2017-2018年天河区七年级上学期数学期末试卷
2017-2018学年广东省中山市七年级(上)期末数学试卷
2017-2018学年广东省中山市七年级(上)期末数学试卷一、选择题(共10个小题,每小题3分,满分30分)1.(3分)6的相反数是()A.6B.﹣C.D.﹣62.(3分)2017年中山慈善万人行活动认捐款物总额达101000000元,数据101000000用科学记数法可以表示为()A.101×106B.10.1×107C.1.01×108D.0.101×109 3.(3分)下列各组单项式中,同类项是()A.﹣3与a B.3ab与2bC.x2y与﹣yx2D.mn2与m2n4.(3分)如图是由五个大小相同的正方体组成的几何体,从左面看这个几何体,看到的图形的()A.B.C.D.5.(3分)下列说法中,正确的是()A.一个角的补角一定大于这个角B.如果两个角是同一个角的补角,那么它们相等C.有理数的相反数一定比0小D.有理数的绝对值一定比0大6.(3分)如图,小明同学用剪刀沿着虚线将一张圆形纸片剪掉一部分,发现剩下纸片的周长比原来的周长要小,能正确解释这一现象的数学知识是()A.两点之间,直线最短B.经过一点,有无数条直线C.两点确定一条直线D.两点之间,线段最短7.(3分)下列计算或变形,正确的是()A.2x+3y=5xy B.若4x=﹣4,则x=1C.若x=y,则ax=ay D.3x2﹣4x2=﹣18.(3分)把一副直角三角板如图所示拼在一起,则∠ABC的度数等于()A.70°B.90°C.105°D.120°9.(3分)如图,∠1+∠2+∠3=180°,那么∠4+∠5+∠6的度数是()A.540°B.360°C.180°D.不能确定10.(3分)王林同学在解关于x的方程3m+2x=4时,不小心将+2x看作了﹣2x,得到方程的解是x=1,那么原方程正确的解是()A.x=2B.x=﹣1C.x=D.x=5二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)﹣1的绝对值等于.12.(4分)若﹣a2m b m是一个六次单项式,那么m的值是.13.(4分)若整式7a﹣5与3﹣5a互为相反数,则a的值为.14.(4分)若|a+2|+(b﹣3)2=0,则a﹣b=.15.(4分)一个角的补角是135°,则它的余角是.16.(4分)如图所示,把同样大小的黑色棋子按照规律摆放在正方形的边上,则第n个图形需要黑色棋子的个数是.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.(6分)计算:(﹣1)4×5+(﹣10)÷2﹣3×(﹣)18.(6分)解方程:﹣1=.19.(6分)画一条数轴,把下列各数在数轴上表示出来,并将这些数用“>”连接起来.﹣12,﹣2,﹣(﹣1.5),|﹣3|四、解答题(二)(共3个小题,每小题7分,共21分)20.(7分)先化简,再求值:5a2+6﹣2a2﹣(4a+3a2﹣2)+7a,其中a=﹣.21.(7分)一只蚂蚁从某点A出发,在一条东西向的直线上来回爬行,规定爬行的路程记为正数,向西爬行的路程记为负数,这只蚂蚁爬行的各段路程依次如下(单位:厘米):﹣4,﹣6,+8,﹣11,+3,+7,﹣10,+9,+4(1)请通过计算说明这只蚂蚁是否回到了起点A?(2)若这只蚂蚁爬行的速度是每秒0.5厘米,那么这只蚂蚁共爬行了多长时间?22.(7分)如图,C,D,E三点在线段AB上,AD=DC,点E是线段CB的中点,CE=AB=2,求线段DE的长.五、解答题(三)(共3个小题,每小题9分,共27分)23.(9分)两种规格的长方体纸盒,尺寸如下(单位:厘米)长宽高小纸盒a b20大纸盒 1.5a2b30(1)做这种规格的纸盒各一个,共用料多少平方厘米?(2)做一个大纸盒与做三个小纸盒,哪个用料多?多多少平方厘米?24.(9分)某公司生产某种产品,每件成本价是400元,销售价为620元,本季度销售了5万件,为进一步扩大市场,企业决定降低生产成本,经过市场调研,预计下一季度这种商品每件售价会降低5%,销售量将提高10%.(1)下一季度每件产品的销售价和销售量各是多少?(2)为了使两个季度的销售利润保持不变,公司必须降低成本,问每件商品的成本应降低多少元?25.(9分)如图,点O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=40°,求∠DOE的度数;(2)将∠COD绕顶点O旋转,且保持射线OC在直线AB上方,在整个旋转过程中,当∠AOC的度数是多少时,∠COE=2∠DOB.2017-2018学年广东省中山市七年级(上)期末数学试卷参考答案与试题解析一、选择题(共10个小题,每小题3分,满分30分)1.(3分)6的相反数是()A.6B.﹣C.D.﹣6【解答】解:6的相反数是﹣6,故选:D.【点评】此题主要考查了相反数,关键是掌握相反数定义.2.(3分)2017年中山慈善万人行活动认捐款物总额达101000000元,数据101000000用科学记数法可以表示为()A.101×106B.10.1×107C.1.01×108D.0.101×109【解答】解:101000000用科学记数法可以表示为1.01×108,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列各组单项式中,同类项是()A.﹣3与a B.3ab与2bC.x2y与﹣yx2D.mn2与m2n【解答】解:﹣3与a不是同类项,故A错误;3ab与2b所含字母不相同,不是同类项,故B错误;x2y与﹣yx2是同类项,故C正确;mn2与m2n相同字母的指数不相同,不是同类项,故D错误.故选:C.【点评】本题主要考查的是同类项的定义,掌握同类项的定义是解题的关键.4.(3分)如图是由五个大小相同的正方体组成的几何体,从左面看这个几何体,看到的图形的()A.B.C.D.【解答】解:由图可得,从左面看几何体有2列,第一列有2块,第二列有1块,∴该几何体的左视图是:故选:D.【点评】本题主要考查了简单几何体的三视图,解题时注意:左视图就是从几何体左侧看到的图形.5.(3分)下列说法中,正确的是()A.一个角的补角一定大于这个角B.如果两个角是同一个角的补角,那么它们相等C.有理数的相反数一定比0小D.有理数的绝对值一定比0大【解答】解:A、一个角的补角不一定大于这个角,故此选项错误;B、如果两个角是同一个角的补角,那么它们相等,正确;C、有理数的相反数不一定比0小,故此选项错误;D、有理数的绝对值一定大于等于0,故此选项错误;故选:B.【点评】此题主要考查了互补的性质以及相反数的定义和绝对值的性质,正确把握相关定义是解题关键.6.(3分)如图,小明同学用剪刀沿着虚线将一张圆形纸片剪掉一部分,发现剩下纸片的周长比原来的周长要小,能正确解释这一现象的数学知识是()A.两点之间,直线最短B.经过一点,有无数条直线C.两点确定一条直线D.两点之间,线段最短【解答】解:能正确解释这一现象的数学知识是两点之间,线段最短.故选:D.【点评】此题主要考查了线段的性质,关键是掌握两点之间,线段最短.7.(3分)下列计算或变形,正确的是()A.2x+3y=5xy B.若4x=﹣4,则x=1C.若x=y,则ax=ay D.3x2﹣4x2=﹣1【解答】解:∵2x+3y≠5xy,∴选项A不符合题意;∵若4x=﹣4,则x=﹣1,∴选项B不符合题意;∵若x=y,则ax=ay,∴选项C符合题意;∵3x2﹣4x2=﹣x2,∴选项D不符合题意.故选:C.【点评】此题主要考查了等式的性质和应用,要熟练掌握,解答此题的关键是要明确:(1)等式两边加同一个数(或式子),结果仍得等式.(2)等式两边乘同一个数或除以一个不为零的数,结果仍得等式.8.(3分)把一副直角三角板如图所示拼在一起,则∠ABC的度数等于()A.70°B.90°C.105°D.120°【解答】解:∠ABC=30°+90°=120°,故选:D.【点评】本题考查了角的运算,利用角的和差是解题关键.9.(3分)如图,∠1+∠2+∠3=180°,那么∠4+∠5+∠6的度数是()A.540°B.360°C.180°D.不能确定【解答】解:由三角形的外角和定理可知,∠4+∠5+∠6=360°,故选:B.【点评】本题考查的是三角形的外角的性质,掌握三角形的外角和为360°是解题的关键.10.(3分)王林同学在解关于x的方程3m+2x=4时,不小心将+2x看作了﹣2x,得到方程的解是x=1,那么原方程正确的解是()A.x=2B.x=﹣1C.x=D.x=5【解答】解:把x=1代入方程3m﹣2x=4得:3m﹣2=4,解得:m=2,正确方程为6+2x=4,解得:x=﹣1,故选:B.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)﹣1的绝对值等于1.【解答】解:根据绝对值的性质,|﹣1|=1.故答案为:1【点评】此题主要考查了绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,难度适中.12.(4分)若﹣a2m b m是一个六次单项式,那么m的值是2.【解答】解:由题意得:2m+m=6,解得:m=2,故答案为:2.【点评】此题主要考查了单项式,关键是掌握单项式的相关定义.13.(4分)若整式7a﹣5与3﹣5a互为相反数,则a的值为1.【解答】解:根据题意得:7a﹣5+3﹣5a=0,移项合并得:2a=2,解得:a=1,故答案为:1【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.14.(4分)若|a+2|+(b﹣3)2=0,则a﹣b=﹣5.【解答】解:根据题意得,a+2=0,b﹣3=0,解得a=﹣2,b=3,所以a﹣b=﹣2﹣3=﹣5.故答案为:﹣5.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.15.(4分)一个角的补角是135°,则它的余角是45°.【解答】解:这个角=180°﹣135°=45°.它的余角=90°﹣45°=45°.故答案为:45°.【点评】本题主要考查的是补角和余角的定义,熟练掌握相关概念是解题的关键.16.(4分)如图所示,把同样大小的黑色棋子按照规律摆放在正方形的边上,则第n个图形需要黑色棋子的个数是3+5n.【解答】解:第一个图形有3+5×1=8个棋子,第二个图形有3+5×2=13个棋子,第三个图形有3+5×3=18个棋子,…第n个图形有3+5n个棋子,故答案为:5n+3.【点评】本题考查了图形的变化类问题,解题的关键是仔细观察图形并找到规律.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.(6分)计算:(﹣1)4×5+(﹣10)÷2﹣3×(﹣)【解答】解:(﹣1)4×5+(﹣10)÷2﹣3×(﹣)=1×5+(﹣5)+2=5+(﹣5)+2=2.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.18.(6分)解方程:﹣1=.【解答】解:去分母得:3x+2﹣4=2x﹣4,移项合并得:x=﹣2.【点评】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.19.(6分)画一条数轴,把下列各数在数轴上表示出来,并将这些数用“>”连接起来.﹣12,﹣2,﹣(﹣1.5),|﹣3|【解答】解:,|﹣3|>﹣(﹣1.5)>﹣12>﹣2.【点评】此题主要考查了有理数大小比较的方法,以及在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.四、解答题(二)(共3个小题,每小题7分,共21分)20.(7分)先化简,再求值:5a2+6﹣2a2﹣(4a+3a2﹣2)+7a,其中a=﹣.【解答】解:原式=5a2+6﹣2a2﹣4a﹣3a2+2+7a=3a+8,当a=﹣时,原式=3×(﹣)+8=﹣1+8=7.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.(7分)一只蚂蚁从某点A出发,在一条东西向的直线上来回爬行,规定爬行的路程记为正数,向西爬行的路程记为负数,这只蚂蚁爬行的各段路程依次如下(单位:厘米):﹣4,﹣6,+8,﹣11,+3,+7,﹣10,+9,+4(1)请通过计算说明这只蚂蚁是否回到了起点A?(2)若这只蚂蚁爬行的速度是每秒0.5厘米,那么这只蚂蚁共爬行了多长时间?【解答】解:(1)∵(﹣4)+(﹣6)+(+8)+(﹣11)+(+3)+(+7)+(﹣10)+(+9)+(+4),=﹣4﹣6+8﹣11+3+7﹣10+9+4,=0,∴这只蚂蚁回到了起点A;(2)(4+6+8+11+3+7+10+9+4)÷0.5,=62÷0.5,=124(秒).答:这只蚂蚁共爬行了124秒.【点评】此题主要考查正负数在实际生活中的应用,掌握有理数的加减运算是解答此题的关键.22.(7分)如图,C,D,E三点在线段AB上,AD=DC,点E是线段CB的中点,CE=AB=2,求线段DE的长.【解答】解:∵CE=AB=2,∴AB=12,∵E为线段CB的中点,∴BC=2CE=4,∴AC=8,∵AD=DC,∴DC=6,∴DE=DC+CE=8.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.五、解答题(三)(共3个小题,每小题9分,共27分)23.(9分)两种规格的长方体纸盒,尺寸如下(单位:厘米)长宽高小纸盒a b20大纸盒 1.5a2b30(1)做这种规格的纸盒各一个,共用料多少平方厘米?(2)做一个大纸盒与做三个小纸盒,哪个用料多?多多少平方厘米?【解答】解:(1)2 (1.5a×2b+1.5a×30+2b×30)+2(ab+20a+20b)=6ab+90a+120b+2ab+40a+40b=8ab+130a+160b(平方厘米).答:共用料(8ab+130a+160b)平方厘米;(2)2 (1.5a×2b+1.5a×30+2b×30)=6ab+90a+120b(平方厘米);2(ab+20a+20b)×3=6ab+120a+120b (平方厘米);(6ab+120a+120b)﹣(6ab+90a+120b)=30a(平方厘米).答:做三个小纸盒的用料多,多30a平方厘米.【点评】本题考查了列代数式以及合并同类项,是基础知识比较简单.24.(9分)某公司生产某种产品,每件成本价是400元,销售价为620元,本季度销售了5万件,为进一步扩大市场,企业决定降低生产成本,经过市场调研,预计下一季度这种商品每件售价会降低5%,销售量将提高10%.(1)下一季度每件产品的销售价和销售量各是多少?(2)为了使两个季度的销售利润保持不变,公司必须降低成本,问每件商品的成本应降低多少元?【解答】解:(1)下一季度每件产品销售价为:620(1﹣5%)=589(元).销售量为(1+10%)×50000=55000(件);(2)设该产品每件的成本价应降低x元,则根据题意得:[589﹣(400﹣x)]×55000=(620﹣400)×50000,解这个方程得:x=11.答:该产品每件的成本价应降低11元.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.25.(9分)如图,点O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=40°,求∠DOE的度数;(2)将∠COD绕顶点O旋转,且保持射线OC在直线AB上方,在整个旋转过程中,当∠AOC的度数是多少时,∠COE=2∠DOB.【解答】解:(1)∵∠AOC=40°,∴∠BOC=140°,又∵OE平分∠BOC,∴∠COE=×140°=70°,∵∠COD=90°,∴∠DOE=90°﹣70°=20°;(2)设∠AOC=α,则∠BOC=180°﹣α,∵OE平分∠BOC,∴∠COE=×(180°﹣α)=90°﹣α,分两种情况:当OD在直线AB上方时,∠BOD=90°﹣α,∵∠COE=2∠DOB,∴90°﹣α=2(90°﹣α),解得α=60°.当OD在直线AB下方时,∠BOD=90°﹣(180°﹣α)=α﹣90°,∵∠COE=2∠DOB,∴90°﹣α=2(α﹣90°),解得α=108°.综上所述,当∠AOC的度数是60°或108°时,∠COE=2∠DOB.【点评】本题主要考查了角的计算以及角平分线的定义的运用,解决问题的关键是画出图形,运用分类思想进行求解.。
最新-广州天河区七年级数学上册数学期末考试卷
2017-2018天河区七年级上期末数学试卷一、选择题(本题共10个小题,每小题3分,满分30分) 1. 2-=( ) A.0B.-2C.2D.12.下列选项中,解为2x =的方程是( ) A.42x =B.360x +=C.102x =D.7140x -=3.下列选项中,两个单项式属于同类项的是( ) A.3a 与3bB.23x y 与24x yz -C.2x y 与2xy -D.22a b -与212ba4.据统计,到2017年底,广州市的常住人口将达到14330000人,这个人口数据用科学计数法表示为( ) A.4143310⨯B.81.43310⨯C.71.43310⨯D.80.143310⨯5.如图,在直线l 上有A ,B ,C 三点,则图中线段共有( ) A.4条B.3条C.2条D.1条6.下列变形中,不正确的是( ) A.()a b c d a b c d ---=--- B.()a b c d a b c d --+=-+- C.()a b c d a b c d +---=+++D.()a b c d a b c d ++-=++-7.下列关于单项式243x y-的正确说法是( )A.系数是4,次数是3B.系数是43-,次数是3C.系数是43,次数是2D.系数是43-,次数是28.如图,它需再添一个面,折叠后才能围成一个正方体,下列选项中的黑色小正方形分别由四位同学补画,其中正确的是( )A. B. C. D.9.若A ∠,B ∠互为补角,且A B ∠<∠,则A ∠的余角是( ) A.1()2A B ∠+∠B.12B ∠C.1()2B A ∠-∠D.12A ∠10.如图是含x 的代数式按规律排列的前4行,依此规律,若第10行第2项的值为1034,则此时x 的值为( ) A.1B.2C.5D.10二、填空题(本题有6个小题,每小题3分,共18分)11. 南京市1月份的平均气温是零下5℃,用负数表示这个温度是 . 12. 若2323246x y a b a b a b +=,则x y = .13. 若代数式1x -和37x +的值互为相反数,则x = . 14. 已知25∠α=,那么∠α的补角等于 .15. 从A 处看B 处的方向是北偏东21°,反过来,从B 看A 的方向是 . 16. 如图,把一张长方形纸片沿AB 折叠后,若150∠=,则2∠= .三、解答题(本大题有9小题,共102分) 17. (本题满分10分,每小题5分) (1)计算:(12)(20)(8)15---+--(2)计算:2201623(1)9(3)-+⨯--÷-18. (本题满分12分,每小题6分) (1)解方程:3(2)13x x +-=-;(2)解方程:12123x x+--=如图,已知线段AB 的长度是xcm ,线段BC 的长度比线段AB 的长度的2倍多1cm ,线段AD 的长度比线段BC 长度的2倍少1cm ,求线段BC ,AD 和CD 的长.20. (本题满分10分)先化简,再求值:222213()3x y xy xy x y -+--,其中12x =,1y =-.21. (本题满分12分)根据图中情景信息,解答下列问题: (1)购买8根跳绳需 元,(2)购买11根跳绳需 元; (3)小红比小明多买2根,付款时小红反而比小明少7元,你认为有这种可能吗?请结合方程知识说明理由.22. (本题满分12分)解答下面问题:(提示:为简化问题,往往把一个式子看成一个数或一个整体解决问题.) (1)若代数式23x y +的值为5-,求代数式463x y ++的值; (2)已知22351235,A x x B x x =-+=-+-,求当13x =时A B -的值.如图,已知直线AB和CD相交于点O,在∠COB的内部作射线OE.(1)若∠AOC=36°,∠COE=90°,求∠BOE的度数;(2)若∠COE:∠EOB:∠BOD=4:3:2,求∠AOE的度数.24.(本题满分13分)如图的长方形MNPQ是州某市民健身广场的平面示意图,它是由6个正方形拼成的(分别用A,B,C,D,E,F六个字母表示).已知中间最小的正方形A的边长是1米,设正方形C的边长是x米.(1)请用含x的代数式分别表示出正方形EF和B的边长;(2观察图形的特点,找出两个等量关系,分别用两种方法列方程求出x的值(3)现沿着长方形广场的四条边铺设下水管道,若甲,乙两个工程队单独铺设分别需要10天和15天完成,如果两队从M处开始,分别沿两个不同方向同时施工y天后,因甲队另有任务,余下的工程由乙队单独施工10天完成,求y的值.25.(本满分13分)A ,B ,C 为数轴上三点,若点C 到点A 的距离是点C 到点B 的距离的2倍,我们就称点C 是【A ,B 】的和谐点.例如:图1中,点A 表示的数为-1,点B 表示的数为2。
2017-2018学年第一学期期末测试七年级数学试题及答案
2017—2018学年第一学期期末测试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。
满分为120分。
考试用时100分钟。
考试结束后,只上交答题卡。
2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、准考证号、考场、座号填写在答题卡规定的位置上,并用2B 铅笔填涂相应位置。
3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案不能答在试题卷上。
24.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;不准使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
第Ⅰ卷(选择题)一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.下列算式:(1) (2)--;(2) 2- ;(3) 3(2)-;(4) 2(2)-. 其中运算结果为正数的个数为(A ) 1 (B ) 2 (C ) 3 (D ) 4【 2.若a 与b 互为相反数,则a-b 等于(A )2a (B )-2a (C ) 0 (D )-2 3.下列变形符合等式基本性质的是(A )如果2a -b =7,那么b =7-2a (B )如果mk =nk ,那么m =n (C )如果-3x =5,那么x =5+3 (D )如果-13a =2,那么a =-64.下列去括号的过程(1)c b a c b a --=--)(; (2)c b a c b a ++=--)(; (3)c b a c b a +-=+-)(; (4)c b a c b a --=+-)(.其中运算结果错误的个数为(A ) 1 (B ) 2 (C ) 3 (D ) 4【 5.下列说法正确的是(A )1-x 是一次单项式 (B)单项式a 的系数和次数都是1 (C )单项式-π2x 2y 2的次数是6 (D)单项式24102x ⨯的系数是26.下列方程:(1)2x -1=x -7 ,(2)12x =13x -1 ,(3)2(x +5)=-4-x , (4)23x =x -2.其中解为x =-6的方程的个数为 (A ) 4 (B ) 3 (C ) 2 (D ) 1 7.把方程5.07.01.023.012.0-=--x x 的分母化为整数的方程是 (A )57203102-=--x x (B )5723102-=--x x (C )572312-=--x x (D )5720312-=--x x 8.森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物,28.3亿吨用科学记数法表示为(A ) 28.3×107(B ) 2.83×108(C )0.283×1010(D )2.83×1099.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是 (A )用两个钉子就可以把木条固定在墙上(B )利用圆规可以比较两条线段的大小关系 (C )把弯曲的公路改直,就能缩短路程(D )植树时,只要定出两棵树的位置,就能确定同一行树所在的直线10.一个两位数,个位数字为a ,十位数字为b ,把这个两位数的个位数字与十位数字 交换,得到一个新的两位数,则新两位数与原两位数的和为 (A )b a 99+ (B )ab 2 (C )ab ba + (D )b a 1111+ 11.已知表示有理数a 、b 的点在数轴上的位置如图所示:则下列结论正确的是(A )|a|<1<|b| (B )1<a<b (C )1<|a|<b (D ) -b<-a<-1 12.定义符号“*”表示的运算法则为a*b =ab +3a ,若(3*x)+(x*3)=-27,则x = (A )29-(B )29(C )4 (D )-4 第Ⅱ卷(非选择题)(第11题图)二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分. 13.若把45.58°化成以度、分、秒的形式,则结果为 . 14.若xm-1y 3与2xyn的和仍是单项式,则(m-n )2018的值等于______ .15. 若031)2(2=++-y x ,则y x -= . 16.某同学在计算10+2x 的值时,误将“+”看成了“﹣”,计算结果为20, 那么10+2x 的值应为 . 17.如图,数轴上相邻刻度之间的距离是51,若BC=52,A 点在数轴上对应的数值是53-,则B 点在数轴上对应的数值是 .218.我们知道,钟表的时针与分针每隔一定的时间就会重合一次,请利用所学知识确定,时针与分针从上一次重合到下一次重合,间隔的时间是______ 小时.三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程.19.(每小题分5分,本小题满分10分)计算: (1)11(0.5)06(7)( 4.75)42-+--+-- (2)[(﹣5)2×]×(﹣2)3÷7.20.(每小题分5分,本小题满分10分)先化简,再求值: (1)3x 2-[5x-(6x-4)-2x 2],其中x=3(2)(8mn-3m 2)-5mn-2(3mn-2m 2),其中m=-1,n=2. 21.(每小题分5分,本小题满分10分)解方程:53-(1)6322-41--=x x . (2)3125121103--=+x x . 22.(本小题满分8分)一个角的余角比这个角的补角的 13还小10°,求这个角的度数.23.(本大题满分10分)列方程解应用题:A 车和B 车分别从甲,乙两地同时出发,沿同一路线相向匀速而行.出发后1.5小时两车相距75公里,之后再行驶2.5小时A 车到达乙地,而B 车还差40公里才能到达甲地.求甲地和乙地相距多少公里?24.(本小题满分12分)如图,∠AOB 是直角,ON 是∠AOC 的平分线,OM 是∠BOC 的平分线. (1)当∠AOC =40°,求出∠MON 的大小,并写出解答过程理由; (2)当∠AOC =50°,求出∠MON 的大小,并写出解答过程理由; (3)当锐角∠AOC=α时,求出∠MON 的大小,并写出解答过程理由.2017—2018学年第一学期期末测试七年级数学试题参考答案一、选择题(本大题12个小题,每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CADCBCBDCDCD二、填空题(本大题6个小题,每小题4分,共24分)(第24题图)13.45°34'48"; 14.1; 15.37; 16. 0 ; 17.0或54 ; 18.1112 . 三、解答题(本大题6个小题,共60分) 19.(每小题分5分,本小题满分10分)计算: 解:(1)11(0.5)06(7)( 4.75)42-+--+-- =130.567.5444-+-+ ………………………………………………2分 =13(0.57.5)(64)44--++ ………………………………………………4分 =3. ………………………………………………5分(2)[(﹣5)2×]×(﹣2)3÷7=[25×]×(﹣8)÷7……………………………………1分=[﹣15+8]×(﹣8)÷7………………………………………………2分=﹣7×(﹣8)÷7………………………………………………………3分=56÷7…………………………………………………………4分=8.…………………………………………………………5分20.(每小题分5分,本小题满分10分)先化简,再求值: 解:(1)原式, ………………………3分当时,原式; ………………………5分(2)原式,………………………3分当时,原式. ………………………5分21.(每小题分5分,本小题满分10分)解方程: 解:(1)去分母得:, …………3分移项合并得:; …………5分(2)解:原方程可化为312253--=+x x . …………1分 去分母,得)12(2)53(3--=+x x . …………2分去括号,得24159+-=+x x . …………3分 移项,得215-49+=+x x . …………4分 合并同类项,得1313-=x .系数化为1,得1-=x . …………5分22.(本小题满分8分)解:设这个角的度数为x °, …………1分 根据题意,得90-x =13(180-x)-10, …………5分解得x =60. …………7分 答:这个角的度数为60°. …………8分 23.(本大题满分10分)解:设甲地和乙地相距x 公里,根据题意,列出方程752401.5 1.52.5x x --=+ ………………………………………5分 解方程,得4300360x x -=- ………………………………………7分240x = ………………………………………9分答:甲地和乙地相距240公里. ……………………………10分 24.(本小题满分12分) 解:(1)∠AOC =40°时,∠MON =∠MOC -∠CON ………………………………………1分 =12(∠BOC -∠AOC) ………………………………………3分=12∠AOB ………………………………………5分=45°. ………………………………………6分 (2)当∠AOC =50°,∠MON =45°.理由同(1).………………………9分 (3)当∠AOC=α时,∠MON =45°. 理由同(1).………………………12分注意:评分标准仅做参考,只要学生作答正确,均可得分。
2017-2018学年度第一学期七年级期末数学试卷(有答案)【精品】
第一学期七年级期末评价数 学 试 卷一、选择题:(本大题10个小题,每小题3分,共30分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中。
【 】A . - 6 B. – 5 C. - 1 D. l2.下列说法中①小于90°的角是锐角; ②等于90°的角是直角;③大于90°的角是钝角; ④平角等于180°;⑤周角等于360°,正确的有………………………………………………【 】 A .5个 B .4个C .3个D .2个3.用代数式表示“m 的3倍与n 的差的平方”,正确的是…………………………………【 】 A .(3m -n )2B .3(m -n )2C .3m -n 2D .(m -3n )24.如图,∠AOB =120°,OC 是∠AOB 内部任意一条射线,OD ,OE 分别是∠AOC ,∠BOC 的角平分线,下列叙述正确的是【 】A .∠DOE 的度数不能确定B .∠AOD =12∠EOC C .∠AOD +∠BOE =60°D .∠BOE =2∠COD5..有理数a ,b 在数轴的位置如图,则下面关系中正确的个数为……………………………【 】 ①a -b >0; ②ab <0; ③11a b>; ④a 2>b 2. A .1B .2C .3D .46.一件商品按成本价提高30%后标价,再打8折(标价的80%)销售,售价为312元,设这件商品的成本价为元,根据题意,下面所列的方程正确的是……………………………【 】 A .·30%×80%=312 B .·30%=312×80% C .312×30%×80%=D .(1+30%)×80%=3127..下列等式变形正确的是…………………………………………………………………【 】A .如果s= 2ab,那么b=2s a B .如果12=6,那么=3 C .如果-3 =y-3,那么-y =0 D .如果m= my ,那么=y8.下列方程中,以=-1为解的方程是………………………………………………………【 】 A .13222xx +=-B .7(-1)=0C .4-7=5+7D .133x =-9.如图,边长为2m +3的正方形纸片剪出一个边长为m +3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m ,则另一边长为…………………………………………………【 】 A .2m +6B .3m +6C .2m 2+9m +6D .2m 2+9m +910.下列图案是用长度相同的火柴按一定规律拼搭而成,第一个图案需8根火柴,第二个图案需15根火柴,…,按此规律,第n 个图案需几根火柴棒 ………………………………………………………………………………………【 】A .2+7nB .8+7nC .7n +1D .4+7n二、填空题:(本大题8个小题,每小题4分,共32分)在每小题中,请将答案直接填在题后的横线上。
人教版2017~2018学年七年级上期末考试数学试题及答案
人教版2017~2018学年七年级上期末考试数学试题及答案2017-2018学年度(上)七年级期末质量监测数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.-3的相反数是()A。
3B。
-3C。
0D.无法确定2.下列各组数中,相等的是()A。
(-3)与-3B。
|-3|与-3C。
(-3)与-3D。
|3|与-33.下列说法中正确的个数是()①a一定是正数;②- a一定是负数;③- (- a)一定是正数;④a一定是分数。
A。
0个B。
1个C。
2个D。
3个4.下列图形不是正方体的展开图的是()A。
B。
C。
D。
5.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第7个图案中▲的个数为().A.28B.25C.22D.216.方程2x-1=-5的解是()A.3B.-3C.2D.-27.餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心。
据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为()A。
5×1010千克B。
50×109千克C。
5×109千克D。
0.5×1011千克8.如图所示四个图形中,能用∠α、∠AOB、∠O三种方法表示同一个角的图形是()A。
B。
C。
D。
9.下列结论正确的是()A。
直线比射线长B。
一条直线就是一个平角C。
过三点中的任两点一定能作三条直线D。
经过两点有且只有一条直线10.文具店老板以每个144元的价格卖出两个计算器,其中一个赚了20%,另一个亏了20%,则卖这两个计算器总的是()A。
不赚不赔B。
亏12元C。
盈利8元D。
亏损8元二、填空题(本题有6小题,每小题3分,共18分)11.数轴上的点A、B位置如图所示,则线段AB的长度为3.12.单项式- ab的系数是-1;多项式xy+2x+5y-25是次项式2x。
2016~2017学年广东广州天河初一上期末试卷(解析)
2
1 = 2 (1 − − 2) − 4 (−1 − 1 + 1)
2
3 = 2 × (− ) − 4 × (−1)
2
. = −3 + 4 = 1
编辑
23. 小天为考查一周内自己家庭用电情况,以每天10度电为标准,超过的度数记作正数,不足的度数记作负数,记录后的用电情
况如下表(表中没有给出周六、日的用电情况):
A. 单项式 3xy2 的系数是3
7
C. 单项式−xy 2z的次数是4
B. 单项式m的次数是1,没有系数
D.
, 2
3x
−
1
,0,m中有三个是单项式
7
答案 C
解析
3xy 2的系数为 3 ,故A错误;单项式m的系数为1,故B错误;
7
7
, 3x2 − 1 ,0,m均为单项式,故D错误.
7
8. 下列图形中,正方体展开后得到的图形不可能是( ).
A. 元 1600
B. 元 1800
C. 元 2000
D. 元 2100
目录
答案 A
解 析 设它的成本为x元,根据题意列方程得:2200 × 0.8 − x = 0.1x ,解得x = , 1600 故选A.
选择题(本大题共10小题,每小题3分,… 填空题(本大题共6小题,每小题3分,… 解答题(本大题共11小题,共72分)
∠AOC
=
α,求∠MON 的度数.
答案
. ∘
∠M ON = 45
解 析 如图,∵OM 平分∠BOC ,
编辑
学生版
教师版
答案版
编辑
目录
选择题(本大题共10小题,每小题3分,… 填空题(本大题共6小题,每小题3分,… 解答题(本大题共11小题,共72分)
2017-2018第一学期期末七数答案
2017—2018学年度第一学期期末教学质量检测七年级数学答案20. (1)解:3)3(1++-=-x x …………………………………………………… 1分 331+--=-x x …………………………………………………………2分12=x ……………………………………………………………………3分21=x ……………………………………………………………………4分 (2)解:原式=112411261)8(8414-⨯+⨯--÷-⨯ ……………………………6分=13211-+-+…………………………………………………………………7分 =2 ……………………………………………………………………………… 8分21.解:(1)2,32;……………………………………………………………………… 2分 (2)2n +30; ………………………………………………………………………3分(3)设投入n 个小球后没有水溢出, 2n +30=49解得 n =219…………………………………………………………………6分 应为投入的小球为整数,且小于219,故n =9 .所以最多投入小球9个水没有从量筒中溢. ………………………………………8分 22.解:(1)因为ab a B A 7722-=-所以B ab a A 2772+-= ………………………………………………1分 =)764(27722++-+-ab a ab a …………………………………2分=141287722++--ab a ab a ………………………………………4分 =1452++-ab a …………………………………………………… 5分 (2)依题意得:01=+a ,02=-b ,∴1-=a ,2=b , ……………………………………………………… 7分∴ 1452++-=ab a A=142)1(5)1(2+⨯-⨯+--…………………………………………8分 =14101+-- ……………………………………………………… 9分 =3 …………………………………………………………………… 10分23.解:(1) ……………2分(2)符合要求. ……………………………………………………………………3分∵C 为AM 的中点,F 为BM 的中点,∴AC =CM=21AM ,MF =FB=21MB ………………………………………5分 ∴CF = CM + MF=21AM +21MB ………………………………………………………6分 =21(AM + MB ) =21AB …………………………………………………………………7分 ∵AB =40m ,∴CF =20m ………………………………………………………………… 8分 ∵20AC BD +<m ,∴CD >20m. ………………………………………………………………9分∴CF 符合要求. ………………………………………………………… 10分24.解:(1)设经过x 分钟摩托车追上自行车, …………………………………………1分 1200100200+=x x …………………………………………3分 解得12=x …………………………………………4分 答:经过12分钟摩托车追上自行车.(2)设经过y 分钟两人相距150米, …………………………………………5分 第一种情况:摩托车超过自行车150米时,1200100150200++=y y …………………………………………6分 解得5.13=x …………………………………………7分第二种情况:摩托车还差150米追上自行车时,1501001200200-=-y y …………………………………………8分 解得5.10=x …………………………………………9分· · A C D B 图9-2 MF答:经过13.5分钟或10.5分钟两人相距150米. …………………………10分(其它的解法请参照此标准给分)25.解:(1)90°;……………………………………………………………………………2分(2)∵点O 为直线AB 上一点,∠AOC :∠BOC =2:1,∴∠AOC =120°,∠BOC =60°. ……………………………………………4分 ∵∠BON =90°﹣∠BOM ,∠COM =60°﹣∠BOM , ………………………6分 ∴∠BON ﹣∠COM =90°﹣∠BOM ﹣60°+∠BOM =30° …………………8分(3)画图如图11-4. ……………………………………………………………9分∵OM 恰为∠BOC 的平分线, ∴∠COM =30°. ……………………………………………………………10分 ∴三角板旋转的角度为: 90°+∠AOC+∠COM=90°+120°+30°=240° … …………………………11分 ∵三角板绕点O 按每秒钟15°的速度旋转, ∴三角板绕点O 的运动时间为15240=16(秒) …………………………12分图11-4N。
2017_2018学年广东广州天河区初一上学期期末数学试卷答案
1 2考点.的解为..的解为.方程与不等式一元一次方程一元一次方程的解答案解析考点A.与 B.与 C.与 D.与下列选项中,两个单项式属于同类项的是( ).3D .底数不同,故错误..底数不同,故错误..相同底数的指数不同,故错误..底数相同,相同底数上指数相同.式整式同类项同类项的基本概念答案A. B. C. D.据统计,到年底,广州市的常住人口将达到人,这个人口数据用科学记数法表示为( ).4C解析考点用科学记数法表示为.数有理数科学记数法:表示较大的数答案解析考点A.条 B.条 C.条 D.条如图,在直线上有、、三点,则图中线段共有( ).5C 图中线段有、、这条.几何初步直线、射线、线段直线、射线、线段的基本概念答案解析A.B.C. D.下列变形中,不正确的是( ).6A .,故错误.、、去括号均正确,故选.考点式整式去括号与添括号去括号法则答案解析考点A.系数是,次数是B.系数是,次数是 C.系数是,次数是 D.系数是,次数是下列关于单项式的正确说法是( ).7B 的系数是,次数是.式整式单项式答案A. B. C. D.如图,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是( ).8C解析考点四个方格形成的“田”字的,不能组成正方体,错.出现“”字的,不能组成正方体,错.以横行上的方格从上往下看:选项组成正方体.几何初步几何图形展开图折叠成几何体答案解析考点A. B. C. D.若,互为补角,且,则的余角是( ).9C 根据题意得,,∴的余角为:.故选.几何初步角余角和补角如图是含的代数式按规律排列的前行,依此规律,若第行第项的值为.则此时的值为( ).10答案解析考点A. B. C. D.B 由题知,第行的系数为.第行第项的常数项为.所以第行第项为.∴.式探究规律数字的变化类数字找规律答案解析考点南京市月份的平均气温是零下,用负数表示这个温度是 .11低于为负,所以零下为.数有理数正数和负数二、填空题(本大题共6小题,每小题3分,共18分)答案解析考点若,则 .12∵.∴与为同类项.∴,..式整式同类项合并同类项答案解析考点若代数式和的值互为相反数,则 .13∵与互为相反数.∴..数有理数相反数答案解析考点已知,那么的补角等于 .14∵.∴的补角为.几何初步角余角和补角互余与互补答案解析从处看处的方向是北偏东,反过来,从看的方向是 .15南偏西如图所示.从看的方向是南偏西.考点几何初步角方位角答案解析考点如图,把一张长方形纸片沿折叠后,若,则 .16由折叠性质可知.与互补.∵.∴.∴..几何初步角角的计算与证明有图形的角的计算几何变换图形的对称翻折变换(折叠问题)其它翻折问题答案解析考点计算:.17.原式.数有理数有理数的加减混合运算有理数加减混合运算答案解析考点计算:.18.原式.数有理数有理数的混合运算有理数综合运算三、解答题(本大题共11小题,共102分)答案解析考点解方程:.19.....方程与不等式一元一次方程解一元一次方程常规方法解一元一次方程答案解析考点解方程:.20.,,,,,.方程与不等式一元一次方程解一元一次方程常规方法解一元一次方程答案解析考点如图,已知线段的长度是,线段的长度比线段的长度的倍多,线段的长度比线段的长度的倍少,求线段,和的长.21,,.∵.∴.又∵比长度倍少.∴.∵.∴,,.几何初步直线、射线、线段线段的和差有图形的线段的计算答案先化简,再求值:,其中,.22.解析考点原式.∵,.∴原式.式整式整式加减的化简求值先化简再求值答案解析根据图中情景信息,解答下列问题:23购买根跳绳需 元,购买根跳绳需 元.(1)小红比小明多买根,付款时小红反而比小明少元,你认为有这种可能吗?请结合方程知识说明理由.(2)1:2:(1)小明买根时,小红买根时,小红比小明少用元钱.(2)根跳绳所用钱数为元.根跳绳所用钱数为元.(1)考点可能,设小红买的根数为.则小明买的根数为.由题意可知:...则.即小明买根时,小红买根时,小红比小明少用元钱.(2)数有理数有理数的乘法有理数乘法运算方程与不等式一元一次方程一元一次方程的应用经济利润问题答案解析解答下面问题:24若代数式的值为,求代数式的值.(1)已知,,求当时的值.(2).(1).(2)∵.(1)考点∴.∴.∴原式.∵,.∴.∴当时..(2)式整式整式加减的化简求值整体思想求值先化简再求值答案如图,已知直线和相交于点,在的内部作射线.25若,,求的度数.(1)若,求的度数.(2).(1)解析考点.(2)由图得..∵,.∴.(1)∵.设,,.∴.∴.∵.∴.(2)几何初步角角的计算与证明有图形的角的计算如图的长方形是广州某市民健身广场的平面示意图,它是由个正方形拼成的(分别用,,,,,六个字母表示),已知中间最小的正方形的边长是米,设正方形的边长是米.26请用含的代数式分别表示出正方形、和的边长.(1)观察图形的特点,找出两个等量关系,分别用两种方法列出方程求出的值.(2)现沿着长方形广场的四条边铺设下水管道,若甲、乙两个工程队单独铺设分别需要天和天完成,如果两队从处开始,分别沿两个不同方向同时施工天后,因甲队另有任务,余下的工程由乙队单独施工天完成,求的值.(3)正方形的边长为.正方形的边长为.正方形的边长为或.(1).(2)值为.(3)由题意得.正方形的边长为.正方形的边长为.正方形的边长为或.(1)由()可知:..∵.∴..(2)由题意得:.解得:.答:值为.(3)考点式整式列代数式方程与不等式一元一次方程一元一次方程的应用工程问题图形方程27,,为数轴上三点,若点在、之间,且到点的距离是点到点的距离的倍,我们就称点是【,】的和谐点,例如:图中,点表示的数为,点表示的数为,表示的点到点的距离是,到点的距离是,那么点是【,】的和谐点;又如,表示的点到点的距离是,到点的距离是,那么点就不是【,】的和谐点,但点是【,】的和谐点.若数轴上,两点所表示的数分别为,,且,满足,请求(1)出【,】的和谐点表示的数.(2)如图,,在数轴上表示的数分别为和,现有一点从点出发向左运动.若点到达点停止,则当点运动多少个单位时,,,中恰有一个点为其余1两点的和谐点?2若点到达点后继续向左运动,是否存在使得,,中恰有一个点为其余两点的和谐点的情况?若存在,请直接写出此时的距离;若不存在,请说明理由..(1)(2)当点运动或或个单位时,,和恰有一点为另两点的和谐点.1的距离为,,单位时,,和恰有一点为其余两点的和谐点.2∵.∴,.设所求数为,由题意得:.解得.(1)(2)①设点表示的数为,分四种情况.()为【,】的和谐点.得..∴运动个单位.()为【,】的和谐点.得...∴运动个单位.()为【,】和谐点.得...∴运动个单位.综上可知,当点运动或或个单位时,1,和恰有一点为另两点的和谐点.设点为,分四种情况讨论.()为【,】的和谐点....∴.()为【,】和谐点....∴.()为【,】和谐点....∴.()为【,】和谐点...∴.综上:的距离为,,单位时,,和恰有一点为令两点的和谐点.2数有理数数轴数轴上点的移动问题数轴动点问题非负数的性质:绝对值绝对值的非负性非负数的性质:偶次方完全平方非负性方程与不等式一元一次方程解一元一次方程常规方法解一元一次方程。
2017-2018学年七年级上学期期末考试数学试题(20201014101326)
)
C. —2-(- 2)=0
D. - 1+(- 1)=0
A. a-( b+ c) =a- b+ c
B. x 2 y 1 x 2 y 1 C.5x 3x 2
D. 2m2n- 3nm 2=-m 2n
5. 如果 4x2 m 2 yn 1 与 3x3 m 1 y3n 5 是同类项,则 m- n 的值为(
)
A. 2 B. 1 C. 0 D. - 1
认为
说的对 .
14. 若 m 1 (n 2)2
xm 0 ,则关于 x 的方程
xn
的解为
.
2
3
15. 一个角的余角比它的补角的
1
还少
200,则这个角是
.
3
16. 下列说法: 若 a 与 b 互为相反数,则 a+b=0; 若 ab=1,则 a 与 b 互为倒数; 两点之间,直
0
线最短;④若∠ α+∠ β=90 ,且 β与 γ 互余,则∠ α与∠ γ 互余;⑤若∠ α为锐角,且∠ α与∠ β互
( 6 分)
(2)原式 = 4 1 1 6 9 2 32
=
4237
= 6 10
=4
20、解( 1)去括号得: 2x 6x 3 16 x 1
移项得: 2x 6x x 16 1 3
合拼同类项得: 9 x 18
系数化为 1 得: x 2
(3)去分母得: x 7 2 5x 8 4
去括号得: x 7 10x 16 4 移项得: x 10x 4 7 16 合并同类项得: 9x 27
x 千米, 那么列出的方
程应是(
)
xx
A.
10
54
二、填空题(每小题
2017---2018学年度第二学期期末考试七年级数学试卷含答案
2017---2018学年度第二学期期末考试七年级数学试卷一、选择题(共10道小题,每小题3分,共30分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.PM2.5也称为可入肺颗粒物,是指大气中直径小于或等于2.5微米的颗粒物.2.5微米等于 0.000 002 5米,把0.000 002 5用科学记数法表示为 A .2.5×106 B .0.25×10-5 C. 25×10-7 D .2.5×10-6 2. 已知a b <,则下列不等式一定成立的是 A .b a 2121<B .22a b -<-C .33->-b aD .44a b +>+3.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 74.⎩⎨⎧==3,1y x 是二元一次方程52=+ay x 的一个解,则a 的值为A. 1B.31C. 3D. -1 5.若把不等式x +2≤0的解集在数轴上表示出来,则正确的是A .B .C .D .6.下列因式分解正确的是A .4)2)(2(2-=-+x x x B .22)1(12x -=+-x x C .()222211a a a -+=-+D .()248224a a a a -=-7.小文统计了本班同学一周的体育锻练情况,并绘制了直方图①小文同学一共统计了60人;②这个班同学一周参加体育锻炼时间的众数是8; ③这个班同学一周参加体育锻炼时间的中位数是9; ④这个班同学一周参加体育锻炼时间的平均值为8.根据图中信息,上述说法中正确的是A. ①②B. ②③C.③④D. ①④8.将直尺和直角三角板按如图所示方式摆放,已知∠1=30°,则∠2的大小是A.30°B.45°C.60°D.65°9.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)0≤< 0.48x200<0.53200≤x400x>0.78400七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是A.100 B.396 C.397 D.40010用小棋子摆出如下图形,则第n个图形中小棋子的个数为A. nB. 2n C. n2D.n2+1二、填空题:(共6道小题,每小题3分,共18分) 11.因式分解:=__________________. 12.计算ab ab b a 44822÷-)(结果为_____________.13.一个角的补角等于这个角的3倍,则这个角的度数为_____________.14.已知x ,y 是有理数,且0106222=+-++y y x x , 则y x = .15.两个同样的直角三角板如图所示摆放,使点F ,B ,E ,C 在一条直线上,则有DF ∥AC ,理由是__________________.16.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为__________________.三、解答题(共10道小题,共52分,其中第17—24每小题5分,25,26每小题6分)17.计算:22-020173-)21()14.3-()1-(++π18.化简求值:已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.19.完成下面的证明:2218x -如图,已知DE ∥BC ,∠DEB =∠GFC ,试说明BE ∥FG . 解:∵DE ∥BC∴∠DEB =______( ). ∵∠DEB =∠GFC∴______=∠GFC ( ).∴BE ∥FG ( ).20.解方程组⎩⎨⎧=-=+133232y x y x21.解不等式组()315112 4.2x x x x -+⎧⎪⎨--⎪⎩<,≥并求出它的非负整数解.22.某单位有职工200人,其中青年职工(20-35岁),中年职工(35-50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小张抽样调查单位3名职工的健康指数年龄 26 42 57 健康指数977972表2:小王抽样调查单位10名职工的健康指数年龄 23 25 26 32 33 37 39 42 48 52 健康指数 93899083797580696860表3:小李抽样调查单位10名职工的健康指数年龄 22 29 31 36 39 40 43 46 51 55 健康指数94908885827872766260根据上述材料回答问题:(1)扇形统计图中老年职工所占部分的圆心角度数为(2)小张、小王和小李三人中, 的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.23.已知:如图,DE 平分∠BDF ., ∠A =21∠BDF ,DE ⊥BF ,求证:AC ⊥BF24.列方程组解应用题新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法。
2017-2018学年度七年级上学期期末数学试题(含答案)
2017-2018学年度七年级上学期期末数学试卷(考试时间为90分钟,满分120分)一、选择题(本题共12个小题,每小题3分,共36分.) 1.2-等于( ) A .-2B .12- C .2 D .122.在墙壁上固定..一根横放的木条,则至少..需要钉子的枚数是 ( ) A .1枚 B .2枚 C .3枚 D .任意枚 3.下列方程为一元一次方程的是( )A .y +3= 0B .x +2y =3C .x 2=2xD .21=+y y4.下列各组数中,互为相反数的是( )A .)1(--与1B .(-1)2与1C .1-与1D .-12与1 5.下列各组单项式中,为同类项的是( ) A .a 3与a 2 B .12a 2与2a 2 C .2xy 与2x D .-3与a 6.如图,数轴A 、B 上两点分别对应实数a 、b ,则下列结论正确的是( )A .a +b>0B .ab >0C .110a b -<D .110a b +>7.下列各图中,可以是一个正方体的平面展开图的是( )8.把两块三角板按如图所示那样拼在一起,则∠ABC 等于( ) A .70° B .90° C .105° D .120°9.在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么∠AOB 的大小为 ( )A .69°B .111°C .141°D .159°ABCD第8题图第9题图10.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获 利28元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是( ) A .(1+50%)x×80%=x -28 B .(1+50%)x×80%=x +28 C .(1+50%x)×80%=x -28 D .(1+50%x)×80%=x +28 11.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是 ( ) A .32428-=x x B .32428+=xx C .3262262+-=+x x D .3262262-+=-x x 12.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A .110B .158C .168D .178二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上) 13.-3的倒数是________.14.单项式12-xy 2的系数是_________.15.若x =2是方程8-2x =ax 的解,则a =_________. 16.计算:15°37′+42°51′=_________.17.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500000用科学记数法表示应为_________________平方千米. 18.已知,a -b =2,那么2a -2b +5=_________.19.已知y 1=x +3,y 2=2-x ,当x =_________时,y 1比y 2大5. 20.根据图中提供的信息,可知一个杯子的价格是________元.6222 4 20 4 884446……共43元共94元三、解答题(本大题共8个小题;共60分)21.(本小题满分6分)计算:(-1)3-14×[2-(-3)2] .22.(本小题满分6分) 一个角的余角比这个角的21少30°,请你计算出这个角的大小.23.(本小题满分7分) 先化简,再求值:41(-4x 2+2x -8)-(21x -1),其中x =21.24.(本小题满分7分) 解方程:513x +-216x -=1.25.(本小题满分7分)一点A 从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位……(1)写出第一次移动后这个点在数轴上表示的数为 ; (2)写出第二次移动结果这个点在数轴上表示的数为 ; (3)写出第五次移动后这个点在数轴上表示的数为 ; (4)写出第n 次移动结果这个点在数轴上表示的数为 ; (5)如果第m 次移动后这个点在数轴上表示的数为56,求m 的值.26.(本小题满分8分)如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE求:∠COE的度数.27.(本小题满分8分)如图,已知线段AB和CD的公共部分BD=13AB=14CD,线段AB、CD的中点E、F之间距离是10cm,求AB、CD的长.28.(本小题满分11分)某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识....解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接..写出签字笔的单价可能为元.A E DB F C数学试题参考答案一、选择题(每小题3分,共36分)1.C ;2.B ;3.A ;4.D ;5.B ;6. D ;7.C ;8.D ;9.C ;10. B ;11.A ;12.B .二、填空题(每题3分,共24分)13.31-;14.21-;15.2;16.58°28′;17.2.5×106;18.9;19.2;20.8.三、解答题(共60分) 21.解:原式= -1-14×(2-9)…3分 =-1+ 47…5分 =43…6分 22.解:设这个角的度数为x . ………1分由题意得: 30)90(21=--x x …3分 解得:x =80……5分答:这个角的度数是80° ………6分23.解:原式 =1212212+--+-x x x ……3分 =12--x …4分 把x =21代入原式: 原式=12--x =1)21(2--…5分 =45- 7分24.解:6)12()15(2=--+x x . …2分 612210=+-+x x .……4分8x =3. ……6分 83=x .……7分 25.解:(1)第一次移动后这个点在数轴上表示的数是3; ………1分 (2)第二次移动后这个点在数轴上表示的数是4; …………2分 (3)第五次移动后这个点在数轴上表示的数是7; ……………3分 (4)第n 次移动后这个点在数轴上表示的数是n +2; …………5分 (5)54. ………………………………7分26.解:∵∠AOB =90°,OC 平分∠AOB ∴∠BOC =12∠AOB =45°,…2分∵∠BOD =∠COD -∠BOC =90°-45°=45°, ……4分∠BOD =3∠DOE ∴∠DOE =15, ……7分∴∠COE =∠COD -∠DOE =90°-15°=75° ………8分 27.解:设BD =x cm ,则AB =3x cm ,CD =4x cm ,AC =6x cm . ………1分∵点E 、点F 分别为AB 、CD 的中点, ∴AE =12AB =1.5x cm ,CF =12CD =2x cm .……3分∴EF=AC-AE-CF=2.5x cm.……4分∵EF=10cm,∴2.5x=10,解得:x=4.……6分∴AB=12c,CD=16cm.……………8分28.解:(1)设钢笔的单价为x元,则毛笔的单价为(x+4)元. ……1分由题意得:30x+45(x+4)=1755 ……3分解得:x=21 则x+4=25. ………4分答:钢笔的单价为21元,毛笔的单价为25元. ……………5分(2)设单价为21元的钢笔为y支,所以单价为25元的毛笔则为(105-y)支. …6分根据题意,得21y+25(105-y)=2447.…7分解之得:y=44.5 (不符合题意) .…8分所以王老师肯定搞错了.…9分(3)2或6. …………11分〖答对1个给1分,答错1个倒扣1分,扣到0分为止〗28.(3)解法提示:设单价为21元的钢笔为z支,签字笔的单价为a元则根据题意,得21z+25(105-z)=2447-a.即:4z=178+a,因为a、z都是整数,且178+a应被4整除,所以a为偶数,又因为a为小于10元的整数,所以a可能为2、4、6、8.当a=2时,4z=180,z=45,符合题意;当a=4时,4z=182,z=45.5,不符合题意;当a=6时,4z=184,z=46,符合题意;当a=8时,4z=186,z=46.5,不符合题意.所以笔记本的单价可能2元或6元.〖本题也可由①问结果,通过讨论钢笔单价得到答案〗。
2017-2018学年第二学期七年级数学期末试题(含答案)
2017—2018学年度第二学期期末考试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分. 1.下列叙述中,正确的是 A .相等的两个角是对顶角 B .一条直线有且只有一条垂线C .连接直线外一点与这条直线上各点的所有线段中,垂线段最短D .同旁内角互补2.如图所示,直线a ,b 被直线c 所截,∠1与∠2是A .同位角B .内错角C .同旁内角D .邻补角3.如图,若△DEF 是由△ABC 经过平移后得到的,则平移的距离是A .线段BC 的长度B .线段BE 的长度C .线段EC 的长度D .线段EF 的长度 4.下列语言是命题的是A .画两条相等的线段B .等于同一个角的两个角相等吗?C .延长线段AO 到C ,使OC =OAD .两直线平行,内错角相等(第2题图) (第3题图)A .9B .±9C .3D .±36.下列计算结果正确的是A6± B3.6- CD .7.如果12x y =⎧⎨=-⎩和14x y =-⎧⎨=-⎩都是某个二元一次方程的解,则这个二元一次方程是A .x +2y =-3B .2x -y =2C .x -y =3D .y =3x -58.用加减法解方程组时,若要消去y ,则应A .①×3+②×2B .①×3-②×2C .①×5+②×3D .①×5-②×3 9.如果x ≤y ,那么下列结论中正确的是 A .4x ≥4y B .-2x +1≥-2y +1 C .x -2≥y +2D .2-x ≤2-y10.利用数轴求不等式组103x x -≤⎧⎨>-⎩的解集时,下列画图表示正确的是A .B .C .D .11.在调查收集数据时,下列做法正确的是A .电视台为了了解电视节目的收视率,调查方式选择在火车站调查50人B .在医院里调查老年人的健康状况C .抽样调查选取样本时,所选样本可按自己的喜好选取D .检测某城市的空气质量,适宜采用抽样调查的方式12.小宁同学根据全班同学的血型情况绘制了如图所示的扇形统计图,已知该班血型为A 型的有20人,那么该班血型为AB 型的人数为A .2人B .5人C .8人D .10人第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分. 13.命题“对顶角相等”的题设是 .14.为了解某山区金丝猴的数量,科研人员在该山区不同的地方捕获了15只金丝猴,并在它们的身上做标记后放回该山区.过段时间后,在该山区不同的地方又捕获了32只金丝猴,其中4只身上有上次做的标记,由此可估计该山区金丝猴的数量约有 只. 15.一个容量为89的样本中,最大值是153,最小值是60,取组距为10,则可分成 组.16.-1.4144,2220.373π-g,,, 2.12112.其中 是无理数.(第12题图)17.如图,∠1=∠2=40°,MN 平分∠EMB ,则∠3= °.18.如图,若棋盘的“将”位于点(0,0),“车”位于点(-4,0),则“马”位于点 .19.甲、乙两人相距42千米,若两人同时相向而行,可在6小时后相遇;而若两人同时同向而行,乙可在14小时后追上甲.设甲的速度为x 千米/时,乙的速度为y 千米/时,列出的二元一次方程组为 .20.某花店设计了若干个甲、乙两种造型的花篮,一个甲种花篮由15朵红花、25朵黄花和20朵紫花搭配而成;一个乙种花篮由10朵红花、20朵黄花和15朵紫花搭配而成.若这些花篮一共用了2900朵红花,4000朵紫花,则黄花一共用了 朵.21.不等式组10324x x x ->⎧⎨>-⎩的非负整数解是 .22.船在静水中的速度是24千米/小时,水流速度是2千米/小时,如果从一个码头逆流而上后,再顺流而下,那么这船最多开出 千米就应返回才能在6小时内回到码头. 三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程. 23.请先阅读以下内容:,即23, ∴11<2,1的整数部分为1,12. 根据以上材料的学习,解决以下问题:已知a3的整数部分,b3的小数部分,求32()(4)a b -++的平方根. 24.解下列方程组(不等式组): (1)4(1)3(1)2,2;23x y y x y --=--⎧⎪⎨+=⎪⎩ (2)12(1)5;32122x x x --≤⎧⎪⎨-<+⎪⎩.25.某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图(如图),解答下列问题:(1)这次抽取了 名学生的竞赛成绩进行统计,其中m = ,n = ; (2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?(第17题图)(第18题图)26.某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[注:毛利润=(售价-进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,问该商场最多减少购进多少部国外品牌手机?27.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 60b -=,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O →C →B →A →O 的线路移动. (1)a = ,b = ,点B 的坐标为 ; (2)求移动4秒时点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.28.如图,已知直线AB∥CD ,∠A =∠C =100°,点E ,F 在CD 上,且满足∠DBF =∠ABD ,BE 平分∠CBF . (1)求证:AD ∥BC ; (2)求∠DBE 的度数;(3)若平移AD 使得∠ADB =∠BEC ,请直接写出此时∠ADB 的度数是 .(第28题图)(第27题图)2017—2018学年第二学期七年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13. 两个角是对顶角;14.120;15. 10;16.23π-,;17.110;18. (3,3);19.6642,141442x yy x+=⎧⎨-=⎩;20.5100 ;21.0;22.71.5.三、解答题:(共74分)23. 解:∵<<,……………………………………………………1分∴4<<5,…………………………………………………………………2分∴1<﹣3<2,…………………………………………………………………3分∴a=1,…………………………………………………………………………4分b=﹣4,………………………………………………………………………6分∴(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17 …………………………………………………………………………8分=16,…………………………………………………………………………9分∴(﹣a)3+(b+4)2的平方根是±4.………………………………………10分24. (1)解:化简,得………………………………………2分①×2+②得1122,x=③………………………………………3分2x=,………………………………………4分②①把2x =代入③,得3.y = ……………………………………5分所以这个方程组的解是23.x y =⎧⎨=⎩,……………………………………6分 (2)解:由①得:1﹣2x +2≤5 ………………………………………7分∴2x ≥﹣2即x ≥﹣1 ………………………………………8分 由②得:3x ﹣2<2x +1 ………………………………………9分∴x <3. ………………………………………10分∴原不等式组的解集为:﹣1≤x <3. ……………………………………12分25. 解:(1)200, ………………………………………3分70;0.12; ………………………………………7分(2)如图,…………………………………9分(3)1500×(0.08+0.2)=420, ……………………………………11分 所以该校安全意识不强的学生约有420人. …………………………………12分 26. 解:(1)设商场计划购进国外品牌手机x 部,国内品牌手机y 部,由题意得 0.440.214.8,0.060.05 2.7,x y x y +=⎧⎨+=⎩…………………………………4分解得 20,30.x y =⎧⎨=⎩…………………………………6分答:商场计划购进国外品牌手机20部,国内品牌手机30部. ………7分(2)设国外品牌手机减少a部,由题意得-++≤15.6 …………………………………10分a a0.44(20)0.2(303)解得a≤5 …………………………………12分答:该商场最多减少购进5部国外品牌手机. ……………………………13分27. (1)a= 4 ,b= 6 ,点B的坐标为(4,6);………………6分(2)∵P从原点出发以每秒2个单位长度的速度沿O→C→B→A→O的线路移动,∴2×4=8,……………………………………7分∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是8﹣6=2,…………8分∴点P的坐标是(2,6);……………………………………9分(3)由题意可知存在两种情况:第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,……………………………………11分第二种情况,当点P在BA上时.点P移动的时间是:(6+4+1)÷2=5.5秒,……………………………………12分故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.……………………………………13分28. 证明:(1)∵AB∥CD,∴∠A+∠ADC=180°,……………………………………2分又∵∠A=∠C∴∠ADC+∠C=180°,……………………………………4分∴AD∥BC;……………………………………6分(2)∵AB∥CD,∴∠ABC+∠C=180°………………………………8分又∠C=100°,∴∠ABC=180°﹣100°=80°,………………………………9分∵∠DBF=∠ABD,BE平分∠CBF,∴∠DBF=∠ABF,∠EBF=∠CBF,…………………10分∴∠DBE=∠ABF+∠CBF=∠ABC=40°;……………12分(3)∠ADB=60°.……………………………………14分。
广东广州天河中学2017-2018学年七年级上学期期中考试试卷数学试题(无答案)
2017学年第一学期广州天河中学期中测试卷七年级数学本试卷共三大题25小题,共4页,满分150分.考试时间120分钟.注意事项:1.答卷前,考生务必在答题卡第1、3面上用黑色字迹的钢笔或签字笔填写自己的考号、姓名、座位号;再用2B 铅笔把对应考号的信息涂黑.2.选择题和判断题的每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.填空题和解答题都不要抄题,必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.第Ⅰ卷(共100分)一、选择题(本题有10个小题,每小题3分,满分30分,下面每小题给出的四个选项中,只有一个是正确的)1.2-=( ).A .0B .2-C .2D .12.3-的相反数是( ).A .3B .3-C .13D .13- 3.下列方程中,解为2x =的方程是( ). A .42x = B .360x += C .102x = D .7140x -=4.我国拟设计建造的长江三峡电站,估计总装机容量将达16780000千瓦,用科学记数法表示总装机容量是( )千瓦.A .4167810⨯B .616.7810⨯C .71.67810⨯D .80.167810⨯ 5.若10x -<<,则0,2x ,3x 的大小关系是( ).A .230x x <<B .320x x <<C .320x x <<D .230x x << 6.下列数23,137,π,10.1,50%中,分数共有( ). A .1个 B .2个 C .3个 D .4个7.133-的倒数是( ). A .103 B .310- C .310 D .103- 8.如果a a =,那么a 是( ).A .0B .0和1C .正数D .非负数9.若多项式22a b +的值是6,则2423a b ++的值是( ).A .10B .15C .20D .2510.若2(2)10x y -++=,则x y +等于( ).A .1B .1-C .3D .3-二、填空题(本题有6个小题,每小题3分,满分18分)11.比x 的2倍大1的数是__________(用含x 的代数式表示).12.单项式25π6x y -的次数是__________. 13.绝对值大于1而不大于4的所有整数之和是__________.14.若数轴上的点A 所对应的数为233-,那么与A 点相距2个单位长度的点所表示的数是__________. 15.按括号内的要求取近似数:4.49876≈__________(精确到百分位).16.一列单项式:x ,22x -,34x ,48x -,516x ,…,按照上述规律,第n 个单项式是__________.三、解答题(本大题有9小题,满分102分,解答要求写出文字说明,证明过程或计算步骤)17.(本题满分6分)在数轴上表示下列各数,再用“<”连接起来.133-,2.5,(1)--,0,2--. 18.(本题满分20分)计算(写出必要的解题过程)(1)453254⎛⎫⎛⎫÷-⨯- ⎪ ⎪⎝⎭⎝⎭. (2)11313272442⎛⎫⎛⎫⎛⎫---+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. (3)3131302155⎛⎫-⨯-- ⎪⎝⎭. (4)26(10)24(3)-+-÷-⨯-.19.(本题满分10分)化简:(1)3245a a +-- .(2)224[3(32)2]y y y y ---+.20.(本题满分8分)先化简,再求值:2222()3()4x y xy x y xy x y +---,其中1x =-,1y =.21.(本题满分8分)广州中学八年级(1)班三位教师决定带领本班a 名学生利用假期去某地旅游,枫江旅行社的收费标准为:教师全价,学生半价;而东方旅行社不管教师还是学生一律六折优惠,这两家旅行社的全价都是200元.(1)写出用含a 的式子表示三位教师和a 位学生参加这两家旅行社所需的费用. (2)如果50a =,请你计算选择哪一家旅行社较为合算?第Ⅱ卷(共50分)22.(本题满分12分)小虫从某点A 出发在一条直线上来回爬行,假设向右爬行记为正数,向左爬行记为负数,则爬过的各段路程(单位:厘米)依此为:14+,3-,12+,7-,6-,3+,12-.(1)通过计算说明,小虫最后是否回到起点A .(2)如果小虫的爬行速度为每秒0.5厘米,问小虫一共爬行了多长时间?23.(本题满分10分)某同学做一道数学题,“已知两个多项式A ,B ,B 为2456x x -+,试求A B +”.这位同学把“A B +”误看成“A B -”,结果求出的答案为271012x x +-.请你替这位同学求出“A B +”的正确答案.24.(本题满分14分)把正整数1,2,3,4,…,2016排列成如图所示的一个表.(1)用一正方形在表中随意框住4个数,把其中最小的数记为x ,另三个数用含x 的式子表示出来,从小到大依次是__________,__________,__________.(2)当被框住的4个数之和等于416时,x 的值是多少?(3)被框住的4个数之和能否等于622?如果能,请求出此时x 的值;如果不能,请说明理由.25.(本题满分14分)观察下列解题过程:计算:324252155555++++++…的值.解:设232425155555S =++++++…,(1) 则252623555555S =+++++…(2)(2)-(1),得26451S =-, 26514S -=. 通过阅读,你一定学会了一种解决问题的方法,请用你学到的方法计算: (1)3910213333+3++++…+.(2)23991001x x x x x ++++++….。
【期末试卷】人教版 2017-2018学年 七年级数学上册 期末模拟题 四(含答案)
2017-2018学年七年级数学上册期末模拟题一、选择题:1.火星和地球的距离约为34 000 000千米,用科学记数法表示34 000 000的结果是( )千米.A.0.34×108B.3.4×106 C.34×106D.3.4×1072.如图是一个正方体,则它的表面展开图可以是()3.一件衣服的进价为a,在进价的基础上增加20%标价,则标价可表示为( )A.(1﹣20%)a B.20%a C.(1+20%)a D.a+20%4.下列方程中,以-2为解的方程是( )A.3x-2=2x B.4x-1=2x+3 C.5x-3=6x-2 D.3x+1=2x-15.计算1-(-2)的正确结果是( )A.-2 B.-1 C.1 D.36.下列运算中结果正确的是()A.3a+2b=5ab B.﹣4xy+2xy=﹣2xy C.3y2﹣2y2=1 D.3x2+2x=5x37.已知点A,B,P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①.AP=BP;②.AB=2BP;③.AB=2AP;④.AP+PB=AB.A.1个B.2个C.3个D.4个8.如图,OA⊥OB,若∠1=40°,则∠2的度数是()A.20°B.40°C.50°D.60°9.钟表在3点30分时,它的时针和分针所成的角是()A.75°B.80°C.85°D.90°10.如图,在数轴上有A.B、C、D、E五个整数点(即各点均表示整数),且AB=2BC=3CD=4DE,若A.E两点表示的数的分别为 -13和12,那么,该数轴上上述五个点所表示的整数中,离线段AE的中点最近的整数是()A,-2B.-1 C,0 D,211.2016年4月21日在深圳体育馆召开的第八届中国(深圳)国际茶业文化博览会上某茶商将甲、乙两种茶叶卖出,甲种茶叶卖出1200元,盈利20%,乙种茶叶卖出1200元,亏损20%,则此人在这次交易中是()A.盈利50元B.盈利100元C.亏损150元D.亏损100元12.有依次排列的3个数:2,9,7,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,7,9,-2,7,这称为第一次操作;做第二次同样的操作后也可产生一个新数串:2,5,7,2,9,-11,-2,9,7,继续依次操作下去,问:从数串2,9,7开始操作第一百次以后所产生的那个新数串的所有数之和是()A.2015 B.1036 C.518 D.259二、填空题:13.x,y,z在数轴上的位置如图所示,则化简|x-y|+|z-y|的结果是______.14.18.36°= °′″.15.如图,在自来水株管道AB的两旁有两个住宅小区C,D,现要在住管道上开一个接口P往C,D两小区铺设水管,为节约材料,接口P应开在主管AB的什么位置可以用学过的数学知识来解决这个问题。
2017-2018学年七年级(上)期末数学试卷及答案
2017-2018学年七年级(上)期末数学试卷一、选择题(本大题共6小题,每小题3分,共18分)1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣2.运用等式性质进行的变形,正确的是()A.如果a=b,则a+c=b﹣c B.如果a2=3a,那么a=3C.如果a=b,则=D.如果=,则a=b3.直四棱柱、长方体和正方体之间的包含关系是()A.B.C.D.4.下列说法中,错误的是()A.﹣2a2b与ba2是同类项B.对顶角相等C.过一点有且只有一条直线与已知直线平行D.垂线段最短5.如图,直线a、b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°,其中能判断a∥b的条件有()A.1个 B.2个 C.3个 D.4个6.一根竹竿插入到池塘中,插入池塘淤泥中的部分占全长的,水中部分是淤泥中部分的2倍少1米,露出水面的竹竿长1米.设竹竿的长度为x米,则可列出方程()A.x=1 B.x+1=xC.x﹣1+1=x D.x+1+1=x二、填空题(本大题共10小题,每小题3分,共30分)7.请写出一个负无理数.8.今年某市参加中考的考生共约11万人,用科学记数法表示11万人是人.9.若2x|m|﹣1=5是一元一次方程,则m的值为.10.某几何体的三视图如图所示,则这个几何体的名称是.11.多项式2a2﹣4a+1与多项式﹣3a2+2a﹣5的差是.12.小明根据方程5x+2=6x﹣8编写了一道应用题,请你把空缺的部分补充完整.某手工小组计划教师节前做一批手工品赠给老师,如果每人做5个,那么就比计划少2个;,请问手工小组有几人?(设手工小组有x人)13.如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是.14.如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东85°方向,则∠ACB的度数为.15.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是.16.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为11,则满足条件的x的不同值分别为.三、解答题(本大题共12小题,共102分)17.计算:(1)[﹣5﹣(﹣11)]÷(﹣÷);(2)﹣22﹣×2+(﹣2)3÷(﹣).18.解方程:(1)6+2x=14﹣3x(写出检验过程);(2)=1.19.如图,点B在线段AD上,C是线段BD的中点,AD=10,BC=3.求线段CD、AB的长度.20.一个角的补角加上10°后,等于这个角的余角的3倍,求这个角以及它的余角和补角的度数.21.化简求值:(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.22.证明:多项式16+a﹣{8a﹣[a﹣9﹣3(1﹣2a)]}的值与字母a的取值无关.23.如图,EF⊥BC,AD⊥BC,∠1=∠2,∠B=30°.求∠GDB的度数.请将求∠GDB度数的过程填写完整.解:因为EF⊥BC,AD⊥BC,所以∠BFE=90°,∠BDA=90°,理由是,即∠BFE=∠BDA,所以EF∥,理由是,所以∠2=,理由是.因为∠1=∠2,所以∠1=∠3,所以AB∥,理由是,所以∠B+ =180°,理由是.又因为∠B=30°,所以∠GDB=.24.如图,点P是∠AOB的边OB上的一点过点P画OB的垂线,交OA于点C;(1)过点P画OA的垂线,垂足为H;(2)线段PH的长度是点P到的距离,是点C到直线OB的距离.线段PC、PH、OC这三条线段大小关系是(用“<”号连接)25.周末小明陪爸爸去陶瓷商城购买一些茶壶和茶杯,了解情况后发现甲、乙两家商店都在出售两种同样品牌的茶壶和茶杯,定价相同:茶壶每把定价30元,茶杯每只定价5元.两家都有优惠:甲店买一送一大酬宾(买一把茶壶赠送茶杯一只);乙店全场9折优惠.小明爸爸需茶壶5把,茶杯x只(x不小于5).(1)若在甲店购买,则总共需要付元;若在乙店购买,则总共需要付元.(用含x的代数式表示并化简.)(2)当需购买15只茶杯时,请你去办这件事,你打算去哪家商店购买?为什么?26.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.(1)求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性定客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?请写出你作出这种决策的理由.27.(1)观察思考如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行多少场比赛?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.28.如图,OB、OC是∠AOD的两条射线,OM和ON分别是∠AOB和∠COD内部的一条射线,且∠AOD=α,∠MON=β.(1)当∠AOM=∠BOM,∠DON=∠CON时,试用含α和β的代数式表示∠BOC;(2)①当∠AOM=2∠BOM,∠DON=2∠CON时,∠BOC等于多少?(用含α和β的代数式表示)②当∠AOM=3∠BOM,∠DON=3∠CON时,∠BOC等于多少?(用含α和β的代数式表示)(3)根据上面的结果,请填空:当∠AOM=n∠BOM,∠DON=n∠CON时,∠BOC=.(n是正整数)(用含α和β的代数式表示).2017-2018学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是3,故选:A.2.运用等式性质进行的变形,正确的是()A.如果a=b,则a+c=b﹣c B.如果a2=3a,那么a=3C.如果a=b,则=D.如果=,则a=b【考点】等式的性质.【分析】根据等式的性质对每一项分别进行分析,即可得出正确答案.【解答】解:A、根据等式性质1,两边都加c,得到a+c=b+c,故A不正确;B、因为根据等式性质2,a≠0,所以不正确;C、因为c必需不为0,所以不正确;D、根据等式性质2,两边都乘以c,得到a=b,所以D成立;故选D.3.直四棱柱、长方体和正方体之间的包含关系是()A.B.C.D.【考点】认识立体图形.【分析】根据长方体与正方体的关系,可得答案.【解答】解:长方体是特殊的直四棱柱,正方体是特殊的长方体,故选:B.4.下列说法中,错误的是()A.﹣2a2b与ba2是同类项B.对顶角相等C.过一点有且只有一条直线与已知直线平行D.垂线段最短【考点】平行公理及推论;同类项;对顶角、邻补角;垂线段最短.【分析】A、根据同类项的定义进行判断;B、根据对顶角的性质进行判断;C、根据平行公理进行判断;D、根据垂线段的性质进行判断.【解答】解:A、﹣2a2b与ba2是同类项,故本选项错误;B、对顶角相等,故本选项错误;C、过直线外一点有且只有一条直线与已知直线平行,故本选项正确;D、从直线外一点到这条直线所作的垂线段最短,故本选项错误;故选:C.5.如图,直线a、b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°,其中能判断a∥b的条件有()A.1个 B.2个 C.3个 D.4个【考点】平行线的判定.【分析】根据平行线的判定方法:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行进行分析即可.【解答】解:①∠1=∠2可根据同位角相等,两直线平行得到a∥b;②∠3=∠6可根据内错角相等,两直线平行得到a∥b;③∠4+∠7=180°可得∠6+∠7=180°,可根据同旁内角互补,两直线平行得到a∥b;④∠5+∠8=180°可得∠3+∠2=180°,可根据同旁内角互补,两直线平行得到a∥b;故选:D.6.一根竹竿插入到池塘中,插入池塘淤泥中的部分占全长的,水中部分是淤泥中部分的2倍少1米,露出水面的竹竿长1米.设竹竿的长度为x米,则可列出方程()A.x=1 B.x+1=xC.x﹣1+1=x D.x+1+1=x【考点】由实际问题抽象出一元一次方程.【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,,故选C.二、填空题(本大题共10小题,每小题3分,共30分)7.请写出一个负无理数﹣(答案不唯一).【考点】无理数.【分析】根据无理数是无限不循环小数进行解答即可.【解答】解:由无理数的定义可知,﹣、﹣…是负无理数.故答案为:﹣(答案不唯一).8.今年某市参加中考的考生共约11万人,用科学记数法表示11万人是 1.1×105人.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:11万=11 0000=1.1×105,故答案为:1.1×105.9.若2x|m|﹣1=5是一元一次方程,则m的值为±2.【考点】一元一次方程的定义.【分析】利用一元一次方程的定义判断即可.【解答】解:∵2x|m|﹣1=5是一元一次方程,∴|m|﹣1=1,即|m|=2,解得:m=±2,故答案为:±210.某几何体的三视图如图所示,则这个几何体的名称是圆柱.【考点】由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为长方形判断出是柱体,根据俯视图是圆形可判断出这个几何体应该是圆柱,故答案为:圆柱.11.多项式2a2﹣4a+1与多项式﹣3a2+2a﹣5的差是5a2﹣6a+6.【考点】整式的加减.【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:(2a2﹣4a+1)﹣(﹣3a2+2a﹣5)=2a2﹣4a+1+3a2﹣2a+5=5a2﹣6a+6.故答案为5a2﹣6a+6.12.小明根据方程5x+2=6x﹣8编写了一道应用题,请你把空缺的部分补充完整.某手工小组计划教师节前做一批手工品赠给老师,如果每人做5个,那么就比计划少2个;如果每人做6个,那么就比计划多8个,请问手工小组有几人?(设手工小组有x人)【考点】一元一次方程的应用.【分析】根据等号左边的式子可以看出,表示实际需要礼物个数,仿照所给题意的前半部分写出所缺部分.【解答】解:等号左边5x+2,表示实际需要礼物个数,那么等号右边也应表示实际需要礼物个数,则6x﹣8表示:如果每人做6个,那么就比计划多8个.13.如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是梦.【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“梦”是相对面,“们”与“中”是相对面,“的”与“国”是相对面.故答案为:梦.14.如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东85°方向,则∠ACB的度数为80°.【考点】方向角.【分析】根据方向角,可得∠1,∠2,∠3的度数,根据平行线的性质,可得∠5,的度数,根据角的和差,可得∠2,4的度数,根据三角形的内角和定理,可得答案.、【解答】解:如图:,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东85°方向,∴∠1=45°∠2=85°,∠3=15°,由平行线的性质得∠5=∠1=45°.由角的和差得∠6=∠2﹣∠5=85°﹣45°=40°,∠4=∠1+∠3=45°+15°=60°,由三角形的内角和定理得∠ACB=180°﹣∠6﹣∠4=180°﹣40°﹣60°=80°,故答案为:80°.15.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是20cm.【考点】平移的性质.【分析】根据平移的性质可得DF=AE,然后判断出四边形ABFD的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.【解答】解:∵△ABE向右平移2cm得到△DCF,∴DF=AE,∴四边形ABFD的周长=AB+BE+DF+AD+EF,=AB+BE+AE+AD+EF,=△ABE的周长+AD+EF,∵平移距离为2cm,∴AD=EF=2cm,∵△ABE的周长是16cm,∴四边形ABFD的周长=16+2+2=20cm.故答案为:20cm.16.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为11,则满足条件的x的不同值分别为5,2,0.5.【考点】代数式求值.【分析】解答本题的关键就是弄清楚题图给出的计算程序.由于代入x计算出y 的值是11>10,符合要求,所以x=5即也可以理解成y=5,把y=5代入继续计算,得x=2,依此类推就可求出5,2,0.5.【解答】解:依题可列,y=2x+1,把y=11代入可得:x=5,即也可以理解成y=5,把y=5代入继续计算可得:x=2,把y=2代入继续计算可得:x=0.5,把y=0.5代入继续计算可得:x<0,不符合题意,舍去.∴满足条件的x的不同值分别为5,2,0.5.三、解答题(本大题共12小题,共102分)17.计算:(1)[﹣5﹣(﹣11)]÷(﹣÷);(2)﹣22﹣×2+(﹣2)3÷(﹣).【考点】有理数的混合运算.【分析】(1)原式先计算括号中的运算,再计算除法运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=6÷(﹣×4)=6÷(﹣6)=﹣1;(2)原式=﹣4﹣3+(﹣8)÷(﹣)=﹣4﹣3+16=9.18.解方程:(1)6+2x=14﹣3x(写出检验过程);(2)=1.【考点】解一元一次方程.【分析】(1)方程移项合并,把x系数化为1,求出解,检验即可;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项得:3x+2x=14﹣6,合并得:5x=8,解得:x=1.6,当x=1.6时,左边=6+3.2=9.2,右边=14﹣4.8=9.2,∵左边=右边,∴x=1.6是方程的解;(2)去分母得:3(x+2)﹣2(2x﹣3)=12,去括号得:3x+6﹣4x+6=12,解得:x=0.19.如图,点B在线段AD上,C是线段BD的中点,AD=10,BC=3.求线段CD、AB的长度.【考点】两点间的距离.【分析】根据线段中点的定义可得BC=CD;再根据AB=AD﹣BC﹣CD,代入数据进行计算即可得解.【解答】解:∵C是线段BD的中点,∴BC=CD,∵BC=3,∴CD=3;由图形可知,AB=AD﹣BC﹣CD,∵AD=10,BC=3,∴AB=10﹣3﹣3=4.20.一个角的补角加上10°后,等于这个角的余角的3倍,求这个角以及它的余角和补角的度数.【考点】余角和补角.【分析】设这个角为x°,则得出方程180﹣x+10=3(90﹣x),求出即可.【解答】解:设这个角为x°,则180﹣x+10=3(90﹣x),解得:x=40.即这个角的余角是50°,补角是140°.21.化简求值:(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.【考点】整式的加减—化简求值.【分析】先化简,然后将a与b的值代入即可求出答案.【解答】解:原式=3ab2﹣a2b﹣4ab2+2a2b=﹣ab2+a2b,当a=1,b=﹣2时,原式=﹣1×1×4+1×(﹣2)=﹣6;22.证明:多项式16+a﹣{8a﹣[a﹣9﹣3(1﹣2a)]}的值与字母a的取值无关.【考点】整式的加减.【分析】先将多项式16+a﹣{8a﹣[a﹣9﹣3(1﹣2a)]}进行化简,化简时去括号,然后合并同类项,以此来判断是否与a的取值无关.【解答】证明:16+a﹣{8a﹣[a﹣9﹣3(1﹣2a)]}=16+a﹣{8a﹣[a﹣9﹣3+6a]}=16+a﹣{8a﹣a+9+3+6a}=16+a﹣8a+a﹣9﹣3+6a=4.故多项式的值与a的值无关.23.如图,EF⊥BC,AD⊥BC,∠1=∠2,∠B=30°.求∠GDB的度数.请将求∠GDB度数的过程填写完整.解:因为EF⊥BC,AD⊥BC,所以∠BFE=90°,∠BDA=90°,理由是垂直的定义,即∠BFE=∠BDA,所以EF∥AD,理由是同位角相等,两直线平行,所以∠2=∠3,理由是两直线平行,同位角相等.因为∠1=∠2,所以∠1=∠3,所以AB∥DG,理由是内错角相等,两直线平行,所以∠B+ ∠GDB=180°,理由是两直线平行,同旁内角互补.又因为∠B=30°,所以∠GDB=150°.【考点】平行线的判定与性质.【分析】先根据垂直的定义得出∠BFE=90°,∠BDA=90°,故可得出EF∥AD,再由平行线的性质得出∠2=∠3,利用等量代换得出∠1=∠3,故AB∥DG,再由∠B=30°即可得出结论.【解答】解:∵EF⊥BC,AD⊥BC,∴∠BFE=90°,∠BDA=90°(垂直的定义),即∠BFE=∠BDA,∴EF∥AD(同位角相等,两直线平行),∴∠2=∠3(两直线平行,同位角相等).又∵∠1=∠2,∴∠1=∠3,∴AB∥DG(内错角相等,两直线平行)∴∠B+∠GDB=180°(两直线平行,同旁内角互补).又∵∠B=30°,∴∠GDB=150°.故答案为:垂直的定义,AD,同位角相等,两直线平行,∠3,两直线平行,同位角相等,DG,内错角相等,两直线平行,∠GDB,两直线平行,同旁内角互补,150°.24.如图,点P是∠AOB的边OB上的一点过点P画OB的垂线,交OA于点C;(1)过点P画OA的垂线,垂足为H;(2)线段PH的长度是点P到OA的距离,线段CP的长度是点C到直线OB的距离.线段PC、PH、OC这三条线段大小关系是PH<PC<OC(用“<”号连接)【考点】点到直线的距离;垂线段最短.【分析】(1)过点P画OA的垂线,即过点P画∠PHO=90°即可,(2)利用点到直线的距离可以判断线段PH的长度是点P到OA的距离,PC是点C到直线OB的距离,线段PC、PH、OC这三条线段大小关系是PH<PC<OC.【解答】解:(1)如图:(2)线段PH的长度是点P到直线OA的距离,线段CP的长度是点C到直线OB的距离,根据垂线段最短可得:PH<PC<OC,故答案为:OA,线段CP,PH<PC<OC.25.周末小明陪爸爸去陶瓷商城购买一些茶壶和茶杯,了解情况后发现甲、乙两家商店都在出售两种同样品牌的茶壶和茶杯,定价相同:茶壶每把定价30元,茶杯每只定价5元.两家都有优惠:甲店买一送一大酬宾(买一把茶壶赠送茶杯一只);乙店全场9折优惠.小明爸爸需茶壶5把,茶杯x只(x不小于5).(1)若在甲店购买,则总共需要付5x+125元;若在乙店购买,则总共需要付 4.5x+135元.(用含x的代数式表示并化简.)(2)当需购买15只茶杯时,请你去办这件事,你打算去哪家商店购买?为什么?【考点】列代数式.【分析】(1)由题意可知,在甲店买一把茶壶赠送茶杯一只,故需付5只茶壶的钱和x﹣5只茶杯的钱,已知茶壶和茶杯的钱,可列出付款关于x的式子;在乙店购买全场9折优惠,同理也可列出付款关于x的式子;(2)计算后判断即可.【解答】解:(1)设购买茶杯x只,在甲店买一把茶壶赠送茶杯一只,且茶壶每把定价30元、茶杯每只定价5元,故在甲店购买需付:5×30+5×(x﹣5)=5x+125;在乙店购买全场9折优惠,故在乙店购买需付:30×0.9×5+5×0.9×x=4.5x+135;(2)选择甲店购买,理由:到甲店购买需要200元,到乙店购买需要202.5元.∵200<202.5,∴选择甲店购买,故答案为:(1)(5x+125),(4.5x+135)26.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.(1)求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性定客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?请写出你作出这种决策的理由.【考点】一元一次方程的应用.【分析】(1)根据题意设出房间数,进而表示出总人数得出等式方程求出即可;(2)根据已知条件分别列出两种住房方法所用的钱数,进而比较即可.【解答】解:(1)设客房有x间,则根据题意可得:7x+7=9x﹣9,解得x=8;即客人有7×8+7=63(人);答:客人有63人.(2)如果每4人一个房间,需要63÷4=15,需要16间客房,总费用为16×20=320(钱),如果定18间,其中有四个人一起住,有三个人一起住,则总费用=18×20×0.8=288(钱)<320钱,所以他们再次入住定18间房时更合算.答:他们再次入住定18间房时更合算.27.(1)观察思考如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行多少场比赛?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.【考点】直线、射线、线段.【分析】(1)从左向右依次固定一个端点A,C,D找出线段,最后求和即可;(2)根据数线段的特点列出式子化简即可;(3)将实际问题转化成(2)的模型,借助(2)的结论即可得出结论.【解答】解:(1)∵以点A为左端点向右的线段有:线段AB、AC、AD,以点C为左端点向右的线段有线段CD、CB,以点D为左端点的线段有线段DB,∴共有3+2+1=6条线段;(2),理由:设线段上有m个点,该线段上共有线段x条,则x=(m﹣1)+(m﹣2)+(m﹣3)+…+3+2+1,∴倒序排列有x=1+2+3+…+(m﹣3)+(m﹣2)+(m﹣1),∴2x==m(m﹣1),∴x=;(3)把8位同学看作直线上的8个点,每两位同学之间的一场比赛看作为一条线段,直线上8个点所构成的线段条数就等于比赛的场数,因此一共要进行=28场比赛.28.如图,OB、OC是∠AOD的两条射线,OM和ON分别是∠AOB和∠COD内部的一条射线,且∠AOD=α,∠MON=β.(1)当∠AOM=∠BOM,∠DON=∠CON时,试用含α和β的代数式表示∠BOC;(2)①当∠AOM=2∠BOM,∠DON=2∠CON时,∠BOC等于多少?(用含α和β的代数式表示)②当∠AOM=3∠BOM,∠DON=3∠CON时,∠BOC等于多少?(用含α和β的代数式表示)(3)根据上面的结果,请填空:当∠AOM=n∠BOM,∠DON=n∠CON时,∠BOC=β﹣α.(n是正整数)(用含α和β的代数式表示).【考点】角的计算.【分析】(1)根据∠BOC=∠MON﹣∠BOM﹣∠CON,等量代换即可表示出∠BOC的大小;(2)①当∠AOM=2∠BOM,∠DON=2∠CON时,等量代换即可表示出∠BOC的大小;②当∠AOM=3∠BOM,∠DON=3∠CON时,等量代换即可表示出∠BOC 的大小;(3)当∠AOM=n∠BOM,∠DON=n∠CON时,等量代换即可表示出∠BOC的大小;【解答】(1)∵∠AOM=∠BOM=∠AOB,∠CON=∠DON=∠COD,∵∠BOC=∠MON﹣∠BOM﹣∠CON=∠MON﹣∠AOB﹣∠COD=∠MON﹣(∠AOB+∠COD)=∠MON﹣(∠AOD﹣∠BOC)=β﹣(α﹣∠BOC)=β﹣α+∠BOC,则∠BOC=2β﹣α.(2)①当∠AOM=2∠BOM,∠DON=2∠CON时,∵∠BOM+∠CON=(∠AOM+∠DON)=(α﹣β),∴∠BOC=∠MON﹣(∠BOM+∠CON)=β﹣(α﹣β)=β﹣α;②当∠AOM=3∠BOM,∠DON=3∠CON时,∵∠BOM+∠CON=(∠AOM+∠DON)=(α﹣β),∴∠BOC=∠MON﹣(∠BOM+∠CON)=β﹣(α﹣β)=β﹣α;(3)当∠AOM=n∠BOM,∠DON=n∠CON时,∵∠BOM+∠CON=(∠AOM+∠DON)=(α﹣β),∴∠BOC=∠MON﹣(∠BOM+∠CON)=β﹣(α﹣β)=β﹣α;故答案为:β﹣α.。
2017广州市天河区七年级(上)期末数学试卷配详解
2017广州市天河区七年级(上)期末数学试卷一、选择题:(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)|﹣2|=()A.0B.﹣2C.2D.12.(3分)下列选项中,解为x=2的选项是()A.4x=2B.3x+6=0C.x=0D.7x﹣14=0 3.(3分)下列选项中,两个单项式属于同类项的是()A.a3与b3B.3x2y与﹣4x2yzC.x2y与﹣xy2D.﹣2a2b与ba24.(3分)据统计,到2017年底,广州市的常住人口将达到14330000人,这个人口数据用科学记数法表示为()A.1433×104B.1.433×108C.1.433×107D.0.1433×108 5.(3分)如图,在直线l上依次有A,B,C三点,则图中线段共有()A.4 条B.3 条C.2 条D.1 条6.(3分)下列变形中,不正确的是()A.a﹣b﹣(c﹣d)=a﹣b﹣c﹣d B.a﹣(b﹣c+d)=a﹣b+c﹣dC.a+b﹣(﹣c﹣d)=a+b+c+d D.a+(b+c﹣d)=a+b+c﹣d7.(3分)下列关于单项式﹣的正确说法是()A.系数是4,次数是3B.系数是﹣,次数是3C.系数是,次数是2D.系数是﹣,次数是28.(3分)如图,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是()A.B.C.D.9.(3分)若∠A,∠B互为补角,且∠A<∠B,则∠A的余角是()A.(∠A+∠B)B.∠B C.(∠B﹣∠A)D.∠A10.(3分)如图是含x的代数式按规律排列的前4行,依此规律,若第10行第2项的值为1034,则此时x的值为()A.1B.2C.5D.10二、填空题:(本大题共6小题,每小题3分,满分18分)11.(3分)南京市1月份的平均气温是零下5℃,用负数表示这个温度是.12.(3分)若2a x b y+4a2b3=6a2b3,则y x=.13.(3分)若代数式x﹣1和3x+7互为相反数,则x=.14.(3分)已知∠α=25°,则∠α的补角是度.15.(3分)从A处看B处的方向是北偏东21°,反过来,从B看A的方向是.16.(3分)如图,把一张长方形纸片沿AB折叠后,若∠1=50°,则∠2的度数为.三、解答题:(本大题有9小题,共102分.解答须写文字说明、推理过程和演算步骤.)17.(10分)(1)计算:(﹣12)﹣(﹣20)+(﹣8)﹣15(2)计算:﹣2 3+3×(﹣1)2016﹣9÷(﹣3)18.(12分)解方程(1)3(x+2)﹣1=x﹣3;(2)﹣1=.19.(8分)如图,已知线段AB的长度是xcm,线段BC的长度比线段AB长度的2倍多1cm,线段AD的长度比线段BC长度的2倍少1cm,求线段BC,AD和CD的长.20.(10分)先化简,再求值:﹣x2y+xy2﹣3(xy2﹣x2y),其中x=,y=﹣1.21.(12分)根据图中情景,解答下列问题:(1)购买8根跳绳需元;购买11根跳绳需元;(2)小红比小明多买2根,付款时小红反而比小明少7元,你认为有这种可能吗?请结合方程知识说明理由.22.(12分)解答下列问题:(提示:为简化问题,往往把一个式子看成一个数或一个整体解决问题)(1)若代数式2x+3y的值为﹣5,求代数式4x+6y+3 的值;(2)已知A=3x2﹣5x+1,B=﹣2x+3x2﹣5,求当x=时,A﹣B的值.23.(12分)如图,已知直线AB和CD相交于点O,在∠COB的内部作射线OE.(1)若∠AOC=36°,∠COE=90°,求∠BOE的度数;(2)若∠COE:∠EOB:∠BOD=4:3:2,求∠AOE的度数.24.(13分)如图的长方形MNPQ是广州某市民健身广场的平面示意图,它是由6个正方形拼成的(分别用A、B、C、D、E、F六个字母表示),已知中间最小的正方形A的边长是1米,设正方形C的边长是x米.(1)请用含x的代数式分别表示出正方形E、F、B的边长;(2)观察图形的特点,找出两个等量关系,分别用两种方法列方程求出x的值;(3)现沿着长方形广场四条边铺设下水道,若甲、乙两个工程队单独铺设分别需要10天和15天完成,如果两队从M处开始,分别沿两个不同方向同时施工y天后,因甲队另有任务,余下的工程由乙队单独施工10天完成,求y的值.25.(13分)A、B、C为数轴上三点,若点C到点A的距离是点C到点B距离的2倍,我们就称C是【A,B】的和谐点.例如,如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的和谐点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的和谐点,但点D是【B,A】的和谐点.(1)若数轴上M,N两点所表示的数分别为m,n,且m,n满足(m+2)x2+|n﹣2|=0,求出【M,N】的和谐点表示的数.(2)如图2,A、B在数轴上表示的数分别为﹣40和20,现有点P从点B出发向左运动,①若点P到达点A停止,则当P点运动多少个单位时,P、A、B中恰有一个点为其余两点的和谐点?②若点P到达点A后继续向左运动,是否存在使得P、A、B中恰有一个点为其余两点的和谐点的情况?若存在,请直接写出此时P、B的距离;若不存在,请说明理由.参考答案与试题解析一、选择题:(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)二、填空题:(本大题共6小题,每小题3分,满分18分)11.(3分)南京市1月份的平均气温是零下5℃,用负数表示这个温度是﹣5℃.12.(3分)若2a x b y+4a2b3=6a2b3,则y x=9.13.(3分)若代数式x﹣1和3x+7互为相反数,则x=﹣.14.(3分)已知∠α=25°,则∠α的补角是155度.15.(3分)从A处看B处的方向是北偏东21°,反过来,从B看A的方向是南偏西21°.16.(3分)如图,把一张长方形纸片沿AB折叠后,若∠1=50°,则∠2的度数为65°.三、解答题:(本大题有9小题,共102分.解答须写文字说明、推理过程和演算步骤.)17.(10分)(1)计算:(﹣12)﹣(﹣20)+(﹣8)﹣15(2)计算:﹣2 3+3×(﹣1)2016﹣9÷(﹣3)解:(1)原式=﹣12+20﹣8﹣15=﹣35+20=﹣15;(2)原式=﹣8+3×1+3=﹣8+3+3=﹣2.18.(12分)解方程(1)3(x+2)﹣1=x﹣3;(2)﹣1=.解:(1)去括号,得:3x+6﹣1=x﹣3,移项,得:3x﹣x=﹣3﹣6+1,合并同类项,得:2x=﹣8,系数化为1,得:x=﹣4;(2)去分母,得:3(x+1)﹣6=2(2﹣x),去括号,得:3x+3﹣6=4﹣2x,移项,得:3x+2x=4+6﹣3,合并同类项,得:5x=7,系数化为1,得:x=.19.(8分)如图,已知线段AB的长度是xcm,线段BC的长度比线段AB长度的2倍多1cm,线段AD的长度比线段BC长度的2倍少1cm,求线段BC,AD和CD的长.解:BC=(2x+1)cm,AD=2BC﹣1=2(2x+1)﹣1=(4x+1)cm,CD=DA+AB+BC=(4x+1)+x+(2x+1)=(7x+2)cm.故线段BC的长是(2x+1)cm,AD的长是(4x+1)cm,CD的长是(7x+2)cm.20.(10分)先化简,再求值:﹣x2y+xy2﹣3(xy2﹣x2y),其中x=,y=﹣1.解:原式=﹣x2y+xy2﹣3xy2+x2y=﹣2xy2,当x=,y=﹣1时,原式=﹣2××1=﹣1.21.(12分)根据图中情景,解答下列问题:(1)购买8根跳绳需208元;购买11根跳绳需302元;(2)小红比小明多买2根,付款时小红反而比小明少7元,你认为有这种可能吗?请结合方程知识说明理由.解:(1)根据题意得:35×8=280(元),即购买8根跳绳需280元,0.8×35×11=308(元),即购买11根跳绳需308元,故答案为:280,308,(2)若小红比小明多买2根,付款时小红反而比小明少7元成立,唯一的可能性就是小红买的跳绳超过10根打折了,而小明的不足10根没打折,设小明买了x根跳绳,小红买了(x+2)根跳绳,根据题意得:35x﹣35×0.8(x+2)=7,解得:x=9,x+2=11≥10(符合题意),答:有这种可能性..22.(12分)解答下列问题:(提示:为简化问题,往往把一个式子看成一个数或一个整体解决问题)(1)若代数式2x+3y的值为﹣5,求代数式4x+6y+3 的值;(2)已知A=3x2﹣5x+1,B=﹣2x+3x2﹣5,求当x=时,A﹣B的值.解:(1)由已知得2x+3y=﹣5,∴4x+6y+3=2(2x+3y)+3=2×(﹣5)+3=﹣10+3=﹣7.(2)∵A=3x2﹣5x+1,B=﹣2x+3x2﹣5,∴A﹣B=3x2﹣5x+1+2x﹣3x2+5=﹣3x+6,当x=时,原式=﹣1+6=5.23.(12分)如图,已知直线AB和CD相交于点O,在∠COB的内部作射线OE.(1)若∠AOC=36°,∠COE=90°,求∠BOE的度数;(2)若∠COE:∠EOB:∠BOD=4:3:2,求∠AOE的度数.解:(1)∵∠AOC=36°,∠COE=90°,∴∠BOE=180°﹣∠COE﹣∠BOD=54°;(2)∵∠COE:∠EOB:∠BOD=4:3:2,∴设∠COE=4α,∠EOB=3α,∠BOD=2α∵∠COE+∠EOB+∠BOD=180°,∴4α+3α+2α=180°∴α=20°∴∠COE=4α=80°,∠EOB=3α=60°,∠BOD=2α=40°,∴∠AOE=180°﹣∠EOB=180°﹣60°=120°.24.(13分)如图的长方形MNPQ是广州某市民健身广场的平面示意图,它是由6个正方形拼成的(分别用A、B、C、D、E、F六个字母表示),已知中间最小的正方形A的边长是1米,设正方形C的边长是x米.(1)请用含x的代数式分别表示出正方形E、F、B的边长;(2)观察图形的特点,找出两个等量关系,分别用两种方法列方程求出x的值;(3)现沿着长方形广场四条边铺设下水道,若甲、乙两个工程队单独铺设分别需要10天和15天完成,如果两队从M处开始,分别沿两个不同方向同时施工y天后,因甲队另有任务,余下的工程由乙队单独施工10天完成,求y的值.解:(1)观察图形,可知:正方形B的边长为(2x﹣1)米,正方形F的边长为(2x﹣2)米,正方形E的边长为(2x﹣3)米.(2)由MQ=NP,可列方程:x+2x﹣1=2x﹣2+2x﹣3,解得:x=4;由E的边长=A的边长+D的边长,可列方程:2x﹣3=x+1,解得:x=4.(3)依题意,得:+=1,解得:y=2.答:y的值为2.25.(13分)A、B、C为数轴上三点,若点C到点A的距离是点C到点B距离的2倍,我们就称C是【A,B】的和谐点.例如,如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的和谐点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的和谐点,但点D是【B,A】的和谐点.(1)若数轴上M,N两点所表示的数分别为m,n,且m,n满足(m+2)x2+|n﹣2|=0,求出【M,N】的和谐点表示的数.(2)如图2,A、B在数轴上表示的数分别为﹣40和20,现有点P从点B出发向左运动,①若点P到达点A停止,则当P点运动多少个单位时,P、A、B中恰有一个点为其余两点的和谐点?②若点P到达点A后继续向左运动,是否存在使得P、A、B中恰有一个点为其余两点的和谐点的情况?若存在,请直接写出此时P、B的距离;若不存在,请说明理由.解:(1)∵m,n满足(m+2)x2+|n﹣2|=0∴m=﹣2,n=2设M,N之间的一个点为x是【M,N】的和谐点,且﹣2<x<2,则|x﹣(﹣2)|=2|x﹣2|,x+2=2×[﹣(x﹣2)],得x=所以【M,N】的和谐点表示的数为.(2)①设x为P点运动后P点在数轴上的表示数,若存在AP=2BP或BP=2AP时,分别为【A,B】或【B,A】的和谐点,即|﹣40﹣x|=2|20﹣x|,得x=0;|20﹣x|=2|﹣40﹣x|,得x=﹣20所以在这种情况下,当P点运动20或40个单位长度时,点P分别为【A,B】和【B,A】的和谐点.②如上图,当线段PB的长度为90或180单位长度时,点A为【B,P】或【P,B】的和谐点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年第一学期天河区期末考试
七年级数学
本试卷共三大题25小题,共4页,满分150分,考试时间120分钟 注意事项:不能使用计算器
一、选择题(本题共10个小题,每小题3分,满分30分) 1.2-=( )
A .0
B .-2
C .2 D. 1 2.下列选项中,解为x =2的方程是( )
A .4x =2
B .3x +6=0
C .1
02
x =D .7x -14=0
3.下列选项中,两个单项式属于同类项的是()
A .3a 与3b
B .23x y 和24x yz -
C .2x y 和2x y -
D .22a b -和21
2
ba
4.据统计,到2017年底,广州市的常住人口将达到14330000人,这个人口数据用科学记数法表示为()
A .4143310⨯
B .81.43310⨯
C .71.43310⨯
D .80.143310⨯ 5.如图,在直线l 上有A ,B ,C 三点,则图中线段共有()
A .4条
B .3条
C .2条 D. 1条 6.下列变形中,不正确的是()
A .a -b -(c -d )=a -b -c -d
B .a -(b -c +d )=a -b +c -d
C .a +b -(-c -d )=a +b +c +d D. a +(b +c -d )=a +b +c -d
7.下列关于单项式243
x y
-的正确说法是()
A .系数是4,次数是3
B .系数是4
3-,次数是3
C .系数是
43,次数是2 D .系数是4
3
-,次数是2 8.如图,它需要添一个面,折叠后才能围成一个正方体,下列选项中的黑色小正方形分别由四位同学补画,其中正确的是( )
A .
B .
C .
D .
9.若∠A ,∠B 互为补角,且∠A <∠B ,则∠A 的余角是() A .12(∠A +∠B )B .12∠B C .12(∠B -∠A ) D .1
2
∠A
10.如图是含x 的代数式按规律排列的前4行,依此规律,若第10行第2项的值为1034,则此时x 的值为()
A .1
B .2
C .5 D. 10 二、填空题(本题有6个小题,每小题3分,共18分)
11.南京市1月份的平均气温是零下5℃,用负数表示这个温度是___________. 12.若2323246x y a b a b a b +=,则x y =___________.
13.若代数式x -1和3x +7的值互为相反数,则x =_________. 14.已知∠α=25°,那么∠α的补角等于_________.
15.从A 处看B 处的方向是北偏东21°,反过来,从B 看A 的方向是________. 16.如图把一张长方形纸片沿AB 折叠后,若∠1=50°,则∠2=________.
三、解答题(本大题有9小题,共102分) 17.(本题满分10分,每小题5分)
(1)计算:(-12)-(-20)+(-8)-15(2)计算:2201623(1)9(3)-+⨯--÷-
18.(本题满分12分,每小题6分)
(1)解方程:3(x +2)-1=x -3(2)解方程:
12123
x x
+--=
19.(本题满分8分)
如图,已知线段AB 的长度是x cm ,线段BC 的长度比线段AB 长度的2倍多1cm ,线段AD 的长度比线段BC 长度的2倍少1cm ,求线段BC 、AD 和CD 的长.
20.(本题满分10分)先化简,再求值:2222
1
3()3
x y xy xy x y -+--,
其中x =1
2
,y =-1.
21.(本题满分12分)根据图中情景信息,解答下列问题:
(1)购买8根跳绳需_______元,购买11根跳绳需________元.
(2)小红比小明多买2根,付款时小红反而比小明少7元,你认为有这种可能吗?请结合方程知识说明理由.
22.(本题满分12分) 解答下面问题:(提示:为简化问题,往往把一个式子看成一个数或一个整体解决问题) (1)若代数式2x +3y 的值为-5,求代数式4x +6y +3的值;
(2)已知A =2351x x -+,B =2235x x -+-,求当1
3
x =时A -B 的值.
如图,已知直线AB和CD相交于点O,在∠COB的内部作射线OE.(1)若∠AOC=36°,∠COE=90°,求∠BOE的度数;
(2)若∠COE:∠EOB:∠BOD=4:3:2,求∠AOE的度数.
24.(本题满分13分)
如图的长方形MNPQ是广州某市民健身广场的平面示意图,它是由6个正方形拼成的(分别用A,B,C,D,E,F六个字母表示),已知中间最小的正方形A的边长是1米,设正方形C的边长是x米.
(1)请用含x的代数式分别表示出正方形E,F和B的边长;
(2)观察图形的特点,找出两个等量关系,分别用两种方法列方程求出x的值;
(3)现沿着长方形广场的四条边铺设下水管道,若甲、乙两个工程队单独铺设分别需要10天河15天完成,如果两队从M处开始,分别沿两个不同方向同时施工y天后,因甲队另有任务,余下的工程由乙队单独施工10天完成,求y的值.
C D
E
A,B,C为数轴上三点,若点C到点A的距离是点C到点B的距离2倍,我们就称点C是【A,B】的和谐点.例如:图1中,点A表示的数为-1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的和谐点.又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的和谐点,但点D是【B,A】的和谐点.
(1)若数轴上M,N两点所表示的数为m,n,且m,n满足2
m n
++-=,请求出
(2)40
【M,N】的和谐点表示的数;
(2)如图2,A,B在数轴上表示的数分别为-40和20,现有一点P从点B出发向左运动.
①若点P到达点A停止,则当P点运动多少个单位时,P,A,B中恰有一个点为其余两点的和谐点?
②若点P到达点A后继续向左运动,是否存在使得P,A,B中恰有一个点为其余两点的和谐点的情况?若存在,请直接写出此时PB的距离;若不存在,请说明理由.
(图2)。