环境工程原理
环境工程原理
水质净化与水污染控制技术、大气(包括室内空气)污染 控制技术、固体废物处理处置与管理和资源化技术、物理 性污染(热污染、辐射污染、噪声、振动)防治技术、自 然资源的合理利用与保护、环境监测与环境质量评价等传 统的内容,还包括生态修复与构建理论与技术、清洁生产 理论与技术以及环境规划、管理与环境系统工程等。
主要去除对象
好氧处 理法
活性污泥法 生物膜法 流化床法
生物吸附、生物降解 生物吸附、生物降解 生物吸附、生物降解
可生物降解性有机污染物、还 原性无机污染物(NH4+等)
生态技 术
氧化塘 土地渗滤 湿地系统
生物吸附、生物降解 生物降解、土壤吸附 生物降解、土壤吸附、植物吸附
有机污染物、氮、磷、磷 有机污染物、氮、磷、重金属
❖环境学科的任务
环境学科是研究人类活动与环境质量关系的科学,其主 要任务是研究人类与环境的对立统一关系,认识两者之 间的作用与反作用,掌握其发展规律,从而保护环境并 使其向于人类有利的方向演变。
一、环境问题与环境学科的发展
❖环境学科的体系
“环境学科”是一门正在蓬勃发展的科学,其研究范围 和内涵不断扩展,所涉及的学科非常广泛,而且各个学 科间又互相交叉和渗透,因此具有丰富的学科内涵。
主要去除对象 酸性、碱性污染物 无机污染物 还原性污染物、有害微生物(消毒) 氧化性污染物 氧化、还原性污染物 几乎所有的有机污染物 有机污染物 有机污染物 有机污染物 可吸附性污染物 离子性污染物 无机盐 胶体性污染物、大分子污染物
三、环境净化与污染控制技术概述
水的生物处理法
处理方法
利用的主要原理
三、环境净化与污染控制技术概述
(一)水质净化与水污染控制技术
环境工程原理知识点总结
环境工程原理知识点总结环境工程原理是研究环境质量与环境保护的基本理论和方法。
环境工程原理主要包括环境科学、水污染控制与处理、大气污染控制与处理、土壤污染与修复、噪声与振动控制、固体废物处理、环境监测等方面的知识点。
以下是环境工程原理的主要知识点总结:1.环境科学基础知识:-环境系统:包括生物系统、物理系统和人类社会系统。
-环境元素:空气、水、土壤等。
-环境因子:温度、湿度、光照、风等。
-环境质量指标:COD、BOD、PH、悬浮物浓度等。
2.水污染控制与处理:-水污染的类型:有机污染物、无机污染物、微生物等。
-水污染的处理方法:生物处理、物理化学处理、深度处理等。
-水污染的监测与评价:水质监测、水环境风险评估等。
3.大气污染控制与处理:-大气污染的源:工业排放、机动车尾气、生物排放等。
-大气污染的类型:颗粒物、二氧化硫、氮氧化物等。
-大气污染的传输与扩散:大气层结、稳定层等。
-大气污染的控制技术:燃烧优化、脱硫、脱氮等。
4.土壤污染与修复:-土壤污染的种类:重金属污染、有机物污染等。
-土壤污染的评价与监测:土壤抽样、土壤测试分析等。
-土壤污染的修复技术:生物修复、物理修复、化学修复等。
5.噪声与振动控制:-噪声的特性:频率、声压级、声功率等。
-噪声的控制措施:隔声、减振、降噪等。
-振动的特性与控制:振幅、频率、衰减等。
6.固体废物处理:-固体废物的分类:可回收物、有害废物、垃圾等。
-固体废物处理的方法:焚烧、填埋、回收等。
-固体废物处理的环境影响:渗滤液、气体排放等。
-固体废物处理的管理与政策:废物分类、资源化利用等。
7.环境监测:-环境监测的目的和重要性:掌握环境质量状况、评估环境风险等。
-环境监测的技术与方法:样品采集、分析测试等。
-环境监测的指标与标准:空气质量指数、水质量标准等。
-环境监测的运行与管理:监测站点布局、数据管理等。
以上是环境工程原理的主要知识点总结,通过学习和掌握这些知识点,可以帮助我们更好地理解环境工程领域的原理与应用,为环境保护和治理提供科学依据和技术支持。
环境工程原理
环境工程原理一环境:与某个中心事务相关的周围事物的总称。
自然环境:是直接或间接影响到人类和生物的所有自然形成的物质、能量和自然现象的总体。
生态破坏和环境污染是目前人类面临的两大类环境问题。
环境污染是指由有害物质引起的大气、水体、土壤和生物的污染。
环境工程学:是在吸收土木工程、卫生工程、化学工程、机械工程等经典学科基础理论和技术方法的基础上,为了改善环境质量而逐步形成的一门新兴的学科。
环境污染类型按污染源种类可分为:点源污染、面源污染、移动源污染。
污染物按化学性质分为:有机和无机污染物。
有机污染物分为:可生物降解性和难生物降解性。
无机污染物包括氮磷等植物性营养物质、非金属、金属与重金属以及因无机物的存在而形成的酸碱度。
、水的处理方法:物理、化学、生物方法。
环境净化与污染控制技术原理:稀释、隔离、分离、转化。
环境工程原理课程主要内容:环境工程原理、分离过程与隔离原理、化学与生物反应工程原理。
基本手段:物理量及其变化速率的定量表达与计算。
二量纲:用来描述物体与系统物理状态的可测量性质。
基本量纲:质量、长度、时间、温度(M、L、t、T)质量浓度:单位体积混合物中某组分A的质量称为该组分的质量浓度。
物质的量浓度:单位体积混合物某组分的物质的量。
通量:单位时间内通过单位面积的物理量。
稳态与非稳态系统:当系统中流速、压力、密度等物理量只是位置的函数,而不随时间变化,称为稳态系统;当上述物理量不仅随位置变化,还随时间变化时,则为非稳态系统。
四热量传递的方式:导热、热对流、热辐射导热:是指物质的分子、原子和电子的振动、位移和相互碰撞而产生热量的传递方式。
固体以两种方式传递热量:晶格振动和自由电子迁移。
热对流:由于流体的宏观远动,冷热流体相互掺混而发生热量传递的方式。
强制对流传热:由于水泵、风机或其他外力引起流体流动而发生的传热过程。
导温系数a是物质的物理性质,它反映了温度变化在物体中的传播能力。
导热系数λ是导热物质在单位面积、单位温度梯度下的导热速率,表明导热性的强弱。
环境工程原理
1.2.3.简述土壤污染治理的技术体系。
处理技术利用的主要原理主要去除对象客土法隔离法清洗法(萃取法)吹脱法(通气法)热处理法电化学法焚烧法微生物净化法植物净化法稀释作用物理隔离(防止扩散)溶解作用挥发作用热分解作用、挥发作用电场作用(移动)燃烧反应生物降解作用植物转化、植物挥发、植物吸收/固定所有污染物所有污染物溶解性污染物挥发性有机物有机污染物离子或极性污染物有机污染物可降解性有机污染物重金属、有机污染物4.简述废物资源化的技术体系3.简述沉降分离的原理、类型和各类型的主要特征。
原理:将含有颗粒物的流体(水或气体)置于某种力场(重力场、离心力场、电场或惯性场等)中,使颗粒物与连续相的流体之间发生相对运动,沉降到器壁、器底或其他沉积表面,从而实现颗粒物与流体的分离。
4.比较重力沉降和离心沉降的主要区别。
与重力沉降相比,离心沉降有如下特征:①沉降方向不是向下,而是向外,即背离旋转中心②由于离心力随旋转半径而变化,致使离心沉降速率也随颗粒所处的位置而变,所以颗粒的离心沉降速率不是恒定的,而重力沉降速率则是不变的。
③离心沉降速率在数值上远大于重力沉降速率,对于细小颗粒以及密度与流体相近的颗粒的分离,利用离心沉降要比重力沉降有效得多。
④离心沉降使用的是离心力而重力沉降利用的是重力5.表面过滤与深层过滤的主要区别是什么?各自的定义?表面过滤: ①过滤介质的孔一般要比待过滤流体中的固体颗粒的粒径小②过滤时固体颗粒被过滤介质截留,并在其表面逐渐积累成滤饼③此时沉积的滤饼亦起过滤作用,又称滤饼过滤④通常发生在过滤流体中颗粒物浓度较高或过滤速度较慢的情况。
深层过滤:①利用过滤介质间空隙进行过滤②通常发生在以固体颗粒为滤料的过滤操作中③滤料内部空隙大于悬浮颗粒粒径④悬浮颗粒随流体进入滤料内部,在拦截、惯性碰撞、扩散沉淀等作用下颗粒附着在滤料表面上而与流体分开区别:表面过滤通常发生在过滤流体中颗粒物浓度较高或过滤速度较慢的情况,过滤介质的孔一般要比待过滤流体中的固体颗粒的粒径小。
环境工程原理
环境工程原理环境工程原理是环境工程学科的基础课程之一,它主要介绍了环境工程的基本概念、原理和方法。
环境工程是一门综合性学科,涉及环境保护、环境治理、资源利用等方面,具有重要的理论和实践意义。
本文将从环境工程原理的基本概念、原理和应用进行介绍,希望能够对读者有所帮助。
环境工程原理涉及的基本概念包括环境、环境工程、环境污染等。
环境是指生物和非生物要素相互作用的总和,包括大气、水、土壤等自然要素,也包括人类社会活动的影响。
环境工程是利用工程技术手段保护和改善环境的学科,它包括环境监测、环境治理、环境规划等方面的内容。
而环境污染则是环境中存在有害物质,对人类健康和生态系统造成危害的现象。
环境工程原理的基本原理主要包括物质平衡原理、能量平衡原理、动量平衡原理等。
物质平衡原理是指在环境工程中,各种物质的输入、输出和转化需要保持平衡,以保证环境系统的稳定。
能量平衡原理是指能量在环境中的输入、输出和转化也需要保持平衡,以维持环境系统的稳定。
动量平衡原理则是指在环境工程中,流体的流动需要满足动量守恒的原理,以保证环境工程设施的正常运行。
环境工程原理的应用主要包括环境监测、环境治理和环境规划等方面。
环境监测是指对环境中各种物质和能量的监测和分析,以了解环境的变化和污染情况。
环境治理是指利用各种工程技术手段,对环境中的污染物进行治理和净化,以改善环境质量。
环境规划则是指对环境资源的合理利用和保护,以实现可持续发展。
总之,环境工程原理是环境工程学科的基础课程,它涉及了环境工程的基本概念、原理和应用。
通过学习环境工程原理,可以帮助我们更好地了解环境工程学科的基本知识,为环境保护和治理提供理论和技术支持。
希望本文对读者对环境工程原理有所帮助,也希望读者能够对环境保护和治理有更深入的了解和关注。
《环境工程原理》课件
物质平衡原理还可以用于预测和评估环境中的物质迁移、转化和归趋,为环境管理和保护提供科学依据 。
能量守恒原理
能量守恒原理是指能量在转换和传递过程中保持守恒 ,即能量不能凭空产生或消失,只能从一种形式转化
新兴环境工程技术的发展
总结词
新兴环境工程技术是应对当前复杂环境问题的关键, 包括新型水处理技术、空气污染控制技术、土壤修复 技术等。
详细描述
随着环境问题的多样化和复杂化,传统的环境工程技术 已经难以满足需求。因此,新兴环境工程技术的发展至 关重要。例如,新型水处理技术包括高级氧化技术、膜 分离技术等,能够更高效地处理污水和废水;空气污染 控制技术则包括挥发性有机化合物处理技术、细颗粒物 去除技术等,能够有效降低空气中的污染物浓度;土壤 修复技术则针对土壤污染问题,通过物理、化学和生物 方法修复污染的土壤,使其恢复原有功能。
定义与特点
定义
环境工程是一门应用自然科学和社会 科学原理来研究人类活动对环境的影 响,以及如何运用技术和法律手段保 护和改善环境的工程学科。
特点
环境工程具有跨学科性、实践性和综 合性,旨在解决实际环境问题,实现 环境保护和可持续发展。
环境工程的重要性
环境保护
环境工程是环境保护的重要手段 ,通过减少污染、改善环境质量 ,保障人类健康。
自然净化技术
利用自然界的净化能力,如森林、草 地等植物的净化作用,对空气进行净 化。
固体废物处理与资源化
填埋法
将固体废物填入洼地或地下,进行物理或化 学稳定化处理。
焚烧法
将固体废物在高温下燃烧,使有机物转化为 灰烬和气体。
《环境工程学原理》课件
02
该原理是环境工程学的基础,用于指导如何减少污染物的排放和合理利用资源。
03
物质平衡原理的应用包括物料平衡计算、污染物排放控制和废物资源化等方面。
04
在实际应用中,需要考虑不同物质特性和系统边界条件,以确,指导如何合理利用环境的自净能力,降低污染物对环境的影响。
挥发性有机物控制
通过吸附、冷凝、燃烧等技术处理挥发性有机物,以减少其对空气的污染。
颗粒物控制
通过过滤、吸附、静电除尘等技术去除空气中的颗粒物,如PM2.5和PM10。
填埋法
将固体废物填入地下进行处置,需选择合适的场地和防渗措施。
焚烧法
通过高温焚烧将固体废物转化为灰烬和气体,可回收热能和减少体积。
堆肥法
《环境工程学原理》ppt课件
目录
环境工程学概述环境工程学原理环境工程学技术与方法环境工程学实践与应用环境工程学未来发展与挑战
01
CHAPTER
环境工程学概述
总结词
基本定义与特性
详细描述
环境工程学是一门研究如何保护和改善环境的学科,它涉及到自然环境与人类活动之间的相互作用,以及如何利用工程技术手段解决环境问题。环境工程学具有综合性、系统性、实践性和跨学科性的特点。
03
工业固体废物处理
采用资源化利用、压缩减量、填埋等方式,对工业固体废物进行合理处置。
01
工业废水处理
针对不同工业废水的特点,采用物理、化学、生物等方法进行处理,减少废水对环境的污染。
02
工业废气处理
通过除尘、脱硫、脱硝等技术,对工业废气进行治理,减少废气对大气环境的污染。
通过水体保护、水域生态修复等措施,保护流域水资源的安全与可持续利用。
资源化原则的应用包括废物回收、废物再利用和废物转化为能源等方面。
环境工程原理
环境工程原理环境工程原理是环境工程学科的基础和核心,它主要涉及环境工程学的基本概念、原理和方法。
环境工程原理包括环境工程学的基本原理、环境工程学的基本概念、环境工程学的基本方法等内容。
环境工程原理是环境工程学科的基础和核心,它主要涉及环境工程学的基本概念、原理和方法。
环境工程原理包括环境工程学的基本原理、环境工程学的基本概念、环境工程学的基本方法等内容。
首先,环境工程原理涉及环境工程学的基本原理。
环境工程学是一门以保护和改善环境质量为目的的交叉学科,它主要研究环境问题的产生机理、影响因素和解决方法。
环境工程学的基本原理包括环境质量评价原理、环境污染控制原理、环境修复原理等内容。
环境质量评价原理主要涉及环境质量评价的方法和标准,包括环境监测、环境影响评价、环境风险评估等内容。
环境污染控制原理主要涉及环境污染的产生机理和控制方法,包括大气污染控制、水污染控制、固体废物处理等内容。
环境修复原理主要涉及环境修复的原理和方法,包括土壤修复、地下水修复、生态修复等内容。
其次,环境工程原理涉及环境工程学的基本概念。
环境工程学的基本概念包括环境、环境质量、环境污染、环境保护、可持续发展等内容。
环境是指生物和非生物要素的总和,包括大气、水、土壤、生物等要素。
环境质量是指环境的优劣程度,包括空气质量、水质量、土壤质量等内容。
环境污染是指环境质量下降的现象,包括大气污染、水污染、土壤污染等内容。
环境保护是指采取各种措施保护环境,包括环境管理、环境规划、环境监测等内容。
可持续发展是指满足当前世代需求的同时,不影响子孙后代满足其需求的发展模式。
最后,环境工程原理涉及环境工程学的基本方法。
环境工程学的基本方法包括环境监测、环境影响评价、环境工程设计、环境管理等内容。
环境监测是指对环境要素进行实时或定期观测和测量,包括大气监测、水质监测、土壤监测等内容。
环境影响评价是指对工程项目、规划方案或政策措施可能产生的环境影响进行预测和评价,包括环境影响评价报告、环境影响评价公众参与等内容。
环境工程原理
1.增大传热的措施:1.增大传热面积2.增大平均温差3.提高传热系数2.热量传递方式主要有:导热,热对流和热辐射3.萃取剂的选择:a的大小反映了萃取剂对溶质A的萃取容易程度。
若a>1,表示溶质A在萃取相中的相对含量比萃余相中高,萃取时组分A可以在萃取相中富集,a越大,组分A与B的分离越容易。
若a=1,则组分A与B 在两相中的组成比例相同,不能用萃取的方法分离。
4.膜分离是以具有选择透过功能的薄膜为分离介质,通过在膜两侧施加一种或多种推动力,使原料中的某组分选择性地优先透过膜,从而达到混合物分离和产物的提取,浓缩,纯化等目的。
条件:在选择分离因子时,应使其值大于1。
如果组分A通过膜的速度大于组分B,膜分离因子表示为aA/B;反之。
则为aB/A;如果aA/B=aB/A=1,则不能实现组分A与组分B的分离。
5. 离子交换速率的影响因素:1.离子的性质 2.树脂的交联度 3.树脂的粒径 4.水中离子浓度 5.溶液温度6.流速或搅拌速率6. 本征动力学方程实验测量中怎样消除对外扩散的影响:加大流体流动速度,提高流体湍流程度,可以减小边界层厚度,使边界的扩散阻力小到足以忽略的程度。
7. 吸附剂的主要特性:1.吸附容量大。
2.选择性强。
3.温定性好。
4.适当的物理特性。
5.价廉易得。
常见的吸附剂;活性炭,活性炭纤维,炭分子筛,硅胶,活性氧化铝,沸石分子筛8. 固相催化反应过程:反应物的外扩散—反应物的内扩散—反应物的吸附—表面反应—产物的脱附—产物的内扩散—产物的外扩散9. 测速管特点:测得的是点流速,特点:结构简单,使用方便,流体的能量损失小,因此较多地用于测量气体的流速,特别适用于测量大直径管路中的气体流速。
当流体中含有固体杂质时,易堵塞测压孔。
孔板流量计特点:结构简单,固定安装,安装方便,但流体通过孔板流量计时阻力损失较大。
文丘里流量计特点:阻力损失小,尤其适用于低压气体输送中流量的测量;但加工复杂,造价高,且安装时流量计本身在管道中占据较长的位置。
环境工程原理知识点总结
第II篇思考题第一章绪论1.“环境工程学”的主要研究对象是什么?2.去除水中的溶解性有机污染物有哪些可能的方法?它们的技术原理是什么?3.简述土壤污染治理的技术体系。
4.简述废物资源化的技术体系。
5.阐述环境净化与污染控制技术原理体系。
6.一般情况下,污染物处理工程的核心任务是:利用隔离、分离和(或)转化技术原理,通过工程手段(利用各类装置),实现污染物的高效、快速去除。
试根据环境净化与污染防治技术的基本原理,阐述实现污染物高效、快速去除的基本技术路线。
第二章质量衡算与能量衡算第一节常用物理量1.什么是换算因数?英尺和米的换算因素是多少?2.什么是量纲和无量纲准数?单位和量纲的区别是什么?3.质量分数和质量比的区别和关系如何?试举出质量比的应用实例。
4.大气污染控制工程中经常用体积分数表示污染物的浓度,试说明该单位的优点,并阐述与质量浓度的关系。
5.平均速度的涵义是什么?用管道输送水和空气时,较为经济的流速范围为多少?第二节质量衡算1.进行质量衡算的三个要素是什么?2.简述稳态系统和非稳态系统的特征。
3.质量衡算的基本关系是什么?4.以全部组分为对象进行质量衡算时,衡算方程具有什么特征?对存在一级反应过程的系统进行质量衡算时,物质的转化速率如何表示?第三节能量衡算1.物质的总能量由哪几部分组成?系统内部能量的变化与环境的关系如何?2.什么是封闭系统和开放系统?3.简述热量衡算方程的涵义。
4.对于不对外做功的封闭系统,其内部能量的变化如何表现?5.对于不对外做功的开放系统,系统能量能量变化率可如何表示?第三章流体流动第一节管流系统的衡算方程1.用圆管道输送水,流量增加1倍,若流速不变或管径不变,则管径或流速如何变化?2.当布水孔板的开孔率为30%时,流过布水孔的流速增加多少?3.拓展的伯努利方程表明管路中各种机械能变化和外界能量之间的关系,试简述这种关系,并说明该方程的适用条件。
4.在管流系统中,机械能的损耗转变为什么形式的能量?其宏观的表现形式是什么?5.对于实际流体,流动过程中若无外功加入,则流体将向哪个方向流动?6.如何确定流体输送管路系统所需要的输送机械的功率?第二节流体流动的内摩擦力1.简述层流和湍流的流态特征。
环境工程原理
1、环境问题的产生:产业革命以后,人类的生产力获得了飞速发展、技术水平迅速提高、人口迅速增长,人类活动的强度和范围逐渐增强和扩展,人类与环境的矛盾以及由此带来的环境问题也日趋突出。
2、人类面临的环境问题:生态破坏和环境污染是目前人类面临的两大类环境问题,它们已经成为影响社会可持续发展、人类可持续生存的重大问题3、土壤中的污染物:重金属、挥发性有机物、原油等。
土壤污染的危害:(1)通过雨水淋溶作用,可能导致地下水和周围地表水体的污染;(2)污染土壤通过土壤颗粒物等形式能直接或间接地为人或动物所吸入;(3) 通过植物吸收而进入食物链,对食物链上的生物产生毒害作用等。
4、固体废物的定义:固体废物(solid waste)指人类在生产建设、日常生活和其他活动中产生的丧失原有利用价值或者虽未丧失使用价值但被抛弃或者放弃的固态、半固态和置于容器中的气态的物品、物质以及法律、行政法规规定纳入固体废物管理的物品、物质.固体废弃物对环境的危害:(1)通过雨水的淋溶和地表径流的渗滤,污染土壤、地下水和地表水,从而危害人体健康;(2)通过飞尘、微生物作用产生的恶臭以及化学反应产生的有害气体等污染空气;(3) 固体废弃物的存放和最终填埋处理占据大面积的土地等。
5、物理性污染的种类:噪声、电磁辐射、振动、热污染等。
物理性污染控制技术:隔离、屏蔽、吸收、消减技术等。
6、流体携带能量进出系统——开放系统系统与外界交换能量(热,功)——封闭系统7、焓值是温度与物态的函数,因此进行衡算时除选取时间基准外,还需要选取物态与温度基准,通常以273K物质的液态为基准。
8、对于圆管内的流动:Re<2000时,流动总是层流型态,称为层流区;Re>4000时,一般出现湍流型态,称为湍流区;2000<Re<4000 时,有时层流,有时湍流,处于不稳定状态,称为过渡区;取决于外界干扰条件。
9、内摩擦力是流体内部相邻两流体层的相互作用力,称为剪切力10、单位面积上所受到的剪力称为剪切应力。
环境工程原理
环境工程原理环境工程是一门以技术方法解决环境问题的多学科领域大学专业。
以环境科学为基础,吸收信息科学、工程技术、经济学和管理学等多学科的知识和技术,为解决各类环境问题提供各种解决措施和应急措施。
环境工程从分析环境污染的来源和特征,到分析与环境有关的社会经济费用,再到提出各种解决措施,设计和建造环境监测和改善设施。
二、环境工程原理环境工程原理是指环境工程在解决环境问题时所遵循的基本原理、方法和技术措施。
主要包括以下方面:(1)环境保护原理。
这是环境工程的基础,它提出发展的原则是“保护环境,健康发展”,把人类和自然的统一贯穿在发展活动的全过程中,以保护环境、改善环境质量,提高环境的安全和健康。
(2)环境污染防治原理。
这是环境工程的核心,要求从源头控制和防止环境污染,确定污染物的排放标准,落实污染控制和减排措施,加强污染治理,减少污染源的影响,提高环境空气、水质量,建立完善的环境质量管理体系。
(3)环境监测原理。
这是环境工程的重要内容,它要求全面、细致、及时地监测和评价环境质量、动态变化,对污染源进行定期检测和监督检查,并为环境质量改善找出合理的措施和解决方案。
(4)环境评价原理。
这是环境工程的重要内容,它要求以科学的方法和技术分析环境数据、模拟环境变化等,进行环境损害评价,以便于环境影响评价,环境风险评价,环境效益评价和典型环境评价,为环境管理决策提供科学依据和指导。
(5)环境治理与应急原则。
这是环境工程的重要内容,它要求强化规划设计,有效地组织管理,建立健全环境管理体制,为环境管理决策提供重要参考,有效地应对环境灾害,控制环境损害。
总之,环境工程原理是指环境工程在解决环境问题时所遵循的基本原理、方法和技术措施。
尊重自然,合理利用资源,保护环境,以此为基本原则,以改善环境质量及其表现出的社会影响,为社会发展创造可持续的环境条件的对策。
三、环境工程的发展趋势随着人们对环境保护的重视,环境工程在近几年得到了长足发展。
环境工程原理(精华)
1.对流传质系数为κc,整个有效膜层的传质推动力为C A,i-C A,0,对流传质速率方程为:NA = κc (C A,i-C A,0) 。
2.按溶质与吸收剂之间发生的作用吸收过程可分为:物理吸收和化学吸收.3.双组分体系y A((溶质的摩尔分数)与Y A(摩尔比)之间的关系式为:Y=y∕(1-y)。
4.双组分体系x A((溶质的摩尔分数)与X A(摩尔比)之间的关系式为:X=x∕(1-x)。
5.双膜理论假设在两界面处气、液两相在瞬间:达到平衡。
6.在稳态恒摩尔逆流吸收塔中,废气初始浓度Y1为0.05,吸收率为98%,Y2=0.001 。
7.在稳态恒摩尔逆流吸收塔中,全塔物料衡算方程为:qnG(Y1-Y2)=qnL(X1-X2) 。
8.最小吸收剂条件下,塔底截面气、液两相平衡9.Freundlich方程为:q=kp(1∕n)。
10.单分子吸附的Langmuir等温方程为:q=k1pq m∕(1+k1p)。
11.亨利定律的表达式为P*=E x或P*=C/H或y*=mx;它适用于稀溶液。
12.气体的溶解度一般随温度的升高而降低(或减小)。
13.吸收操作中,压力升高和温度下降都可提高气体在液体中的溶解度,而有利于吸收操作。
14.对于脱吸过程而言,压力降低和温度升高都有利于过程的进行。
15.以分压差为推动力的总传质速率方程可表示为N A=K G(P–P*),N A的单位为kmol/(m2·s),由此式可推知气相体积总传质系数K G a的单位是kmol/(m3·s·ΔP) ,其中α代表单位体积填料层中传质面积。
16.吸收操作中,温度不变,压力增大,可使相平衡常数减小,传质推动力增大。
17.假设气液界面没有传质阻力,故Pi与Ci的关系为平衡。
如果液膜传质阻力远小于气膜的,则K G与k G的关系为相等。
在填料塔中,气速越大,K G越大;扩散系数D越大,K G越大。
18.(l)d 在实验室用水吸收空气中的CO2基本属于液膜控制,其气膜中的浓度梯度大于(大于,等于,小于)液膜中的浓度梯度。
环境工程原理
环境工程原理环境工程是指设计、建设和维护环境设施,以满足人类需求和维护环境的国家或社会规定,从而保护环境和公共卫生,提高人们的生活水平。
它是一种技术,旨在利用科学技术来解决环境问题,以改善环境质量。
环境工程原理是指环境工程中应用的原理、方法和技术。
在解决环境问题方面和改善环境的质量方面,一般应用的方法和技术有:环境污染控制、环境灾害防治、环境资源利用、环境卫生管理、绿色建筑、生物多样性保护和环境生物技术,以及其他有关环境工程的技术。
环境污染控制原理是指用于防止任何物质或能量经由污染物或其他环境改变而对环境造成污染的技术和方法。
环境污染控制方法通常包括轻度污染防治、强度污染控制和有毒气体控制等技术。
轻度污染防治技术包括污水处理技术、入海排放技术、空气污染控制技术和固体废物控制等。
强度污染控制技术包括超级污染物控制技术,如放射性污染物、重金属、有机污染物和其他特殊物质等控制技术。
有毒气体控制技术通常包括废气洗涤技术、活性炭吸附技术等。
环境灾害防治是指采取措施,以防止环境污染、污染物在环境中的传播和影响,从而保护环境的技术。
一般的环境灾害防治措施包括:清除污染源、防止污染传播和污染物在环境中的迁移等。
此外,环境灾害防治还包括环境修复、应急预案和灾后重建等。
环境资源利用是指提高环境资源开发和利用的技术,包括环境改造技术、微生物技术、生物资源的开发利用、光伏发电技术、可再生能源技术、环境治理技术和环境政策等等。
其中,环境改造技术是指用来改造环境的一系列技术,包括植被恢复技术、修复技术、土壤治理技术、废弃物处理技术、水资源管理技术、生态修复技术等。
环境卫生管理是指采用一系列管理措施,以防止环境污染、保护环境、促进社会和谐发展的技术。
环境卫生管理内容涉及:环境污染控制、化学物质安全管理、污染物源控制、噪声控制、危险废物处理、能源计量技术、空气质量管理等。
绿色建筑原理是指以降低环境污染、改善环境质量为主要目标,采用低耗能、低污染、低消费的设计、施工、使用和处置措施,以防止建筑物对环境造成污染和危害。
环境工程原理
环境工程原理环境工程原理是环境工程学科的基础和核心,它是指环境工程学科所涉及的环境保护技术、环境治理技术、环境监测技术和环境管理技术等方面的基本原理和理论。
环境工程原理的学习和应用对于环境保护和可持续发展具有重要意义。
首先,环境工程原理涉及到环境污染的成因和影响。
环境污染是指各种有害物质和能量对自然环境造成的破坏和危害。
环境工程原理通过研究各种污染物的来源、传输、转化和影响,揭示了环境污染的机理和规律,为环境治理和污染防治提供了理论依据。
其次,环境工程原理涉及到环境监测和评价的方法和技术。
环境监测是指对环境中各种污染物和环境要素进行实时、连续、准确地监测和分析,以了解环境质量的状况和变化趋势。
环境工程原理通过研究各种监测技术和方法,提出了一系列环境监测和评价的理论体系和技术标准,为环境管理和决策提供了科学依据。
再次,环境工程原理涉及到环境治理和修复的原理和技术。
环境治理是指对环境污染和破坏进行综合治理和修复,以实现环境质量的改善和恢复。
环境工程原理通过研究各种治理和修复技术,提出了一系列环境保护和生态恢复的理论模型和方法,为环境工程实践和工程设计提供了科学指导。
最后,环境工程原理涉及到环境管理和政策的原则和方法。
环境管理是指对环境保护和资源利用进行规划、组织、指导和控制,以实现可持续发展和生态平衡。
环境工程原理通过研究各种管理和政策手段,提出了一系列环境管理和政策的理论框架和实施路径,为环境保护和可持续发展提供了制度保障。
综上所述,环境工程原理是环境工程学科的理论基础和技术支撑,它对于环境保护和可持续发展具有重要意义。
只有深入理解和应用环境工程原理,才能更好地解决环境问题,实现人与自然的和谐共生。
希望通过对环境工程原理的学习和研究,能够为改善环境质量、保护生态环境做出更大的贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.增大传热的措施:1.增大传热面积2.增大平均温差3.提高传热系数2.热量传递方式主要有:导热,热对流和热辐射3.萃取剂的选择:a的大小反映了萃取剂对溶质A的萃取容易程度。
若a>1,表示溶质A在萃取相中的相对含量比萃余相中高,萃取时组分A可以在萃取相中富集,a越大,组分A与B的分离越容易。
若a=1,则组分A与B 在两相中的组成比例相同,不能用萃取的方法分离。
4.膜分离是以具有选择透过功能的薄膜为分离介质,通过在膜两侧施加一种或多种推动力,使原料中的某组分选择性地优先透过膜,从而达到混合物分离和产物的提取,浓缩,纯化等目的。
条件:在选择分离因子时,应使其值大于1。
如果组分A通过膜的速度大于组分B,膜分离因子表示为aA/B;反之。
则为aB/A;如果aA/B=aB/A=1,则不能实现组分A与组分B的分离。
5. 离子交换速率的影响因素:1.离子的性质 2.树脂的交联度 3.树脂的粒径 4.水中离子浓度 5.溶液温度6.流速或搅拌速率6. 本征动力学方程实验测量中怎样消除对外扩散的影响:加大流体流动速度,提高流体湍流程度,可以减小边界层厚度,使边界的扩散阻力小到足以忽略的程度。
7. 吸附剂的主要特性:1.吸附容量大。
2.选择性强。
3.温定性好。
4.适当的物理特性。
5.价廉易得。
常见的吸附剂;活性炭,活性炭纤维,炭分子筛,硅胶,活性氧化铝,沸石分子筛8. 固相催化反应过程:反应物的外扩散—反应物的内扩散—反应物的吸附—表面反应—产物的脱附—产物的内扩散—产物的外扩散9. 测速管特点:测得的是点流速,特点:结构简单,使用方便,流体的能量损失小,因此较多地用于测量气体的流速,特别适用于测量大直径管路中的气体流速。
当流体中含有固体杂质时,易堵塞测压孔。
孔板流量计特点:结构简单,固定安装,安装方便,但流体通过孔板流量计时阻力损失较大。
文丘里流量计特点:阻力损失小,尤其适用于低压气体输送中流量的测量;但加工复杂,造价高,且安装时流量计本身在管道中占据较长的位置。
转子流量计特点:必须垂直安装,流体自下而上流动,能量损失小,测量范围宽,但耐温,耐压性差。
10.物理吸收和化学吸收的区别物理吸收仅仅涉及混合物分中某一祖分的简单传质过程,溶质在气液两相间的平衡关系决定了溶剂在相同传递过程的方向,极限以及传质推动力化学吸收指溶剂A被吸收剂吸收后,继续与吸收剂或者其中的活性组分B发生化学反应,气液相际传质和液相内的化学反应同时进行11.简述温室效应产生的机理(资料:地球和太阳表面温度的平均温度分别为288K 和5800K)地球吸收太阳的辐射能量才能如此巨大的辐射能量,但是,太阳辐射在地球上的波长要远短于地球向空间辐射的波长,这种波长的变化扮演了温室效应中至关重要的角色。
二氧化碳及其他温室气体对于来自太阳的短波相对透明,但是它们往往吸收那些由地球辐射出去的长波。
所以在大气中积累的温室气体,就像一床包裹在地球表面的毯子,搅乱了地球的辐射平衡,导致地球温度升高。
12.为什么多孔材料具有保温性能?保温材料为什么需要防潮多孔材料的孔隙中保留大量气体,气体的导热系数小,从而起到保温效果。
水的导热系数较大,如果保温材料受潮,将会增大整体的导热系数,从而使得保温性能降低,所以要防潮.13.球体在空气中运动,试分析在相同的逆压梯度下,不同流态的边界层对运动阻力的影响。
若球体体积较小,运动速度较快,球体主要受到阻力有摩擦阻力和形体阻力,且形体阻力占主导。
在相同的逆压梯度下,层流边界层靠近壁面侧速度梯度小,边界层分离点靠前,尾流区较大,形体阻力大。
而湍流边界层速度梯度大,边界层分离点后移,尾流区较小,形体阻力减小,运动阻力也相应减小。
14. .某工业废气中含有氨,拟采用吸收法进行预处理。
根据你所学的知识,分析提高氨去除效率的方法和具体措施一、采用吸收能力较强的洗液,如酸性溶液;二、可采用喷雾等方法增大接触面积;三、适当增加压强;四、加快废气流速,加强扰动;五、逆向流动等等。
15. 边界层厚度:通常将流体速率达到来流速率99%时的流体层厚度定义为边界层厚度。
边界层分离的必要条件:黏性作用和逆压梯度。
层流边界层比湍流层更容易分离。
16.圆管层流流动的平均速率为最大速率的一半。
17.对于圆管层流流动的摩擦阻力,流量不变时,产生的能量损失:(1)当管长增加一倍时,阻力损失引起的压降增加一倍.(2)当管径增加一倍时,压降变为原来的1/16.18.强化换热器传热过程的途径:增大传热面积、增大平均温差、提高传热系数减少热阻的主要方法:提高流体的速度、增强流体的扰动、在流体中加固体颗粒、在气流中喷入液滴、采用短管换热器、防止结垢和及时清除污垢19.分子扩散:由分子的微观运动(无规则运动)引起的物质扩散称为分子扩散。
涡流扩散:由流体涡团的宏观运动引起的扩散称为涡流扩散。
20.离子交换速率的控制步骤:A.边界水膜内的迁移B.交联网孔内的扩散C.离子交换D.交联网内的扩散E.边界水膜内的迁移A和E称为液膜扩散步骤或外扩散;B和D称为树脂颗粒内扩散或孔道扩散步C为交换反应步骤22.传质单元是指通过一定高度的填料层传质,使一相组成的变化恰好等于该段填料中的平均推动力,这样一段填料层的传质称为一个传质单元传质单元数即为这些传质单元的数目,只取决于传质前后气,液相的组成和相平衡关系,与设备的情况无关,其值的大小反映了吸收过程的难易程度传质单元高度是完成一个传质单元分离任务所需要的填料层高度,主要取决于设备情况、物理特性及操作条件等,其值大小反映了填料层传质动力学性能的优劣23.离子交换速率的影响因素A.离子性质:离子的化合价越高,其孔道扩散速率越慢B.树脂的交联度:树脂的交联度大,离子在树脂网孔内的扩散就慢C.树脂的粒径:树脂粒径越小,离子在孔道扩散的距离越短,同时液膜扩散的表面积增加,因此树脂整体的交换速率越快。
对于液膜扩散,离子交换速率与树脂粒径成反比;对于孔道扩散,离子交换速率与树脂粒径的二次方程反比D.水中离子浓度:离子浓度越大时,其在水膜中的扩散很快,离子交换速率为孔道扩散控制,反之,为液膜扩散控制E.溶液温度:升高溶液温度,有利于提高栗子交换速率F. 流速或搅拌速率:增加树脂表面水流流速或提高搅拌速率,可以增加树脂表面附近的水流紊动程度,在一定程度上可提高液膜扩散速率。
24.膜传递的过程模型A.通过微孔的传递:在最简单的情况下是单纯的对流传递B.基于扩散的传递:要传递的组分首先必须被溶解在膜相内25.空时:反应器有效体积与物料体积流量之比值。
t=V/qv空速:指单位反应器有效体积所能处理的物料的体积流量。
表示单位时间能处理几倍于反应器体积的物料,反映了一个反应器的强度。
SV= qv/V26. 间歇操作是将反应原料原料一次加入反应器,反应一段时间或达到一定的反应程度后一次取出全部的反应物料,然后进入下一批原料的投入、反应和物料的取出,因此有时也称为分批操作连续地将原料输入反应器,反应物料也连续地流出反应器,这样的操作称为连续操作27.全混流:指反应物进入反应器后,能瞬间达到完全混合,反应器内的浓度、温度等处处相同。
全混流认为返混为无限大。
推流:指物料以相同的流速和一致的方向移动,即物料在反应器内齐头并进,在径向充分混合,但不存在轴向混合,即返混为0.28.平推流反应器的特点:A.在连续稳态操作条件下,反应器各断面上的参数不随时间变化而变化B.反应器内各组分浓度等参数随轴向位置变化而变化,故反应速率随之变化C.在反应器的径向断面上各处浓度均一,不存在浓度分布。
平推流反应器满足条件:A.管式反应器的管长是管径的10倍以上,各断面上的参数不随时间变化而变化B.固相催化反应器的填充层直径是催化剂粒径的10倍以上。
29.基质抑制:对于苯酚、氨、醇类等对微生物生长有毒害作用的基质,在低浓度范围内,生长速率随基质浓度的增加而增加,但当其浓度增加到某一数值时,生长速率反而随基质浓度的增加而降低,这种现象称基质抑制作用代谢产物抑制:在某些情况下,代谢产物会影响微生物的生长,这种现象称代谢产物抑制现象。
30.本征动力学反应物吸附过程控制:表面反应过程控制:PP A APS P A A SA p K p K p K K p K k r ++-=-1)/(产物脱附:)1(1/S A A P P A A S PA K p K K p p K K k r ++-=-31.费克定律:dzdc -D N A AB Az =(用物质的量浓度表示)式中:N Az ——单位时间在z 方向上经单位面积扩散的组分A 的量,即扩散通量,也称扩散速率,kmol/(m 2·s );c A ——组分A 的物质的量浓度,kmol/m 3;D AB ——组分A 在组分B 中进行扩散的分子扩散系数,m 2/s ;dzdc A ——组分A 在z 方向上的浓度梯度,kmol/(m 3·m)。
费克定律表明扩散通量与浓度梯度成正比,负号表示组分A 向浓度减小的方向传递。
对于液体混合物,常用质量分数表示浓度,于是又可写成dzdx D -N mA AB Az ρ=;当混合物的浓度用质量浓度表示时,又可写为dz d -D N AAB Az ρ=32.准数Helfferich 数(He ):根据液膜扩散控制与颗粒内扩散控制两种模型得到的半交换周期,即交换率达到一半时所需要的时间之比,得到:1)/1(+-=-P P S PAS PA aA p K K p K K K p k rHe=1,表示液膜扩散与颗粒内扩散两种控制因素同时存在,且作用相等;He >>1,表示液膜扩散所需要之半交换周期远远大于颗粒内扩散时之半交换周期,故为液膜扩散控制; He <<1,表示为颗粒内扩散控制。
Vermeulen 数(Ve )Ve <0.3,为颗粒内扩散控制;Ve >0.3,为液膜扩散控制; 0.3<Ve <3.0,为两种因素皆起作用的中间状态。
33.细胞产率系数S XY S X ∆-∆==反应消耗的某一基质量细胞的生长量/ X X SX S X C X Y S X Y γγγγ//=∆-∆=⨯⨯=碳源的含碳率碳源消耗量细胞的含碳率细胞生长量34.代谢产物的产率系数s p S P r r S P Y -=∆-∆==基质消耗量代谢产物生成量/S PSP C P Y Y γγ//=⨯⨯=基质含碳率基质消耗量产物含碳率代谢产物生成量35.固体催化剂的物理性状(1)比表面积:单位质量催化剂具有的表面积称为比表面积。
记为a s(2)颗粒孔体积又称孔容积,简称孔容,是指每克催化剂内部微孔所占有的体积,用Vg 表示,其单位是㎝³g ¹。
孔隙率是催化剂颗粒孔容积占总体积的分率,用ᵋp 表示pg p V V ==颗粒总体积颗粒微孔体积ε(3)固体密度又称真密度,是指催化剂固体物质单位体积(不包括孔占有的体积)的质量,用ρs 表示,单位为g.㎝³。