初中数学总复习资料

合集下载

初中数学总复习(全册)知识点归纳

初中数学总复习(全册)知识点归纳

初中数学总复习(全册)知识点归纳初中数学总复(全册)知识点归纳初中数学是我们研究过程中的重要一环,通过全面复初中数学知识点,可以巩固基础,为进一步的研究打下坚实的基础。

下面是初中数学全册知识点的归纳总结:一、数与式1. 自然数、整数、有理数和无理数的定义及性质2. 分数的概念、分数的大小比较、分数的运算3. 正数、负数、零的概念及性质4. 整式的定义和计算,含有一个未知数的整式5. 一元一次方程及方程的解法6. 百分数与百分之一的关系,百分数的计算7. 有序数对的表示方法,平面直角坐标系的认识和性质二、代数中的图形1. 点、线、面的概念,直线与曲线的区别2. 多边形的定义,凸多边形和凹多边形的区别3. 四边形的性质及分类,正方形、矩形、平行四边形和菱形的性质4. 二维坐标系,点的坐标,坐标的符号三、方程与不等式1. 一元二次方程的定义及解法,解一元二次方程的方法2. 二次函数的定义,二次函数的图象,图象的性质与应用3. 不等式的概念,不等式的解及图示四、实数的运算1. 实数与有理数的关系,无理数的性质与运算2. 加减法的性质和运算法则,乘法的性质和运算法则3. 分数的乘除法,有理数的乘除法五、数据的处理和应用1. 数据的整理和分类,统计图表的制作与解读2. 平均数的计算与应用3. 频数分布和频数分布图的制作与应用4. 数据的收集、整理、分析和解释六、几何与变换1. 几何基本概念,点、线、面、角、距离、平行和垂直2. 直角三角形、等腰三角形和等边三角形的性质3. 平行四边形、矩形和正方形的性质4. 空间几何图形的认识和性质,立体图形的展开和拼接七、统计与概率1. 抽样调查、统计指标和数据的分析2. 事件与概率,用频率估计概率3. 连续性随机事件的概率计算这是初中数学总复习(全册)知识点的一个概括性归纳。

希望对你的学习有所帮助!。

(完整版)初中数学总复习(几何知识点整理)

(完整版)初中数学总复习(几何知识点整理)

初中数学总复习(几何知识点整理)(一):【知识梳理】1.直线、射线、线段之间的区别:联系:射线是直线的一部分.线段是射线的一部分,也是直线的一部分.2。

直线和线段的性质:(1)直线的性质:①经过两点直线,即两点确定一条直线;②两条直线相交,有交点。

(2)线段的性质:两点之间的所有连线中,线段最短,即两点之间,线段最短.3。

角的定义:有公共端点的所组成的图形叫做角;角也可以看成是由一条射线绕着它的端点旋转而成的图形.(1) 角的度量:把平角分成180份,每一份是1°的角,1°=6 0′,1′= 6 0″(2)角的分类:(3)相关的角及其性质:①余角:如果两个角的和是直角,那么称这两个角互为余角.②补角:如果两个角的和是平角,那么称这两个角互为补角.③对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.④互为余角的有关性质:①∠1+∠2=90°⇔∠1、∠2互余;②同角或等角的余角相等,如果∠l十∠2=90○,∠1+∠3= 90○,则∠2 ∠3.⑤互为补角的有关性质:①若∠A +∠B=180○⇔∠A、∠B互补;②同角或等角的补角相等.如果∠A+∠C=180○,∠A+∠B=180°,则∠B ∠C.⑥对顶角的性质:对顶角相等.(4)角平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.4.同一平面内两条直线的位置关系是:相交或平行5.“三线八角”的认识:三线八角指的是两条直线被第三条直线所截而成的八个角.正确认识这八个角要抓住:同位角即位置相同的角;内错角要抓住“内部,两旁”;同旁内角要抓住“内部、同旁”.6.平行线的性质:(1)两条平行线被第三条直线所截, 角相等,角相等,同旁内角互补.(2)过直线外一点直线和已知直线平行.(3)两条平行线之间的距离是指在一条直线上7。

任意找一点向另一条直线作垂线,垂线段的长度就是两条平行线之间的距离.8.平行线的定义:在同一平面内.的两条直线是平行线。

初中数学总复习

初中数学总复习

初中数学总复习初中数学总复资料1.数与代数1.1 数与式有理数:有限或循环小数(无理数:无限不循环小数)数轴:三要素相反数绝对值:│a│= a(a≥0)│a│=-a(a<0)倒数指数零指数:a=1(a≠0)负整指数:(a≠0,n是正整数)完全平方公式:(a±b)²=a²±2ab+b²平方差公式:(a+b)(a-b)=a²-b²幂的运算性质:am·an=am+nam÷an=am-nam)n=amnab)n=anbnan/n科学记数法:a×10n(1≤a<10,n是整数)算术平方根、平方根、立方根、1.2 方程与不等式一元二次方程定义及一般形式:ax²+bx+c=0(a≠0)解法:1.直接开平方法.2.配方法3.公式法:x1,2= (-b±√(b²-4ac))/2a4.因式分解法.根的判别式:Δ=b²-4ac>0,有两个解。

Δ=b²-4ac<0,无解。

Δ=b²-4ac=0,有1个解。

维达定理:x1+x2=-b/a,x1×x2=c/a常用等式:x1+x2=-b/a,x1×x2=c/a1.3 应用题1.行程问题:相遇问题、追及问题、水中航行:v顺=船速+水速;v逆=船速-水速2.增长率问题:起始数(1+X)=终止数3.工程问题:工作量=工作效率×工作时间(常把工作量看着单位“1”)。

4.几何问题1.4 分式方程(注意检验)由增根求参数的值:1.将原方程化为整式方程2.将增根带入化间后的整式方程,求出参数的值。

1.5 不等式的性质1.a>b→a+c>b+c2.a>b→ac>bc(c>0)3.a>b→ac<bc(c<0)4.a>b,b>c→a>c5.a>b,c>d→a+c>b+d.2.函数2.1 一次函数1.定义:y=kx+b(k≠0)2.图象:直线过点(0,b)—与y轴的交点和(-b/k,0)—与x轴的交点。

初中数学总复习提纲

初中数学总复习提纲

初中数学总复习提纲一、数的性质和运算1.自然数、整数、有理数、实数和虚数的含义及其性质2.整数的运算规则:加法、减法、乘法、除法、绝对值运算3.有理数的运算规则:加法、减法、乘法、除法、混合运算4.指数与指数运算5.逻辑与集合二、代数式与方程式1.代数式的定义及其性质2.平方、完全平方、立方和完全立方的求解3.一元一次方程的解法4.一元一次方程组的解法5.一元二次方程的解法及其应用6.用方程表示实际问题并解决实际问题7.勾股定理及其应用三、数与图形1.二维图形的边、角、面及其性质2.三角形、四边形和多边形的性质及其关系3.三角形的线段、角、面积公式及应用4.三角形的相似性质及其应用5.圆的定义、性质及公式6.圆的面积和周长的计算7.空间几何体的计算四、函数与应用1.函数的概念和性质2.函数图像的平移、伸缩和反射3.一次函数、二次函数、三次函数及其图像4.绝对值函数、分段函数及其图像5.函数的复合、反函数和逆函数6.数据的收集、整理、统计和分析7.概率与统计五、单位换算与计算检验1.长度、面积、体积和质量的单位换算2.时间、速度、密度、温度、角度的单位换算3.百分数和比例的计算4.计算结果的检验5.合理估算的方法与应用六、解题方法与思维培养1.数学解题的基本方法2.算术平均数、几何平均数和均值不等式的应用3.推理与证明4.逻辑思维与数学思维的培养5.综合应用题的解决方法以上是初中数学总复习的提纲,根据这个提纲进行复习,可以全面复习初中数学知识,有助于提高数学应试能力。

每个模块都要结合习题进行巩固,多做一些实际应用题,提高解决问题的能力。

同时,要注重思维培养和解题方法的掌握,通过多思考、多讨论、多练习,培养学生的数学思维能力。

中考数学复习资料(7篇)

中考数学复习资料(7篇)

中考数学复习资料(7篇)中考数学复习资料(7篇)它是初中毕业证发放的必要条件,中国将这几科考试科目规定为国家课程的学科,全部列入初中学业水平考试的范围。

以下是小编为大家整理的中考数学复习重点,仅供参考,希望能够帮助大家。

中考数学复习重点1中考临近,考生在复习时数学如何才能抓住要点数学复习应该重点抓好数字式、方程(组)与不等式(组)、函数及其图像、统计与概率、几何的基本概念与三角形、四边形、相似图形、特直角三角形、圆及视图与投影等10大模块。

同时,于忠翠老师强调,考生应该以轻松自信的心态应对中考,发挥出自己的真实水平。

数字式以中、低档题居多“这一板块主要包括实数、整式、因式分解、分式及二次根式等内容,中考中多以填空选择的客观题形式出现,淡化了计算难度,主要以中、低档次的题居多。

”于忠翠说,随着课改的深入,这一板块的考察形式将会多样化,一些以实际生活题材为背景、结合当今社会热点的问题将会占据主流,近似数、有效数字、科学论证法、绝对值、因式分解、规律探究及阅读理解题成为近几年的热点题型。

方程与不等式难度不大、函数突出开放性单纯求解方程的不等式问题多以填空、选择的题型出现,一般难度不大。

对于应用方程(组)与不等式(组)解决实际问题,特别是与生产生活相联系的方案设计、决策应用等问题应是中考重点,尤其是方程与函数知识、几何知识的综合运用及不等式的实际运用问题是热点问题。

“函数题越来越突出开放性,单纯求函数解析式的题型越来越少,函数中的一些动点问题,尤其是设计新颖、贴近生产生活的函数最值问题、一些开放性探索题及图表信息题将会成为中考热点问题。

”于忠翠说。

统计概率以图表信息题为主统计与概率在中考试卷中所占分数一般在10分左右,这一板块在考察基础知识和基本技能的同时,多以图表信息题为主,考察学生利用图表的信息及所求概率的大小,解决现实生活中的问题。

对于几何与三角形,于忠翠表示,这一板块主要考察结合图形探索规律,特殊三角形在实际生活中的应用及利用旋转、轴对称等知识解决实际问题,淡化了传统的推理论证题。

初中数学总复习知识点整理(最全)

初中数学总复习知识点整理(最全)

初中数学总复习知识点整理(最全)知识点分类
1. 整数
1.1 整数的概念
1.2 整数的进位与退位
1.3 整数的加减法
1.4 整数的乘法
1.5 整数的除法
2.分数
2.1 几个基本概念
2.2 分数的基本性质2.3 分数的加减法
2.4 分数的乘法
2.5 分数的除法
3. 小数
3.1 小数的概念
3.2 小数与分数的转化3.3 小数的加减法
3.4 小数的乘法
3.5 小数的除法
4.代数
4.1 代数式的概念和性质4.2 代数式的加减法
4.3 代数式的乘法
4.4 公式和方程
4.5 解一元一次方程
5. 轴对称与余弦定理5.1 轴对称的基本概念5.2 轴对称的性质
5.3 用轴对称解题
5.4 余弦定理的概念和性质
5.5 用余弦定理解题
6.勾股定理与三角函数
6.1 勾股定理的概念和性质
6.2 在平面直角坐标系中应用勾股定理6.3 用勾股定理解决实际问题
6.4 三角函数的定义和性质
6.5 用三角函数解决实际问题
知识点重点
- 整数的进位与退位
- 分数的加减法
- 代数式的乘法
- 解一元一次方程
- 用轴对称解题
- 用余弦定理解题
- 用勾股定理解决实际问题- 用三角函数解决实际问题知识点易错点
- 乘方与加减混淆
- 分数的错位相乘
- 代数式乘法计算错误
- 方程解错
- 三角函数概念混淆
- 勾股定理和余弦定理运用错误
- 计算精度不足
以上是初中数学的总复习知识点整理,祝您考试顺利!。

七年级数学总复习知识点

七年级数学总复习知识点

七年级数学总复习知识点七年级数学是初中数学的第一年,主要学习基础的数学知识,包括数的四则运算、代数基础、几何基础等。

本文将从这些方面总结七年级数学的重点知识点,供同学们进行复习。

一、数的四则运算1. 整数的加减法整数的加减法主要基于正数和负数的概念,需要注意加减法的正负规则和运算顺序。

关键在于将加减法转化为同号运算,然后简单进行计算。

例如:(-5)+3+2=(-5)+5=02. 分数的加减法分数的加减法需要先找到两个分数的公共分母,然后将其转化为同分母的形式,最后简单进行计算即可。

例如:1/2+3/4=(2/4)+(3/4)=5/43. 乘法和除法数的乘法和除法是由数的加减法推导而来的,需要注意乘法和除法的操作法则,以及优先级问题。

例如:2×(-3)=-6,(-8)÷(-4)=2二、代数基础1. 代数表达式的基本形式代数表达式由数、变量和运算符号组成,其中变量是代表数的字母或符号。

代数表达式的基本形式为a+b,其中a和b分别表示含有变量的数。

2. 代数式的加减法代数式的加减法与数的加减法类似,只是将相同项合并后,变量前的系数相加即可。

例如:3x+2y-5y-4x=(3-4)x+(2-5)y=-x-3y3. 解一元一次方程解一元一次方程的关键在于具备化简代数表达式和运用分配律的能力。

方程被解的未知数需通过变量的加减法和乘除法化简成x=…的形式,从而得出方程的解。

例如:2x+1=7,2x=6,x=3三、几何基础1. 平面图形的基本概念平面图形是指在平面内以线段为边组成的图形,包括三角形、四边形、圆等。

了解这些图形的基本概念对于以后的几何学习非常重要。

例如:三角形有三条边,三个内角。

2. 三角形的性质三角形的性质很多,包括内角和为180度、等角三角形的三条边相等、等腰三角形的两边相等等。

掌握这些性质可以为后续几何学习提供基础。

例如:等边三角形内角都为60度,等腰三角形的底角相等。

3. 长方形、正方形、菱形等四边形的性质四边形也有很多性质,例如长方形对角线相等、正方形四条边相等、菱形对角线垂直等。

2023年初中数学毕业会考复习提纲(全套)

2023年初中数学毕业会考复习提纲(全套)

2023年初中数学毕业会考复习提纲(全套)
一、整数
1. 整数的概念和性质
2. 整数的相反数和绝对值
3. 整数的加减法运算
4. 整数的乘法运算
5. 整数的除法运算
6. 整数的混合运算
7. 整数的分数运算
二、代数式与方程
1. 代数式的概念
2. 代数式的加减法运算
3. 代数式的乘法运算
4. 代数式的混合运算
5. 方程的概念和性质
6. 一元一次方程的解法
7. 一元一次方程的应用
三、分数
1. 分数的概念和性质
2. 分数的化简
3. 分数的加减法运算
4. 分数的乘法运算
5. 分数的除法运算
6. 分数的混合运算
7. 分数和整数的转换
四、比例与相似
1. 比例和比例的性质
2. 比例的简化与扩大
3. 比例的四则运算
4. 等比例线段和相似比例线段的性质
5. 两位线段的比较
五、平面图形的认识
1. 直线、线段和射线的认识
2. 角和角的种类
3. 三角形的性质和判定
4. 四边形的性质和判定
5. 五边形、六边形和多边形的性质
六、数轴与坐标
1. 数轴的认识和使用
2. 点、有序数对和坐标的概念
3. 坐标的运算
4. 图形的平移
七、统计与概率
1. 数据的收集和整理
2. 统计图的绘制和分析
3. 概率的基本概念和计算
八、函数与图像
1. 函数的概念和性质
2. 函数的表示和运算
3. 函数的图像和性质
以上是2023年初中数学毕业会考复习的全套提纲,希望对你的复习有所帮助。

祝你取得好成绩!。

初中数学总复习资料.pdf.doc

初中数学总复习资料.pdf.doc

学 无 止 境初中数学总复习资料㈠数与代数⒈数与式⑴有理数:有限或不限循环性数(无理数:无限不循环小数)⑵数轴:“三要素”⑶相反数⑷绝对值:│ a │= a(a ≥ 0) │a │=-a(a<0)⑸倒数⑹指数① 零指数: 0 a =1(a ≠0) ②负整指数: (a ≠0,n 是正整数)⑺完全平方公式: 2 2 2 2(a b) = a ab + b2 b2⑻平方差公式: (a+b )(a-b ) =a -⑼幂的运算性质:① m a · n a = m+ ② a m ÷ n a n a = m mn - n ③ (a m )n = a a ④ n (ab) = n a nb ⑤n a an( ) = ⑽n b b科学记数法: n a 10 (1≤ a <10,n 是整数)⑾算术平方根、平方根、立方根、⑿ a b c m a ===(b +d++ n0)等比性质:dnb++ c d + + + + m n =ab⒉方程与不等式⑴一元二次方程①定义及一般形式: 0( 0) ax2 + bx + c = a②解法:1. 直接开平方法.2. 配方法2- b b - 4ac 2 3. 公式法:x1 = (b - 4ac 0),22a4. 因式分解法.③根的判别式:= b 4 ac >0,有两个解。

2 -= b 4 ac <0,无解。

2 -= b 4 ac =0,有1 个解。

2 -④维达定理:bx1 + x2 = - ,x1 x2 =aca⑤常用等式: 2 2 2 2 2x1 + x = (x + x ) - 2x x (x1 - x ) = (x + x ) - 4x1x22 1 2 1 2 2 1 2⑥应用题1. 行程问题:相遇问题、追及问题、水中航行:v顺= 船速+ 水速; v逆= 船速- 水速2. 增长率问题:起始数(1+X)=终止数3. 工程问题:工作量=工作效率×工作时间(常把工作量看着单位“1”)。

浙江杭州初中数学总复习资料

浙江杭州初中数学总复习资料

浙江杭州初中数学总复习资料
尊敬的老师、同学们,
在这里,我将为大家提供一份浙江杭州初中数学的总复资料,希望对大家备考有所帮助。

单元一:数与式
- 数的认识与运算
- 整数与有理数
- 代数式与多项式
- 一元一次方程
- 等式与不等式
- 二元一次方程组
单元二:图形的认识与初步研究
- 平面图形的认识
- 全等与相似
- 圆的认识与运用
- 数据的收集、整理与展示单元三:比例与变化
- 比例的认识与运用
- 百分数与利率
- 几何体
单元四:代数初步
- 每年利率
- 一般问题求未知数
- 几何体的认识
- 平行线与相交线
单元五:函数初步
- 函数的认识与运用
- 一元一次方程
- 几何体的认识与判断
单元六:平面直角坐标系
- 平面直角坐标系
- 几何体的认识与初步研究
单元七:统计与概率
- 数据的收集、整理与展示
- 历年真题分析与解答
这份总复资料涵盖了浙江杭州初中数学的各个单元内容,旨在帮助大家全面复并提高数学水平。

希望大家认真研究,多做题目,密切注意老师的指导和解析。

相信经过努力,大家一定能够取得优异的成绩!
祝大家考试顺利!
敬上。

初三数学总复习资料_分专题试题及答案(90页)

初三数学总复习资料_分专题试题及答案(90页)
绝对值符号去掉。
(2) 已知| x | a(a 0) ,求 x 时,要注意 x a
考点 3 平方根与算术平方根
1、 若 x 2 a(a 0) ,则 x 叫 a 做的_________,记作______;正数 a 的__________叫做算术平 方根,0 的算术平方根是____。当 a 0 时, a 的算术平方根记作__________。
2
y
5、 实数 a, b, c 在数轴上对应点的位置如图 2 所示,下列式子中正确的有( )
c
ba
-2 -1 0 1 2 3
图2
① b c 0 ② a b a c ③ bc ac ④ ab ac
A.1 个
B.2 个 C.3 个 D.4 个
6、 ①数轴上表示-2 和-5 的两点之间的距离是______数轴上表示 1 和-3 的两点之间的距离是
用根号形式表示的数并不都是无理数(如 4 ),也不是所有的无理数都可以写成根号的形
式(如 )。
练习: 1、 把下列各数填入相应的集合内:
7.5,
15, 4,
8 ,
2 ,
3 8,
,
0.25,
0.1 5
13 3
有理数集{ 正实数集{
},无理数集{
}
}
2、 在实数 4, 3 , 0, 2
2 1,
64, 3 27 , 1 中,共有___ 27
2、 幂的运算法则:(以下的 m, n 是正整数)
(1)a m a n _____ ; (2)(a m )n ____ ; (3)(ab)n _____ ; (4)a m a n ______(a 0) ;
(5)(b )n ______ a
3、 乘法公式:

初中数学总复习题集

初中数学总复习题集

初中数学总复习题集一、代数基础1. 代数表达式的简化- 题目:给定表达式 \(3x^2 + 5x - 2\),求 \(x = 2\) 时的值。

- 答案:将 \(x = 2\) 代入表达式得 \(3 \times 2^2 + 5\times 2 - 2 = 12 + 10 - 2 = 20\)。

2. 一元一次方程的解法- 题目:解方程 \(2x + 3 = 7\)。

- 答案:移项得 \(2x = 4\),除以2得 \(x = 2\)。

3. 二元一次方程组的解法- 题目:解方程组 \(\begin{cases} x + y = 5 \\ x - y = 1\end{cases}\)。

- 答案:相加得 \(2x = 6\),解得 \(x = 3\),代入任一方程得\(y = 2\)。

二、函数与图形1. 线性函数的图像与性质- 题目:给定函数 \(y = 2x + 3\),求当 \(y = 0\) 时的 \(x\) 值。

- 答案:将 \(y = 0\) 代入得 \(0 = 2x + 3\),解得 \(x = -1.5\)。

2. 反比例函数的图像与性质- 题目:给定函数 \(y = \frac{1}{x}\),求当 \(x = 2\) 时的\(y\) 值。

- 答案:直接代入得 \(y = \frac{1}{2}\)。

3. 二次函数的图像与性质- 题目:给定函数 \(y = x^2 - 4x + 4\),求顶点坐标。

- 答案:顶点公式为 \(x = -\frac{b}{2a}\),代入得 \(x = 2\),将 \(x = 2\) 代入原函数得 \(y = 0\),所以顶点坐标为 \((2,0)\)。

三、几何基础1. 三角形的性质- 题目:已知三角形 ABC,AB = 5,AC = 7,BC = 6,求角 A 的大小。

- 答案:根据余弦定理 \(\cos A = \frac{b^2 + c^2 -a^2}{2bc}\),代入得 \(\cos A = \frac{6^2 + 5^2 - 7^2}{2\times 6 \times 5} = \frac{1}{2}\),所以 \(A = 60^\circ\)。

初中数学总复习知识点详解

初中数学总复习知识点详解

初中数学总复习知识点详解第一章:实数★重点★ 实数的有关概念及性质,实数的运算 ☆内容提要☆一、 重要概念 1.数的分类及概念 数系表:说明:“分类"的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称.(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。

3.倒数: ①定义及表示法②性质:A 。

a ≠1/a (a ≠±1);B 。

1/a 中,a ≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D 。

积为1。

4.相反数: ①定义及表示法②性质:A 。

a ≠0时,a ≠-a ;B 。

a 与—a 在数实数无理数(无限不循环小数)有理数 正分数 负分数 正整数 0 负整数 (有限或无限循环性数) 整数分数 正无理数 负无理数 0 实数 负数 整数 分数 无理数有理数正数整数 分数 无理数 有理数│a │2a a (a ≥0)(a 为一切实数)轴上的位置;C 。

和为0,商为—1。

5.数轴:①定义(“三要素”)②作用:A 。

直观地比较实数的大小;B.明确体现绝对值意义;C 。

建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数(正整数-自然数)定义及表示:奇数:2n —1偶数:2n(n 为自然数)7.绝对值:①定义(两种):代数定义:几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。

②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││"符号. 二、 实数的运算1.运算法则(加、减、乘、除、乘方、开方)2.运算定律(五个-加法[乘法]交换律、结合律;[乘法对加法的] 分配律)3.运算顺序:A 。

高级运算到低级运算;B 。

(同级运算)从“左”到“右"(如5÷51×5);C 。

初中数学知识点中考总复习总结归纳(人教版)

初中数学知识点中考总复习总结归纳(人教版)

初中数学知识点中考总复习总结归纳(人教版)2023年初中数学知识点中考总复习总结归纳第一章有理数考点一、实数的概念及分类(3分)1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如7,32等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如(3)有特定结构的数,如0.1010010001…等;(4)一些三角函数,如sin60o等π+8等;3第二章整式的加减考点一、整式的有关概念(3分)1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。

单独的一个数或一个字母也是代数式。

2、单项式只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如?4ab,这种表示就是错误的,应写成?132132ab。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如3?5a3b2c是6次单项式。

考点二、多项式(11分)1、多项式几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

单项式和多项式统称整式。

用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。

注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。

(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。

2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项。

3、去括号法则(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。

(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。

4、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。

(完整版)人教版初中数学总复习资料doc

(完整版)人教版初中数学总复习资料doc

(完整版)人教版初中数学总复习资料doc①已知三边作三角形②已知两边及其夹角作三角形③已知两角及其夹边作三角形④已知底边及底边上的高作等腰三角形⑹过一点、两点和不在同一条直线上的三点作圆⒏视图与投影⑴直棱柱、圆柱、圆锥、球的三视图⑵轴对称图形:等腰三角形、矩形、菱形、等腰梯形、正多边形、圆⑶中心对称图形:矩形、圆、⑷图形的平移和旋转⑸图形的相似:(三)概率与统计⒈统计⑴重要概念①总体:考察对象的全体。

②个体:总体中每一个考察对象。

③样本:从总体中抽出的一部分个体。

④样本容量:样本中个体的数目。

⑤众数:一组数据中,出现次数最多的数据。

⑥中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)。

⑵扇形统计图、条形统计图、折线统计图⑶计算方法①平均数:某1(某1某2某n)n某②加权平均数:kfk某某1f1某2f2f1f2fnkn)③样本方差:⑴s1[(某1某)2(某2某)2(某n某)2]n④样本标准差:ss2⑤极差:最大的数减去最小的数⒉概率①列表法、画树状图法93同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于180°18推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25边边边公理(SSS)有三边对应相等的两个三角形全等26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60°的等腰三角形是等边三角形37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半39定理线段垂直平分线上的点和这条线段两个端点的距离相等40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合1042定理1关于条直线对称的两个图形是全等形43定理2如果两个图形关于直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)某180°51推论任意多边的外角和等于360°52平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3平行四边形的对角线互相平分56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线互相平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a某b)÷267菱形判定定理1四边都相等的四边形是菱形68菱形判定定理2对角线互相垂直的平行四边形是菱形69正方形性质定理1正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1关于中心对称的两个图形是全等的72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过其中一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形1177角相等的梯形是等腰梯形78平行等分段定理如果一平行在一条直上截得的段相等,那么在其他直上截得的段也相等79推1梯形一腰的中点与底平行的直,必平分另一腰80推2三角形一的中点与另一平行的直,必平分第三81三角形中位定理三角形的中位平行于第三,并且等于它的一半82梯形中位定理梯形的中位平行于两底,并且等于两底和的一半L=(a+b)÷2S=L某h83 (1) 比例的基本性如果 a:b=c:d,那么 ad=bc 如果 ad=bc,那么a:b=c:d 84 (2) 合比性如果 a/ b=c/ d,那么(a ±b)/b=(c ±d)/d85(3)等比性如果a/b=c/d=?=m/n(b+d+?+n≠0),那么(a+c+?+m)/(b+d+?+n)=a/b86平行分段成比例定理三条平行截两条直,所得的段成比例87推平行于三角形一的直截其他两(或两的延),所得的段成比例88定理如果一条直截三角形的两(或两的延)所得的段成比例,那么条直平行于三角形的第三89平行于三角形的一,并且和其他两相交的直,所截得的三角形的三与原三角形三成比例90定理平行于三角形一的直和其他两(或两的延)相交,所构成的三角形与原三角形相似91相似三角形判定定理1两角相等,两三角形相似(ASA)92直角三角形被斜上的高分成的两个直角三角形和原三角形相似93判定定理2两成比例且角相等,两三角形相似(SAS)94判定定理3三成比例,两三角形相似(SSS)95定理如果一个直角三角形的斜和一条直角与另一个直角三角形的斜和一条直角成比例,那么两个直角三角形相似96性定理1相似三角形高的比,中的比与角平分的比都等于相似比97性定理2相似三角形周的比等于相似比98性定理3相似三角形面的比等于相似比的平方99任意角的正弦等于它的余角的余弦,任意角的余弦等于它的余角的正弦100任意角的正切等于它的余角的余切,任意角的余切等于它的余角的正切101是定点的距离等于定的点的集合102的内部可以看作是心的距离小于半径的点的集合12103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

初中数学知识点中考总复习总结归纳

初中数学知识点中考总复习总结归纳

初中数学知识点中考总复习总结归纳中考是初中阶段学生的一个重要节点,数学是中考科目之一,也是学生们普遍认为比较难的学科之一、为了能够高效地复习数学知识,下面将对初中数学知识点进行总结归纳,帮助学生们有效备考。

1.数的性质:比较大小:绝对值的大小比较、大小关系的判断;数的性质:质数与合数、奇数与偶数、整数与有理数、无理数与实数。

2.整数的运算:加减法:整数加减整数、带小数点的加减法;乘法:正负相乘、乘法的运算规则;除法:整数除法、小数除法、商的整数部分和小数部分。

3.分数的运算:分数的性质:分子、分母、分子分母的最大公约数和最小公倍数;加减法:同分母分数的加减法、异分母分数的加减法;乘除法:分数的乘法、分数的除法、整数与分数的乘除。

4.小数的运算:加减法:小数的加减法、整数与小数的加减法;乘法:小数的乘法、小数点的移动;除法:小数的除法、循环小数的表示。

5.百分数的运算:百分数的意义:百分数与百分数的关系;百分数的转化:百分数与小数、分数的相互转化;百分数的应用:利润、打折等问题的计算。

6.贝尔和分贝:贝尔和分贝的概念;分贝的计算方法。

7.代数式与方程:代数式的加减法:同类项的加减法、反项的加减法;一元一次方程:方程的定义、解方程的方法;二元一次方程:解二元一次方程组的方法。

8.几何形体的性质:点、线、面的基本概念;三角形的性质:等腰三角形、等边三角形、全等三角形;四边形的性质:平行四边形、矩形、正方形、菱形、梯形;圆的性质:弧长、扇形、圆心角、外接圆、内切圆。

9.数列与函数:等差数列的特点和求和公式;相邻两项的关系:等比数列、斐波那契数列;函数的概念与性质:函数的定义、函数图像的平移、伸缩、反射。

10.统计与概率:数据的收集与整理:调查和统计、频数、频率;数据的表示方法:直方图、折线图、饼图;概率的计算:事件的概率、事件的互斥与独立性。

此外,还需要学习一些解题技巧和方法:1.理解问题:仔细阅读题目,理解题目要求,将信息转化为数学语言;2.做图:对于几何题,可以尝试画图,通过图像的性质来解决问题;3.推理与演绎:利用题目给出的条件,进行推理和演绎,缩小解的范围;4.反推法:有些问题可以通过逆向推导的方法得到解答;5.倒推法:对于一些递归问题,可以从最后一步向前推导。

数学复习资料(汇总10篇)

数学复习资料(汇总10篇)

数学复习资料(汇总10篇)数学复习资料第1篇相似变换※1、如果选用同一个长度单位量得两条线段AB,CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n,或写成.※2、四条线段a、b、c、d中,如果a与b的比等于c与d的比,即,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.※3、注意点:①a:b=k,说明a是b的k倍;②由于线段a、b的长度都是正数,所以k是正数;③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致;④除了a=b之外,a:b≠b:a,与互为倒数;平移变换(1)图形平移前后的形状和大小没有变化,只是位置发生变化;(2)图形平移后,对应点连成的线段平行且相等(或在同一直线上)(3)多次平移相当于一次平移。

(4)多次对称后的图形等于平移后的图形。

(5)平移是由方向,距离决定的。

(6)经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等。

这种将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移相似三角形※1、在相似多边形中,最为简简单的就是相似三角形.※对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.※3、全等三角形是相似三角的特例,这时相似比等于注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.※4、相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.※5、相似三角形周长的比等于相似比.※6、相似三角形面积的比等于相似比的平方.统计科学记数法:一个大于10的数可以表示成A_10N的形式,其中1小于等于A小于10,N是正整数。

扇形统计图:①用圆表示总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。

②扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360度的比。

初中数学知识点总结归纳(完整版)

初中数学知识点总结归纳(完整版)

初中数学知识点总结归纳(完整版)很多同学在复习初中数学时,因为没有对之前的知识进行梳理记忆,导致整体的复习效率不高。

下面是由编辑为大家整理的“初中数学知识点总结归纳(完整版)”,仅供参考,欢迎大家阅读本文。

初中数学知识点总结归纳1、菱形的定义:有一组邻边相等的平行四边形叫做菱形。

2、菱形的性质:⑴ 矩形具有平行四边形的一切性质;⑵ 菱形的四条边都相等;⑶ 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

⑷ 菱形是轴对称图形。

提示:利用菱形的性质可证得线段相等、角相等,它的对角线互相垂直且把菱形分成四个全等的直角三角形,由此又可与勾股定理联系,可得对角线与边之间的关系,即边长的平方等于对角线一半的平方和。

3、因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

4、因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④因式分解与整式乘法的关系:m(a+b+c)5、公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

6、公因式确定方法:①系数是整数时取各项最大公约数。

②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

7、提取公因式步骤:①确定公因式。

②确定商式③公因式与商式写成积的形式。

8、平方根表示法:一个非负数a的平方根记作,读作正负根号a。

a叫被开方数。

9、中被开方数的取值范围:被开方数a≥010、平方根性质:①一个正数的平方根有两个,它们互为相反数。

②0的平方根是它本身0。

③负数没有平方根开平方;求一个数的平方根的运算,叫做开平方。

11、平方根与算术平方根区别:定义不同、表示方法不同、个数不同、取值范围不同。

12、联系:二者之间存在着从属关系;存在条件相同;0的算术平方根与平方根都是013、含根号式子的意义:表示a的平方根,表示a的算术平方根,表示a的负的平方根。

14、求正数a的算术平方根的方法;完全平方数类型:①想谁的平方是数a。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学总复习资料㈠数与代数⒈数与式⑴有理数:有限或不限循环性数(无理数:无限不循环小数) ⑵数轴:“三要素” ⑶相反数⑷绝对值:│a │= a(a≥0) │a │=-a(a<0) ⑸倒数 ⑹指数① 零指数:0a =1(a ≠0) ②负整指数: (a ≠0,n 是正整数) ⑺完全平方公式:2222)(b ab a b a +±=±⑻平方差公式:(a+b )(a-b )=22b a - ⑼幂的运算性质: ①ma ·na =nm a+ ②m a ÷n a =nm a- ③nm a)(=mna④nab )(=na nb ⑤n nn ba b a =)(⑽科学记数法:na 10⨯(1≤a <10,n 是整数) ⑾算术平方根、平方根、立方根、 ⑿ban d b m c a n d b n m d c b a =++++++⇒≠+++=== :)0(等比性质⒉方程与不等式 ⑴一元二次方程 ①定义及一般形式:)0(02≠=++a c bx ax②解法: 1.直接开平方法. 2.配方法 3.公式法:)04(24222,1≥--±-=ac b aac b b x4.因式分解法.③根的判别式:ac b 42-=∆>0,有两个解。

ac b 42-=∆<0,无解。

ac b 42-=∆=0,有1个解。

④维达定理:acx x a b x x =⋅-=+2121, ⑤常用等式:2122122212)(x x x x x x -+=+ 212212214)()(x x x x x x -+=-⑥应用题1.行程问题:相遇问题、追及问题、水中航行:水速船速顺+=v ;水速船速逆-=v2.增长率问题:起始数(1+X)=终止数3.工程问题:工作量=工作效率×工作时间(常把工作量看着单位“1”)。

4.几何问题⑵分式方程(注意检验) 由增根求参数的值: ①将原方程化为整式方程②将增根带入化间后的整式方程,求出参数的值。

⑶不等式的性质 ①a>b → a+c>b+c ②a>b → ac>bc(c>0) ③a>b → ac<bc(c<0) ④a>b,b>c → a>c ⑤a>b,c>d → a+c>b+d. ⒊函数 ⑴一次函数①定义:y=kx+b(k ≠0)②图象:直线过点(0,b )—与y 轴的交点和(-b/k,0)—与x 轴的交点。

③性质:k>0,直线经过一、三象限,y 随x 的增大而增大。

k<0,直线经过二、四象限,y 随x 的增大而减小。

当b>0时,直线必通过一、二象限。

当b=0时,直线通过原点。

当b<0时,直线必通过三、四象限。

④图象的四种情况:⑵正比例函: ①定义:y=kx(k ≠0)②图象:直线(过原点) ⑶反比例函数 ①定义:1-==kx xky (k ≠0). ②图象:双曲线(两支)③性质:k>0时,两支曲线分别位于第一、三象限,y 的值随x 值的增大而减小。

k<0时,两支曲线分别位于第二、四象限,y 的值随x 值的增大而增大。

; ④两支曲线无限接近于坐标轴但永远不能到达坐标轴。

⑷二次函数. ①定义:))(0()(2顶点式≠+-=a k h x a y ))(0(2一般式≠++=a c bx ax y②图象:抛物线)0(2≠++=a c bx ax y 顶点: )0()(2≠+-=a k h x a y 顶点:(h,k)③性质:⑴当a>0时,开口向上;当a<0时,开口向下。

|a|越大,则抛物线的开口越小。

⑵当a 与b 同号时(ab>0),对称轴在y 轴左边;当a 与b 异号时(ab<0),对称轴在y 轴右边;当b=0时,对称轴在y 轴。

(左同右异)⑶当c>0时,与y 轴交于正半轴;当c<0时,与y 轴交于负半轴;当c=0时,与y 轴交于原点。

④平行移动的规律:当h>0时,y=ax 向右平行移动h 个单位得到y=a(x-h) 当h<0时,则向左平行移动|h|个单位得到。

当h>0,k>0时,y=ax 向右平行移动h 个单位,再向上移动k 个单位,得到y=a(x-h) +k 当h>0,k<0时,y=ax 向右平行移动h 个单位,再向下移动|k|个单位,得到y=a(x-h) +k 当h<0,k>0时,y=ax 向左平行移动|h|个单位,再向上移动k 个单位,得到y=a(x-h) +k 当h<0,k<0时,y=ax 向左平行移动|h|个单位,再向下移动|k|个单位,得到y=a(x-h)^2+k㈡空间与图形⒈三角形⑴面积公式:底乘以高除以2⑵“四心”:①垂心:三角形三条高的交点。

②内心:三角形三条内角平分线的交点,即内接圆的圆心。

③重心:三角形三条中线的交点。

④外心:三角形三条边的垂直平分线的交点,即外接圆的圆心。

⑶三角形边与边的关系:两边之和大于第三边。

(较短的两条边) 两边之差小于第三边。

(最长的边和最小的边)⑷三角形内角和、外角与内角的关系:三角形内角和为180度。

三角形的一个外角等于和它不相邻的两个内角和。

三角形的一个外角大于任何一个和它不相邻的内角。

⑸证明⒉特殊的角: ⑴对顶角 ⑵余角 ⑶补角⒊线段⒋三角函数 ⑴ 锐角三角函数:正弦:sin A=∠A 的对边斜边 余弦:cos A=∠A 的邻边斜边 正切:tan A=∠A 的对边∠A 的邻边⑵互余两角的三角函数:①sin A=co s(90°-A) cos A=sin(90°-A) ②tan A=cot(90°-A) cot A=tan(90°-A)⑶同一锐角的三角函数关系: sin 2A+cos 2A=1 tanA ·cotA=1 tanA=sinAcosA⑷特殊角的三角函数值:⑸对实际问题的处理:①坡度:Sin A 的值越大,梯子越陡;Cos A 的值越小,梯子越陡。

②方位角(上北下南左西右东)③俯、仰角:⒌四边形⑴面积公式:①梯形,上底加下底的和乘以高除以2②菱形,对角线乘以对角线除以2③平行四边行,底乘以高⑵⑶顺次连结各边中点得到的图形:①顺次连结对角线相等的四边形各边中点得菱形。

②顺次连结对角线互相垂直的四边形各边中点得矩形。

③顺次连结对角线垂直相等的四边形各边中点得正方形。

④顺次连结对四边形各边中点得平行四边形。

⒍圆⑴垂径定理:过圆心,垂直于弦,平分弦,平分弦所对的优劣弧。

(知二推三)⑵与圆有关的角:⑶圆和圆的位置关系:(圆心距d ,半径分别为R r 且 R> r)外离:d>R+r 外切:d=R+r 相交:R-r<d<R+r 内切:d=R-r 内含:d<R-r⑷直线和圆的位置关系:(半径为r ,圆心O到直线l的距离为d)相离:d>R 相切:d=R 相交:d<R⑸点和圆的位置关系:(半径为r ,某一点到圆心O的距离为d)点在圆外:d> r 点在圆内:d<R 点在圆上:d=R⑹计算公式:①圆周长公式:②圆面积公式:③扇形面积公式:④弧长公式:⑺概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。

⒎尺规作图要求⑴作一条线段等于已知线段⑵作一个角等于已知角⑶作角的平分线⑷作线段的垂直平分线⑸作三角形①已知三边作三角形②已知两边及其夹角作三角形 ③已知两角及其夹边作三角形④已知底边及底边上的高作等腰三角形⑹过一点、两点和不在同一条直线上的三点作圆⒏视图与投影⑴直棱柱、圆柱、圆锥、球的三视图⑵轴对称图形:等腰三角形、矩形、菱形、等腰梯形、正多边形、圆 ⑶中心对称图形:矩形、圆、 ⑷图形的平移和旋转 ⑸图形的相似:㈢概率与统计⒈统计 ⑴重要概念①总体:考察对象的全体。

②个体:总体中每一个考察对象。

③样本:从总体中抽出的一部分个体。

④样本容量:样本中个体的数目。

⑤众数:一组数据中,出现次数最多的数据。

⑥中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)。

⑵扇形统计图、条形统计图、折线统计图⑶计算方法 ①平均数:)(121n x x x nx +++=②加权平均数:)(212211n f f f n f x f x f x x k kk =++++++=③样本方差:⑴])()()[(1222212x x x x x x ns n -++-+-= ④样本标准差:2s s=⑤极差:最大的数减去最小的数 ⒉概率①列表法、画树状图法中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp的形式,其中p 、q 是互质的整数,这是有理数的重要特征。

2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。

3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。

二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。

(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=0 2、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数 3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a (2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。

4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。

(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

(3)立方根:3a 叫实数a 的立方根。

(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。

原点、正方向、单位长度是数轴的三要素。

2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。

相关文档
最新文档