第三章静定结构内力分析详解
建筑力学第三章静定结构内力计算
01
02
03
04
排架是由两个单层刚架组成的 结构,其内力可以通过整体法
和分离法进行计算。
整体法是将两个单层刚架作为 一个整体进行分析,从而求得
整个排架的内力。
分离法是将排架拆分成两个单 层刚架进行分析,然后分别求
得每个单层刚架的内力。
在计算过程中,需要考虑到排 架的自重、外力以及支座反力
的影响。
组合结构的内力计算实例
03 静定结构的内力计算方法
截面法
总结词
通过在指定截面上截取隔离体,然后对隔离体进行受力分析,计算出内力的方法。
详细描述
截面法是静定结构内力计算的基本方法之一。在截面法中,我们首先在结构中选择一个或多个截面, 然后将这些截面处的杆件暂时断开,并分析这些杆件的内力。通过这种方法,我们可以确定每个杆件 的内力大小和方向。
组合结构是由两种或多种结构组成的 结构,其内力可以通过叠加法进行计 算。
在计算过程中,需要考虑到组合结构 是将每种结构的内力分别计算 出来,然后根据结构的特点进行叠加, 从而求得整个组合结构的内力。
05 静定结构内力计算的注意 事项
材料强度的考虑
材料强度
在计算静定结构内力时,必须考虑材 料的强度。不同的材料有不同的抗拉 、抗压、抗剪强度,应确保结构中的 应力不超过材料的容许应力。
节点法
总结词
通过分析节点处的平衡状态,计算出节点所受内力的方法。
详细描述
节点法是一种基于力的平衡原理的计算方法。在节点法中,我们首先确定节点 的位置和数量,然后分析每个节点处的平衡状态。通过这种方法,我们可以计 算出每个节点所受的内力大小和方向。
弯矩图法
总结词
通过绘制弯矩图,直观地表示出结构的弯矩 分布情况,进而计算出结构的内力。
结构力学第三章静定结构受力分析
MA
0, FP
l 2
YB
l
0,YB
FP 2
()
Fy
0,YA
YB
0,YA
YB
Fp 2
()
例2: 求图示刚架的约束力 q
C
A
ql
l
l
l
B
A
ql
ql
C
XC
YC
FNAB
解:
Fy 0,YC 0
MA
0, ql
l 2
XC
l
0,
XC
1 2
ql()
弹性变形,而附属部分上的荷载可使其自身和基本部分均产生内力和 弹性变形。因此,多跨静定梁的内力计算顺序也可根据作用于结构上 的荷载的传力路线来决定。
40k N
80k N·m
20k N/m
AB
CD
EF
G
H
2m 2m 2m 1m 2m 2m 1m
4m
2m
50构造关系图 40k N
C 20 A B 50
Fy 0,YA YB 2ql 0,YA ql() 3)取AB为隔离体
2)取AC为隔离体
Fy 0, YC YA ql 0
Fx 0, XB X A ql / 2()
l MC 0, X A l ql 2 YB l 0, X A ql / 2()
A
B
C D E FG
1m 1m 2m 2m 1m 1m
A C D E FG B
13 17
26 8
7 15 23 30
第03章: 结构力学 静定结构内力分析
2
2qa 2
2qa2
4qa
2
2
4qa2
14qa2
2qa2 q
14qa
弯矩图
10
也可直接从悬臂端开始计算杆件 8 2qa2
8qa 2
B
10qa 2
6qa 2q
2
2qa 2
4qa2
14qa
2
M图
(4)绘制结构Q图和N图 2qa2 2qa2 C 6qa q E
D
2q A 2a 2a 4a B
3a
6qa
FN2=0
FN=0
FN=0
FN1=0
判断结构中的零杆
FP FP FP/2
FP/ 2
FP
截
面
法
截取桁架的某一局部作为隔离体, 由平面任意力系的平衡方程即可求得未知 的轴力。 对于平面桁架,由于平面任意力系的 独立平衡方程数为3,因此所截断的杆件数 一般不宜超过3
试用截面法求图示桁架指定杆件的内力。
5、三铰拱的合理轴线 拱的合理轴线:在固定荷载作用下使拱处于无弯距状态 的轴线。 求解公式:在竖向荷载作用下,三铰拱的合理轴线使拱 的各截面处于无弯距状态,即
M M FH y 0
0
M y FH
0
结论: (1)三铰拱在沿水平线均匀分布的竖向荷载作用下,合理轴 线为一抛物线。
y
M AD
1 qL x2 8
M BD
q(l x) 1 x qx 2 2 2
Mx1max
1 qL x2 8
由以上三处的弯矩得到:
q(L x) 1 2 1 2 x qx qL x 2 2 8
整理得:
x 0.172L
静定结构的内力分析
§3-1 平面杆件内力计算回顾
四、剪力图与弯矩图之间的关系
荷载 无外力 情况
剪力图 水平线
一般 弯矩图 为斜
直线
均布力作用 (q向下)
斜为 直零 线处
抛物 有
线下 极
凸
值
集中力作用
处(FP向下)
有突 变(突变ຫໍສະໝຸດ 变值=FP)号
有尖 有 角(向 极 下) 值
集中力 铰
偶M作 结
用处
处
无 无变化 影
§3-1 平面杆件内力计算回顾
一、内力的概念和符号规定
剪力----截面上应力沿杆轴法线方向的合力。剪力 以绕微段隔离体顺时针转动为正。
弯矩----截面上应力对截面形心的力矩。在水平杆 件中,当弯矩使杆件下部受拉时,弯矩为 正。
作内力图时,轴力图和剪力图要注明正负号,弯 矩图规定画在杆件受拉的一侧,不用注明正负号。
§3-1 平面杆件内力计算回顾
二、内力的计算方法
杆件结构内力计算方法主要采用截面法。截面法可
用“截开、代替、平衡”六个字来描述: 截开----在所求内力的截面处截开,任取一部分作 为隔离体; 隔离体与其周围的约束要全部 截断。 代替----用截面内力代替该截面的应力之和;用相 应的约束力代替截断约束。 平衡----利用隔离体的平衡条件,确定该截面的内 力。
q(x) Fp
y p(x)
dx
M x
q(x)
M
M+dM
dx
FN
FN+d FN
FQ P(x) FQ+dFQ
§3-1 平面杆件内力计算回顾
考虑梁微段的平衡,由平衡
q(x)
M
M+dM
第三章 静定结构的内力计算
FAy
1 3a 4 FP a M q 3a 3a 2 5
第三章
静定结构的内力计算
M
B
0
3a 4 FAy 3a M q 3a FP a 0 2 5 1 3a 4 FAy FP a M q 3a 3a 2 5
第三章
无荷载 平行轴线
Q图
静定结构的内力计算
均布荷载
集中力 发生突变
P
集中力偶
无变化 发生突变
m
斜直线
M图
二次抛物线 凸向即q指向
出现尖点
两直线平行 备 注
Q=0区段M图 Q=0处,M 平行于轴线 达到极值
集中力作用截 集中力偶作用 面剪力无定义 面弯矩无定义
在自由端、铰支座、铰结点处,无集中力偶作用,截面弯矩 等于零,有集中力偶作用,截面弯矩等于集中力偶的值。
第三章 静定结构的内力计算
第三章
静定结构的内力计算
§3-1单跨静定梁
一、静定结构概述 1.概念:是没有多余约束的几何不变体系。 2.特点:在任意荷载作用下,所有约束反力和内力都 可由静力平衡方程唯一确定。 平衡方程数目 = 未知量数目 3.常见的静定结构 常见的静定结构有:单跨静定梁、多跨静定梁、静 定平面刚架、三铰拱、静定平面桁架、静定组合结构等 (如下图)。
0 FYA FYA 0 FYB FYB
A
x
C
L
斜梁的反力与相应简支 梁的反力相同。
第三章
(2)内力
静定结构的内力计算
求斜梁的任意截面C的内力,取隔离体AC: a FP1 A
FYA x Fp1 FYA
0
MC
第三章 静定结构的内力计算(组合结构)
A A A A 0 0 0 0
0 0 0 0
8 8 8 8
HC
3、求梁式杆内力 处理结点A处力
结构力学
第3章静定结构的内力计算
静定结构特性
结构力学
第3章静定结构的内力计算
静定结构特性 静定结构特性 一、结构基本部分和附属部分受力影响
A
F1
B
C
F2
D
E
F3
F
如只有 F1 作用。则Ⅱ、Ⅲ无内力和反力; Ⅰ Ⅱ Ⅲ 如只有 F1 作用。则Ⅱ、Ⅲ无内力和反力; 如只有 F1 作用。则Ⅱ、Ⅲ无内力和反力; 如只有 F3 作用。则Ⅰ、Ⅱ均有内力和反力; 如只有 F3 作用。则Ⅰ、Ⅱ均有内力和反力; 如只有 F3 作用。则Ⅰ、Ⅱ均有内力和反力; 如只有 F2 作用。则Ⅲ无内力和反力,但Ⅰ有内力和反力。 如只有 F2 作用。则Ⅲ无内力和反力,但Ⅰ有内力和反力。 特性一、静定结构基本部分承受荷载作用,只在基本部分上产 如只有 F2 作用。则Ⅲ无内力和反力,但Ⅰ有内力和反力。 生反力和内力;附属部分上承受荷载作用,在附属部分和基本 部分上均产生反力和内力。
第3章静定结构的内力计算
q = 1 kN/m A FR Ax FR Ay FNDA F C FNFD VC
8 8 8 8
M M图 图 ( m M图 (kN· kN· m) ) M 图 (kN· m) (kN· m) F 图 FQ 图 Q ( ) FkN 图 ( kN Q ) FkN 图 ( Q ) (kN) F 图 FN N图 ( ) FkN ( kN ) N图 FkN N图 ( ) (kN)
结构力学
第3章静定结构的内力计算
二、平衡荷载的影响
F C B D
A B q C
静定结构的内力分析
静定结构的内力分析-建筑结构
一级注册建筑师
静定结构按其受力特性,可以分为静定梁、静定刚架、三铰拱、静定桁架和静定组合结构。
一、静定梁
1 .截面内力分量及正负号规定
平面杆件的任一截面上一般有三个内力分量:轴力N ,剪力Q 和弯矩M 。
内力的正负号一般规定为:
(1 )轴力以受拉为正;
(2 )剪力以绕隔离体顺时针方向为正;
( 3 )弯矩一般不规定正负号(对水平梁通常以使梁的下侧受拉为正)。
内力图一般以杆轴为基线绘制。
弯矩图规定画在杆件的受拉侧,无需标明正负号;剪力图和轴力图则可画在杆件的任一侧(对水平杆件通常将正的剪力和轴力绘于杆件上侧),但需标明正负号。
2 .截面法
截面法是结构内力分析的基本方法。
截面法计算结构内力的基本步骤为:
(1)将结构沿拟求内力的截面切开。
(2)取截面任一侧的部分为隔离体,作出隔离体的受力图;受力图中的力包括两部分:外荷载和截断约束处的约束力(截面内力或支座反力),未知截面内力一般假设为正号方向。
(3)利用静力平衡条件计算所求内力。
对于平面结构,一般情况下隔离体上的各力组成一平面任意力系,故有三个独立的平衡方程(投影方程或力矩方程):
或
特殊情况下,例如截取的是一个铰节点,则各丸组成一平面汇交力系,故有两个独立的投影平衡方程:
本篇文章来源于《中国注册建筑师考试网》。
第3章 静定结构内力分析Ⅰ
掌握不同杆系的受力特点和内力计算,能够准 确绘出其内力图。 掌握静定结构的静力特性。
重点:
杆系结构基本部分、附属部分的特征及层次图的 绘制。 用控制截面法正确绘制杆系结构的内力图。 拱合理拱轴线的定义及求法。 静定结构的静力特性。
难点:
基本部分、附属部分的特性。
截面法绘制杆系的内力图。 拱合理拱轴线的求法。
l
M
M
l
练习: 利用微分关系等作弯矩图
1 FP l 2
l
1 FP l 4
FP
l/2
M
M M
l l
l/2
M M
M
2M
M
l
M M M
l
l
l
1 FP l 2
l
1 FP l 4
FP
l/2
q
l/2
M
1 2 ql 2
l
l
2M
M
M
M
M
M M M
M M
l l
M M
M
练习: 利用微分关系等作弯矩图
练习: 利用微分关系,叠加法等作弯矩图
内力图的变化规律 (a)无均布荷载的区段,FQ图为水平线、M为斜线。 有---------------------, FQ图为斜直线、M为曲线。 凹向与均布荷载的方向一致。
(b)M图的极值点在FQ =0处或FQ图变号处。
(c)铰处无力偶作用时,M=0; 有---------------------,弯矩等于力偶值。 (d)集中力作用时, M图是折线; FQ图有突变, 突变值等于作用力。 (e)集中力偶作用时, M图有突变,突变值等于力偶值。
20k N/m G H
2m
2m
静定结构内力计算全解[详细]
从组成的观点,静定结构的型式: ✓悬臂式、简支式(两刚片法则) ✓三铰式(三刚片法则) ✓组合式(两种方式的结合)
悬臂式 三铰式
简支式 组合式
组合式结构中:
✓基本部分:结构中先组成的部分,能独立承载; ✓附属部分:后组成的以基本部分为支承的部分,不能独立 承载。
三铰拱作业:
y
100kN
1
A O
2m
20kN/m
4m 8m
2
B x
Hale Waihona Puke 2m求图示抛物线拱的1、2截面的内力。
三、三铰拱的合理拱轴线
使拱在给定荷载下只
M M 0 FH y 0 产生轴力的拱轴线,被
y M0
称为与该荷载对应的合 理拱轴
FH
三铰拱的合理拱轴线 的纵坐标与相应简支梁弯 矩图的竖标成正比。
Mik
i
FQik
Mik
i
Fiy
q Mki
k
FQki q
Mki
k
Fky
叠加法作弯矩图: 叠加法作弯矩图:
+
要点:先求出杆两端 截面弯矩值,然后在 两端弯矩纵距连线的 基础上叠加以同跨度、 同荷载简支梁的弯矩 图。
§3 静定多跨梁与静定平面刚架
一、静定多跨梁 多根梁用铰连接组成的静定体系。
AB、CD梁为基本部分 BC梁为附属部分。
2、求支座反力和内部约束力
根据组成和受力情况,取整个结构或部分结构为隔离 体,应用平衡方程求出。
B
B
F
F
FBy
A FC
FAx A FAy
力学与结构—静定结构内力计算
力学与结构—静定结构内力计算静定结构是指在静态平衡的情况下,具有确定的结构稳定的结构体系。
在静定结构内力计算中,我们主要关注结构中的受力情况,以及内力的计算和分析。
本文将介绍静定结构内力计算的基本原理和方法。
一、静定结构的受力情况静定结构中,每一点的受力都可以通过平衡方程来计算。
平衡方程包括力的平衡方程和力矩的平衡方程。
力的平衡方程:在静态平衡状态下,结构的受力合力为零,即ΣF=0力矩的平衡方程:在静态平衡状态下,结构的受力合力矩为零,即ΣM=0根据这两个平衡方程,我们可以计算出结构中各个节点的受力情况。
二、内力的计算和分析在静定结构中,内力是指结构中材料的内部受力情况。
在计算内力时,我们主要关注结构中的悬臂梁、简支梁、悬链线等情况。
1.悬臂梁悬臂梁是一种固定在一端的梁。
在计算悬臂梁的内力时,我们需要知道梁的长度、材料的性质、外力的作用点和大小等信息。
对于悬臂梁,内力可以通过以下公式计算:弯矩M=Px(P为力的大小,x为力的作用点到悬臂梁左端的距离)剪力V=P2.简支梁简支梁是一种两端都可以自由转动的梁。
在计算简支梁的内力时,我们同样需要知道梁的长度、材料的性质、外力的作用点和大小等信息。
对于简支梁,内力可以通过以下公式计算:弯矩M=Px(P为力的大小,x为力的作用点到简支梁左端的距离)剪力V=03.悬链线悬链线是一种线性受力的结构,常见于吊桥和高空绳索走廊等场景。
在计算悬链线的内力时,我们需要知道悬链线的长度、绳子的重力、外力的作用点和大小等信息。
对于悬链线,内力可以通过以下公式计算:水平力H=水平方向的外力的合力垂直力V=绳子的重力+垂直方向的外力的合力张力T = sqrt(H^2 + V^2)通过以上的方法,我们可以计算得到静定结构中各个节点的受力情况和内力。
三、静定结构内力计算的应用静定结构内力计算在结构工程中具有重要的应用价值。
通过计算内力,我们可以了解结构的受力情况,选择合适的材料和结构参数,保证结构的安全性和稳定性。
静定结构的内力分析习题解答分解
静定结构内力分析习题集锦(一)徐丰武汉工程大学第3章 静定结构的内力分析习题解答习题3.1 是非判断题(1) 在使用内力图特征绘制某受弯杆段的弯矩图时,必须先求出该杆段两端的端弯矩。
( )(2) 区段叠加法仅适用于弯矩图的绘制,不适用于剪力图的绘制。
( ) (3) 多跨静定梁在附属部分受竖向荷载作用时,必会引起基本部分的内力。
( ) (4) 习题3.1(4)图所示多跨静定梁中,CDE 和EF 部分均为附属部分。
( )ABCDEF习题3.1(4)图(5) 三铰拱的水平推力不仅与三个铰的位置有关,还与拱轴线的形状有关。
( ) (6) 所谓合理拱轴线,是指在任意荷载作用下都能使拱处于无弯矩状态的轴线。
( ) (7) 改变荷载值的大小,三铰拱的合理拱轴线形状也将发生改变。
( ) (8) 利用结点法求解桁架结构时,可从任意结点开始。
( )【解】(1)正确;(2)错误; (3)正确;(4)正确;EF 为第二层次附属部分,CDE 为第一层次附属部分;(5)错误。
从公式0H /C F M f 可知,三铰拱的水平推力与拱轴线的形状无关;(6)错误。
荷载发生改变时,合理拱轴线将发生变化; (7)错误。
合理拱轴线与荷载大小无关;(8)错误。
一般从仅包含两个未知轴力的结点开始。
习题3.2 填空(1)习题3.2(1)图所示受荷的多跨静定梁,其定向联系C 所传递的弯矩M C 的大小为______;截面B 的弯矩大小为______,____侧受拉。
ABCDElllllP F PF PF PF习题3.2(1)图(2) 习题3.2(2)图所示风载作用下的悬臂刚架,其梁端弯矩M AB =______kN·m ,____侧受拉;左柱B 截面弯矩M B =______kN·m ,____侧受拉。
6k N /m4k N /m6m AB C D4m 4m习题3.2(2)图(3) 习题3.2(3)图所示三铰拱的水平推力F H 等于 。
静定结构的内力分析
40
第 三 章80 静定结构的内力计算
D
FNDE FNED
E
30
30
FNDC
FNEB
FQ
40 kN
FN 30 kN
80 kN
练习:
第三章
静定结构的内力计算
解: (1) 求支座反力。
F=qa
C
D
由 X 0
E
FxA q 2a 0
q
a B
得 FAx 2qa
a
由 M A 0
FxA
A
FyB
2qa a F a FyB 2a 0
首先进行定性分析。
由内力图的外观校核。杆上无分布荷载FS图为水 平直线;M图为斜直线。杆上有分布荷载FS图为斜直 线;M图为二次抛物线。 FS图为零的截面M为极值。 杆上集中荷载作用的截面, FS图上有突变;M图上有折 弯。根据这些特征来检查,本题的M图、FS图均无误。
第 三 章 静定结构的内力计算
6
FA=58 kN 26
10
18 FB=12 kN
q ME
FQE
MF
FS 图 ( kN )
FQF
第 三 章 静定结构的内力计算
二、 多跨静定梁 (multi-span statically determinate beam)
附属部分--依赖基本
基本部分--不依赖其它
部分的存在才维持几
部分而能独立地维持其
据
3.外力与杆轴关系(平行,垂直,重合) 4.特殊部分(悬臂部分,简支部分)
5.区段叠加法作弯矩图
第 三 章 静定结构的内力计算
结点平衡条件的应用:
一、铰结点: (集中力偶只能作用于杆端处)
M
第3章静定结构的受力分析
M0
1 2 ql 8
弯矩图的叠加指纵坐标的叠加, 不是图形的简单拼合。
任意直段杆的弯矩图:以(a)中的AB端为例,其隔离体如图(b)。
与图(c)中的简支梁相比, 显然二者的弯矩图相同。
因此:作任意直杆段弯矩图
就归结为作相应简支 梁的弯矩图。 AB段的弯矩图如图(d)。
M0 1 2 ql 8
§3-5 静定平面桁架
武汉长江大桥
1
桁架的特点和组成 由杆件组成的格构体系, 荷载作用在结点上, 各杆内力主要为轴力。
钢筋混凝土组合屋架
优点:重量轻,受力合理,能承受较大荷载,可作成较大 跨度。
武汉长江大桥采用的桁架形式
第3 章
静定结构的内力分析
§3-1 杆件内力计算 §3-2 静定梁 §3-3 静定刚架 §3-4 三铰拱 §3-5 静定桁架 §3-6 静定结构的内力分析和受力特点
第3章 静定结构的内力分析
本章讨论静定结构。 内容:静定结构的内力分析。 静定结构分析的要点: 1、如何选择“好的”隔离体; 2、怎样建立比较简单而又恰当的平衡方程, 计算最为简捷。
FQB FQA q y dx xA xB M B M A FQ dx xA
xB
积分关系的几何意义: B端的剪力=A端的剪力-该段荷载qy图的面积
B端的弯矩=A端的弯矩+此段剪力图的面积
5. 分段叠加法作弯矩图
图(a)结构荷载有两部分: 跨间荷载q和端部力偶MA、MB 端部力偶单独作用时,弯 矩图为直线,如图(b): 跨间荷载q单独作用时,弯 矩图如图(c): 总弯矩图为图(b)基础上叠加图 (c),如图(d):
FQ >0 F <0 增函数 降函数 Q 自左向右折角 斜直线 曲线
《结构力学》第三章 静定结构内力计算(1)
技巧:“求谁不管谁”:不考虑待求未知力,而考虑其
它未知力有什么特点,具体分为下面两种情况:
(a)其余未知力平行,在其垂直方向投影。
(b)其余未知力汇交于一点,对该点取矩。
X 0,X A 0;
1
1
MB
0,YA
l ql
l 2
0,YA
ql 2
Y
0,YA
YB
ql
0,YB
1 2
ql
step2:求指定截面内力 (1)取脱离体:从指定c截面截开梁,取左半脱离体为 研究对象,受力如图所示:
轴力、剪力 符号规定
梁、拱的弯 矩符号通常 假定使下侧 受拉为正
2、杆件任一截面上内力的计算---截面法
沿计算截面用一假想截面将构件切开,任取一侧 脱离体为研究对象,利用脱离体的静力平衡条 件,可建立三个平衡方程:
X 0,Y 0,M 0
由此就可求得杆件任一截面上的内力。
注意:
• 脱离体要与周围的约束全部断开,并用相应的约束力 代替。例如,去掉辊轴支座、铰支座、固定支座时应 分别添加一个、二个以及三个支座反力,等等。
(二)简支结构
通过一铰、一链杆或三根链杆与基础相连的结构。
(三)三铰结构
若结构体系(不含基础)有两个刚片,其与基础 的连接满足三刚片法则,则称该体系为三铰结 构。
(四)组合结构
多次运用几何不变体系的简单组成规则构成的结 构。
2、静定结构内力分析(即绘制内力图) 方法
有三种常用的绘制内力图的方法。
(2)熟记几种常见单跨梁的弯矩图,如悬臂梁、简
支梁等。特别记住简支梁在均布荷载、集中力以及集 中力偶作用下的弯矩图。
(1)
(2) (3)
梁长均为L
第3章_静定结构的内力分析
静定结构受力分析
一、静定单跨梁的类型
(1)简支梁;
(2)悬臂梁; (3)伸臂梁
二、杆件截面内力及正负号规定 1、轴力:沿杆件轴线方向的截面内力,拉力为正、压力为负。 2、剪力:相切于横截面的内力,顺转为正,反之为负。
3、弯矩:截面内力对截面形心的力矩,下部受拉为正、反之 为负。 + + M M Q Q + N N - - M M Q Q - N N
C 60
B
叠加法绘制直杆弯矩图 一、简支梁弯矩图的叠加方法
MA
A
q L
MB
B
MA
MAB中 1 qL2 MB 8
若MA、MB在杆的两侧,怎么画?
MA MB q
A
MA
MAB中
B MB
+
A 1 qL2 8
B
MAB中= ( MA + MB)/2
MA A
P a b
MB B MA M Pab L MB
L
M怎么计算?
C A 3.75kN 2m
D
4m
B
2m 0.25kN
ND左 = -10kN
求截面C、D左、D右的内力。 解:1、求支座反力 2、C截面的内力 取C截面以左为对象:
QD左 = 3.75-2×2 =-0.25kN MD左 = 3.75×6-2×2×5
=2.5kNm
4、D右截面的内力 取D右截面以右为对象:
三、内力图的校核
除一般校核平衡条件和荷载、内力微分关系外,重点是校核 刚结点处的平衡条件,即∑X = 0 , ∑Y = 0,∑M = 0
例1:作图示刚架的弯矩图。 2kN/m C A B 5m 4m
16
4
C
B MCB = 0 MBC = 2×4×2 =16kNm(上拉) MBA = 2×4×2 = 16kNm(右拉) MAB =2×4×2 = 16kNm(右拉)
第3章-1内力计算
4)画轴力图 要求某杆件的轴力,通常是以剪力图为基础, 要求某杆件的轴力,通常是以剪力图为基础, 取出节点把已知的剪力标上, 取出节点把已知的剪力标上,利用两个方程即 可求出轴力。 可求出轴力。
4
+
4 C +
B
FNBC
B 4 - A
-4
FNBA
+4
剪力图
D
∑X =0
FNBC = −4
∑Y = 0
FNBA = −4
件右侧受拉为正。 件右侧受拉为正。
§3-1 梁的内力计算回顾
正 MAB
NAB QAB A端
杆端内力
B端
MBA
正
NBA QBA
弯矩图习惯绘在杆件受拉的一侧, 弯矩图习惯绘在杆件受拉的一侧,不需标正 负号。轴力和剪力图可绘在杆件的任一侧,但需 负号。轴力和剪力图可绘在杆件的任一侧, 标明正负号。 标明正负号。
2)画弯矩图
区段叠加法
3)画剪力图 要求杆件上某点的剪力, 要求杆件上某点的剪力,通常是以弯矩图为 基础,取一隔离体(要求剪力的点为杆端), 基础,取一隔离体(要求剪力的点为杆端), 把作用在杆件上的荷载及已知的弯矩标上, 把作用在杆件上的荷载及已知的弯矩标上,利 用取矩方程或水平或竖向的平衡方程即可求出 所要的剪力。 所要的剪力。 求图示杆件的剪力图。 例:求图示杆件的剪力图。
A 2 8 C 26 E 30 8 G
弯矩图
6、内力计算及内力图 步骤:求反力 步骤: 1)求反力 画弯矩图 画剪力图 画轴力图
(1)上部结构与基础的联系为3个时,对整体利用3个 上部结构与基础的联系为3个时,对整体利用3 平衡方程,就可求得反力。 平衡方程,就可求得反力。 例:
4m 4kN B C 1kN/m A 2m D 2m
结构力学——3静定结构的内力分析
M图(kN·m) Mk
Mmax=32.4kn·N
qx2
MK=ME+QE x- 2 =26+8×1.6- 51
62
2
=32.4kN·m
返10回
§3—2 多跨静定梁
1.多跨静定梁的概念 若干根梁用铰相联,并用若干支座与基础
相联而组成的结构。
2.多跨静定梁的特点: (1)几何组成上: 可分为基本部分和附属部分。
(5)校核: 内力图作出后应进行校核。
M图: 通常检查刚结点处是否满足力矩的平衡条件。
例如取结点C为隔离体(图a),有:
∑MC=48-192+144=0 满足这一平衡条件。
48kN·m
C
192kN·m
Q(N)图:可取刚架任何一部分为隔
离体,检查∑X=0 和 ∑Y=0 是否满足。 144kN·m (a)
静定刚架常常可少求或不求反力绘制弯矩图。
例如:1. 悬臂部分及简支梁部分,弯矩图可先绘出。
2. 充分利用弯矩图的形状特征(直线、零值)。
3.刚结点处的力矩平衡条件。
4. 用叠加法作弯矩图。
5. 平行于杆轴的力及外力偶产生的弯矩为常数。 6. 与杆轴重合的力不产生弯矩等。
以例说明如下
返22回
E
20
20
75
45
0
例 3—7 绘制刚架的弯矩图。 解:
由刚架整体平衡条件 ∑X=0
得 FBX=5kN(←) 5kN 此时不需再求竖向反力便可
绘出弯矩图。 有:
40 30
MA=0 , MEC=0 MCE=20kN·m(外)
MCD=20kN·m(外)
MB=0
MDB=30kN·m(外)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本要求:
理解恰当选取分离体和平衡方程计算
静定结构内力的方法和技巧,会根据几何 组成寻找解题途径。
掌握内力图的形状特征和绘制内力图
的方法, 静定平面刚架、多跨梁、三铰拱、 平面桁架及组合结构的内力计算。
熟练掌握叠加法作弯矩图。
容易产生的错误认识:
“静定结构内力分析无非就是 选取隔离体,建立平衡方程,
2)左右截面剪力不变。
m
m/2
l /2 l /2
m/2
六、荷载与内力之间的积分关系
qy MA
FNA
qx
m
FQA
MB FNB
FQB
表3-1
FQ
七、内力图与支承、连接之间的对应关系
1、在自由端、铰结点、铰支座处的截面上无集中力偶作用时, 该截面弯矩等于零(如图1-(a)C右截面、图1-(b)A截面),有集 中力偶作用时,该截面弯矩等于这个集中力偶,受拉侧可由力偶 的转向直接确定(如图1-(a)C左截面和D截面)。
↓↓↓↓↓↓↓↓↓↓↓↓↓↓
1
FN2
FQ2
50kN
2 M2
45° 141kN
FN2=50-141×cos45o =-50kN FQ2= -141×sin45°=-100kN
125kN.m
5m 5m
M2= - 50×5 +125 +141×0.707×5
=375kN.m
+
所以:M2=375kN.m (左拉)
2)弯距图上某点切线的斜率等于该点的剪力。
3)弯距图上某点的曲率等于该点的横向分布荷 载的集度,但正负号相反。
4)轴力图上某点的斜率等于该点轴向分布荷载
的集度 qx ,但正负号相反。
因此: 若剪力等于0,M 图平行于杆轴;
若剪力为常数,则 M 图为斜直线;
若剪力为x 的一次函数,即为均布荷载时, M 图为抛物线。
4kN·m
MA A
MA
MB B
l
MB
MA
q
A
l
MA
ql 2 8
MB B
求截面1、截面2的内力
5kN/m
↓↓↓↓↓↓↓↓↓↓↓↓↓↓
1
50kN 2
45° 141kN
125kN.m
FN1=141×0.707=100kN FQ1= 50 +5×5 -141×0.707 =-25kN
5m 5m
(取外力矩逆时针转向为正方向)
M1=125 +141×0.707×10 -50×5 -5/2×5²=812.5kNm
以前早就学过了,没有新东西”
切忌:浅尝辄止
本章内容
梁的内力计算回顾 用叠加法作弯矩图 多跨静定梁 静定平面刚架 静定平面桁架 组合结构 静定结构总论
几何特性:无多余约束的几何不变体系
静力特征:仅由静力平衡条件可求全部反力 内力
求解一般原则:从几何组成入手,按组成的 相反顺序进行逐步分析即可
§3-1 梁的内力计算回顾
2、在刚结点上,不仅要满足力的投影平衡,各杆端弯矩还要 满力矩平衡条件∑M=0。尤其是两杆相交刚结点上无外力偶作用 时,两杆端弯矩等值,同侧受拉(如图1-(a)结点B、图1-(b)结点 B)。
3、定向支座、定向连接处FQ=0,FQ=0段M图平行轴线(如 图1-(a)AB杆端、图1-(b)BC、CD段)。
以上结论是解决静定结构内力的关键和规律,应熟练掌握和应用。
求截面1、截面2的内力
FN2 - 50 +141×cos45o =0 FQ2 + 141×sin45° =0
FN2 =-50kN FQ2=-100kN
M2 + 50×5 -125 -141×0.707×5 =0
M2 =375kN.m
+
5kN/m
四、 集中荷载与内力之间的增量关系
MB左
FP
B
MB右 x
FQB左
dx y
FQB右
Fy 0
FQB右 FP FQB左 0
FQB右 FQB左 FP
MB 0
M B左
M B右
(FQB左
FQB右 )
dx 2
0
M B左 M B右
小结: 1)在集中力作用点的左右截面,剪力有突变。 剪力图有台阶,台阶高度等于FP 。
二、内力的计算方法
1.截面法
截取----将指定截面切开,任取一部分作为隔离体。 代替----用相应内力代替该截面的应力之和。 平衡----利用隔离体的平衡条件,确定该截面的内力。
2.直接计算法
轴力等于该截面一侧所有的外力沿杆轴切线方向的投影代数和; 剪力等于该截面一侧所有外力沿杆轴法线方向的投影代数和; 弯矩等于该截面一侧所有外力对截面形心的力矩的代数和。
一、内力的概念和表示
轴力FN----截面上应力沿轴线切向的合力,轴力以拉 力为正。
剪力FQ----截面上应力沿杆轴法线方向的合力,剪力以 绕隔离体顺时针转为正。
弯矩M----截面上应力对截面形心的力矩,不规定正 负,但弯矩图画在拉侧。
M
FN FQ dx
M
FN FQ
作图时,轴力图、 剪力图要注明正负号, 弯矩图规定画在杆件受 拉的一侧,不用注明正 负号。
m
练习: 利用上述关系作弯矩图,剪力图
2F
F
2F Fl
F
F 2F
叠加法作弯矩图
几个力对杆件的作用效果,等于 每一个力单独作用效果的总和。
4kN·m
4kN
3m
3m(1Biblioteka 集中荷载作用 下注意:是竖标相加,不 是图形的简
单拼合.
6kN·m
(2)集中力偶作用 下
4kN·m
2kN·m
(3)叠加得弯矩图
4kN·m
q
A
B
ql2
8 l
F
A
B
Fab
a
lb
l
Fb
+
l
Fa
-
l
ql2 / 2
M图 FQ图
almm
A
B
bl m
a
b
m
m
l
l
l
m
l
-
ql 2
4.50
2
ql
-3.00
无剪力杆的 弯矩为常数.
M图
FQ图
自由端有外 力偶,弯矩等于外 力偶
m A
m
l
l
m
铰支座有外 力偶,该截面弯矩 等于外力偶.
m B
m l
(下拉)
三、荷载与内力之间的微分关系
M qy
M+dM
FN
dqxx
FN+dFN
FQ dx FQ +dFQ
dM dx
FQ ,
dFQ dx
qy ,
dFN dx
qx
dM dx FQ ,
小结:
dFQ dx
qy,
dFN dx
qx
1)剪力图上某点切线的斜率等于该点横向分 布荷载的集度,但正负号相反。
2)M 图上有尖点,尖点指向同集中力的指向。
五、 集中力偶与内力之间的增量关系
MB左
m MB右
B
x
FQB左
dx
FQB右
y
Fy 0 FQB右 FQB左
MB 0
dx M B左 m M B右 (FQB左 FQB右 ) 2 0 M B右 M B左 m
小结: 1)集中力偶作用点左右截面的弯矩产生突变, M 图有台阶,台阶高度等于m。