高频实验_变容二极管调频实验
变容二极管调频振荡器实验报告
变容二极管调频振荡器实验报告变容二极管调频振荡器实验报告引言:调频振荡器是一种能够产生高频信号的电路,广泛应用于无线通信、广播电视等领域。
本实验旨在通过使用变容二极管构建调频振荡器电路,探究其工作原理和特性。
实验步骤:1. 实验准备:准备好所需的实验器材和元件,包括变容二极管、电容、电阻等。
2. 搭建电路:按照实验指导书上的电路图,将元件连接起来,确保连接正确无误。
3. 调节元件:根据实验要求,逐步调节电容、电阻的数值,观察振荡器的输出频率变化。
4. 测量数据:使用示波器等仪器测量振荡器的输出频率、幅度等参数,并记录下来。
5. 分析结果:根据实验数据,分析振荡器的工作特性和性能。
实验结果:在实验过程中,我们逐步调节了电容和电阻的数值,观察到振荡器的输出频率发生了变化。
通过测量和记录数据,我们得到了如下结果:1. 输出频率与电容的关系:我们发现,当电容的数值增大时,振荡器的输出频率也随之增大。
这是因为电容的变化会影响振荡电路的谐振频率,从而改变振荡器的输出频率。
2. 输出频率与电阻的关系:我们进一步调节了电阻的数值,发现振荡器的输出频率与电阻的变化关系不明显。
这是因为电阻主要影响振荡器的幅度稳定性,而不太会对输出频率产生明显影响。
3. 振荡器的稳定性:我们观察到,在一定范围内,振荡器的输出频率相对稳定,但当电容或电阻的数值超出一定范围时,振荡器的输出频率会发生明显的偏移或失去振荡。
这说明振荡器的稳定性受到电容和电阻的限制。
4. 输出信号的波形:通过示波器观察,我们发现振荡器的输出信号呈现正弦波形,且幅度相对稳定。
这是因为振荡器的电路结构决定了其输出信号为周期性的正弦波。
讨论与总结:通过本次实验,我们深入了解了变容二极管调频振荡器的工作原理和特性。
我们发现,电容和电阻的变化对振荡器的输出频率和稳定性有着重要影响。
在实际应用中,我们可以根据需求调节电容和电阻的数值,实现不同频率的振荡器。
同时,我们也了解到振荡器的稳定性是一个需要注意的问题,过大或过小的电容和电阻数值都可能导致振荡器无法正常工作。
实验四 变容二极管调频
实验四变容二极管调频一.实验目的1、掌握变容二极管调频的工作原理。
2、学会测量静态特性曲线,理解动态特性的含义。
3、学会测量调频信号的频偏及调制灵敏度。
4、观察寄生调幅现象。
二.实验原理1、变容二极管调频原理所谓调频,就是把要传送的信息(例如语言、音乐)作为调制信号去控制载波(高频振荡)的瞬时频率,使其按调制信息的规律变化。
设调制信号:υΩ(t)= VΩcosΩt,载波振荡电压为:a ( t ) = A o cosωo t根据定义,调频时载波的瞬时频率ω(t)随υΩ(t)成线性变化,即ω(t)= ωo + K f VΩcosΩt =ωo + ΔωcosΩt (4-1) 则调频波的数字表达式如下:a f (t) = A o cos(ωo t+ΩΩVKf sinΩt)或a f (t) = A o cos(ωo t+ m f sinΩt) (4-2) 式中:Δω= K f VΩ是调频波瞬时频率的最大偏移,简称频偏,它与调制信号的振幅成正比。
比例常数K f亦称调制灵敏度,代表单位调制电压所产生的频偏。
式中:m f = K f VΩ/Ω= Δω/Ω =Δf / F 称为调频指数,是调频瞬时相位的最大偏移,它的大小反映了调制深度。
如何产生调频信号?最简便、最常用的方法是利用变容二极管的特性直接产生调频波,其原理电路如图4-1所示。
图4-1 变容二极管调频原理电路变容二极管C j通过耦合电容C1并接在LC N回路的两端,形成振荡回路总电容的一部分。
因而,振荡回路的总电容C为:C = C N + C j(4-3)加在变容二极管上的反向偏压为:V R = V Q(直流反偏)+υΩ(调制电压)+υo(高频振荡,可忽略)变容二极管利用PN 结的结电容制成,在反偏电压作用下呈现一定的结电容(势垒电容),而且这个结电容能灵敏地随着反偏电压在一定范围内变化,其关系曲线称C j ~υR 曲线,如图4-2所示。
图4-2 用调制信号控制变容二极管结电容由图可见:未加调制电压时,直流反偏V Q (在教材称V o 所对应的结电容为C jΩ(在教材中称C o )。
变容二极管调频实验报告
变容二极管调频实验报告变容二极管调频实验报告引言调频(Frequency Modulation,简称FM)是一种常见的无线通信技术,其基本原理是通过改变载波信号的频率来传输信息。
变容二极管是一种特殊的二极管,具有随电压变化而改变电容的特性。
本次实验旨在探究变容二极管在调频中的应用,并分析其原理和实验结果。
实验步骤1. 实验器材准备:准备一个变容二极管、一个信号发生器、一个示波器和一根连接线。
2. 连接实验电路:将变容二极管的正极连接到信号发生器的输出端,将其负极连接到示波器的输入端。
3. 调节信号发生器:将信号发生器的频率调节到一个较低的值,例如100 Hz。
4. 观察示波器波形:在示波器上观察到一个稳定的正弦波信号。
5. 调节信号发生器频率:逐渐增加信号发生器的频率,观察示波器上波形的变化。
6. 记录实验结果:记录不同频率下示波器上的波形变化。
实验原理变容二极管的电容值随着电压的变化而变化,当电压增大时,电容值减小,反之亦然。
在调频中,我们可以利用这一特性来改变载波信号的频率。
当变容二极管的电压变化时,其电容值也随之变化,从而导致载波信号的频率发生变化。
实验结果及分析在实验过程中,我们逐渐增加信号发生器的频率,观察到示波器上波形的变化。
实验结果显示,随着频率的增加,波形的周期变短,频率也随之增大。
这是因为变容二极管的电容值随着电压的增加而减小,导致载波信号的频率增大。
通过实验结果,我们可以看出变容二极管在调频中起到了关键作用。
通过改变变容二极管的电压,我们可以实现对载波信号频率的调节。
这对于无线通信系统中的频率调节非常重要,可以实现更高效的数据传输和信号传播。
结论本次实验通过观察变容二极管在调频中的应用,探究了其原理和实验结果。
实验结果表明,变容二极管的电容值随电压变化而变化,通过改变电压可以实现对载波信号频率的调节。
这为无线通信系统中的频率调节提供了一种有效的解决方案。
通过本次实验,我们深入了解了变容二极管在调频中的应用,为进一步研究和应用该技术奠定了基础。
高频实验八 变容二极管调频实验报告
实验八 变容二极管调频实验一 实验目的1. 进一步学习掌握频率调制相关理论。
2. 掌握用变容二极管调频振荡器实现FM 的电路原理和方法。
3. 理解变容二极管静态调制特性、动态调制特性概念并掌握测试方法。
二、实验使用仪器1.变容二极管调频振荡电路实验板 2.100MH 泰克双踪示波器 3. FLUKE 万用表 4. 高频信号源三、实验基本原理与电路1. 变容二极管调频原理变容二极管的调频原理可用图8-1说明。
变容二极管的电容C 和电感L 组成LC 振荡器的谐振电路,其谐振频率近似为 LCf π21=。
在变容二极管上加一固定的反向直流偏压U 偏和调制电压U Ω(图a),则变容二极管的结电容C 将随调制信号U Ω的幅度变化而变化 ,通过二极管的变容特性(图b)可以找出结电容C 随时间的变化曲线(图c)。
此电容C 由两部分组成,一部分是0C ,由反向直流偏压U 偏决定,为固定值;另一部分是变化的电容,由调制电压U Ω的幅度决定,可以表示为t C m Ωcos ,其中Ω为调制信号的频率。
m C 是电容变化部分的幅度,则有C =0C 十t C m Ωcos 将C 代入f 的公式,化简整理可得f f t C C f f f m ∆+=Ω⋅-=0000cos 21式中 f ∆=021f -t C C mΩcos 00f 是0=m C 时,由电感L 和固定电容0C 所决定的谐振频率,称为中心频率,021LC f π=。
f ∆是频率的变化部分,而21C C f m是频率变化部分的幅值,称为频偏。
式中的负号表示当回路电容增加时,频率是减小的。
我们还可通过图8-1(C )及图(D )(L 固定,f 与C 成反比曲线)找出频率和时间的关系。
比较图(a )及图(e ),可见频率f 是随调制电压Ωu 的幅度变化而变化,从而实现了调频。
f f图8-1 变容二极管调频原理3. 变容二极管调频实验电路变容二极管调频实验电路如图8-2。
高频振荡器与变容二极管调频电路设计实验报告(第五组)
高频振荡器与变容二极管调频电路设计1.分立元件部分1.1总体电路图(原理图与谢自美所编的《电子线路》一样)注意:L2为高频扼流圈1.2设计过程1.基本原理与实验书上一致,图上所有数据均为理论计算值,其中I CQ取2mA,V CEQ取6V,p取0.2时进行计算。
最终数据需根据实际电路调试得到。
2.在进行计算时,我们最先将反馈系数F取1/7,用谢自美书上的公式C2/C3,但实际电路无法起振。
经分析后,这是由于F取值太小所致,而且谢自美书上F 的计算公式是错误的,正确的为F=C2/(C2+C3).需注意的是,我们这边有些组F取1/6起振正常,即F的具体参数要根据实际所需来定。
3.在管子的选取上,本实验经我们实践得出,9018,C9018均比较适用,而3DG12及3DG6还待验证。
4.实际焊接中电源线的去耦需注意,如图中的Cm,Cn两电容。
而且去耦电容最好在电源接进来的地方加。
5.地线的处理极为重要,地线最好接成星形,即由多点直接接到一点,不要随意串联。
其次,地线连接时不要和信号线有太多的交叉,因为高频中地线中是有信号存在的。
6.实际测量中图中C,D两点由示波器所测得的波形有较大的区别,这是由于示波器探头衰减10倍档时输入电容大致为14.2~17.5pF,这一电容的引入让测量结果受到影响,但由D点接入时影响极大,具体可以通过下示的图进行推算后得到。
7.由于所用测量器材所限,在最大频偏的测量上无法达到要求,故这点没必要过分纠结。
8.经调频后在C点测得的调频波相位上可能不太理想,可以通过对变容二极管反偏电压的调整使其达到要求。
但对于波形延迟半个周期且无法调整到正确的现象,我们推测可能原因有三方面:一是示波器在信号采集时与原信号不同步造成视觉上的延迟,二是电感电容的影响致使相位的不同步,三是地线信号串入所引起的。
具体原因还待分析研究。
9.实践发现,为了电路的稳定,频率的波动较小,适当的采用贴片电容,电阻是必要的。
变容二极管调频振荡器实验报告
变容二极管调频振荡器实验报告一、实验目的。
本实验旨在通过搭建变容二极管调频振荡器电路,了解振荡器的工作原理,掌握调频振荡器的基本特性,并进行实际测量和分析,加深对电子技术原理的理解。
二、实验原理。
变容二极管调频振荡器是利用变容二极管的电容随电压变化的特性,通过反馈网络产生自激振荡的电路。
当输入的信号电压变化时,变容二极管的电容也随之变化,从而改变了反馈网络中的相位和增益,使得振荡频率产生变化,实现了调频的功能。
三、实验仪器与器件。
1. 示波器。
2. 直流稳压电源。
3. 电容、电阻、变容二极管。
4. 信号发生器。
四、实验步骤。
1. 按照电路图搭建变容二极管调频振荡器电路,注意连接的正确性和稳固性。
2. 调节直流稳压电源,使其输出电压为所需工作电压。
3. 调节信号发生器的频率和幅度,观察振荡器输出波形,并记录观察结果。
4. 通过改变变容二极管的偏置电压,观察振荡器输出频率的变化,并记录数据。
5. 对实验数据进行分析和总结,得出调频振荡器的工作特性。
五、实验数据与分析。
在实验中,我们观察到随着变容二极管的电压变化,振荡器输出波形的频率也相应变化。
通过测量和记录数据,我们得到了变容二极管调频振荡器的频率-电压特性曲线,从曲线上可以清晰地看出振荡器的调频特性。
六、实验结果与讨论。
通过实验数据的分析,我们可以得出变容二极管调频振荡器的工作频率范围和调频范围。
同时,我们也可以讨论振荡器的稳定性、频率稳定度以及调频的灵敏度等性能指标。
七、实验结论。
本实验通过搭建变容二极管调频振荡器电路,实际测量和分析了振荡器的调频特性,加深了对振荡器工作原理的理解。
通过实验,我们得出了振荡器的频率-电压特性曲线,并讨论了振荡器的性能指标,为进一步深入学习和研究振荡器提供了基础。
八、实验注意事项。
1. 在搭建电路时,注意电路连接的正确性和稳固性,避免因连接不良导致的实验失败。
2. 在调节电源和信号发生器时,注意调节的精度和稳定性,确保实验数据的准确性。
变容二极管调频实验报告
变容二极管调频实验报告变容二极管调频实验报告引言•介绍调频实验的背景和意义实验目的•说明进行该实验的目的和预期结果实验原理•介绍变容二极管的原理•解释调频的基本概念和原理实验器材和材料•列出实验所用到的器材和材料实验步骤1.配置实验电路–详细描述所用电路的组成和连接方式2.测量基准电压–记录基准电压值–绘制电压-时间图3.调整变容二极管–修改变容二极管的电容值–测量并记录每次修改后的电压值–绘制电压-时间图4.分析数据–对实验数据进行分析和比较–讨论不同电容值对调频效果的影响结果与讨论•对实验结果进行总结和讨论•分析产生差异的原因•探讨实验的局限性和潜在改进方向结论•总结实验的目的和所得结果•提出进一步研究的建议参考文献•引用使用到的相关文献和资料以上就是关于”变容二极管调频实验报告”的相关文章,通过使用Markdown格式并采用标题副标题形式,让文章结构清晰易读。
注意不要插入HTML字符、网址、图片和电话号码等内容,以符合规定要求。
变容二极管调频实验报告引言•调频是一种重要的无线通信技术,广泛应用于广播、电视、无线电通信等领域。
•变容二极管是调频中常用的元件之一,通过改变电容值来调整信号频率。
实验目的•通过调整变容二极管的电容值,探究其对调频效果的影响。
•分析不同电容值下信号频率的变化规律。
实验原理•变容二极管的电容值与正向偏置电压成反比,通过改变电压可以调整电容值。
•调频是通过改变载波信号频率来传输信息,调频信号可以通过调制器生成,并通过天线发送。
实验器材和材料•变容二极管•DC电源•示波器•天线等实验步骤1.配置实验电路–将变容二极管、电源和示波器按照电路图连接起来。
2.测量基准电压–调节电源输出电压,记录基准电压值。
–通过示波器绘制电压-时间图,确定基准频率。
3.调整变容二极管–修改变容二极管的电容值,调节电源输出电压。
–测量并记录每次修改后的电压值。
–绘制电压-时间图,观察信号频率的变化。
变容二极管调频实验报告(高频电子线路实验报告)
变容二极管调频实验一、实验目的1、掌握变容二极管调频电路的原理。
2、了解调频调制特性及测量方法。
3、观察寄生调幅现象,了解其产生及消除的方法。
二、实验内容1、测试变容二极管的静态调制特性。
2、观察调频波波形。
3、观察调制信号振幅时对频偏的影响。
4、观察寄生调幅现象。
三、实验仪器1、信号源模块1块2、频率计模块1块3、3号板1块4、双踪示波器1台5、万用表1块6、频偏仪(选用)1台四、实验原理及电路1、变容二极管工作原理调频即为载波的瞬时频率受调制信号的控制。
其频率的变化量与调制信号成线性关系。
常用变容二极管实现调频。
变容二极管调频电路如图1所示。
从P3处加入调制信号,使变容二极管的瞬时反向偏置电压在静态反向偏置电压的基础上按调制信号的规律变化,从而使振荡频率也随调制电压的规律变化,此时从P2处输出为调频波(FM )。
C15为变容二级管的高频通路,L2为音频信号提供低频通路,L2可阻止外部的高频信号进入振荡回路。
本电路中使用的是飞利浦公司的BB910型变容二极管,其电压-容值特性曲线见图12-4,从图中可以看出,在1到10V的区间内,变容二极管的容值可由35P到8P左右的变化。
电压和容值成反比,也就是TP6的电平越高,振荡频率越高。
图2表示出了当变容二极管在低频简谐波调制信号作用情况下,电容和振荡频率的变化示意图。
在(a)中,U o是加到二极管的直流电压,当u = U o时,电容值为C o。
u◎是调制电压,当u^为正半周时,变容二极管负极电位升高,即反向偏压增大;变容二极管的电容减小; 当U Q为负半周时,变容二极管负极电位降低,即反向偏压减小,变容二极管的电容增大。
在图(b)中,对应于静止状态,变容二极管的电容为C o,此时振荡频率为f。
因为f1,所以电容小时,振荡频率咼,而电容大时,振荡频率低。
从图(a)2 二LC中可以看到,由于C-u曲线的非线性,虽然调制电压是一个简谐波,但电容随时间的变化是非简谐波形,1但是由于 f , f和C的关系也是非线性。
变容二极管调频实验
是衡量调频质量的重要指标。
(2)调制系数(调制灵敏度 ) k f
m kf Um
(rad/s V)
它表示 U 对瞬时(角)频率的控制能力,即单位调制电压所引 起的频偏量,是产生FM信号电路的重要参数。 m f m mf m (3)调频指数 F 它是单音调制信号引起的最大瞬时相角偏移 m f U 量, m f可以大于1,而且常常 又称调制深度,但 m f 与F成反比。 远远大于1。 厚德博学 追求卓越
三、实验应知知识
7.变容二极管直接调频法的全接入式和部分接入方式
1)全接入式变容二极管直接调频 若Cj为回路的总电容,如图(A)所示为全接入式变容二极 管直接调频电路。图中C1很大,所以决定振荡频率的等效电路 为图(B),其振荡频率为
Vcc R1 C1 L Cj R2
(t )
1 LC j
L2 R3
时间内过零点的数目之中。其数学表达式为 : t
Vc
u FM U c cos( c t m f sin t )
t
VFM
t
厚德博学 追求卓越
三、实验应知知识
2. 常用调频方法
产生调频信号的常用方法有: 1)直接法 间接法
直接法就是用调制信号控制振荡器的频率(通过改变振荡回 路元件参数来实现)。 直接法的特点是:振荡器与调制器合二为一。 这种方法的主要优点:在实现线性调频的要求下,可以获得较 大的频偏. 其主要的缺点: 频率稳定度差。 直接法主要有变容二极管直接调频、电抗管直接调频和晶体振 荡器直接调频等方法。其中,变容二极管直接调频最常用。 厚德博学 追求卓越
高频电子线路实验七--------变容二极管调频实验
实验七 变容二极管调频实验一、实验目的1、了解变容二极管调频电路构成与原理。
2、了解调频器的调制特性及其测量方法。
3、观察寄生调幅现象,了解其产生的原因及消除方法。
二、预习内容1、复习变容二极管的非线性特性及变容二极管调频振荡器的调制特性。
2、复习角度调制的原理。
3、复习变容二极管电路。
三、实验原理变容二极管实际是一个电压控制的可变电容,正常工作时处于反向偏置。
当外加反向偏置电压变化时,变容二极管的PN 结的电容会随之变化,其变化规律如图所示,变容二极管的结电容与变容二极管两端所加的反向偏置电压之间的关系可以用下式表示:0C 为没有加任何电压时,耗尽层的电容值,ϕU 二极管的PN 结的势垒电压,u 是加到变容二极管两端的反向偏置电压。
r 为电容变化指数,γ=1/3~6,其中 γ=1/3为缓变结, γ=1~4为超突变结,最高可高达6以上。
直接调频的基本原理是用调制信号去直接控制振荡器回路的参数,使振荡器的输出频率调制信号的拜年话规律呈线性变化,以生成调频信号的目的。
如果载波信号是由LC 自激振荡产生,则振荡频率主要由振荡回路的电感和电容元件决定。
因而,只要用调制信号去控制振荡回路的电容,就能达到控制振荡频率的目的。
四、实验仪器1、双踪示波器(1)j C C u u γϕ=+2、万用表3、XSX-4B 型高频电路实验箱 五、实验内容 实验电路如图所示:图中上半部分为变容二极管调频电路,下半部分为相位鉴频器。
BG401构成电容三点式振荡器,产生载波为10.7MHz 载波信号。
变容二极管D401和C403构成振荡回路电容的一部分,直流偏置电压通过R403、RP401、R402和L401加至变容二极管D401的负端。
C402为变容二极管提供交流通路,R404为变容二极管提供直流通路,L401和R402组成隔离支路,防止载波信号通过电源和低频回路短路。
低频信号从输入端J401输入,通过变容二极管D401实现直接调频,C401为耦合电容,BG402对调制波进行放大,通过RP403控制波的幅度,BG403为射极跟随器,以减小负载对调频电路的影响。
变容二极管调频器实验报告
变容二极管调频器实验报告
《变容二极管调频器实验报告》
实验目的:通过实验,掌握变容二极管调频器的工作原理和调频过程,加深对电子电路的理解。
实验原理:变容二极管调频器是一种常用的调频电路,其原理是通过改变电容二极管的电容值,从而改变电路的频率。
在实际应用中,变容二极管调频器常用于无线电通信设备中,用于调节无线电信号的频率。
实验步骤:
1. 搭建变容二极管调频器电路。
根据实验指导书提供的电路图,搭建变容二极管调频器电路。
2. 测量电路参数。
使用万用表测量电路中各个元件的参数,包括电容二极管的电容值、电感的电感值等。
3. 调节电容二极管的电容值。
通过旋转电容二极管的旋钮,改变电容二极管的电容值,观察电路的频率变化。
4. 测量频率。
使用频率计或示波器测量电路的频率,并记录下不同电容值下的频率变化情况。
实验结果:
通过实验,我们观察到随着电容二极管电容值的改变,电路的频率也发生了相应的变化。
当电容值增大时,电路的频率减小;当电容值减小时,电路的频率增大。
这验证了变容二极管调频器的工作原理,也加深了我们对电子电路的理解。
实验总结:
通过本次实验,我们深入了解了变容二极管调频器的工作原理和调频过程,掌
握了实际搭建和调节电路的方法。
这对我们今后的学习和工作具有重要的意义,也为我们的理论知识与实际操作相结合提供了宝贵的经验。
变容二极管调频器实验报告到此结束。
希望通过这次实验,能够对大家的学习
有所帮助。
高频实验_变容二极管调频实验
②断开J3,调节W1使变容二极管的反向偏压取不同的数值,对每一反偏电压,再连接J3,在TT2出测量相应的输出信号频率,将结果填入表1,并画出 曲线。
表1静态调制特性测试结果
反偏电压
1.8
2.0
2.5
3.0
3.2
输出信号频率(MHz)
2、测量调频灵敏度(不输入调制信号)
①断开J1、J2、J3,连接J4、J5,首先调节W1,使变容二极管的反向偏压 =2.5V,再连接J3,用示波器在TT2处观察振荡波形,调节CC1,使振荡频率为10.7MHz,调节W2使输出波形失真最小。
图4 变容二极管调频电路的交流等效电路
四、实验内容与步骤
在主箱上插好发射模块,对照发射模块中的变容二极管调频部分,正确连接电路电源线,+12V孔接+12V,GND接GND(从电源部分+12V和GND插孔用连接线接入),接上电源通电(若正确连接,则扩展板上的电源指示灯会亮)。
1、测量静态调制特性(不输入调制信号)
②从IN1处输入1KHz的正弦信号作为调制信号(调制信号由实验箱上的低频信号源提供,连接JD1、选择正弦波),振幅由零慢慢增大,用示波器在TT1处观察波形的变化。
③将调频波信号从TT1输入到鉴频电路的INB1端,用示波器观察要时还要调整调频电路的CC1)及改变输入调制信号幅度的大小,使输出波形幅度较大且失真尽可能小,分析鉴频输出信号与原调制信号的差异。
②断开J3,调节W1使变容二极管的反向偏压分别取2.0V和3.0V,对每一反偏电压,再连接J3,在TT2出测量相应的输出信号频率 、 ,则灵敏度 。
变容二极管调频实验报告(一)
变容二极管调频实验报告(一)变容二极管调频实验报告引言•介绍变容二极管调频实验的背景和意义。
•阐述本实验的目的和研究内容。
实验步骤1.准备材料–列举所需的实验材料和设备。
–检查实验仪器的正常运行状态。
2.连接电路–描述变容二极管的连接方式和电路图。
–按照电路图连接变容二极管实验电路。
3.测量参数–定义所需测量的参数,如频率、电流等。
–使用合适的仪器进行测量,记录结果。
4.调节电压–调节电源电压,观察和记录变容二极管的调节效果。
–根据实验结果,得出调节范围和稳定性的结论。
5.分析数据–对实验数据进行统计和分析。
–结合理论知识,解释实验结果的原因和规律。
6.结论与讨论–总结实验的结果,并回答实验的研究问题。
–对实验方法和结果进行讨论,提出改进和进一步研究的建议。
结尾•总结实验的意义和价值。
•引用参考文献,如相关教材、论文等。
注:本文为虚拟助手AI生成的示例文章,仅用于演示Markdown 格式及相关内容,并不具备实质性的实验结果。
变容二极管调频实验报告引言•背景介绍:变容二极管是一种电子元件,具有可以调节电容值的特性,在通信领域有重要应用。
•目的:本实验旨在研究变容二极管在调频过程中的变化规律,以及其在调频电路中的稳定性和可调范围。
实验步骤1.准备材料–实验仪器:示波器、函数信号发生器、变容二极管、电阻、电源等。
–检查实验仪器的正常运行状态,保证实验准备工作的顺利进行。
2.连接电路–根据实验要求和电路图,连接变容二极管调频电路。
–确保电路连接正确,没有接错或接漏。
3.测量参数–使用示波器测量输出电压波形和频率,记录测量结果。
–通过函数信号发生器改变输入信号频率,观察变容二极管的响应情况。
4.调节电压–调节电源电压,观察变容二极管的调节效果。
–记录不同电压下的电容值变化以及对应的频率响应。
5.分析数据–利用所测得的数据,进行数据处理和统计分析。
–分析变容二极管电容值随电压变化的规律,并结合理论知识进行解释。
高频电子线路实验报告5——频率调制(变容二极管)
实验报告
课程名称高频电子线路
专业班级
姓名
学号
电气与信息学院
和谐勤奋求是创新
⑤把调频器单元的调频输出端12P02连接到鉴频器单元的输入端(
13K02拨向相位鉴频,便可在鉴频器单元的输出端
频信号。
如果没有波形或波形不好,应调整12W01和13W01。
⑥将示波器CH1接调制信号源(可接在调制模块中的12TP03
,比较两个波形有何不同。
改变调制信号源的幅度,观测鉴频器解调输出有何变化。
调整调制信号源的频率,观测鉴频器输出波形的变化。
实验报告要求
.根据实验数据,在坐标纸上画出静态调制特性曲线,说明曲线斜率受哪些因素影响。
231变容二极管课题三高频调频技术直接调频
• 2.3.1 变容二极管直接调频原理与实验
• 用调制信号(低频信号)去控制载波信号的幅度 而实现的调制称为调幅;
• 若用调制信号去控制载波的频率或相位而实现的 调制分别称为调频或调相。由于调频或调相两种 调制都改变了载波的瞬时相位,通称角度调制。
• 在模拟调制中,调频具有较为优越的性能,因此, 调频技术广泛应用于立体声广播、电视伴音、无 线麦克风、微波传输及卫星通信。同样,完整的 调频通信系统也由发射机与接收机两部分组成, 与调幅通信系统比较,除了调制与解调的原理方 法不同外,其他部分如超外差变频接收技术、中 频放大电路等基本相同
• 直接调频即为载波的瞬时频率受调制信号的直接 控制。其频率的变化量与调制信号成线性关系。 常用变容二极管实现调频。
• 变容二极管直接调频电路及实物图与图2-1-20, 图2-1-21相同。从J2处加入调制信号,使变容二 极管的瞬时反向偏置电压在静态反向偏置电压的 基础上按调制信号的规律变化,从而使振荡频率 也随调制电压的规律变化,此时从J1处输出为调 频波(FM)。C15为变容二级管的高频通路,L1 为音频信号提供低频通路,L1和C23可阻止高频 振荡信号进入调制信号源。
1、变容二极管调频器获得线性调制的条件
• 了获得线性调制,频率振荡应 该与调制电压成线性关系,用 数学表示为:
• 中A是一个常数,由以上二式可 得
• 将上式两边平方并移项可得
•
f Au Au 1
2 LC
C
1
(2 )2 LA2u2
Bu 2
2.调频灵敏度
C Bu2n
n
f u2
2 LB
n 1
0
0 (c k f u (t))dt
高频变容二极管调频器
深圳大学实验报告课程名称:通信电子线路实验项目名称:变容二极管调频器学院:信息工程学院专业:指导教师:报告人:学号:班级:实验时间:实验报告提交时间:教务部制频器工作于正常状态,即鉴频特性是:中心频率为6.5MHz、上下频偏及幅度对称的S形曲线〕。
②以实验箱上的函数发生器作为音频调制信号源,输出频率 f =1kHz、峰-峰值V p-p=0.4V〔用示波器监测〕的正弦波。
⑵电容C3(=100pF)不接〔开关K1置OFF〕时的测量①调整W l使得振荡频率f0=6.5MHz。
②把实验箱上的函数发生器输出的音频调制信号加入到调频器单元的IN 端,便可在调频器单元的OUT端上观察到FM波。
③把调频器单元的OUT端连接到鉴频器单元的IN端上,便可在鉴频器单元的OUT端上观察到经解调后的音频信号。
④调节调制信号源输出峰-峰值V ip-p,使之按表的要求变化,并将对应的解调信号输出〔鉴频器单元OUT端〕峰-峰值V op-p填入表8.2中。
需要指出的是,动态调制特性〔实为调频特性〕的本义是:调频器的输出频偏与输入电压之间的关系曲线。
这里,用相位鉴频器作为频偏仪。
只要相位鉴频器的鉴频线性足够好,就可以鉴频器的输出电压代替鉴频器输入频偏〔两者之间相差一个系数〕,本实验即为此。
⑶电容C3接入〔开关K1置ON〕时的测量:同上,将对应的频率填入表8.2。
⑷调节W2以改变BG2级工作点电压,观测它对于鉴频器解调输出波形的影响。
⑸调节W3以改变输出〔OUT〕电压幅度,观测它对于鉴频器解调输出波形的影响。
V ip-p(V)不接C3V op-p (V)接入C3V op-p (V)实验过程及内容:1.变容二极管调频器实验电路变容二极管调频器实验电路如图8-1所示。
图中,BG2本身为电容三点式振荡器级,它与BG1〔变容二极管〕一起组成了直接调频器。
BG3为共射放大器,BG4为射极跟随器。
W1用来图8-1变容二极管调频器实验电路调节变容二极管偏压,W2用来调节BG2级的静态工作点,它们都会影响FM波载波频率。
变容二极管调频器实验报告
变容二极管调频器实验报告变容二极管调频器实验报告引言:调频技术是现代通信领域中非常重要的一项技术。
调频器作为调频技术的核心部件,其性能和稳定性对于整个系统的工作效果有着至关重要的影响。
本实验旨在通过实际搭建变容二极管调频器电路,并对其性能进行测试和分析,以进一步认识和理解调频技术的原理和应用。
实验目的:1. 理解变容二极管调频器的工作原理;2. 学会搭建变容二极管调频器电路;3. 测试并分析调频器的性能。
实验器材和原理:本实验所需器材包括:变容二极管、电阻、电容、信号发生器、示波器等。
实验步骤:1. 搭建变容二极管调频器电路。
根据实验原理,按照电路图连接变容二极管、电阻、电容等元件,并将信号发生器和示波器连接到电路中。
2. 调整信号发生器的频率和幅度。
通过调整信号发生器的频率和幅度,使其适应调频器的工作范围。
3. 观察和记录示波器的输出波形。
通过示波器观察和记录调频器输出的波形,并对其进行分析和比较。
4. 测试调频器的性能。
通过改变输入信号的频率和幅度,测试调频器的调频范围和线性度,并记录相关数据。
5. 分析实验结果。
根据实验数据和观察结果,对调频器的性能进行分析和总结。
实验结果和分析:在实验中,我们成功搭建了变容二极管调频器电路,并进行了相关测试。
通过观察示波器输出的波形,我们发现调频器能够将输入信号的频率转换为相应的调频信号,并且具有较好的线性度。
在不同频率和幅度下,调频器的输出波形基本保持稳定,没有明显的失真现象。
这说明调频器具有较好的稳定性和抗干扰能力。
通过对实验数据的分析,我们还发现调频器的调频范围与输入信号的频率和幅度有关。
当输入信号的频率和幅度超出调频器的工作范围时,调频器的输出波形会出现失真和截断现象。
这提示我们在实际应用中需要根据具体情况选择合适的调频器,并注意输入信号的范围。
结论:本实验通过搭建变容二极管调频器电路,对其性能进行了测试和分析。
通过观察示波器输出的波形和分析实验数据,我们认识到调频器在调频技术中的重要性和应用前景。
变容二极管直接调频实验
变容二极管直接调频实验预习报告
学号--------------------姓名实验台号
一、实验目的
1、进一步掌握实现调频的方法及其电路组成。
2、了解变容二极管调频电路的组成和基本工作原理。
二、实验仪器
数字万用表、数字频率计、数字示波器、直流稳压电源
三、实验原理
三、实验任务
1,准备
(1)熟悉电路中各个元器件的作用和位置,断开k4,k5,检查无误后接通电源。
用示波器测量输出波形及频率。
(2)闭合k5,调节DW3,使VQ=4V左右,适当调节DW1,C6,使输出波形较好,振荡频率4MHz左右
2,测量Cj-v特性
(1)逐渐改变DW3的大小,测量笔记录VQ大小(用数字万用表测量)以及VQ 对应的频率fj,绘制fj-VQ曲线,该曲线即为静态频率调制特性。
VQ(v) 2 3 4 5 6 7 8 9
fj(MHz)
Cj(pF)
(2)断开k5(即去掉变容二极管及其偏执电路),测量并记录测试的振荡频率fosc (3)闭合K4(记载回路电容C6两端并联已知电容Ck),记录此时的振荡频率fk。
(4)计算C总、Cj,填入表中,绘制变容二极管的Cj-v特性曲线。
(5)有Cj-v特性曲线计算VQ=4V时的休旅Sc,计算调制灵敏度Sf。
3,观察调频信号波形
(1)闭合K4K5,调整DW3,使VQ=4V,调整DW1,使输出波形正常。
(2)介入调制信号,并调整音频信号输出电压Vpp<2V,观察输出的调频信号波形;
适当调整调制信号的幅度,观察调频信号波形的变化。
(3)观察调制信号电压幅度对调频信号中心频率的影响。
高频实验三四
实验三 变容二极管调频一、实验目的1、 掌握变容二极管调频的工作原理。
2、 能够测量变容二极管的C j ~V 特性曲线。
3、 能够测量调频信号的频偏及调制灵敏度。
二、实验原理2.1变容二极管调频原理调频是把要传送的信息(例如语言、音乐)作为调制信号去控制高频载波的瞬时频率,使瞬时频率按照调制信息的规律变化。
调制信号为()t V t v Ω=ΩΩcos ,载波信号为()cos c c c u t U t ω=,高频载波的瞬时频率ω跟随()t v Ω的变化而变化,即()()()cos c c f c m t t k u t t ωωωωωωΩ=+∆=+=+∆Ω (6-1)则调频波为:()()cos sin cos sin m FM c c f c c u t U t m t U t t ωωω∆⎛⎫=+Ω=+Ω ⎪Ω⎝⎭ (6-2)式中m mf f m fω∆∆==Ω为调频指数, m f k U ωΩ∆=为最大角频偏,f k 为调频灵敏度。
最常用的方法是利用变容二极管的特性直接产生调频波,原理电路如图6-1所示。
图6-1 变容二极管调频原理电路变容二极管j C 的静态工作电压为Q U ,调制信号为()cos v t U t ΩΩ=Ω,结电容j C 为:()1cos j Q C C m t γ-=+Ω (6-3)式中Q C 为静态结电容。
Q QU Um U u U ϕΩΩ=≈+为电容调制度,表示电容受调制信号调变的程度。
u ϕ为势垒压(硅管为0.7V ,锗管为0.3V)。
γ为结电容变化指数。
二极管j C 通过耦合电容1C 并联在N LC 回路,总电容为j N C C C =+,瞬时振荡频率满足:f==(6-4)振荡频率随调制电压线性变化,从而实现调频。
2.2电路原理图IN81为调制信号输入端,TT82为调制信号输出端。
R81、R82、W81、R83组成变容二极管直流偏压电路。
C83、C84、C812组成变容二极管的不同接入系数。
变容二极管频率调制电路实验
实验八变容二极管频率调制电路实验一、实验目的:1. 了解变容二极管调频器电路原理和测试方法;2. 了解调频器调制特性及主要性能参数的测量方法;3. 观察寄生调幅现象,了解其产生原因及消除方法。
二、预习要求:1. 复习变容二极管的非线性特性,及变容二极管调频振荡器调制特性;2. 复习角度调制的原理和变容二极管调频电路的组成形式.三、实验电路说明:本实验电路如图8-1所示。
图8-1本电路由LC正弦波振荡器与变容二极管调频电路两部分组成。
图中晶体三极管组成电容三点式振荡器。
C1为基极耦合电容,Q的静态工作点由W1、R1、R2及R4共同决定。
L1、C5与C2、C3组成并联谐振回路。
调频电路由变容二极管D1及耦合电容C6组成,W2、R6与R7为变容二极管提供静态时的反向直流偏置电压,R5为隔离电阻。
C7与高频扼流圈L2给调制信号提供通路,C8起高频滤波作用。
四、实验仪器:1. 双踪示波器2. 万用表3. 频率计4. 实验箱及频率调制、解调模块五、实验内容及步骤:1. 静态调制特性测量1)接通电源;2)输入端不接调制信号,将频率计接到TP1端,示波器接至TP2观察波形;3)调节W1使振荡器起振,且波形不失真,振荡器频率约为5.6MHz左右;4)调节W2使TP3处的电压变化(Ud—二极管电压),将对应的频率填入表5-1。
表8-12. 动态测试:调节频率调制电路的f0 =6.5MHz,从P1端输入F=2KHz的调制信号Um,,在输出TP1端观察Um与调频波上下频偏的关系(用频率分析仪测量⊿f(MHz)),将对应的频率填入表5-2。
表8-2六、实验报告要求:1. 整理各项实验所得的数据和波形,绘制静态调制特性曲线;2. 求出调制灵敏度S。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、观察调制信号幅度和不同接入电容对调频波的影响。
二、实验仪器
1. 示波器 2. 高频信号发生器 3. 数字万用表 4. 无感起子 5. 实验箱及实验电路板
一台 一台 一块 一把 一套
三、实验原理
1. 调频波的数学表达式
设载波信号为 uc (t) U cm cosct ,因为调频波的振幅不变,而瞬时角频率与调制信号 u (t) 成正比,
C Cc C jQ Cm cost Cc C jQ Cm cost
CQ
Cc
Cc C
jQ
2
Cm
cost
式中, C Q
C CcC jQ Cc C jQ
为未加调制信号时的总电容,所以,调频波的瞬时频率为
f (t)
1
2 LC
2
u(t)
U cm
cos[ct
K
f U
sin t]
Ucm
cos[ct
mf
sin t]
式中 m f
K f U m
为调频波的调制指数。显然,最大频偏为 fm
K f U m
mf。
(2)
2. 变容二极管直接调频电路
变容二极管的结电容 C j 与反向偏置电压 u r 的关系为
出测量相应的输出信号频率,将结果填入表 1,并画出VQ ~ f 曲线。
表 1 静态调制特性测试结果
反偏电压VQ (V ) 输出信号频率(MHz )
1.8
2.0 2.5
3.0
3.2
2、测量调频灵敏度(不输入调制信号)
① 断开 J1、J2、J3,连接 J4、J5,首先调节 W1,使变容二极管的反向偏压VQ =2.5V,再连接 J3,
③ 将调频波信号从 TT1 输入到鉴频电路的 INB1 端,用示波器观察鉴频器 TTB1 端的输出电压波形, 调整微调电容 CCB1(必要时还要调整调频电路的 CC1)及改变输入调制信号幅度的大小,使输出波形 幅度较大且失真尽可能小,分析鉴频输出信号与原调制信号的差异。
④ 分别接 J1、J2 重做实验 3,观察不同接入电容对调频波的影响。 接 J1 时的图形
(5) (6)
式中,fc 是未加调制信号时的载波频率,计算公式为
fc 2
1 LC Q
调频波的最大频偏
(7)
3.实验电路
f m
1 2
f
c
Cc
Cc C jQ
2
Cm CQ
(8)
实验电路如图3所示。Q1 和 L4、 C7、 C8、C9、C5、CC1组成电容三点式LC振荡器,变容
1
L C Q
Cc
Cc C jQ
2
Cm
cos
t
f
c
1
1 2 Cc
Cc C jQ
2
Cm CQ
c os t
fc
1 2
f
c
Cc
Cc C jQ
2
Cm CQ
c os t
fc fm cos t
电子科技大学中山学院学生实验报告
系别:电子工程系
专业:
课程名称:高频实验
班级:
姓名:
学号:
组别:
实验名称:实验四 变容二极管调频
实验时间:2010 年 5 月 25 日
成绩:
教师签名:
批改时间:
一、实验目的
1、了解变容二极管调频的工作原理、电路组成及各元件的作用;
2、学习静态频率调制特性和调制灵敏度的测量方法;
接 J2 时的图形
五、实验数据处理及结果分析
1.整理实验数据,画出VQ ~ f 曲线,计算灵敏度 S f 。 六、实验心得和体会
C接入 C j C7 C8 C9
因此,电路的振荡频率为
(9)
f 1 2 L4C
(10)
FC1 0. 1u
R1 20k
C3 C4 C12 3.3p 10p 15p
J1 J2 J3
R3
R2
3. 3k
L1
470uH
J4
C2
W1
0. 33 u
4. 7k
C7
FC2
0. 1u
W2
24p
R4
2k
22k
L4
管(BB910)的直流反偏电压由 R1、R2、W1、R3 提供,其交流等效电路如图4所示。Q2 组成隔离缓
冲级。
调制信号从IN1输入,C2用于隔直,L1用来减少振荡器产生的高频载波对调制信号的影响。
若IN1处的调制信号幅度较小,经过C2和L1过来的高频载波与调制信号叠加,会使调制信号的波
形变得较粗,可通过增大L1来改善,但L1太大也会加大对调制信号的衰减。
(4)
式中,C jQ C j0
1
VQ UD
为未加调制信号时的结电m
U m VQ U D
为电容调制度。
C j 随调制电压的变化情况如图 2 所示。
图 2 变容二极管结电容随调制电压的变化关系
总回路电容
C
C CcC j Cc C j
C5
2. 2u H
68p
CC1
C9 100p
Q1
C8
R5
200p
1k
R6 15k
R7
C11
8. 2k
0. 01 u
K
LR1 1k
+1 2V
LED1
(IN1)
Q1 R5 1k
R8 8. 2k
C10
Q2
C13
100p
R9
R10
0. 1u
10k
680
W3 5. 1k
TT2
图3 变容二极管调频实验电路
C9 10 0p
C8 20 0p
C7
24 p
R4
L4
2k
2. 2u H
C5
68 p
C 3/C 4/C 12
J4
C C1 Cj
图4 变容二极管调频电路的交流等效电路
四、实验内容与步骤
在主箱上插好发射模块,对照发射模块中的变容二极管调频部分,正确连接电路电源线,+12V 孔 接+12V, GND 接 GND(从电源部分+12V 和 GND 插孔用连接线接入),接上电源通电(若正确连接, 则扩展板上的电源指示灯会亮)。
1、测量静态调制特性(不输入调制信号)
① 断开 J1、J2、J3,连接 J4,首先调节 W1,使变容二极管的反向偏压VQ =2.5V,再连接 J3,用
示波器在 TT2 处观察振荡波形,调节 CC1,使振荡频率为 10.7MHz,调节 W2、W3 使输出波形失真最
小。
② 断开 J3,调节 W1 使变容二极管的反向偏压取不同的数值,对每一反偏电压,再连接 J3,在 TT2
C3、C4和C12为变容二极管的接入电容,接入电容越大,单位调制信号电压变化所引起的频
偏也越大,但此时高频载波在变容二极管上的作用也越大,载波中心频率漂移也越大。在实际设计中,
应综合考虑多方面的因素,以使所设计的电路满足要求。
由图 4 可知,总的回路电容是
1
1
C C5 CC1
1
1 111
3、观察调频波的波形
① 断开 J1、J2、J3,连接 J4,首先调节 W1,使变容二极管的反向偏压VQ =2.5V,再连接 J3,用
示波器在 TT2 处观察振荡波形,调节 CC1,使振荡频率为 10.7MHz,调节 W2、W3 使输出波形失真最 小。
② 从 IN1 处输入 1KHz 的正弦信号作为调制信号(调制信号由实验箱上的低频信号源提供,连接 JD1、选择正弦波),振幅由零慢慢增大,用示波器在 TT1 处观察波形的变化。
t
t
即(t) C K f u (t) ,所以调频波的瞬时相位是 (t) ( )d Ct K f u ( )d 。因此调频
0
0
信号的一般表达式为
t
u(t) U cm cosCt K f u ( )d
(1)
0
当调制信号 u (t) U m cos t 时,调频信号为
用示波器在 TT2 处观察振荡波形,调节 CC1,使振荡频率为 10.7MHz,调节 W2 使输出波形失真最小。 ② 断开 J3,调节 W1 使变容二极管的反向偏压分别取 2.0V 和 3.0V,对每一反偏电压,再连接 J3,
在 TT2 出测量相应的输出信号频率 f1 、 f 2 ,则灵敏度 S f df dU | fC ( f 2 f1 ) (MHz /V ) 。
变容二极管上的反向电压为 ur (t) VQ u (t) VQ U m cos t ,式中,VQ 是加在变容二极管上
的直流偏置电压。因此,变容二极管的结电容为
Cj
1
VQ
C j0 U m cos t
UD
1
C jQ
m cos t
C jQ Cm cos t
Cj
C j0
1
ur UD
式中,UD 为 PN 结的势垒电压, C j0 为 ur=0 时的结电容, 为电容变化系数。
(3)
图 1 是一个变容二极管调频器的原理电路,图中 Cc 为变容二极管的接入电容或耦合电容,L 为高频