1.8 充分条件与必要条件·基础练习

合集下载

高一数学充分条件与必要条件练习题

高一数学充分条件与必要条件练习题

高一数学充分条件与必要条件练习题题型一:判断充分,必要条件【例1】 在空间中,“两条直线没有公共点”是“这两条直线平行”的( )A .充分不必要条件.B .必要不充分条件.C .充要条件.D .既不充分也不必要条件.【例2】 对任意实数a 、b 、c ,在下列命题中,真命题是( )A .“ac bc >”是“a b >”的必要条件B .“ac bc =”是“a b =”的必要条件C .“ac bc >”是“a b >”的充分条件D .“ac bc =”是“a b =”的充分条件【例3】 若集合2{|540}A x x x =-+<,{|||1}B x x a =-<,则“(23),a ∈”是“B A ⊆”的( )A . 充分但不必要条件B . 必要但不充分条件C . 充要条件D . 既不充分又不必要条件【例4】 若“a b c d ⇒>≥”和“a b e f <⇒≤”都是真命题,其逆命题都是假命题,则“c d ≤”是“e f ≤”的( )A .必要非充分条件B .充分非必要条件C .充分必要条件D .既非充分也非必要条件【例5】 已知,,,a b c d 为实数,且c d >.则“a b >”是“a c b d ->-”的( )A . 充分而不必要条件B . 必要而不充分条件C .充要条件D . 既不充分也不必要条件【例6】 “18a =”是“对任意的正数x ,21ax x +≥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件典例分析【例7】 0a <是方程2210ax x ++=至少有一个负数根的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件【例8】 “函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【例9】 已知命题p :40k -<<;命题q :函数21y kx kx =--的值恒为负.则命题p 是命题q 成立的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件 【例10】 “12m =”是“直线(2)310m x my +++=与直线(2)(2)30m x m y -++-=相互垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .非充分非必要条件【例11】 “1a =”是“函数()||f x x a =-在区间[1),+∞上为增函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【例12】 设()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( )A .充要条件B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件【例13】 “a b >”是“log log m m a n b n >”(01)≤m n <<成立的 ( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件【例14】 “a b =”是“直线2y x =+与圆22()()2x a y b -+-=相切”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .非充分非必要条件【例15】 对于非零向量a ,b ,“0+=a b ”是“∥a b ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【例16】 “αβ≠”是“cos cos αβ≠”的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【例17】 平面内两定点A 、B 及动点P ,命题甲是:“||||PA PB +是定值”,命题乙是:“点P 的轨迹是以A 、B 为焦点的椭圆”,那么( ) A .甲是乙成立的充分不必要条件B .甲是乙成立的必要不充分条件C .甲是乙成立的充要条件D .甲是乙成立的非充分非必要条件【例18】 若:,1A a R a ∈<, :B x 的二次方程2(1)20x a x a +++-=的一个根大于零,另一根小于零,则A 是B 的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【例19】 若R k ∈,则“3k >”是“方程22133x y k k -=-+表示双曲线”的( )A .充分不必要条件B . 必要不充分条件C . 充要条件D .既不充分也不必要条件【例20】 “2π3θ=”是“πtan 2cos 2θθ⎛⎫=+ ⎪⎝⎭”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【例21】 甲:A B ,是互斥事件;乙:A B ,是对立事件,那么下列说法正确的是( )A .甲是乙的充分不必要条件B .甲是乙的必要不充分条件C .甲是乙的充要条件D .甲是乙的既不充分也不必要条件【例22】 用充分不必要条件、必要不充分条件、充要条件和既不充分也不必要条件填空.⑴5x <是10x <的____________;10x <是5x <的____________;⑵两个三角形的面积相等是两个三角形全等的__________; ⑶x A ∈是x A B ∈的____________;⑷A B ⊆是A B B =的___________;⑸A :12m =,B :直线(2)310m x my +++=与直线(2)(2)30m x m y -++-=相互垂直,则A 是B 的 条件.⑹A :|2|2x -<,B :2450x x --<,则A 是B 成立的 条件;⑺A :a ∈R ,||1a <,B :x 的二次方程2(1)20x a x a +++-=的一个根大于零,另一根小于零,则A 是B 的____________.【例23】 ⑴在ABC ∆中,A B >是sin sin A B >的___________.⑵对于实数x y ,,8x y +≠是2x ≠或6y ≠的___________. ⑶在ABC ∆中,sin sin A B >是tan tan A B >的____________.⑷已知x y ∈R ,,22(1)(2)0x y -+-=是(1)(2)0x y --=的____________. ⑸||||||x y x y +=+是0xy ≥的__________.【例24】 用“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”填空.⑴若a b ∈R ,,则0ab ≠是0a ≠的______条件; ⑵若a b ∈R ,,则220a b +≠是0a ≠的________条件;⑶若A B ,均是非空集合,则A B φ≠是A B ⊆的___________条件;⑷已知a b ,均为非零向量,则0a b ⋅>是a 与b 的夹角为锐角的__________条件; ⑸已知αβ,是不同的两个平面,直线a α⊂,直线b β⊂,则a 与b 没有公共点是αβ∥的__________条件;⑹不等式|1||2|x x m -++>的解集为R 是(52)()log m f x x -=为减函数的_________条件; ⑺在ABC ∆中,“0AB AC ⋅>”是“ABC ∆为锐角三角形”的__________条件; ⑻“2a =”是“函数()||f x x a =-在区间[2)+∞,上为增函数”的_________条件;⑼若集合2{1}A m =,,{24}B =,,则“2m =”是“{4}A B =”的__________条件;⑽等比数列{}n a 中,“13a a <”是“57a a <”的__________条件;⑾11||22k ->是“函数22log (2)y x kx k =-+的值域为R ”的___________条件;⑿“ππ42α<<”是“tan ()log f x x α=在(0)+∞,内是增函数”的___________条件;⒀若a b c ∈R ,,,则“0a >且240b ac -<”是“对任意x ∈R ,有20ax bx c ++>”的________条件;⒁“3m =”是“直线(3)20m x my ++-=与直线650mx y -+=互相垂直”的_________条件;⒂“b =a b c ,,三个数成等比数列”的__________条件;⒃两个向量相等是这两个向量共线的__________条件;⒄设函数2()|log |f x x =,则“01m <<”是“()f x 在区间(21)(0)m m m +>,上不是单调函数”的__________ 条件;【例25】 若x y ∈R ,,判断下面命题的真假⑴“2log (42)3xy x y +-=”是“2268250x y x y +-++=”成立的必要条件;⑵222x y +<是||||x y +<||||x y +的必要条件.题型二:充分,必要条件的求解【例26】 设a ,b 是两条直线,α,β是两个平面,则a b ⊥的一个充分条件是( )A .a α⊥,b β∥,αβ⊥B .a α⊥,b β⊥,αβ∥C .a α⊂,b β⊥,αβ∥D .a α⊂,b β∥,αβ⊥【例27】 设a b ,表示直线,αβ,表示平面,则αβ∥的充分条件是( )A .a b a b αβ⊥⊥∥,,B .a b a b αβ⊂⊂,,∥C .a b a b αββα⊂⊂,,∥,∥D .a b a b βα⊥⊥⊥,,【例28】 设m n ,是平面α内的两条不同直线,1l ,2l 是平面β内的两条相交直线,则αβ∥的一个充分而不必要条件是( )A .m β∥且1l α∥B .1m l ∥且2n l ∥C .m β∥且n β∥D .m β∥且2n l ∥【例29】 平面α∥平面β的一个充分条件是( )A.存在一条直线α,a α∥,a β∥ B.存在一条直线a ,a α⊂,a β∥C.存在两条平行直线a ,b ,a α⊂,b β⊂,a β∥,b α∥ D.存在两条异面直线a ,b ,a α⊂,a β∥,b α∥【例30】 直线12l l ,互相平行的一个充分条件是( )A .12l l ,都平行于同一个平面B .12l l ,与同一个平面所成的角相等C .1l 平行于2l 所在的平面D .12l l ,都垂直于同一个平面【例31】 给出以下四个条件:①0ab >;②0a >或0b >;③2a b +>;④0a >且0b >.其中可以作为“若a b ∈R ,,则0a b +>”的一个充分而不必要条件的是 .【例32】 设集合2{|60}A x x x =+-=,{|10}B x mx =+=,则B 是A 的真子集的一个充分不必要的条件是( )A .1123m ⎧⎫∈-⎨⎬⎩⎭,B .0m ≠C .11023m ⎧⎫∈-⎨⎬⎩⎭,,D .103m ⎧⎫∈⎨⎬⎩⎭,【例33】 若不等式1x m -<成立的充分不必要条件是23x <<,则实数m 的取值范围是________;【例34】 集合1|01x A x x -⎧⎫=<⎨⎬+⎩⎭,{|}B x x b a =-<,若“1a =”是“A B ≠∅”的充分条件,则b 的取值范围可以是( ) A .20≤b -< B .02≤b < C .31b -<<-D .12≤b -<【例35】 下列选项中,p 是q 的必要不充分条件的是( )A .:p a c b d +>+, :q a b >且c d >B .:11p a b >>, ():x q f x a b =-(0a >,且1a ≠)的图像不过第二象限C .:1p x =, 2:q x x =D .:1p a >,():log =a q f x x (0>a ,且1≠a )在()0+∞,上为增函数【例36】 已知条件p :|1|2x +>,条件q :x a >,且p ⌝是q ⌝的充分不必要条件,则a 的取值范围可以是( )A .1a ≥B .1a ≤C .1a ≥-D .3a -≤【例37】 给出以下四个条件:①0ab >;②0a >或0b >;③2a b +>;④0a >且0b >.其中可以作为“若,a b ∈R ,则0a b +>”的一个充分而不必要条件的是 .【例38】 已知不等式||1x m -<成立的充分不必要条件是1132x <<,则m 的取值范围是 ( ) A.41{|}32m m -≤≤ B.1{|}2m m <C. 14{|}23m m -≤≤D. 4{|}3m m ≥【例39】 (1)(2)0x x -+<的一个必要不充分条件是 .【例40】 1xy>的一个充分不必要条件是( )A .x y >B .0x y >>C .x y <D .0y x <<【例41】 可以作为“若a b ∈R ,,则0a b +>”的一个充分而不必要条件的是( )A .0ab >B .0a >或0b >C .0a >且0b >D .1ab >【例42】 直线1y kx =+的倾斜角为钝角的一个必要非充分条件是( )A .0k <B .1k <-C .1k <D .2k >-【例43】 已知命题p :1123x --≤;q :22210(0)x x m m -+->≤,若p ⌝是q ⌝的必要非充分条件,求实数m 的取值范围.【例44】 已知命题1:123x p --≤;22:210(0)q x x m m -+->≤,若p ⌝是q ⌝的充分非必要条件,求实数m 的取值范围.【例45】 设αβ,是方程20x ax b -+=的两个实根,试分析21a b >>,是两根αβ,均大于1的什么条件?【例46】 求证:关于x 的方程220x ax b ++=有实数根,且两根均小于2的一个充分条件是2a ≥且||4b ≤.【例47】 设命题1|34:|≤-x p ;命题0)1()12(:2≤+++-a a x a x q ,若p ⌝是q ⌝的必要不充分条件,求实数a 的取值范围.题型三:充要条件【例48】 已知,a b 是实数,则“0a >且0b >”是“0a b +>且0ab >”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【例49】 在ABC ∆中,条件甲:A B <,条件乙:22cos cos A B >,则甲是乙的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件【例50】 已知a ∈R 且0a ≠,则“11a<”是 “a >1”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件【例51】 设,a b ∈R ,则不等式a b >与11a b>都成立的充要条件是( ) A .0ab > B .00,a b >< C .0ab < D .0ab ≠【例52】 已知αβ,表示两个不同的平面,m 为平面α内的一条直线,则“αβ⊥”是“m β⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【例53】 若a 与b c -都是非零向量,则“a b a c ⋅=⋅”是“()a b c ⊥-”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【例54】 设(32()log f x x x =++,则对任意实数a 、b ,0≥a b +是()()0≥f a f b +的( ).A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件【例55】 对任意实数a ,b ,c ,给出下列命题:①“a b =”是“ac bc =”充要条件;②“5a +是无理数”是“a 是无理数”的充要条件; ③“a b >”是“22a b >”的充分条件;④“5a <”是“3a <”的必要条件.其中真命题的个数是( )A .1B .2C .3D .4【例56】 已知a 、b ∈R ,则a b >与11a b>同时成立的充要条件是 .【例57】 函数()||f x x x a b =++是奇函数的充要条件是( )A .0ab =B .0a b +=C .a b =D .220a b +=【例58】 给出下列命题:①实数0a =是直线21ax y -=与223ax y -=平行的充要条件;②若0,,a b ab ∈=R 是a b a b +=+成立的充要条件;③已知,x y ∈R ,“若0xy =,则0x =或0y =”的逆否命题是“若0x ≠或0y ≠,则0xy ≠”;④“若a 和b 都是偶数,则a b +是偶数”的否命题是假命题 .其中正确命题的序号是_______.【例59】 设集合(){}R R U x y x y =∈∈,,,(){}20A x y x y m =-+>,,(){}0B x y x y n =+-,≤,那么点()(23)U P A C B ∈,的充要条件是( )A .15m n >-<,B .15m n <-<,C .15m n >->,D .1,5m n <->【例60】 设()()sin f x x ωϕ=+,其中0ω>,则()f x 是偶函数的充要条件是( )A .()01f =B .()00f =C .()01f '=D .()00f '=【例61】 下列各小题中,p 是q 的充分必要条件的是( )①:2p m <-或6m >;2:3q y x mx m =+++有两个不同的零点;②()():1f x p f x -=;():q y f x =是偶函数③:cos cos p αβ=;:tan tan q αβ=. ④:p A B A =;:U Uq B A ⊆.A .①②B .②③C .③④D . ①④【例62】 已知数列{}n a 的通项1113423n a n n n =++++++,为了使不等式22(1)11log (1)log 20n t t a t t ->--对任意*n ∈N 恒成立的充要条件 .【例63】 已知关于x 的一元二次方程(m ∈Z ):①2440mx x -+=;②2244450x mx m m -+--=. 求方程①和②都有整数解的充要条件.【例64】 设a b c ,,为ABC ∆的三边,求证:方程2220x ax b ++=与2220x cx b +-=有公共根的充要条件为222a b c =+.【例65】 已知方程22(21)0x k x k +-+=,求使方程有两个大于1的实数根的充要条件。

充分条件与必要条件测试题含答案

充分条件与必要条件测试题含答案

充分条件与必要条件测试题(含答案)班级 姓名一、选择题1.“2x =”是“(1)(2)0x x --=”的 ( )(A) 充分不必要条件 (B )必要不充分条件(C )充要条件 (D )非充分非必要条件2.在ABC ∆中,:,:p a b q BAC ABC >∠>∠,则p 是q 的 ( )(A) 充分不必要条件 (B )必要不充分条件(C )充要条件 (D )非充分非必要条件3.“p 或q 是假命题”是“非p 为真命题”的( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.若非空集合M N ≠⊂,则“a M ∈或a N ∈”是“a M N ∈”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件B 提示:“a M ∈或a N ∈”不一定有“a M N ∈”。

5.对任意的实数,,a b c ,下列命题是真命题的是 ( )(A )“ac bc >”是“a b >”的必要条件(B )“ac bc =”是“a b =”的必要条件(C )“ac bc <”是“a b >”的充分条件(D )“ac bc =”是“a b =”的必要条件6.若条件:14p x +≤,条件:23q x <<,则q ⌝是p ⌝的 ( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )非充分非必要条件7.若非空集合,,A B C 满足A B C =,且B 不是A 的子集,则 ( )A. “x C ∈”是“x A ∈”的充分条件但不是必要条件B. “x C ∈”是“x A ∈”的必要条件但不是充分条件C. “x C ∈”是“x A ∈”的充要条件D. “x C ∈”既不是“x A ∈”的充分条件也不是“x A ∈”必要条件8.对于实数,x y ,满足:3,:2p x y q x +≠≠或1y ≠,则p 是q 的 ( )(A) 充分而不必要条件 (B) 必要而不充分条件(C) 充分必要条件 (D) 既不充分也不必要条件9.“40k -<<”是“函数2y x kx k =--的值恒为正值”的 ( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件10.已知条件:2p t ≠,条件2:4q t ≠,则p 是q 的 ( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件11.“a =2”是“函数f (x )=x 2+ax +1在区间[-1,+∞)上为增函数”的 ( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件12.已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件。

充分条件与必要条件(经典练习及答案详解)

充分条件与必要条件(经典练习及答案详解)

充分条件与必要条件1.设x∈R,则“1<x<2”是“1<x<3”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【答案】B【解析】“1<x<2”⇒“1<x<3”,反之不成立.所以“1<x<2”是“1<x<3”的充分不必要条件.故选B.2.(2020年佛山高一期末)“x=1”是“x2-4x+3=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】若x=1,则x2-4x+3=0,是充分条件,若x2-4x+3=0,则x =1或x=3,不是必要条件.故选A.3.(2021年荆州期末)x2<9的必要不充分条件是()A.-3≤x≤3 B.-3<x<0C.0<x≤3 D.1<x<3【答案】A【解析】x2<9即-3<x<3.因为-3<x<3能推出-3≤x≤3,而-3≤x≤3不能推出-3<x<3,所以x2<9的必要不充分条件是-3≤x≤3.4.(多选)对任意实数a,b,c,下列命题中真命题是()A.“a=b”是“ac=bc”的充要条件B.“a+5是无理数”是“a是无理数”的充要条件C.“a>b”是“a2>b2”的充分条件D.“a<5”是“a<3”的必要条件【答案】BD【解析】因为A中“a=b”⇒“ac=bc”为真命题,但当c=0时,“ac =bc”⇒“a=b”为假命题,故“a=b”是“ac=bc”的充分不必要条件,故A为假命题;因为B中“a+5是无理数”⇒“a是无理数”为真命题,“a是无理数”⇒“a+5是无理数”也为真命题,故“a+5是无理数”是“a是无理数”的充要条件,故B为真命题;因为C中“a>b”⇒“a2>b2”为假命题,“a2>b2”⇒“a>b”也为假命题,故“a>b”是“a2>b2”的既不充分也不必要条件,故C为假命题;因为D中{a|a<5}{a|a<3},故“a<5”是“a <3”的必要条件,故D为真命题.故选BD.5.(多选)已知p是r的充分条件而不是必要条件,q是r的充分条件,s是r的必要条件,q是s的必要条件,下列命题正确的是()A.r是q的充要条件B.p是q的充分条件而不是必要条件C.r是q的必要条件而不是充分条件D.r是s的充分条件而不是必要条件.【答案】AB【解析】由已知有p⇒r,q⇒r,r⇒s,s⇒q,由此得r⇒q且q⇒r,A正确,C不正确,p⇒q,B正确,r⇒s且s⇒r,D不正确.故选AB.6.“m=9”是“m>8”的________条件,“m>8”是“m=9”的________条件(填“充分不必要”“必要不充分”“充分必要”或“既不充分也不必要”).【答案】充分不必要条件必要不充分条件【解析】当m=9时,满足m>8,即充分性成立,当m=10时,满足m>8,但m=9不成立,即必要性不成立,即“m=9”是“m>8”的充分不必要条件,“m>8”是“m=9”的必要不充分条件.7.条件p:1-x<0,条件q:x>a,若p是q的充分不必要条件,则a的取值范围是________.【答案】{a|a<1}【解析】p:x>1,若p是q的充分不必要条件,则p⇒q,但q⇒/ p,即p对应集合是q对应集合的真子集,所以a<1.8.下列说法正确的是________(填序号).①“x>0”是“x>1”的必要条件;②“a3>b3”是“a>b”的必要不充分条件;③在△ABC中,“a>b”不是“A>B”的充分条件.【答案】①【解析】①中,当x>1时,有x>0,所以①正确;②中,当a>b时,a3>b3一定成立,但a3>b3也一定能推出a>b,即“a3>b3”是“a>b”的充要条件,所以②不正确;③中,当a>b时,有A>B,所以“a>b”是“A>B”的充分条件,所以③不正确.9.指出下列各命题中,p是q的什么条件,q是p的什么条件.(1)p:x2>0,q:x>0.(2)p:x+2≠y,q:(x+2)2≠y2.(3)p:a能被6整除;q:a能被3整除.(4)p:两个角不都是直角;q:两个角不相等.解:(1)p:x2>0,则x>0或x<0,q:x>0,故p是q的必要条件,q是p的充分条件.(2)p:x+2≠y,q:(x+2)2≠y2,则x+2≠y,且x+2≠-y,故p是q的必要条件,q是p的充分条件.(3)p:a能被6整除,故也能被3和2整除,q:a能被3整除,故p是q的充分条件,q 是p的必要条件.(4)p:两个角不都是直角,这两个角可以相等,q:两个角不相等,则这个角一定不都是直角,故p是q的必要条件,q是p的充分条件.B级——能力提升练10.设a ,b ∈R ,则“(a -b )a 2<0”是“a <b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】因为a 2≥0,而(a -b )a 2<0,所以a -b <0,即a <b ;由a <b ,a 2≥0,得到(a -b )a 2≤0,(a -b )a 2可以为0,所以“(a -b )a 2<0”是“a <b ”的充分不必要条件.11.已知a ,b 为实数,则“a +b >4”是“a ,b 中至少有一个大于2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】“a +b >4”⇒“a ,b 中至少有一个大于2”,反之不成立.所以“a +b >4”是“a ,b 中至少有一个大于2”的充分不必要条件.故选A .12.设p :12≤x ≤1;q :(x -a )(x -a -1)≤0.若p 是q 的充分不必要条件,则a 的取值范围是________.【答案】⎩⎨⎧⎭⎬⎫a ⎪⎪0≤a ≤12 【解析】因为q :a ≤x ≤a +1,p 是q 的充分不必要条件,所以⎩⎪⎨⎪⎧ a <12,a +1≥1或⎩⎪⎨⎪⎧ a ≤12,a +1>1,解得0≤a ≤12. 13.(2020年大庆高一期中)已知p :-4<x -a <4,q :2<x <3.若q 是p 的充分条件,则实数a 的取值范围为________.【答案】{a |-1≤a ≤6} 【解析】因为p :-4<x -a <4,即a -4<x <a +4,q :2<x<3.若q 是p 的充分条件,则{x |2<x <3}⊆{x |a -4<x <a +4},则⎩⎪⎨⎪⎧a -4≤2,a +4≥3,即-1≤a ≤6.所以实数a 的取值范围为{a |-1≤a ≤6}.14.若集合A ={x |x >-2},B ={x |x ≤b ,b ∈R },试写出:(1)A ∪B =R 的一个充要条件;(2)A ∪B =R 的一个必要不充分条件;(3)A ∪B =R 的一个充分不必要条件.解:(1)集合A ={x |x >-2},B ={x |x ≤b ,b ∈R }.(1)若A ∪B =R ,则b ≥-2,故A ∪B =R 的一个充要条件是b ≥-2.(2)由(1)知A∪B=R的一个充要条件是b≥-2,所以A∪B=R的一个必要不充分条件可以是b≥-3.(3)由(1)知A∪B=R的一个充要条件是b≥-2,所以A∪B=R的一个充分不必要条件可以是b≥-1.C级——探究创新练15.已知关于x的实系数二次方程x2+ax+b=0有两个实数根α,β,证明:|α|<2且|β|<2是2|a|<4+b且|b|<4的充要条件.证明:(1)充分性:由韦达定理,得|b|=|α·β|=|α|·|β|<2×2=4.设y=x2+ax+b,则y=x2+ax+b的图象是开口向上的抛物线.又|α|<2,|β|<2,所以当x=2时,y>0且当x=-2时,y>0,即有-(4+b)<2a<4+b.因为|b|<4,所以4+b>0,即2|a|<4+b.(2)必要性:令y=x2+ax+b,由2|a|<4+b,得当x=2时,y>0且当x=-2时,y>0,因为|b|<4,所以方程y=0的两根α,β同在{x|-2<x<2}内或无实根.因为α,β是方程y=0的实根,所以α,β同在{x|-2<x<2}内,即|α|<2且|β|<2.。

充分条件与必要条件练习题及答案

充分条件与必要条件练习题及答案

充分条件与必要条件练习题及答案(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--例1 已知p:x1,x2是方程x2+5x-6=0的两根,q:x1+x2=-5,则p是q的[ ] A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件分析利用韦达定理转换.解∵x1,x2是方程x2+5x-6=0的两根,∴x1,x2的值分别为1,-6,∴x1+x2=1-6=-5.因此选A.说明:判断命题为假命题可以通过举反例.例2 p是q的充要条件的是[ ] A.p:3x+2>5,q:-2x-3>-5B.p:a>2,b<2,q:a>bC.p:四边形的两条对角线互相垂直平分,q:四边形是正方形D.p:a≠0,q:关于x的方程ax=1有惟一解分析逐个验证命题是否等价.解对A.p:x>1,q:x<1,所以,p是q的既不充分也不必要条件;对B.p q但q p,p是q的充分非必要条件;对C.p q且q p,p是q的必要非充分条件;对.且,即,是的充要条件.选.D p q q p p q p q D⇒⇒⇔说明:当a=0时,ax=0有无数个解.例3 若A是B成立的充分条件,D是C成立的必要条件,C是B成立的充要条件,则D是A成立的[ ] A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件分析通过B、C作为桥梁联系A、D.解∵A是B的充分条件,∴A B①∵D是C成立的必要条件,∴C D②∵是成立的充要条件,∴③C B C B⇔由①③得A C ④ 由②④得A D .∴D 是A 成立的必要条件.选B .说明:要注意利用推出符号的传递性.例4 设命题甲为:0<x <5,命题乙为|x -2|<3,那么甲是乙的[ ]A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 分析 先解不等式再判定.解 解不等式|x -2|<3得-1<x <5.∵0<x <5-1<x <5,但-1<x <50<x <5 ∴甲是乙的充分不必要条件,选A .说明:一般情况下,如果条件甲为x ∈A ,条件乙为x ∈B .当且仅当时,甲为乙的充分条件;当且仅当时,甲为乙的必要条件;A B A B ⊆⊇当且仅当A =B 时,甲为乙的充要条件. 例5 设A 、B 、C 三个集合,为使A(B ∪C),条件A B 是 [ ]A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件 分析 可以结合图形分析.请同学们自己画图.∴A(B ∪C).但是,当B =N ,C =R ,A =Z 时, 显然A(B ∪C),但AB 不成立, 综上所述:“A B ”“A(B ∪C)”,而“A (B ∪C)”“AB ”.即“AB ”是“A(B ∪C)”的充分条件(不必要).选A .说明:画图分析时要画一般形式的图,特殊形式的图会掩盖真实情况.例6 给出下列各组条件: (1)p :ab =0,q :a 2+b 2=0;(2)p :xy ≥0,q :|x|+|y|=|x +y|;(3)p :m >0,q :方程x 2-x -m =0有实根; (4)p :|x -1|>2,q :x <-1. 其中p 是q 的充要条件的有[ ]A .1组B .2组C .3组D .4组分析 使用方程理论和不等式性质. 解 (1)p 是q 的必要条件 (2)p 是q 充要条件 (3)p 是q 的充分条件(4)p 是q 的必要条件.选A .说明:ab =0指其中至少有一个为零,而a 2+b 2=0指两个都为零.例>>是>>的条件.7x 3x 3x x x 12112⎧⎨⎩+⎧⎨⎩x 269分析 将前后两个不等式组分别作等价变形,观察两者之间的关系.解>且>+>且>,但当取=,=时,>>成立,而>>不成立=与>矛盾,所以填“充分不必要”.x 3x 3x x 6x x 9x 10x 2(x 2x 3)1212121222⇒+⎧⎨⎩⎧⎨⎩x x x x x x 1212126933 说明:>>->->x 3x 3 x 30x 301212⎧⎨⎩⇔⎧⎨⎩ ⇔⎧⎨⎩⇔⎧⎨⎩(x 3)(x 3)0(x 3)(x 3)0x x 6x x 3(x x )901212121212-+->-->+>-++>这一等价变形方法有时会用得上.例8 已知真命题“a ≥b c >d ”和“a <be ≤f ”,则“c ≤d ”是“e ≤f ”的________条件.分析 ∵a ≥b c >d(原命题), ∴c ≤d a <b(逆否命题). 而a <b e ≤f ,∴c ≤d e ≤f 即c ≤d 是e ≤f 的充分条件. 答 填写“充分”.说明:充分利用原命题与其逆否命题的等价性是常见的思想方法. 例9 ax 2+2x +1=0至少有一个负实根的充要条件是[ ]A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0分析 此题若采用普通方法推导较为复杂,可通过选项提供的信息,用排除法解之.当a =1时,方程有负根x =-1,当a =0时,x =-.故排除、、选.12A B D C 解常规方法:当=时,=-. a 0x 12当a ≠0时1a 0ax 2x 10021a 0a 12.>,则++=至少有一个负实根<-<<≤.⇔---⇔-⇔24422aa2a 0ax 2x 100221a 21a 1a 02.<,则++=至少有一个负实根<>->-><.⇔-+-⇔⇔⇔2442aa综上所述a ≤1.即ax 2+2x +1=0至少有一个负实根的充要条件是a ≤1. 说明:特殊值法、排除法都是解选择题的好方法.例10 已知p 、q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,那么s ,r ,p 分别是q 的什么条件分析 画出关系图1-21,观察求解.解 s 是q 的充要条件;(s r q ,q s) r 是q 的充要条件;(r q ,q s r) p 是q 的必要条件;(q s r p)说明:图可以画的随意一些,关键要体现各个条件、命题之间的逻辑关系.例11 关于x 的不等式|x |x 3(a 1)x 2(3a 1)0AB A B 1a 3a 12-≤与-+++≤的解集依次为与,问“”是“≤≤或=-”的充要条件吗?()()a a +-⊆121222分析 化简A 和B ,结合数轴,构造不等式(组),求出a . 解 A ={x|2a ≤x ≤a 2+1},B ={x|(x -2)[x -(3a +1)]≤0}当≤+即≥时,23a 1a 13B ={x|2≤x ≤3a +1}.A B 2a 2a +13a +11a 323a 1a 2⊆⇔⎧⎨⎩⇔≥≤≤≤当>+即<时,13B ={x|3a +1≤x ≤2}A B 2a 3a +1a +12a 1A B a 11a 3A B 1a 3a 12⊆⇔⎧⎨⎩⇔⊆⇔⊆≥≤=-.综上所述:=-或≤≤.∴“”是“≤≤或=-”的充要条件.说明:集合的包含关系、命题的真假往往与解不等式密切相关.在解题时要理清思路,表达准确,推理无误.例>,>是<的必要条件还是充分条件,还是充12 x y xy 011x y要条件分析 将充要条件和不等式同解变形相联系.解.当<时,可得-<即< 1001111x y x y y x xy- 则-><或-<>,即<<或>>,y x 0xy 0y x 0xy 0 x y xy 0x 0⎧⎨⎩⎧⎨⎩⎧⎨⎩⎧⎨⎩y xy故<不能推得>且>有可能得到<<,即>且>并非<的必要条件.11011x y x y xy x yx y xy 0()x y xy 0⎧⎨⎩2x y xy 0x y x 0y 0x y x 0y 0x y xy 0.当>且>则分成两种情况讨论:>>>或><<不论哪一种情况均可化为<.∴>且>是<的充分条件.⎧⎨⎪⎩⎪⎧⎨⎪⎩⎪1111x yx y说明:分类讨论要做到不重不漏.例13 设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α,β均大于1的什么条件分析 把充要条件和方程中根与系数的关系问题相联系,解题时需要搞清楚条件与结论分别指什么.然后再验证是还是还是.p q p q q p p q ⇒⇒⇔解据韦达定理得:=α+β,=αβ,判定的条件是:>>结论是:α>β>还要注意条件中,,需要满足大前提Δ=-≥a b pq(p a b a4b 0)2ab21 11⎧⎨⎩⎧⎨⎩(1)1a2b1由α>β>得=α+β>,=αβ>,1⎧⎨⎩∴q p.上述讨论可知:a>2,b>1是α>1,β>1的必要但不充分条件.说明:本题中的讨论内容在二次方程的根的分布理论中常被使用.例14 (1991年全国高考题)设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么[ ] A.丙是甲的充分条件,但不是甲的必要条件B.丙是甲的必要条件,但不是甲的充分条件C.丙是甲的充要条件D.丙不是甲的充分条件,也不是甲的必要条件分析1:由丙乙甲且乙丙,即丙是甲的充分不必要条件.分析2:画图观察之.答:选A.说明:抽象命题之间的逻辑关系通常靠画图观察比较方便。

充分条件和必要条件(1)

充分条件和必要条件(1)
⒊充分条件与必要条件的判断 (1).直接利用定义判断:即“若p=>q成立,则p 是q的充分条件,q是p的必要条件”.(条件与结 论是相对的)
1.8 充分条件与必要条件(一)
三、范例 例1 指出下列各组命题中,p是q的什么条件,q是p的什么条
件: ⑴ p:x=y;q:x 2 =y 2 . ⑵ p:三角形的三条边相等;q:三角形的三个角相等. 分析:可根据“若p则q”与“若q则p”的真假进行判断. 解:⑴由p=>q,即x=y=>x 2=y 2,知p是q的充分条件 ,q是p的必要条件. ⑵由p => q,即三角形的三条边相等=>三角形的三个 角相等,知p是q的充分条件,q是p的必要条件; 又由q<=p,即三角形的三个角相等=>三角形的三条边 相等,知q也是p的充分条件,p也是q的必要条件.
1.8 充分条件与必要条件(一)
再说必要性:必要就是必须,必不可少.从例2的图可以看出 ,如果“B为绿色”,A可能为绿色,A也可能不为绿色. 但如果“B不为绿色”,那么“A不可能为绿色”.因此, 必要条件简单说就是:有它不一定,没它可不行.它满足 上述的“若非q则非p”为真(即┐q=>┐p)的形式.
简易逻辑
1.8 充分条件与必要条件(一)
1.8 充分条件与必要条件(一)
• 一、复习引入:
• 同学们,当某一天你和你的妈妈在街上遇到老师 的时候,你向老师介绍你的妈妈说:“这是我的 妈妈”.那么,大家想一想这个时候你的妈妈还会 不会补充说:“你是她的孩子”呢?不会了!为 什么呢?因为前面你所介绍的她是你的妈妈就足 于保证你是她的孩子.那么,这在数学中是一层什 么样的关系呢?今天我们就来学习这个有意义的 课题—充分条件与必要条件.
1.8 充分条件与必要条件(一)
• 例如,“若x >0,则x2 >0”是一个真命题,可写成 :x>0 =>x >02;

充分条件与必要条件练习题及答案

充分条件与必要条件练习题及答案

例1 已知p:x1,x2是方程x2+5x-6=0的两根,q:x1+x2=-5,则p是q的[ ]A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件分析利用韦达定理转换.解∵x1,x2是方程x2+5x-6=0的两根,∴x1,x2的值分别为1,-6,∴x1+x2=1-6=-5.因此选A.说明:判断命题为假命题可以通过举反例.例2 p是q的充要条件的是[] A.p:3x+2>5,q:-2x-3>-5B.p:a>2,b<2,q:a>bC.p:四边形的两条对角线互相垂直平分,q:四边形是正方形D.p:a≠0,q:关于x的方程ax=1有惟一解分析逐个验证命题是否等价.解对A.p:x>1,q:x<1,所以,p是q的既不充分也不必要条件;对B.p q但q p,p是q的充分非必要条件;对C.p q且q p,p是q的必要非充分条件;⇒⇒⇔对.且,即,是的充要条件.选.D p q q p p q p q D说明:当a=0时,ax=0有无数个解.例3 若A是B成立的充分条件,D是C成立的必要条件,C是B成立的充要条件,则D是A成立的[]A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件分析通过B、C作为桥梁联系A、D.解∵A是B的充分条件,∴A B①∵D是C成立的必要条件,∴C D②⇔C B C B∵是成立的充要条件,∴③由①③得A C④由②④得A D.∴D是A成立的必要条件.选B.说明:要注意利用推出符号的传递性.例4 设命题甲为:0<x <5,命题乙为|x -2|<3,那么甲是乙的[ ]A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 分析 先解不等式再判定.解 解不等式|x -2|<3得-1<x <5.∵0<x <5-1<x <5,但-1<x <50<x <5 ∴甲是乙的充分不必要条件,选A .说明:一般情况下,如果条件甲为x ∈A,条件乙为x ∈B .当且仅当时,甲为乙的充分条件;当且仅当时,甲为乙的必要条件;A B A B ⊆⊇当且仅当A =B 时,甲为乙的充要条件. 例5 设A 、B 、C 三个集合,为使A(B ∪C ),条件A B 是[ ]A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件 分析 可以结合图形分析.请同学们自己画图.∴A(B ∪C ).但是,当B =N ,C =R ,A =Z 时, 显然A(B ∪C ),但AB 不成立, 综上所述:“A B ”“A(B ∪C )”,而“A (B ∪C )”“AB ”.即“AB ”是“A (B ∪C)”的充分条件(不必要).选A .说明:画图分析时要画一般形式的图,特殊形式的图会掩盖真实情况.例6 给出下列各组条件:(1)p:ab =0,q :a 2+b 2=0;(2)p:xy ≥0,q :|x|+|y |=|x +y|;(3)p :m >0,q :方程x 2-x -m =0有实根; (4)p :|x -1|>2,q :x <-1. 其中p 是q 的充要条件的有[ ]A .1组B .2组C .3组D .4组分析 使用方程理论和不等式性质. 解 (1)p 是q 的必要条件(2)p 是q 充要条件 (3)p 是q 的充分条件(4)p 是q 的必要条件.选A .说明:ab =0指其中至少有一个为零,而a 2+b 2=0指两个都为零.例>>是>>的条件.7x 3x 3x x x 12112⎧⎨⎩+⎧⎨⎩x 269分析 将前后两个不等式组分别作等价变形,观察两者之间的关系.解>且>+>且>,但当取=,=时,>>成立,而>>不成立=与>矛盾,所以填“充分不必要”.x 3x 3x x 6x x 9x 10x 2(x 2x 3)1212121222⇒+⎧⎨⎩⎧⎨⎩x x x x x x 1212126933 说明:>>->->x 3x 3 x 30x 301212⎧⎨⎩⇔⎧⎨⎩ ⇔⎧⎨⎩⇔⎧⎨⎩(x 3)(x 3)0(x 3)(x 3)0x x 6x x 3(x x )901212121212-+->-->+>-++>这一等价变形方法有时会用得上.例8 已知真命题“a ≥b c >d ”和“a <be ≤f ”,则“c ≤d"是“e ≤f ”的________条件.分析 ∵a ≥b c >d(原命题), ∴c ≤d a <b (逆否命题). 而a <b e ≤f ,∴c ≤d e ≤f 即c ≤d 是e ≤f 的充分条件. 答 填写“充分”.说明:充分利用原命题与其逆否命题的等价性是常见的思想方法.例9 ax 2+2x +1=0至少有一个负实根的充要条件是[ ]A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0分析 此题若采用普通方法推导较为复杂,可通过选项提供的信息,用排除法解之.当a =1时,方程有负根x =-1,当a =0时,x =-.故排除、、选.12A B D C 解常规方法:当=时,=-. a 0x 12当a ≠0时1a 0ax 2x 10021a 0a 12.>,则++=至少有一个负实根<-<<≤.⇔---⇔-⇔24422aa2a 0ax 2x 100221a 21a 1a 02.<,则++=至少有一个负实根<>->-><.⇔-+-⇔⇔⇔2442aa综上所述a ≤1.即ax 2+2x +1=0至少有一个负实根的充要条件是a ≤1.说明:特殊值法、排除法都是解选择题的好方法.例10 已知p 、q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,那么s,r ,p 分别是q 的什么条件?分析 画出关系图1-21,观察求解.解 s 是q 的充要条件;(s r q,qs )r 是q 的充要条件;(r q ,q s r) p 是q 的必要条件;(q s r p)说明:图可以画的随意一些,关键要体现各个条件、命题之间的逻辑关系. 例11 关于x 的不等式|x |x 3(a 1)x 2(3a 1)0AB A B 1a 3a 12-≤与-+++≤的解集依次为与,问“”是“≤≤或=-”的充要条件吗?()()a a +-⊆121222分析 化简A 和B,结合数轴,构造不等式(组),求出a .解 A ={x |2a ≤x ≤a 2+1},B ={x |(x -2)[x -(3a +1)]≤0}当≤+即≥时,23a 1a 13B ={x|2≤x ≤3a +1}.A B 2a 2a +13a +11a 323a 1a 2⊆⇔⎧⎨⎩⇔≥≤≤≤当>+即<时,13B ={x|3a +1≤x ≤2}A B 2a 3a +1a +12a 1A B a 11a 3A B 1a 3a 12⊆⇔⎧⎨⎩⇔⊆⇔⊆≥≤=-.综上所述:=-或≤≤.∴“”是“≤≤或=-”的充要条件.说明:集合的包含关系、命题的真假往往与解不等式密切相关.在解题时要理清思路,表达准确,推理无误.例>,>是<的必要条件还是充分条件,还是充12 x y xy 011x y要条件?分析 将充要条件和不等式同解变形相联系.解.当<时,可得-<即< 1001111x y x y y xxy-则-><或-<>,即<<或>>,y x 0xy 0y x 0xy 0 x y xy 0x 0⎧⎨⎩⎧⎨⎩⎧⎨⎩⎧⎨⎩y xy故<不能推得>且>有可能得到<<,即>且>并非<的必要条件.11011x y x y xy x yx y xy 0()x y xy 0⎧⎨⎩2x y xy 0x y x 0y 0x y x 0y 0x y xy 0.当>且>则分成两种情况讨论:>>>或><<不论哪一种情况均可化为<.∴>且>是<的充分条件.⎧⎨⎪⎩⎪⎧⎨⎪⎩⎪1111x yx y说明:分类讨论要做到不重不漏.例13 设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α,β均大于1的什么条件?分析 把充要条件和方程中根与系数的关系问题相联系,解题时需要搞清楚条件与结论分别指什么.然后再验证是还是还是.p q p q q p p q ⇒⇒⇔解据韦达定理得:=α+β,=αβ,判定的条件是:>>结论是:α>β>还要注意条件中,,需要满足大前提Δ=-≥ a b p q (p a b a 4b 0)2a b 2111⎧⎨⎩⎧⎨⎩(1)1a2b1由α>β>得=α+β>,=αβ>,1⎧⎨⎩∴q p.上述讨论可知:a>2,b>1是α>1,β>1的必要但不充分条件.说明:本题中的讨论内容在二次方程的根的分布理论中常被使用.例14 (1991年全国高考题)设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么[]A.丙是甲的充分条件,但不是甲的必要条件B.丙是甲的必要条件,但不是甲的充分条件C.丙是甲的充要条件D.丙不是甲的充分条件,也不是甲的必要条件分析1:由丙乙甲且乙丙,即丙是甲的充分不必要条件.分析2:画图观察之.答:选A.说明:抽象命题之间的逻辑关系通常靠画图观察比较方便。

1.8充分条件与必要条件基础知识(Word可编辑版)

1.8充分条件与必要条件基础知识(Word可编辑版)

1.8充分条件与必要条件基础知识
(最新版)
-Word文档,下载后可任意编辑和处理-
1.8四种命题基础知识
一、选择题。

1.q是p的充分必要条件的含义是( )
(A)Pq (B) qP (C) Pq不定成立,且qP (D) qP , 且Pq
2.ac2>bc2是a>b成立的( )
(A)充分而不必要条件(B)必要而不充分条件
(C)充要条件(D)既不充分也不必要条件
3.已知条件p:x + 1>2,条件q:5x-6>x2,则p是q的( )
(A)充分而不必要条件(B)必要而不充分条件
(C)充要条件(D)既不充分也不必要条件
4.使不等式2x2-5x-3≥0的成立一个充分而不必要条件是( )
(A)x0,则甲是乙的( )
(A)充分但不必要条件(B)必要但不充分条件
(C)充要条件(D)既不充分也不必要条件
6.已知条件甲:AB,条件乙:A∪B = B,则甲是乙的( )
(A)充分但不必要条件(B)必要但不充分条件
(C)充要条件(D)既不充分也不必要条件
二、填空题.
7.已知a,b∈R,则ab = 0是a + b = a +b成立的________条件.
8.“p或q”为真命题是“p且q”为真命题的________条件。

三、解答题。

9.求证:x>5是x-1>3成立的充分条件.
10.是否存在实数p,使“4x + p<0”是“x2―x―2>0”成立的充分条件?如果存在,求出p的取值范围。

充分条件与必要条件练习题及答案

充分条件与必要条件练习题及答案

例1 已知p:x1,x2是方程x2+5x-6=0的两根,q:x1+x2=-5,则p是q的[ ] A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件分析利用韦达定理转换.解∵x1,x2是方程x2+5x-6=0的两根,∴x1,x2的值分别为1,-6,∴x1+x2=1-6=-5.因此选A.说明:判断命题为假命题可以通过举反例.例2 p是q的充要条件的是[ ] A.p:3x+2>5,q:-2x-3>-5B.p:a>2,b<2,q:a>bC.p:四边形的两条对角线互相垂直平分,q:四边形是正方形D.p:a≠0,q:关于x的方程ax=1有惟一解分析逐个验证命题是否等价.解对A.p:x>1,q:x<1,所以,p是q的既不充分也不必要条件;对B.p q但q p,p是q的充分非必要条件;对C.p q且q p,p是q的必要非充分条件;对.且,即,是的充要条件.选.⇒⇒⇔D p q q p p q p q D说明:当a=0时,ax=0有无数个解.例3 若A是B成立的充分条件,D是C成立的必要条件,C是B成立的充要条件,则D是A成立的[ ] A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件分析通过B、C作为桥梁联系A、D.解∵A是B的充分条件,∴A B①∵D是C成立的必要条件,∴C D②⇔∵是成立的充要条件,∴③C B C B由①③得A C④由②④得A D.∴D是A成立的必要条件.选B.说明:要注意利用推出符号的传递性.例4 设命题甲为:0<x<5,命题乙为|x-2|<3,那么甲是乙的[ ] A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件分析先解不等式再判定.解解不等式|x-2|<3得-1<x<5.∵0<x<5-1<x<5,但-1<x<50<x<5∴甲是乙的充分不必要条件,选A .说明:一般情况下,如果条件甲为x ∈A ,条件乙为x ∈B .当且仅当时,甲为乙的充分条件;当且仅当时,甲为乙的必要条件;A B A B ⊆⊇当且仅当A =B 时,甲为乙的充要条件. 例5 设A 、B 、C 三个集合,为使A(B ∪C),条件A B 是[ ]A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件 分析 可以结合图形分析.请同学们自己画图.∴A(B ∪C).但是,当B =N ,C =R ,A =Z 时, 显然A(B ∪C),但AB 不成立, 综上所述:“A B ”“A(B ∪C)”,而“A (B ∪C)”“AB ”.即“AB ”是“A (B ∪C)”的充分条件(不必要).选A .说明:画图分析时要画一般形式的图,特殊形式的图会掩盖真实情况. 例6 给出下列各组条件: (1)p :ab =0,q :a 2+b 2=0; (2)p :xy ≥0,q :|x|+|y|=|x +y|;(3)p :m >0,q :方程x 2-x -m =0有实根; (4)p :|x -1|>2,q :x <-1.其中p 是q 的充要条件的有[ ]A .1组B .2组C .3组D .4组分析 使用方程理论和不等式性质. 解 (1)p 是q 的必要条件 (2)p 是q 充要条件 (3)p 是q 的充分条件 (4)p 是q 的必要条件.选A .说明:ab =0指其中至少有一个为零,而a 2+b 2=0指两个都为零.例>>是>>的条件.7x 3x 3x x x 12112⎧⎨⎩+⎧⎨⎩x 269分析 将前后两个不等式组分别作等价变形,观察两者之间的关系.解>且>+>且>,但当取=,=时,>>成立,而>>不成立=与>矛盾,所以填“充分不必要”.x 3x 3x x 6x x 9x 10x 2(x 2x 3)1212121222⇒+⎧⎨⎩⎧⎨⎩x x x x x x 1212126933 说明:>>->->x 3x 3 x 30x 301212⎧⎨⎩⇔⎧⎨⎩⇔⎧⎨⎩⇔⎧⎨⎩(x 3)(x 3)0(x 3)(x 3)0x x 6x x 3(x x )901212121212-+->-->+>-++>这一等价变形方法有时会用得上.例8 已知真命题“a ≥b c >d ”和“a <be ≤f ”,则“c ≤d ”是“e ≤f ”的________条件.分析 ∵a ≥b c >d(原命题),∴c ≤d a <b(逆否命题). 而a <b e ≤f ,∴c ≤de ≤f 即c ≤d 是e ≤f 的充分条件.答 填写“充分”.说明:充分利用原命题与其逆否命题的等价性是常见的思想方法. 例9 ax 2+2x +1=0至少有一个负实根的充要条件是[ ]A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0分析 此题若采用普通方法推导较为复杂,可通过选项提供的信息,用排除法解之.当a =1时,方程有负根x =-1,当a =0时,x =-.故排除、、选.12A B D C 解常规方法:当=时,=-. a 0x 12当a ≠0时1a 0ax 2x 10021a 0a 12.>,则++=至少有一个负实根<-<<≤.⇔---⇔-⇔24422aa2a 0ax 2x 100221a 21a 1a 02.<,则++=至少有一个负实根<>->-><.⇔-+-⇔⇔⇔2442aa综上所述a ≤1.即ax 2+2x +1=0至少有一个负实根的充要条件是a ≤1. 说明:特殊值法、排除法都是解选择题的好方法.例10 已知p 、q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,那么s ,r ,p 分别是q 的什么条件?分析 画出关系图1-21,观察求解.解 s 是q 的充要条件;(s rq ,q s)r 是q 的充要条件;(r q ,q s r)p 是q 的必要条件;(qsrp) 说明:图可以画的随意一些,关键要体现各个条件、命题之间的逻辑关系. 例11 关于x 的不等式|x |x 3(a 1)x 2(3a 1)0AB A B 1a 3a 12-≤与-+++≤的解集依次为与,问“”是“≤≤或=-”的充要条件吗?()()a a +-⊆121222 分析 化简A 和B ,结合数轴,构造不等式(组),求出a . 解 A ={x|2a ≤x ≤a 2+1},B ={x|(x -2)[x -(3a +1)]≤0}当≤+即≥时,23a 1a 13B ={x|2≤x ≤3a +1}.A B 2a 2a +13a +11a 323a 1a 2⊆⇔⎧⎨⎩⇔≥≤≤≤当>+即<时,13B ={x|3a +1≤x ≤2}A B 2a 3a +1a +12a 1A B a 11a 3A B 1a 3a 12⊆⇔⎧⎨⎩⇔⊆⇔⊆≥≤=-.综上所述:=-或≤≤.∴“”是“≤≤或=-”的充要条件.说明:集合的包含关系、命题的真假往往与解不等式密切相关.在解题时要理清思路,表达准确,推理无误.例>,>是<的必要条件还是充分条件,还是充12 x y xy 011x y要条件?分析 将充要条件和不等式同解变形相联系.解.当<时,可得-<即< 1001111x y x y y xxy- 则-><或-<>,即<<或>>,y x 0xy 0y x 0xy 0 x y xy 0x 0⎧⎨⎩⎧⎨⎩⎧⎨⎩⎧⎨⎩y xy故<不能推得>且>有可能得到<<,即>且>并非<的必要条件.11011x y x y xy x yx y xy 0()x y xy 0⎧⎨⎩2x y xy 0x y x 0y 0x y x 0y 0x y xy 0.当>且>则分成两种情况讨论:>>>或><<不论哪一种情况均可化为<.∴>且>是<的充分条件.⎧⎨⎪⎩⎪⎧⎨⎪⎩⎪1111x yx y说明:分类讨论要做到不重不漏.例13 设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α,β均大于1的什么条件?分析 把充要条件和方程中根与系数的关系问题相联系,解题时需要搞清楚条件与结论分别指什么.然后再验证是还是还是.p q p q q p p q ⇒⇒⇔解据韦达定理得:=α+β,=αβ,判定的条件是:>>结论是:α>β>还要注意条件中,,需要满足大前提Δ=-≥a b pq(p a b a4b 0)2ab21 11⎧⎨⎩⎧⎨⎩(1)1a2b1由α>β>得=α+β>,=αβ>,1⎧⎨⎩∴q p.上述讨论可知:a>2,b>1是α>1,β>1的必要但不充分条件.说明:本题中的讨论内容在二次方程的根的分布理论中常被使用.例14 (1991年全国高考题)设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么[ ] A.丙是甲的充分条件,但不是甲的必要条件B.丙是甲的必要条件,但不是甲的充分条件C.丙是甲的充要条件D.丙不是甲的充分条件,也不是甲的必要条件分析1:由丙乙甲且乙丙,即丙是甲的充分不必要条件.分析2:画图观察之.答:选A.说明:抽象命题之间的逻辑关系通常靠画图观察比较方便。

充分条件与必要条件练习题及答案

充分条件与必要条件练习题及答案

例1 已知p :x 1,x 2是方程x 2+5x -6=0的两根,q :x 1+x 2=-5,则p 是q 的[ ]A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件 分析 利用韦达定理转换.解 ∵x 1,x 2是方程x 2+5x -6=0的两根, ∴x 1,x 2的值分别为1,-6, ∴x 1+x 2=1-6=-5.因此选A .说明:判断命题为假命题可以通过举反例. 例2 p 是q 的充要条件的是[ ]A .p :3x +2>5,q :-2x -3>-5B .p :a >2,b <2,q :a >bC .p :四边形的两条对角线互相垂直平分,q :四边形是正方形D .p :a ≠0,q :关于x 的方程ax =1有惟一解 分析 逐个验证命题是否等价.解 对A .p :x >1,q :x <1,所以,p 是q 的既不充分也不必要条件; 对B .p q 但q p ,p 是q 的充分非必要条件; 对C .p q 且q p ,p 是q 的必要非充分条件;对.且,即,是的充要条件.选.D p q q p p q p q D ⇒⇒⇔说明:当a =0时,ax =0有无数个解.例3 若A 是B 成立的充分条件,D 是C 成立的必要条件,C 是B 成立的充要条件,则D 是A 成立的[ ]A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件 分析 通过B 、C 作为桥梁联系A 、D . 解 ∵A 是B 的充分条件,∴A B ① ∵D 是C 成立的必要条件,∴C D ②∵是成立的充要条件,∴③C B C B ⇔由①③得A C ④ 由②④得AD .∴D 是A 成立的必要条件.选B .说明:要注意利用推出符号的传递性.例4 设命题甲为:0<x <5,命题乙为|x -2|<3,那么甲是乙的[ ]A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 分析 先解不等式再判定.解 解不等式|x -2|<3得-1<x <5.∵0<x <5-1<x <5,但-1<x <50<x <5 ∴甲是乙的充分不必要条件,选A .说明:一般情况下,如果条件甲为x ∈A ,条件乙为x ∈B .当且仅当时,甲为乙的充分条件;当且仅当时,甲为乙的必要条件;A B A B ⊆⊇当且仅当A =B 时,甲为乙的充要条件. 例5 设A 、B 、C 三个集合,为使A(B ∪C),条件A B 是[ ]A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件 分析 可以结合图形分析.请同学们自己画图.∴A(B ∪C).但是,当B =N ,C =R ,A =Z 时, 显然A(B ∪C),但AB 不成立, 综上所述:“A B ”“A(B ∪C)”,而“A (B ∪C)”“AB ”.即“AB ”是“A (B ∪C)”的充分条件(不必要).选A .说明:画图分析时要画一般形式的图,特殊形式的图会掩盖真实情况.例6 给出下列各组条件:(1)p :ab =0,q :a 2+b 2=0;(2)p :xy ≥0,q :|x|+|y|=|x +y|; (3)p :m >0,q :方程x 2-x -m =0有实根; (4)p :|x -1|>2,q :x <-1. 其中p 是q 的充要条件的有[ ]A .1组B .2组C .3组D .4组分析 使用方程理论和不等式性质. 解 (1)p 是q 的必要条件 (2)p 是q 充要条件 (3)p 是q 的充分条件(4)p 是q 的必要条件.选A .说明:ab =0指其中至少有一个为零,而a 2+b 2=0指两个都为零.例>>是>>的条件.7x 3x 3x x x 12112⎧⎨⎩+⎧⎨⎩x 269分析 将前后两个不等式组分别作等价变形,观察两者之间的关系.解>且>+>且>,但当取=,=时,>>成立,而>>不成立=与>矛盾,所以填“充分不必要”.x 3x 3x x 6x x 9x 10x 2(x 2x 3)1212121222⇒+⎧⎨⎩⎧⎨⎩x x x x x x 1212126933 说明:>>->->x 3x 3 x 30x 301212⎧⎨⎩⇔⎧⎨⎩ ⇔⎧⎨⎩⇔⎧⎨⎩(x 3)(x 3)0(x 3)(x 3)0x x 6x x 3(x x )901212121212-+->-->+>-++>这一等价变形方法有时会用得上.例8 已知真命题“a ≥b c >d ”和“a <be ≤f ”,则“c ≤d ”是“e ≤f ”的________条件.分析 ∵a ≥b c >d(原命题), ∴c ≤d a <b(逆否命题). 而a <b e ≤f ,∴c ≤d e ≤f 即c ≤d 是e ≤f 的充分条件. 答 填写“充分”.说明:充分利用原命题与其逆否命题的等价性是常见的思想方法.例9 ax 2+2x +1=0至少有一个负实根的充要条件是[ ]A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0分析 此题若采用普通方法推导较为复杂,可通过选项提供的信息,用排除法解之.当a =1时,方程有负根x =-1,当a =0时,x =-.故排除、、选.12A B D C 解常规方法:当=时,=-. a 0x 12当a ≠0时1a0ax2x100 21a0a12.>,则++=至少有一个负实根<-<<≤.⇔---⇔-⇔24422aa2a0ax2x100 221a21a1a02.<,则++=至少有一个负实根<>->-><.⇔-+-⇔⇔⇔2442aa综上所述a≤1.即ax2+2x+1=0至少有一个负实根的充要条件是a≤1.说明:特殊值法、排除法都是解选择题的好方法.例10 已知p、q都是r的必要条件,s是r的充分条件,q是s的充分条件,那么s,r,p分别是q的什么条件分析画出关系图1-21,观察求解.解 s是q的充要条件;(s r q,q s)r是q的充要条件;(r q,q s r)p是q的必要条件;(q s r p)说明:图可以画的随意一些,关键要体现各个条件、命题之间的逻辑关系.例11 关于x的不等式|x|x3(a1)x2(3a1)0AB A B1a3a12-≤与-+++≤的解集依次为与,问“”是“≤≤或=-”的充要条件吗?()()a a+-⊆121222分析化简A和B,结合数轴,构造不等式(组),求出a.解 A={x|2a≤x≤a2+1},B={x|(x-2)[x-(3a+1)]≤0}当≤+即≥时,23a1a13B={x|2≤x≤3a+1}.A B2a2a+13a+11a323a1a2⊆⇔⎧⎨⎩⇔≥≤≤≤当>+即<时,13B={x|3a+1≤x≤2}A B2a3a+1a+12a1A B a11a3A B1a3a12⊆⇔⎧⎨⎩⇔⊆⇔⊆≥≤=-.综上所述:=-或≤≤.∴“”是“≤≤或=-”的充要条件.说明:集合的包含关系、命题的真假往往与解不等式密切相关.在解题时要理清思路,表达准确,推理无误.例>,>是<的必要条件还是充分条件,还是充12 x y xy 011x y要条件分析 将充要条件和不等式同解变形相联系.解.当<时,可得-<即< 1001111x y x y y xxy-则-><或-<>,即<<或>>,y x 0xy 0y x 0xy 0 x y xy 0x 0⎧⎨⎩⎧⎨⎩⎧⎨⎩⎧⎨⎩y xy故<不能推得>且>有可能得到<<,即>且>并非<的必要条件.11011x y x y xy x yx y xy 0()x y xy 0⎧⎨⎩2x y xy 0x y x 0y 0x y x 0y 0x y xy 0.当>且>则分成两种情况讨论:>>>或><<不论哪一种情况均可化为<.∴>且>是<的充分条件.⎧⎨⎪⎩⎪⎧⎨⎪⎩⎪1111x yx y说明:分类讨论要做到不重不漏.例13 设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α,β均大于1的什么条件分析 把充要条件和方程中根与系数的关系问题相联系,解题时需要搞清楚条件与结论分别指什么.然后再验证是还是还是.p q p q q p p q ⇒⇒⇔解据韦达定理得:=α+β,=αβ,判定的条件是:>>结论是:α>β>还要注意条件中,,需要满足大前提Δ=-≥ a b p q (p a b a 4b 0)2a b 2111⎧⎨⎩⎧⎨⎩(1)1a2b1由α>β>得=α+β>,=αβ>,1⎧⎨⎩∴q p.上述讨论可知:a>2,b>1是α>1,β>1的必要但不充分条件.说明:本题中的讨论内容在二次方程的根的分布理论中常被使用.例14 (1991年全国高考题)设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么[ ] A.丙是甲的充分条件,但不是甲的必要条件B.丙是甲的必要条件,但不是甲的充分条件C.丙是甲的充要条件D.丙不是甲的充分条件,也不是甲的必要条件分析1:由丙乙甲且乙丙,即丙是甲的充分不必要条件.分析2:画图观察之.答:选A.说明:抽象命题之间的逻辑关系通常靠画图观察比较方便。

充分条件和必要条件练习题

充分条件和必要条件练习题

充分条件和必要条件练习题1.设x R ∈,则“12x >”是“2210x x +->”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.若a R ∈,则“0a =”是“cos sin a a >”的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件3.设x R ∈,且0x ≠,“112x ⎛⎫> ⎪⎝⎭”是“11x <”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.已知a R ∈,则“2a >”是“22a a >”的( )A .充分非必条件B .必要不充分条件C .充要条件D .既非充分也非必要条件5.设x R ∈,则“21x -<”是“220x x +->”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .即不充分也不必要条件6.若a ,b 为实数,则“0<a b <1”是“b <1a”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件7.“0>>b a ”是“22b a >”的什么条件?( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件8.“1<x <2”是“x<2”成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件9.12x <<“”是”“2<x 成立的( ) A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分也不必要条件10.A,B 是任意角,“A=B ”是“sinA=sinB ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件11.设a R ∈,则“1a <”是“11a>”( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件12.“20x >”是“0x >”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件13.“x =y ”是“x=y ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件14.””是““00>≠x x 的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件15.命题5:>x p ,命题3:>x q ,则p 是q 的 ( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件16.“1x =”是“2210x x -+=”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件17.若R a ∈,则“2a =”是“()()240a a -+=”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件一、填空题18.已知条件p :13x ≤≤,条件q :2560x x -+<,则p 是q 的 条件.A .充分必要条件B .充分不必要条件C .必要不充分条件D .既非充分也非必要条件参考答案1.A【解析】试题分析:2121012x x x +->⇔<-或x>,故“12x >”是“2210x x +->”的充分不必要条件,故选A . 考点:充要条件.2.B【解析】试题分析:由题意得,当0=a 时,00s in 10c os =>=,即充分条件成立,但当ααsin cos >时,)(42452Z k k k ∈+<<-ππαππ,0=a 只是其中一种情况,故必要条件不成立,综合选B. 考点:1.正余弦函数的单调性;2.充分条件和必要条件的定义.3.A【解析】试题分析:由112x ⎛⎫> ⎪⎝⎭,得1x <-,由11x <,解得01x <<或0x <,所以“112x⎛⎫> ⎪⎝⎭”是“11x <”的充分而不必要条件,故选A.考点:充要条件的应用.4.A【解析】试题分析:因为当“2a >” 成立时,()2220,a a a a -=->∴ “22a a >” 成立. 即“2a >”⇒“22a a >” 为真命题;而当“22a a >” 成立时, ()2220a a a a -=->, 即2a >或0,2a a <∴>不一定成立, 即“22a a >”⇒“2a >”的充分非必要条件,故选A.考点:1、充分条件与必要条件;2、不等式的性质.【方法点睛】本题主要考查不等式的性质及充分条件与必要条件,属于中档题.判断充要条件应注意:首先弄清条件p 和结论q 分别是什么,然后直接依据定义、定理、性质尝试,p q q p ⇒⇒.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.5.A【解析】试题分析:由“21x -<”得31<<x ,由220x x +->得1>x 或2-<x ,即“21x -<”是“220x x +->”的充分不必要条件,故选:A .考点:充分条件与必要条件的判断.6.D【解析】 试题分析:12a b ==时,p 不能推出q ,当0,0b a <>时,q 不能推出p ,故是既不充分也不必要条件. 考点:充要条件.7.A【解析】试题分析:当0>>b a 时,能推出22b a >,反过来,当22b a >时,能推出b a >,但不能推出0>>b a ,所以是充分不必要条件,故选A.考点:充分必要条件8.A【解析】试题分析:若“12x <<”,则“2x <”成立,反之不成立,所以“12x <<”是“2x <”的成立充分不必要条件.故选A.考点:充分条件和必要条件的判断.9.A【解析】试题分析:当12x <<时可得2x <成立,反之不成立,所以12x <<“”是”“2<x 成立的充分不必要条件 考点:充分条件与必要条件10.A【解析】试题分析:由B A =可得B A sin sin =,由B A si n si n =不一定有B A =,如:0=A ,π=B ,所以B A =是B A sin sin =的充分不必要条件.故选A.考点:充分条件、必要条件.11.B.【解析】 试题分析:111110001a a a a a->⇔->⇔>⇔<<,故是必要不充分条件,故选B . 考点:1.解不等式;2.充分必要条件.12.B .【解析】试题分析:因为由20x >解得:0x >或0x <,∴“0x >或0x <”是“0x >”的必要而不充分条件. 考点:充分必要条件.13.B【解析】 试题分析:x y x y =⇒=或x y =-,所以“x y =”是“x y =”的必要不充分条件.故B 正确. 考点:充分必要条件.14.B【解析】试题分析:00x x >⇒≠“”“”,反之不成立,因此选B .考点:充要关系15.B【解析】试题分析:若5x >成立则3x >成立,反之当3x >成立时5x >不一定成立,因此p 是q 的充分不必要条件 考点:充分条件与必要条件16.A【解析】试题分析:当1x =时,2210x x -+=;同时当2210x x -+=时,可得1x =;可得“1x =”是“2210x x -+=”的充要条件.考点:充分、必要条件的判断.【易错点晴】本题主要考查的是一元二次不等式、对数不等式和集合的交集、并集和补集运算,属于容易题.解不等式时一定要注意对数的真数大于0和2x 的系数大于0,否则很容易出现错误.17.B【解析】试题分析:若“2a =”,则“()()240a a -+=”;反之 “()()240a a -+=”,则2,a =或4a =-.故“2a =”是“()()240a a -+=”的充分不必要条件.考点:充分、必要条件的判断.18.C【解析】试题分析:解不等式2560x x -+<得23x <<,由p :13x ≤≤可知p 是q 的必要不充分条件条件考点:充分条件与必要条件。

高中数学培优讲义练习(人教A版2019必修一)专题1.8 充分条件与必要条件-重难点题型检测 含解析

高中数学培优讲义练习(人教A版2019必修一)专题1.8 充分条件与必要条件-重难点题型检测 含解析

高中数学培优讲义练习(人教A版2019必修一)专题1.8充分条件与必要条件-重难点题型检测一.选择题(共8小题,满分24分,每小题3分)1.(3分)(2021秋•兰州期末)下列选项是“a>1”的必要条件的是()A.a<2B.a>2C.a<0D.a>0【解题思路】是a>1的必要条件,集合{a|a>1}是对应集合的子集,即可判断出答案。

【解答过程】解:若是a>1的必要条件,则集合{a|a>1}是对应集合的子集。

∵{a|a>1}⊆{a|a>0}。

∴a>0是a>1的必要条件。

故选:D。

2.(3分)(2022•象山区校级一模)“m≥﹣1”是“m≥﹣2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解题思路】利用充要条件的定义,可求得答案。

【解答过程】解:由m≥﹣1,可推出m≥﹣2成立,故m≥﹣1是m≥﹣2的充分条件。

由m≥﹣2不能够推出m≥﹣1,故m≥﹣1是m≥﹣2的不必要条件。

综上m≥﹣1是m≥﹣2的充分不必要条件。

故选:A。

3.(3分)(2022春•湖南期中)2022年3月21日,东方航空公司MU5735航班在广西梧州市上空失联并坠毁.专家指出:飞机经毁原因需要找到飞机自带的两部飞行记录器(黑匣子),如果两部黑匣子都被找到,那么就能形成一个初步的事故原因认定.3月23日16时30分左右,广西武警官兵找到一个黑匣子,虽其外表遭破坏,但内部存储设备完整,研究判定为驾驶员座舱录音器.则“找到驾驶员座舱录音器”是“初步事故原因认定”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【解题思路】根据充分与必要条件概念判断。

【解答过程】解:∵“找到驾驶员座舱录音器”是“初步事故原因认定”的必须具备的前提条件。

∴由“找到驾驶员座舱录音器”不能推出“初步事故原因认定”。

反过来由“初步事故原因认定”可推出“找到驾驶员座舱录音器”。

∴“找到驾驶员座舱录音器”是“初步事故原因认定”的必要不充分条件。

(版)充分条件与必要条件测试题(含答案)

(版)充分条件与必要条件测试题(含答案)

1充分条件与必要条件测试题〔含答案〕班级姓名一、选择题1.“x2〞是“(x1)(x2)0〞的〔〕(A)充分不必要条件〔B〕必要不充分条件〔C〕充要条件〔D〕非充分非必要条件2.在ABC中,p:a b,q:BAC ABC,那么p是q的〔〕(A)充分不必要条件〔B〕必要不充分条件〔C〕充要条件〔D〕非充分非必要条件3.“或q 是假命题〞是“非p为真命题〞的〔〕pA.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件4.假设非空集合 M N,那么“a M或a N〞是“a MIN〞的〔〕A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件B 提示:“a M或a N〞不一定有“ a MIN〞。

5.对任意的实数 a,b,c,以下命题是真命题的是〔〕〔A〕“ac bc〞是“a b〞的必要条件〔B〕“ac bc〞是“a b〞的必要条件〔C〕“ac bc〞是“a b〞的充分条件〔D〕“ac bc〞是“a b〞的必要条件6.假设条件 p:x 1 4,条件q:2 x 3,那么 q是p的〔〕〔A〕充分不必要条件〔B〕必要不充分条件〔C〕充要条件〔D〕非充分非必要条件7.假设非空集合A,B,C满足AUB C,且B不是A的子集,那么〔〕A. “x C〞是“xB. “x C〞是“xC.“x C〞是“xD.“x C〞既不是“〞的充分条件但不是必要条件〞的必要条件但不是充分条件〞的充要条件A〞的充分条件也不是“xA〞必要条件8.对于实数x,y,满足p:xy3,q:x 2或y1,那么p是q的〔〕(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件29.“4k0〞是“函数y x2kx k的值恒为正值〞的〔〕〔A〕充分不必要条件〔B〕必要不充分条件〔C〕充要条件〔D〕既不充分也不必要条件10.条件p:t2,条件q:t24,那么p是q的〔〕〔A〕充分不必要条件〔B〕必要不充分条件〔C〕充要条件〔D〕既不充分也不必要条件11.“a=2〞是“函数f(x)=x2+ax+1在区间[-1,+∞)上为增函数〞的〔〕〔A〕充分不必要条件〔B〕必要不充分条件〔C〕充要条件〔D〕既不充分也不必要条件12.p是r 的充分条件而不是必要条件,q是r的充分条件,s是r的必要条件,q是s的必要条件。

充分条件与必要条件练习题及答案

充分条件与必要条件练习题及答案

例1 已知p:x1,x2是方程x2+5x-6=0的两根,q:x1+x2=-5,则p是q的[ ]A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件分析利用韦达定理转换.解∵x1,x2是方程x2+5x-6=0的两根,∴x1,x2的值分别为1,-6,∴x1+x2=1-6=-5.因此选A.说明:判断命题为假命题可以通过举反例.例2 p是q的充要条件的是[] A.p:3x+2>5,q:-2x-3>-5B.p:a>2,b<2,q:a>bC.p:四边形的两条对角线互相垂直平分,q:四边形是正方形D.p:a≠0,q:关于x的方程ax=1有惟一解分析逐个验证命题是否等价.解对A.p:x>1,q:x<1,所以,p是q的既不充分也不必要条件;对B.p q但q p,p是q的充分非必要条件;对C.p q且q p,p是q的必要非充分条件;⇒⇒⇔对.且,即,是的充要条件.选.D p q q p p q p q D说明:当a=0时,ax=0有无数个解.例3 若A是B成立的充分条件,D是C成立的必要条件,C是B成立的充要条件,则D是A成立的[]A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件分析通过B、C作为桥梁联系A、D.解∵A是B的充分条件,∴A B①∵D是C成立的必要条件,∴C D②⇔C B C B∵是成立的充要条件,∴③由①③得A C④由②④得A D.∴D是A成立的必要条件.选B.说明:要注意利用推出符号的传递性.例4 设命题甲为:0<x <5,命题乙为|x -2|<3,那么甲是乙的[ ]A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 分析 先解不等式再判定.解 解不等式|x -2|<3得-1<x <5.∵0<x <5-1<x <5,但-1<x <50<x <5 ∴甲是乙的充分不必要条件,选A .说明:一般情况下,如果条件甲为x ∈A,条件乙为x ∈B .当且仅当时,甲为乙的充分条件;当且仅当时,甲为乙的必要条件;A B A B ⊆⊇当且仅当A =B 时,甲为乙的充要条件. 例5 设A 、B 、C 三个集合,为使A(B ∪C ),条件A B 是[ ]A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件 分析 可以结合图形分析.请同学们自己画图.∴A(B ∪C ).但是,当B =N ,C =R ,A =Z 时, 显然A(B ∪C ),但AB 不成立, 综上所述:“A B ”“A(B ∪C )”,而“A (B ∪C )”“AB ”.即“AB ”是“A (B ∪C)”的充分条件(不必要).选A .说明:画图分析时要画一般形式的图,特殊形式的图会掩盖真实情况.例6 给出下列各组条件:(1)p:ab =0,q :a 2+b 2=0;(2)p:xy ≥0,q :|x|+|y |=|x +y|;(3)p :m >0,q :方程x 2-x -m =0有实根; (4)p :|x -1|>2,q :x <-1. 其中p 是q 的充要条件的有[ ]A .1组B .2组C .3组D .4组分析 使用方程理论和不等式性质. 解 (1)p 是q 的必要条件(2)p 是q 充要条件 (3)p 是q 的充分条件(4)p 是q 的必要条件.选A .说明:ab =0指其中至少有一个为零,而a 2+b 2=0指两个都为零.例>>是>>的条件.7x 3x 3x x x 12112⎧⎨⎩+⎧⎨⎩x 269分析 将前后两个不等式组分别作等价变形,观察两者之间的关系.解>且>+>且>,但当取=,=时,>>成立,而>>不成立=与>矛盾,所以填“充分不必要”.x 3x 3x x 6x x 9x 10x 2(x 2x 3)1212121222⇒+⎧⎨⎩⎧⎨⎩x x x x x x 1212126933 说明:>>->->x 3x 3 x 30x 301212⎧⎨⎩⇔⎧⎨⎩ ⇔⎧⎨⎩⇔⎧⎨⎩(x 3)(x 3)0(x 3)(x 3)0x x 6x x 3(x x )901212121212-+->-->+>-++>这一等价变形方法有时会用得上.例8 已知真命题“a ≥b c >d ”和“a <be ≤f ”,则“c ≤d"是“e ≤f ”的________条件.分析 ∵a ≥b c >d(原命题), ∴c ≤d a <b (逆否命题). 而a <b e ≤f ,∴c ≤d e ≤f 即c ≤d 是e ≤f 的充分条件. 答 填写“充分”.说明:充分利用原命题与其逆否命题的等价性是常见的思想方法.例9 ax 2+2x +1=0至少有一个负实根的充要条件是[ ]A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0分析 此题若采用普通方法推导较为复杂,可通过选项提供的信息,用排除法解之.当a =1时,方程有负根x =-1,当a =0时,x =-.故排除、、选.12A B D C 解常规方法:当=时,=-. a 0x 12当a ≠0时1a 0ax 2x 10021a 0a 12.>,则++=至少有一个负实根<-<<≤.⇔---⇔-⇔24422aa2a 0ax 2x 100221a 21a 1a 02.<,则++=至少有一个负实根<>->-><.⇔-+-⇔⇔⇔2442aa综上所述a ≤1.即ax 2+2x +1=0至少有一个负实根的充要条件是a ≤1.说明:特殊值法、排除法都是解选择题的好方法.例10 已知p 、q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,那么s,r ,p 分别是q 的什么条件?分析 画出关系图1-21,观察求解.解 s 是q 的充要条件;(s r q,qs )r 是q 的充要条件;(r q ,q s r) p 是q 的必要条件;(q s r p)说明:图可以画的随意一些,关键要体现各个条件、命题之间的逻辑关系. 例11 关于x 的不等式|x |x 3(a 1)x 2(3a 1)0AB A B 1a 3a 12-≤与-+++≤的解集依次为与,问“”是“≤≤或=-”的充要条件吗?()()a a +-⊆121222分析 化简A 和B,结合数轴,构造不等式(组),求出a .解 A ={x |2a ≤x ≤a 2+1},B ={x |(x -2)[x -(3a +1)]≤0}当≤+即≥时,23a 1a 13B ={x|2≤x ≤3a +1}.A B 2a 2a +13a +11a 323a 1a 2⊆⇔⎧⎨⎩⇔≥≤≤≤当>+即<时,13B ={x|3a +1≤x ≤2}A B 2a 3a +1a +12a 1A B a 11a 3A B 1a 3a 12⊆⇔⎧⎨⎩⇔⊆⇔⊆≥≤=-.综上所述:=-或≤≤.∴“”是“≤≤或=-”的充要条件.说明:集合的包含关系、命题的真假往往与解不等式密切相关.在解题时要理清思路,表达准确,推理无误.例>,>是<的必要条件还是充分条件,还是充12 x y xy 011x y要条件?分析 将充要条件和不等式同解变形相联系.解.当<时,可得-<即< 1001111x y x y y xxy-则-><或-<>,即<<或>>,y x 0xy 0y x 0xy 0 x y xy 0x 0⎧⎨⎩⎧⎨⎩⎧⎨⎩⎧⎨⎩y xy故<不能推得>且>有可能得到<<,即>且>并非<的必要条件.11011x y x y xy x yx y xy 0()x y xy 0⎧⎨⎩2x y xy 0x y x 0y 0x y x 0y 0x y xy 0.当>且>则分成两种情况讨论:>>>或><<不论哪一种情况均可化为<.∴>且>是<的充分条件.⎧⎨⎪⎩⎪⎧⎨⎪⎩⎪1111x yx y说明:分类讨论要做到不重不漏.例13 设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α,β均大于1的什么条件?分析 把充要条件和方程中根与系数的关系问题相联系,解题时需要搞清楚条件与结论分别指什么.然后再验证是还是还是.p q p q q p p q ⇒⇒⇔解据韦达定理得:=α+β,=αβ,判定的条件是:>>结论是:α>β>还要注意条件中,,需要满足大前提Δ=-≥ a b p q (p a b a 4b 0)2a b 2111⎧⎨⎩⎧⎨⎩(1)1a2b1由α>β>得=α+β>,=αβ>,1⎧⎨⎩∴q p.上述讨论可知:a>2,b>1是α>1,β>1的必要但不充分条件.说明:本题中的讨论内容在二次方程的根的分布理论中常被使用.例14 (1991年全国高考题)设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么[]A.丙是甲的充分条件,但不是甲的必要条件B.丙是甲的必要条件,但不是甲的充分条件C.丙是甲的充要条件D.丙不是甲的充分条件,也不是甲的必要条件分析1:由丙乙甲且乙丙,即丙是甲的充分不必要条件.分析2:画图观察之.答:选A.说明:抽象命题之间的逻辑关系通常靠画图观察比较方便。

1.8充要条件和必要条件

1.8充要条件和必要条件

1.8充要条件和必要条件一、预习知识1.知识链接:四种命题的等价性是怎样的?2.充分条件与必要条件的概念。

3.充要条件的概念。

二、典型例题:例1:下列各题中,条件p 是q 的什么条件?1.p :0=ab , q :022=+b a 2. p :⎩⎨⎧>>22βα q :⎩⎨⎧>>+44αββα 3. p :2-=+y x , q :y x ,不都为1-例2.已知p,q 都是r 的必要条件,s 是r 的充要条件,q 是s 的充要条件,q 是s 的充要条件。

那么(1)s 是q 的什么条件?(2)r 是q 的什么条件?(3)p 是q 的什么条件?例3.若p :A ⊆S ,B ⊆S ,A ⊄B,q:()B C S ()A C S ⊄,则p 是q 的什么条件?三:基础训练1. 判断下列题中,p 是q 的什么条件。

⑴p :x-2=0;q :(x-2)(x-3)=0⑵p :四边形的四边相等。

q :四边形是正方形。

⑶p :x=1或x=2;q :x-1=1-x ⑷p :2≠t ;q :42≠t2. 填空:⑴“b a =”是“bc ac =”的_________________⑵“两个三角形全等”是“两个三角形相似”的__________________ ⑶“b a <”是“22bc ac <的_______________⑷若A 是B 的充分不必要条件,则B 是A 的________________3.R y x ∈, 则下列命题中,甲是乙的充分不必要条件的命题是( ) A :甲:0=xy乙:022=+y x B :甲:0=xy乙:y x y x +=+ C :甲:0=xy 乙:y x ,至少一个为零D :甲:y x < 乙:1<yx 四、思维拓展:已知P :21231;:0,6x q x x ->>+-则非p 是非q 的()A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

充分条件与必要条件·基础练习
(一)选择题
1.设甲是乙的充分而不必要条件,丙是乙的充要条件,丁是丙的必要而不充分条件,则丁是甲的[ ]
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件
2.b=c=0是抛物线y=ax2+bx+c经过原点的[ ]
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件
3.设有非空集合A、B、C,若“a∈A”的充要条件是“a∈B且a∈C”,则“a∈B”是“a∈A”的[ ]
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件
4.x∈R,(1-|x|)(1+x)是正数的充分必要条件是[ ]
A.|x|<1 B.x<1 C.x<-1 D.x<1且x≠-1
5.三个实数a、b、c不全为零的充要条件是[ ]
A.a、b、c都不是零B.a、b、c中至多有一个是零
C.a、b、c中只有一个是零D.a、b、c中至少有一个不是零
6.下列说法正确的是[ ]
A.x≥3是x>5的充分而不必要条件B.x≠±1是|x|≠1的充要条件C.若,则p是q的充分条件
D.一个四边形是矩形的充分条件是:它是平行四边形
(二)填空题
1.用符号“”与“”填空.
(1)x+y=7________x2-y2-6x+8y=7
(2)ab=0________a=0
2.ax2+2x+1=0有且只有一个负的实根的充要条件是________.
3.集合A={x|x>1},B={x|x<2},则“x∈A或x∈B”是“x∈A∩B”的________条件.
4.在平面直角坐标系中,点(x2+5x,1-x2)在第一象限的充要条件是
________.
(三)解答题
1.指出下列各组命题中p是q的什么条件?
(1)p:m为有理数q:m为实数
(2)p:x2-1=0 q:x-1=0
(3)p:内错角相等q:两直线平行
(4)p :四边相等 q :四边形为正方形
(5)q :a ≠0 p :ab ≠0
(6)p :a 、b 都不为零 q :a 、b 不都为零
2a 0x a |x|2.已知>,求证:>的充要条件是>.a
3.关于x 的实系数一元二次方程ax 2+bx +c =0有两个异号实根的充要条件是什么?为什么?
参考答案
(一)选择题
1B(.提示;①甲乙②乙丙③丁丙.由①②③知甲丁⇒⇐⇔⇐⇒⇒/
/ 由③知丁甲,故选.⇒/B
2.A
C ,故选B .
4.D(提示:解不等式(1-|x|(1+x)>0得x <1且x ≠-1)
5.A
6.B
(二)填空题
1(1)(x y 6x 8y =(x y)(x y)6x 8y =7(x y)6x 22.--++--+--⇒ +8y=x +y=7)
(2)(ab =0a =0b =0a =0)//⇒⇒⇒
或 2a =0a =1(1)a =0x =02)a 0=4.或提示:时-<;≠时,Δ-12
4a=0,a=1,此时x=-1<0.∴a=0或1.
3.必要而不充分
40x 1 x 5x 01x20x 5x 01x 10x 12.<<解:+>-><-或>-<<<<⎧⎨⎩
⇔⎧⎨⎩⇔ (三)解答题
1.(1)p 是q 的充分而不必要条件.
(2)p 是q 的必要而不充分条件.
(3)p 与q 互为充要条件.
(4)p 是q 的必要而不充分条件.
(5)p 是q 的必要而不充分条件.
(6)p 是q 的充分而不必要条件.
2.证明:(此题是二次不等式的开方解法)
①充分性:∵>>∴>>·,即>|x|0 |x|=|x||x||x|x a 22a a a a ②必要性:∵>,>,∴<-或>,当<-时,x a a 0x x x 2a a a
x 0|x|=x |x||x|x x 0|x|=x |x||x|<,故-,∴-<-.即>;当>时,>,故,∴>,总之有>a a a a a
3.解:关于x 的实系数的一元二次方程ax 2+bx +c=0有两个异号实根的充要条件是ac <0.证明:(1)充分性:∵ac <0,∴-4ac >0,∴Δ=b 2-4ac >0,∴设x 1,x 2为原方程的两个不等实根,又 由韦达定理得:<,从而,异号.即:<是关于x x =a c =ac a
0x x ac 012212 x 的实系数一元二次方程ax 2+bx +c=0有两个异号实根的充分条件.(2)必要性;设x 1,x 2是关于x 的实系数一元二次方程ax 2+bx +c=0的两
个异号实根,则<,∴<.即:<是关于的实系数一x x =c a
0ac 0ac 0x 12 元二次方程ax 2+bx +c=0有两个异号实根的必要条件.综合(1)(2)可得原结论成立。

相关文档
最新文档