2010 chensheng-JMCB-Biochemical characterization of the cutinases from Thermobifida fusca

合集下载

腹腔镜胆囊切除术应用于胆结石治疗中的效果及安全性

腹腔镜胆囊切除术应用于胆结石治疗中的效果及安全性

具备简便性、安全性,花费较低,同时患者无住院必要性,门诊治疗即可,可尽快重返正常生活。

此疗法存在下述优势:①在治疗内痔方面,相较其它疗法,其视野清晰,可准确定位,效果理想,同时并发症、不良反应皆少;②在治疗内痔近期出血方面,其获得确切效果;③对比外科现今应用广泛的PPH疗法,其局部刺激少,无需住院,花费较低,且可重复实施,患者认可度更高[8]。

研究结果显示,观察组并发症发生率非常低,且多数于2周后自然消失,无需特殊干预。

即便发生再出血,可通过内镜下第2次注入硬化剂治疗,从而完全止血。

对比于PPH,此疗法在安全性、并发症上更具优势。

且治疗成本与总费用低于外科手术。

通过此项研究可明确,此疗法无论在操作方法上,还是在安全性、有效性上,或治疗花费上,皆有明显优势,具备用于Ⅲ度内痔一线治疗的潜力。

就方法学层面分析,胃镜下内痔硬化剂注射治疗具备便捷性、微创性。

在内痔治疗方面,硬化注射疗法中,相较于硬式直肠镜、软式结肠镜,胃镜定位更准确,同时镜身管径更小且柔软,旋转更加灵活无盲区,视野宽广,能够全方位呈现肛管、痔、直肠静脉丛状况,可获得清晰视图,并可清晰显示内痔与静脉曲张。

在内痔治疗方面,此方法的应用受到下述因素影响:①同操作人员的经验、技能与方法相关,并受到助手配合状况的影响,各点注射后适时、适当的力度压迫也非常关键;②规范的肠道清洁准备,可显著减少内痔硬化后穿刺点感染风险;③患者对外科手术存在恐惧心理,将此疗法用于Ⅱ度、Ⅲ度内痔有症状患者的治疗,能够降低病情进展风险,缓解患者痛苦,减少医疗费用。

因此,此疗法具备临床普遍应用价值。

参考文献[1] 朱展球.硬化剂注射联合自动痔疮套扎术治疗内痔的临床效果分析[J].外科研究与新技术,2017,6(2):102-104. [2] 柯达.结肠镜下聚桂醇硬化注射术治疗Ⅱ、Ⅲ度内痔的研究[J].中外医学研究,2020,18(10):5-7. [3] 冀春丽,杨亚飞,贾彦超,等.RPH联合外剥、内痔硬化剂注射术治疗重度混合痔的临床观察[J].中国肛肠病杂志,2018,38(2):16-18. [4] 荣荣,汪晓红.评估透明帽辅助内镜下硬化术治疗痔疮的临床应用效果[J].中外医疗,2019,38(29):56-58.[5] 伍间开,张端.结肠镜下内痔硬化注射治疗的护理配合[J].首都食品与医药,2016,23(10):93-94.[6] 李显芳,覃泳缤,黎振林,等.内镜下聚桂醇泡沫硬化剂治疗内痔的疗效观察[J].微创医学,2020,15(2):242-243.[7] 张婷,龙楚彦,崔伯塔,等.透明帽辅助内镜下硬化术治疗痔疮的前瞻性研究(含视频)[J].中华消化内镜杂志,2017,34(10):709-712.[8] 陈颖,陈炜,方青青,等.内镜下硬化术治疗出血性内痔的临床指南与相关问题探讨[J].上海医药,2020,41(9):11-16,22.腹腔镜胆囊切除术应用于胆结石治疗中的效果及安全性陈 甡 (济南市历城区中医医院,山东济南 250100)摘要:目的 研究分析在胆结石治疗中实行腹腔镜胆囊切除术的临床效果和安全性。

发酵肉制品中的特征风味与微生物之间的关系研究进展

发酵肉制品中的特征风味与微生物之间的关系研究进展

张鹏,赵金山,臧金红,等. 发酵肉制品中的特征风味与微生物之间的关系研究进展[J]. 食品工业科技,2024,45(2):380−391. doi:10.13386/j.issn1002-0306.2023030223ZHANG Peng, ZHAO Jinshan, ZANG Jinhong, et al. Progress of Research on the Relationship between Characteristic Flavor and Microorganisms in Fermented Meat Products[J]. Science and Technology of Food Industry, 2024, 45(2): 380−391. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023030223· 专题综述 ·发酵肉制品中的特征风味与微生物之间的关系研究进展张 鹏1,2,赵金山2,3, *,臧金红1,2, *,彭传涛1,2(1.青岛农业大学食品科学与工程学院,山东青岛 266109;2.青岛特种食品研究院,山东青岛 266109;3.青岛农业大学动物科技学院,山东青岛 266109)摘 要:发酵肉制品是指在自然或者人工的控制条件下,以新鲜的肉类为原料,通过微生物或酶的发酵作用制成的一类产品。

发酵肉制品中特征风味物质种类繁多,其中主要有酯类、醛类、醇类、酸类以及游离氨基酸等。

由于消费者对发酵肉制品风味品质要求的提高,风味物质的控制已经成为提升发酵肉制品品质的关键指标之一。

发酵肉制品中的部分微生物特别是乳酸菌、酵母菌和葡萄球菌促进了肉制品中碳水化合物、蛋白质和脂肪的分解,从而促进发酵肉制品独特风味的形成。

本文详细介绍了国内外不同发酵肉制品中的主要风味物质、风味形成途径和检测方法,进一步归纳总结了能够产生这些风味物质的关键微生物以及产风味物质的微生物筛选方法,以期为后续发酵肉制品风味品质的提升提供参考。

产细菌素苏云金芽孢杆菌的鉴定及其所产抗菌物质性质

产细菌素苏云金芽孢杆菌的鉴定及其所产抗菌物质性质

※生物工程食品科学2010, Vol. 31, No. 11147产细菌素苏云金芽孢杆菌的鉴定及其所产 抗菌物质性质李 云,杨胜远 * ,林晓东,钟瑜红,苏 婷,刘湘嘉(韩山师范学院生物系食品与发酵工程研究所,广东 潮州 摘 521041)要:从腌制蔬菜表面分离到一株产细菌素的菌株 K2,其中和后的无细胞发酵液主要抑制革兰氏阳性细菌,特别是对芽孢杆菌有强烈的抑制作用。

发酵上清液经硫酸铵盐析和透析后,仍然有很强的抗菌活性,并对多种蛋白 酶敏感,表明抗菌活性物质为蛋白类物质。

通过形态培养特征、生理生化特征、16S rDNA 序列比对及系统发育 分析,鉴定菌株 K2 是苏云金芽孢杆菌(Bacillus thuringiensis)。

菌株 K2 产生的抗菌物质在 pH6~9 条件下 80℃处理 30min 仍保持稳定的抗菌活性,其对敏感菌的作用主要是杀菌,而且对芽孢萌发有很好的抑制作用。

该抗菌物质 在菌体生长对数中期产生,在稳定期中期抗菌活性达到最大。

关键词:苏 云 金 芽 孢 杆 菌;细菌素;鉴定;抗 菌 物 质Identification of Bacteriocin-producing Bacillus thuringiensis and Properties of Its Antibacterial SubstancesLI Yun,YANG Sheng-yuan*,LIN Xiao-dong,ZHONG Yu-hong,SU Ting,LIU Xiang-jia (Food and Fermentation Engineering Institute, Department of Biology, Hanshan Normal University, Chaozhou 521041, China)Abstract: Strain K2 having the ability to produce bacteriocin was isolated from the surface of picked vegetables. The neutralized cell-free fermentation supernatant exhibited an inhibition effect against Gram-positive bacteria, especially strong inhibition effect against Bacillus strains. The inhibition activity of the fermentation supernatant still kept high after ammonium sulphate precipitation and dialysis, and the activity of the dialysis retentate was sensitive to a variety of proteases. These results indicated the protein nature of antibacterial substances contained in the dialysis retentate. Base on morphological, physiological and biochemical characteristics, 16S rDNA sequence and phylogenic analysis, the strain K2 was classified as Bacillus thuringiensis. The antibacterial substance from strain K2 remained strong antibacterial activity after heating treatment at 80 ℃ and pH 6 - 9 for 30 min, suggesting its excellent thermostable property and pH resistance. The antibacterial activity was generated from midlogarithmic growth phase and reached the maximum activity at mid-stationary phase. Key words:Bacillus thuringiensis;bacteriocin;identification;antibacterial substance 中图分类号:Q939.9 文献标识码:A 文章编号:1002-6630(2010)11-0147-06细菌素是某些细菌在代谢过程中通过核糖体合成机 制产生的一类具有生物活性的蛋白质或多肽,主要抑制 其他相近种类的细菌,一般产生菌自身对其细菌素具有 免疫性[ 1 ] 。

重组人锰超氧化物歧化酶的抗肿瘤作用研究

重组人锰超氧化物歧化酶的抗肿瘤作用研究

重组人锰超氧化物歧化酶的抗肿瘤作用研究陈车生1,庞怀宇2,李素霞2,袁勤生2*1上海富海科申药业有限公司,2华东理工大学生物工程学院,上海200237摘要:论文主要研究了rhMnSOD的体内抗肿瘤作用、对荷瘤小鼠的体内单独使用的抗肿瘤作用、与化疗药物合用的抗肿瘤作用以及抗肿瘤作用机制探讨。

关键词:重组人锰超氧化物歧化酶,抗肿瘤,化疗药物,荷瘤小鼠前言MnSOD是哺乳动物体内的一线抗氧化酶,其在体内的生理代谢过程中不仅是一个氧化还原调节剂,其还是一个肿瘤抑制子。

已经在黑色素瘤、乳腺癌等多个肿瘤模型中发现,通过cDNA转染使得肿瘤细胞中MnSOD过表达,肿瘤细胞的恶性表型发生逆转,肿瘤细胞分化增加。

而rhMnSOD的作用机制可能与其他抗肿瘤药物作用有所不同,因为到目前为止,没有研究证据证明MnSOD具有有细胞毒作用,因此其抗肿瘤作用应该是间接的。

我们对此进行了研究。

最近有报道给予小鼠服用rh MnSOD后产生积极的抗氧化作用,并且增加小鼠的体液免疫能力。

因此,很可能给予rh MnSOD治疗能够保护小鼠的免疫系统免受自由基的氧化损伤,同时能够促进T淋巴细胞募集进入肿瘤组织杀死肿瘤细胞,从而增强抗肿瘤免疫应答。

对于rhMnSOD的抗肿瘤作用还需要在更多种类的肿瘤中进行验证,也需要检测其与更多的化疗药物的协同作用,并对其作用机制进行更为深入的研究。

根据目前已经发表的结果我们可以预期rhMnSOD和ADR合用能够降低ADR的心脏毒性等副反应,因此,作为抗肿瘤的辅助治疗药物,rhMnSOD具有很大的开发潜力。

1 材料RPMI-1640培养基,美国GIBCO公司;小牛血清,杭州四季青物工程公司;MTT,美国Sigma公司;PI/RNase Staining Buffer ,美国Becton Dickinson公司;AnnexinV-EGFP双染试剂盒,南京凯基生物科技发展有限公司;注射用盐酸阿霉素,10 mg/瓶,批号:060705浙江海正药业股份有限公司;注射用环磷酰胺,200 mg/瓶,批号:06060121江苏恒瑞医药股份有限公司;羊抗人CD4多克隆抗体、兔抗人CD8多克隆抗体,羊抗人肌动蛋白多克隆抗体,美国Santa Cruz 公司;IRDyeTM800结合二抗,美国Rockland Inc;SP试剂盒、DAB显色剂,北京中杉金桥公司。

橙皮苷论文

橙皮苷论文

医学院药学系学生毕业论文论文题目:青皮中橙皮苷提取及纯度测定学生姓名:陈秀秀学号:20070640062专业:药学导师姓名:申睿沈丽霞二○一一年六月目录1.中文摘要 (1)2.英文摘要 (2)3.青皮中橙皮苷提取及纯度测定 (3)前言 (3)材料与方法 (4)实验结果 (7)附表 (8)附图 (9)讨论 (12)结论 (13)参考文献 (14)4.橙皮苷的研究进展 (16)5.致谢 (25)6.个人简历 (26)中文摘要青皮中橙皮苷提取及纯度测定陈秀秀河北北方学院医学院药学系药学专业07级目的:通过优化文献提取橙皮苷的方法得到提取橙皮苷的最佳工艺条件并采用TCL法进行定性鉴别(2010版药典第一部);采用高效液相色谱法(HPLC)测定橙皮苷的纯度。

方法:以青皮为原料, 用碱液和甲醇做溶剂提取橙皮苷的条件为:粗苷:甲醇:碱液[NaOH浓度为0.1% ] = 1:23:47在85o C以上浸泡4 h, 调节pH 值为4。

即先将甲醇和碱液搅拌混合, 再将粗苷加入, 继续搅拌1h使粗苷溶解完全, 然后过滤至滤液澄清, 用盐酸调滤液的pH值至4, 静置沉淀, 过滤, 滤饼用煮沸过的水洗涤至无色, 甲醇滤液精馏回收, 橙皮苷的收率达85% 以上。

TCL鉴别出与橙皮苷对照品相对应的宽点;HPLC法测定出橙皮苷纯度为85.94%且理论塔板数不低于1000。

结论:此方法操作简便, 易控制且提取橙皮苷的效率较高,所建立的定性定量方法专属性强,重复性好。

关键词:青皮;橙皮苷;薄层色谱法;紫外分光光度法;高效液相色谱法AbstractExtraction and purification of hesperidin in cicus processing andmeasuring its contentCHEN Xiu XiuPharnacy Specialty,Grade 07Department of Pharmacy ,Medical College of Hebei North University Objective:Though the experiment to optimize the optimum technological condition of extracting hesperidin was determined.By using TLC and HPLC to help identify the hesperdin.Methods:With orange peel as raw material, the optimum technological condition of extracting hesperidin with alkali liquor and methanol as solvent was as follows: crude hesperidin: methanol: alkali liquor [W(NaOH ) = 0.1% ] = 1:23:47, soaking for 4 h at the temperature over 85℃and adjusting pH value to be 4. Concretely, mixing and stirring m- ethanol and alkali liquor and then adding crude hesperidin into the solution and going on stirring for 1 h till the crude hesperidin was dissolved completely, filtrating solution of crude hesperidin till the filtrate became clear, adjusting pH value of filtrate to be 4 by using hydrochloride, standing for precipitation and filtrating, washing filtrated cake to be color less with boiled water recovering methanol filtrate by distillation. Under this technological condition, the yield of hesperidin was higher than85%. Result:This method was convenient to operate easy to control and its efficiency of extracting hesperidin was relatively high.Key words: Pericarpium citri Reticulatae Viride; Hesperidin ;TLC UV;HPLC前言青皮中橙皮苷提取及纯度测定青皮(Pericarpium citri Reticulatae Viride),亦称青桔皮或青柑皮,为芸香科柑橘属植物Citrus reticu—lata Blanco及其变种自行落地的未成熟果实。

原位移植法建立肝脏H22肝癌细胞移植瘤小鼠模型

原位移植法建立肝脏H22肝癌细胞移植瘤小鼠模型

原位移植法建立肝脏H22肝癌细胞移植瘤小鼠模型韩琛;王恒孝;王朝霞【期刊名称】《世界肿瘤研究》【年(卷),期】2015(005)001【摘要】目的:建立H22肝癌细胞小鼠肝脏原位移植瘤模型,为进一步开展相关实验研究做准备。

方法:直接注射一定数量的H22肝癌细胞于C57BL/6小鼠肝脏左叶,构建肝癌原位移植瘤模型。

结果:术后7天小鼠肝脏表面出现大小不一结节散在分布,随着时间延长结节增多增大,后期腹腔脏器出现浸润、粘连,腹水增多。

肝脏瘤组织及癌旁组织进行组织病理学检查,肝脏原位成瘤率100%,无自发消退。

结论:原位注射H22肝癌细胞株能在肝脏局部形成原位移植瘤,且成瘤时间相对较短,成瘤过程中伴有脏器转移、腹水形成等,较好的模拟了机体原发性肝癌的病理生理学过程,能满足对肝癌相关研究的要求。

【总页数】7页(P15-20)【作者】韩琛;王恒孝;王朝霞【作者单位】[1]山东省医学科学院基础医学研究所免疫室,济南;;[1]山东省医学科学院基础医学研究所免疫室,济南;;[2]山东省医学科学院基础医学研究所病理室,济南【正文语种】中文【中图分类】R73【相关文献】1.U251细胞系来源的脑肿瘤干细胞原位移植瘤动物模型的建立 [J], 陈成;陈锦轮;赵永阳;方加胜2.小鼠肝脏原位持续灌流方法的建立及其在肝脏非实质细胞分离中的应用 [J], 姚一楠;卢珊;李和权;周建英3.抗人CD147单克隆抗体对人肝癌细胞MHCC97-H裸鼠肝脏原位移植瘤生长抑制的实验研究 [J], 王乐天;毛沙;吕裕霞;岳阳;吴凤东;张庆4.人卵巢癌细胞株3AO原位移植瘤模型的建立 [J], 赵大印;刘淳;陈栋;王媛;曹雪霞;张丽娟5.神经母细胞瘤肾上腺原位移植瘤动物模型的建立 [J], 刘波;苗佳宁;张斯萌;李志杰因版权原因,仅展示原文概要,查看原文内容请购买。

小分子硼酸肽的自组装

小分子硼酸肽的自组装

小分子硼酸肽的自组装陈昌盛;李仕颖;王俊;张先正;卓仁禧【期刊名称】《中国材料进展》【年(卷),期】2012(031)006【摘要】利用FMOC化学固相多肽合成法合成了3种含精氨酸的小分子硼酸肽(标记为BPs(1.3))。

在生理pH下,含阳离子的硼酸肽可自组装形成有序超分子纳米组装体。

二羟基酚染料茜素红与硼酸肽可特异性结合形成五元环硼酸酯,伴随荧光和颜色的显著变化,可进一步调控硼酸肽的自组装行为。

通过扫描电镜研究茜素红调控前后硼酸肽的自组装形态,并用红外光谱和圆二色谱研究其自组装机理。

结果表明,3种含精氨酸硼酸肽在生理pH下可自组装形成不同的超分子纳米组装体。

通过茜素红的调控,茜素红/硼酸肽化合物,可自组装形成更有序,更精致的超分子聚集体。

【总页数】6页(P49-54)【作者】陈昌盛;李仕颖;王俊;张先正;卓仁禧【作者单位】武汉大学化学与分子科学学院生物医用高分子材料教育部重点实验室,湖北武汉430072;武汉大学化学与分子科学学院生物医用高分子材料教育部重点实验室,湖北武汉430072;武汉大学化学与分子科学学院生物医用高分子材料教育部重点实验室,湖北武汉430072;武汉大学化学与分子科学学院生物医用高分子材料教育部重点实验室,湖北武汉430072;武汉大学化学与分子科学学院生物医用高分子材料教育部重点实验室,湖北武汉430072【正文语种】中文【中图分类】R318.08【相关文献】1.小分子肽-肿瘤抑素19肽纯化及抗肿瘤活性研究 [J], 袁丽杰;赵恒宇;苏晓杰2.含苯环结构的糖类小分子胶凝剂的合成及其自组装行为研究 [J], 陈香李;高莹莹;杨方;步怀天3.含苯环结构的糖类小分子胶凝剂的合成及其自组装行为研究 [J], 陈香李;高莹莹;杨方;步怀天;4.光响应小分子/表面活性剂自组装体的宏观光响应行为 [J], 帅洁;胡佳杰;涂燕;尚亚卓;刘洪来5.N-取代苝酰亚胺小分子自组装形貌及生物学应用研究进展 [J], 李凯文;谈春霞因版权原因,仅展示原文概要,查看原文内容请购买。

褪黑素对衰老小鼠脑组织NO和氧自由基生成的作用

褪黑素对衰老小鼠脑组织NO和氧自由基生成的作用

褪黑素对衰老小鼠脑组织NO和氧自由基生成的作用
李平;何海蓉;陈启盛
【期刊名称】《基础医学与临床》
【年(卷),期】2002(022)003
【摘要】观察褪黑素对D-半乳糖衰老模型小鼠NO生成和氧自由基的作用以探讨其抗衰老机制.D-半乳糖诱导昆明小鼠衰老同时每日腹腔注射外源性褪黑素
(5mg/kg)连续8周,测定小鼠不同脑区NO、NOS、SOD、MDA、脂褐素的变化.模型组NO、NOS、MDA.脂褐素水平明显升高(P<0.01;P<0.01;P<0.01; P<0.05), SOD 活性明显减弱(P<0.01),给药(D+MT)组则上述变化逆转.褪黑素抑制NO的过度生成及减轻脂质过氧化损伤是其抗衰老机制之一.
【总页数】3页(P275-277)
【作者】李平;何海蓉;陈启盛
【作者单位】南京师范大学,运动人体科学系,南京,210097;南京医科大学生理教研室,南京,210029;南京医科大学生理教研室,南京,210029
【正文语种】中文
【中图分类】Q419
【相关文献】
1.大力华酒对D-gal致衰老小鼠脑组织的抗衰老作用及免疫力影响的实验研究 [J], 杨萌;张力华;聂祖琼
2.人参茎叶总皂苷对D-半乳糖致衰老小鼠脑组织的抗氧化作用 [J], 刘佳;陈丹娜;
曾琛;张敬敬
3.褪黑素对衰老小鼠肺炎时心肌的保护作用 [J], 薛桥;卢才义;李泱;马路;徐斌;施伟伟
4.菟丝子多糖抑制衰老小鼠模型中氧自由基域的作用 [J], 蔡曦光;许爱霞;葛斌;高湘;杨社华
5.褪黑素腹腔注射对小鼠胸腺及脑组织褪黑素受体的调节作用 [J], 赵瑛
因版权原因,仅展示原文概要,查看原文内容请购买。

纤维素酶法提取豆腐柴叶果胶的初探

纤维素酶法提取豆腐柴叶果胶的初探

纤维素酶法提取豆腐柴叶果胶的初探张鹏;沈炼成;茹神来;邢韵;黄烨【摘要】为了更好地利用豆腐柴资源,深入研究豆腐柴叶果胶的提取技术.本文研究了温度、pH、加酶量、料液比及提取时间对提取率的影响.结果表明,其最佳提取条件为:温度为50℃,pH=5.5的柠檬酸钠--柠檬酸缓冲液、加酶量0.25g、提取时间60min、料液比1:20,其提取率达到了18.51%.为用纤维素酶法提取豆腐柴果胶工艺进一步研究奠定了基础.【期刊名称】《广州化工》【年(卷),期】2011(039)013【总页数】3页(P63-64,145)【关键词】豆腐柴;纤维素酶;果胶【作者】张鹏;沈炼成;茹神来;邢韵;黄烨【作者单位】浙江海洋学院,浙江,舟山,316000;浙江海洋学院,浙江,舟山,316000;浙江海洋学院,浙江,舟山,316000;浙江海洋学院,浙江,舟山,316000;浙江海洋学院,浙江,舟山,316000【正文语种】中文豆腐柴又名豆腐木,腐婢,是马鞭草科豆腐柴属的落叶直立灌木,分布于我国华东、华中、华南、西南各省区,据调查我省的每个县皆有分布。

豆腐柴叶中含有丰富的果胶、植物蛋白质、糖类和氨基酸等营养成分。

我国豆腐柴资源丰富,基本处于自生自灭的状态,合理开发利用豆腐柴资源可以为果胶的生产提供优质原料,又可以生产有机食品,还可开发低坡荒山,促进了农民增收致富;因此,具有重大的经济、生态与社会效益。

果胶是一种大分子多糖物质。

存在于植物相邻细胞壁的中胶层。

果胶因具有良好的凝胶、增稠、稳定等性能,而被广泛应用于食品、医药、化工、纺织等行业,对改善人们的生活发挥了积极作用[1]。

豆腐柴叶(干叶)中果胶含量可达30%~40%,是当前提取果胶的所有生物资源中,含量较高,资源最丰富的一种,具有较大的开发利用价值。

1.1 材料1.1.1 原材料豆腐柴叶,采自浙江浦江,并经过干燥处理。

1.1.2 试剂盐酸,磷酸,无水乙醇,柠檬酸,柠檬酸钠,均为分析纯。

熊果酸衍生物的合成及抗肿瘤血管生成活性

熊果酸衍生物的合成及抗肿瘤血管生成活性

熊果酸衍生物的合成及抗肿瘤血管生成活性张文娟;陈少鹏;陆鑫;周国春【摘要】对熊果酸C28位与C3位进行结构修饰得到了24个衍生物, 并利用 1H NMR, 13C NMR, MS及HR-MS对这些化合物进行了结构表征. 进一步通过MTT 法, 以内皮细胞HUVEC为主要模型, 研究了24个衍生物抗肿瘤血管生成的活性, 同时以A549, Bel-7402及MCF-7细胞为模型研究了上述衍生物对肿瘤细胞的抑制活性. 研究结果表明, 与熊果酸相比, 化合物5, 9, 12e和14e对HUVEC细胞有较好的选择性, 化合物12a和13h比熊果酸的抗肿瘤血管生成活性略高, 因此通过适当改变熊果酸C28位的结构可以提高其对内皮细胞HUVEC的选择性, 增强抗肿瘤血管生成活性. 本文结果表明, 熊果酸及其衍生物是潜在的具有抗肿瘤血管生成作用的先导化合物, 通过有效的结构优化可能得到新型的抗肿瘤血管生成的化合物.【期刊名称】《高等学校化学学报》【年(卷),期】2010(031)011【总页数】12页(P2206-2217)【关键词】熊果酸;衍生物;抗肿瘤血管生成;抑制细胞增殖【作者】张文娟;陈少鹏;陆鑫;周国春【作者单位】中国科学院广州生物医药与健康研究院,广州,510663;中国科学院研究生院,北京,100049;中国科学院广州生物医药与健康研究院,广州,510663;中国科学院广州生物医药与健康研究院,广州,510663;中国科学院广州生物医药与健康研究院,广州,510663;中国科学院研究生院,北京,100049【正文语种】中文【中图分类】O624.1320世纪70年代,Folkman[1]提出肿瘤生长的血管依赖性学说,即肿瘤生长到其临界体积(Critical size)后需要丰富的血液供应,必然会伴随新生血管的增加;进一步研究发现,肿瘤细胞通过毛细血管转移而产生新的癌症病兆是恶性肿瘤致死的主要原因,因而阻断肿瘤血管生成,切断肿瘤的供养即可遏制肿瘤的增生、侵袭及转移[2~4],这一理论及后来的研究成果为抗肿瘤血管生成药物的研究与开发奠定了理论基础.熊果酸(Ursolic acid,1,结构见图1)是一种五环三萜类化合物,广泛存在于中药、食物及其它植物中.据报道,熊果酸具有抗肿瘤、镇静、抗炎、抗菌、抗氧化、抗糖尿病及降血糖等多种生物学效应[5~7].近年来,熊果酸的抗肿瘤作用备受关注,对其抗肿瘤活性及作用机制已有大量研究,并合成了一些衍生物以提高熊果酸的抗肿瘤活性[8~13].研究表明,熊果酸的抗肿瘤作用机制是多方面的,主要包括抑制肿瘤形成、直接杀伤肿瘤细胞、抗侵袭性、诱导肿瘤细胞凋亡、抑制肿瘤血管生成以及增强免疫功能等[8~13].目前,熊果酸抑制肿瘤血管生成的机制尚未阐明,针对其抗肿瘤血管生成活性的衍生物研究较少.本研究设计、合成和筛选了一系列熊果酸的衍生物,并对其抗肿瘤血管生成活性的构效关系进行了初步研究. Brucker AV-400核磁共振仪,以氘代氯仿和氘代甲醇为溶剂,化学位移以相应的溶剂为基准;Agilent 1200/MSD-LC-MS质谱仪(离子源为ESI和APCI复合源);MPA100 Optimelt熔点仪(Automated Melting Point System操作系统).所用试剂均为化学纯或分析纯;无水无氧反应所用溶剂均参照文献[14]中的方法处理;柱层析硅胶为200~300目;实验中所用(3S)-3-氨基戊内酰胺(10e)、(3S)-3-氨基己内酰胺(10f)、(3S)-3-氨基-6-羟基己内酰胺(10g)和(3S)-3-氨基-6-乙酰基己内酰胺(10h)为本实验室自行合成.化合物4~9的合成路线如Scheme 1所示.1.2.1 化合物4的合成化合物2和3参照文献[15,16]方法合成.将5.10 g熊果酸(1)用四氢呋喃溶解后加入催化量4-二甲氨基吡啶与4倍量乙酸酐,待反应完成后,用旋转蒸发仪除去四氢呋喃与过量的乙酸酐,残留物用100目硅胶拌样,经硅胶柱层析[流动相V(石油醚)∶V(乙酸乙酯)=10∶1]得5.29 g化合物2;将化合物2用二氯甲烷溶解,在冰浴冷却下加入4倍量草酰氯,移至室温下搅拌反应过夜,用旋转蒸发仪将二氯甲烷等除去,得5.50 g化合物3粗品.将5.50 g化合物3(约10.0 mmol)用二氯甲烷(200 mL)溶解,于冰浴下将该溶液滴加到50 mL甲醇和5 mL三乙胺的混合溶剂中,滴加完毕后在冰浴下搅拌反应0.5 h.加入饱和碳酸氢钠溶液终止反应,用二氯甲烷萃取,合并有机相,用无水硫酸钠干燥,过滤除去溶剂后,经硅胶柱层析[流动相V(石油醚)∶V(乙酸乙酯)=15∶1]得5.02 g白色固体4[16],m.p.244.1~246.9℃(文献值[16]:246℃),收率92%;ESI/APCI-MS,m/z:453.3[M+H-OAc]+.1.2.2 化合物5的合成将化合物4(5.02 g,9.8 mmol)用160 mL四氢呋喃与甲醇的混合溶液(体积比3∶1)溶解,搅拌均匀后加入40 mL 10 mol/L氢氧化钠溶液,10 min后将反应体系加热至40℃,反应3.5 h.用旋转蒸发仪将大部分四氢呋喃与甲醇蒸出,残留液用水和二氯甲烷稀释,分出二氯甲烷层,水层用二氯甲烷萃取,合并有机相,用无水硫酸钠干燥,过滤除去溶剂后,经硅胶柱层析[流动相V(石油醚)∶V(乙酸乙酯)=15∶1]得4.05 g白色固体5[17],m.p.167~168.8℃(文献值[17]:169~170.5℃),收率88%;ESI/APCI-MS,m/z:453.3[M+H-H2O]+.1.2.3 化合物6的合成将化合物5(4.05 g,8.6 mmol)用二氯甲烷(200 mL)溶解,于冰浴下搅拌15 min后,加入2,6-二甲基吡啶(4 mL,34.4 mmol)和4-二甲氨基吡啶(0.53 g,4.3 mmol),继续搅拌15 min后,加入叔丁基二甲硅基三氟甲磺酸酯(TBSOTf,3.0 mL,13.1 mmol),1 h后终止反应.加入吡啶(3.5 mL,43.4 mmol),搅拌30 min,然后将反应体系旋干,残留物用少许100目硅胶拌样,经硅胶柱层析[流动相:V(石油醚)∶V(乙酸乙酯)=40∶1]得4.58 g白色固体6,m.p.152.9~156.2℃,收率91%;1H NMR(CDCl3,400 MHz),δ:5.24(m,1H),3.60(s,3H),3.18(m,1H),2.22(d,J= 11.2 Hz,1H),2.04~1.95(m,1H),1.90(dd,J=3.2,4.6 Hz,1H),1.86~1.25(m,16H),1.07 (s,3H,CH3),1.05~0.68(m,4H),0.94~0.87(m,9H,3CH3),0.88(s,9H,3CH3),0.85(d,J= 6.4 Hz,3H,CH3),0.74(s,3H,CH3),0,73(s,3H,CH3),0.03(s,6H,2CH3);ESI/APCI-MS,m/z:453.3[M+H-OTBS]+.1.2.4 化合物7的合成将化合物6(4.58 g,7.8 mmol)用乙醚(150 mL)溶解,于冰浴下搅拌15 min后,滴加入二异丁基氢化铝(24.0 mL,24.0 mmol),继续在冰浴下搅拌10 min,然后移至室温下反应3 h.小心加入硫酸钠饱和溶液终止反应,待氢氧化铝生成完全后过滤,滤液用无水硫酸钠干燥,过滤除去溶剂后,经硅胶柱层析[流动相:V(石油醚)∶V(乙酸乙酯)=20∶1]得3.91 g白色无定形粉末状固体7,收率90%;1H NMR(CDCl3,400 MHZ),δ:5.13(m,1H),3.53(d,J=10.8 Hz,1H),3.18(m,2H),1.92~1.84(m,3H),1.83~1.70(m,1H),1.66~1.14(m,16H),1.10(s,3H,CH3),1.03~0.68(m,4H),0.98(s,3H,CH3),0.93~0.90(m,9H,3CH3),0.88(s,9H,3CH3),0.80(d,J=5.6 Hz,3H,CH3),0.75(s,3H,CH3),0.03(s,6H,2CH3);ESI/APCI-MS,m/z:453.3[M+ H-OTBS]+.1.2.5 化合物8的合成将化合物7(2.0 g,3.6 mmol)用二氯甲烷(200 mL)溶解,搅拌10 min后,加入氯铬酸吡啶盐(PCC,1.94 g,9.0 mmol);待反应结束后,加入乙酸乙酯,搅拌30 min后,将反应体系过100目硅胶柱,用乙酸乙酯洗脱,除去溶剂后得到化合物8的粗品.然后经硅胶柱层析[流动相:V(石油醚)∶V(乙酸乙酯)=50∶1]得1.40 g白色固体8,m.p.188.4~190.9℃,产率70%;1HNMR(CDCl3,400 MHz),δ:9.33(s,1H),5.31(m,1H),3.18(m,1H),1.99~1.94(m,1H),1.90 (dd,J=3.6,4.4 Hz,1H),1.86~1.72(m,1H),1.66~1.22(m,16H),1.08(s,3H,CH3),1.05~0.66(m,4H),0.96(s,3H,CH3),0.92~0.82(m,9H,3CH3),0.88(s,9H,3CH3),0.76(s,3H,CH3),0.74(s,3H,CH3),0.03(s,6H,2×CH3);13C NMR(CDCl3,100 MHz),δ:207.3,137.8,126.3,79.5,55.3,52.7,50.1,47.6,42.2,39.8,39.3,39.0,38.8,38.7,36.8,33.2,31.9,30.2,28.6,27.7,26.9,25.9,25.9,25.9,23.3,23.3,23.2,21.1,18.5,18.1,17.2,16.6,16.2,15.6,-3.76,-3.89.1.2.6 化合物9的合成在氮气保护下,将化合物4(57.0 mg,0.11 mmol)用乙醚(25 mL)溶解,在冰浴下搅拌15 min后,加入1.0 mol/L二异丁基氢化铝的正己烷溶液(0.33 mL,0.33 mmol),反应1 h后,小心加入饱和硫酸钠溶液停止反应.待氢氧化铝生成完全后过滤,将除去溶剂后的滤液经硅胶柱层析[流动相:V(石油醚)∶V(乙酸乙酯)=15∶1]得白色固体9[17],m.p.226.5~228℃(文献值[17]: 227.5~229℃),产率34%;ESI/APCI-MS,m/z:425.3[M+H-H2O]+.1.2.7 化合物11a~11g的合成化合物11a~11g的合成如Scheme 2所示.将化合物8(99.7 mg,0.18 mmol)用四氢呋喃(15 mL)溶解后,加入相应的胺10a~10g(0.36 mmol)及催化量的冰醋酸,反应2 h后,加入氰基硼氢化钠(12.5 mg,0.20 mmol),继续反应1 h(11a~11d)或反应过夜(11e~11g).小心加入饱和碳酸氢钠溶液稀释,用二氯甲烷萃取,合并有机相,用无水硫酸钠干燥,过滤除去溶剂后,经硅胶柱层析得到化合物11a~11g.N-(3β-O-叔丁基二甲硅基-乌苏烷-12-烯-28-亚甲基)-苄胺(11a)[流动相:V(二氯甲烷)∶V(甲醇)=200∶1]为白色固体,m.p.84.3~86.9℃,产率91%;1HNMR(CDCl3,400 MHz),δ:7.30(m,4H),7.23(m,1H),5.09(m,1H),3.77(d,J=4.8 Hz,2H),3.19(m,1H),2.58(d,J=11.6 Hz,1H),2.14(d,J=11.6 Hz,1H),1.95~1.82(m,3H),1.72~1.20(m,16H),1.07(s,3H,CH3),0.97~1.16(m,4H),0.92~0.82(m,9H,3CH3),0.90(s,9H,3CH3),0.74~0.80(m,9H,3CH3),0.04(s,6H,2CH3);ESI/APCI-MS,m/z:646.5[M+H]+.N-(3β-O-叔丁基二甲硅基-乌苏烷-12-烯-28-亚甲基)-4-氟苄胺(11b)[流动相:V(二氯甲烷)∶V(甲醇)=200∶1]为白色固体,m.p.81.8~83.2℃,产率86%;1H NMR(CDCl3,400 MHz),δ:7.26(t,J=8.4 Hz,2H),6.97(t,J=8.4 Hz,2H),5.07(m,1H),3.70(m,2H),3.18(m,1H),2.53(d,J=11.6 Hz,1H),2.09(d,J=11.6 Hz,1H),1.94~1.82(m,3H),1.72~1.15(m,17H),1.07(s,3H,CH3),0.97~0.65(m,4H),0.93~0.82(m,9H,3CH3),0.90(s,3H,3CH3),0.79(d,J=5.2 Hz,3H,CH3),0.75(s,3H,CH3),0.74(s,3H,CH3),0.03(s,6H,2CH3);ESI/APCI-MS,m/z: 664.5[M+H]+.N-(3β-O-叔丁基二甲硅基-乌苏烷-12-烯-28-亚甲基)-4-甲氧基苄胺(11c)[流动相:V(二氯甲烷)∶V(甲醇)=200∶1]为白色固体,m.p.81.8~84.8℃,产率89%;1H NMR(CDCl3,400 MHz),δ:7.21 (d,J=8.4 Hz,2H),6.94(d,J=8.8 Hz,2H),5.08(m,1H),3.80(s,3H),3.68(d,J=9.6 Hz,2H),3.19(m,1H),2.53(d,J=12.0 Hz,1H),2.11(d,J=12.0 Hz,1H),1.93~1.79(m,3H),1.75~1.10(m,17H),1.07(s,3H,CH3),1.05~0.68(m,4H),0.93~0.82(m,9H,3CH3),0.90 (s,9H,3CH3),0.79(d,J=5.2 Hz,3H,CH3),0.77(s,3H,CH3),0.76(s,3H,CH3),0.04(s,6H,2CH3);ESI/APCI-MS,m/z:676.5[M+H]+.N-(3β-O-叔丁基二甲硅基-乌苏烷-12-烯-28-亚甲基)-4-氯苄胺(11d)[流动相:V(二氯甲烷)∶V(甲醇)=200∶1]为白色固体,m.p.81.6~84.7℃,产率83%;1H NMR(CDCl3,400 MHz),δ:7.27(m,2H),7.23(m,2H),5.07(m,1H),3.71(d,J=9.2 Hz,2H),3.18(m,1H),2.50(d,J=11.6 Hz,1H),2.10(d,J=11.6 Hz,1H),1.95~1.82(m,3H),1.67~1.12(m,16H),1.07(s,3H),0.95~0.66(m,4H),0.93~0.85(m,9H,3CH3),0.89(s,9H,3CH3),0.79(d,J=5.6 Hz,3H,CH3),0.76(s,3H,CH3),0.72(s,3H,CH3),0.04(s,6H,2CH3);ESI/APCI-MS,m/z:680.4[M+H]+.N-(3β-O-叔丁基二甲硅基-乌苏烷-12-烯-28-亚甲基)-(3S)-3-氨基戊内酰胺(11e)[流动相:V(二氯甲烷)∶V(甲醇)=100∶1]为白色无定形粉末状固体,产率43%;1H NMR(CDCl3,400 MHz),δ: 6.53(s,1H),5.19(m,1H),4.05(br s,1H),3.47(m,1H),3.37(m,2H),3.18(m,1H),2.94(d,J=11.6 Hz,1H),2.22(m,3H),2.05~1.21(m,21H),1.10(s,3H),1.06~0.67(m,4H),0.96~0.85(m,12H,4CH3),0.88(s,9H,3CH3),0.80(d,J=6.0 Hz,3H,CH3),0.75(s,3H,CH3),0.03(s,6H,2CH3);ESI/APCI-MS,m/z:653.5[M+H]+.N-(3β-O-叔丁基二甲硅基-乌苏烷-12-烯-28-亚甲基)-(3S)-3-氨基己内酰胺(11f)[流动相:V(二氯甲烷)∶V(甲醇)=100∶1]为白色无定形粉末状固体,产率51%;1H NMR(CDCl3,400 MHz),δ:7.00 (s,1H),5.17(m,1H),3.67(d,J=10.4 Hz,1H),3.33(m,1H),3.24~3.16(m,2H),2.98(d,J=12.0 Hz,1H),2.34(d,J=12.0 Hz,1H),2.18~1.20(m,28H),1.09(s,3H),1.07~0.67(m,4H),0.98(s,3H,CH3),0.94~0.85(m,9H,3CH3),0.88(s,9H,3CH3),0.78(d,J=6.0 Hz,3H,CH3),0.74(s,3H,CH3),0.03(s,6H,2CH3);ESI/APCI-MS,m/z:667.5[M+H]+.N-(3β-O-叔丁基二甲硅基-乌苏烷-12-烯-28-亚甲基)-(3S)-3-氨基-6-羟基己内酰胺(11g)[流动相: V(二氯甲烷)∶V(甲醇)=100∶3]为白色无定形粉末状固体,产率46%;1H NMR(CDCl3,400 MHz),δ:7.16(s,1H),6.99(s,1H),5.12(m,1H),3.91(m,1H),3.57(m,1H),3.42~3.30(m,2H),3.20~3.13(m,1H),2.79(m,1H),2.15(m,2H),2.06~1.10(m,25H),1.08(s,3H,CH3),1.02~0.65(m,4H),0.97(s,3H,CH3),0.94~0.82(m,9H,3CH3),0.88(s,9H,3CH3),0.78(d,J=6.0 Hz,3H,CH3),0.74(s,3H,CH3),0.02(s,6H,2CH3);ESI/APCI-MS,m/z:683.5[M+ H]+.1.2.8 化合物12a~12g的合成化合物12a~12g的合成如Scheme 2所示.将化合物11a~11g用二氯甲烷(10 mL)溶解,在0℃冷却下搅拌10 min后,加入三氟乙酸(0.3 mL),在0℃反应过夜.加入饱和碳酸氢钠溶液终止反应,分出二氯甲烷层,水层用乙酸乙酯萃取,合并有机相,用无水硫酸钠干燥,过滤除去溶剂后,经硅胶柱层析分别得到化合物12a~12g.N-(3β-羟基-乌苏烷-12-烯-28-亚甲基)-苄胺(12a)[流动相:V(二氯甲烷)∶V(甲醇)=100∶1]为白色固体,m.p.85.2~87.9℃,产率61%;1H NMR(CDCl3,400 MHz),δ:7.28(m,4H),7.22(m,1H),5.08(m,1H),3.75(d,J=4.4 Hz,2H),3.24~3.19(m,1H),2.56(d,J=12.0 Hz,2H),2.13(d,J=12.0 Hz,1H),1.92~1.81(m,3H),1.76~1.15(m,17H),1.15~0.70(m,4H),1.07 (s,3H,CH3),0.96(s,3H,CH3),0.93(s,3H,CH3),0.92(d,J=4.0 Hz,3H,CH3),0.82(s,3H,CH3),0.81(d,J=7.0 Hz,3H,CH3),0.77(s,3H,CH3);13C NMR(CDCl3,100 MHz),δ:141.2,139.0,128.2,128.2,128.0,128.0,126.7,124.8,79.0,57.8,56.2,55.2,54.7,47.7,42.0,39.4,39.4,38.8,37.0,36.9,36.5,32.8,30.9,28.1,27.3,26.1,24.2,23.4,23.4,21.4,18.3,17.5,16.5,15.7,15.6;ESI/APCI-MS,m/z:532.4[M+H]+.N-(3β-羟基-乌苏烷-12-烯-28-亚甲基)-4-氟苄胺(12b)[流动相:V(二氯甲烷)∶V(甲醇)=100∶1]为白色固体,m.p.81.4~84.1℃,产率50%;1HNMR(CDCl3,400 MHz),δ:7.26(t,J=7.6 Hz,2H),6.98(t,J=8.4 Hz,2H),5.07(m,1H),3.71(m,2H),3.25~3.17(m,1H),2.52(d,J= 12.0 Hz,1H),2.10(d,J=12.0 Hz,1H),1.92~1.72(m,3H),1.70~1.10(m,17H),1.10~0.68 (m,4H),1.07(s,3H,CH3),0.99(s,3H,CH3),0.924(s,3H,CH3),0.918(d,J=4.4 Hz,3H,CH3),0.82(s,3H,CH3),0.80(d,J=7.2 Hz,3H,CH3),0.74(s,3H,CH3);13C NMR(CDCl3,100 MHz),δ:139.0,136.9,136.9,129.5,129.5,124.8,115.0,115.0,79.0,57.7,56.1,55.2,53.9,47.7,42.0,40.0,39.4,39.4,38.8,38.8,37.0,36.8,36.5,32.8,30.9,28.1,27.3,26.1,24.3,23.3,21.3,18.3,17.5,16.4,15.6,15.6;ESI/APCI-MS,m/z:550.4[M+H]+.N-(3β-羟基-乌苏烷-12-烯-28-亚甲基)-4-甲氧基苄胺(12c)[流动相:V(二氯甲烷)∶V(甲醇)= 100∶1]为白色固体,81.7~85.3℃,产率53%;1H NMR(CDCl3,400 MHz),δ:7.22(d,J=8.4 Hz,2H),6.84(d,J=8.4 Hz,2H),5.08(m,1H),3.84(s,3H),3.71~3.61(m,2H),3.24~3.18(m,1H),2.54(d,J=11.6 Hz,1H),2.12(d,J=12.0 Hz,1H),1.95~1.81(m,3H),1.69~1.12(m,17H),1.10~0.68(m,4H),1.06(s,3H,CH3),0.97(s,3H,CH3),0.92(s,3H,CH3),0.89(d,J=5.2 Hz,3H,CH3),0.79(s,3H,CH3),0.76(d,J=7.2 Hz,3H,CH3),0.74(s,3H,CH3),0.72 (s,3H);13CNMR(CDCl3,100 MHz),δ:158.6,138.9,129.3,129.3,124.8,113.7,113.7,79.0,57.5,56.1,55.3,55.2,54.0,47.7,42.0,39.4,39.4,38.8,38.8,37.0,36.9,36.4,32.8,30.9,28.1,27.3,26.1,24.3,23.3,21.3,18.3,17.5,16.5,15.6,15.6;ESI/APCI-MS,m/z:562.4[M+H]+.N-(3β-羟基-乌苏烷-12-烯-28-亚甲基)-4-氯苄胺(12d)[流动相:V(二氯甲烷)∶V(甲醇)=100∶1]为白色固体,m.p.81.5~83.5℃,产率48%;1HNMR(CDCl3,400 MHz),δ:7.32~7.18(m,4H),5.07(m,1H),3.75(s,1H),3.70(dd,J=9.2,11.4 Hz,2H),3.18~3.23(m,1H),2.50(d,J= 11.6 Hz,1H),2.10(d,J=11.6 Hz,1H),1.92~1.83(m,3H),1.68~1.10(m,17H),1.05~0.70 (m,4H),1.06(s,3H,CH3),0.99(s,3H,CH3),0.96(s,3H,CH3),0.92(d,J=5.6 Hz,3H,CH3),0.82~0.80(m,6H,2CH3),0.71(s,3H,CH3);13C NMR(CDCl3,100 MHz),δ:139.7,138.9,132.4,129.4,129.4,128.3,128.3,124.9,79.0,57.6,56.0,55.2,52.3,47.7,41.9,39.9,39.4,39.4,38.8,38.8,37.0,36.8,36.4,32.8,30.9,28.1,27.3,26.1,24.4,23.4,21.4,18.3,17.5,16.4,15.6,15.6;ESI/APCI-MS,m/z:566.4[M+H]+.N-(3β-羟基-乌苏烷-12-烯-28-亚甲基)-(3S)-3-氨基戊内酰胺(12e)[流动相:V(二氯甲烷)∶V(甲醇)=50∶1]为白色无定形粉末状固体,产率38%;1HNMR(CD3OD,400 MHz),δ:5.20(m,1H),3.27(m,3H),3.16(m,1H),2.86(d,J=11.6 Hz,1H),2.11(m,2H),2.00~1.90(m,3H),1.90~1.11(m,24H),1.14(s,3H,CH3),1.05(s,3H,CH3),1.05~0.73(m,4H),0.99(s,3H,CH3),0.98(s,3H,CH3),0.95(d,J=5.2 Hz,3H,CH3),0.84(d,J=6.0 Hz,3H,CH3),0.79(s,3H,CH3);13C NMR(CDCl3,100 MHz),δ:172.9,138.8,125.2,78.3,58.1,56.8,56.2,55.3,41.8,41.4,40.0,39.4,39.3,38.8,38.5,36.7,36.6,36.1,32.6,30.5,37.3,26.5,26.4,25.9,23.4,23.1,22.5,20.5,20.3,18.0,16.6,16.3,15.0,14.8;ESI/APCI-MS,m/z:539.4[M+H]+.N-(3β-羟基-乌苏烷-12-烯-28-亚甲基)-(3S)-3-氨基己内酰胺(12f)[流动相:V(二氯甲烷)∶V(甲醇)=50∶1]为白色无定形粉末状固体,产率47%;1H NMR(CDCl3,400 MHz),δ:6.26(br,1H),5.10(m,1H),3.23~3.12(m,4H),2.64(d,J=11.2 Hz,1H),2.08(d,J=11.6 Hz,1H),2.05~1.10(m,29H),1.09(s,3H,CH3),1.02~0.70(m,4H),0.95~0.86(m,12H,4CH3),0.78(s,3H,CH3),0.76(s,3H,CH3);13C NMR(CDCl3,100 MHz),δ:178.3,139.0,124.9,79.0,62.0,57.5,56.7,55.2,47.7,42.1,42.0,40.0,39.4,39.4,38.8,38.8,37.1,36.9,32.9,31.8,30.8,29.1,28.1,27.3,26.2,23.4,23.4,23.3,21.3,18.3,17.4,16.8,15.7,15.6;ESI/APCI-MS,m/z:533.4[M+H]+.N-(3β-羟基-乌苏烷-12-烯-28-亚甲基)-(3S)-3-氨基-6-羟基己内酰胺(12g)[流动相:V(二氯甲烷)∶V(甲醇)=20∶1]为白色无定形粉末状固体,产率31%;1HNMR(CD3OD,400 MHz),δ:5.19(m,1H),4.59(m,1/2H,一个异构体),3.83(m,1/2H,另一个异构体),3.49~3.35(m,2H),3.18~3.14(m,3H),2.77(m,1H),2.30~2.12(m,2H),2.05~1.80(m,6H),1.75~1.52(m,8H),1.51~1.34(m,6H),1.33~1.25(m,3H),1.14(s,3H,CH3),1.10~0.72(m,4H),1.05(s,3H,CH3),1.01~0.92(m,9H,3CH3),0.84(d,J=6.0 Hz,3H,CH3),0.79(s,3H,CH3);13C NMR (CDCl3,100 MHz,化合物12g碳谱中内酰胺的羰基碳的信号未能显示出),第一组δ:139.9,127.0,79.7,70.3,58.1,57.8,56.7,46.8,43.2,41.4,40.7,39.9,38.2,38.0,37.4,35.1,34.1,31.8,28.7,27.9,27.3,24.8,24.5,23.9,21.6,19.5,17.9,17.6,16.4,16.2;第二组δ:139.7,127.1,79.7,62.4,57.9,57.7,56.7,46.8,43.2,41.4,40.7,39.9,38.1,38.0,37.0,35.0,34.1,31.8,28.7,27.9,27.3,24.9,24.5,23.9,21.6,19.5,17.9,17.6,16.4,16.2;ESI/APCI-MS,m/z: 569.5[M+H]+.1.2.9 化合物13a~13d的合成化合物13a~13d的合成见Scheme 3.将化合物3粗品(约0.2 mmol)用二氯甲烷(20 mL)溶解,于冰浴下冷却10 min后,加入三乙胺(0.05 mL,0.4 mmol)与相应的苄胺类化合物(0.4 mmol),反应10 min后移至室温反应约3 h.小心加入饱和碳酸氢钠溶液终止反应后,用二氯甲烷萃取,合并有机相,用无水硫酸钠干燥,过滤除去溶剂后,经硅胶柱层析[流动相: V(石油醚)∶V(乙酸乙酯)=5∶1]分别得到化合物13a~13d.N-(3β-乙酰基-乌苏烷-12-烯-28-羰基)-苄胺(13a)[18,19]为白色固体,m.p.195.8~197.3℃(文献值[18,19]:197~198℃),产率78%.N-(3β-乙酰基-乌苏烷-12-烯-28-羰基)-4-氟-苄胺(13b)为白色固体,m.p.145.4~146.4℃,产率89%;1H NMR(CDCl3,400 MHz),δ:7.20(m,2H),6.99(m,2H),6.15(m,1H),5.21(m,1H),4.48(m,2H),4.13(m,1H),2.04(s,3H),2.01~1.15(m,19H),1.07(s,3H,CH3),1.05~0.73 (m,4H),0.94(s,3H,CH3),0.91(s,3H,CH3),0.84(m,9H,3CH3),0.66(s,3H,CH3);13C NMR(CDCl3,100 MHz),δ:178.0,171.0,139.9,134.3,134.3,129.6,129.6,125.6,115.5,115.3,80.8,55.2,54.0,47.8,47.4,42.9,42.5,39.7,39.5,39.1,38.3,37.7,37.2,36.8,32.7,30.9,28.0,27.8,24.9,23.5,23.3,23.2,22.7,21.3,21.2,18.1,17.2,17.0,16.7,15.5; ESI/APCI-MS,m/z:606.3[M+H]+.N-(3β-乙酰基-乌苏烷-12-烯-28-羰基)-4-甲氧基-苄胺(13c)为白色固体,m.p.188.3~190.0℃,产率84%;1H NMR(CDCl3,400 MHz),δ:7.16(d,J=8.4 Hz,2H),6.85(d,J=8.4 Hz,2H),6.07 (m,1H),5.19(m,1H),4.46(m,2H),4.10(m,1H),3.79(s,3H),2.04(s,3H),2.02~1.01 (m,19H),1.07(s,3H,CH3),1.00~0.70(m,4H),0.93(s,3H,CH3),0.91(s,3H,CH3),0.85 (m,9H,3CH3),0.70(s,3H,CH3);13C NMR(CDCl3,100 MHz),δ:177.8,171.0,159.0,139.9,130.5,129.2,129.2,125.6,114.0,114.0,80.8,55.3,55.2,54.0,47.7,47.5,43.2,42.5,39.7,39.6,39.1,38.3,37.7,37.2,36.8,32.7,30.9,28.0,27.9,24.8,23.5,23.3,23.2,21.3,21.2,18.2,17.2,17.0,16.7,15.5;ESI/APCI-MS,m/z:618.3[M+H]+.N-(3β-乙酰基-乌苏烷-12-烯-28-羰基)-4-氯-苄胺(13d)为白色固体,m.p.142.8~145.6℃,产率87%;1H NMR(CDCl3,400 MHz),δ:7.28(d,J=8.4 Hz,2H),7.17(d,J=8.4 Hz,2H),6.16(m,1H),5.22(m,1H),4.49(m,2H),4.12(m,1H),2.04(s,3H),2.00~1.05(m,19H),1.08(s,3H,CH3),0.97~0.72(m,4H),0.94(s,3H,CH3),0.91(s,3H,CH3),0.84(m,9H,3CH3),0.66 (s,3H,CH3);13C NMR(CDCl3,100 MHz),δ:178.0,171.0,139.9,137.1,133.2,129.3,129.3,128.8,128.8,125.7,80.8,55.2,54.0,47.8,47.4,42.9,42.5,39.7,39.6,39.1,38.3,37.7,37.3,36.8,32.7,30.8,28.0,27.8,24.9,23.5,23.3,23.2,21.3,21.2,18.1,17.2,17.0,16.7,15.5;ESI/APCI-MS,m/z:622.2[M+H]+.1.2.10 化合物13e,13f和13h的合成合成路线见Scheme 3.将化合物3(约0.2 mmol)用二氯甲烷(20 mL)溶解,于冰浴冷却10 min后,加入相应的胺10e,10f 和10h(0.4 mmol)和三乙胺(0.05 mL,0.4 mmol),于冰浴下继续搅拌10 min后,移至室温反应过夜.加入饱和碳酸氢钠溶液终止反应,用二氯甲烷萃取,合并有机相,用无水硫酸钠干燥,过滤除去溶剂后,经硅胶柱层析[流动相:V(二氯甲烷)∶V(甲醇)=100∶1]分别得到化合物13e,13f和13h.N-(3β-乙酰基-乌苏烷-12-烯-28-羰基)-(3S)-3-氨基戊内酰胺(13e)为白色无定形粉末状固体,产率68%;1H NMR(CDCl3,400 MHz),δ:6.94(d,J=3.2 Hz,1H),6.40(s,1H),5.37(m,1H),4.46(m,1H),4.00~3.95(m,1H),3.30~3.27(m,2H),2.69~2.62(m,1H),2.01(s,3H),1.97~0.97(m,24H),1.06(s,3H,CH3),0.95~0.72(m,4H),0.92~0.80(m,15H,5CH3),0.74 (s,3H,CH3);13C NMR(CDCl3,100 MHz),δ:178.8,172.0,171.0,138.0,126.8,80.9,55.2,53.4,50.9,47.9,47.6,42.2,41.5,39.7,39.6,39.0,38.4,37.7,37.5,36.8,32.9,30.9,28.0,27.9,26.5,24.6,23.6,23.4,21.3,21.2,20.8,18.2,17.2,16.7,16.7,15.6;ESI/APCI-MS,m/z:595.4[M+H]+.N-(3β-乙酰基-乌苏烷-12-烯-28-羰基)-(3S)-3-氨基己内酰胺(13f)为白色无定形粉末状固体,产率73%;1H NMR(CDCl3,400 MHz),δ:7.37(d,J=4.4 Hz,1H),6.72(m,1H),5.42(m,1H),4.47(m,1H),4.35(m,1H),3.22(m,2H),2.03(s,3H),2.01~1.10(m,27H),1.07(s,3H,CH3),1.05~0.76(m,4H),0.94~0.82(m,15H,5CH3),0.64(s,3H,CH3);13C NMR(CDCl3,100 MHz),δ:177.5,176.0,171.0,137.9,126.7,80.9,55.5,53.3,52.3,47.7,47.5,42.2,42.2,39.7,39.7,39.0,38.4,37.7,37.4,36.8,32.8,31.4,30.9,29.0,28.0,27.9,24.7,23.6,23.4,21.3,21.2,18.2,17.2,16.7,16.4,15.6;ESI/APCI-MS,m/z:609.4[M+H]+.N-(3β-乙酰基-乌苏烷-12-烯-28-羰基)-(3S)-3-氨基-6-乙酰基己内酰胺(13h)为白色无定形粉末状固体,产率65%;1H NMR(CDCl3,400 MHz),δ:7.32(m,2H),7.14(m,1H,一个异构体),6.71 (m,1H,另一个异构体),5.37(m,2H),4.84(m,1H),4.54(m,1H),4.42(m,2H),4.33(m,2H),3.50~3.43(m,1H),3.36(m,1H),3.32~3.12(m,2H),2.12~1.12(m,18H),1.99(s,3H),1.98(s,3H),1.02(s,3H),1.00~0.70(m,4H),0.90~0.75(m,12H,4CH3),0.58(m,6H,2CH3);13C NMR(CDCl3,100 MHz),第一组δ:177.8,175.2,171.0,170.3,137.9,126.8,80.9,67.6,55.2,53.3,51.8,47.8,47.5,43.3,42.2,39.6,39.6,39.0,38.3,37.7,37.4,36.8,32.9,31.8,30.9,29.1,28.0,27.9,25.8,23.6,23.4,21.2,21.0,18.2,17.2,16.7,16.5,15.6;第二组δ:177.7,175.1,171.0,170.1,137.9,126.8,80.9,71.4,55.2,53.3,51.9,47.7,47.5,45.1,42.2,39.7,39.7,39.0,38.3,37.7,37.4,36.8,32.8,31.8,30.9,29.1,28.0,27.9,24.7,23.4,23.4,21.3,21.1,18.2,17.2,16.7,16.4,15.6;ESI/APCI-MS,m/z:667.4[M+H]+,689.4[M+ Na]+.1.2.11 化合物13g的合成化合物13g的合成路线如Scheme 3所示.化合物13h(69 mg,0.1 mmol)用甲醇和水(体积比3∶1)的混合溶液(20 mL)溶解,搅拌5 min后,加入碳酸钾(35 mg,0.25 mmol).待反应完成后,用旋转蒸发仪将大部分甲醇除出;加水和二氯甲烷稀释,分出二氯甲烷层,水层用二氯甲烷萃取,合并有机相,用无水硫酸钠干燥,过滤除去溶剂后,经硅胶柱层析[流动相:V(二氯甲烷)∶V(甲醇)=50∶1]得到57 mg白色无定形粉末状固体化合物13g,产率92%;1H NMR(CDCl3,400 MHz),δ:7.38(m,1H,一个异构体),7.26(m,1H,另一个异构体),6.72(m,1H),5.47(m,2H),4.46(m,2H),4.35(m,2H),3.96(m,1H),3.54(m,1H),3.35(m,2H),3.36(m,2H),2.15(m,1H),2.02(s,3H),2.00~1.15(m,18H),1.05(s,3H,CH3),1.02~0.73(m,4H),0.93(s,3H,CH3),0.90~0.80(m,9H,3CH3),0.60(m,6H,2CH3);13C NMR(CDCl3,100 MHz),第一组δ: 177.9,176.3,171.1,138.1,126.7,80.8,64.8,55.2,53.3,52.1,48.2,47.7,47.4,42.2,42.1,39.7,39.7,39.1,38.3,37.7,37.3,36.8,32.8,30.9,29.4,28.0,27.8,25.0,23.6,23.4,21.3,21.2,18.1,17.3,16.7,16.2,15.7;第二组δ:177.9,175.5,171.1,137.9,126.8,80.8,69.9,55.2,53.3,52.0,47.7,47.7,47.4,42.2,42.1,39.6,39.6,39.0,38.3,37.7,37.3,36.7,32.8,30.9,29.4,28.0,27.8,24.6,23.6,23.4,21.3,21.2,18.1,17.2,16.7,16.3,15.6;ESI/APCIMS,m/z:625.4[M+H]+,647.4[M+Na]+.1.2.12 化合物14a~14g的合成化合物14a~14g的合成方法与化合物5的合成方法相同,如Scheme 3所示.N-(3β-羟基-乌苏烷-12-烯-28-羰基)-苄胺(14a)[18,19][流动相:V(二氯甲烷)∶V(甲醇)=200∶1]为白色固体,m.p.265.3~267.8℃(文献值[18,19]:267~268℃),产率73%.N-(3β-羟基-乌苏烷-12-烯-28-羰基)-4-氟-苄胺(14b)[流动相:V(二氯甲烷)∶V(甲醇)=200∶1]为白色固体,m.p.261.5~264.4℃,产率80%;1H NMR(CDCl3,400 MHz),δ:7.21(m,2H),6.99 (m,2H),6.16(m,1H),5.21(m,1H),4.48(m,1H),4.12(m,1H),3.20(m,1H),2.05~1.20 (m,20H),1.08(s,3H,CH3),1.03~0.65(m,4H),0.97(s,3H,CH3),0.93(m,3H,CH3),0.88 (s,3H,CH3),0.84(d,J=6.4 Hz,3H,CH3),0.77(s,3H,CH3),0.67(s,3H,CH3);13C NMR (CDCl3,100 MHz),δ:178.0,139.9,134.2,129.6,129.6,125.8,115.5,115.3,78.9,55.2,54.0,47.8,47.5,42.9,42.5,39.7,39.5,39.1,38.8,38.6,37.2,36.9,32.8,30.9,28.1,27.9,27.2,24.9,23.3,23.2,21.2,18.3,17.2,17.0,15.6,15.4;ESI/APCI-MS,m/z:564.3[M+H]+.N-(3β-羟基-乌苏烷-12-烯-28-羰基)-4-甲氧基-苄胺(14c)[流动相:V(二氯甲烷)∶V(甲醇)=200∶1]为白色固体,m.p.228.6~231.1℃,产率76%;1HNMR(CDCl3,400 MHz),δ:7.14(d,J=8.4 Hz,2H),6.83(d,J=8.4 Hz,2H),6.10(m,1H),5.18(m,1H),4.42(m,1H),4.09(m,1H),3.77(s,3H),3.18(m,1H),1.98~1.05(m,20H),1.06(s,3H,CH3),1.02~0.65(m,4H),0.96 (s,3H,CH3),0.92(m,3H,CH3),0.87(s,3H,CH3),0.82(d,J=6.4 Hz,3H,CH3),0.76(s,3H,CH3),0.68(s,3H,CH3);13CNMR(CDCl3,100 MHz),δ:177.8,158.9,139.8,130.4,129.3,129.3,125.8,114.0,114.0,78.8,55.3,55.2,54.0,47.7,47.5,43.2,42.5,39.7,39.5,39.1,38.8,38.6,37.2,36.9,32.8,30.9,28.2,27.9,27.2,24.8,23.3,23.2,21.2,18.3,17.2,17.0,15.7,15.4;ESI/APCI-MS,m/z:576.3[M+H]+.N-(3β-羟基-乌苏烷-12-烯-28-羰基)-4-氯-苄胺(14d)[流动相:V(二氯甲烷)∶V(甲醇)=200∶1]为白色固体,m.p.263.1~265.4℃,产率67%;1H NMR(CDCl3,400 MHz),δ:7.28(d,J=8.0 Hz,2H),7.17(d,J=8.0 Hz,2H),6.17(m,1H),5.22(m,1H),4.49(m,1H),4.12(m,1H),3.20 (m,1H),1.98~1.09(m,20H),1.08(s,3H,CH3),1.04~0.65(m,4H),0.98(s,3H,CH3),0.94(m,3H,CH3),0.88(s,3H,CH3),0.84(d,J=6.4 Hz,3H,CH3),0.78(s,3H,CH3),0.66 (s,3H,CH3);13C NMR(CDCl3,100 MHz),δ:178.0,139.9,137.0,133.2,129.3,129.3,128.8,128.8,125.8,78.9,55.2,54.0,47.8,47.5,42.9,42.5,39.8,39.5,39.1,38.8,38.6,37.3,36.9,32.8,30.9,28.1,27.9,27.2,24.9,23.3,23.2,21.2,18.2,17.2,17.0,15.6,15.4;ESI/ APCI-MS,m/z:580.2[M+H]+.N-(3β-羟基-乌苏烷-12-烯-28-羰基)-(3S)-3-氨基戊内酰胺(14e)[流动相:V(二氯甲烷)∶V(甲醇)=100∶1]为白色无定形粉末状固体,产率41%;1H NMR(CDCl3,400 MHz),δ:6.96(s,1H),5.81(s,1H),5.42(m,1H),4.01(m,1H),3.33(m,2H),3.21(m,1H),2.73~2.68(m,1H),2.07~1.23(m,23H),1.09(s,3H,CH3),1.07~0.71(m,4H),0.98(s,3H,CH3),0.94(s,3H),0.91(m,3H,CH3),0.87(d,J=6.4 Hz,3H,CH3),0.77(m,6H,2CH3);13C NMR(CDCl3,100 MHz),δ:178.8,171.8,138.0,127.0,79.0,55.2,53.5,51.0,48.0,47.7,42.2,41.7,39.8,39.6,39.1,38.8,38.8,37.6,36.9,33.0,30.9,28.1,28.0,27.3,26.6,24.6,23.5,23.5,21.2,20.8,18.3,17.2,16.7,15.6,15.6;ESI/APCI-MS,m/z:553.4[M+H]+.N-(3β-羟基-乌苏烷-12-烯-28-羰基)-(3S)-3-氨基己内酰胺(14f)[流动相:V(二氯甲烷)∶V(甲醇)=100∶1]为白色无定形粉末状固体,产率68%;1H NMR(CDCl3,400 MHz),δ:7.32(d,J=4.0 Hz,1H),6.54(m,1H),5.43(m,1H),4.35(m,1H),3.28~3.18(m,3H),2.07~1.20(m,26H),1.08(s,3H),1.04~0.62(m,4H),0.97(s,3H,CH3),0.94(m,3H,CH3),0.88(m,6H,2CH3),0.76(s,3H,CH3),0.64(s,3H,CH3);13C NMR(CDCl3,100 MHz),δ:177.5,176.0,137.9,126.8,79.0,55.1,53.3,52.3,47.7,47.6,42.2,42.2,39.7,39.7,39.0,38.7,38.7,37.4,36.9,32.9,31.4,31.0,29.0,28.1,27.9,27.9,27.3,24.7,23.4,23.4,21.2,18.3,17.2,16.4,15.6,15.6;ESI/APCI-MS,m/z:567.4[M+H]+.N-(3β-羟基-乌苏烷-12-烯-28-羰基)-(3S)-3-氨基-6-羟基己内酰胺(14g)[流动相:V(二氯甲烷)∶V(甲醇)=20∶1]为白色无定形粉末状固体,产率33%;1HNMR(CDCl3,400 MHz),δ:7.38(d,J= 4.4 Hz,1H,一个异构体),7.34(d,J=4.4 Hz,1H,另一个异构体),6.91(m,1H),6.61(m,1H),5.45(m,2H),4.35(m,1H),4.00(m,1H),3.52(m,1H),3.43~3.38(m,1H),3.36~3.28(m,2H),3.12~2.95(m,1H),2.13(m,1H),2.10~1.20(m,19H),1.07(s,3H,CH3),1.05~0.60 (m,4H),0.96(s,3H,CH3),0.94(s,3H,CH3),0.90~0.85(m,6H,2CH3),0.75(s,3H,CH3),0.61(d,J=4.4 Hz,3H,CH3);13C NMR(CDCl3,100 MHz),第一组δ:177.9,176.0,138.0,126.9,79.0,64.8,55.1,53.3,52.1,48.1,47.5,42.2,42.2,39.6,39.6,39.1,38.7,38.7,37.4,36.9,32.9,30.9,29.4,28.1,27.9,25.1,23.4,23.4,21.2,18.3,17.2,16.3,15.6;第二组δ:177.8,175.5,137.8,126.9,77.4,69.9,55.1,53.3,52.0,47.7,47.7,42.2,42.2,39.6,39.6,39.0,38.7,38.7,37.4,36.7,32.9,30.9,29.4,28.1,27.2,24.7,23.4,23.4,21.2,18.3,17.2,16.3,15.6;ESI/APCI-MS,m/z:583.4[M+H]+.1.3.1 细胞培养及药物处理实验所用细胞为人脐带静脉内皮细胞HUVEC、非小细胞肺癌细胞A549、人肝癌细胞Bel-7402和人乳腺癌细胞MCF-7.A549和Bel-7402的培养液为含10%小牛血清的RPMI-1640,MCF-7的培养基为含10%小牛血清的DMEM,HUVEC细胞培养液为EGM-2(含生长因子),细胞在37℃和5%CO2条件下维持培养.将A549,Bel-7402和MCF-7按每孔1500个细胞接种于96孔板,HUVEC细胞为每孔1000个细胞接种于96孔板,待细胞贴壁后加入药物(药物先用DMSO溶解,加药前用PBS稀释),溶剂对照组和加药组(包括阳性药物)的细胞培养液中DMSO终浓度均为0.1%,每个浓度有3个复孔.1.3.2 MTT检测加药再继续培养96 h后,于每孔加入20 μL MTT(5.0 mg/mL),再在37℃和5% CO2条件下继续孵育4 h,然后吸去细胞培养液,每孔加入100 μL DMSO(分析纯试剂)溶解MTT被还原的产物——蓝紫色Formazan结晶,并于超级酶标仪的570 nm下读数.超级酶标仪读数为Formazan的吸光度值(OD570nm),其反映活细胞的还原酶活力与细胞的活力成正比,因此基于溶剂对照组和加药组吸光度值可以计算出阳性药物和各个化合物的IC50.以熊果酸为起始原料,通过一系列反应得到了37个化合物,其中目标化合物24个.所得化合物中有30个新化合物,目标化合物中12a~12g,13b~13h和14b~14g共20个为新化合物.为得到关键中间体化合物8,首先将熊果酸C3位的羟基用乙酰基保护,再利用草酰氯将C17位的羧基变成酰氯;在三乙胺作用下,酰氯与甲醇反应得到熊果酸甲酯化合物4;脱掉乙酰基后,更换叔丁基二甲硅基作为保护基得到化合物6;用DIBAL-H将化合物6还原成醇得到化合物7,最后将化合物7氧化成醛得到关键中间体8.化合物8与一系列胺通过还原胺化反应得到目标化合物12a~12g.另外,参考文献[18,19]中的方法,在三乙胺的作用下,通过化合物3与一系列胺反应合成了酰胺类化合物13a~13h及14a~14g.在合成化合物13e,13f和13h时,由于所用的胺为油状物且在二氯甲烷中的溶解度不好,因此采用将化合物3的粗品与胺同时加入反应瓶中,再用二氯甲烷溶解的方法,边溶解边反应,一般反应时间较长但效果明显.合成目标化合物12g,13g,13h和14g时,所用的胺[(3S)-3-氨基-6-羟基己内酰胺(10g)、(3S)-3-氨基-6-乙酰基己内酰胺(10h)]为一对非对映异构体,摩尔比约为1∶1,因此在氢谱与碳谱中显示有2个化合物的摩尔比同样约为1∶1.采用MTT法,以人血管内皮细胞HUVEC为主要模型,采用不同的癌细胞株A549,Bel-7402和MCF-7对所合成的24个目标化合物进行了抗肿瘤血管生成活性测定和抑制肿瘤细胞增殖的活性测定,实验结果见表1.从表1的数据可以看出,化合物5,9,12e和14e对HUVEC细胞的抑制作用与熊果酸相仿,半数抑制浓度(IC50)均在5 μmol/L左右,但是化合物5,9,12e和14e对3种肿瘤细胞均无抑制作用,说明它们对HUVEC细胞有较好的选择性.在合成胺类化合物与酰胺类化合物时,所用的胺10e~10h为Bengamide类化合物的母环及其衍生物.Bengamide类化合物有较好的抑制肿瘤血管生成的活性,将其引入熊果酸C28位得到的化合物12e~12g,13e~13h和14e~14g均对内皮细胞HUVEC有一定的抑制活性,其中化合物13h对内皮细胞HUVEC抑制活性最高,IC50约为1 μmol/L,与熊果酸相比活性较高.将苄胺类化合物10a~10d引入熊果酸C28位,得到化合物12a~12d,13a~13d和14a~14d.从表1中的数据可见,胺类化合物12a~12d对内皮细胞HUVEC的抑制活性明显高于酰胺类化合物13a~13d和14a~14d,而化合物12a活性最好,IC50约为1 μmol/L,同样高于熊果酸的活性.对于所有的酰胺类化合物13a~13g和14a~14g,C3位的羟基是否裸露对于其抗肿瘤血管生成活性似无太大影响.综上,通过适当地改变熊果酸C28位的结构可以提高其对内皮细胞HUVEC的选择性,增强抗肿瘤血管生成活性;而且当引入的基团自身具有抗肿瘤血管生成的作用时效果更好.这些结果提示,进一步优化C28位的结构有可能得到选择性更高、活性更好的化合物,对以后的研究工作具有一定的指导意义.KeywordsUrsolic acid;Derivative;Anti-angigenesis;Antiproliferation【相关文献】[1] Folkman J..New Engl.J.Med.[J],1971,285(21):1182—1186[2] ZHANG Jun(张俊),XIE Ke-Ping(谢克平),ZHU Zheng-Gang(朱正纲),LIN Yan-Zhen(林言箴).J.Intern.Med.Concepts.Pract.(内科理论与实践)[J],2009,4(1):7—10[3] ZHOU Hong-Yu(周洪语).Chin.J.Cancer Biother.(中国肿瘤生物治疗杂志)[J],2000,7(4):308—310[4] DENG Yong(邓勇),ZHONG Yu-Guo(钟裕国),SHEN Yi(沈怡),LIU Shao-Hua(刘绍华).Chem.J.Chinese Universities(高等学校化学学报)[J],2003,24(2):260—264[5] BAI Yu-Jun(白育军),YANG Xiao-Sheng(杨小生),KANG Wen-Yi(康文艺).West China J.Pharm.Sci.(华西药学杂志)[J],2003,18(2):87—90[6] Liu J..J.Ethnopharmacol.[J],1995,49(2):57—68[7] Sarawat B.,Visen P.K.S.,Dayal R.,Agarwal D.P.,Patnaik G.K..Indian J.Pharmacol.[J],1996,28(4):232—239[8] Li J.,Guo W.J.,Yang Q.Y..World J.Gastroenterol.[J],2002,8(3):493—495[9] Cha H.J.,Bae S.K.,Lee H.Y..Cancer Res.[J],1996,56(10):2281—2284[10] Kim D.K.,Baek J.H.,Kang C.M.,Yoo M.A.,Sung J.W.,Chung H.Y.,Kim N.D.,Choi Y.H.,Lee S.H.,Kim K.W..Int.J.Cancer[J],2000,87(5):629—636[11] WANG Jie-Jun(王杰军),WANG Bing(王兵),GUO Jing(郭静),GAO Yong(高勇),XU Qing(许青),CHEN Wan-Sheng(陈万生).Med.Univ.(第二军医大学学报)[J],2000,21(11):1071—1073[12] You H.J.,Choi C.Y.,Kim J.Y.,Park S.J.,Hahm K.S.,Jeong H.G..FEBS Lett.[J],2001,509(2):156—160[13] Kiran M.S.,Viji R.I.,Sameer Kumar V.B.,Sudhakaranm.[J],2008,371(3):556—560[14] Armarego W.L.F.,Christina C..Purification of Laboratory Chemicals,Fifth Edition [M],Oxford:Butterworth-Heinemann,2003[15] Meng Y.Q.,Liu D.,Cai L.L.,Chen H.,Cao B.,Wang Y.Z..Bioorg.Med.Chem.[J],2009,17(2):848—854[16] Gnoatto S.C.B.,Susplugas S.,Vechia L.D.,Ferreira T.B.,Dassonville-Klimpt A.,Zimmer K.R.,Demailly C.,Nascimento S.D.,Guillon J.,Grellier P..Bioorg.Med.Chem.[J],2008,16(2),771—782[17] Sell H.M.,Kremers R.E..J.Biol.Chem.[J],1938,125(2):451—453[18] ZHAO Long-Xuan(赵龙铉),LIU Ning-Ning(刘宁宁),PEI Xiao-Juan(裴晓娟),WANG Di-Feng(王迪峰),LIU Dan-Zhu(刘丹竹).J.Liaoning Normal Univ.(Natural Science Edition)(辽宁师范大学学报,自然科学版)[J],2007,30(4):476—479[19]Liu D.,Meng Y.Q.,Zhao J.,Chen L.G..Chem.Res.Chinese Universities[J],2008,24(1):42—46AbstractTwenty-four derivatives of ursolic acid modified at C3 and C28 were designedand synthesized for the investigation of the structure-activity relationship of ursolicacid(1)against angiogenesis.All the compounds were characterized by1H NMR,13C NMR,MS and HR-MS.HUVEC was used as an angiogenesis target cell and A549,Bel-7402 and MCF-7 were as cancer target cells and the antiproliferative activity was assayed by MTT method.The results show that compounds 5,9,12e and 14e possess the selectively antiproliferative activity of HUVEC,meanwhile,compounds 12a and 13h are more active than compound 1 against the proliferation of HUVEC.Therefore,it is possible that more potent and selective angiogenesis inhibitors of ursolic acid derivatives could be discovered by suitable modification at C28 position of ursolic acid.These data suggestthat ursolic acid and its derivatives represent a promising lead structural core to discovera new class of antiangiogenesis agents.。

科学家发现制造第2代生物燃料的酶

科学家发现制造第2代生物燃料的酶

科学家发现制造第2代生物燃料的酶
常旭旻
【期刊名称】《农产品加工》
【年(卷),期】2010()11
【摘要】据报道,挪威科学家的一项最新研究发现有一种酶有助于分解掉细胞中的几丁质,这种酶产生的化学反应可以从甘蔗这样的植物以及其他树木的废料中提取出生物燃料。

【总页数】1页(P39-39)
【关键词】生物燃料;科学家;酶;制造;化学反应;几丁质
【作者】常旭旻
【作者单位】
【正文语种】中文
【中图分类】O643.1
【相关文献】
1.科学家发现制造第二代生物燃料的酶 [J],
2.美科学家发现制造生物燃料新藻类 [J],
3.科学家发现制造第二代生物燃料的酶 [J],
4.科学家发现制造第二代生物燃料 [J],
5.美科学家发现热带白蚁可分泌用于生产生物燃料的酶 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Journal of Molecular Catalysis B:Enzymatic 63 (2010) 121–127Contents lists available at ScienceDirectJournal of Molecular Catalysis B:Enzymaticj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /m o l c a tbBiochemical characterization of the cutinases from Thermobifida fuscaSheng Chen a ,b ,Lingqia Su b ,Susan Billig c ,Wolfgang Zimmermann c ,Jian Chen b ,∗,Jing Wu a ,b ,∗∗aState Key Laboratory of Food Science and Technology,Jiangnan University,1800Lihu Ave.,Wuxi,Jiangsu 214122,ChinabSchool of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education,Jiangnan University,1800Lihu Ave.,Wuxi,Jiangsu 214122,China cInstitute of Biochemistry,Department of Microbiology and Bioprocess Technology,University of Leipzig,Johannisallee 21-23,Leipzig D-04103,Germanya r t i c l e i n f o Article history:Received 18June 2009Received in revised form 27December 2009Accepted 4January 2010Available online 11 January 2010Keywords:Thermobifida fusca CutinaseCharacterizationa b s t r a c tThermobifida fusca produces two cutinases which share 93%identity in amino acid sequence.In the present study,we investigated the detailed biochemical properties of T.fusca cutinases for the first time.For a better comparison between bacterial and fungal cutinases,recombinant Fusarium solani pisi cuti-nase was subjected to the similar analysis.The results showed that both bacterial and fungal cutinases are monomeric proteins in solution.The bacterial cutinases exhibited a broad substrate specificity against plant cutin,synthetic polyesters,insoluble triglycerides,and soluble esters.In addition,the two isoen-zymes of T.fusca and the F.solani pisi cutinase are similar in substrate kinetics,the lack of interfacial activation,and metal ion requirements.However,the T.fusca cutinases showed higher stability in the presence of surfactants and organic solvents.Considering the versatile hydrolytic activity,good toler-ance to surfactants,superior stability in organic solvents,and thermostability demonstrated by T.fusca cutinases,they may have promising applications in related industries.© 2010 Elsevier B.V. All rights reserved.1.IntroductionCutin is a major component of the plant cuticle which consti-tutes an efficient barrier against desiccation and pathogens [1].Cutinases are inducible extracellular enzymes secreted by microor-ganisms capable of catalyzing the cleavage of ester bonds in cutin [2].They display hydrolytic activity not only towards cutin but also a variety of soluble synthetic esters,insoluble triglycerides,synthetic fibers (polyethylene terephthalate fibers),plastics (poly-caprolactone)and others [3,4].Therefore,cutinases have been recognized as versatile lipolytic enzymes in laundry and dishwash-ing detergent formulations,and for other applications in the textile,food and chemical industries [5–7].In addition to their hydrolytic activity,cutinases also show synthetic activity and have potential use for the synthesis of structured triglycerides,polymers,pharma-ceuticals and agrochemicals [8].Abbreviations:FspC,Fusarium solani pisi cutinase;TDOC,sodium tau-rodeoxycholate;p NPB,p -nitrophenyl butyrate;p NPP,p -nitrophenyl palmitate;TPA,terephthalic acid;MHET,mono(2-hydroxyethyl terephthalate);BHET,bis(2-hydroxyethyl terephthalate);EMT,1,2-ethylene-mono-terephthalate-mono(2-hydroxyethyl terephthalate).∗Corresponding author.Tel.:+8651085329031;fax:+8651085918309.∗∗Corresponding author at:State Key Laboratory of Food Science and Technology,School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education,Jiangnan University,1800Lihu Ave.,Wuxi,Jiangsu 214122,China.Tel:+8651085327802;fax:+8651085327802.E-mail addresses:jchen@ (J.Chen),jingwu@ (J.Wu).Cutinases have been found in both fungi and bacteria [9].Fun-gal cutinases,such as from Fusarium solani pisi ,Monilinia fructicola [10],Botrytis cinerea [11],and Aspergillus oryzae [4]have been studied comprehensively.Especially,the cutinase from F.solani pisi has been extensively investigated,including gene identifica-tion,cloning,expression,characterization,structure elucidation,and applications [12].In contrast,limited studies have been per-formed on cutinases from bacterial sources until recently when the genes encoding cutinase from the thermophilic actinomycete Thermobifida fusca were identified in our laboratory [13].T.fusca has two cutinase-encoding open reading frames,Tfu 0882and Tfu 0883.The two isoenzymes are 93%identical in their amino acid sequence.Initial characterization showed that Tfu 0882and Tfu 0883share similar temperature depen-dence profiles and thermostability,but display higher temperature optimum and greater thermostability compared to fungal cuti-nases.Although both bacterial and fungal cutinases belong to the a/␤hydrolase fold superfamily,the bacterial sequences are significantly longer and demonstrate no similarity to the fungal sequences.In this respect,it has been suggested that the bacte-rial and fungal enzymes should be classified into prokaryotic and eukaryotic cutinase subfamilies,respectively [13].A more in-depth analysis of the enzymatic properties of bacterial cutinases will fur-ther our understanding on cutinase subfamilies.In addition,such studies will further explore their potential applications in biotech-nology.In the present study,we investigated the detailed biochem-ical properties of T.fusca cutinases.For a better comparison between the two subfamilies of cutinases,recombinant F.solani pisi1381-1177/$–see front matter © 2010 Elsevier B.V. All rights reserved.doi:10.1016/j.molcatb.2010.01.001122S.Chen et al./Journal of Molecular Catalysis B:Enzymatic63 (2010) 121–127cutinase(FspC)was subjected to the same analysis.The results showed that these enzymes are similar in substrate specificity,sub-strate kinetics,interfacial activation,and metal ion requirement. However,they differed significantly in their stability in the pres-ence of surfactants and organic solvents.2.Materials and methods2.1.ChemicalsSodium taurodeoxycholate(TDOC),p-nitrophenyl butyrate (p NPB),p-nitrophenyl palmitate(p NPP),triolein,tributyrin,tereph-thalic acid(TPA),mono(2-hydroxyethyl terephthalate)(MHET), bis(2-hydroxyethyl terephthalate)(BHET)and1,2-ethylene-mono-terephthalate-mono(2-hydroxyethyl terephthalate)(EMT)were obtained from Sigma.Other chemicals were obtained from Sinopharm Chemical Reagent Co.Ltd.2.2.Enzyme preparationRecombinant cutinases Tfu0882and Tfu0883were purified from E.coli BL21(DE3)cells harboring the plasmids pET20b(+)-Tfu0882or pET20b(+)-Tfu0883.Recombinant FspC was purified from Bacillus subtilis harboring the plasmid pBSMuL3as previously reported[13].2.3.Molecular mass determinationThe molecular masses of Tfu0882and Tfu0883were deter-mined under denaturing conditions by SDS-PAGE.The native molecular weight of the protein was determined by analytical gel filtration chromatography using a Superose12column(HR10/30; Pharmacia).Chromatography was performed at ambient tempera-ture on a Pharmacia FPLC system monitoring the eluent at280nm. The running buffer was0.15M sodium chloride,50mM Tris(pH 7.5)and aflow rate of0.5ml/min was used.A standard curve was generated using proteins from a molecular weight marker kit (MWGF-200,Sigma).Standards and samples were used at concen-trations of5–10mg/ml and were loaded onto the column using a50␮l sample loop.The elution volume,V e,was determined in triplicate for all samples and standards.2.4.Esterase assayEsterase activity was determined by a continuous spectrophoto-metric assay using p-nitrophenyl butyrate(p NPB)as the substrate [14].The standard assay contained in afinal volume of1ml p NPB (1mM,stock in acetonitrile),enzyme solution,and buffer(20mM Tris–HCl containing10mM NaCl,pH8.0)at37◦C.The reaction was initiated by the addition of p NPB.The activity against p-nitrophenyl palmitate(p NPP)was deter-mined as previously reported[15].The hydrolysis of p NPB and p NPP was spectrophotometrically monitored for the formation of p-nitrophenol at405nm.One unit of enzyme activity was defined as the production of1␮mol p-nitrophenol per minute[16].2.5.Lipase assayLipase activity was measured as previously reported[17]with the following modifications.Triolein or tributyrin was used as the substrate.Triolein or tributyrin emulsion was prepared by emulsifying Triolein/tributyrin in25mM potassium phosphate buffer(pH8)and0.5%(w/v)gum arabic for2min at maxi-mum speed in a Waring blender.The reaction solution contained 2.5ml of25mM potassium phosphate buffer(pH8)and2ml of emulsion and enzyme.The reaction was initiated by adding the enzyme to the reaction solution,incubated for15min and quenched by adding7.5ml of ethanol.The released fatty acids were quantified by titration with0.05N NaOH.One unit of lipase activity was defined as the release of1␮mol of fatty acid per minute.2.6.Degradation of cutin by the cutinases1mg of Tfu0882,Tfu0883,and FspC were incubated with1% (w/v)apple cutin in25mM potassium phosphate buffer(pH8.0). The incubation temperature was60◦C for Tfu0882and Tfu0883, and40◦C for FspC.At various time intervals,aliquots were removed and assayed for released fatty acids by titration with0.02N NaOH.2.7.Degradation of cyclic PET trimer by the cutinases0.3g of a cyclic PET trimer preparation and10ml25mM phos-phate buffer(pH8)were added to a Erlenmeyerflask.The reaction was initiated by the addition of40U p NPB activity corresponding to37␮g,280␮g,and94␮g protein of FspC,Tfu0882and Tfu0883, respectively.The incubation was performed at60◦C for Tfu0882 and Tfu0883,and40◦C for FspC in an incubator(150rpm)over 72h.During the incubation,aliquots were removed and prepared for the analysis by RP-HPLC as previously described[6].The amounts of released soluble hydrolysis products were calculated based on the enzyme concentrations employed (mM/mg protein).The hydrolysis products were detected as previously reported by Hooker et al.[18]for terephthalic acid(TPA),mono(2-hydroxyethyl terephthalate)(MHET)and bis(2-hydroxyethyl terephthalate)(BHET).1,2-Ethylene-mono-terephthalate-mono(2-hydroxyethyl terephthalate)(EMT)was detected and confirmed by LC–MS analysis.The hydrolysis prod-ucts were calculated as the sum of the amounts of TPA,MHET,BHET and EMT produced.2.8.Triglyceride position specificity of the cutinasesThe reaction solution contained2.5ml of25mM potassium phosphate buffer(pH8),2ml of triolein emulsion and enzyme. Analysis of the regioselectivity of triolein hydrolysis by cuti-nase was carried out by incubating the reaction solution at60◦C (Tfu0882and Tfu0883)or40◦C(FspC)for15min.The reaction mixture was extracted by isopropanol and n-hexane and analyzed by HPLC[19].2.9.Kinetic analysis of the cutinasesKinetic studies were performed with p NPB(100–2000␮M) as substrate using the continuous spectrophotometric assay as described above.Initial reaction velocities were calculated from the linear region(60s)of the reaction progress curve and measured in triplicate by varying the concentration of the substrate.Apparent kinetic constants K m were calculated from a double-reciprocal plot (1/v vs.1/[p NPB])of the initial rate data.Results are the average of triplicate assays[20].2.10.Interfacial activation of the cutinasesTributyrin emulsion(3–35mM)was prepared by mixing a given amount of tributyrin in30ml of0.5%gum arabic and0.15M NaCl in a Warring blender.The reaction solution contained2.5ml of 25mM potassium phosphate buffer(pH8)and2ml of emulsion and enzyme.The reaction was initiated by adding the enzyme to the reaction solution,incubated in37◦C for15min and quenchedS.Chen et al./Journal of Molecular Catalysis B:Enzymatic63 (2010) 121–127123by adding7.5ml of ethanol.The released fatty acids were quantified via titration by0.05N NaOH.2.11.Effect of metal ions on enzyme activityVarious metal ions(CaCl2,CuSO4,MgCl2,MnCl2,ZnSO4,CoCl2, NiCl2,BaCl2,PbCl2,CrCl2,HgCl2and FeSO4)at a concentration of 1mM were added to5nM cutinase(20mM Tris–HCl buffer,pH 8),and the solution was preincubated at37◦C for5min and then assayed for esterase activity against p NPB.Esterase activity of the enzyme without added metal ion was defined as100%[21].2.12.Effect of surfactants on enzyme activityVarious surfactants(SDS,Triton X-100,Tween20and TDOC) at different concentrations were added to5nM cutinase(20mM Tris–HCl buffer,pH8),and the solution was preincubated at37◦C for5min and then assayed for esterase activity against p NPB. Esterase activity of the enzyme without added surfactants was defined as100%[22].The SDS inhibition constant was determined by a double-reciprocal plot(1/v vs.1/[p NPB])of the initial rate data at three concentrations of SDS[23].The inhibition data were ana-lyzed using a Lineweaver-Burk plot.2.13.Stability in organic solventThe stability in organic solvents was tested in a buffer(20mM Tris–HCl,pH8)containing75%(v/v)of various solvents and 5nM cutinase.After18h of incubation at20◦C,aliquots were removed for determination of residual esterase activity against p NPB.Esterase activity of the enzyme without solvents was defined as the100%level[24].3.Results and discussion3.1.Molecular mass determinationThe subunit molecular masses of the purified Tfu0882and Tfu0883were both29kDa as determined by SDS-PAGE,which is consistent with their calculated molecular masses of29.220kDa and28.997kDa,respectively.Their native molecular masses were both32kDa as determined by analytical gelfiltration chromatog-raphy.Therefore,both Tfu0882and Tfu0883were predicted to be monomeric proteins in solution.The FspC also determined as a monomeric protein in solution(data not shown)which confirmed the previous results[25].3.2.Substrate specificityThe catalytic efficiency of Tfu0882,Tfu0883,and FspC toward cutin was evaluated by measuring the released fatty acid products. As shown in Fig.1,all three enzymes hydrolyze cutin in a similarly effective way,which is consistent with their physiological function as a cutin hydrolase.Given the broad substrate specificity of fungal cutinases,we further evaluated the hydrolytic activity of the T.fusca cutinases towards additional esters.Previously,it has been shown that Tfu0882,Tfu0883and FspC hydrolyze the insoluble triglyceride triolein[13].To gain more insight into the position specificity for triolein,the reaction products were analyzed by HPLC.As shown in Fig.2,the molar concentration of1,2(2,3)-diolein obtained was not very different from1,3-diolein for the three enzymes.The cutinases not only hydrolyzed the ester bond of triacylglycerids in the sn-1,3-position,but also in the sn-2position.None of the three cutinases showed1,3-positionspecificity.Fig.1.Degradation of cutin by the cutinases.The enzymes were incubated with1% (w/v)apple cutin in25mM potassium phosphate buffer(pH8.0)and the amount of released fatty acids was measured by titration with0.02N NaOH.( )Tfu0883; ( )Tfu0882;( )FspC.Error bars correspond to the standard deviation of three determinations.Subsequently,the chain length specificity of esters was inves-tigated using p-nitrophenyl-fatty acyl esters and triglycerides (Table1).For all three enzymes,their activities against the C4p-nitrophenyl-fatty acid ester p NPB were significantly higher than the corresponding C16ester p NPP.Similarly,their activities against the C4triglyceride tributyrin were significantly higher than the corre-sponding C18ester triolein.Therefore,all three enzymes appeared to have a preference for a shorter carbon chain of the acyl moiety. It is notable that FspC exhibited highest specific activity toward all these four substrates.When comparing the T.fusca cutinases, both Tfu0883and Tfu0882showed similar activities toward triglyceride but differential activities toward p-nitrophenyl-fatty acid ester which was hydrolyzed at a significantly higher rate by Tfu0883.Recently,it has been reported that FspC can hydrolyze syn-thetic polyesters such as PET and improve the surface properties of PETfibers in an environmentally friendly way[6,26].The ability of cutinases to hydrolyze cyclic PET trimers has also been evaluated [18].As shown in Fig.3,FspC exhibited the highest activity toward this polyester,while Tfu0883exhibited less activity.Surprisingly, Tfu0882was virtually inactive towards this polyester despite its high sequence similarity with Tfu0883,suggesting that the minor sequence differences may be mainly located at the substrate bind-ing site.Further studies,including crystallographic studies may shed light on this dramatic difference between the two T.fusca enzymes.The above results revealed that the T.fusca cutinases have a broad substrate specificity against cutin and other polyesters, insoluble triglycerides,and soluble esters.They could therefore be described as intermediate enzymes between lipases and esterases as has been suggested for their fungal counterparts[12].Such broad specificity is consistent with their open active sites previously pre-dicted[13].Table1Specificity of the cutinases towards the acyl chain length of different esters.Values are means±SD(n=3).Substrate Tfu0882cutinase Tfu0883cutinase FspCp NPB499±101016±152083±23 p NPP269±5383±61041±9 tributyrin237±11217±12643±15 triolein137±7125±8321±10124S.Chen et al./Journal of Molecular Catalysis B:Enzymatic63 (2010) 121–127Fig.2.HPLC chromatogram of triolein hydrolyzed by the cutinases.The enzymes were incubated with triolein emulsion in 25mM potassium phosphate buffer (pH 8)for 15min.The reaction mixture was extracted by isopropanol and n-hexane and analyzed by HPLC.(A)Tfu 0882;(B)Tfu 0883;(C)FspC.(a)Triolein;(b)oleic acid;(c)1,3-diolein;(d)1,2(2,3)-diolein.The molar ratio of c/d for A,B and C were 0.55,0.68and 1.33,respectively.3.3.Kinetic analysisThe kinetic constants of Tfu 0882,Tfu 0883and FspC were determined for the commonly used esterase substrate p NPB.The results showed that all three cutinases showed Michaelis–Menten kinetics with FspC exhibiting the highest affinity (lowest K m value)for the substrate (Table 2).In addition,among the threeenzyme,Fig.3.Degradation of cyclic PET trimers by the cutinases.The enzymes were incubated with cyclic PET trimers in 10ml 25mM phosphate buffer (pH 8)and the hydrolysis products were analyzed by RP-HPLC and LC–MS.( )Tfu 0883;( )Tfu 0882;( )FspC.Error bars correspond to the standard deviation of three deter-minations.FspC exhibited the highest catalytic efficiency with a k cat /K m of 3.214s −1␮M −1.Interestingly,the catalytic efficiency (k cat /K m )of Tfu 0883is twice as much as that of Tfu 0882even though they showed a 93%identity in amino acid sequences and an almost identical structure of their active sites (data not shown).3.4.Evaluation of an interfacial activation of the cutinasesInterfacial activation has been observed with most lipases [27].Tributyrin,a suitable substrate to test the interfacial activation phe-nomenon of lipases [28]was selected to evaluate the a possible interfacial activation of the cutinases.As shown in Fig.4,the specific activity of the three cutinases as a function of tributyrin concentra-tion followed normal Michaelis–Menten kinetics.The activity did not sharply increase when the solubility limit of tributyrin (12mM)was reached.Therefore,Tfu 0882,Tfu 0883and FspC did not pos-sess interfacial activation phenomenon.FspC has been previously reported not to exhibit an interfacial activation,which sets it apart from most of the true lipases.TheTable 2Kinetic parameters of the cutinases.Kinetics parameters of Tfu 0882and Tfu 0883were determined at their optimal temperature of 60◦C and FspC at its optimal temperature of 40◦C.Values are means ±SD (n =3).Kinetic parameterTfu 0882cutinase Tfu 0883cutinase FspC K p NPBm(␮m)673±32505±29272±10k cat (s −1)483±19742±24837±25k cat /K m (s −1␮M −1)0.71.53.2S.Chen et al./Journal of Molecular Catalysis B:Enzymatic63 (2010) 121–127125Fig.4.Evaluation of interfacial activation of the cutinases.The enzymes were incu-bated with3–35mM of tributyrin emulsion at37◦C for15min.The released fatty acids were quantified by titration with0.05N NaOH.( )Tfu0883;( )Tfu0882;( ) FspC;vertical dot,the critical micelle concentration(CMC)of tributyrin(12mM).absence of a lid structure and an exposure of the nucleophilic ser-ine in this enzyme has been described as the main reason for this behaviour[29].In many true lipases,a lid structure burying the nucleophilic serine has been reported to be involved in interfacial activation.It undergoes a conformational change in response to an adsorption of the enzyme at the oil–water interface[30].A lid inser-tion was also absent in the previously developed homology models of Tfu0882and Tfu0883[13],supporting the results obtained.The absence of interfacial activation in these cutinases further confirms that they are different from true lipases although all the enzymes belong to the␣/␤hydrolase fold superfamily.3.5.Metal ion requirementTo determine whether the cutinases requires a metal cofactor for activity,they were incubated with the metal chelator EDTA or metal ions and then assayed for esterase activity against p NPB. EDTA(1mM or10mM)did not affect their activities(Table3), suggesting that the cutinases did not require divalent cations for their activity.When they were incubated with1mM of divalent metal ions,Mn,Co,Ni,Mg,Ba,Cu,or Ca did not exhibit a signifi-cant effect on the enzyme activity,whereas Zn,Fe,or Pb showedTable3Effect of metal ions and metal chelator on cutinase activity.The cutinase were prein-cubated with metal ions(1mM)or metal chelator at37◦C for5min,and then assayed for esterase activity against p NPB.Values are means±SD(n=3).Metal ion or chelator Tfu0882cutinaseRelativeactivity(%)Tfu0883cutinaseRelativeactivity(%)FspCRelativeactivity(%)Control100±1100±2100±2 MnCl2109±4124±5136±5 CoCl2104±2124±4107±3 NiCl2105±3107±293±3 BaCl293±2107±2101±2 CuSO472±294±383±2 CaCl272±182±394±4 MgCl266±2111±589±2 ZnSO450±144±282±3 FeSO455±364±146±2 PbCl252±245±361±3 CrCl211±110±128±1 HgCl2N.D.N.D.N.D. EDTA(1mM)101±2101±1102±3 EDTA(10mM)101±2102±2103±2N.D.:no detectable activity.Table4Effect of surfactants on cutinase activity.Cutinase was preincubated with the sur-factant at37◦C for5min,and then assayed for esterase activity against p NPB.Values are means±SD(n=3).Surfactant Tfu0882cutinaseRelativeactivity(%)Tfu0883cutinaseRelativeactivity(%)FspCRelativeactivity(%)Triton X-1001mM42±372±3102±410mM42±177±3100±4 Tween201mM34±173±491±310mM33±184±494±3SDS1mM87±469±222±110mM75±443±124±1 TDOC1mM107±397±4123±410mM89±2111±3174±5a medium inhibitory effect.Cr,however,inhibited most enzyme activity,whereas Hg completely inactivated the cutinases.3.6.Effect of surfactants on cutinase activityApplication of industrial enzymes often involves relatively harsh conditions such as the presence of surfactants and organic sol-vents.The activity of the cutinases was tested in the presence of the nonionic surfactants Triton X-100,Tween20and the anionic surfactants SDS and TDOC.At concentrations of1mM and10mM, Triton X-100and Tween20inhibited both cutinases from T.fusca but did not significantly reduce FspC activity.SDS inhibited all three enzymes.TDOC,on the other hand,stimulated FspC activity with a 23.11%increase at1mM and a73.65%increase at10mM.It did not have a significant effect on the T.fusca cutinase activity(Table4).The effects of TDOC on cutinase activity were further tested at concentrations up to100mM(Fig.5).Tfu0882appeared to be fairly stable in the presence of this surfactant with71.43%activity remaining at100mM.Tfu0883was slightly stimulated at TDOC concentrations between1mM and50mM and fully retained its activity at100mM.FspC was significantly stimulated by TDOC with the highest stimulatory effect at10mM and almost full activity remaining at100mM.TDOC is an anionic surfactant with a bulky side chain which may bind to the hydrophobic sites of proteinsFig.5.Effect of TDOC on cutinase activity.The enzyme was incubated with TDOC at37◦C for5min and then assayed for esterase activity against p NPB.( )Tfu0883; ( )Tfu0882;( )FspC.Error bars correspond to the standard deviation of three determinations.126S.Chen et al./Journal of Molecular Catalysis B:Enzymatic63 (2010) 121–127Fig.6.Inhibition kinetics of the cutinase by SDS.(A)Tfu 0882;(B)Tfu 0883;(C)FspC.Double-reciprocal plots (1/v vs .1/[p NPB])of the initial rate data were determined at three concentrations of SDS.( )SDS 1mM;( )SDS 0.5mM;( )SDS 0mM.Table 5Stability of the cutinase in organic solvents.The cutinase were incubated with 75%(v/v)of organic solvents in assay buffer at 20◦C for 18h.Aliquots were removed for determination of residual activity.Values are means ±SD (n =3).Organic solvent (75%)Tfu 0882cutinase Relative activity (%)Tfu 0883cutinase Relative activity (%)FspC Relative activity (%)Control 100±2100±2100±2Methanol 87±186±36±1Ethanol100±498±24±1Isopropanol 27±365±31±1Butanol 44±520±39±1Acetone 97±399±331±2n-Hexane96±484±370±4Dimethyl sulfoxide94±492±432±1preventing their aggregation and rendering them more stable [31].FspC is less stable than Tfu 0882and Tfu 0883in solution,so that TDOC showed more effective in stimulating FspC.In addition,inhibition kinetics was performed for SDS to evaluate its inhibitory efficiency on the three cutinases.The inhi-bition constants were determined by a double-reciprocal plot (1/v vs .1/[p NPB])of the initial reaction rate at varying concentra-tions (Fig.6).SDS appeared to be a competitive inhibitor for all three enzymes with a K SDS i of 1385.6␮M for Tfu 0882,944.4␮M for Tfu 0883and 657.5␮M for pared with the other two enzymes,Tfu 0882appeared to be more resistant to SDS and may be more favorable for applications in detergent formulations.3.7.Stability of the cutinase in organic solventsCutinases have been reported to show esterification and trans-esterification activity and have potential for use in the production of biodiesel [8,32].Such applications often involve the use of organic solvents,therefore it is important to evaluate their stability in organic solvents.As shown in Table 5,Tfu 0882and Tfu 0883exhib-ited excellent tolerance to methanol,ethanol,acetone,n-hexane,and dimethyl sulfoxide,but were less stable in isopropanol and butanol.In contrast,FspC was very unstable in these solvents except in n-hexane in which nearly 70%activity remained.These results demonstrated that,compared with fungal cutinase,the bacterial cutinases from T.fusca are far more suitable for applications in organic solvents.4.ConclusionsIn summary,this is the first report on detailed biochemical characterization of bacterial cutinases from T.fusca .The results demonstrated that bacterial and fungal cutinases are similar in their substrate specificity,kinetics,lack of interfacial activation,and metal ion requirement.However,they differ significantly in their sensitivity to surfactants and dramatically in their sensitivity to organic solvents.Considering their versatile hydrolytic activity,good tolerance to surfactants,superior stability in organic sol-vents,and superior thermostability the T.fusca cutinases may have promising applications in related industries.AcknowledgementsThis work was supported by the Program for the National High-tech Research and Development Program of China (2009AA02Z204);the National Natural Science Foundation of China (No.30970057),the Key Program of National Natural Sci-ence Foundation of China (No.20836003),New Century Excellent Talents in University (NCET-06-0486),the National Outstanding Youth Foundation of China (No.20625619),Research Program of State Key Laboratory of Food Science and Technology (No.SKLF-MB-200802),Program of Innovation Team of Jiangnan University (2008CXTD01),and the Program for Advanced Talents within Six Industries of Jiangsu Province (08-B-WU Jing).References[1]T.J.Walton,P.E.Kolattukudy,Biochemistry 11(1972)1885–1896.[2]R.E.Purdy,P.E.Kolattukudy,Arch.Biochem.Biophys.159(1973)61–69.[3]L.Nini,L.Sarda,eau,E.Boitard,J.P.Dubes,H.Chahinian,Biochim.Biophys.Acta 1534(2001)34–44.[4]H.Maeda,Y.Yamagata,K.Abe,F.Hasegawa,M.Machida,R.Ishioka,K.Gomi,T.Nakajima,Appl.Microbiol.Biotechnol.67(2005)778–788.[5]O.Degani,S.Gepstein,C.G.Dosoretz,Appl.Biochem.Biotechnol.102–103(2002)277–289.[6]M.A.Vertommen,V.A.Nierstrasz,M.Veer,M.M.Warmoeskerken,J.Biotechnol.120(2005)376–386.[7]P.Wang,Q.Wang,X.R.Fan,L.Cui,J.G.Yuan,S.Chen,J.Wu,Enzyme Microb.Technol.44(2009)302–308.[8]P.J.Cunnah,M.R.Aires-Barros,J.M.S.Cabral,Biocatal.Biotransform.(1996)125–146.[9]J.Sebastian,P.E.Kolattukudy,Arch.Biochem.Biophys.263(1988)77–85.[10]G.Y.Wang,T.J.Michailides,B.D.Hammock,Y.M.Lee,R.M.Bostock,Fungal Genet.Biol.35(2002)261–276.[11]K.Gindro,R.Pezet,FEMS Microbiol.Lett.171(1999)239–243.[12]M.R.Egmond,J.de Vlieg,Biochimie 82(2000)1015–1021.[13]S.Chen,X.Tong,R.W.Woodard,G.Du,J.Wu,J.Chen,J.Biol.Chem.283(2008)25854–25862.[14]W.F.Fett,H.C.Gerard,R.A.Moreau,S.F.Osman,L.E.Jones,Appl.Environ.Micro-biol.58(1992)2123–2130.[15]U.K.Winkler,M.Stuckmann,J.Bacteriol.138(1979)663–670.[16]S.Y.Sun,Y.Xu,Bioresour.Technol.100(2009)1336–1342.[17]K.E.Jaeger,S.Ransac,B.W.Dijkstra,C.Colson,M.van Heuvel,O.Misset,FEMSMicrobiol.Rev.15(1994)29–63.[18]D.H.J.Hooker,G.Montero,M.Icherenska,J.Appl.Polym.Sci.89(2002)2545–2552.[19]J.Liu,T.Lee,E.Bobik,M.Guzman-Harty,C.Hastilow,J.Am.Oil Chem.Soc.70(1993)343–347.[20]K.Valasaki,A.Staikou,L.G.Theodorou,V.Charamopoulou,P.Zacharaki,E.M.Papamichael,Bioresour.Technol.99(2008)5804–5813.[21]S.Sinchaikul,B.Sookkheo,S.Phutrakul,F.M.Pan,S.T.Chen,Protein Expr.Purif.22(2001)388–398.。

相关文档
最新文档