数学高考大题题型归纳必考题型例题(最新整理)

合集下载

高三数学 高考大题专项训练 全套 (15个专项)(典型例题)(含答案)

高三数学 高考大题专项训练 全套 (15个专项)(典型例题)(含答案)

1、函数与导数(1)2、三角函数与解三角形3、函数与导数(2)4、立体几何5、数列(1)6、应用题7、解析几何8、数列(2)9、矩阵与变换10、坐标系与参数方程11、空间向量与立体几何12、曲线与方程、抛物线13、计数原理与二项式分布14、随机变量及其概率分布15、数学归纳法高考压轴大题突破练(一)函数与导数(1)1.已知函数f (x )=a e x x+x . (1)若函数f (x )的图象在(1,f (1))处的切线经过点(0,-1),求a 的值;(2)是否存在负整数a ,使函数f (x )的极大值为正值?若存在,求出所有负整数a 的值;若不存在,请说明理由.解 (1)∵f ′(x )=a e x (x -1)+x 2x 2, ∴f ′(1)=1,f (1)=a e +1.∴函数f (x )在(1,f (1))处的切线方程为y -(a e +1)=x -1,又直线过点(0,-1),∴-1-(a e +1)=-1,解得a =-1e. (2)若a <0,f ′(x )=a e x (x -1)+x 2x 2, 当x ∈(-∞,0)时,f ′(x )>0恒成立,函数在(-∞,0)上无极值;当x ∈(0,1)时,f ′(x )>0恒成立,函数在(0,1)上无极值.方法一 当x ∈(1,+∞)时,若f (x )在x 0处取得符合条件的极大值f (x 0),则⎩⎪⎨⎪⎧ x 0>1,f (x 0)>0,f ′(x 0)=0,则00000200201,e 0,e (1)0,x x x a x x a x x x ⎛ > +> -+ = ⎝①②③ 由③得0e x a =-x 20x 0-1,代入②得-x 0x 0-1+x 0>0, 结合①可解得x 0>2,再由f (x 0)=0e x a x +x 0>0,得a >-020e x x , 设h (x )=-x 2e x ,则h ′(x )=x (x -2)e x, 当x >2时,h ′(x )>0,即h (x )是增函数,∴a >h (x 0)>h (2)=-4e 2.又a <0,故当极大值为正数时,a ∈⎝⎛⎭⎫-4e 2,0, 从而不存在负整数a 满足条件.方法二 当x ∈(1,+∞)时,令H (x )=a e x (x -1)+x 2,则H ′(x )=(a e x +2)x ,∵x ∈(1,+∞),∴e x ∈(e ,+∞),∵a 为负整数,∴a ≤-1,∴a e x ≤a e ≤-e ,∴a e x +2<0,∴H ′(x )<0,∴H (x )在(1,+∞)上单调递减.又H (1)=1>0,H (2)=a e 2+4≤-e 2+4<0,∴∃x 0∈(1,2),使得H (x 0)=0,且当1<x <x 0时,H (x )>0,即f ′(x )>0;当x >x 0时,H (x )<0,即f ′(x )<0.∴f (x )在x 0处取得极大值f (x 0)=0e x a x +x 0.(*) 又H (x 0)=0e x a (x 0-1)+x 20=0, ∴00e x a x =-x 0x 0-1,代入(*)得f (x 0)=-x 0x 0-1+x 0=x 0(x 0-2)x 0-1<0, ∴不存在负整数a 满足条件.2.已知f (x )=ax 3-3x 2+1(a >0),定义h (x )=max{f (x ),g (x )}=⎩⎪⎨⎪⎧f (x ),f (x )≥g (x ),g (x ),f (x )<g (x ). (1)求函数f (x )的极值;(2)若g (x )=xf ′(x ),且∃x ∈[1,2]使h (x )=f (x ),求实数a 的取值范围.解 (1)∵函数f (x )=ax 3-3x 2+1,∴f ′(x )=3ax 2-6x =3x (ax -2),令f ′(x )=0,得x 1=0或x 2=2a, ∵a >0,∴x 1<x 2,当x 变化时,f ′(x ),f (x )的变化情况如下表:∴f (x )的极大值为f (0)=1,极小值为f ⎝⎛⎭⎫2a =8a 2-12a 2+1=1-4a 2. (2)g (x )=xf ′(x )=3ax 3-6x 2,∵∃x ∈[1,2],使h (x )=f (x ),∴f (x )≥g (x )在[1,2]上有解,即ax 3-3x 2+1≥3ax 3-6x 2在[1,2]上有解,即不等式2a ≤1x 3+3x在[1,2]上有解, 设y =1x 3+3x =3x 2+1x3(x ∈[1,2]), ∵y ′=-3x 2-3x 4<0对x ∈[1,2]恒成立, ∴y =1x 3+3x在[1,2]上单调递减, ∴当x =1时,y =1x 3+3x的最大值为4, ∴2a ≤4,即a ≤2.高考中档大题规范练(一)三角函数与解三角形1.(2017·江苏宿迁中学质检)已知函数f (x )=sin 2x +23sin x cos x +sin ⎝⎛⎭⎫x +π4sin ⎝⎛⎭⎫x -π4,x ∈R . (1)求f (x )的最小正周期和值域;(2)若x =x 0⎝⎛⎭⎫0≤x 0≤π2为f (x )的一个零点,求sin 2x 0的值. 解 (1)易得f (x )=sin 2x +3sin 2x +12(sin 2x -cos 2x ) =1-cos 2x 2+3sin 2x -12cos 2x =3sin 2x -cos 2x +12=2sin ⎝⎛⎭⎫2x -π6+12, 所以f (x )的最小正周期为π,值域为⎣⎡⎦⎤-32,52. (2)由f (x 0)=2sin ⎝⎛⎭⎫2x 0-π6+12=0,得 sin ⎝⎛⎭⎫2x 0-π6=-14<0,又由0≤x 0≤π2,得-π6≤2x 0-π6≤5π6, 所以-π6≤2x 0-π6<0,故cos ⎝⎛⎭⎫2x 0-π6=154, 此时sin 2x 0=sin ⎣⎡⎦⎤⎝⎛⎭⎫2x 0-π6+π6 =sin ⎝⎛⎭⎫2x 0-π6cos π6+cos ⎝⎛⎭⎫2x 0-π6sin π6=-14×32+154×12=15-38. 2.(2017·江苏南通四模)已知向量m =⎝⎛⎭⎫sin x 2,1,n =⎝⎛⎭⎫1,3cos x 2,函数f (x )=m ·n . (1)求函数f (x )的最小正周期;(2)若f ⎝⎛⎭⎫α-2π3=23,求f ⎝⎛⎭⎫2α+π3的值. 解 (1)f (x )=m ·n =sin x 2+3cos x 2=2⎝⎛⎭⎫12sin x 2+32cos x 2 =2⎝⎛⎭⎫sin x 2cos π3+cos x 2sin π3 =2sin ⎝⎛⎭⎫x 2+π3,所以函数f (x )的最小正周期为T =2π12=4π. (2)由f ⎝⎛⎭⎫α-2π3=23,得2sin α2=23,即sin α2=13. 所以f ⎝⎛⎭⎫2α+π3=2sin ⎝⎛⎭⎫α+π2=2cos α =2⎝⎛⎭⎫1-2sin 2α2=149. 3.(2017·江苏南师大考前模拟)已知△ABC 为锐角三角形,向量m =⎝⎛⎭⎫cos ⎝⎛⎭⎫A +π3,sin ⎝⎛⎭⎫A +π3,n =(cos B ,sin B ),并且m ⊥n .(1)求A -B ; (2)若cos B =35,AC =8,求BC 的长. 解 (1)因为m ⊥n ,所以m ·n =cos ⎝⎛⎭⎫A +π3cos B +sin ⎝⎛⎭⎫A +π3sin B=cos ⎝⎛⎭⎫A +π3-B =0. 因为0<A ,B <π2,所以-π6<A +π3-B <5π6, 所以A +π3-B =π2,即A -B =π6. (2)因为cos B =35,B ∈⎝⎛⎭⎫0,π2,所以sin B =45, 所以sin A =sin ⎝⎛⎭⎫B +π6=sin B cos π6+cos B sin π6=45×32+35×12=43+310, 由正弦定理可得BC =sin A sin B×AC =43+3. 4.(2017·江苏镇江三模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且(a -c )(sin A +sin C )=(b -3c )sin B .(1)求角A ;(2)若f (x )=cos 2(x +A )-sin 2(x -A ),求f (x )的单调递增区间.解 (1)由(a -c )(sin A +sin C )=(b -3c )sin B 及正弦定理,得(a -c )(a +c )=(b -3c )b ,即a 2=b 2+c 2-3bc . 由余弦定理,得cos A =32, 因为0<A <π,所以A =π6. (2)f (x )=cos 2(x +A )-sin 2(x -A )=cos 2⎝⎛⎭⎫x +π6-sin 2⎝⎛⎭⎫x -π6 =1+cos ⎝⎛⎭⎫2x +π32-1-cos ⎝⎛⎭⎫2x -π32=12cos 2x , 令π+2k π≤2x ≤2π+2k π,k ∈Z ,得π2+k π≤x ≤π+k π,k ∈Z . 则f (x )的单调增区间为⎣⎡⎦⎤π2+k π,π+k π,k ∈Z .(二)函数与导数(2)1.设函数f (x )=2(a +1)x (a ∈R ),g (x )=ln x +bx (b ∈R ),直线y =x +1是曲线y =f (x )的一条切线.(1)求a 的值;(2)若函数y =f (x )-g (x )有两个极值点x 1,x 2.①试求b 的取值范围;②证明:g (x 1)+g (x 2)f (x 1)+f (x 2)≤1e 2+12. 解 (1)设直线y =x +1与函数y =f (x )的图象相切于点(x 0,y 0),则y 0=x 0+1,y 0=2(a +1)x 0,a +1x 0=1,解得a =0. (2)记h (x )=f (x )-g (x ),则h (x )=2x -ln x -bx .①函数y =f (x )-g (x )有两个极值点的必要条件是h ′(x )有两个正零点.h ′(x )=1x -1x-b =-bx +x -1x , 令h ′(x )=0,得bx -x +1=0(x >0).令x =t ,则t >0.问题转化为bt 2-t +1=0有两个不等的正实根t 1,t 2,等价于⎩⎪⎨⎪⎧ Δ=1-4b >0,t 1t 2=1b >0,t 1+t 2=1b >0,解得0<b <14. 当0<b <14时,设h ′(x )=0的两正根为x 1,x 2,且x 1<x 2, 则h ′(x )=-bx +x -1x =-b (x -x 1)(x -x 2)x =-b (x -x 1)(x -x 2)x (x +x 1)(x +x 2). 当x ∈(0,x 1)时,h ′(x )<0;当x ∈(x 1,x 2)时,h ′(x )>0;当x ∈(x 2,+∞)时,h ′(x )<0. 所以x 1,x 2是h (x )=f (x )-g (x )的极值点,∴b 的取值范围是⎝⎛⎭⎫0,14. ②由①知x 1x 2=x 1+x 2=1b.可得g (x 1)+g (x 2)=-2ln b +1b -2,f (x 1)+f (x 2)=2b, 所以g (x 1)+g (x 2)f (x 1)+f (x 2)=12-b ln b -b . 记k (b )=12-b ln b -b ⎝⎛⎭⎫0<b <14, 则k ′(b )=-ln b -2,令k ′(b )=0,得b =1e 2∈⎝⎛⎭⎫0,14, 且当b ∈⎝⎛⎭⎫0,1e 2时,k ′(b )>0,k (b )单调递增; 当b ∈⎝⎛⎭⎫1e 2,14时,k ′(b )<0,k (b )单调递减,且当b =1e 2时,k (b )取最大值1e 2+12, 所以g (x 1)+g (x 2)f (x 1)+f (x 2)≤1e 2+12. 2.设函数f (x )=2ax +b x+c ln x . (1)当b =0,c =1时,讨论函数f (x )的单调区间;(2)若函数f (x )在x =1处的切线为y =3x +3a -6且函数f (x )有两个极值点x 1,x 2,x 1<x 2. ①求a 的取值范围;②求f (x 2)的取值范围.解 (1)f (x )=2ax +b x+c ln x ,x >0, f ′(x )=2a -b x 2+c x =2ax 2+cx -b x 2. 当b =0,c =1时,f ′(x )=2ax +1x. 当a ≥0时,由x >0,得f ′(x )=2ax +1x>0恒成立, 所以函数f (x )在(0,+∞)上单调递增.当a <0时,令f ′(x )=2ax +1x >0,解得x <-12a; 令f ′(x )=2ax +1x <0,解得x >-12a, 所以,函数f (x )在⎝⎛⎭⎫0,-12a 上单调递增,在⎝⎛⎭⎫-12a ,+∞上单调递减. 综上所述,①当a ≥0时,函数f (x )在(0,+∞)上单调递增;②当a <0时,函数f (x )在⎝⎛⎭⎫0,-12a上单调递增,在⎝⎛⎭⎫-12a ,+∞上单调递减. (2)①函数f (x )在x =1处的切线为y =3x +3a -6,所以f (1)=2a +b =3a -3,f ′(1)=2a +c -b =3,所以b =a -3,c =-a ,f ′(x )=2a -b x 2+c x =2ax 2-ax +3-a x 2, 函数f (x )有两个极值点x 1,x 2,x 1<x 2,则方程2ax 2-ax +3-a =0有两个大于0的解,⎩⎨⎧ Δ=(-a )2-8a (3-a )>0,a 2a >0,3-a 2a >0,解得83<a <3. 所以a 的取值范围是⎝⎛⎭⎫83,3.②2ax 22-ax 2+3-a =0,x 2=a +9a 2-24a 4a =14⎝⎛⎭⎫1+ 9-24a , 由83<a <3,得x 2∈⎝⎛⎭⎫14,12, 由2ax 22-ax 2+3-a =0,得a =-32x 22-x 2-1. f (x 2)=2ax 2+a -3x 2-a ln x 2 =a ⎝⎛⎭⎫2x 2+1x 2-ln x 2-3x 2=-32x 2+1x 2-ln x 22x 22-x 2-1-3x 2. 设φ(t )=-32t +1t -ln t 2t 2-t -1-3t ,t ∈⎝⎛⎭⎫14,12, φ′(t )=-3⎝⎛⎭⎫2-1t 2-1t (2t 2-t -1)-⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2+3t2 =-31t 2(2t 2-t -1)2+3⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2+3t 2=3⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2. 当t ∈⎝⎛⎭⎫14,12时,2t +1t-ln t >0,4t -1>0,φ′(t )>0,所以φ(t )在⎝⎛⎭⎫14,12上单调递增,φ(t )∈⎝⎛⎭⎫163ln 2,3+3ln 2, 所以f (x 2)的取值范围是⎝⎛⎭⎫163ln 2,3+3ln 2. (二)立体几何1.(2017·江苏扬州调研)如图,在四棱锥P -ABCD 中,底面ABCD 为梯形,CD ∥AB ,AB =2CD ,AC 交BD 于O ,锐角△P AD 所在平面⊥底面ABCD ,P A ⊥BD ,点Q 在侧棱PC 上,且PQ =2QC .求证:(1)P A ∥平面QBD ;(2)BD ⊥AD .证明 (1)如图,连结OQ ,因为AB∥CD,AB=2CD,所以AO=2OC.又PQ=2QC,所以P A∥OQ.又OQ⊂平面QBD,P A⊄平面QBD,所以P A∥平面QBD.(2)在平面P AD内过P作PH⊥AD于点H,因为侧面P AD⊥底面ABCD,平面P AD∩平面ABCD=AD,PH⊂平面P AD,所以PH⊥平面ABCD.又BD⊂平面ABCD,所以PH⊥BD.又P A⊥BD,P A∩PH=P,所以BD⊥平面P AD.又AD⊂平面P AD,所以BD⊥AD.2.如图,在四棱锥P-ABCD中,底面ABCD是正方形,AC与BD交于点O,PC⊥底面ABCD,E为PB上一点,G为PO的中点.(1)若PD∥平面ACE,求证:E为PB的中点;(2)若AB=2PC,求证:CG⊥平面PBD.证明(1)连结OE,由四边形ABCD是正方形知,O为BD的中点,因为PD∥平面ACE,PD⊂平面PBD,平面PBD∩平面ACE=OE,所以PD∥OE.因为O为BD的中点,所以E为PB的中点.(2)在四棱锥P-ABCD中,AB=2PC,因为四边形ABCD是正方形,所以OC=22AB,所以PC=OC.因为G为PO的中点,所以CG⊥PO.又因为PC⊥底面ABCD,BD⊂底面ABCD,所以PC⊥BD.而四边形ABCD是正方形,所以AC⊥BD,因为AC,PC⊂平面P AC,AC∩PC=C,所以BD⊥平面P AC,因为CG⊂平面P AC,所以BD⊥CG.因为PO,BD⊂平面PBD,PO∩BD=O,所以CG⊥平面PBD.3.(2017·江苏怀仁中学模拟)如图,在四棱锥E-ABCD中,△ABD为正三角形,EB=ED,CB=CD.(1)求证:EC⊥BD;(2)若AB⊥BC,M,N分别为线段AE,AB的中点,求证:平面DMN∥平面BCE.证明(1)取BD的中点O,连结EO,CO.∵CD=CB,EB=ED,∴CO⊥BD,EO⊥BD.又CO∩EO=O,CO,EO⊂平面EOC,∴BD⊥平面EOC.又EC⊂平面EOC,∴BD⊥EC.(2)∵N是AB的中点,△ABD为正三角形,∴DN⊥AB,∵BC⊥AB,∴DN∥BC.又BC⊂平面BCE,DN⊄平面BCE,∴DN∥平面BCE.∵M为AE的中点,N为AB的中点,∴MN∥BE,又MN⊄平面BCE,BE⊂平面BCE,∴MN∥平面BCE.∵MN∩DN=N,∴平面DMN∥平面BCE.4.(2017·江苏楚水中学质检)如图,在三棱锥P-ABC中,点E,F分别是棱PC,AC的中点.(1)求证:P A∥平面BEF;(2)若平面P AB⊥平面ABC,PB⊥BC,求证:BC⊥P A.证明(1)在△P AC中,E,F分别是棱PC,AC的中点,所以P A∥EF.又P A⊄平面BEF,EF⊂平面BEF,所以P A∥平面BEF.(2)在平面P AB内过点P作PD⊥AB,垂足为D.因为平面P AB ⊥平面ABC ,平面P AB ∩平面ABC =AB ,PD ⊂平面P AB ,所以PD ⊥平面ABC , 因为BC ⊂平面ABC ,所以PD ⊥BC ,又PB ⊥BC ,PD ∩PB =P ,PD ⊂平面P AB ,PB ⊂平面P AB ,所以BC ⊥平面P AB , 又P A ⊂平面P AB ,所以BC ⊥P A .(三)数 列(1)1.已知数列{a n }的前n 项和为S n ,且S n +a n =4,n ∈N *. (1)求数列{a n }的通项公式;(2)已知c n =2n +3(n ∈N *),记d n =c n +log C a n (C >0且C ≠1),是否存在这样的常数C ,使得数列{d n }是常数列,若存在,求出C 的值;若不存在,请说明理由.(3)若数列{b n },对于任意的正整数n ,均有b 1a n +b 2a n -1+b 3a n -2+…+b n a 1=⎝⎛⎭⎫12n -n +22成立,求证:数列{b n }是等差数列. (1)解 a 1=4-a 1,所以a 1=2,由S n +a n =4,得当n ≥2时,S n -1+a n -1=4, 两式相减,得2a n =a n -1,所以a n a n -1=12,数列{a n }是以2为首项,公比为12的等比数列,所以a n =22-n (n ∈N *). (2)解 由于数列{d n }是常数列, d n =c n +log C a n =2n +3+(2-n )log C 2 =2n +3+2log C 2-n log C 2=(2-log C 2)n +3+2log C 2为常数, 则2-log C 2=0, 解得C =2,此时d n =7.(3)证明 b 1a n +b 2a n -1+b 3a n -2+…+b n a 1 =⎝⎛⎭⎫12n -n +22,①当n =1时,b 1a 1=12-32=-1,其中a 1=2,所以b 1=-12.当n ≥2时,b 1a n -1+b 2a n -2+b 3a n -3+…+b n -1a 1=⎝⎛⎭⎫12n -1-n +12,② ②式两边同时乘以12,得b 1a n +b 2a n -1+b 3a n -2+…+b n -1a 2=⎝⎛⎭⎫12n -n +14,③ 由①-③,得b n a 1=-n -34,所以b n =-n 8-38(n ∈N *,n ≥2),且b n +1-b n =-18,又b 1=-12=-18-38,所以数列{b n }是以-12为首项,公差为-18的等差数列.2.在数列{a n }中,已知a 1=13,a n +1=13a n -23n +1,n ∈N *,设S n 为{a n }的前n 项和.(1)求证:数列{3n a n }是等差数列; (2)求S n ;(3)是否存在正整数p ,q ,r (p <q <r ),使S p ,S q ,S r 成等差数列?若存在,求出p ,q ,r 的值;若不存在,说明理由.(1)证明 因为a n +1=13a n -23n +1,所以3n +1a n +1-3n a n =-2. 又因为a 1=13,所以31·a 1=1,所以{3n a n }是首项为1,公差为-2的等差数列. (2)解 由(1)知3n a n =1+(n -1)·(-2)=3-2n ,所以a n =(3-2n )⎝⎛⎭⎫13n,所以S n =1·⎝⎛⎭⎫131+(-1)·⎝⎛⎭⎫132+(-3)·⎝⎛⎭⎫133+…+(3-2n )·⎝⎛⎭⎫13n , 所以13S n =1·⎝⎛⎭⎫132+(-1)·⎝⎛⎭⎫133+…+(5-2n )·⎝⎛⎭⎫13n +(3-2n )·⎝⎛⎭⎫13n +1, 两式相减,得23S n =13-2⎣⎡⎦⎤⎝⎛⎭⎫132+⎝⎛⎭⎫133+…+⎝⎛⎭⎫13n -(3-2n )·⎝⎛⎭⎫13n +1=13-2⎣⎢⎡⎦⎥⎤19×1-⎝⎛⎭⎫13n -11-13+(2n -3)·⎝⎛⎭⎫13n +1=2n ·⎝⎛⎭⎫13n +1, 所以S n =n 3n .(3)解 假设存在正整数p ,q ,r (p <q <r ),使S p ,S q ,S r 成等差数列,则2S q =S p +S r ,即2q3q =p 3p +r 3r. 当n ≥2时,a n =(3-2n )⎝⎛⎭⎫13n<0,所以数列{S n }单调递减. 又p <q ,所以p ≤q -1且q 至少为2, 所以p 3p ≥q -13q -1,q -13q -1-2q 3q =q -33q .①当q ≥3时,p 3p ≥q -13q -1≥2q 3q ,又r 3r >0,所以p 3p +r 3r >2q3q ,等式不成立. ②当q =2时,p =1,所以49=13+r 3r ,所以r 3r =19,所以r =3({S n }单调递减,解惟一确定). 综上可知,p ,q ,r 的值为1,2,3.(三)应用题1.已知某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为1.8元/千克,每次购买配料需支付运费236元.每次购买来的配料还需支付保管费用,其标准如下:7天以内(含7天),无论重量多少,均按10元/天支付;超出7天以外的天数,根据实际剩余配料的重量,以每天0.03元/千克支付.(1)当9天购买一次配料时,求该厂用于配料的保管费用P 是多少元?(2)设该厂x 天购买一次配料,求该厂在这x 天中用于配料的总费用y (元)关于x 的函数关系式,并求该厂多少天购买一次配料才能使平均每天支付的费用最少? 解 (1)当9天购买一次时,该厂用于配料的保管费用 P =70+0.03×200×(1+2)=88(元).(2)①当x ≤7时,y =360x +10x +236=370x +236,②当x >7时,y =360x +236+70+6[(x -7)+(x -6)+…+2+1]=3x 2+321x +432,∴y =⎩⎪⎨⎪⎧370x +236,x ≤7,3x 2+321x +432,x >7,∴设该厂x 天购买一次配料平均每天支付的费用为f (x )元.f (x )=⎩⎨⎧370x +236x,x ≤7,3x 2+321x +432x,x >7.当x ≤7时,f (x )=370+236x ,当且仅当x =7时,f (x )有最小值2 8267≈404(元);当x >7时,f (x )=3x 2+321x +432x =3⎝⎛⎭⎫x +144x +321≥393.当且仅当x =12时取等号.∵393<404,∴当x =12时f (x )有最小值393元.2.南半球某地区冰川的体积每年中随时间而变化,现用t 表示时间,以月为单位,年初为起点,根据历年的数据,冰川的体积(亿立方米)关于t 的近似函数的关系式为V (t )=⎩⎪⎨⎪⎧-t 3+11t 2-24t +100,0<t ≤10,4(t -10)(3t -41)+100,10<t ≤12.(1)该冰川的体积小于100亿立方米的时期称为衰退期.以i -1<t <i 表示第i 月份(i =1,2,…,12),问一年内哪几个月是衰退期? (2)求一年内该地区冰川的最大体积.解 (1)当0<t ≤10时,V (t )=-t 3+11t 2-24t +100<100,化简得t 2-11t +24>0,解得t <3或t >8.又0<t ≤10,故0<t <3或8<t ≤10,当10<t ≤12时,V (t )=4(t -10)(3t -41)+100<100, 解得10<t <413,又10<t ≤12,故10<t ≤12.综上得0<t <3或8<t ≤12.所以衰退期为1月,2月,3月,9月,10月,11月,12月共7个月. (2)由(1)知,V (t )的最大值只能在(3,9)内取到.由V ′(t )=(-t 3+11t 2-24t +100)′=-3t 2+22t -24, 令V ′(t )=0,解得t =6或t =43(舍去).当t 变化时,V ′(t )与V (t )的变化情况如下表:由上表,V (t )在t =6时取得最大值V (6)=136(亿立方米). 故该冰川的最大体积为136亿立方米.3.如图,某城市有一条公路从正西方AO 通过市中心O 后转向东偏北α角方向的OB .位于该市的某大学M 与市中心O 的距离OM =313 km ,且∠AOM =β.现要修筑一条铁路L ,L 在OA 上设一站A ,在OB 上设一站B ,铁路在AB 部分为直线段,且经过大学M .其中tan α=2,cos β=313,AO =15 km.(1)求大学M 与站A 的距离AM ; (2)求铁路AB 段的长AB .解 (1)在△AOM 中,AO =15,∠AOM =β且cos β=313,OM =313, 由余弦定理,得AM 2=OA 2+OM 2-2OA ·OM ·cos ∠AOM =152+(313)2-2×15×313×313=13×9+15×15-2×3×15×3=72.∴AM =62,即大学M 与站A 的距离(2)∵cos β=313,且β为锐角,∴sin β=213, 在△AOM 中,由正弦定理,得AM sin β=OMsin ∠MAO ,即62213=313sin ∠MAO ,sin ∠MAO =22, ∴∠MAO =π4,∴∠ABO =α-π4,∵tan α=2,∴sin α=25,cos α=15, ∴sin ∠ABO =sin ⎝⎛⎭⎫α-π4=110, 又∠AOB =π-α,∴sin ∠AOB =sin(π-α)=25. 在△AOB 中,OA =15,由正弦定理,得 AB sin ∠AOB =OA sin ∠ABO,即AB 25=15110,∴AB =302,即铁路AB 段的长为30 2 km.4.(2017·江苏苏州大学指导卷)如图,某地区有一块长方形植物园ABCD ,AB =8(百米),BC =4(百米).植物园西侧有一块荒地,现计划利用该荒地扩大植物园面积,使得新的植物园为HBCEFG ,满足下列要求:E 在CD 的延长线上,H 在BA 的延长线上,DE =0.5(百米),AH =4(百米),N 为AH 的中点,FN ⊥AH ,EF 为曲线段,它上面的任意一点到AD 与AH 的距离的乘积为定值,FG ,GH 均为线段,GH ⊥HA ,GH =0.5(百米).(1)求四边形FGHN 的面积;(2)已知音乐广场M 在AB 上,AM =2(百米),若计划在EFG 的某一处P 开一个植物园大门,在原植物园ABCD 内选一点Q 为中心建一个休息区,使得QM =PM ,且∠QMP =90°,问点P 在何处时,AQ 最小.解 (1)以A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴,建立平面直角坐标系如图所示.则E ⎝⎛⎭⎫-12,4,因为E 到AD 与AH 距离的乘积为2, 所以曲线EF 上的任意一点都在函数y =-2x 的图象上.由题意,N (-2,0),所以F (-2,1).四边形FGHN 的面积为12×⎝⎛⎭⎫12+1×2=32(平方百米). (2)设P (x ,y ),则MP →=(x -2,y ),MQ →=(y ,-x +2),AQ →=(y +2,-x +2),因为点Q 在原植物园内,所以⎩⎪⎨⎪⎧0≤y +2≤8,0≤2-x ≤4,即-2≤x ≤2.又点P 在曲线EFG 上,x ∈⎣⎡⎦⎤-4,-12, 所以-2≤x ≤-12,则点P 在曲线段EF 上,AQ =(y +2)2+(2-x )2, 因为y =-2x ,所以AQ =⎝⎛⎭⎫-2x +22+(2-x )2= x 2+4x 2-4x -8x+8=⎝⎛⎭⎫x +2x 2-4⎝⎛⎭⎫x +2x +4=⎝⎛⎭⎫x +2x -22=-x +2-x+2≥22+2. 当且仅当-x =-2x,即x =-2时等号成立.此时点P (-2,2),即点P 在距离AD 与AH 均为2百米时,AQ 最小.(四)解析几何1.已知点A (x 1,y 1),B (x 2,y 2)(x 1x 2≠0),O 是坐标原点,P 是线段AB 的中点,若C 是点A 关于原点的对称点,Q 是线段BC 的中点,且OP =OQ ,设圆P 的方程为x 2+y 2-(x 1+x 2)x -(y 1+y 2)y =0.(1)证明:线段AB 是圆P 的直径;(2)若存在正数p 使得2p (x 1+x 2)=y 21+y 22+8p 2+2y 1y 2成立,当圆P 的圆心到直线x -2y =0的距离的最小值为255时,求p 的值.(1)证明 由题意知,点P 的坐标为⎝⎛⎭⎫x 1+x 22,y 1+y 22,点A (x 1,y 1)关于原点的对称点为C (-x 1,-y 1),那么点Q 的坐标为⎝⎛⎭⎫-x 1+x 22,-y 1+y 22,由OP =OQ ,得OP 2=OQ 2, 即⎝⎛⎭⎫x 1+x 222+⎝⎛⎭⎫y 1+y 222=⎝⎛⎭⎫-x 1+x 222+⎝⎛⎭⎫-y 1+y 222,得(x 1+x 2)2+(y 1+y 2)2=(x 1-x 2)2+(y 1-y 2)2, 从而x 1x 2+y 1y 2=0,由此得OA ⊥OB ,由方程x 2+y 2-(x 1+x 2)x -(y 1+y 2)y =0知,圆P 过原点,且点A ,B 在圆P 上, 故线段AB 是圆P 的直径.(2)解 由2p (x 1+x 2)=y 21+y 22+8p 2+2y 1y 2,得x 1+x 2=12p [(y 1+y 2)2+8p 2],又圆心P ⎝⎛⎭⎫x 1+x 22,y 1+y 22到直线x -2y =0的距离为d =⎪⎪⎪⎪x 1+x 22-(y 1+y 2)5=⎪⎪⎪⎪14p [(y 1+y 2)2+8p 2]-(y 1+y 2)5=[(y 1+y 2)-2p ]2+4p 245p ≥4p 245p,当且仅当y 1+y 2=2p 时,等号成立,所以4p 245p =255,从而得p =2.2.如图,F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,O 是坐标原点,OF =5,过点F 作OF 的垂线交椭圆C 于P 0,Q 0两点,△OP 0Q 0的面积为453.(1)求椭圆的标准方程;(2)若过点M (-5,0)的直线l 与上、下半椭圆分别交于点P ,Q ,且PM =2MQ ,求直线l 的方程.解 (1)由题设条件,P 0F =00OP Q S OF∆=4535=43.易知P 0F =b 2a ,所以b 2a =43.又c =OF =5,即a 2-b 2=5,因此a 2-43a -5=0,解得a =3或a =-53,又a >0,所以a =3,从而b =2. 故所求椭圆的标准方程为x 29+y 24=1.(2)设P (x 1,y 1),Q (x 2,y 2),由题意y 1>0,y 2<0, 并可设直线l :x =ty -5, 代入椭圆方程得(ty -5)29+y 24=1,即(4t 2+9)y 2-85ty -16=0. 从而y 1+y 2=85t 4t 2+9,y 1y 2=-164t 2+9.又由PM =2MQ ,得y 1-y 2=PMMQ=2,即y 1=-2y 2.因此y 1+y 2=-y 2,y 1y 2=-2y 22, 故-164t 2+9=-2⎝ ⎛⎭⎪⎫-85t 4t 2+92,可解得t 2=14.注意到y 2=-85t 4t 2+9且y 2<0,知t >0,因此t =12.故满足题意的直线l 的方程为2x -y +25=0.3.如图,在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,直线l :y =-12x 与椭圆E 相交于A ,B 两点,AB =210,C ,D 是椭圆E 上异于A ,B 的两点,且直线AC ,BD 相交于点P ,直线AD ,BC 相交于点Q .(1)求椭圆E 的标准方程; (2)求证:直线PQ 的斜率为定值. (1)解 因为e =c a =32,所以c 2=34a 2,即a 2-b 2=34a 2,所以a =2b .所以椭圆方程为x 24b 2+y 2b2=1.由题意不妨设点A 在第二象限,点B 在第四象限,由⎩⎨⎧y =-12x ,x 24b 2+y2b 2=1,得A (-2b ,22b ). 又AB =210,所以OA =10, 则2b 2+12b 2=52b 2=10,得b =2,a =4.所以椭圆E 的标准方程为x 216+y 24=1.(2)证明 由(1)知,椭圆E 的方程为x 216+y 24=1,A (-22,2),B (22,-2).①当直线CA ,CB ,DA ,DB 的斜率都存在,且不为零时,设直线CA ,DA 的斜率分别为k 1,k 2,C (x 0,y 0),显然k 1≠k 2.从而k 1·k CB =y 0-2x 0+22·y 0+2x 0-22=y 20-2x 20-8=4⎝⎛⎭⎫1-x 2016-2x 20-8=2-x 204x 20-8=-14,所以k CB =-14k 1.同理k DB =-14k 2.所以直线AD 的方程为y -2=k 2(x +22),直线BC 的方程为y +2=-14k 1(x -22), 由⎩⎪⎨⎪⎧y +2=-14k 1(x -22),y -2=k 2(x +22), 解得⎩⎪⎨⎪⎧x =22(-4k 1k 2-4k 1+1)4k 1k 2+1,y =2(-4k 1k 2+4k 2+1)4k 1k 2+1,从而点Q 的坐标为⎝ ⎛⎭⎪⎫22(-4k 1k 2-4k 1+1)4k 1k 2+1,2(-4k 1k 2+4k 2+1)4k 1k 2+1.用k 2代替k 1,k 1代替k 2得点P 的坐标为⎝ ⎛⎭⎪⎫22(-4k 1k 2-4k 2+1)4k 1k 2+1,2(-4k 1k 2+4k 1+1)4k 1k 2+1.所以k PQ =2(-4k 1k 2+4k 2+1)4k 1k 2+1-2(-4k 1k 2+4k 1+1)4k 1k 2+122(-4k 1k 2-4k 1+1)4k 1k 2+1-22(-4k 1k 2-4k 2+1)4k 1k 2+1=42(k 2-k 1)82(k 2-k 1)=12.即直线PQ 的斜率为定值,其定值为12.②当直线CA ,CB ,DA ,DB 中,有直线的斜率不存在时,由题意得,至多有一条直线的斜率不存在,不妨设直线CA 的斜率不存在,从而C (-22,-2). 设DA 的斜率为k ,由①知,k DB =-14k.因为直线CA :x =-22,直线DB :y +2=-14k (x -22),得P ⎝⎛⎭⎫-22,-2+2k . 又直线BC :y =-2,直线AD :y -2=k (x +22), 得Q ⎝⎛⎭⎫-22-22k ,-2, 所以k PQ =12.由①②可知,直线PQ 的斜率为定值,其定值为12.4.(2017·江苏预测卷)平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率是32,右准线的方程为x =433.(1)求椭圆C 的方程;(2)已知点P ⎝⎛⎭⎫12,2,过x 轴上的一个定点M 作直线l 与椭圆C 交于A ,B 两点,若三条直线P A ,PM ,PB 的斜率成等差数列,求点M 的坐标. 解 (1)因为椭圆的离心率为32,右准线的方程为x =433, 所以e =c a =32,a 2c =433,则a =2,c =3,b =1,椭圆C 的方程为x 24+y 2=1.(2)设M (m,0),当直线l 为y =0时,A (-2,0),B (2,0), P A ,PM ,PB 的斜率分别为 k P A =45,k PM =41-2m,k PB =-43,因为直线P A ,PM ,PB 的斜率成等差数列, 所以81-2m =45-43,m =8.证明如下:当M (8,0)时,直线P A ,PM ,PB 的斜率构成等差数列, 设AB :y =k (x -8),代入椭圆方程x 2+4y 2-4=0, 得x 2+4k 2(x -8)2-4=0,即(1+4k 2)x 2-64k 2x +256k 2-4=0, 设A (x 1,y 1),B (x 2,y 2),则 x 1+x 2=64k 21+4k 2,x 1x 2=256k 2-41+4k 2,又k PM =0-28-12=-415, 所以k P A +k PB =y 1-2x 1-12+y 2-2x 2-12=kx 1-8k -2x 1-12+kx 2-8k -2x 2-12=2k +⎝⎛⎭⎫-152k -2⎝ ⎛⎭⎪⎫1x 1-12+1x 2-12 =2k +⎝⎛⎭⎫-152k -2(x 1+x 2)-1x 1x 2-12(x 1+x 2)+14=2k +⎝⎛⎭⎫-152k -264k 21+4k 2-1256k 2-41+4k 2-12×64k 21+4k 2+14=2k +⎝⎛⎭⎫-152k -260k 2-1154(60k 2-1)=-815=2k PM ,即证. (四)数 列(2)1.已知{a n },{b n },{c n }都是各项不为零的数列,且满足a 1b 1+a 2b 2+…+a n b n =c n S n ,n ∈N *,其中S n 是数列{a n }的前n 项和,{c n }是公差为d (d ≠0)的等差数列. (1)若数列{a n }是常数列,d =2,c 2=3,求数列{b n }的通项公式; (2)若a n =λn (λ是不为零的常数),求证:数列{b n }是等差数列;(3)若a 1=c 1=d =k (k 为常数,k ∈N *),b n =c n +k (n ≥2,n ∈N *),求证:对任意的n ≥2,n ∈N *,数列⎩⎨⎧⎭⎬⎫b n a n 单调递减.(1)解 因为d =2,c 2=3,所以c n =2n -1. 因为数列{a n }是各项不为零的常数列, 所以a 1=a 2=…=a n ,S n =na 1.则由c n S n =a 1b 1+a 2b 2+…+a n b n 及c n =2n -1,得 n (2n -1)=b 1+b 2+…+b n ,当n ≥2时,(n -1)(2n -3)=b 1+b 2+…+b n -1, 两式相减得b n =4n -3.当n =1时,b 1=1也满足b n =4n -3. 故b n =4n -3(n ∈N *).(2)证明 因为a 1b 1+a 2b 2+…+a n b n =c n S n , 当n ≥2时,c n -1S n -1=a 1b 1+a 2b 2+…+a n -1b n -1, 两式相减得c n S n -c n -1S n -1=a n b n , 即(S n -1+a n )c n -S n -1c n -1=a n b n , S n -1(c n -c n -1)+a n c n =a n b n , 所以S n -1d +λnc n =λnb n .又S n -1=λ+λ(n -1)2(n -1)=λn (n -1)2,所以λn (n -1)2d +λnc n =λnb n ,即(n -1)2d +c n =b n ,(*) 所以当n ≥3时,(n -2)2d +c n -1=b n -1,两式相减得b n -b n -1=32d (n ≥3),所以数列{b n }从第二项起是公差为32d 的等差数列.又当n =1时,由c 1S 1=a 1b 1,得c 1=b 1. 当n =2时,由(*)得b 2=(2-1)2d +c 2=12d +(c 1+d )=b 1+32d ,得b 2-b 1=32d .故数列{b n }是公差为32d 的等差数列.(3)证明 由(2)得当n ≥2时,S n -1(c n -c n -1)+a n c n =a n b n ,即S n -1d =a n (b n -c n ). 因为b n =c n +k ,所以b n =c n +kd , 即b n -c n =kd , 所以S n -1d =a n ·kd , 即S n -1=ka n ,所以S n =S n -1+a n =(k +1)a n . 当n ≥3时,S n -1=(k +1)a n -1, 两式相减得a n =(k +1)a n -(k +1)a n -1, 即a n =k +1k a n -1,故从第二项起数列{a n }是等比数列, 所以当n ≥2时,a n =a 2⎝⎛⎭⎫k +1k n -2,b n =c n +k =c n +kd =c 1+(n -1)k +k 2=k +(n -1)k +k 2=k (n +k ), 另外由已知条件得(a 1+a 2)c 2=a 1b 1+a 2b 2. 又c 2=2k ,b 1=k ,b 2=k (2+k ), 所以a 2=1,因而a n =⎝⎛⎭⎫k +1k n -2.令d n =b na n ,则d n +1d n =b n +1a n a n +1b n =(n +k +1)k (n +k )(k +1).因为(n +k +1)k -(n +k )(k +1)=-n <0, 所以d n +1d n<1,所以对任意的n ≥2,n ∈N *,数列⎩⎨⎧⎭⎬⎫b n a n 单调递减.2.已知数列{a n }的前n 项和为S n ,且a 1=1,a 2=2,设b n =a n +a n +1,c n =a n ·a n +1(n ∈N *). (1)若数列{b 2n -1}是公比为3的等比数列,求S 2n ; (2)若数列{b n }是公差为3的等差数列,求S n ;(3)是否存在这样的数列{a n },使得{b n }成等差数列和{c n }成等比数列同时成立,若存在,求出{a n }的通项公式;若不存在,请说明理由. 解 (1)b 1=a 1+a 2=1+2=3,S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=b 1+b 3+…+b 2n -1=3(1-3n )1-3=3n +1-32.(2)∵b n +1-b n =a n +2-a n =3,∴{a 2k -1},{a 2k }均是公差为3的等差数列,a 2k -1=a 1+(k -1)·3=3k -2,a 2k =a 2+(k -1)·3=3k -1,当n =2k (k ∈N *)时,S n =S 2k =(a 1+a 3+…+a 2k -1)+(a 2+a 4+…+a 2k )=k (1+3k -2)2+k (2+3k -1)2=3k 2=3n 24;当n =2k -1(k ∈N *)时,Sn =S 2k -1=S 2k -a 2k =3k 2-3k +1=3×⎝⎛⎭⎫n +122-3·n +12+1=3n 2+14.综上可知,S n=⎩⎨⎧3n 24,n =2k ,k ∈N *,3n 2+14,n =2k -1,k ∈N *.(3)∵{b n }成等差数列,∴2b 2=b 1+b 3,即2(a 2+a 3)=(a 1+a 2)+(a 3+a 4),a 2+a 3=a 1+a 4,① ∵{c n }成等比数列,∴c 22=c 1c 3. 即(a 2a 3)2=(a 1a 2)·(a 3a 4), ∵c 2=a 2a 3≠0,∴a 2a 3=a 1a 4,②由①②及a 1=1,a 2=2,得a 3=1,a 4=2,设{b n }的公差为d ,则b n +1-b n =(a n +1+a n +2)-(a n +a n +1)=d ,即a n +2-a n =d ,即数列{a n }的奇数项和偶数项都构成公差为d 的等差数列, 又d =a 3-a 1=a 4-a 2=0, ∴数列{a n }=1,2,1,2,1,2,…,即a n =⎩⎪⎨⎪⎧1,n =2k -1,k ∈N *,2,n =2k ,k ∈N *.此时c n =2,{c n }是公比为1的等比数列,满足题意.∴存在数列{a n },a n =⎩⎪⎨⎪⎧1,n =2k -1,k ∈N *,2,n =2k ,k ∈N *, 使得{b n }成等差数列和{c n }成等比数列同时成立.高考附加题加分练 1.矩阵与变换1.已知矩阵M =⎣⎢⎡⎦⎥⎤a 1b 0,点A (1,0)在矩阵M 对应的变换作用下变为A ′(1,2),求矩阵M 的逆矩阵M -1. 解 ∵⎣⎢⎡⎦⎥⎤a 1b0 ⎣⎢⎡⎦⎥⎤10=⎣⎢⎡⎦⎥⎤12, ∴a =1,b =2.∴M =⎣⎢⎡⎦⎥⎤1 120,∴M -1=⎣⎢⎡⎦⎥⎤0 121 -12.2.(2017·江苏徐州一中检测)已知曲线C :y 2=12x ,在矩阵M =⎣⎢⎡⎦⎥⎤1 00 -2对应的变换作用下得到曲线C 1,C 1在矩阵N =⎣⎢⎡⎦⎥⎤0110对应的变换作用下得到曲线C 2,求曲线C 2的方程.解 设A =NM ,则A =⎣⎢⎡⎦⎥⎤0 11 0 ⎣⎢⎡⎦⎥⎤1 00 -2=⎣⎢⎡⎦⎥⎤0 -21 0, 设P (x ′,y ′)是曲线C 上任一点,在两次变换下,在曲线C 2上对应的点为P (x ,y ), 则⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤0 -21 0 ⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤-2y ′ x ′, 即⎩⎪⎨⎪⎧x =-2y ′,y =x ′,∴⎩⎪⎨⎪⎧x ′=y ,y ′=-12x .又点P (x ′,y ′)在曲线C :y 2=12x 上,∴⎝⎛⎭⎫-12x 2=12y ,即x 2=2y .3.已知矩阵M =⎣⎢⎡⎦⎥⎤1 22x 的一个特征值为3,求M 的另一个特征值及其对应的一个特征向量. 解 矩阵M 的特征多项式为f (λ)=⎣⎢⎡⎦⎥⎤λ-1 -2-2 λ-x =(λ-1)(λ-x )-4.因为λ1=3是方程f (λ)=0的一根,所以x =1. 由(λ-1)(λ-1)-4=0,得λ2=-1. 设λ2=-1对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤x y , 则⎩⎪⎨⎪⎧-2x -2y =0,-2x -2y =0,得x =-y . 令x =1,则y =-1,所以矩阵M 的另一个特征值为-1,对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤ 1-1.4.(2017·江苏江阴中学质检)若点A (2,2)在矩阵M =⎣⎢⎡⎦⎥⎤cos α -sin αsin α cos α对应变换的作用下得到的点为B (-2,2),求矩阵M 的逆矩阵.解 M ⎣⎢⎡⎦⎥⎤22=⎣⎢⎡⎦⎥⎤-2 2,即⎣⎢⎡⎦⎥⎤2cos α-2sin α2sin α+2cos α=⎣⎢⎡⎦⎥⎤-2 2, 所以⎩⎪⎨⎪⎧cos α-sin α=-1,sin α+cos α=1,解得⎩⎪⎨⎪⎧cos α=0,sin α=1.所以M =⎣⎢⎡⎦⎥⎤0 -11 0.由M -1M =⎣⎢⎡⎦⎥⎤1 001,得M -1=⎣⎢⎡⎦⎥⎤1-10. 2.坐标系与参数方程1.(2017·江苏兴化中学调研)已知曲线C 1的极坐标方程为ρcos ⎝⎛⎭⎫θ-π3=-1,曲线C 2的极坐标方程为ρ=22cos ⎝⎛⎭⎫θ-π4,判断两曲线的位置关系. 解 将曲线C 1,C 2化为直角坐标方程,得 C 1:x +3y +2=0,C 2:x 2+y 2-2x -2y =0, 即C 2:(x -1)2+(y -1)2=2. 圆心到直线的距离d =|1+3+2|12+(3)2=∴曲线C 1与C 2相离.2.(2017·江苏金坛一中期中)已知在极坐标系下,圆C :ρ=2cos ⎝⎛⎭⎫θ+π2与直线l :ρsin ⎝⎛⎭⎫θ+π4=2,点M 为圆C 上的动点,求点M 到直线l 的距离的最大值. 解 圆C 化为直角坐标方程,得x 2+(y +1)2=1. 直线l 化为直角坐标方程,得x +y =2. 圆心C 到直线l 的距离d =|-1-2|2=322,所以点M 到直线l 的距离的最大值为1+322.3.已知直线l :⎩⎪⎨⎪⎧ x =1+t ,y =-t (t 为参数)与圆C :⎩⎪⎨⎪⎧x =2cos θ,y =m +2sin θ(θ为参数)相交于A ,B 两点,m 为常数. (1)当m =0时,求线段AB 的长;(2)当圆C 上恰有三点到直线的距离为1时,求m 的值. 解 (1)直线l :x +y -1=0,曲线C :x 2+y 2=4, 圆心到直线的距离d =12, 故AB =2r 2-d 2=14.(2)圆C 的直角坐标方程为x 2+(y -m )2=4, 直线l :x +y -1=0,由题意,知圆心到直线的距离d =|m -1|2=1,∴m =1± 2.4.(2017·江苏昆山中学质检)已知极坐标系的极点在直角坐标系的原点,极轴与x 轴的正半轴重合.曲线C 的极坐标方程为ρ2cos 2θ+3ρ2sin 2θ=3,直线l 的参数方程为⎩⎨⎧x =-3t ,y =1+t(t 为参数,t ∈R ).试在曲线C 上求一点M ,使它到直线l 的距离最大. 解 曲线C 的普通方程是x 23+y 2=1,直线l 的普通方程是x +3y -3=0.设点M 的直角坐标是(3cos θ,sin θ),则点M 到直线l 的距离是d =|3cos θ+3sin θ-3|2=3⎪⎪⎪⎪2sin ⎝⎛⎭⎫θ+π4-12.因为-2≤2sin ⎝⎛⎭⎫θ+π4≤2,所以当sin ⎝⎛⎭⎫ θ+π4=-1,即θ=2k π-3π4(k ∈Z )时,d 取得最大值.此时3cos θ=-62,sin θ=-22. 设点M 的极角为φ,则⎩⎨⎧ρcos φ=-62,ρsin φ=-22,所以⎩⎪⎨⎪⎧ρ=2,φ=7π6. 综上,当点M 的极坐标为⎝⎛⎭⎫2,7π6时,该点到直线l 的距离最大. 3.空间向量与立体几何1.(2017·江苏南通中学月考)如图,已知三棱锥O -ABC 的侧棱OA ,OB ,OC 两两垂直,且OA =1,OB =OC =2,E 是OC 的中点.(1)求异面直线BE 与AC 所成角的余弦值; (2)求二面角A -BE -C 的正弦值.解 (1)以O 为原点,分别以OB ,OC ,OA 为x 轴,y 轴,z 轴建立空间直角坐标系,则A (0,0,1),B (2,0,0),C (0,2,0),E (0,1,0). EB →=(2,-1,0),AC →=(0,2,-1), ∴cos 〈EB →,AC →〉=-25,即异面直线BE 与AC 所成角的余弦值为25.(2)AB →=(2,0,-1),AE →=(0,1,-1), 设平面ABE 的法向量为n 1=(x ,y ,z ), 则由n 1⊥AB →,n 1⊥AE →,得⎩⎪⎨⎪⎧2x -z =0,y -z =0,取n 1=(1,2,2), 平面BEC 的法向量为n 2=(0,0,1), ∴cos 〈n 1,n 2〉=23,∴二面角A -BE -C 的余弦值cos θ=23,∴sin θ=53, 即二面角A -BE -C 的正弦值为53.2.(2017·江苏宜兴中学质检)三棱柱ABC -A 1B 1C 1在如图所示的空间直角坐标系中,已知AB =2,AC =4,AA 1=3,D 是BC 的中点.(1)求直线DB 1与平面A 1C 1D 所成角的正弦值; (2)求二面角B 1-A 1D -C 1的正弦值.解 (1)由题意知,B (2,0,0),C (0,4,0),D (1,2,0),A 1(0,0,3),B 1(2,0,3),C 1(0,4,3),则A 1D →=(1,2,-3),A 1C 1→=(0,4,0),DB 1→=(1,-2,3). 设平面A 1C 1D 的一个法向量为n =(x ,y ,z ). 由n ·A 1D →=x +2y -3z =0,n ·A 1C 1→=4y =0, 得y =0,x =3z ,令z =1,得x =3,n =(3,0,1).设直线DB 1与平面A 1C 1D 所成的角为θ, 则sin θ=|cos 〈DB 1→,n 〉|=|3+3|10×14=33535.(2)设平面A 1B 1D 的一个法向量为m =(a ,b ,c ),A 1B 1→=(2,0,0). 由m ·A 1D →=a +2b -3c =0,m ·A 1B 1→=2a =0, 得a =0,2b =3c ,令c =2,得b =3,m =(0,3,2). 设二面角B 1-A 1D -C 1的大小为α, |cos α|=|cos 〈m ,n 〉|=|m ·n ||m ||n |=265, sin α=3765=345565.所以二面角B 1-A 1D -C 13.(2017·江苏运河中学质检)PCD ⊥底面ABCD ,PD ⊥CD ,底面ABCD 是直角梯形,AB ∥CD ,∠ADC =π2,AB =AD =PD =1,CD =2.设Q 为侧棱PC 上一点,PQ →=λPC →.试确定λ的值,使得二面角Q -BD -P 为π4.解 因为侧面PCD ⊥底面ABCD , 平面PCD ∩平面ABCD =CD ,PD ⊥CD , 所以PD ⊥平面ABCD ,所以PD ⊥AD , 又∠ADC =π2,故DA ,DC ,DP 两两互相垂直.如图,以D 为坐标原点,DA ,DC ,DP 分别为x 轴,y 轴,z 轴建立直角坐标系,A (1,0,0),B (1,1,0),C (0,2,0),P (0,0,1),则平面PBD 的一个法向量为n =(-1,1,0),PC →=(0,2,-1),PQ →=λPC →,λ∈(0,1), 所以Q (0,2λ,1-λ).设平面QBD 的一个法向量为m =(a ,b ,c ), 由m ·BD →=0,m ·DQ →=0,得⎩⎪⎨⎪⎧a +b =0,2λb +(1-λ)c =0, 所以取b =1,得m =⎝⎛⎭⎫-1,1,2λλ-1,所以cos π4=|m ·n ||m ||n |,即22·2+⎝⎛⎭⎫2λλ-12=22. 注意到λ∈(0,1),解得λ=2-1.4.在三棱锥S -ABC 中,底面是边长为23的正三角形,点S 在底面ABC 上的射影O 是AC 的中点,侧棱SB 和底面成45°角.(1)若D 为棱SB 上一点,当SDDB为何值时,CD ⊥AB ; (2)求二面角S -BC -A 的余弦值的大小.解 以O 点为原点,OB 为x 轴,OC 为y 轴,OS 为z 轴建立空间直角坐标系. 由题意知∠SBO =45°,SO =3.。

新课标高考数学题型全归纳

新课标高考数学题型全归纳

新课标高考数学题型全归纳一、选择题新课标高考数学选择题主要考察学生对于基础知识的掌握与运用能力,题型较为灵活多样,涵盖了代数、几何、数论、概率统计等多个知识领域。

具体包括填空题、选择题和判断题等多种形式。

1.填空题填空题通常要求学生根据题意进行计算或推导得出唯一的答案,涵盖了代数、几何、数论等不同领域的知识点。

填空题考察学生对基本知识点的理解和运用能力,以及灵活性和创新性。

例题:已知2x + 3 = 7,求x的值。

2.选择题选择题是高考数学试题中出现较多的一种题型,涵盖了代数、几何、数论等多个知识点。

选择题通常包括单项选择和多项选择两种形式,要求学生根据题意选择正确答案。

例题:已知抛物线y = ax^2 + bx + c的顶点坐标为(1,-3),则a、b、c的关系是()。

A. a + b + c = 1B. a - b + c = 1C. a - b - c = 1D. a + b - c = 13.判断题判断题常常考察学生对于基本概念和定理的理解和掌握能力。

题目通常以简短的陈述形式呈现,要求学生判断其真假,并给出理由。

例题:若对于任意实数x,有f(x) = f(-x),则函数f(x)是奇函数。

()二、填空题填空题是高考数学试题中的一种主要题型,通常要求学生根据题意进行计算或推导,得出唯一的答案。

填空题涵盖了代数、几何、数论等多个知识领域,考察学生对基础知识的掌握和运用能力,以及灵活性和创新性。

1.代数填空题代数填空题主要考察学生对于代数表达式的计算和变形能力,包括多项式、方程、不等式等内容。

例题:已知方程2x^2 - 3x - 2 = 0的两根分别为x1和x2,求x1 + x2的值。

2.几何填空题几何填空题通常考察学生对于几何图形的性质和关系的理解,要求学生根据题意进行计算或推导,得出唯一的答案。

例题:在直角三角形ABC中,∠C = 90°,AB = 3,BC = 4,则AC =3.数论填空题数论填空题主要考察学生对于整数性质和基本定理的理解和运用能力,包括最大公约数、最小公倍数、质数分解等知识点。

新课标高考数学题型全归纳

新课标高考数学题型全归纳

新课标高考数学题型全归纳一、选择题1.单选题单选题是高考数学中常见的题型,考查学生对知识点的掌握和理解能力。

通常题目会给出一个数学问题,然后列出4个选项,要求学生从中选择出符合问题要求的正确答案。

2.多选题多选题与单选题的不同之处在于,多选题给出的选项数量比单选题多,考生需要在几个选项中选择出全部符合问题要求的答案。

3.判断题判断题是另一种常见的选择题类型,考生需要根据题目给出的判断,判断其正误,并选择正确与否。

二、填空题填空题是另一种常见的高考数学题型,通常题目给出一个数学问题,要求学生填写一个或多个空缺的数字或符号,使得答案符合问题要求。

三、解答题1.计算题计算题是高考数学中常见的解答题类型,要求考生根据题目给出的数值或公式进行计算,并给出最终的数值结果。

2.证明题证明题是高考数学中的难点题型,要求考生根据已知条件和数学定理,推导出答案,并给出详细的证明过程。

3.应用题应用题是高考数学中考查学生综合运用多个数学知识点解决实际问题的题型,通常题目设定在某个具体的场景中,要求学生根据已知条件和所学知识解答问题。

四、选择计算题选择计算题是一种综合性高考数学题型,题目包括选择题和计算题的特点,要求学生根据给出的问题和数据进行计算,并从几个选项中选择出符合要求的最终答案。

五、应用分析题应用分析题是高考数学中难度较大的题型,要求考生综合运用数学知识解决复杂的实际问题,并给出详细的分析和解释过程。

综上所述,新课标高考数学题型涵盖了选择题、填空题、解答题等多个类型,考查学生的数学知识掌握、理解和运用能力。

在备考过程中,学生需对不同类型的题目有充分的了解和练习,以提高应对各种题型的能力,从而在高考中取得优异的成绩。

高考数学必看的50个数学题目

高考数学必看的50个数学题目

高考数学必看的50个数学题目1. 假设有两个正整数a和b,满足a+b=15。

如果a的平方加上b的平方等于165,那么a和b分别是多少?2. 已知一个等差数列的前三个项分别是5,8,11。

求这个等差数列的第n项。

3. 某商品原价为120元,现在打8折出售。

请问折后的价格是多少?4. 一条直线通过点A(2,3)和点B(5,8)。

求这条直线的斜率。

5. 一个等边三角形的周长为18cm。

求这个等边三角形的面积。

6. 若x=2是方程2x^2+3x-2=0的一个解,求另一个解。

7. 在一个平面直角坐标系中,点A的坐标是(4,-1),点B的坐标是(-2,5)。

求线段AB的长度。

8. 已知sinθ=0.6,求cosθ的值。

9. 若3^x=81,求x的值。

10. 已知直线y=2x-3和直线y=-x+7相交于点P。

求点P的坐标。

11. 若实数x的倒数与5的差的平方等于4,求x的值。

12. 若正方形的周长为36cm,求正方形的面积。

13. 已知三角形ABC的边长分别为a=5cm,b=7cm,c=8cm。

求三角形ABC的面积。

14. 若(x+3)(y-4)=0,求方程xy=12的解。

15. 一份资料显示某班级男女比例是5:3,若该班级共有80人,求男生人数和女生人数分别是多少?16. 若函数f(x)=2x^2-5x+3,则f(1)的值是多少?17. 若x的平方减去4x加上3等于0,求x的值。

18. 某商品原价为150元,现在降价30%出售。

请问折后的价格是多少?19. 若一条直线的斜率为2,且经过点(-3,4),求该直线的方程。

20. 若函数g(x)=3x-7,则g(-2)的值是多少?21. 若3^x=27,求x的值。

22. 若一个等差数列的公差为3,第一个数是2,求该等差数列的第n项。

23. 已知一个四边形的两对对角线相等,且两对对角线互相等长,求证该四边形是个矩形。

24. 已知直线y=kx+3过点(2,5),求k的值。

新高考数学试卷大题型

新高考数学试卷大题型

一、选择题选择题是新高考数学试卷中常见的题型,主要考查学生对基本概念、基本公式、基本定理的理解和应用。

以下列举几种常见的选择题题型:1. 基本概念判断题:考查学生对基本概念的理解程度,如判断正误、选择正确概念等。

2. 计算题:考查学生的计算能力,如求值、化简等。

3. 推理题:考查学生的逻辑思维能力,如判断推理、选择结论等。

4. 应用题:考查学生将数学知识应用于实际问题的能力,如几何图形、函数问题等。

二、填空题填空题主要考查学生对基本概念、基本公式、基本定理的记忆和应用。

以下列举几种常见的填空题题型:1. 基本概念填空题:考查学生对基本概念的记忆,如填入正确的概念、术语等。

2. 计算题:考查学生的计算能力,如求值、化简等。

3. 推理题:考查学生的逻辑思维能力,如填入推理步骤、结论等。

4. 应用题:考查学生将数学知识应用于实际问题的能力,如几何图形、函数问题等。

三、解答题解答题是新高考数学试卷中分值较高、难度较大的题型,主要考查学生的综合运用能力和创新思维能力。

以下列举几种常见的解答题题型:1. 几何题:考查学生对几何图形的认识、计算和分析能力,如三角形、四边形、圆等。

2. 函数题:考查学生对函数概念、性质、图像的理解和运用能力,如一次函数、二次函数、指数函数等。

3. 不等式题:考查学生对不等式概念、性质、解法等的应用能力,如一元一次不等式、一元二次不等式等。

4. 综合题:考查学生对数学知识综合运用和创新能力,如实际问题、创新题等。

四、探究题探究题是新高考数学试卷中的一种新型题型,主要考查学生的探究精神和创新思维。

以下列举几种常见的探究题题型:1. 探究性质题:考查学生对数学性质、定理的探究能力,如探究函数的性质、几何图形的性质等。

2. 创新题:考查学生的创新思维能力,如设计新的数学模型、提出新的解题方法等。

3. 综合探究题:考查学生对数学知识的综合运用和创新能力,如探究数学知识在实际问题中的应用等。

高考数学必考难题试题答案

高考数学必考难题试题答案

高考数学必考难题试题答案一、选择题1. 若函数f(x) = ax^2 + bx + c在x=1和x=-1处取得相同的值,且a<0,那么a、b、c之间的关系是()。

A. a = -b + cB. a + b + c = 0C. b = -2a - cD. 2a + b + c = 0答案:C解析:由题意可知,f(1) = f(-1),即a + b + c = a - b + c,化简得2b = 0,所以b = 0。

又因为a < 0,所以c = -a。

代入b = 0,得c = -a,进一步得出b = -2a - c。

2. 已知数列{an}满足a1 = 1,an = (1/2)^(n-1) * (an-1 + 1),若bn = an - 1,则求证:数列{bn}是等比数列。

答案:证明如下:由题意,an = (1/2)^(n-1) * (an-1 + 1),可得:bn = an - 1 = (1/2)^(n-1) * (an-1 + 1) - 1将n-1代入,得:bn-1 = (1/2)^(n-2) * (an-2 + 1) - 1将两个式子相除,得:bn / bn-1 = [(1/2)^(n-1) * (an-1 + 1) - 1] / [(1/2)^(n-2) * (an-2 + 1) - 1] = 1/2所以bn / bn-1 = 1/2为常数,故数列{bn}是首项为b1 = a2 - 1 = (1/2) * (a1 + 1) - 1 = 1/2,公比q = 1/2的等比数列。

二、填空题1. 已知圆的方程为(x-2)^2 + (y-3)^2 = 16,点P(5,0)到圆心的距离为______。

答案:√13解析:圆心坐标为(2,3),点P(5,0),根据两点间距离公式,有:d = √[(5-2)^2 + (0-3)^2] = √[3^2 + (-3)^2] = √(9 + 9) =√18 = √13三、解答题1. 已知函数f(x) = x^3 - 3x^2 - 9x + 5,在x∈[-2,3]上的最大值为7,求函数在该区间上的最小值。

数学高考大题题型归纳必考题型例题

数学高考大题题型归纳必考题型例题

数学高考大题题型归纳必考题型例题Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】数学高考大题题型归纳必考题型例题1数学高考大题题型有哪些必做题:1.三角函数或数列(必修4,必修5)2.立体几何(必修2)3.统计与概率(必修3和选修2-3)4.解析几何(选修2-1)5.函数与导数(必修1和选修2-2)选做题:1.平面几何证明(选修4-1)2.坐标系与参数方程(选修4-4)3.不等式(选修4-5)2数学高考大题题型归纳一、三角函数或数列数列是高中数学的重要内容,又是学习高等数学的基础。

高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。

有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。

探索性问题是高考的热点,常在数列解答题中出现。

本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。

近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。

(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。

(3)数列的应用问题,其中主要是以增长率问题为主。

试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。

二、立体几何高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。

选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。

随着新的课程改革的进一步实施,立体几何考题正朝着多一点思考,少一点计算的发展。

高考数学大题题型总结

高考数学大题题型总结

高考数学大题题型总结高考数学大题题型总结高考数学大题是整张考卷中分值占比最高的一部分,在这一部分中,既有面向基础的考查,又有面向综合思维的考查,被认为是考验学生综合能力的重要考查内容。

随着高考改革的推进,数学试卷也不断变化,常规的题型如选择题、填空题、简答题等都有一定的变化,而大题题型也随之发生改变。

下面,笔者将对常见的高考数学大题题型进行总结。

1.函数题函数题是高考中较为常见的一类大题,主要考察学生对函数的理解和应用能力。

这类题型一般有以下几种:(1)综合性函数问题:这类题型一般需要学生将多个条件整合起来,建立数学模型,然后通过对函数的应用,解决实际问题。

比如,利润最大问题、最优化问题等。

(2)函数图像问题:通过给定函数的解析式或者部分定义式,要求学生画出函数图像,或者根据图像判断函数的解析式。

这类题目主要测试学生的函数图像理解能力。

(3)函数性质问题:给定函数的一些性质,要求学生根据给定的信息判断函数,比如单调性、奇偶性等。

这类题目主要考验学生对函数性质的掌握和理解。

2.数列题数列题也是高考中常见的一类大题,主要考察学生对数列的掌握和应用能力。

这类题型一般有以下几种:(1)综合性数列问题:这类题型一般需要学生将多个条件整合起来,建立数学模型,然后通过对数列的应用,解决实际问题。

比如,求通项公式、求和问题等。

(2)数列图像问题:给定数列的一些性质,要求学生画出数列图像,或者根据图像判断数列的通项式。

这类题目主要测试学生的数列图像理解能力。

(3)数列变形问题:要求学生对给定的数列进行变形,得到一个新的数列,然后根据新的数列的性质解决问题。

这类题目主要考验学生对数列变形思维的掌握和运用能力。

3.几何题几何题一直是数学大题中比较重要的一类,高中数学教科书中也有很多几何知识点,考生要将这些知识点与大题背景整合起来,发挥自己的应用能力。

在几何题型中,常见的有以下几种:(1)综合性几何问题:这类题型一般需要学生将几何形体的相关信息整合起来,建立模型,然后通过对特定几何形体性质的运用,解决实际问题。

(新课标)高考数学 题型全归纳 应用举例例题解析

(新课标)高考数学 题型全归纳 应用举例例题解析
应用举例
第1题.如图,一艘船以32.2n mile/h的速度向正北航行.在A处看灯塔S在船的北偏东 的方向,30 min后航行到B处,在B处看灯塔在船的北偏东 的方向,已知距离此灯塔6.5n mile以外的海区为航行安全区域,这艘船可以继续沿正北方向航行吗?
答案:在 中, mile, ,
根据正弦定理, ,
答案:飞机离A处控照灯的距离是4801.53m,
飞机离B处探照灯的距离是4704.21m,
飞机的高度是约4574.23m.
第11题.一架飞以326km/h的速度,沿北偏东 的航向从城市A出发向城市B飞行,18min以后,飞机由于天气原因按命令改飞另一个城市C,问收到命令时飞机应该沿什么航向飞行,此时离城市C的距离是多少?

到直线 的距离是
(cm).
所以这艘船可以继续沿正北方向航行.
第2题.如图,在山脚测得出山顶的仰角为,沿倾斜角为 的斜坡向上走米到,在处测得山顶的仰角为,求证:山高 .
答案:在 中,


在 中,根据正弦定理,
所以山高为 .
第3题.测山上石油钻井的井架 的高,从山脚测得 m,塔顶的仰角是 .已知山坡的倾斜角是 ,求井架的高 .
答案:在 中, m,


根据正弦定理,
井架的高约为9.3m.
第4题.如图,货轮在海上以35n mile / h的速度沿着方位角(从指北方向顺时针转到目标方向线的水平角)为 的方向航行.为了确定船位,在B点观察灯塔A的方位角是 ,航行半小时后到达C点,观察灯塔A的方位角是 .求货轮到达C点时与灯塔A的距离(精确到1n mile).
答案: = km,
在 中,根据余弦定理:
根据正弦定理: ,

高考数学大题题型归纳 高考数学必考五大题型

高考数学大题题型归纳 高考数学必考五大题型

高考数学大题题型归纳高考数学必考五大题型高考数学大题题型归纳高考数学必考五大题型对于高中数学的学习,聪明的智慧是一方面,另一方面的归纳和总结也是有效的方式之一。

下文就给即将高考的你归纳总结了高考数学必考的几种大题题型,请考生们抓紧查阅吧!高考数学必考五大题型一、排列组合题型二、立体几何题型三、数列问题题型四、导数应用题型五、解析几何题型(圆锥曲线)高考数学立体几何题答题技巧1.证明线面位置关系,一般不需要去建系,更简单;2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。

高考数学大题解析几何剖析1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。

有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:1、几何问题代数化。

2、用代数规则对代数化后的问题进行处理。

高考解析几何解题套路及各步骤操作规则步骤一:(一化)把题目中的点、直线、曲线这三大类基础几何元素用代数形式表示出来(翻译);口诀:见点化点、见直线化直线、见曲线化曲线。

1、见点化点:点用平面坐标系上的坐标表示,只要是题目中提到的点都要加以坐标化;2、见直线化直线:直线用二元一次方程表示,只要是题目中提到的直线都要加以方程化;3、见曲线化曲线:曲线(圆、椭圆、抛物线、双曲线)用二元二次方程表示,只要是题目中提到的曲线都要加以方程化;步骤二:(二代)把题目中的点与直线、曲线从属关系用代数形式表示出来;如果某个点在某条直线或曲线上,那么这个点的坐标就可代入这条直线或曲线的方程。

口诀:点代入直线、点代入曲线。

1、点代入直线:如果某个点在某条直线上,将点的坐标代入这条直线的方程;2、点代入曲线:如果某个点在某条曲线上,将点的坐标代入这条曲线的方程;这样,每代入一次就会得到一个新的方程,方程逐一列出后,这些方程都是获得最后答案的基础,最后就是解方程组的问题了。

新高考数学试卷题型带答案

新高考数学试卷题型带答案

一、选择题1. 题目:已知函数f(x) = x^2 - 4x + 3,求f(x)的图像与x轴的交点坐标。

答案:将f(x) = 0,解得x = 1 或 x = 3。

因此,f(x)的图像与x轴的交点坐标为(1, 0)和(3, 0)。

2. 题目:在等差数列{an}中,a1 = 2,d = 3,求第10项an的值。

答案:根据等差数列的通项公式an = a1 + (n - 1)d,代入a1 = 2,d = 3,n = 10,得an = 2 + (10 - 1)×3 = 29。

3. 题目:已知三角形ABC中,AB = 5,AC = 8,BC = 10,求sinB的值。

答案:根据勾股定理,得AB^2 + BC^2 = AC^2,即5^2 + 10^2 = 8^2,所以sinB = BC/AC = 10/8 = 5/4。

4. 题目:若向量a = (1, 2),向量b = (2, -3),求向量a与向量b的点积。

答案:向量a与向量b的点积为a·b = 1×2 + 2×(-3) = 2 - 6 = -4。

5. 题目:若函数g(x) = x^3 - 3x^2 + 4x - 2,求g'(x)的值。

答案:对g(x)求导得g'(x) = 3x^2 - 6x + 4。

二、填空题6. 题目:已知函数f(x) = 2x^3 - 3x^2 + 2x - 1,求f'(x)的值。

答案:对f(x)求导得f'(x) = 6x^2 - 6x + 2。

7. 题目:在等比数列{bn}中,b1 = 3,q = 2,求第5项bn的值。

答案:根据等比数列的通项公式bn = b1·q^(n-1),代入b1 = 3,q = 2,n = 5,得bn = 3×2^(5-1) = 48。

8. 题目:若函数h(x) = e^x - x,求h''(x)的值。

数列中的构造问题--2024高考数学大题题型归纳(解析)

数列中的构造问题--2024高考数学大题题型归纳(解析)

数列中的构造问题1已知数列a n 满足a 1=1,a 2=5,a n +2=5a n +1-6a n .(1)证明:a n +1-2a n 是等比数列;(2)证明:存在两个等比数列b n ,c n ,使得a n =b n +c n 成立.【答案】(1)证明见解析(2)证明见解析【分析】(1)由a n +2=5a n +1-6a n 构造出a n +2-2a n +1=q a n +1-2a n ,用等比数列定义证明即可;(2)通过两次构造等比数列,求出a n 的通项公式,根据通项公式得出结论即可.【详解】(1)由已知,a n +2=5a n +1-6a n ,∴a n +2-2a n +1=5a n +1-6a n -2a n +1,∴a n +2-2a n +1=3a n +1-6a n =3a n +1-2a n ,显然a n +1-2a n =0与a 1=1,a 2=5矛盾,∴a n +1-2a n ≠0,∴a n +2-2a n +1a n +1-2a n=3,∴数列a n +1-2a n 是首项为a 2-2a 1=5-2=3,公比为3的等比数列.(2)∵a n +2=5a n +1-6a n ,∴a n +2-3a n +1=5a n +1-6a n -3a n +1,∴a n +2-3a n +1=2a n +1-6a n =2a n +1-3a n ,显然a n +1-3a n =0与a 1=1,a 2=5矛盾,∴a n +1-3a n ≠0,∴∴a n +2-3a n +1a n +1-3a n=2,∴数列a n +1-3a n 是首项为a 2-3a 1=5-3=2,公比为2的等比数列,∴a n +1-3a n =2n ,①,又∵由第(1)问,a n +1-2a n =3n ,②,∴②-①得,a n =3n -2n ,∴存在b n =3n ,c n =-2n ,两个等比数列b n ,c n ,使得a n =b n +c n 成立.2已知数列a n 的前n 项和为S n ,a 1=2,a n ≠0,a n a n +1=4S n .(1)求a n ;(2)设b n =-1 n ⋅3n -1 ,数列b n 的前n 项和为T n ,若∀k ∈N *,都有T 2k -1<λ<T 2k 成立,求实数λ的范围.【答案】(1)a n =2n ,n ∈N *(2)λ∈-2,6【分析】(1)由a n a n +1=4S n ,可得a n -1a n =4S n -1n ≥2 ,两式相减并化简后可得a n +1-a n -1=4n ≥2 ,后分奇偶情况可得a n ;(2)方法1,由题b n =-3 n --1 n ,由等比数列前n 项和公式可得T 2k ,T 2k -1表达式;方法2,注意到b 2k -1+b 2k =2⋅32k -1,可得T 2k ,T 2k -1表达式.后注意到T 2k ,T 2k -1的单调性,利用T 1<λ<T 2可得答案.【详解】(1)∵a n a n +1=4S n ,∴a n -1a n =4S n -1n ≥2 .∴a n a n +1-a n -1 =4a n n ≥2 ,∵a n ≠0,∴a n +1-a n -1=4n ≥2 .又a 1=2,a 1a 2=4S 1,∴a 2=4,∴数列a n 的奇数项,偶数项分别是以2,4为首项,4为公差的等差数列.当n =2k -1时,a 2k -1=4k -2=22k -1 ;当n =2k 时,a 2k =4k =2⋅2k .综上,a n =2n ,n ∈N *(2)方法一:∵b n =-1 n 3n -1 =-3 n --1 n =-3 n +-1 n +1,∴T n =-3 1--3 n1--3+1--1 n 1--1=3-3 n -34+1--1 n 2=3-3 n -2-1 n -14.∴T 2k =39k -1 4,T 2k -1=141-9k .方法二:∵b n =-1 n 3n -1 ,∴b 2k -1+b 2k =-32k -1-1 +32k -1 =2⋅32k -1,∴T 2k =2⋅31+2⋅33+2⋅35+⋯+2⋅32k -1=39k -1 4,∴T 2k -1=T 2k -b 2k =39k -1 4-32k -1 =141-9k ,∴n =2k ,k ∈N *时,T n =T 2k =39k -1 4为递增数列,n =2k -1,k ∈N *时,T n =T 2k -1=141-9k 为递减数列,若∀k ∈N *,都有T 2k -1<λ<T 2k 成立,只需使λ>T 2k -1 max =T 1,则λ>-2且λ<T 2k min =T 2,则λ<6.∴λ∈-2,63已知数列a n 满足a 1=3,a n +1=a 2n -2a n +2.(1)证明数列ln a n -1 是等比数列,并求数列a n 的通项公式;(2)若b n =1a n +1a n -2,数列b n 的前n 项和S n ,求证:S n <2.【答案】(1)证明见解析,a n =22n -1+1(2)证明见解析【分析】(1)根据递推公式证明ln a n +1-1 ln a n -1 为定制,即可证明数列为等比数列,再根据等比数列得通项即可得解;(2)由a n +1=a 2n -2a n +2,得a n +1-2=a n a n -2 ,则1a n +1-2=1a n a n -2 =121a n -2-1a n,则1a n =1a n -2-2a n +1-2,再利用裂项相消法求出数列b n 的前n 项和S n ,即可得证.【详解】(1)因为a n +1=a 2n -2a n +2,所以a n +1-1=a n -1 2,则ln a n +1-1 =ln a n -1 2=2ln a n -1 ,又ln a 1-1 =ln2,所以数列ln a n -1 是以ln2为首项,2为公比的等比数列,则ln a n -1 =2n -1⋅ln2=ln22n -1,所以a n =22n -1+1;(2)由a n +1=a 2n -2a n +2,得a n +1-2=a n a n -2 ,则1a n +1-2=1a n a n -2=121a n -2-1a n,所以1a n =1a n -2-2a n +1-2,所以b n =1a n +1a n -2=1a n -2-2a n +1-2+1a n -2=2a n -2-2a n +1-2,所以S n =b 1+b 2+⋯+b n=2a 1-2-2a 2-2 +2a 2-2-2a 3-2 +⋯+2a n -2-2a n +1-2=2a 1-2-2a n +1-2=2-222n -2,因为222n -2>0,所以2-222n-2<2,所以S n <2.4已知数列a n 的前n 项和为S n ,且满足2S n +2n =3a n n ∈N * .(1)a n 的通项公式;(2)若b n =na n +n ,求数列b n 的前n 项和T n .【答案】(1)a n =3n -1(2)T n =n 2-14 ×3n +1+34【分析】(1)根据a n =S 1,n =1S n -S n -1,n ≥2 作差得到a n =3a n -1+2,从而得到a n +1=3a n -1+1 ,即可得到a n +1 是以3为首项,3为公比的等比数列,即可求出通项公式;(2)由(1)可知b n =n ×3n ,利用错位相减法求和即可.【详解】(1)因为2S n +2n =3a n n ∈N * ①,当n =1时2S 1+2=3a 1,则a 1=2,当n ≥2时2S n -1+2n -1 =3a n -1②,①-②得2S n +2n -2S n -1-2n -1 =3a n -3a n -1,即2a n +2=3a n -3a n -1,则a n =3a n -1+2,所以a n +1=3a n -1+1 ,所以a n +1 是以3为首项,3为公比的等比数列,所以a n +1=3n ,则a n =3n -1.(2)因为b n =na n +n ,所以b n =n 3n -1 +n =n ×3n ,所以T n =1×31+2×32+3×33+⋯+n ×3n ③,3T n =1×32+2×33+3×34+⋯+n ×3n +1④,③-④得-2T n =1×31+1×32+1×33+⋯+1×3n -n ×3n +1=31-3n 1-3-n ×3n +1=12×3n +1-32-n ×3n +1=12-n ×3n +1-32,所以T n =n 2-14 ×3n +1+34.5已知各项均为正数的数列{a n }满足a 1=1,a n =2a n -1+3(正整数n ≥2)(1)求证:数列a n +3 是等比数列;(2)求数列{a n }的前n 项和S n .【答案】(1)证明见解析(2)S n =2n +2-3n -4【分析】(1)由题意转化条件得a n +3=2a n -1+3 n ≥2 ,结合a 1+3=4≠0即可得证;(2)由题意可得a n +3=2n +1,进而可得a n =2n +1-3,由分组求和法即可得解.【详解】(1)证明:已知递推公式a n =2a n -1+3,两边同时加上3,得:a n +3=2a n -1+3 n ≥2 ,因为a n >0,a n +3>0,所以a n +3a n -1+3=2n ≥2 ,又a 1+3=4≠0,所以数列a n +3 是以a 1+3=4为首项、以2为公比的等比数列.(2)由(1)a n+3=4×2n-1=2n+1,则a n=2n+1-3n∈N*,所以S n=a1+a2+⋅⋅⋅+a n=22-3+23-3+⋅⋅⋅+2n+1-3=22+23+⋅⋅⋅+2n+1-3n=4⋅1-2n1-2-3n=2n+2-3n-4.6设各项均为正数的数列{a n}满足S na n=pn+r(p,r为常数),其中S n为数列{a n}的前n项和.(1)若p=1,r=0,求证:{a n}是等差数列;(2)若p=13,a1=2,求数列{a n}的通项公式.【答案】(1)证明见解析;(2)a n=n2+n.【分析】(1)把p=1,r=0代入,结合“n≥2,S n-S n-1=a n”计算推理作答.(2)把p=13代入,结合“n≥2,S n-S n-1=a n”求出{a n}相邻两项间关系,再构造常数列作答.【详解】(1)当p=1,r=0时,S n=na n,当n≥2时,S n-1=n-1a n-1,两式相减,得a n=na n-(n-1)a n-1,整理得a n-a n-1=0,所以{a n}是等差数列.(2)当p=13时,S n =13n+ra n,令n=1,而a1=2,得13+r=1,解得r=23,于是S n=13n+23a n,当n≥2时,S n-1=13n+13a n-1,两式相减,得a n=13n+23a n-13n+13a n-1,整理得(n-1)a n=(n+1)a n-1,即a n n+1=a n-1n-1,因此a n(n+1)n=a n-1n(n-1),数列a n(n+1)n是常数列,从而a n(n+1)n=a12×1=1,a n=n2+n,显然a1=2满足上式,所以数列{a n}的通项公式是a n=n2+n.7已知数列a n,2a n+1=a n a n+1+1,a1=3.(1)求证:数列1a n-1是等差数列.(2)设b n=1-a n1-a n+1,求证:数列b n的前n项和S n<-2.【答案】(1)证明见解析(2)证明见解析【分析】(1)根据2a n+1=a n a n+1+1,证明1a n+1-1-1a n-1等于定值即可;(2)利用裂项相消法求出数列b n的前n项和S n,即可得证.【详解】(1)∵2a n+1=a n a n+1+1,∴a n-2a n+1=-1,∵a1=3,∴a n-2≠0,∴a n+1=12-a n,∴1 a n+1-1-1a n-1=112-a n-1-1a n-1=2-a na n-1-1a n-1=-a n-1+1a n-1-1a n-1=-1,∴1a n -1是首项为1a n -1=12,公差为-1的等差数列;(2)由(1)知1a n -1=-n +32,∴a n =132-n +1,∴b n =1-a n 1-a n +1 =1n -32⋅1n -12=1n -32-1n -12,∴S n =b 1+b 2+b 3+⋅⋅⋅+b n=11-32-11-12+12-32-12-12+13-32-13-12+⋅⋅⋅+1n -32-1n -12=-2-2+2-23+23-25+⋅⋅⋅+1n -32-1n -12=-2-1n -12,∵n ∈N *,∴1n -12>0,∴S n <-2.8已知数列a n 的前n 项和为S n =n n +1n ∈N + ,数列b n 满足b 1=1,且b n +1=b n b n +2n ∈N + (1)求数列a n 的通项公式;(2)求数列b n 的通项公式;(3)对于n ∈N +,试比较b n +1与a n 的大小.【答案】(1)a n =1n 2+n (2)b n =12n -1(3)b n +1<a n【分析】(1)由数列a n 的前n 项和为S n =n n +1n ∈N + ,利用a n =S 1n =1 S n -S n -1n ≥2 ,能求出a n =1n 2+n;(2)由b n +1=b n b n +2n ∈N + ,两边取倒数得1b n +1=b n +2b n ,从而得到1b n +1 是以首项为1b 1+1=2,公比为2的等比数列,由此能求出b n =12n -1;(3)将问题转化为证明2n +1-1>n 2+n 成立,利用数学归纳法、二项式定理或函数的知识证明即可.【详解】(1)当n =1时,a 1=S 1=12;当n ≥2时,a n =S n -S n -1=n n +1-n -1n =1n n +1 =1n 2+n,经检验,n =1时,a 1=12也符合上式,所以数列a n 的通项公式为a n =1n 2+n;(2)易知b n >0,两边取倒数得1b n +1=b n +2b n ,整理得1b n +1+1=21b n +1,∴1b n +1是以首项为1b1+1=2,公比为2的等比数列,∴1 b n +1=2×2n-1,∴b n=12n-1;(3)由(1)(2)问可知,欲比较b n+1=12n+1-1与a n=1n2+n的大小,即比较2n+1-1与n2+n的大小.当n=1时,21+1-1=3,12+1=2,有3>2;当n=2时,22+1-1=7,22+2=6,有7>6;当n=3时,23+1-1=15,32+3=12,有15>12,猜想2n+1-1>n2+n,下面证明:方法一:当n≥4时,2n+1-1=(1+1)n+1-1=C0n+1+C1n+1+C2n+1+⋯+C n-1n+1+C n n+1+C n+1n+1-1≥2C0n+1+2C1n+1+2C2n+1-1=2+2n+1+n+1n-1>n2+n,所以对于任意的n∈N+都成立,所以b n+1<a n.方法二:令f x =2x+1-1-x2-x,则f x =2x+1ln2-2x-1,令g x =f x =2x+1ln2-2x-1,则g x =2x+1(ln2)2-2≥2x+1(ln e)2-2=2x-1-2,当x∈4,+∞时,g x =2x-1-2>0,g x 即f x 在x∈4,+∞单调递增,f x ≥f 4 =2x+1ln2-2x-1>25×12-2×4-1=7>0,f x 在x∈4,+∞单调递增,所以f x ≥f4 >24+1-1-42-4=11>0,所以2x+1-1-x2-x>0,即2x+1-1>x2+x,所以对于任意的n∈N+都成立,所以b n+1<a n.方法三:下面用数学归纳法证明①当n=1时,显然成立;当n=2时,显然成立;②假设n=k时(k≥2),猜想成立,即2k+1-1>k2+k成立,那么当n=k+1时,2k+2-1=2⋅2k+1-1=2⋅2k+1-1+1>2⋅k2+k+1=2k2+2k+1,因为2k2+2k+1-(k+1)2+k+1=k2-k-1,对任意的k≥2且k∈N+上式都大于0,所以有2k+2-1>(k+1)2+k+1,综上所述,2n+1-1>n2+n对于任意的n∈N+都成立,所以b n+1<a n.9已知数列a n有递推关系a n+1=9a n-105a n-6n∈N*,a n≠65,a1=95,(1)记a n=b n+k,若数列b n的递推式形如b n+1=rb npb n+qp,q,r∈R且p,r≠0 ,也即分子中不再含有常数项,求实数k的值;(2)求a n的通项公式.【答案】(1)1或2(2)a n=4n4n--1n+1【分析】(1)根据题意整理可得b n+1=9-5kb n-5k2+15k-105b n+5k-6,即-5k2+15k-10=0,运算求解即可;(2)取k=1,可得b n+1=4b n5b n-1,利用构造法结合等比数列求通项公式.【详解】(1)因为a n=b n+k,且a n+1=9a n-105a n-6,所以b n+1=a n+1-k=9b n+k-105b n+k-6-k=9-5kb n-5k2+15k-105b n+5k-6,则-5k2+15k-10=0,解得k=1或2;(2)由(1)可得:当k=1时,则a n=b n+1,且b n+1=4b n5b n-1,可得1b n+1=5b n-14b n=-14×1b n+54,则1b n+1-1=-141b n-1,且1b1-1=14≠0,故数列1b n-1是以14为首项,-14为公比的等比数列,∴1 b n -1=14×-14n-1=--1 n4n,则b n=4n4n--1n,故a n=4n4n--1n+1.10已知数列a n满足a1+a3=2a2,a n+1=3a n,n为奇数a n+2,n为偶数,数列cn满足c n=a2n-1.(1)求数列c n和a n的通项公式;(2)求数列a n的前n项和S n.【答案】(1)c n=2⋅3n-1-1,a n=2⋅3n-12-1,n为奇数2⋅3n2-3,n为偶数(2)S n=4⋅3n2-2n-4,n为偶数2⋅3n+12-2n-3,n为奇数【分析】(1)由题意先求出a1,再根据c n=a2n-1,得c1=a1,c n+1=a2n+1,从而可得c n+1=3c n+2,再利用构造法求出c n的通项,从而可得a n的通项公式;(2)分n为偶数和奇数两种情况讨论,再结合分组求和法即可得解.【详解】(1)a n+1=3a n,n为奇数a n+2,n为偶数,得a2=3a1,a3=a2+2=3a1+2,因为a1+a3=2a2,即a1+3a1+2=6a1,解得a1=1,由c n=a2n-1,得c1=a1=1,c n+1=a2n+1,又a2k=3a2k-1,a2k+1=a2k+2,k∈N*,故a2k+1=3a2k-1+2,所以c k+1=3c k+2,即c n+1=3c n+2,所以c n+1+1=3c n+1,又c1+1=2,所以数列c n+1是以2为首项,3为公比的等比数列,所以c n+1=2⋅3n-1,所以c n=2⋅3n-1-1,则a2n-1=2⋅3n-1-1,故a2n=3a2n-1=2⋅3n-3,所以a n=2⋅3n-12-1,n为奇数2⋅3n2-3,n为偶数 ;(2)当n为偶数时,S n=a1+a3+⋯+a n-1+a2+a4+⋯+a n=4a1+a3+⋯+a n-1=4c1+c2+⋯+c n2=4×21-3n2 1-3-n 2 =4⋅3n 2-2n -4,当n 为奇数时,S n =S n +1-a n +1=4⋅3n +12-2n +1 -4-2⋅3n +12-3 =2⋅3n +12-2n -3,综上所述,S n =4⋅3n 2-2n -4,n 为偶数2⋅3n +12-2n -3,n 为奇数 .11已知S n 为数列a n 的前n 项和,a 1=2,S n +1=S n +4a n -3,记b n =log 2a n -1 +3.(1)求数列b n 的通项公式;(2)已知c n =-1 n +1⋅b n +1b n b n +1,记数列c n 的前n 项和为T n ,求证:T n ≥221.【答案】(1)b n =2n +1n ∈N *(2)证明见解析【分析】(1)利用S n 与a n 的关系,整理数列a n 的递推公式,根据构造法,可得通项,可得答案;(2)写出数列c n 的通项,利用裂项相消,可得T n ,分奇偶两种情况,可得答案.【详解】(1)由S n +1=S n +4a n -3,得S n +1-S n =4a n -3.∴a n +1=4a n -3,则a n +1-1=4a n -1 .∴a 1-1=2-1=1,∴数列a n -1 是以1为首项,4为公比的等比数列,∴a n -1=4n -1=22n -2n ∈N * .∵b n =log 2a n -1 +3,∴b n =log 222n -2+3=2n +1n ∈N * .(2)∵c n =-1 n +1⋅b n +1b n b n +1,∴c n =-1 n +1⋅2n +22n +1 2n +3=-1 n +1⋅1212n +1+12n +3 ∴T n =c 1+c 2+c 3+⋅⋅⋅+c n=1213+15 -15+17 +17+19 -⋅⋅⋅+-1 n +112n +1+12n +3当n 为奇数时,T n =1213+12n +3 >16>221.当n 为偶数时,T n =1213-12n +3 ,T n 是递增数列,∴T n ≥T 2=1213-17 =221.综上得:T n ≥221.12已知数列a n 满足a n +1=2a n -1,a 1+a 2=a 3.(1)求a n 的通项公式;(2)若b n =2n -1,数列c n 满足c 4n -3=b 2n -1,c 4n -2=a 2n -1,c 4n -1=a 2n ,c 4n =b 2n ,求c n 的前4n +1项和S 4n +1.【答案】(1)a n =2n -1+1(2)S 4n +1=4n 2+6n +4n【分析】(1)根据递推关系解方程得a 1=2,进而证明数列a n -1 是等比数列,公比为2,首项为1,再根据等比数列通项公式求解即可;(2)由题知c 4n -3+c 4n -2+c 4n -1+c 4n =8n -2+3⋅4n -1,进而令d n =c 4n -3+c 4n -2+c 4n -1+c 4n ,记数列d n 的前n 项和为T n ,则S 4n +1为T n 与c 4n +1的和,再根据等差数列与等比数列求和公式求解即可.【详解】(1)解:数列a n 满足a n +1=2a n -1,a 1+a 2=a 3所以,a 2=2a 1-1a 3=2a 2-1a 1+a 2=a 3,解得a 1=2,a 2=3,a 3=5,由a n +1=2a n -1得a n +1-1=2a n -1 ,即a n +1-1a n -1=2,所以,数列a n -1 是等比数列,公比为2,首项为1,所以a n -1=2n -1,即a n =2n -1+1所以,a n 的通项公式为a n =2n -1+1(2)解:因为b n =2n -1,a n =2n -1+1,所以c 4n -3=b 2n -1=22n -1 -1=4n -3,c 4n -2=a 2n -1=22n -2+1,c 4n -1=a 2n =22n -1+1,c 4n =b 2n =4n -1,所以,c 4n -3+c 4n -2+c 4n -1+c 4n =8n -2+3⋅22n -2=8n -2+3⋅4n -1,令d n =c 4n -3+c 4n -2+c 4n -1+c 4n =8n -2+3⋅4n -1,设数列d n 的前n 项和为T n ,因为数列8n -2 为等差数列,3⋅4n -1 为等比数列,所以,T n =n 6+8n -2 2+3×1-4n 1-4=4n 2+2n +4n -1因为数列c n 的前4n +1项和为T n 与c 4n +1的和,c 4n +1=c 4n +1 -3=4n +1 -3=4n +1,所以,S 4n +1=T n +c 4n +1=4n +1+4n 2+2n +4n -1=4n 2+6n +4n .13设数列a n 的前n 项和为S n ,且a 1=2,2S n +1a n +1=2S n a n+1.(1)求a n 的通项公式;(2)若b n =1S n,求数列b n 的前n 项和T n .【答案】(1)a n =2n(2)T n =n n +1【分析】(1)先根据2S n +1a n +1=2S n a n +1,可得数列S n a n 是以12为公差的等差数列,从而可得数列S n a n 的通项,再根据a n 与S n 的关系结合构造法即可得解;(2)先求出数列b n 的通项,再利用裂项相消法即可得解.【详解】(1)因为2S n +1a n +1=2S n a n +1,所以S n +1a n +1-S n a n =12,所以数列S n a n 是以S 1a 1=1为首项,12为公差的等差数列,所以S n a n =n +12,则S n =n +12a n ,当n ≥2时,S n -1=n 2a n -1,两式相减得a n =n +12a n -n 2a n -1,即a n n =a n -1n -1,所以数列a n n 为常数列,且a n n =a 11=2,所以a n =2n ;(2)由(1)得S n =n +12a n =n n +1 ,所以b n =1S n =1n n +1=1n -1n +1,所以T n =1-12+12-13+13-14+⋯+1n -1n +1=1-1n +1=n n +1.14已知数列a n 满足a 1=1,a n =3a n -1+2n ≥2,n ∈N * .(1)求证:数列a n +1 是等比数列;(2)若b n =2n +1 a n +1-a n ,S n 为数列b n 的前n 项和,求S n .【答案】(1)证明见解析(2)S n =4n ⋅3n ,n ∈N *【分析】(1)根据递推公式证明a n +1a n -1+1为定值即可;(2)先由(1)求得数列a n 的通项,从而可得数列b n 的的通项,再利用错位相减法求解即可.【详解】(1)因为a n =3a n -1+2n ≥2,n ∈N * ,所以a n +1=3a n -1+1 ,又a 1+1=2,所以a n +1 是以2为首项,以3为公比的等比数列;(2)由(1)知a n +1=2⋅3n -1,故a n =2⋅3n -1-1,所以b n =2n +1 2⋅3n -1-2⋅3n -1+1 =432n +1 ⋅3n ,故S n =433×3+5×32+7×33+⋯+2n +1 ⋅3n ,则3S n =433×32+5×33+⋯+2n -1 ⋅3n +2n +1 ⋅3n +1 ,两式相减得-2S n =433×3+2×32+2×33+⋯+2⋅3n -2n +1 ⋅3n +1 =433+61-3n 1-3-2n +1 3n +1 =-8n ⋅3n ,所以S n =4n ⋅3n .15设数列a n 的前n 项和为S n ,S n =2a n +2n -6n ∈N * .(1)求数列a n 的通项公式;(2)若数列2n +1a n a n +1 的前m 项和T m =127258,求m 的值.【答案】(1)a n =2n(2)7【分析】(1)当n ≥2时,构造S n -1=2a n -1+2n -8,与条件中的式子,两式相减,得a n =2a n -1-2,转化为构造等比数列求通项公式;(2)由(1)可知b n =2n +1a n a n +1=2n +12n +2 2n +1+2,利用裂项相消求和法求解.【详解】(1)因为S n =2a n +2n -6,所以当n =1时,S 1=2a 1-4,解得a 1=4.当n ≥2时,S n -1=2a n -1+2n -8,则S n -S n -1=2a n -2a n -1+2,整理得a n =2a n -1-2,即a n -2=2a n -1-2 .所以数列a n -2 是首项为2,公比为2的等比数列,所以a n -2=2×2n -1=2n .所以a n =2n +2.(2)令b n =2n +1a n a n +1=2n +12n +2 2n +1+2=212n +2-12n +1+2,数列b n 的前m 项和T m =214-16+16-110+110-114+⋯+12m +2-12m +1+2,=214-12m +1+2=12-22m +1+2,则12-22m +1+2=127258,则22m +1+2=2258,则2m +1=256⇒m =7.m 的值为7.16已知数列a n 满足a 1=1,n -1 a n -na n -1=0n ≥2 .(1)求数列a n 的通项公式;(2)若b n =2n ⋅a n ,求数列b n 的前n 项和S n .【答案】(1)a n =n (2)S n =n -1 ⋅2n +1+2【分析】(1)由题意得数列a nn为常数列,可数列a n 的通项公式;(2)利用错位相减法求数列前n 项和.【详解】(1)由n -1 a n -na n -1=0n ≥2 ,得a n n =a n -1n -1n ≥2 ,所以数列a n n 为常数列,有a nn =a 11=1,∴a n =n (2)b n =2n ⋅a n =n ⋅2n ,S n =21+2×22+3×23+⋯+n -1 2n -1+n ⋅2n ,2S n =22+2×23+3×24+⋯+n -1 2n +n ⋅2n +1,两式相减,-S n =21+22+23+⋯+2n -n ⋅2n +1=21-2n 1-2-n ⋅2n +1=1-n ⋅2n +1-2,所以S n =n -1 ⋅2n +1+217记数列a n 的前n 项和为S n ,已知a 1=-2,S n +1+2S n =-2 n +1.(1)求a n 的通项公式;(2)记数列a n 的前n 项和为T n ,证明:S n ≤T n <3S n .【答案】(1)a n =-2 n -1-3n +1 (2)见解析【分析】(1)根据辅助数法,整理等式,可得数列S n-2 n的通项,在根据a n 与S n 的关系,可得答案;(2)整理数列a n 的通项公式,利用错位相减法,求得T n ,根据作差法以及数列的单调性,可得答案.【详解】(1)由S n +1=-2S n +-2 n +1,两边同时除以-2 n +1可得:S n +1-2 n +1=S n-2 n +1,故数列S n -2 n为以1为公差的等差数列,则S n-2 n =S 1-21+n -1 ×1=a 1-2+n -1=n ,即S n =n ⋅-2 n ,当n ≥2时,a n =S n -S n -1=n ⋅-2 n -n -1 -2 n -1=-2 n -1-3n +1 ,将n =1代入上式,可得a 1=-2 1-1-3+1 =-2,则a 1满足上式,故数列a n 的通项公式a n =-2 n -1-3n +1 .(2)由n ∈N *,则-3n +1<0,即a n =-2 n -1-3n +1 =2n -13n -1 ,T n =20×2+21×5+22×8+⋯+2n -13n -1 ,2T n =21×2+22×5+23×8+⋯+2n 3n -1 ,两式相减可得,-T n =2+21×3+22×3+⋯+2n -1×3-2n 3n -1 =2+3×2+22+23+⋯+2n -1 -2n 3n -1 =2+3×2×1-2n -1 1-2-2n 3n -1=2+6×2n -1-1 -2n 3n -1 =2+3×2n -6-2n 3n -1 =-4+2n 4-3n ,则T n =4+2n 3n -4 ,由(1)可得S n =n ⋅-2 n =n ⋅2n ,T n -S n =4+2n 3n -4 -n ⋅2n =4+2n 2n -4 ,令b n =4+2n 2n -4 ,b n +1-b n =4+2n +12n +2-4 -4-2n 2n -4 =n ⋅2n +1>0,则数列b n 为递增数列,b 1=4+21×2-4 =0,则b n ≥0,即T n ≥S n ;T n -3S n =4+2n 3n -4 -3n ⋅2n =4-2n +2,令c n =4-2n +2,易知数列c n 为递减数列,c 1=4-21+2=-4<0,则c n <0,即3S n >T n .综上,不等式S n ≤T n <3S n 恒成立.18已知数列a n 的前n 项和为S n ,且S n =2a n -n n ∈N * .(1)求证;数列a n +1 是等比数列;(2)求证:nk =12k a k a k +1 <1.【答案】(1)证明见解析(2)证明见解析【分析】(1)S n +1=2a n +1-n +1 ,S n =2a n -n ,作差得a n +1=2a n +1,则a n +1+1=2a n +1 ,即可证明数列a n +1 为等比数列;(2)首先求出a n =2n-1,而2k a k a k +1=12k -1-12k +1-1,最后通过裂项求出得到nk =12k a k a k +1 =1-12n +1-1<1.【详解】(1)由已知得S n +1=2a n +1-n +1 ,又a n +1=S n +1-S n ,S n =2a n -n 所以作差得a n +1=2a n +1-2a n -1,故a n +1=2a n +1所以a n +1+1=2a n +1又当n =1时,S 1=2a 1-1,又S 1=a 1,故a 1=1故数列a n +1 是首项为2,公比为2的等比数列(2)由(1)可知:a n +1=2n ,故a n =2n -1所以2k a k a k +1=2k +1-1 -2k-1 2k -1 2k +1-1 =12k -1-12k +1-1nk =12k a k a k +1=2a 1a 2+22a 2a 3+23a 3a 4+⋅⋅⋅+2k a k a k +1+⋅⋅⋅+2na n an +1=1-122-1+122-1-123-1 +⋅⋅⋅+12k -1-12k +1-1+⋅⋅⋅+12n -1-12n +1-1=1-12n +1-1<1综上可知:nk =12ka k a k +1 <119已知数列{a n }的前n 项和为S n ,满足S n =2a n -1,n ∈N *,数列{b n }满足b 1=1,且nb n +1-(n +1)b n =n (n +1),n ∈N *.(1)求数列{a n }和{b n }的通项公式;(2)设c n =a n ⋅b n ,求数列{c n }的前n 项和为Tn .【答案】(1)a n =2n -1,b n =n 2(2)T n =(n -1)2n +1【分析】(1){a n }根据前n 项和为S n 与a 的关系可求出;{b n }根据递推公式先构造数列,再根据构造数列的通项公式求出{b n }的通项;(2)写出{c n }通项公式,用错位相减法求出T n .【详解】(1)∵S n =2a n -1,n ∈N *,∴S n +1=2a n +1-1,两式相减得:a n +1=2a n +1-2a ,∴a n +1=2a ,又S 1=a 1=2a 1-1,∴a 1=1,∴{a n }是以首项为1,公比为2的一个等比数列,∴a n =1×2n -1=2n -1;由nb n +1-(n +1)b n =n (n +1)得:b n +1n +1-bn n =1,又b 11=1∴b n n 是以首项为1,公差为1的一个等差数列,∴bn n=1+(n -1)×1=n ,∴b n =n 2;(2)由(1)知c n =n ⋅2n -1,∴T n =1⋅20+2⋅21+⋯+n ⋅2n -1,∴2T n =0+1⋅21+⋯+(n -1)⋅2n -1+n ⋅2n ,两式相减得:-T n =1+2+22+⋯+2n -1-n ⋅2n=1-2n 1-2-n ⋅2n =(1-n )2n -1,∴T n =(n -1)2n +1.20已知数列a n 满足a 1=1,a 2=4.有以下三个条件:①a n +1=4a n -4a n -1(n ≥2,n ∈N *);②na n +1=2n +1 a n ;③a 1+a 22+a 34+⋅⋅⋅+a n 2n -1=n 2+n2(n ∈N *);从上述三个条件中任选一个条件,求数列a n 的通项公式和前n 项和S n .【答案】a n =n ⋅2n -1,S n =n -1 ⋅2n +1【分析】选①根据递推关系式构造等比数列,再构造等差数列即可求得a n ;选②根据递推关系式,结合累乘法求得a n ;选③利用前n 项和与通项的关系,相减求得a n ;求前前n 项和采用错位相减法即可.【详解】解:选①由a n +1=4a n -4a n -1(n ≥2,n ∈N *)得a n +1-2a n =2a n -2a n -1 ,故a n +1-2a n 是公比为2的等比数列,则a n +1-2a n =a 2-2a 1 2n -1=2n即a n +12n +1-a n 2n =12,故a n 2n 是公差为12的等差数列,则a n 2n =12+n -1 12=12n ,即a n =n ⋅2n -1.选②由na n +1=2n +1 a n 得an +1a n =2n +1 n,故a n a n -1⋅a n -1a n -2⋅⋅⋅a 2a 1=2⋅n n -1⋅2⋅n -1 n -2⋅⋅⋅2⋅21化简得a na 1=n ⋅2n -1,即a n =n ⋅2n -1,n =1也满足选③由a 1+a 22+a 34+⋅⋅⋅+a n 2n -1=n 2+n2 (1)得当n ≥2时,a 1+a 22+a 34+⋅⋅⋅+a n -12n -2=n -1 2+n -12 (2)由(1)-(2)得a n 2n -1=n ,故a n=n ⋅2n -1,n =1也满足,因此,S n =1⋅20+2⋅21+3⋅22+⋅⋅⋅+n ⋅2n -12S n =1⋅21+2⋅22+3⋅23+⋅⋅⋅+n ⋅2n两式相减得-S n =20+21+22+⋅⋅⋅+2n -1-n ⋅2n化简得S n =-1-2n1-2+n ⋅2n =n -1 ⋅2n +121若数列a n 满足a 1=2,a n +1-2a n =3n -1.(1)证明:a n +1-3a n 是等比数列;(2)设a n 的前n 项和为S n ,求满足S n <2023的n 的最大值.【答案】(1)证明见解析(2)7【分析】(1)根据题意构造数列证明等比,求出首项及公比即可,(2)由(1)求出a n +1-3a n 的通项公式,与题中等式联立,求出a n 通项公式,进而求出前n 项和为S n ,代数使得S n <2023即可求出n 的最大值.【详解】(1)证明:因为a n +1-2a n =3n -1,所以a n +2-2a n +1=3n ,a n =12a n +1-12⋅3n -1,故a n +2-3a n +1a n +1-3a n=2a n +1+3n-3a n +1a n +1-3⋅12a n +1-12⋅3n -1=3n-a n +112⋅3n-12a n +1=2,又a 1=2,则a 2=5,a 2-3a 1=-1,故a n +1-3a n 是以-1为首项,2为公比的等比数列.(2)由(1)得a n +1-3a n =-2n -1①,又a n +1-2a n =3n -1②,②-①得,a n =2n -1+3n -1,故S n =a 1+a 2+⋯+a n=20+21+⋯+2n -1 +30+31+⋯+3n -1 =2n -1+123n -1 =2n+3n 2-32,易得S n 为递增数列,又S 7=1220<2023,S 8=3535>2023,S n <2023,故n 的最大值为7.22已知数列a n 的首项a 1=25,且满足a n +1=2a n 2a n +1.(1)求证:数列1a n-2为等比数列:(2)若1a 1+1a 2+1a 3+⋯+1a n<101,求满足条件的最大整数n .【答案】(1)证明见解析(2)50【分析】(1)两边取倒数,再同时减2,根据等比数列的定义,即可证明.(2)利用等比数列求和公式求和,再根据函数单调性,即可求解.【详解】(1)证明:由a n +1=2a n 2a n +1,可得1a n +1=2a n +12a n =1+12a n,1a n +1-2=12a n -1=121a n -2,又1a 1-2=12≠0,故数列1a n -2 为等比数列.(2)由(1)可知1a n -2=12×12 n -1=12n ,故1a n =12n +2.1a 1+1a 2+1a 3+⋯+1a n =12+2+122+2+123+2+⋯+12n +2=121-12n1-12+2n =1-12n+2n .令f n =1-12n+2n ,易知f n 随n 的增大而增大,f 50 <101,f 51 >101,故满足f n <101的最大整数为50.23已知数列a n 满足a 1=1,a 2=6,且a n +1=4a n -4a n -1,n ≥2,n ∈N * .(1)证明数列a n +1-2a n 是等比数列,并求数列a n 的通项公式;(2)求数列a n 的前n 项和S n .【答案】(1)证明见详解,a n =(2n -1)2n -1(2)T n =(2n -3)2n +3【分析】(1)根据递推公式构造可证,然后借助a n +1-2a n 为等比数列可得通项,再构造数列a n2n可证为等差数列,根据等差数列通项公式可解;(2)由错位相减法可得.【详解】(1)因为a n +1=4a n -4a n -1,n ≥2,n ∈N * 所以a n +1-2a n =2a n -4a n -1=2(a n -2a n -1)又因为a 2-2a 1=4所以a n +1-2a n 是以4为首项,2为公比的等比数列.所以a n +1-2a n =4×2n -1=2n +1变形得a n +12n +1-a n2n =1所以a n 2n 是以a 12=12为首项,1为公差的等差数列所以a n 2n =12+n -1=n -12,所以a n =(2n -1)2n -1(2)因为T n =1×20+3×21+5×22+⋅⋅⋅+(2n -1)2n -1⋯①所以2T n =1×21+3×22+5×23+⋅⋅⋅+(2n -1)2n ⋯②①-②得:-T n =1+22+23+⋅⋅⋅+2n -1-(2n -1)2n=1+22(1-2n -1)1-2-(2n -1)2n所以T n =(2n -1)2n -2n +1+3=(2n -3)2n +324已知正项数列a n 的前n 项和为S n ,现在有以下三个条件:①数列a 2n 的前n 项和为T n =n (n +1)2;②a 1=1,a n +1=n +1na n ;③a 1=1,a 2=2,当n ≥3时,a n +a n -1 S n -2S n -1+S n -2 =1.从上述三个条件中任选一个,完成以下问题:(1)求数列a n 的通项公式;(2)设数列b n 满足b 1=1,b n =a n -a n -1(n ≥2),试问b n 中是否存在连续三项b k ,b k +1,b k +2,使得1b k ,1b k +1,1b k +2构成等差数列?请说明理由.【答案】(1)任选一条件,都有a n =n (2)不存在,理由见解析.【分析】(1)选①,结合a 2n =T n -T n -1求得a n ;选②,通过构造常数列的方法求得a n ;选③,结合a n =S n -S n -1以及等差数列的知识来求得a n .(2)先假设存在符合题意的b k ,b k +1,b k +2,结合等差中项的知识推出矛盾,从而作出判断.【详解】(1)选①:因为数列a 2n 的前n 项和为T n =n (n +1)2,所以当n =1时,a 21=1;当n ≥2时,a 2n =T n -T n -1=n (n +1)2-(n -1)n2=n .经检验n =1时,a 21=1符合上式,所以a 2n =n ,n ∈N *,故正项数列a n 的通项公式为a n =n ,选②:因为a 1=1,a n +1=n +1n a n ,所以a n +1n +1=a n n,所以a n n 为常数列,即a nn=a 1=1,所以正项数列a n 的通项公式a n =n .选③:由a n +a n -1 S n -2S n -1+S n -2 =a n +a n -1 a n -a n -1 =a 2n -a 2n -1=1(n ≥3),所以数列a 2n 从第2项起成等差数列,且a 2n =n (n ≥2),经检验n =1时,a 1=1符合上式,所以正项数列a n 的通项公式a n =n .(2)数列b k 中不存在连续三项b k ,b k +1,b k +2,使得1b k ,1b k +1,1b k +2构成等差数列.理由如下:由(1)知当n ≥2时,b n =a n -a n -1=n -n -1,所以1b n =1n -n -1=n +n -1.假设数列b n 中存在连续三项b k ,b k +1,b k +2,使得1b k ,1b k +1,1b k +2构成等差数列.当k =1时,1,2+1,3+2,显然不成等差数列,假设不成立;当k ≥2时,则2(k +1+k )=(k +k -1)+(k +2+k +1),即k +1+k =k -1+k +2,两边同时平方,得k +1+k +2k +1⋅k =k -1+k +2+2k -1⋅k +2,所以(k +1)k =(k -1)(k +2),整理得k 2+k =k 2+k -2,所以0=-2,矛盾,故假设不成立.综上所述,数列b n 中不存在连续三项b k ,b k +1,b k +2,使得1b k ,1b k +1,1b k +2构成等差数列.25已知数列a n 中,a 1=5且a n =2a n -1+2n -1n ≥2,n ∈N * ,b n =a n -1n +1(1)求证:数列b n 是等比数列;(2)从条件①n +b n ,②n ⋅b n 中任选一个,补充到下面的问题中并给出解答.求数列的前n 项和T n .注:如果选择多个条件分别解答,按第一个解答计分.【答案】(1)证明见解析(2)选①:T n =n 22+n2+2n +1-2;选②:T n =n -1 2n +1+2【分析】(1)根据递推公式使用构造法可得a n -12n 的通项公式,然后可得b n 通项,再由等比数列定义可证;(2)选①:由分组求和法可得;选②:使用错位相减法可得.【详解】(1)因为a 1=5且a n =2a n -1+2n -1n ≥2,n ∈N * ,所以当n ≥2时,a n -1=2a n -1-1 +2n ,所以a n -12n =a n -1-12n -1+1,即a n -12n -a n -1-12n -1=1所以a n -12n 是以a 1-12=2为首项,1为公差的等差数列,所以a n -12n =2+n -1 ×1=n +1,所以a n =n +1 2n+1,b n =a n -1n +1=n +1 2n+1-1n +1=2n因为b 1=a 1-11+1=2,n ≥2时,b n b n -1=2n2n -1=2所以数列b n 是以2为首项,2为公比的等比数列.(2)选①:因为b n =2n ,所以n +b n =n +2n ,则T n =(1+2)+2+22 +3+23 +⋅⋅⋅+n +2n =1+2+3+⋅⋅⋅+n +2+22+23+⋅⋅⋅+2n=12n n +1 +21-2n 1-2=n 22+n 2+2n +1-2选②:因为b n =2n ,所以nb n =n ⋅2n,则T n =1×21+2×22+⋅⋅⋅+n ×2n (i )2T n =1×22+2×23+⋅⋅⋅+n ×2n +1(ii )(i )-(ii )得-T n =1×21+22+23+⋅⋅⋅+2n -n ×2n +1T n =n ×2n +1-21-2n 1-2=n ×2n +1-2n +1+2=n -1 2n +1+226已知数列a n 的前n 项的和为S n 且满足S n =2a n -2n ,数列b n 是两个等差数列1,4,7,10,⋅⋅⋅与4,9,14,19,⋅⋅⋅的公共项组成的新数列.(1)求出数列a n ,b n 的通项公式;(2)求出数列a n +b n 的前n 项的和T n .【答案】(1)a n =n +1 ⋅2n -1,b n =15n -11(2)T n =n ⋅2n+15n 2-7n2【分析】(1)利用a n 与S n 关系可得a n =2a n -1+2n -1,进而得到a n 2n =a n -12n -1+12,可知数列a n 2n 为等差数列,由等差数列通项公式可推导得到a n ;由题意可知b n 为等差数列,由等差数列通项公式可求得b n ;(2)采用分组求和法,分别利用错位相减法和等差数列求和公式可求得数列a n ,b n 的前n 项和,加和即可得到T n .【详解】(1)当n =1时,a 1=S 1=2a 1-2,∴a 1=2;当n ≥2时,S n -1=2a n -1-2n -1,∴a n =S n -S n -1=2a n -2n -2a n -1+2n -1=2a n -2a n -1-2n -1,即a n =2a n -1+2n -1,∴a n 2n =a n -12n -1+12,∴数列a n 2n 是以a 12=1为首项,12为公差的等差数列,∴a n 2n =1+12n -1 =n +12,∴a n =n +1 ⋅2n -1;∵数列b n 是两个等差数列1,4,7,10,⋅⋅⋅与4,9,14,19,⋅⋅⋅的公共项组成的新数列,∴数列b n 是以4为首项,15为公差的等差数列,∴b n =4+15n -1 =15n -11.(2)设A n 为数列a n 的前n 项和,B n 为数列b n 的前n 项和,∵A n =2×20+3×21+4×22+⋅⋅⋅+n ⋅2n -2+n +1 ⋅2n -1,2A n =2×21+3×22+4×23+⋅⋅⋅+n ⋅2n -1+n +1 ⋅2n ,∴-A n =2-n +1 ⋅2n+21+22+⋅⋅⋅+2n -1=2-n +1 ⋅2n+21-2n -1 1-2=-n ⋅2n ,∴A n =n ⋅2n,又B n =n b 1+b n 2=n 4+15n -11 2=15n 2-7n 2,∴数列a n +b n 的前n 项的和T n =A n +B n =n ⋅2n+15n 2-7n 2.27记S n 是公差不为0的等差数列a n 的前n 项和,已知a 3+3a 4=S 5,a 1a 5=S 4,数列b n 满足b n =3b n -1+2n -1n ≥2,n ∈N * ,且b 1=a 1-1.(1)求a n 的通项公式;(2)证明数列b n2n +1 是等比数列,并求b n 的通项公式;(3)求证:对任意的n ∈N *,ni =11b i <32.【答案】(1)a n =2n (2)证明见解析;b n =3n -2n (3)见解析【分析】(1)根据题意求出等差数列的首项与公差,再根据等差数列的通项即可得解;(2)根据等比数列的定义结合递推公式证明b n2n +1b n -12n -1+1为定值,即可得证,再根据等比数列的通项求出数列b n 2n+1 的通项,从而可得出答案;(3)由(2)得1b n =13n -2n ≤13n -1,再根据等比数列的前n 项和的公式即可得证.【详解】(1)解:设等差数列a n 的公差为d ,d ≠0,因为a 3+3a 4=S 5,a 1a 5=S 4,则a 1+2d +3a 1+9d =5a 1+10da 1a 1+4d =4a 1+6d,解得a 1=2d =2或a 1=0d =0 (舍去),所以a n =2n ;(2)证明:因为b n =3b n -1+2n -1n ≥2,n ∈N * ,所以b n 2n =32⋅b n -12n -1+12,即b n 2n+1=32b n -12n -1+1,所以b n2n +1b n -12n -1+1=32,因为b 1=a 1-1,所以b 12+1=32,所以数列b n 2n +1 是以32为首项,32为公比的等比数列,所以b n 2n+1=32 n,所以b n =3n -2n ;(3)证明:由(2)得1b n =13n -2n ≤13n -1,故ni =11b i=1b 1+1b 2+1b 3+⋯1b n ≤1+13+132+⋯+13n -1=1×1-13 n1-13=321-13 n <32,所以ni =11b i<32.28已知数列a n 的前n 项和为S n ,满足a 1=1,且2S n =na n +1.(1)求数列a n 的通项公式;(2)求数列1S n的前n 项和T n .【答案】(1)a n =n ;(2)T n =2nn +1.【分析】(1)利用S n 与a n 的关系求解通项公式;(2)利用等差数列求和公式求解S n ,再根据裂项相消法求解T n .(1)因为2S n =na n +1,所以2S n +1=n +1 a n +2,两式相减得2a n +1=n +1 a n +2-na n +1,即n +2 a n +1=n +1 a n +2,即a n +2n +2=an +1n +1n ∈N * ,又a 2=2a 1=2,a 1=1,故an n =⋅⋅⋅=a 22=a 11=1,因此,数列a nn 是每项都是1的常数列,从而a n =n .(2)因为a n =n ,所以S n =n n +12,从而1S n =2n n +1=21n -1n +1 ,因此T n=2×1-12+12-13+13-14+⋅⋅⋅+1n-1n+1=2×1-1n+1=2n n+1.29设数列a n满足a1=2,a n-2a n-1=2-n n∈N*.(1)求证:a n-n为等比数列,并求a n的通项公式;(2)若b n=a n-n⋅n,求数列b n的前n项和T n.【答案】(1)证明见解析,a n=2n-1+n(2)T n=n-1×2n+1【分析】(1)由递推公式可得a n-n=2a n-1-n-1,即可得到a n-n是以1为首项,2为公比的等比数列,再根据等比数列的通项公式求出a n的通项公式;(2)由(1)可得b n=n×2n-1,再利用错位相减法求和即可;【详解】(1)解:因为a1=2,a n-2a n-1=2-n n∈N*,所以a n=2a n-1+2-n,即a n-n=2a n-1-n-1又a1-1=2-1=1,所以a n-n是以1为首项,2为公比的等比数列,所以a n-n=1×2n-1,所以a n=2n-1+n(2)解:由(1)可得b n=a n-n⋅n=n×2n-1,所以T n=1×20+2×21+3×22+⋯+n×2n-1①,所以2T n=1×21+2×22+3×23+⋯+n×2n②,①-②得-T n=1+1×21+1×22+1×23+⋯+1×2n-1-n×2n即-T n=1-2n1-2-n×2n,所以T n=n-1×2n+1;30问题:已知n∈N*,数列a n的前n项和为S n,是否存在数列a n,满足S1=1,a n+1≥1+a n,﹖若存在.求通项公式a n﹔若不存在,说明理由.在①a n+1=2(S n+1+S n)﹔②a n=S n-1+n n≥2;③a n+1=2a n+n-1这三个条件中任选一个,补充在上面问题中并作答.注:如果选择多个条件分别解答,按第一个解答计分.【答案】选①:a n=1,n=18n-8,n≥2;选②:a n+1=2n-1;选③:a n=2n-n【分析】选①:利用a n与S n的关系得到关于S n的递推公式,再由递推公式求S n,然后可得通项a n;选②:利用a n与S n的关系得到递推公式,然后构造等比数列可求通项;选③:根据递推公式构造等比数列可解.【详解】选①:a n+1=2(S n+1+S n)=S n+1-S n=(S n+1+S n)(S n+1-S n)∵S1=a1=1,a n+1-a n≥1∴S n+1+S n>0∴S n+1-S n=2,即{S n}是以2为公差,1为首项的等差数列∴S n=2n-1,即∴S n=(2n-1)2当n≥2时,a n=S n-S n-1=(2n-1)2-(2n-3)2=8n-8显然,n=1时,上式不成立,所以a n=1,n=1 8n-8,n≥2 .选②:当n≥2时,a n=S n-1+n,即S n-1=a n-n所以a n=S n-S n-1=a n+1-(n+1)-(a n-n)整理得a n+1+1=2(a n+1)又a2=S1+2=3,a2+1=4所以{a n+1}从第二项起,是以2为公比,4为首项的等比数列。

新高考数学试卷题型

新高考数学试卷题型

新高考数学试卷题型一、选择题(共8小题)1. 设集合A = {xx^2-3x + 2 = 0},B={x∈ Z - 1≤slant x - 1≤slant2},则A∩ B=()- A. {1,2}- B. {1}- C. {2}- D. varnothing- 解析:- 先求解集合A,对于方程x^2-3x + 2 = 0,分解因式得(x - 1)(x - 2)=0,解得x = 1或x = 2,所以A={1,2}。

- 再求解集合B,不等式-1≤slant x - 1≤slant2,移项可得0≤slant x≤slant3,又因为x∈ Z,所以B = {0,1,2,3}。

- 则A∩ B={1,2},答案为A。

2. 已知i为虚数单位,若复数z=(1 + 2i)/(2 - i),z的共轭复数为¯z,则z·¯z=()- A. 1.- B. √(5)- C. 5.- D. (√(5))/(5)- 解析:- 先将复数z=(1 + 2i)/(2 - i)化简,分子分母同时乘以2 + i得:z=((1 + 2i)(2 + i))/((2 - i)(2 + i))=frac{2 + i+4i + 2i^2}{4 - i^2}=(2 + 5i-2)/(4 + 1)=i。

- 共轭复数¯z=-i,则z·¯z=i·(-i)=1,答案为A。

3. 已知向量→a=(1,2),→b=(m, - 1),若→a∥(→a+→b),则m=()- A. (1)/(2)- B. -(1)/(2)- C. 3.- D. -3.- 解析:- 先求→a+→b=(1 + m,1)。

- 因为→a∥(→a+→b),根据两向量平行的坐标表示x_1y_2-x_2y_1=0,这里x_1=1,y_1=2,x_2=1 + m,y_2=1,则1×1-2×(1 + m)=0。

- 即1-2 - 2m=0,解得m=-(1)/(2),答案为B。

完整的高考数学试卷题型

完整的高考数学试卷题型

1. 若函数f(x)=ax^2+bx+c在x=1时取得极值,则a+b+c=()A. 0B. 1C. -1D. 22. 已知函数f(x)=x^3-3x,若f(x)的图像关于点(0,-1)对称,则a的值为()A. 0B. 1C. -1D. 23. 已知数列{an}满足an+1-an=2,则数列{an}的通项公式为()A. an=2n-1B. an=2nC. an=2n+1D. an=2n^24. 已知复数z=i^2,则|z|的值为()A. 1B. 0C. -1D. i5. 已知三角形ABC的三个内角A、B、C的对边分别为a、b、c,若a+b+c=12,a^2+b^2-c^2=8,则三角形ABC的面积为()A. 4B. 6C. 8D. 106. 已知等差数列{an}的公差为d,若a1+a2+a3=9,a4+a5+a6=21,则数列{an}的通项公式为()A. an=3n-1B. an=3n+1C. an=3nD. an=3n^27. 已知函数f(x)=x^2+ax+b,若f(-1)=0,f(2)=5,则f(1)的值为()A. 0B. 1C. 4D. 58. 已知数列{an}满足an+1=2an-1,且a1=2,则数列{an}的通项公式为()A. an=2^nB. an=2^(n-1)C. an=2^(n+1)D. an=2^(n-2)9. 已知复数z=1+i,则|z|^2的值为()A. 2B. 1C. 0D. -110. 已知等比数列{an}的公比为q,若a1+a2+a3=27,a4+a5+a6=81,则数列{an}的通项公式为()A. an=3nB. an=3n-1C. an=3n+1D. an=3n^211. 已知函数f(x)=x^3-3x,若f(x)的图像关于直线y=x对称,则a的值为()A. 0B. 1C. -1D. 212. 已知三角形ABC的三个内角A、B、C的对边分别为a、b、c,若a^2+b^2-c^2=8,a+b+c=12,则三角形ABC的面积为()A. 4B. 6C. 8D. 10二、填空题(本大题共6小题,每小题5分,共30分)13. 已知函数f(x)=x^2-2ax+a^2,若f(x)的图像关于x轴对称,则a的值为______。

高考数学试卷必考例题

高考数学试卷必考例题

1. 已知函数$f(x)=x^3-3x+1$,则$f(x)$的对称中心为()A. $(0,1)$B. $(0,-1)$C. $(1,0)$D. $(1,1)$2. 已知等差数列$\{a_n\}$的公差为$d$,若$a_1=2$,$a_5=12$,则$a_{10}$的值为()A. 28B. 30C. 32D. 343. 若复数$z$满足$|z+1|=|z-1|$,则复数$z$在复平面上的轨迹为()A. $x=0$B. $y=0$C. $x^2+y^2=1$D. $x^2+y^2=4$4. 已知函数$f(x)=\ln x$在区间$(0,+\infty)$上的导函数为$f'(x)=\frac{1}{x}$,则$f(x)$的单调递增区间为()A. $(0,+\infty)$B. $(0,1)$C. $(1,+\infty)$D. $(1,+\infty)$5. 已知三角形的三边长分别为$a$、$b$、$c$,若$2a^2+3b^2=5c^2$,则该三角形为()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等腰三角形二、填空题6. 若等比数列$\{a_n\}$的公比为$q$,且$a_1=2$,$a_3=8$,则$q=$______。

7. 若函数$f(x)=x^3-3x+2$在$x=1$处的切线斜率为$-2$,则$f'(1)=$______。

8. 已知复数$z=1+i$,则$|z|$的值为______。

9. 已知函数$f(x)=\sqrt{x^2+1}$,则$f(-1)=______$。

10. 若等差数列$\{a_n\}$的前$n$项和为$S_n$,若$a_1=1$,$S_5=15$,则$S_9=$______。

三、解答题11. (本小题满分12分)已知函数$f(x)=\frac{1}{x^2+1}$。

(1)求$f(x)$的导数$f'(x)$;(2)求$f(x)$的单调递增区间;(3)求$f(x)$的极值。

新高考数学试卷大题

新高考数学试卷大题

一、解答题(本大题共5小题,共100分)1.(20分)已知函数f(x) = x^3 - 3x + 1,求函数f(x)的极值点和拐点。

解题步骤:(1)求导数f'(x);(2)令f'(x) = 0,求出x的值;(3)求二阶导数f''(x);(4)判断极值点和拐点。

2.(25分)在平面直角坐标系中,已知A(1, 2),B(4, 6),C(-2, 3)三点,求直线AB和直线BC的方程。

解题步骤:(1)求直线AB的斜率k1;(2)利用点斜式求直线AB的方程;(3)求直线BC的斜率k2;(4)利用点斜式求直线BC的方程。

3.(30分)已知等差数列{an}的首项a1 = 3,公差d = 2,求:(1)数列{an}的前n项和Sn;(2)数列{an}的第n项an。

解题步骤:(1)利用等差数列的通项公式an = a1 + (n - 1)d求an;(2)利用等差数列的前n项和公式Sn = n/2 (a1 + an)求Sn。

4.(35分)已知函数g(x) = e^x - x - 1,求函数g(x)的单调区间和极值。

解题步骤:(1)求导数g'(x);(2)令g'(x) = 0,求出x的值;(3)分析g'(x)的符号变化,确定g(x)的单调区间;(4)判断极值。

5.(40分)已知平面直角坐标系中,动点P的轨迹方程为x^2 + y^2 - 4x - 6y + 9 = 0,求:(1)动点P的轨迹是一个圆,求该圆的圆心坐标和半径;(2)当动点P在圆上时,求直线y = kx + b与圆相切的条件。

解题步骤:(1)将方程化为标准圆方程的形式;(2)确定圆心坐标和半径;(3)求直线y = kx + b与圆相切的条件。

二、证明题(本大题共1小题,共10分)6.(10分)证明:对于任意实数a和b,都有(a + b)^2 ≥ 4ab。

证明过程:(1)展开(a + b)^2;(2)利用完全平方公式;(3)利用不等式的基本性质。

高考新数学试卷题型及答案

高考新数学试卷题型及答案

1. 若函数f(x) = 2x^3 - 3x^2 + 4x + 1在x = 1处的切线斜率为多少?A. 1B. 2C. 3D. 4答案:C解析:首先求导数f'(x) = 6x^2 - 6x + 4,代入x = 1得f'(1) = 4,即切线斜率为4。

2. 若a、b、c为等差数列,且a + b + c = 12,b = 4,则c的值为多少?A. 2B. 4C. 6D. 8答案:D解析:由等差数列的性质,得2b = a + c,代入a + b + c = 12和b = 4,得a + c = 8,又因为b = 4,所以c = 8。

3. 若x^2 + 2x + 1 = 0,则x的值为多少?A. 1B. -1C. 0D. 无法确定答案:A解析:由完全平方公式,得(x + 1)^2 = 0,解得x = -1。

4. 若log2x + log4x + log8x = 3,则x的值为多少?A. 2B. 4C. 8D. 16答案:C解析:利用对数的换底公式,得log2x + log2x^(1/2) + log2x^(3/4) = 3,即log2x^((1 + 1/2 + 3/4)) = 3,解得x^((7/4)) = 2^3,即x = 8。

5. 若a、b、c、d为等比数列,且a + b + c + d = 32,a = 2,则d的值为多少?A. 8B. 16C. 32D. 64答案:D解析:由等比数列的性质,得a d = b c,代入a + b + c + d = 32和a = 2,得2 + b + c + d = 32,即b + c + d = 30,又因为a d = b c,所以2d = 30,解得d = 15。

二、填空题6. 若函数f(x) = x^2 - 4x + 3的对称轴方程为x = ________。

答案:2解析:对称轴方程为x = -b/2a,代入a = 1,b = -4,得x = 2。

高考数学常见题型汇总(精华资料)

高考数学常见题型汇总(精华资料)

高考数学常见题型汇总(精华资料)一、函数1、求定义域(使函数有意义)分母0偶次根号0对数loga某某>0,a>0且a1三角形中060,最小角<602、求值域判别式法V0不等式法导数法特殊函数法换元法题型:题型一:1y某某2y某221111某233某23某某某某某法一:y某-1-21111某(某,同号)2某某某y2或y2bya某(ab0)某法二:图像法(对有效题型二:1y某(某1,9)某1导数法:y120某1函数y某单调递增某80yf(1),f(9),即y0,9/题型三:y2in11in1y化简变形in,又in1,2y1y1解不等式,求出y,就是要求的答案2y题型四:2in11co化简变形2in1y(1co),得y2inyco1y4y2in(某)1y,即in(某)1y4y21y4y2又由in(某)1知1解不等式,求出y,就是要求的答案题型五某23某y某3化简变形某23某y(某3),得某2(3y)某3y0由判别式V(3y)243y0解出y反函数1、反函数的定义域是原函数的值域2、反函数的至于是原函数的定义域3、原函数的图像与原函数关于直线y=某对称题型32某,求f(2)12某32某解:直接令2,解出某,就是答案2某已知f(某)周期性f(某)f(某t)0-)f(某t)f(某2t)0(2式相减)对称f(某)f(某2t),函数f(某)是一个周期是2t的周期函数f(某a)f(a某)f(某)f(2a某)函数关于直线某=a对称对称的判断方法:写出2个对应点的坐标A(某,f(某)),B(2a某,f(某)),求出其中点的坐标C(a,f(某))。

因a是常数,故整个函数关于直线某a对称不等式题型一:2某(某0)某1111223=某3某3某某某某2(应用公式a+b+c33abc时,注意使3者的乘积变成常数)题型二:某2(3-2某)(0数列:(熟记等差数列,等比数列的基本公式,掌握其通项公式和求和公式的推导过程)等差数列:a1anSnna1n(当n是奇数时,应写成n)22a5a6...a95a7amam1...an(nm)am(不能写上试卷)n2Sn,S2nSn,S3nS2n...是等差数列,公差是n2d等比数列:nn是奇数时,应写成(a1an)nSn(a1n)(当2Sn,S2nSn,S3nS2n...是等比数列,公比是qn无穷递缩等比数列(q1)a1=limSn(也说是等比数列中所有项的和)n1q通项公式的求法1、S1n=1时anSnSn1n>1时2、。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学高考大题题型归纳必考题型例题
1数学高考大题题型有哪些
必做题:
1.三角函数或数列(必修4,必修5)
2.立体几何(必修2)
3.统计与概率(必修3和选修2-3)
4.解析几何(选修2-1)
5.函数与导数(必修1和选修2-2)
选做题:
1.平面几何证明(选修4-1)
2.坐标系与参数方程(选修4-4)
3.不等式(选修4-5)
2数学高考大题题型归纳
一、三角函数或数列
数列是高中数学的重要内容,又是学习高等数学的基础。

高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。

有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。

探索性问题是高考的热点,常在数列解答题中出现。

本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。

近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。

(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。

(3)数列的应用问题,其中主要是以增长率问题为主。

试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。

二、立体几何
高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。

选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。

随着新的课程改革的进一步实施,
立体几何考题正朝着多一点思考,少一点计算的发展。

从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。

三、统计与概率
1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。

2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。

3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。

4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

5.了解随机事件的发生存在着规律性和随机事件概率的意义。

6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。

7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。

8.会计算事件在n次独立重复试验中恰好发生k次的概率.
四、解析几何(圆锥曲线)
高考解析几何剖析:
1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;
2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。

有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:
1、几何问题代数化。

2、用代数规则对代数化后的问题进行处理。

五、函数与导数
导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。

在高中阶段对于导数的学习,主要是以下几个方面:
1.导数的常规问题:
(1)刻画函数(比初等方法精确细微);
(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);
(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。

2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考(微博)中考察综合能力的一个方向,应引起注意。

3数学高考大题常考题型
三角函数常考题型。

相关文档
最新文档