=∠CAD.∠COD=2∠CAD.
一、选择题(本大题共6小题,每小题2分,共12分)
题号
1
2
3
4
5
6
答案
C
D
D
B
D
B
二、填空题(本大题共10小题,每小题2分,共20分)
7. 8.39.x1=2,x2=4 10.乙11.2
12. 13.-2 14.50°15. 16.0.5或1.5
三、解答题(本大题共11小题,共88分)
17.(本题6分)
=.…………………………………………6分
19.(本题8分)
(1)∵△ABC≌△CAD,
河北省2014年中考数学模拟试卷及答案
2014年河北省初中学业考试模拟试题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;全卷共6页,满分120分.考试时间为120分钟.2.答卷前,考生务必将自己的姓名、准考证号、考试科目和试卷类型涂写在答题纸密封线内的项目填写清楚.3.第Ⅰ卷、第Ⅱ卷每小题做出答案后,必须用黑色(或蓝色)笔填写在答题纸...的指定位置,否则不计分.一、选择题:(本题12小题,1-6每小题2分,7-12每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的.1、﹣6的绝对值是()A、﹣6B、6C、D、2、2011年4月28日,国家统计局发布2010年第六次全国人口普查主要数据公报,数据显示,大陆31个省、自治区、直辖市和现役军人的人口共1339724852人,大陆总人口这个数据用科学记数法表示(保留3个有效数字)为()A、1.33×109人B、1.34×109人C、13.4×108人D、1.34×1010人3、在九年级体育中考中,某校某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):44,45,42,48,46,43,47,45.则这组数据的极差为()A、2B、4C、6D、84、如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是()A、5B、4C、3D、25、分解因式2x2—4x+2的最终结果是( )A.2x(x-2) B.2(x2-2x+1) C.2(x-1)2 D.(2x-2)26、一名同学想用正方形和圆设计一个图案,要求整个图案关于正方形的某条对角线对称,那么下列图案中不符合...要求的是( )7、小玲每天骑自行车或步行上学,她上学的路程为2 800米,骑自行车的平均速度是步行平均速度的4倍,骑自行车比步行上学早到30分钟.设步行的平均速度为x米/分.根据题意,下面列出的方程正确的是(A)30428002800=-xx.(B)30280042800=-xx.(C)30528002800=-xx.(D)30280052800=-xx8、如图,直线l1//l2,点A在直线l1上,以点A为圆心,适当长为半径画弧,分别交直线l1、l2于B、C两点,连结AC、BC.若∠ABC=54°,则∠1的大小为(A)36°.(B)54°.(C)72°.(D)73°.第8题第9题9、如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为()A、600mB、500mC、400mD、300m10、小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图),若小亮上坡、平路、下坡的速度分别为v1,v2,v3,v1<v2<v3,则小亮同学骑车上学时,离家的路程s与所用时间t的函数关系图象可能是()A、B、C、D、11、如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A、30°B、45°C、90°D、135°12、如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm2,四边形ABCD面积是11cm2,则①②③④四个平行四边形周长的总和为()A、48cmB、36cmC、24cmD、18cm二、填空题(本大题共6个小题,每小题3分,共18分,把答案写在很横线上)13、当x时,分式有意义14、如图,直尺一边AB与量角器的零刻度线CD平行,若量角器的一条刻度线OF的读数为70°,OF与AB交于点E,那么∠AEF=.第14题第15题15、如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是.16、如果方程x2+2x+a=0有两个相等的实数根,则实数a的值为.17、如图,在▱ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H,则△DEF的面积是.第17题第18题18、在直角坐标系中,有如图所示的Rt△ABO,AB⊥x轴于点B,斜边AO=10,sin∠AOB=,反比例函数的图象经过AO的中点C,且与AB交于点D,则点D的坐标为.三、解答题(本大题共8个小题,共72分,解答要写出详细的过程)19、(本小题满分8分)(1)计算:|﹣2|﹣(3﹣π)0+2cos45°;(2)化简:.20、(本小题满分8分)某校课外兴趣小组从我市七年级学生中抽取2 000人做了如下问卷调查,将统计结果绘制了如下两幅统计图.根据上述信息解答下列问题:(1)求条形统计图中n的值.(2)如果每瓶饮料平均3元钱,“少2瓶以上”按少喝3瓶计算.①求这2000名学生一个月少喝饮料能节省多少钱捐给希望工程?②按上述统计结果估计,我市七年级6万学生一个月少喝饮料大约能节省多少钱捐给希望工程?21、(本小题满分8分)张经理到老王的果园里一次性采购一种水果,他俩商定:张经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC 所示(不包含端点A ,但包含端点C). (1)求y 与x 之间的函数关系式;(2)已知老王种植水果的成本是2 800元/吨,那么张经理的采购量为多少时,老王在这次买卖中所获的利润w 最大?最大利润是多少?22、(本小题满分8分)如图①,在□ABCD 的形外分别作等腰直角△ABF 和等腰直角△ADE ,∠F AB=∠EAD =90°,连结AC 、EF .在图中找一个与△F AE 全等的三角形,并加以证明.(5分) 应用以□ABCD 的四条边为边,在其形外分别作正方形,如图②,连结EF 、GH 、IJ 、KL .若□ABCD 的面积为5,则图中阴影部分四个三角形的面积和为 .(2分)O4000800023、(本小题满分9分)为建设节约型、环境友好型社会,克服因干旱而造成的电力紧张困难,切实做好节能减排工作.某地决定对居民家庭用电实际“阶梯电价”,电力公司规定:居民家庭每月用电量在80千瓦时以下(含80千瓦时,1千瓦时俗称1度)时,实际“基本电价”;当居民家庭月用电量超过80千瓦时时,超过部分实行“提高电价”.(1)小张家2011年4月份用电100千瓦时,上缴电费68元;5月份用电120千瓦时,上缴电费88元.求“基本电价”和“提高电价”分别为多少元/千瓦时?(2)若6月份小张家预计用电130千瓦时,请预算小张家6月份应上缴的电费.24、(本小题满分9分)如图,等腰梯形MNPQ的上底长为2,腰长为3,一个底角为60°.正方形ABCD的边长为1,它的一边AD在MN上,且顶点A与M重合.现将正方形ABCD 在梯形的外面沿边MN、NP、PQ进行翻滚,翻滚到有一个顶点与Q重合即停止滚动.(1)请在所给的图中,用尺规画出点A在正方形整个翻滚过程中所经过的路线图;(2)求正方形在整个翻滚过程中点A所经过的路线与梯形MNPQ的三边MN、NP、PQ所围成图形的面积S.Q以四边形ABCD的边AB、BC、CD、DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E、F、G、H,顺次连接这四个点,得四边形EFGH.(1)如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状(不要求证明);(2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=α(0°<α<90°),①试用含α的代数式表示∠HAE;②求证:HE=HG;③四边形EFGH是什么四边形?并说明理由.在平面直角坐标系中,如图1,将n个边长为1的正方形并排组成矩形OABC,相邻两边OA和OC分别落在x轴和y轴的正半轴上,设抛物线y=ax2+bx+c(a<0)过矩形顶点B、C.(1)当n=1时,如果a=﹣1,试求b的值;(2)当n=2时,如图2,在矩形OABC上方作一边长为1的正方形EFMN,使EF在线段CB上,如果M,N两点也在抛物线上,求出此时抛物线的解析式;(3)将矩形OABC绕点O顺时针旋转,使得点B落到x轴的正半轴上,如果该抛物线同时经过原点O.①试求当n=3时a的值;②直接写出a关于n的关系式.参考答案一、选择题:B BC A CD A C B C C A 二、填空题13、≠3 14、70° 15、(5,1) 16、1 17、.18、(8,)三、解答题19、解:(1)原式==;(2)原式===2.20、解:(1)200060%(445470185)100⨯-++=.所以,条形统计图中100n =.(2)①47011852100333420⨯+⨯+⨯⨯=(). 所以,这2 000名学生一个月少喝饮料能节省3 420元钱捐给希望工程.②6000034201026002000⨯=. 所以,我市七年级6万名学生一个月少喝饮料大约能节省102 600元钱捐给希望工程. 21、解:(1) 由图像知y =()()8000 020200120002040x x x <≤-+<≤(2)∵利润=收入-成本=采购价×采购量-成本,即2800w yx x =- ∴由(1) 有w =()()()28000 -2800520002020012000280020092002040x x x x x x x x x x =<≤-+-=-+<≤()5200020w x x =<≤是一次函数一段,最大值5200×20=10400022009200w x x =-+()2040x <≤ 是二次函数一段,当920023400x =-=-时,w 有 最大值220023920023105800w =-⨯+⨯=。
2014年河北省中考数学真题及答案(word版)
2014年河北省初中毕业生升学文化课考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分。
卷Ⅰ为选择题,卷Ⅱ为非选择题。
本试卷共120分,考试时间120分钟。
卷I(选择题,共42分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上。
考试结束,监考人员将试卷和答题卡一并收回。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
答在试卷上无效一、选择题(本大题共 16 个小题, 1-6 小题,每小题 2 分; 7-16 小题,每小题 3 分,共42 分,在每小题给出的四个选项中,只有一项符合题目要求的)1 、 -2 是 2 的 ( )A 、倒数B 、相反数C 、绝对值D 、平方根2 、如图,△ ABC 中, D,E 分别为上边 AB , AC 的中点,若 DE=2 ,则 BC= ()A 、 2B 、 3C 、 4 D、53 、计算: 85 ² -15 ² = ( )A 、 70B 、 700C 、 4900D 、 70004 、如图,平面上直线 a , b 分别过线段 OK 两端点(数据如图),则 a , b 相交所成的锐角上()A 、 20 °B 、 30 °C 、 70 °D 、 80 °5 、 a , b 是两个连续整数,若 a << b ,则 a , b 分别是()A 、 2,3B 、 3, 2C 、 3,4D 、 6,86 、如图,直线 l 经过第二,三,四象限, l 的解析式是 y= ( m-2 ) x+n ,则 m 的取值范围则数轴上表示为()7 、化简: - ()A 、 0B 、 1C 、 xD 、8 、如图,将长为 2 ,宽为 1 的矩形纸片分割成 n 个三角形后,拼成面积为 2 的正方形,则n ≠()A 、 2B 、 3C 、 4D 、 59 、某种正方形合金板材的成本 y (元)与它的面积成成正比,设边长为 x 厘米,当 x=3 时, y=18 ,那么当成本为 72 元时,边长为()A 、 6 厘米B 、 12 厘米C 、 24 厘米D 、 36 厘米10 、图 1 是边长为 1 的六个小正方形组成的图形,它可以围成图 2 的正方体,则图 1 中正方形顶点 A,B 在围成的正方体的距离是()A 、 0B 、 1C 、D 、11 、某小组作“用频率估计概率的实验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的实验最有可能的是()A 、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B 、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃;C 、暗箱中有 1 个红球和 2 个黄球,它们只有颜色上的区别,从中任取一球是黄球。
2014年河北省中考数学一模二模试卷及答案解析(绝密权威押题+预测猜想+精选模拟试卷+考前最后冲刺复习)
A . 2B . 2.ZA 是锐角,且 sinA=cosA , 3则/A 的度数是( C .)-1 , 2 D. -1, 3A . 30°B . 45°C . 60°3.若两个相似二角形的面积之比为 1: 4,则它们的周长之比为()D . 75°A . 1: 24.一个矩形的面积是 6,则B. I 1: 4M 这个矩形的一组邻边长 x C . 与 1 : 5 D .y 的函数关系的图象大致是(1 : 16)5.如图,AB 为GO 的直径,点 C 在GO 上.若/C=16 °贝U/BOC 的度数是(B . 48 °C . 32°D . 162014河北省中考数学一模二模试卷及答案解析说明:本文档共收集整理以下 7个市(区)的中考数学一模试卷及答案解沧州市 唐山市路北区邢台市邯郸市衡水市石家庄市唐山市路南区说明:本文档共收集整理以下 2个市(区)的中考数学二模试卷及答案解邯郸市唐山市路南区(本文档共计9份试卷,售价4.5元,平均每价试卷0.5元。
)2014年河北省沧州市中考数学一模试卷及答案解析一、选择题1 .方程(x+1) (x - 2) =x+1 的解是( A .6•如图,将一个可以自由旋转的转盘等分成甲、乙、丙、丁四个扇形区域,若指针固定不变,转动这个转盘一次(如果指针指在等分线上,那么重新转动,直至指针指在某个扇形区域内为止),则指针指在甲区域内的概率是()A . 1B . 1C 1D. 12§ 1 |7.如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC 上从B向C 移动而R不动时,那么下列结论成立的是()A . 线段EF的长逐渐增大B . 线段EF的长逐渐减小C. 线段EF的长不改变 D . 线段EF的长不能确定&一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是()A . 5 nB . 4 n C. 3 n D . 2 n9.某经济开发区,今年一月份工业产值达50亿元,第一季度总产值为175亿元,二月、三月平均每月的增长率是多少若设平均每月的增长率为X,根据题意,可列方程为()A .250 (1+x) =175 B .250+50 (1+x) +50 (1+x) =175C. 250 (1+x) +50 (1+x) =175 D .2 50+50 (1+x) =17510.如图,直径为10的GA经过点C (0, 5)和点O (0, 0), B是y轴右侧O A优弧上一点,则/ OBC的余弦值为()A . 1B . 3C.岳D.1 1|旦 1 1二、填空题11. 已知反比例函数解析式尸左的图象经过(1,- 2),贝U k= _ _ .12. 某公司4月份的利润为160万元,要使6月份的利润达到250万元,则平均每月增长的百分率是—13. 如图是引拉线固定电线杆的示意图.已知:CD 1AB , CD= 3讥:m,/CAD= J CBD=60 °则拉线AC的长是 ______________ m.16.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是 10mm ,测得钢珠顶端离零件表面的距离为8mm ,如图所示,则这个小圆孔的宽口AB 的长度为 _______________ mm .17•如图,桌面上有对角线长分别为 2和3的菱形、边长为1的正六边形和半径为1的圆三个图形,则一点随机落在内的概率较大.18. 如图,正方形 OABC 与正方形(1, 0),贝U E 点的坐标为 ______19•如图,在一块长为 22米、宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路 各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米•若设道路宽为 x 米,则根据题14•如图,扇子(阴影部分)的圆心角为 x °余下扇形的圆心角为 这样的扇子外形较美观,若黄金比为0.6,则x 为________________y ° x 与y 的比通常按黄金比来设计,15. △KBC 的顶点都在方格纸的格点上,则sinA= ____________O 为位似中心,相似比为 1: 点A 的坐标为A D x意可列出方程为_______________ .三、解答题 21.如图,等腰梯形 ABCD 放置在平面直角坐标系中,已知A (- 2, 0)、B (6, 0)、D ( 0, 3),反比例函数的图象经过点 C .(1) 求点C 坐标和反比例函数的解析式;(2) 将等腰梯形 ABCD 向上平移m 个单位后,使点 B 恰好落在双曲线上,求 m 的值.22•如图,4张背面完全相同的纸牌(用①、② ③④表示),在纸牌的正面分别写有四个不同的条件,小明 将这4张纸牌背面朝上洗匀后,先随机摸出一张(不放回),再随机摸出一张.(1) 用树状图(或列表法)表示两次摸牌出现的所有可能结果; (2)以两次摸出牌上的结果为条件,求能判断四边形 ABCD是平行四边形的概率.23 .如图,E 是矩形 ABCD 的边BC 上一点,EF1AE , EF 分别交 AC , CD 于点M , F , BG 1AC ,垂足为 G , BG 交AE 于点H .(1) 求证:△KBE 辺ECF ;P 、Q 两点,分别过P 、Q 两点向x 轴和y 轴作垂(k > 0)与00在第一象限内交于 ,3),则图中阴影部分的面积为(2)找出与△KBH相似的三角形,并证明;(3)若 E 是BC 中点,BC=2AB , AB=2,求EM 的长.24•广安市某楼盘准备以每平方米 6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1) 求平均每次下调的百分率.(2) 某人准备以开盘价均价购买一套 100平方米的住房,开发商给予以下两种优惠方案以供选择: ①丁9.8折销售;②不打折,一次性送装修费每平方米 80元,试问哪种方案更优惠?U 型槽上的横截面图.已知图中 ABCD 为等腰梯形(AB /DC ), CD 距离为1m .设油罐横截面圆心为 O ,半径为5m,/D=56 °(参考数据:sin53° 0-8, tan56°桂,n 合,结果保留整数)26. 已知:?ABCD 的两边AB , AD 的长是关于x 的方程x 2- mx+ - =0的两个实数根.2 4(1) 当m 为何值时,四边形 ABCD 是菱形?求出这时菱形的边长; (2) 若AB 的长为2,那么?ABCD 的周长是多少?27. 如图所示,AC 1AB , AB=2 「;,AC=2,点D 是以AB 为直径的半圆 O 上一动点,DE JCD 交直线 AB 于点 E ,设ZDAB= a (0°< aV 90° . (1) 当a =18°时,求•丨啲长; (2) 当a =30°时,求线段BE 的长;(3) 若要使点E 在线段BA 的延长线上,则 a 的取值范围是 _________________ .(直接写出答案)25 •如图所示为圆柱形大型储油罐固定在 支点A 与B 相距8m ,罐底最低点到地面 求:U 型槽的横截面(阴影部分)的面积.DGC参考答案与试题解析、选择题1. D2. B3. A4. D5. C6. D7. C& C9. B10. C二、填空题11. - 2 .12. 25% .13. _6_m.14. 135°16. 8 mm.仃. 圆内—._18. —( ■:,':)—.19. (22- x) (17-x) =300 .20. 4 .三、解答题21. 解:(1)过点C作CE1AB于点E,••四边形ABCD是等腰梯形,•AD=BC , DO=CE,••ZDOA= ZCEO=90 °,在Rt △KOD和Rt组EC中.脚二BC二CE,•Rt A AOD 细t A BEC ( HL ),•AO=BE=2 ,••BO=6 ,•DC=OE=4 ,•C (4 , 3),••设反比例函数的解析式y= IJx根据题意得:3」,4解得k=12 ,1 9•反比例函数的解析式,一;答:点C 坐标是(4, 3),反比例函数的解析式是 y 二些.PlD rD V.虫:…—0 E 6 x(2)将等腰梯形 ABCD 向上平移m 个单位后得到梯形 A 'B 'C 'D', •点 B ' (6, m ),••点 B ' (6, m )恰好落在双曲线 沪二上, .•当 x=6 时, 即 m=2.① ② ③ ④ /1\ /T\ /N /1\ ②㊁④①③④①②④①②③ 则共有12种等可能的结果;(2).能判断四边形ABCD 是平行四边形的有:①②①③②①②④③① •能判断四边形 ABCD 是平行四边形的概率为:—=:.__________________________________ 12_3 ___________(1)证明:••四边形ABCD 是矩形, •••zABE=左 CF=90 ° ••AE JEF , Z AEB+ ZFEC=90 ° •ZAEB+ ZBAE=90 ° •••zBAE= ZCEF , ••^ABE 证CF ;(2) △KBH ^ECM . 证明:.BG 1AC , •••ZABG+ zBAG=90 ° •••ZABH= zECM ,由(1)知,/BAH= ZCEM , ••△kBH QECM ; (3) 解:作MR JBC ,垂足为R ,22.解:(1)画树状图得:开始④②④③共8种情况, 23.(2)方案①购房优惠:4860X100X( 1 - 0.98) =9720 (元); 方案②可优惠:80X100=8000 (元). 故选择方案①更优惠.解:如图,连接AO 、BO .过点A 作AE JDC 于点E ,过点O 作ON JDC 于点N , ON 交G O 于点M , 交AB 于点F .则OF JAB .•QA=OB=5m , AB=8m , OM 是半径,OM _1AB , ••AF=BF= 3A B=4 (m ), Z AOB=2 zAOF ,2ip在 Rt 虫OF 中,sin Z AOF=£^=0.8=S in53 °A0•••zAOF=53 ° 则 ZAOB=106 ° •QF=_ 石匹3 (m ),由题意得:MN=1m ,••FN=OM - OF+MN=3 ( m ),••四边形ABCD 是等腰梯形,AE JDC , FN JAB , ••AE=FN=3m , DC=AB+2DE . 在 Rt 虫DE 中,tan56°=—^, DE 2•'DE=2m , DC=12m .•,S 阴=S 梯形 ABCD -( S 扇 OAB - S Q AB )它(8+12) $-(n 語-刈① ^20(m 2). 答:U 型槽的横截面积约为 20m 2.24. 解:(1)设平均每次下调的百分率为x ,则 6000 (1 - x ) 2=4860,解得:x i =0.仁10% , x 2=1.9 (舍去), 故平均每次下调的百分率为10% ;25.••AD= =3,DE V C26.解:(1) ••四边形ABCD 是菱形, ••AB=AD ,•'Z=0,即卩 m 2 — 4 (更一_!) =0 , 2 4整理得:(m - 1) 2=0, 解得m=1 ,当m=1时,原方程为X 2-x+丄=0,4解得:x i =x 2=0.5,故当m=1时,四边形ABCD 是菱形,菱形的边长是 (2)把AB=2代入原方程得,m=2.5 ,2把m=2.5代入原方程得x - 2.5x+1=0,解得x i =2, •C?ABCD =2 X ( 2+0.5) =5 .27.解:(1)连接 OD ,••a =18 °•••zDOB=2 a =36 ° ••AB=2,••CO 的半径为:ME ,• •亦的长为:兀XXX 也巫n;12050.5;x 2=0.5 ,(2)TAB 是GO 的直径,J ADB=90 ° •a =30°vB=60 °•AC _1AB , DE JCD , VCAB= Z CDE=90 ° , vCAD=90。
2014年河北省中考数学试题(解析版)
2014年河北省中考数学试题(解析版)2014年河北省中考数学试题一、选择题(共16小题,1~6小题,每小题2分;7~16小题,每小题2分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)(2014•河北)﹣2是2的()A.倒数B.相反数C.绝对值D.平方根考点:相反数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:﹣2是2的相反数,故选:B.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(2分)(2014•河北)如图,△ABC中,D,E分别是边AB,AC的中点.若DE=2,则BC=()A.2 B. 3 C. 4 D. 5考点:三角形中位线定理.A.20°B.30°C. 70°D. 80°考点:三角形的外角性质分析:根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:a,b相交所成的锐角=100°﹣70°=30°.故选B.点评:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.5.(2分)(2014•河北)a,b是两个连续整数,若a<<b,则a,b分别是()A.2,3 B.3,2 C.3,4 D. 6,8考点:估算无理数的大小.分析:根据,可得答案.解答:解:,故选:A.点评:本题考查了估算无理数的大小,是解题关键.6.(2分)(2014•河北)如图,直线l经过第二、三、四象限,l的解析式是y=(m﹣2)x+n,则m的取值范围在数轴上表示为()A.B.C.D.考点:一次函数图象与系数的关系;在数轴上表示不等式的解集专题:数形结合.分析:根据一次函数图象与系数的关系得到m﹣2<0且n<0,解得m<2,然后根据数轴表示不等式的方法进行判断.解答:解:∵直线y=(m﹣2)x+n经过第二、三、四象限,∴m﹣2<0且n<0,∴m<2且n<0.故选C.点评:本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).也考查了在数轴上表示不等式的解集.7.(3分)(2014•河北)化简:﹣=()A.0 B. 1 C.x D.考点:分式的加减法.专题:计算题.分析:原式利用同分母分式的减法法则计算,约分即可得到结果.解答:解:原式==x.故选C点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.8.(3分)(2014•河北)如图,将长为2、宽为1的矩形纸片分割成n个三角形后,拼成面积为2的正方形,则n≠()A.2 B.3 C. 4 D. 5考点:图形的剪拼分析:利用矩形的性质以及正方形的性质,结合勾股定理得出分割方法即可.解答:解:如图所示:将长为2、宽为1的矩形纸片分割成n个三角形后,拼成面积为2的正方形,则n可以为:3,4,5,故n≠2.故选:A.点评:此题主要考查了图形的剪拼,得出正方形的边长是解题关键.A.6厘米 B.12厘米 C.24厘米 D.36厘米9.(3分)(2014•河北)某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米.当x=3时,y=18,那么当成本为72元时,边长为()考点:一次函数的应用.分析:设y与x之间的函数关系式为y=kx2,由待定系数法就可以求出解析式,当y=72时代入函数解析式就可以求出结论.解答:解:设y与x之间的函数关系式为y=kx2,由题意,得18=9k,解得:k=2,∴y=2x2,当y=72时,72=2x2,∴x=6.故选A.点评:本题考查了待定系数法求函数的解析式的运用,根据解析式由函数值求自变量的值的运用,解答时求出函数的解析式是关键.10.(3分)(2014•河北)如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A,B围成的正方体上的距离是()A.0 B. 1 C.D.考点:展开图折叠成几何体分析:根据展开图折叠成几何体,可得正方体,根据勾股定理,可得答案.解答:解;AB是正方体的边长,AB=1,故选:B.点评:本题考查了展开图折叠成几何体,勾股定理是解题关键.11.(3分)(2014•河北)某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的实验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一个质地均匀的正六面体骰子,向上的面点数是4考点:利用频率估计概率;折线统计图.分析:根据统计图可知,试验结果在0.17附近波动,即其概率P≈0.17,计算四个选项的概率,约为0.17者即为正确答案.解答:解:A、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀“的概率为,故此选项错误;B、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率是:=;故此选项错误;C、暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球的概率为,故此选项错误;D、掷一个质地均匀的正六面体骰子,向上的面点数是4的概率为≈0.17,故此选项正确.故选:D.点评:此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.12.(3分)(2014•河北)如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A、 B、C、 D、考点:作图—复杂作图分析:要使PA+PC=BC,必有PA=PB,所以选项中只有作AB 的中垂线才能满足这个条件,故D正确.解答:解:D选项中作的是AB的中垂线,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC故选:D.点评:本题主要考查了作图知识,解题的关键是根据作图得出PA=PB.13.(3分)(2014•河北)在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是()A.两人都对 B.两人都不对 C.甲对,乙不对 D.甲不对,乙对考点:相似三角形的判定;相似多边形的性质分析:甲:根据题意得:AB∥A′B′,AC∥A′C′,BC∥B′C′,即可证得∠A=∠A′,∠B=∠B′,可得△ABC∽△A′B′C′;乙:根据题意得:AB=CD=3,AD=BC=5,则A′B′=C′D′=3+2=5,A′D′=B′C′=5+2=7,则可得,即新矩形与原矩形不相似.解答:解:甲:根据题意得:AB∥A′B′,AC∥A′C′,BC ∥B′C′,∴∠A=∠A′,∠B=∠B′,∴△ABC∽△A′B′C′,∴甲说法正确;乙:∵根据题意得:AB=CD=3,AD=BC=5,则A′B′=C′D′=3+2=5,A′D′=B′C′=5+2=7,∴,,∴,∴新矩形与原矩形不相似.∴乙说法正确.故选A.点评:此题考查了相似三角形以及相似多边形的判定.此题难度不大,注意掌握数形结合思想的应用.14.(3分)(2014•河北)定义新运算:a⊕b=例如:4⊕5=,4⊕(﹣5)=.则函数y=2⊕x(x≠0)的图象大致是()A. B. C.D.考点:反比例函数的图象专题:新定义.分析:根据题意可得y=2⊕x=,再根据反比例函数的性质可得函数图象所在象限和形状,进而得到答案.解答:解:由题意得:y=2⊕x=,当x>0时,反比例函数y=在第一象限,当x<0时,反比例函数y=﹣在第二象限,又因为反比例函数图象是双曲线,因此D选项符合,故选:D.点评:此题主要考查了反比例函数的性质,关键是掌握反比例函数的图象是双曲线.15.(3分)(2014•河北)如图,边长为a的正六边形内有两个三角形(数据如图),则=()A.3 B. 4 C. 5 D. 6考点:正多边形和圆分析:先求得两个三角形的面积,再求出正六边形的面积,求比值即可.解答:解:如图,∵三角形的斜边长为a,∴两条直角边长为a,a,∴S 空白=a•a=a2,∵AB=a,∴OC=a,∴S 正六边形=6×a•a=a2,∴S阴影=S正六边形﹣S空白=a2﹣a2=a2,∴==5,故选C.点评:本题考查了正多边形和圆,正六边形的边长等于半径,面积可以分成六个等边三角形的面积来计算.16.(3分)(2014•河北)五名学生投篮球,规定每人投20次,统计他们每人投中的次数.得到五个数据.若这五个数据的中位数是6.唯一众数是7,则他们投中次数的总和可能是()A.20 B.28 C. 30 D. 31考点:众数;中位数.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.则最大的三个数的和是:6+7+7=20,两个较小的数一定是小于5的非负整数,且不相等,则可求得五个数的和的范围,进而判断.解答:解:中位数是6.唯一众数是7,则最大的三个数的和是:6+7+7=20,两个较小的数一定是小于5的非负整数,且不相等,则五个数的和一定大于20且小于29.故选B.点评:本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.二、填空题(共4小题,每小题3分,满分12分)17.(3分)(2014•河北)计算:= 2 .考点:二次根式的乘除法.分析:本题需先对二次根式进行化简,再根据二次根式的乘法法则进行计算即可求出结果.解答:解:,=2×,=2.故答案为:2.点评:本题主要考查了二次根式的乘除法,在解题时要能根据二次根式的乘法法则,求出正确答案是本题的关键.18.(3分)(2014•河北)若实数m,n满足|m﹣2|+(n﹣2014)2=0,则m﹣1+n0= .考点:负整数指数幂;非负数的性质:绝对值;非负数的性质:偶次方;零指数幂.分析:根据绝对值与平方的和为0,可得绝对值与平方同时为0,根据负整指数幂、非0的0次幂,可得答案.解答:解:|m﹣2|+(n﹣2014)2=0,m﹣2=0,n﹣2014=0,m=2,n=2014.m﹣1+n0=2﹣1+20140=+1=,故答案为:.点评:本题考查了负整指数幂,先求出m、n的值,再求出负整指数幂、0次幂.19.(3分)(2014•河北)如图,将长为8cm的铁丝尾相接围成半径为2cm的扇形.则S扇形= 4 cm2.考点:扇形面积的计算.分析:根据扇形的面积公式S 扇形=×弧长×半径求出即可.解答:解:由题意知,弧长=8cm﹣2cm×2=4 cm,扇形的面积是×4cm×2cm=4cm2,故答案为:4.点评:本题考查了扇形的面积公式的应用,主要考查学生能否正确运用扇形的面积公式进行计算,题目比较好,难度不大.20.(3分)(2014•河北)如图,点O,A在数轴上表示的数分别是0,0.1.将线段OA分成100等份,其分点由左向右依次为M1,M2,…,M99;再将线段OM1,分成100等份,其分点由左向右依次为N1,N2,…,N99;继续将线段ON1分成100等份,其分点由左向右依次为P1,P2.…,P99.则点P37所表示的数用科学记数法表示为 3.7×10﹣6.考点:规律型:图形的变化类;科学记数法—表示较小的数.分析:由题意可得M 1表示的数为0.1×=10﹣3,N1表示的数为0×10﹣3=10﹣5,P 1表示的数为10﹣5×=10﹣7,进一步表示出点P37即可.解答:解:M 1表示的数为0.1×=10﹣3,N 1表示的数为0×10﹣3=10﹣5,P 1表示的数为10﹣5×=10﹣7,P37=37×10﹣7=3.7×10﹣6.故答案为:3.7×10﹣6.点评:此题考查图形的变化规律,结合图形,找出数字之间的运算方法,找出规律,解决问题.三、解答题(共6小题,满分66分,解答应写出文字说明、证明过程或演算步骤)21.(10分)(2014•河北)嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时,对于b2﹣4ac>0的情况,她是这样做的:由于a≠0,方程ax2++bx+c=0变形为:x2+x=﹣,…第一步x2+x+()2=﹣+()2,…第二步(x+)2=,…第三步x+=(b2﹣4ac>0),…第四步x=,…第五步嘉淇的解法从第四步开始出现错误;事实上,当b2﹣4ac >0时,方程ax2+bx+c=0(a≠O)的求根公式是x=.用配方法解方程:x2﹣2x﹣24=0.考点:解一元二次方程-配方法专题:阅读型.分析:第四步,开方时出错;把常数项24移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.解答:解:在第四步中,开方应该是x+=±.所以求根公式为:x=.故答案是:四;x=;用配方法解方程:x2﹣2x﹣24=0解:移项,得x2﹣2x=24,配方,得x2﹣2x+1=24+1,即(x﹣1)2=25,开方得x﹣1=±5,∴x1=6,x2=﹣4.点评:本题考查了解一元二次方程﹣﹣配方法.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.22.(10分)(2014•河北)如图1,A,B,C是三个垃圾存放点,点B,C分别位于点A的正北和正东方向,AC=100米.四人分别测得∠C的度数如下表:甲乙丙丁34 36 38 40∠C(单位:度)他们又调查了各点的垃圾量,并绘制了下列尚不完整的统计图2,图3:(1)求表中∠C 度数的平均数:(2)求A处的垃圾量,并将图2补充完整;(3)用(1)中的作为∠C的度数,要将A处的垃圾沿道路AB都运到B处,已知运送1千克垃圾每米的费用为0.005元,求运垃圾所需的费用.(注:sin37°=0.6,cos37°=0.8,tan37°=0.75)考点:解直角三角形的应用;扇形统计图;条形统计图;算术平均数分析:(1)利用平均数求法进而得出答案;(2)利用扇形统计图以及条形统计图可得出C处垃圾量以及所占百分比,进而求出垃圾总量,进而得出A处垃圾量;(3)利用锐角三角函数得出AB的长,进而得出运垃圾所需的费用.解答:解:(1)==37;(2)∵C处垃圾存放量为:320kg,在扇形统计图中所占比例为:50%,∴垃圾总量为:320÷50%=640(kg),∴A处垃圾存放量为:(1﹣50%﹣37.5%)×640=80(kg),占12.5%.补全条形图如下:(3)∵AC=100米,∠C=37°,∴tan37°=,∴AB=ACtan37°=100×0.75=75(m),∵运送1千克垃圾每米的费用为0.005元,∴运垃圾所需的费用为:75×80×0.005=30(元),答:运垃圾所需的费用为30元.点评:此题主要考查了平均数求法以及锐角三角三角函数关系以及条形统计图与扇形统计图的综合应用,利用扇形统计图与条形统计图获取正确信息是解题关键.23.(11分)(2014•河北)如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求∠ACE的度数;(3)求证:四边形ABEF是菱形.考点:全等三角形的判定与性质;菱形的判定;旋转的性质专题:计算题.分析:(1)根据旋转角求出∠BAD=∠CAE,然后利用“边角边”证明△ABD和△ACE全等.(2)根据全等三角形对应角相等,得出∠ACE=∠ABD,即可求得.(3)根据对角相等的四边形是平行四边形,可证得四边形ABEF是平行四边形,然后依据邻边相等的平行四边形是菱形,即可证得.解答:(1)证明:∵ABC绕点A按逆时针方向旋转100°,∴∠BAC=∠DAE=40°,∴∠BAD=∠CAE=100°,又∵AB=AC,∴AB=AC=AD=AE,在△ABD与△ACE中∴△ABD≌△ACE(SAS).(2)解:∵∠CAE=100°,AC=AE,∴∠ACE=(180°﹣∠CAE)=(180°﹣100°)=40°;(3)证明:∵∠BAD=∠CAE=140°AB=AC=AD=AE,∴∠ABD=∠ADB=∠ACE=∠AEC=20°.∵∠BAE=∠BAD+∠DAE=160°,∴∠BFE=360°﹣∠DAE﹣∠ABD﹣∠AEC=160°,∴∠BAE=∠BFE,∴四边形ABEF是平行四边形,∵AB=AE,∴平行四边形ABEF是菱形.点评:此题考查了全等三角形的判定与性质,等腰三角形的性质以及菱形的判定,熟练掌握全等三角形的判定与性质是解本题的关键.24.(11分)(2014•河北)如图,2×2网格(每个小正方形的边长为1)中有A,B,C,D,E,F,G、H,O九个格点.抛物线l的解析式为y=(﹣1)n x2+bx+c(n为整数).(1)n为奇数,且l经过点H(0,1)和C(2,1),求b,c 的值,并直接写出哪个格点是该抛物线的顶点;(2)n为偶数,且l经过点A(1,0)和B(2,0),通过计算说明点F(0,2)和H(0,1)是否在该抛物线上;(3)若l经过这九个格点中的三个,直接写出所有满足这样条件的抛物线条数.考点:二次函数综合题专题:压轴题.分析:(1)根据﹣1的奇数次方等于﹣1,再把点H、C的坐标代入抛物线解析式计算即可求出b、c的值,然后把函数解析式整理成顶点式形式,写出顶点坐标即可;(2)根据﹣1的偶数次方等于1,再把点A、B的坐标代入抛物线解析式计算即可求出b、c的值,从而得到函数解析式,再根据抛物线上点的坐标特征进行判断;(3)分别利用(1)(2)中的结论,将抛物线平移,可以确定抛物线的条数.解答:解:(1)n为奇数时,y=﹣x2+bx+c,∵l经过点H(0,1)和C(2,1),∴,解得,∴抛物线解析式为y=﹣x2+2x+1,y=﹣(x﹣1)2+2,∴顶点为格点E(1,2);(2)n为偶数时,y=x2+bx+c,∵l经过点A(1,0)和B(2,0),∴,解得,∴抛物线解析式为y=x2﹣3x+2,当x=0时,y=2,∴点F(0,2)在抛物线上,点H(0,1)不在抛物线上;(3)所有满足条件的抛物线共有8条.当n为奇数时,由(1)中的抛物线平移又得到3条抛物线,如答图3﹣1所示;当n为偶数时,由(2)中的抛物线平移又得到3条抛物线,如答图3﹣2所示.点评:本题是二次函数综合题型,主要利用了待定系数法求二次函数解析式,二次函数图象上点的坐标特征,二次函数的对称性,要注意(3)抛物线有开口向上和开口向下两种情况.25.(11分)(2014•河北)图1和图2中,优弧所在⊙O的半径为2,AB=2.点P为优弧上一点(点P不与A,B重合),将图形沿BP折叠,得到点A的对称点A′.(1)点O到弦AB的距离是 1 ,当BP经过点O时,∠ABA′= 60 °;(2)当BA′与⊙O相切时,如图2,求折痕的长:(3)若线段BA′与优弧只有一个公共点B,设∠ABP=α.确定α的取值范围.考点:圆的综合题;含30度角的直角三角形;勾股定理;垂径定理;切线的性质;翻折变换(折叠问题);锐角三角函数的定义专题:综合题.分析:(1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出∠ABA′.(2)根据切线的性质得到∠OBA′=90°,从而得到∠ABA′=120°,就可求出∠ABP,进而求出∠OBP=30°.过点O作OG⊥BP,垂足为G,容易求出OG、BG的长,根据垂径定理就可求出折痕的长.(3)根据点A′的位置不同,分点A′在⊙O内和⊙O外两种情况进行讨论.点A′在⊙O内时,线段BA′与优弧都只有一个公共点B,α的范围是0°<α<30°;当点A′在⊙O 的外部时,从BA′与⊙O相切开始,以后线段BA′与优弧都只有一个公共点B,α的范围是60°≤α<120°.从而得到:线段BA′与优弧只有一个公共点B时,α的取值范围是0°<α<30°或60°≤α<120°.解答:解:(1)①过点O作OH⊥AB,垂足为H,连接OB,如图1①所示.∵OH⊥AB,AB=2,∴AH=BH=.∵OB=2,∴OH=1.∴点O到AB的距离为1.②当BP经过点O时,如图1②所示.∵OH=1,OB=2,OH⊥AB,∴sin∠OBH==.∴∠OBH=30°.由折叠可得:∠A′BP=∠ABP=30°.∴∠ABA′=60°.故答案为:1、60.(2)过点O作OG⊥BP,垂足为G,如图2所示.∵BA′与⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.∵∠OBH=30°,∴∠ABA′=120°.∴∠A′BP=∠ABP=60°.∴∠OBP=30°.∴OG=OB=1.∴BG=.∵OG⊥BP,∴BG=PG=.∴BP=2.∴折痕的长为2.(3)若线段BA′与优弧只有一个公共点B,Ⅰ.当点A′在⊙O的内部时,此时α的范围是0°<α<30°.Ⅱ.当点A′在⊙O的外部时,此时α的范围是60°≤α<120°.综上所述:线段BA′与优弧只有一个公共点B时,α的取值范围是0°<α<30°或60°≤α<120°.点评:本题考查了切线的性质、垂径定理、勾股定理、三角函数的定义、30°角所对的直角边等于斜边的一半、翻折问题等知识,考查了用临界值法求α的取值范围,有一定的综合性.第(3)题中α的范围可能考虑不够全面,需要注意.26.(13分)(2014•河北)某景区内的环形路是边长为800米的正方形ABCD,如图1和图2.现有1号、2号两游览车分别从出口A和景点C同时出发,1号车顺时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200米/分.探究:设行驶吋间为t分.(1)当0≤t≤8时,分别写出1号车、2号车在左半环线离出口A的路程y1,y2(米)与t(分)的函数关系式,并求出当两车相距的路程是400米时t的值;(2)t为何值时,1号车第三次恰好经过景点C?并直接写出这一段时间内它与2号车相遇过的次数.发现:如图2,游客甲在BC上的一点K(不与点B,C重合)处候车,准备乘车到出口A,设CK=x米.情况一:若他刚好错过2号车,便搭乘即将到来的1号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车.比较哪种情况用时较多?(含候车时间)决策:己知游客乙在DA上从D向出口A走去.步行的速度是50米/分.当行进到DA上一点P(不与点D,A重合)时,刚好与2号车迎面相遇.(1)他发现,乘1号车会比乘2号车到出口A用时少,请你简要说明理由:考点:一次函数的应用;一元一次方程的应用;一元一次不等式组的应用.分析:探究:(1)由路程=速度×时间就可以得出y1,y2(米)与t(分)的函数关系式,再由关系式就可以求出两车相距的路程是400米时t的值;(2)求出1号车3次经过A的路程,进一步求出行驶的时间,由两车第一次相遇后每相遇一次需要的时间就可以求出相遇次数;发现:分别计算出情况一的用时和情况二的用时,在进行大小比较就可以求出结论决策:(1)根据题意可以得出游客乙在AD上等待乘1号车的距离小于边长,而成2号车到A出口的距离大于3个边长,进而得出结论;(2)分类讨论,若步行比乘1号车的用时少,就有,得出s<320.就可以分情况得出结论.解答:解:探究:(1)由题意,得y1=200t,y2=﹣200t+1600当相遇前相距400米时,﹣200t+1600﹣200t=400,t=3,当相遇后相距400米时,200t﹣(﹣200t+1600)=400,t=5.答:当两车相距的路程是400米时t的值为3分钟或5分钟;(2)由题意,得1号车第三次恰好经过景点C行驶的路程为:800×2+800×4×2=8000,∴1号车第三次经过景点C需要的时间为:8000÷200=40分钟,两车第一次相遇的时间为:1600÷400=4.第一次相遇后两车每相遇一次需要的时间为:800×4÷400=8,∴两车相遇的次数为:(40﹣4)÷8+1=5次.∴这一段时间内它与2号车相遇的次数为:5次;发现:由题意,得情况一需要时间为:=16﹣,情况二需要的时间为:=16+∵16﹣<16+∴情况二用时较多.决策:(1)∵游客乙在AD边上与2号车相遇,∴此时1号车在CD边上,∴乘1号车到达A的路程小于2个边长,乘2号车的路程大于3个边长,∴乘1号车的用时比2号车少.(2)若步行比乘1号车的用时少,,∴s<320.∴当0<s<320时,选择步行.同理可得当320<s<800时,选择乘1号车,当s=320时,选择步行或乘1号车一样.点评:本题考查了一次函数的解析式的运用,一元一次方程的运用,一元一次不等式的运用,分类讨论思想的运用,方案设计的运用,解答时求出函数的解析式是解答本题的关键.(2)设PA=s(0<s<800)米.若他想尽快到达出口A,根据s的大小,在等候乘1号车还是步行这两种方式中.他该如何选择?。
河北省保定市2014届高三第二次模拟考试数学理试题(A卷) Word版含答案
这两名人员来自同一省份的取法共有C C C C .
(Ⅰ)从参加问卷调查的50名务工人员中随机抽取两名,求这两名来自同一个省份的概率;
(Ⅱ)在参加问卷调查的50名务工人员中,从来自四川、湖北两省的人员中随机抽取两名,用ξ表示抽得四川省务工人员的人数,求ξ的分布列和数学期望.
19.(本题满分12分)
已知ABC是边长为3的等边三角形,点D、E分别是边AB、AC上的点,且满足==.将ADE沿DE折起到1ADE的位置,并使得平面A1DE⊥平面BCED.
2.若(a∈R)是纯虚数,则||=
A. B.1C.D.2
3.函数 = 的最小正周期是
A.B.2C.D.4
4.已知平面向量,满足||=1,||=2,且(+)⊥,则,的夹角为
A.B.C.D.
5.已知随机变量ξ服从正态分布N(0,σ2),P(ξ>2)=0.023,则P(-2≤ξ≤2)=
A.0.997B.0.954 C.0.488D.0.477
21.(本小题满分12分)
设函数 (自然对数的底数e=2.71828…).
(Ⅰ)当 >0时,求函数 的单调区间;
(Ⅱ)在(Ⅰ)中,若函数 的最小值恒小于ek+1,求实数k的取值范围;
(Ⅲ)当 <0时,设 >0, >0,且 ≠ ,试比较 与 的大小.
请考生在第22、23、24量题中任选一题作答,如果多做,则按所做的第一题计分,作答时请把答题卡上所选题目题号后的方框涂黑.
18.(本小题满分12分)
今年来,随着地方经济的发展,劳务输出大省四川、河南、湖北、安徽等地的部分劳务人员选择了回乡就业,因而使得沿海地区出现了一定程度的用工荒.今年春节过后,沿海某公司对来自上述四省的务工人员进行了统计(见下表):
2014年河北省中考数学一模二模试卷及答案解析(绝密权威押题+预测猜想+精选模拟试卷+考前最后冲刺复习)
2014河北省中考数学一模二模试卷及答案解析说明:本文档共收集整理以下7个市(区)的中考数学一模试卷及答案解析。
沧州市唐山市路北区邢台市邯郸市衡水市石家庄市唐山市路南区说明:本文档共收集整理以下2个市(区)的中考数学二模试卷及答案解析。
邯郸市唐山市路南区(本文档共计9份试卷,售价4.5元,平均每价试卷0.5元。
)2014年河北省沧州市中考数学一模试卷及答案解析一、选择题1.方程(x+1)(x﹣2)=x+1的解是()A.2B.3C.﹣1,2 D.﹣1,32.∠A是锐角,且sinA=cosA,则∠A的度数是()A.30°B.45°C.60°D.75°3.若两个相似三角形的面积之比为1:4,则它们的周长之比为()A.1:2 B.1:4 C.1:5 D.1:164.一个矩形的面积是6,则这个矩形的一组邻边长x与y的函数关系的图象大致是()A.B.C.D.5.如图,AB为⊙O的直径,点C在⊙O上.若∠C=16°,则∠BOC的度数是()A.74°B.48°C.32°D.16°6.如图,将一个可以自由旋转的转盘等分成甲、乙、丙、丁四个扇形区域,若指针固定不变,转动这个转盘一次(如果指针指在等分线上,那么重新转动,直至指针指在某个扇形区域内为止),则指针指在甲区域内的概率是()A.1B.C.D.7.如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC 上从B向C移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长不能确定8.一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是()A.5πB.4πC.3πD.2π9.某经济开发区,今年一月份工业产值达50亿元,第一季度总产值为175亿元,二月、三月平均每月的增长率是多少若设平均每月的增长率为x,根据题意,可列方程为()A.50(1+x)2=175 B.50+50(1+x)+50(1+x)2=175C.50(1+x)+50(1+x)2=175 D.50+50(1+x)2=17510.如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为()A.B.C.D.二、填空题11.已知反比例函数解析式的图象经过(1,﹣2),则k=_________.12.某公司4月份的利润为160万元,要使6月份的利润达到250万元,则平均每月增长的百分率是_________.13.如图是引拉线固定电线杆的示意图.已知:CD⊥AB,CD=m,∠CAD=∠CBD=60°,则拉线AC的长是_________m.14.如图,扇子(阴影部分)的圆心角为x°,余下扇形的圆心角为y°,x与y的比通常按黄金比来设计,这样的扇子外形较美观,若黄金比为0.6,则x为_________.15.△ABC的顶点都在方格纸的格点上,则sinA=_________.16.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为_________mm.17.如图,桌面上有对角线长分别为2和3的菱形、边长为1的正六边形和半径为1的圆三个图形,则一点随机落在_________内的概率较大.18.如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,点A的坐标为(1,0),则E点的坐标为_________.19.如图,在一块长为22米、宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x米,则根据题意可列出方程为_________.20.如图,双曲线y=(k>0)与⊙O在第一象限内交于P、Q两点,分别过P、Q两点向x轴和y轴作垂线.已知点P坐标为(1,3),则图中阴影部分的面积为_________.三、解答题21.如图,等腰梯形ABCD放置在平面直角坐标系中,已知A(﹣2,0)、B(6,0)、D(0,3),反比例函数的图象经过点C.(1)求点C坐标和反比例函数的解析式;(2)将等腰梯形ABCD向上平移m个单位后,使点B恰好落在双曲线上,求m的值.22.如图,4张背面完全相同的纸牌(用①、②、③、④表示),在纸牌的正面分别写有四个不同的条件,小明将这4张纸牌背面朝上洗匀后,先随机摸出一张(不放回),再随机摸出一张.(1)用树状图(或列表法)表示两次摸牌出现的所有可能结果;(2)以两次摸出牌上的结果为条件,求能判断四边形ABCD是平行四边形的概率.23.如图,E是矩形ABCD的边BC上一点,EF⊥AE,EF分别交AC,CD于点M,F,BG⊥AC,垂足为G,BG交AE于点H.(1)求证:△ABE∽△ECF;(2)找出与△ABH相似的三角形,并证明;(3)若E是BC中点,BC=2AB,AB=2,求EM的长.24.广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?25.如图所示为圆柱形大型储油罐固定在U型槽上的横截面图.已知图中ABCD为等腰梯形(AB∥DC),支点A与B相距8m,罐底最低点到地面CD距离为1m.设油罐横截面圆心为O,半径为5m,∠D=56°,求:U型槽的横截面(阴影部分)的面积.(参考数据:sin53°≈0.8,tan56°≈1.5,π≈3,结果保留整数)26.已知:▱ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?27.如图所示,AC⊥AB,AB=2,AC=2,点D是以AB为直径的半圆O上一动点,DE⊥CD交直线AB 于点E,设∠DAB=α(0°<α<90°).(1)当α=18°时,求的长;(2)当α=30°时,求线段BE的长;(3)若要使点E在线段BA的延长线上,则α的取值范围是_________.(直接写出答案)参考答案与试题解析一、选择题1.D2.B3.A4.D5.C6.D7.C8.C9.B10.C二、填空题11.﹣2.12.25%.13.6m.14.135°.15..16.8mm.17.圆内.18.(,).19.(22﹣x)(17﹣x)=300.20.4.三、解答题21.解:(1)过点C作CE⊥AB于点E,∵四边形ABCD是等腰梯形,∴AD=BC,DO=CE,∵∠DOA=∠CEO=90°,在Rt△AOD和Rt△BEC中∵,∴Rt△AOD≌Rt△BEC(HL),∴AO=BE=2,∵BO=6,∴DC=OE=4,∴C(4,3),∵设反比例函数的解析式y=,根据题意得:3=,解得k=12,∴反比例函数的解析式;答:点C坐标是(4,3),反比例函数的解析式是y=.(2)将等腰梯形ABCD向上平移m个单位后得到梯形A′B′C′D′,∴点B′(6,m),∵点B′(6,m)恰好落在双曲线y=上,∴当x=6时,y==2,即m=2.22.解:(1)画树状图得:则共有12种等可能的结果;(2)∵能判断四边形ABCD是平行四边形的有:①②,①③,②①,②④,③①,③④,④②,④③共8种情况,∴能判断四边形ABCD是平行四边形的概率为:=.23.(1)证明:∵四边形ABCD是矩形,∴∠ABE=∠ECF=90°.∵AE⊥EF,∠AEB+∠FEC=90°.∴∠AEB+∠BAE=90°,∴∠BAE=∠CEF,∴△ABE∽△ECF;(2)△ABH∽△ECM.证明:∵BG⊥AC,∴∠ABG+∠BAG=90°,∴∠ABH=∠ECM,由(1)知,∠BAH=∠CEM,∴△ABH∽△ECM;(3)解:作MR⊥BC,垂足为R,∵AB=BE=EC=2,∴AB:BC=MR:RC=,∠AEB=45°,∴∠MER=45°,CR=2MR,∴MR=ER=EC=×2=,∴在Rt△EMR中,EM==.24.解:(1)设平均每次下调的百分率为x,则6000(1﹣x)2=4860,解得:x1=0.1=10%,x2=1.9(舍去),故平均每次下调的百分率为10%;(2)方案①购房优惠:4860×100×(1﹣0.98)=9720(元);方案②可优惠:80×100=8000(元).故选择方案①更优惠.25.解:如图,连接AO、BO.过点A作AE⊥DC于点E,过点O作ON⊥DC于点N,ON交⊙O于点M,交AB于点F.则OF⊥AB.∵OA=OB=5m,AB=8m,OM是半径,OM⊥AB,∴AF=BF=AB=4(m),∠AOB=2∠AOF,在Rt△AOF中,sin∠AOF==0.8=sin53°,∴∠AOF=53°,则∠AOB=106°,∵OF==3(m),由题意得:MN=1m,∴FN=OM﹣OF+MN=3(m),∵四边形ABCD是等腰梯形,AE⊥DC,FN⊥AB,∴AE=FN=3m,DC=AB+2DE.在Rt△ADE中,tan56°==,∴DE=2m,DC=12m.∴S阴=S梯形ABCD﹣(S扇OAB﹣S△OAB)=(8+12)×3﹣(π×52﹣×8×3)≈20(m2).答:U型槽的横截面积约为20m2.26.解:(1)∵四边形ABCD是菱形,∴AB=AD,∴△=0,即m2﹣4(﹣)=0,整理得:(m﹣1)2=0,解得m=1,当m=1时,原方程为x2﹣x+=0,解得:x1=x2=0.5,故当m=1时,四边形ABCD是菱形,菱形的边长是0.5;(2)把AB=2代入原方程得,m=2.5,把m=2.5代入原方程得x2﹣2.5x+1=0,解得x1=2,x2=0.5,∴C▱ABCD=2×(2+0.5)=5.27.解:(1)连接OD,∵α=18°,∴∠DOB=2α=36°,∵AB=2,∴⊙O的半径为:,∴的长为:=π;(2)∵AB是⊙O的直径,∴∠ADB=90°,∵α=30°,∴∠B=60°,∵AC⊥AB,DE⊥CD,∴∠CAB=∠CDE=90°,∴∠CAD=90°﹣α=60°,∴∠CAD=∠B,∵∠CDA+∠ADE=∠ADE+∠BDE=90°,∴∠CDA=∠BDE,∴△ACD∽△BED,∴,∵AB=2,α=30°,∴BD=AB=,∴AD==3,∴,∴BE=;经检验,BE=是原分式方程的解.(3)如图,当E与A重合时,∵AB是直径,AD⊥CD,∴∠ADB=∠ADC=90°,∴C,D,B共线,∵AC⊥AB,∴在Rt△ABC中,AB=2,AC=2,∴tan∠ABC==,∴∠ABC=30°,∴α=∠DAB=90°﹣∠ABC=60°,当E′在BA的延长线上时,如图,可得∠D′AB>∠DAB>60°,∵0°<α<90°,∴α的取值范围是:60°<α<90°.故答案为:60°<α<90°.(二)2014年河北省唐山市路北区中考数学一模试卷及答案解析一、选择题(本大题共16小题,1-6小题,每题2分;7-16小题,每题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算(﹣)3的结果是()A.B.﹣C.D.﹣2.下列图形中,由AB∥CD,能得到∠1=∠2的是()3.北京故宫的占地面积达到720 000平方米,这个数据用科学记数法表示为()A.0.72×106平方米B.7.2×106平方米C.72×104平方米D.7.2×105平方米4.某几何体的三视图如图所示,则这个几何体是()A.三棱柱B.圆柱C.正方体D.三棱锥5.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为()A.(x+2)2=9 B.(x﹣2)2=9 C.(x+2)2=1 D.(x﹣2)2=16.下列说法正确的是()A.一个游戏中奖的概率是,则做100次这样的游戏一定会中奖B.为了了解全国中学生的心理健康状况,应采用普查的方式C.一组数据0,1,2,1,1的众数和中位数都是1D.若甲组数据的方差,乙组数据的方差,则乙组数据比甲组数据稳定7.若方程3x2﹣6x+m=0有两个不相等的实数根,则m的取值范围在数轴上表示正确的是()8.若2a﹣b=3,则9﹣4a+2b的值为()A.12 B.6C.3D.09.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正切值等于()A.B.C.2D.10.如图是根据某班50名同学一周的体育锻炼情况绘制的条形统计图,则这个班50名同学一周参加体育锻炼时间的众数与中位数分别为()A.9,8 B.8,9 C.8,8.5 D.19,1711.甲、乙两人沿相同的路线由A到B匀速行进,A、B两地间的路程为16km,他们行进的路程s(km)与甲出发后的时间t(h)之间的函数图象如图所示,则下列判断错误的是()A.乙比甲晚出发1h B.甲比乙晚到B地2h C.甲的速度是4km/h D.乙的速度是8km/h 12.如图.矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3.则AB的长为()A.3B.4C.5D.613.某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时“…”,设实际每天铺设管道x米,则可得方程,根据此情景,题中用“…”表示的缺失的条件应补为()A.每天比原计划多铺设10米,结果延期15天才完成B.每天比原计划少铺设10米,结果延期15天才完成C.每天比原计划多铺设10米,结果提前15天才完成D.每天比原计划少铺设10米,结果提前15天才完成14.(如图,一条公路的转变处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600米,E 为弧CD上一点,且OE⊥CD,垂足为F,OF=米,则这段弯路的长度为()A.200π米B.100π米C.400π米D.300π米15.如图,抛物线y=﹣x2﹣4x+c(c<0)与x轴交于点A和点B(n,0),点A在点B的左侧,则AB的长是()A.4﹣2n B.4+2n C.8﹣2n D.8+2n16.如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线l,与⊙O过A点的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图象大致是()二、填空题(本大题共4小题,每小题3分,共12分)17.函数y=中,自变量x的取值范围是_________.18.如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB绕点B顺时针旋转90°至CB,那么点C的坐标是_________.19.如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度为i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及所在位置点P的铅直高度.20.如图,(甲)是四边形纸片ABCD,其中∠B=130°,∠D=50°.若将其右下角向内折出△PCR,恰使CP∥AB,RC∥AD,如图(乙)所示,则∠C=_________.三、解答题(本大题共6小题,共66分)21.(9分)先化简,再求值:,其中x满足x2﹣3x+2=0.22.(10分)某市2012年国民经济和社会发展统计公报显示,2012年该市新开工的住房有商品房、廉租房、经济适用房和公共租赁房四种类型.老王对这四种新开工的住房套数和比例进行了统计,并将统计结果绘制成下面两幅统计图,请你结合图中所给信息解答下列问题:(1)求经济适用房的套数,并补全图1;(2)假如申请购买经济适用房的对象中共有950人符合购买条件,老王是其中之一.由于购买人数超过房子套数,购买者必须通过电脑摇号产生.如果对2012年新开工的经济适用房进行电脑摇号,那么老王被摇中的概率是多少?(3)如果计划2014年新开工廉租房建设的套数要达到720套,那么2013~2014这两年新开工廉租房的套数的年平均增长率是多少?23.(10分)甲、乙两辆汽车沿同一路线赶赴距出发地480km的目的地,乙车比甲车晚出发2h(从甲车出发时开始计时).图中折线OABC、线段DE分别表示甲、乙两车所行路程y(km)与时间x(h)之间的函数关系对应的图象(线段AB表示甲车出发不足2h因故障停车检修).请根据图象所提供的信息,解决以下问题:(1)求乙车所行路程y与时间x之间的函数关系式;(2)求两车在途中第二次相遇时,它们距出发地的路程;(3)乙车出发多长时间,两车在途中第一次相遇.(写出解题过程)24.(11分)如图,在东西方向的海岸线l上有一长为1千米的码头MN,在码头西端M的正西方向30 千米处有一观察站O.某时刻测得一艘匀速直线航行的轮船位于O的北偏西30°方向,且与O相距千米的A处;经过40分钟,又测得该轮船位于O的正北方向,且与O相距20千米的B处.(1)求该轮船航行的速度;(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.(参考数据:,)25.(12分)如图,二次函数y=ax2+bx+c(a>0)与坐标轴交于点A、B、C且OA=1,OB=OC=3.(1)求此二次函数的解析式;(2)写出顶点坐标和对称轴方程;(3)点M、N在y=ax2+bx+c的图象上(点N在点M的右边),且MN∥x轴,求以MN为直径且与x轴相切的圆的半径.26.(14分)已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上.∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿BA向点A匀速移动.当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动、DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t <4.5)解答下列问题:(1)当t为何值时,点A在线段PQ的垂直平分线上?(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由;(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.2014年河北省邢台市中考数学一模试卷及答案解析一、选择题(共16小题,每小题3分,满分48分) 1. 2的倒数是( ) A . 2 B . ﹣2 C .D .﹣2.﹣的绝对值是( )A . ﹣B .C . 3D . ﹣ 33.下列图形中,既轴对称又中心对称的可能是( ) A .B .C .D .4.分解因式:a 3﹣2a 2+a=( )A . a 2(a ﹣2)+aB . a (a 2﹣2a ) C . a (a ﹣1)2D . a (a+1)(a ﹣1)5.下列计算中,正确的是( )A . (a 3b )2=a 6b 2B . a •a 4=a 4C . a 6÷a 2=a 3D .3a+2b=5ab6.如图,AB 是半圆的直径,点D 是的中点,∠ABC=50°,则∠DAB 等于( )A . 55°B .60° C . 65° D .70°7.若a+b=3,a ﹣b=7,则ab=( ) A . ﹣40 B . ﹣10 C . 40 D . 108.某校举行捐书活动,七年级捐书480册,八年级捐书500册,八年级捐书人数比七年级多20,两个年级人均捐书数量相等,设七年级捐书人数为x ,所列方程正确的是( ) A . = B . = C . = D . =9.下列各组数中,能成为一个三角形的三条边长的是( ) A . 2,3,4 B . 2,2,4 C . 1,2,3 D . 1,2, 610.中国六个大城市某日的污染指数如下表:这组数据中的中位数是( ) 城市 北京 合肥 南京 哈尔滨 成都 南昌污染指数342 163 165 45 227 163A.165 B.164 C.163 D.10511.如图,函数y=的图象经过点A(1,﹣3),AB垂直x轴于点B,则下列说法正确的是()A.k=3 B.函数图象关于y轴对称C.S△AOB=3 D.x<0时,y随x增大而增大12.在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边上的高等于()A.B.C.D.13.如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=()A.2B.2C.D.14.抛物线y=ax2+bx+c如图,考查下述结论:①b<0;②a﹣b+c>0;③b2>4ac;④2a+b<0.正确的有()A.①②B.①②③C.②③④D.①②③④15.如图,ABCD是菱形,AB=2,扇形BEF的半径为2,∠EBF=∠A=60°,则图中阴影部分的面积是()A.﹣B.C.﹣D.π﹣16.如图,正方形OABC边长为2,顶点A、C在坐标轴上,点P在AB上,CP交OB于点Q,OQ=OC,则点P的坐标为()A.(2,1)B.(2,2﹣2)C.(2,2﹣4)D.(2,4﹣2)二、填空题(共4小题,每小题2分,满分8分)17.大于的最小整数是_________.18.不等式组的解集是_________.19.如图,开头K1,K2和K3处于断开状态,随机闭合开头K1、K2和K3中的两个,两盏灯同时发光的概率为_________.20.如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点A′处,则AE的长为_________.21.若a=﹣x,求关于y的方程y2﹣ay=0的解.22.在某班的一次数学考试中,满分为150分,学生得分全为整数,将全班学生成绩从75到150依次分为5组,统计数据如图1.(1)该班共有_________名学生,将图1补充完整;(2)从图2中,第四组的圆心角度数为_________°(3)从这个班中随机抽取一名学生,求该生恰属于第二组的概率.23.如图,直线l1:y=ax+2与y轴相交于点E,已知A(﹣2,1),B(﹣2,﹣1),C(1,﹣1)且ABCD 是矩形,设l2过点E,且l1⊥l2,(1)若a=1,求l2的解析式;(2)若l1把矩形ABCD周长等分,求a的值.24.如图,菱形ABCD中,∠B=60°,点M在AB上,点N在BC上,AM=BN,CN交AN于点P,DP 交AC于点Q.求证:(1)△ABN≌△CAM;(2)PD平分∠APC.(1)根据表格中的数据,确定v 的函数式;(2)如果x=﹣1时,函数y 取最小值,求y 关于x 的函数式; (3)在(2)的条件下,写出y 的最小值.26.如图,AB=10,AC=8,BC=6,M 是AB 的中点,点D 在线段AC 上,且D 是MN 的中点,ME ⊥AC 于点E ,NF ⊥AC 于点F .设AD=x ,DM=y . (1)求NF ;(2)确定x 与y 的数量关系;(3)若⊙N 的半径为AN ,那么x 分别取何值时,⊙N 与直线AC 、AB 、BC 相切.2014年邢台市初中毕业生升学第一次模拟考试数学试卷参考答案及评分标准一、ABDC ACBD ABDC ABCD二、17. 3, 18. 12-<≤x , 19.13, 20. 103. 三、21.a =1-, 4分 y =0或y =1- 10分22.(1)50,如图. 4分 (2)100.8 7分 (3)42510分 23.(1)2l :2y x =-+. 5分 (2)4. 10分24.(1)∵AB =AC ,∠B =∠MAC =60°,AM =BN ,∴△ABN ≌△CAM . 3分 (2)过点D 分别作DE ⊥NA 于点E ,DF ⊥PC 于F ,∠EAD=∠ANC=60︒+∠BAN , ∠FCD =60°+∠ACM ,又AD =CD ,∠AED =∠CFD =90°∴△ADE ≌△CDF , 8分 DE =DF ,∴PD 平分∠APC 10分 25.(1)设v kx b =+,将已知数据代入,解得2,1.k b =⎧⎨=-⎩∴21v x =-. 5分 (2)∵当1x =-时,221y ax x =+-取最小值,∴抛物线的对称轴是1x =-,即212a-=-,∴1a =. ∴221y x x =+-. 10分(3)2-. 12分26.(1)3 3分 (2)∵ME ∥BC ,M 是AB 的中点, ∴AE=EC=. ∴ED=x ﹣4.∴在Rt △MED 中,由勾股定理得,DM 2=ME 2+DE 2,即y 2=32+(x ﹣4)2, y 2=x 2﹣8x+25;5分 (3)延长MA 到P ,使MA =AP ;连接MC ,并延长到Q ,使MC =CQ ; 连接PQ ,则不论x 取何值,点N 总在PQ 上. ①作AN 1⊥AC ,交PQ 于点N 1, 则⊙N 1与AC 相切于点A . 设MN 1与AC 交于点D 1,21=x AE 421×=,此时,x =2. 8分②作AN 2⊥AB ,交PQ 于点N 2, 则⊙N 2与AB 相切于点A . 设MN 与AC 交于点D ,则有CBMDNE PQN 1 FCABMD NE PN 2F2223(4-)x x+=错误!未找到引用源。
数学_2014年河北省保定市高考数学二模试卷(理科)(含答案)
2014年河北省保定市高考数学二模试卷(理科)一.选择题:每小题5分,共60分1. 若集合A ={x ∈R|x +1>0},集合B ={x ∈R|(x −1)(x +2)<0},则A ∩B =( ) A (−1, 1) B (−2, −1) C (−∞, −2) D (1, +∞)2. 函数y =sinxsin(π2+x)的最小正周期是( )A π2 B π C 2π D 4π 3. 若a+i 1−i(a ∈R)是纯虚数,则|a+i 1−i|=( )A iB 1C √2D 24. 已知平面向量a →,b →满足|a|→=1,|b|→=2,且(a →+b →)⊥a →,则a →与b →的夹角为( ) A 5π6B 2π3C π3D π65. 已知随机变量ξ服从正态分布N(0, σ2),若P(ξ>2)=0.023,则P(−2≤ξ≤2)=( )A 0.477B 0.625C 0.954D 0.9776. 设l 为直线,α,β是两个不同的平面,下列命题中正确的是( )A 若l // α,l // β,则α // βB 若l ⊥α,l ⊥β,则α // βC 若l ⊥α,l // β,则α // βD 若α⊥β,l // α,则l ⊥β7. 设变量x ,y 满足不等式组{0≤x +y ≤201≤y ≤10,则2x +3y 的最大值等于( )A 1B 10C 41D 508. 已知数列{a n }中,a 1=25,4a n+1=4a n −7(n ∈N ∗),若其前n 项和为S n ,则S n 的最大值为( ) A 15 B 750 C7654D70529. 给出以下命题:①∀x ∈R ,sinx +cosx >1; ②∃x ∈R ,x 2−x +1<0;③“x >1”是“|x|>1”充分不必要条件; ④∫|π0cosx|dx =0.其中假命题的个数是( ) A 0 B 1 C 2 D 310. 已知四棱锥P −ABCD 是三视图如图所示,则围成四棱锥P −ABCD 的五个面中的最大面积是( )A 3B 6C 8D 10 11. 已知点Q 在椭圆C:x 216+y 210=1上,点P 满足OP →=12(OF 1→+OQ →)(其中O 为坐标原点,F 1为椭圆C 的左焦点),则点P 的轨迹为( ) A 圆 B 抛物线 C 双曲线 D 椭圆 12. 若函数y 1=sin2x 1−√32(x 1∈[0, π]),函数y 2=x 2+3,则(x 1−x 2)2+(y 1−y 2)2的最小值为( )A √212π B (π+18)272 C (π+8)212 D (π−3√3+15)272二.填空题每小题5分,共20分13. 执行如图所示程序框图,若输入n =6,m =3,那么输出的p 等于________.14. 函数f(x)=2lnx +x 2在x =1处的切线方程是________.15. 把5名新兵分配到一、二、三3个不同的班,要求每班至少有一名且甲必须分配在一班,则所有不同的分配种数为________.16. 等比数列{a n }的公比0<q <1,a 172=a 24,则使a 1+a 2+...+a n >1a 1+1a 2+...+1a n成立的正整数n 的最大值为________.三.解答题17. 在△ABC 中,设角A 、B 、C 所对的边分别为a ,b ,c ,且cosA =2√55,cosB =3√1010. (Ⅰ)求角C 的大小;(Ⅱ)若△ABC 的面积为1,求abc .18. 近年来,随着地方经济的发展,劳务输出大省四川、河南、湖北、安徽等地的部分劳务人员选择了回乡就业,因而使得沿海地区出现了一定程度的用工荒.今年春节过后,沿海某公司对来自上述四省的务工人员进行了统计(如表):为了更进一步了解员工的来源情况,该公司采用分层抽样的方法从上述四省务工人员中随机抽取50名参加问卷调查.(1)从参加问卷调查的50名务工人员中随机抽取两名,求这两名来自同一省份的概率;(2)在参加问卷调查的50名务工人员中,从来自四川、湖北两省的人员中随机抽取两名,用ξ表示抽得四川省务工人员的人数,求ξ的分布列和数学期望.19. 已知△ABC是边长为3的等边三角形,点D、E分别是边AB,AC上的点,且满足ADDB =CEEA=12.将△ADE沿DE折起到△A1DE的位置,并使得平面A1DE⊥平面BCED.(1)求证:A1D⊥EC;(2)设P为线段BC上的一点,试求直线PA1与平面A1BD所成角的正切的最大值.20. 设椭圆E:x2a2+y2b2=1(a>b>0)的离心率为e=√22,且过点(−1, −√62).(1)求椭圆E的方程;(2)设椭圆E的左顶点是A,若直线l:x−my−t=0与椭圆E相交于不同的两点M、N (M、N与A均不重合),若以MN为直径的圆过点A,试判定直线l是否过定点,若过定点,求出该定点的坐标.21. 设函数f(x)=alnx+1x−a,(a∈R).(1)当a>0时,求函数f(x)的单调区间;(2)在(1)中,若函数f(x)的最小值恒小于e k+1,求实数k的取值范围;(3)当a<0时,设x1>0,x2>0,且x1≠x2,试比较f(x1+x22)与f(x1)+f(x2)2的大小.请从22、23、24三题中任选一题作答,如果多做,则按第一题计分.【选修4-1:几何证明选讲】22. 如图,点A在直径为15的⊙O上,PBC是过点O的割线,且PA=10,PB=5.(1)求证:PA与⊙O相切;(2)求S△ACB的值.【选修4-4:坐标系与参数方程】23. 在极坐标系中,圆C的方程为ρ=2acosθ(a≠0),以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系,设直线l的参数方程为{x=3t+1y=4t+3(t为参数).(Ⅰ)求圆C的标准方程和直线l的普通方程;(Ⅱ)若直线l与圆C恒有公共点,求实数a的取值范围.【选修4-5:不等式选讲】24. 已知函数f(x)=|x−1|+2|x+1|+1.(I)求不等式f(x)<6的解集;(II)若直线y=(13)a(a∈R)与函数y=f(x)的图象恒有公共点,求实数a的取值区间.2014年河北省保定市高考数学二模试卷(理科)答案1. A2. B3. B4. B5. C6. B7. D8. C9. D10. C11. D12. B13. 12014. 4x−y−3=015. 5016. 1817. (1)∵ cosA=2√55,cosB=3√1010∴ sinA=√1−cos2A=√55,sinB=√1−cos2B=√1010,∴ sinC=sin(A+B)=sinAcosB+cosAsinB=√55×3√1010+2√55×√1010=√22,∴ cos(A+B)=cosAcosB−sinAsinB=2√55×3√1010−√55×√1010=√22∴ cosC=cos(π−A−B)=−cos(A+B)=−√22∵ 0<C<π,∴ C=3π4.(2)∵ 12absinC=12absin3π4=√24ab=1,∴ ab=2√2,同理得bc=2√5,ca=2√10,∴ (abc)2=80,故abc=4√5.18. 解:(1)由题意知,从上述四省抽取的人数分别为15,20,10,5.…设“从参加问卷调查的50名务工人员中随机抽取两名,这两名人员来自同一个省份”为事件M,从参加问卷调查的50名务工人员中随机抽取两名的取法共有C502=1225种,这两名人员来自同一省份的取法共有C152+C202+C102+C52=350.∴ P(M)=3501225=27.…(2)由(1)知,在参加问卷调查的50名务工人员中,来自四川、湖北两省的人员人数分别为15,10.ξ的可能取值为0,1,2,…P(ξ=0)=C102C252=320,P(ξ=1)=C151C101C252=12,P(ξ=2)=C152C252=720.…∴ ξ的分布列为:∴ Eξ=0×320+1×12+2×+720=1.2…19. 证明:(1)因为等边△ABC的边长为3,且ADDB =CEEA=12,所以AD=1,AE=2.在△ADE中,∠DAE=60∘,由余弦定理得DE=√12+22−2×1×2×cos60∘=√3.因为AD2+DE2=AE2,所以AD⊥DE.折叠后有A1D⊥DE,因为平面A1DE⊥平面BCED,又平面A1DE∩平面BCED=DE,A1D⊂平面A1DE,A1D⊥DE,所以A1D⊥平面BCED故A1D⊥EC.(2)如图,作PH ⊥BD 于点H ,连结A 1H 、A 1P ,由(1)有A 1D ⊥平面BCED ,而PH ⊂平面BCED ,所以A 1D ⊥PH ,又A 1D ∩BD =D ,所以PH ⊥平面A 1BD , 所以∠PA 1H 是直线PA 1与平面A 1BD 所成的角, 设PB =x(0≤x ≤3),则BH =x2,PH =√3x2,DH =BD −BH =2−x2所以A 1H =√DH 2+A 1D 2=√x 2−2x+54所以在Rt △PA 1H 中,tan∠PA 1H =PHA 1H=√3x √x 2−8x+20①若x =0,则tan∠PA 1H =PHA 1H=√3x √x 2−8x+20=0,②若x ≠0则tan∠PA 1H =PH A 1H=√3x √x 2−8x+20=√3√1−8x +20x 2令1x=t(t ≥13),y =20t 2−8t +1因为函数y =20t 2−8t +1在t ≥13上单调递增,所以y min =20×19−83+1=59所以tan∠PA 1H 的最大值为√3√59=3√155(此时点P 与C 重合)20. 解:(1)由e 2=c 2a 2=a 2−b 2a 2=12,可得a 2=2b 2,…椭圆方程为x 22b2+y 2b 2=1,(a >b >0),代入点(−1,−√62)可得b 2=2,a 2=4,故椭圆E 的方程为x 24+y 22=1,…(2)由x −my −t =0得x =my +t ,把它代入E 的方程得:(m 2+2)y 2+2mty +t 2−4=0,设M(x 1, y 1),N(x 2, y 2)得:y 1+y 2=−2mtm 2+2,y 1y 2=t 2−4m 2+2,x 1+x 2=m(y 1+y 2)+2t =4t m 2+2x 1x 2=(my 1+t)(my 2+t)=m 2y 1y 2+tm(y 1+y 2)+t 2=2t 2−4m 2m 2+2…因为以MN 为直径的圆过点A ,所以AM ⊥AN ,…所以AM →⋅AN →=(x 1+2, y 1)•(x 2+2, y 2)=x 1x 2+2(x 1+x 2)+4+y 1y 2=2t 2−4m 2m 2+2+2×4tm 2+2+4+t 2−4m 2+2=3t 2+8t+4m 2+2=(t+2)(3t+2)m 2+2=0…因为M 、N 与A 均不重合,所以t ≠−2所以,t =−23,直线l 的方程是x =my −23,直线l 过定点T(−23,0)由于点T 在椭圆内部,故满足判别式大于0 所以直线l 过定点T(−23,0)…21. 解:(1)函数f(x)的定义域为(0, +∞).… 由题意x >0,f ′(x)=ax −1x 2,… 由f′(x)<0,得ax −1x 2<0,解得x <1a,函数f(x)的单调递减区间是(0, 1a ). 由f′(x)>0,得ax −1x 2>0,解得x >1a , 函数f(x)的单调递增区间是(1a ,+∞). …(2)由(1)知,当x =1a时,函数f(x)的最小值为f(1a )=aln 1a +a −a =−alna , 令g(a)=−alna ,由g′(a)=−(lna +1)=0,∴ a =1e . 当0<a <1e ,g′(a)>0,a >1e ,g ′(a)<0, ∴ g(a)min =g(1e )=1e . ∴ 由1e <e k+1,得k >−2.∴ 实数k 的取值范围(−2, +∞).… (3)∵ f(x 1+x 22)=alnx 1+x 22+2x1+x 2−a ,f(x 1)+f(x 2)2=12(alnx 1+1x 1+alnx 2+1x 2)−a=12[aln(x 1x 2)+x 1+x 2x 1x 2]−a =aln √x 1x 2+x 1+x 22x1x 2−a .∴ f(x 1+x 22)−f(x 1)+f(x 2)2=aln x 1+x 22+2x1+x 2−aln √x 1x 2−x 1+x 22x1x 2=122√xx −(x 1−x 2)22x1x 2(x 1+x 2).…∵ x 1>0,x 2>0,且x 1≠x 2,a <0,∴ x 1+x 2>2√x 1x 2,∴ 122√x x >1,122√x x <0.…又−(x 1−x 2)22x1x 2(x 1+x 2)<0,122√xx −(x 1−x 2)22x1x 2(x 1+x 2)<0,∴ f(x1+x22)−f(x1)+f(x2)2<0,即f(x1+x22)<f(x1)+f(x2)2.…22. (1)证明:连结OA,∵ ⊙O的直径为15,∴ OA=OB=7.5又PA=10,PB=5,∴ PO=12.5…在△APO中,PO2=156.25,PA2+OA2=156.25即PO2=PA2+OA2,∴ PA⊥OA,又点A在⊙O上故PA与⊙O相切…(2)解:∵ PA为⊙O的切线,∴ ∠ACB=∠PAB,又由∠P=∠P,∴ △PAB∽△PCA,∴ ABAC =PBPA=510=12…设AB=k,AC=2k,∵ BC为⊙O的直径且BC=15,AB⊥AC ∴ BC=√k2+(2k)2=√5k=15,∴ k=3√5∴ S△ACB=12AC⋅AB=12⋅2k⋅k=k2=45…23. (1)由{x=3t+1y=4t+3得,{x−13=ty−3 4=t,则x−13=y−34,∴ 直线l的普通方程为:4x−3y+5=0,由ρ=2acosθ得,ρ2=2aρcosθ又∵ ρ2=x2+y2,ρcosθ=x∴ 圆C的标准方程为(x−a)2+y2=a2,(2)∵ 直线l与圆C恒有公共点,∴√42+(−3)2≤|a|,两边平方得9a2−40a−25≥0,∴ (9a+5)(a−5)≥0∴ a的取值范围是a≤−59a≥5.24. 选修4−5:不等式选讲解:(1)因为f(x)={3x+2,x>1x+4,−1≤x≤1−3x,x<−1…所以当x>1时,由f(x)<6⇔3x+2<6⇔x<43,又x>1,所以1<x<43;当−1≤x≤1时,f(x)<6⇔x+4<6⇔x<2,又−1≤x≤1,所以−1≤x≤1;当x<−1时,f(x)<6⇔−3x<6⇔x>−2,又x<−1,所以−2<x<−1综上,所求的解集为{x|−2<x<43}.…(2)结合(1)知f(x)={3x+2,x>1x+4,−1≤x≤1−3x,x<−1知,当x>1时,f(x)=3x+2>5;当−1≤x≤1时,f(x)=x+4∈[3, 5];当x<−1时,f(x)=−3x>3;∴ 函数f(x)的值域为[3, +∞)…又直线y=(13)a(a∈R)与函数y=f(x)的图象恒有公共点,所以(13)a≥3,∴ a≤−1即a的取值区间是(−∞, −1].…。
河北省保定市2014年高三第二次模拟考试理科数学试题(A卷)
A
C
O
B
P
23. (本小题满分 10 分)选修 4-4:坐标系与参数方程 在极坐标系中,圆 C的方程为 2a cos (a 0) ,以极点为坐标原点,极轴为 x 轴正半轴建立平面直角 坐标系,设直线的参数方程为
x 3t 1, (t 为参数) . y 4t 3,
P
0
3 20 1 2
2
7 20
E =0
3 1 7 +1 +2 =1.2 „„„„„ 12 分 20 2 20 AD CE 1 , DB EA 2
19. (本小题满分12分) 证明:(1)因为等边△ ABC 的边长为 3,且
所以 AD 1 , AE 2 . 在△ ADE 中, DAE 60 , 由余弦定理得 DE 1 2 2 1 2 cos 60 3 .
∵ 0 A B ∴ A B
………………………6 分
(2)法一:由
1 1 3 2 ab sin C ab sin ab 1 得 ab 2 2 ……………8 分 2 2 4 4
同理得 bc 2 5, ca 2 10 --------------------10 分 所以 (abc) 80 ,故 abc = 4 5 ……………………………12 分
2
法二:由
1 1 3 2 ab sin C ab sin ab 1 得 ab 2 2 ……………8 分 2 2 4 4
由
a b c 得 sin A sin B sin C
5a 10b 2c ,即 a 2b, c 5b ---------------------10 分
A1 A D E B C
2014河北省中考模拟试题(数学)word版
2014年河北省中考模拟试题数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效. 一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.︱-2︱=( )A. 2B. -2C. ±2D.21 2. H7N9型禽流感病毒颗粒中,球形病毒的最大直径为0.00000012米,用科学记数法表示为( )A .1.2³10-9米B .1.2³10-8米C .12³10-8米D .1.2³10-7米 3.下列图形中,不是中心对称图形的是A B C D4.因式分解a a -3的结果是( )A .)1(2-a aB .2)1(-a aC .)1)(1(-+a a aD .)1)((2-+a a a5. 数轴上点表示-1,点B 表示2,则A ,B 间的距离是( )A .-3B .3C .2D .16.下列运算正确的是( ) A .a a a=-23B .632a a a =⋅C .326()a a =D . ()3393a a =7.某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x 个,根据题意可列分式方程为( )D8.如图,AB//CD ,AD 平分∠BAC ,∠D =42°,∠C =( )A. 84°B. 60°C. 62°D. 96°9.春晚魔术表演风靡全国,小明也学魔术师,发明了一个魔术盒.当任意实数对(a ,b )进入其中时,会得到一个新的实数:a 2+b -1,例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将实数对(-1,3)放入其中,得到实数m ,再将实数对(m ,1)放入其中后,得到的实数是 ( )A. 1B. 3C. 6D. -110.一次函数y =b x +的图象如图所示,以下结论:① 常数b =-2;② 图像关于x 轴对称图形的解析式为y=x+2; ③ 直线于坐标轴围成的三角形的面积为4; ④ 当x<2时,y<0. 其中正确的是 A .①② B .②③C .③④D .①④11.如图△ABC 的中线AE 、CD 交于,点O ,若AE =3,则OE =( )A .1B .2C .3D .4112.如图渔政船C 测得钓鱼岛A 在渔政船的北偏西30ο的方向上,渔政船B 测得钓鱼岛A 在渔政船的北偏西60ο的方向上,渔政船B 在渔政船C 北偏东30°的方向上,若BC =40海里,则AB 为(). A .80海里 B. 340海里 C. 380海里 D. 320海里13.如图,过正五边形ABCDE 的顶点A 作直线l ∥BE ,则∠1的度数为( )xACEA. 38°B. 36°C. 30°D. 45°14.以边长为2的正六边形各边长为直径作半圆,它们与这个正六边形的外接圆形成如图所示的阴影部分,则阴影的总面积为( )A .π-36B . π4C . 36D .π315.小芳同学有两根长度为4cm 、10cm 的木棒,她想钉一个三角形相框,桌上有五根木棒长分别为3cm 、6cm 、10cm 、12cm 、15cm 供她选择,从中任选一根,能钉成三角形相框的概率是( ) A.51 B. 52 C. 53 D.54 16.如图①,在Rt △ABC 中,∠A =90°,AB =AC ,BC =42,另有一等腰梯形DEF G(G F ∥DE )的底边DE 与BC 重合,两腰分别落在AB ,AC 上,且G ,F 分别是AB ,AC 的中点.固定△ABC ,将等腰梯形DEF G 以每秒1个单位的速度沿BC 方向向右运动,直到点D 与点C 重合时停止.设运动时间为x 秒,运动后的等腰梯形为DEF ′G′(如图②).设在运动过程中△ABC 与等腰梯形DEF ′G′重叠部分的面积为y ,则y 与x 的函数图象大致是( ).A B C D2014年河北省中考模拟试题数 学 试 卷卷Ⅱ(非选择题,共78分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.1A BC DE l2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.在函数y=11-+x x 中,自变量x 的取值范围是 18.已知实数a ,b 满足:a +b =2,a -b =5,则(a +b )3²(a -b )3的值是________. 19.如图,△ABC 中,∠ACB=90°,沿CD 折叠△CBD ,使点B 恰好落在AC 边上的点E 处.若∠A=22°,则∠BDC =20.如图,在直角坐标系中,已知点A (﹣3,0)、B (0,4),对△OAB 连续作旋转变换,依次得到△1、△2、△3、△4…,则△2014的直角顶点的坐标为 .三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分9分)已知()12-y y f =,可知若y=1,则()3112=+⨯=y f (1) 若y=2x+1,请用含x 的式子表示()y f ;(2) 当y=2x 2+x 时,()y f <0,请根据函数的大致图象判断x 的取值范围22.(本小题满分10分)以下是根据近几届园博会的相关数据绘制的统计图的一部分:(1)第九届园博会的植物花园区由五个花园组成,其中月季园面积为0.04平方千米,则植物花园面积为__________平方千米;(2)第九届园博会园区陆地面积是植物花园区总面积的18倍,水面面积是第七、八两届园博会的水面面积之和,请根据上述信息补全条形统计图,并标明相应数据; (3)小娜收集了几届园博会的相关信息(如下表),发现园博会园区周边设置的停车位数量与日接待游客量和单日最多接待游客量中的某个量近似成正比例关系,根据小娜的发现,请估计将于2015年举办的第十届园博会大约需要设置的停车位数量(直接写出结果,精确到百位)。
【2014保定二模】河北省保定市2014届高三第二次模拟考试数学(理)试题(扫描版)
理科数学答案一.选择题:A 卷:ABCAB BDDCC DB B 卷:ACBAB BDCDC DB二.填空题:13. 120; 14. 4x-y-3=0; 15. 50; 16. 18.三.解答题:解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分12分)解:(1)∵cos A B ==∴ sin sin A B ====----------------3分cos()cos cos sin sin A B A B A B +=-=-= ∵ 0A B π<+<∴ 4A B π+= ∴34C π= ………………………………6分(2)法一:由113sin sin 1224ab C ab π===得ab =8分同理得bc ca ==分所以2()80abc =,故abc =2分法二:由113sin sin 1224ab C ab π===得ab =8分 由sin sin sin a b c A B C==得==,即,a c ==---------------------10分22b a =∴== ∴ c ==即、、a b c 的值分别为2所以abc =2=2分18.(本小题满分12分)解:(1)易得问卷调查中,从上述四省抽取的人数分别为15,20,10,5. …………… 2分设“从参加问卷调查的50名务工人员中随机抽取两名,这两名人员来自同一个省份”为事件M ,从参加问卷调查的50名务工人员中随机抽取两名的取法共有C 250=1225种,这两名人员来自同一省份的取法共有C 215+C 220+C 210+C 25=350.∴()3501225P M ==27.………… 5分 (2)由(1)知,在参加问卷调查的50名务工人员中,来自四川、湖北两省的人员人数分别为15,10.ξ的可能取值为0,1,2, ………… 7分()0P ξ==210225C C 320=, ()1P ξ==111510225C C C =12,()2P ξ==215225C C 720=. …………… 10分 ∴ξ的分布列为:317=0+1+2=1.220220E ξ⨯⨯⨯…………… 12分 19. (本小题满分12分) 证明:(1)因为等边△ABC 的边长为3,且AD DB =12CE EA =, 所以1AD =,2AE =. 在△ADE 中,60DAE ∠=,由余弦定理得3DE ==.因为222AD DE AE +=,所以AD DE ⊥. ………………………3分折叠后有1A D DE ⊥,因为平面1A DE ⊥平面BCED , 又平面1A DE 平面BCED DE =,1A D ⊂平面1A DE ,1A D DE ⊥,所以1A D ⊥平面BCED故A 1D ⊥EC.…………6分(2)法一:由(1)的证明,可知ED DB ⊥,1A D ⊥平面BCED .以D 为坐标原点,以射线DB 、DE 、1DA 分别为x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系D xyz -如图 , 作PH BD ⊥于点H ,连结1A H 、1A P ,设2PB a =()023a ≤≤, 则BH a =,PH =,2DH a =- ,所以()10,0,1A,()2,0P a -,()E ,所以()12,,1PA a =-因为ED ⊥平面1A BD , 所以平面1A BD的一个法向量为()DE =…8分 设直线1PA 与平面1A BD 所成的角为α, 所以11sin ||||||4PA DEPA DE α⋅==⋅, ①若0,a =则11sin ||0||||4PA DEPA DE α⋅===⋅ (9)分②若0,a ≠则11sin ||||||4PA DE PA DE α⋅===⋅ 令212(),5443t t y t t a =≥=-+ 因为函数2544y t t =-+在23t ≥上单调递增,所以min 483254939y =⨯-+= 即2max 27(sin )32α= 所以22max max 2max (sin )27(tan )1(sin )5ααα==-(此时点P 与C 重合)…………12分 法二:如图,作PH BD ⊥于点H ,连结1A H 、1A P ,由(1)有1A D ⊥平面BCED ,而PH ⊂平面BCED ,所以1A D ⊥PH ,又1A D BD D =, 所以PH ⊥平面1A BD所以1PA H ∠是直线1PA 与平面1A BD 所成的角 , ………………………8分 设PB x =()03x ≤≤,则2x BH =,PH x =,DH=BD-BH=2-2x 所以A 1= 所以在Rt △1PA H 中,tan 1PA H ∠=1PH A H=①若x=0,则tan 1PA H ∠=10PH A H==……………9分 ②若0,x ≠则tan 1PA H ∠=1PH A H==令211(),20813t t y t t x =≥=-+ 因为函数22081y t t =-+在13t ≥上单调递增,所以min 185201939y =⨯-+= 所以tan 1PA H ∠=(此时点P 与C 重合)…………12分 20. (本小题满分12分) 解:⑴由21222222=-==a b a a c e ,可得222b a =,………………………1分 椭圆方程为)0(,122222>>=+b a b y b x ,代入点⎪⎪⎭⎫ ⎝⎛--26,1可得4,222==a b , 故椭圆E 的方程为,12422=+y x ………………………4分 ⑵由0x my t --=得x my t =+,把它代入E 的方程得:()0422222=-+++t mty y m ,设()1122(,),,M x y N x y 得: A24,222221221+-=+-=+m t y y m mt y y ,()24222121+=++=+m t t y y m x x ()()()2422222212122121+-=+++=++=m m t t y y tm y y m t my t my x x …………………7分 因为以MN 为直径的圆过点A,所以AN AM ⊥,………………………8分 所以AN AM ⋅()()()212121221142,2,2y y x x x x y x y x ++++=+⋅+= ()()022322483244242242222222222=+++=+++=+-+++⨯++-=m t t m t t m t m t m m t ………10分 因为M 、N 与A 均不重合,所以2t ≠-所以,32-=t ,直线l 的方程是32-=my x ,直线l 过定点T ⎪⎭⎫ ⎝⎛-0,32 由于点T 在椭圆内部,故满足判别式大于0所以直线l 过定点T ⎪⎭⎫ ⎝⎛-0,32……………12分 21. (本小题满分12分)解:(1)函数()f x 的定义域为(0,)+∞. ………………………………1分 由题意21)(,0xx a x f x -='>, ………………………………………2分 由0)(<'x f 得012<-x x a ,解得a x 1<,函数)(x f 的单调递减区间是)1,0(a; 由0)(>'x f 得012>-x x a ,解得a x 1>, 函数)(x f 的单调递增区间是),1(∞+a. ………………………………4分 (2)由(1)知,当a x 1=时,函数()f x 的最小值为11()ln ln f a a a a a a a=+-=- 令()ln g a a a =-,由1()(ln 1)0,g a a a e'=-+=∴= 当110,()0;,()0a g a a g a e e''<<>>< max 11()()g a g e e∴== 所以由1e<1k e +,得2k >-…………………………………………7分 (3)因为121212()ln 22x x x x f a x x ++2=++a -,121212()()1(ln ln )22f x f x a x a x x x +11=+++a -.12121212121[ln(]22x x x x a x x a a a x x x x ++=)+-=-.所以121212121212()()()ln 2222x x f x f x x x x x f a a x x x x ++++2-=+-+121212()2()x x a x x x x 2-=+.………………………10分 因为0,021>>x x 且12x x ≠,0a <,所以221>+x x 21x x ,所以02ln ,1221212121<+>+x x x x a x x x x .……………11分 又121212()02()x x x x x x 2--<+,所以121212()02()x x a x x x x 2-<+ 所以02)()()2(2121<+-+x f x f x x f , 即2)()()2(2121x f x f x x f +<+.………………………………12分 22. (本小题满分10分)选修4—1:几何证明选讲(1)证明:连结OA,因为⊙O 的直径为15,所以OA=OB=7.5 又PA=10,PB=5,所以PO=12.5………………………2分 在△APO 中,PO 2=156.25,PA 2+OA 2=156.25 即PO 2= PA 2+OA 2,所以PA ⊥OA ,又点A 在⊙O 上 故PA 与⊙O 相切………………………5分(2)解:∵PA 为⊙O 的切线,∴∠ACB=∠PAB,又由∠P=∠P, ∴△PAB ∽△PCA,∴21105===PA PB AC AB ………7分 设AB=k ,AC=2k, ∵BC 为⊙O 的直径且BC=15 ,AB ⊥AC∴=15BC ==所以k = ∴21124522ACB AC AB k k S k ∆=∙=∙∙== ………………10分 23. (本小题满分10分)选修4-4:坐标系与参数方程C解:(1)由3143x t y t =+⎧⎨=+⎩得11333344x t x y y t -⎧=⎪--⎪⇒=⎨-⎪=⎪⎩ 所以直线l 的普通方程为:4350x y -+=,………………………2分 由22cos 2cos a a ρθρρθ=⇒=又222,cos x y x ρρθ=+=所以,圆C 的标准方程为222()x a y a -+=,………………………5分(2)因为直线l 与圆C 恒有公共点,a ≤,…………7分两边平方得2940250,(95)(5)0a a a a --≥∴+-≥所以a 的取值范围是559a a ≤-≥或.……………………………………………10分24.(本小题满分10分)选修4—5:不等式选讲 解: (1)因为32,1()4,113,1x x f x x x x x +>⎧⎪=+-≤≤⎨⎪-<-⎩………………………3分所以当x >1时,由4()63263f x x x <⇔+<⇔<,又x >1 所以413x << 当11≤≤-x 时,()6462f x x x <⇔+<⇔<,又11≤≤-x , 所以11≤≤-x当1-<x 时,()6362f x x x <⇔-<⇔>-,又1-<x 所以21x -<<- 综上,所求的解集为4|23x x ⎧⎫-<<⎨⎬⎩⎭。
2014年石家庄两次、保定两次模拟试题精选(带答案)
2014年石家庄两次模拟、保定两次模拟试题精选一、选择题:(本大题共12小题。
每小题5分)1.(石家庄一模2)设不等式x x -2≤0的解集为M ,函数|)|1lg()(x x f -=的定义域为N ,则M ∩=N ( )A .]0,1(-B .)1,0[C .)1,0(D .]1,0[ 2.(保定二模3)若)(1R a iia ∈-+是纯虚数,则=-+|1|i i a ( ) A .i B .1 C .2 D .23.(石家庄二模4)命题p 为:抛物线y x 42=的焦点坐标为)1,0(;命题q 为:“3=a ”是“直线02=+y ax 与直线332=-y x 垂直”的充要条件.则以下结论正确的是( )A .p 或 q 为真命题B .p 且q 为假命题C .p 且 q ⌝为真命题D .p ⌝或q 为假命题4.(保定二模8)已知数列}{n a 中,251=a ,)(7441*+∈-=N n a a n n ,若其前n 项和为n S ,则n S 的最大值为( ) A .15 B .750 C .4765 D .27055.(石家庄一模7)执行下边的程序框图,若输出的结果是3,则可输入的实数x 值得个数为( ) A.1 B. 2 C. 3 D.4 6.(保定二模7)设变量x ,y 满足不等式组⎩⎨⎧≤≤≤+≤101200y y x则y x 32+的最大值为( )A .1B .10C .41D .50 7. (石家庄一模8)三棱锥ABC S -的及其三视图中的正视图和侧视图如图所示,则棱SB 的长().24C .388.(石家庄一模9)在ABC ∆中,角C B A ,,的对边分别为c b a,,,且满足C ac A c cos 3sin =,则B A sin sin +的最大值是( )A .1B .2C .3D .39.(石家庄二模10)已知向量a ,b 满足:2a · b=a 2b 2,|a|+|b|=2,则a 与b 25-=的夹角θ的最小值是( ) A .3π B .4π C .32π D .6π 10.(石家庄二模11)双曲线)0,0(12222>>=-b a by a x 的右焦点为F ,左顶点为A ,以F 是为圆心过点A 的圆交双曲线的一条渐近线于Q P ,两点,若||PQ 不小于双曲线的虚轴长,则该双曲线的离心率的取值范围是( )A .]2,1(B .]3,1(C .]3,1(D .),3[+∞11.(保定一模12)已知函数)(x f 的定义域为R ,且满足:)(x f 是偶函数,)1(-x f 是奇函数,若9)5.0(=-f ,则)5.1()5.2()2014()2012(f f f f +++等于( )A.18-B. 9-C. 0D.912.(石家庄二模12)已知线段8=AB 上,点C 在线段AB 上,且2=AC ,P 为线段CB 上一动点,点A 绕点C 旋转后与点B 绕点P 旋转后重合于点D .设x CP =,CPD ∆的面积为)(x f ,则)(x f 的导函数)(x f '的零点为( )A .1B .3C .322 D .22二、填空题:(本大题共4小题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年河北省保定市中考数学二模试卷
一、选择题(本大题共16小题,1-6小题,每小题2分,7-16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.在一条东西向的跑道上,小明先向西走了10米,记作“﹣10米”,又向东走了8米,此时
6.在一次数学竞赛中,10名学生的成绩如下所示:78,82,75,88,97,82,82,67,78,
7.定义一种运算☆,其规则为a☆b=+,根据这个规则,计算2☆3的值是()
B
8.已知a2﹣3a﹣1=0,则4++a2的值为()
+10 4+10+5
+10
角线上三个数之和均相等,则幻方中的a﹣b的值是()
11.如图,在⊙O,直径AB⊥弦CD于E点,⊙O半径等于5cm,OE=3cm,则CD的值是()
cm
12.关于x的方程=1的解是正数,则a的取值范围是()
13.如图,菱形OABC的顶点O在坐标系原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点O顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()
,,﹣),﹣)
14.函数的图象在()
15.二次函数y=ax+bx+c的图象如图所示,那么下面结论:①abc>0,②2a+b=0;③a+b+c>0;
④x=3时,9a+3b+c=0,正确的有()
线BCD向点D移动,EM⊥AB于M,EN⊥AD于N,设BM=x,矩形AMEN的面积为y,那么y与x之间的函数关系的图象大致是()
二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.已知:+(b+5)2=0,那么a+b的值为_________.
18.如图,Rt△ABC,AC=BC,将Rt△ABC沿过B的直线折叠,使点C落在AB边上点F 处,折痕为BE,这样可以求出22.5°的正切值是_________.
19.如图,直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3.把一块含有45°角的直角三角板如图所示放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为_________.
20.对于正数x,规定f(x)=,例如f(4)═=,f()==,则f(2014)
+f(2013)+…+f(2)+f(1)+f()+f()+…+f()=_________.
三、解答题(本大题共6小题,共72分,解答应写出文字说明、证明过程或演算步骤)21.(9分)有一项工程,甲单独做恰好如期完成,乙单独做则需延期三天方可完成;现在甲、乙合作施工2天后,甲另有其他任务去执行,剩下的工作由乙单独做,恰好如期完成,问此项工程的规定日期是几天.
22.(10分)中小学生的视力状况越来越受到全社会的广泛关注.某市有关部门对全市5万名初中生的视力情况进行了一次抽样调查,统计人员利用所得数据绘制的尚不完整的扇形统计图(图1)和频数分布直方图(图2)(长方形的高表示该组人数),根据图中所提供的信息回答下列问题;
(1)本次调查共抽测了多少名学生;
(2)补全图2的频数分布直方图;
(3)在扇形统计图(图1)中,视力在5.2~5.5所在扇形占的百分比为多少;
(4)在这个问题中的样本指的是什么;
(5)求全市有多少名初中生的视力在4.9~5.2(含4.9,不含5.2)范围内.
23.(10分)如图,矩形ABCD在第一象限,AB在x轴正半轴上;AB=m,BC=1,直线y=x ﹣1经过点C交x轴与点F,与双曲线y=(x>0)交于点P(+1,n),
(1)求k的值;
(2)求点C的坐标;
(3)m为多少时,双曲线y=(x>0)过点D.
24.(11分)如图,已知P是正方形ABCD对角线AC上的一点,不与A,C重合,PE⊥DA,PF⊥CD,E、F为垂足,
(1)求证:四边形EPFD为矩形;
(2)求证:BP=EF;
(3)过E,P,F三点作⊙O,设正方形ABCD的边长为4,当AC与⊙O相切时,求BP的长.
25.(12分)如图1,在直线l同侧有A,E两点
(1)通过画图,在直线l上找到一点P,使得AP+EP的值最小;
(2)如图2,分别过点A,E作AB⊥BD,ED⊥BD,C为线段BD上一动点,连接AC,EC.已知AB=9,DE=1,AE=17,设CD=x,用含x的代数式表示AC+CE的长;
(3)应用A:如图3,若直线l是一条河流,A、E代表河流同侧的两个工厂,欲在河岸上建一供水站,供A、E两个工厂的用水,为了节省费用,使通水管道到两个工厂的距离之和最短;已知工厂A到河岸的距离为9千米,工厂E到河岸的距离为1千米,A、E两个工厂之间的距离为17千米,请你求出通水管道的最短长度;
(4)应用B:借助上面的思考过程与几何模型,求代数式+的最小值(0<x<16)
26.(14分)某化工产品C是由A,B两种原料加工而成的,每个C产品的质量为50kg,经测定加工费与A的质量的平方成正比例;A原料的成本10元/kg,B原料的成本:40元/kg;C产品中A的含量不能低于10%,又不能高于60%;
(1)设每个C产品的成本为y(元),每个C产品含A的质量为x(kg),当一个C产品含A种原料10%时,成本价是1875元,求y与x之间的函数关系式,并写出x的范围;(每个C成本=A的成本+B的成本+加工费用)
②求每个C产品的利润w(元)与含A的质量x(kg)之间的函数关系式;(利润=出厂价﹣成本)
(3)若生产的产品都能销售出去,工厂生产哪一种含量的C产品获利最高,最高为多少;(4)某客户买了100个相同的C产品,厂家获利50000元,问这种C产品中含A原料的百分比是多少.。