导数综合应用(1)
导数的综合应用(选择)1
f
'
x
anxn1
f f
(1) a '(1) an
2
4
a
n
2
f (x) 2x2
函数
f
x 是偶函
数且有最小值.
12.已知函数 f x x5 3x3 5x 3 ,若 f a f a 2 6 ,则实数 a 的取值范围是
f x f 1e2x2 x2 2 f 0x , g x 2g x 0 ,则下列不等式成立的是
2
()
A. f 2g 2015 g 2017
B. f 2g 2015 g 2017
C. g 2015 f 2g 2017
e e2 1
A.
e
2e2 1 e
B.
e
e2 1 e
C.
e
【答案】C
【解析】
D. e 1 1 e
试题分析:由圆的对称性知,只需考虑圆心 C e 1 ,0 到 f x ln x 图象上一点距离的
e
最小值.设函数 f x ln x 图象上任一点 Pt.ln t , f x 1 , f t 1 ,即经过 P 的
1 e2 e
,故选 C.
e
考点:1.求切线方程;2.函数的单调性;3.两点间距离公式. 【方法点晴】本题主要考查了利用导数研究曲线上任意一点的切线方程,属于中档题.
由圆心到圆上任意一点的距离为1,本题转化为圆心 C e 1 ,0 到函数 f x ln x 上
e
1
一点距离的最小值,由导数的几何意义,求出切线斜率为 ,由两直线垂直的条件,求出
2022年高考数学真题分专题训练专题:导数的综合应用(教师版含解析)
专题09导数的综合应用1.(2021年全国高考乙卷数学(文)试题)已知函数32()1f x x x ax .(1)讨论 f x 的单调性;(2)求曲线 y f x 过坐标原点的切线与曲线 y f x 的公共点的坐标.【答案】(1)答案见解析;(2)和 11a ,.【分析】(1)由函数的解析式可得: 232f x x x a ,导函数的判别式412a ,当14120,3a a 时, 0,f x f x 在R 上单调递增,当时,的解为:1211,32x x ,当1,3x时,单调递增;当11311333x时,单调递减;当13x时,单调递增;综上可得:当时,在R 上单调递增,当时,在1,3,1,3上单调递增,在113113,33上单调递减.(2)由题意可得: 3200001f x x x ax , 200032f x x x a ,则切线方程为: 322000000132y x x ax x x a x x ,切线过坐标原点,则: 32200000001320x x ax x x a x ,整理可得:3200210x x ,即:20001210x x x ,解得:,则, 0'()11f x f a切线方程为: 1y a x ,与联立得321(1)x x ax a x ,化简得3210x x x ,由于切点的横坐标1必然是该方程的一个根,1x 是321x x x 的一个因式,∴该方程可以分解因式为2110,x x 解得121,1x x , 11f a ,综上,曲线过坐标原点的切线与曲线的公共点的坐标为和 11a ,.2.(2021年全国高考乙卷数学(理)试题)设函数 ln f x a x ,已知0x 是函数 y xf x 的极值点.(1)求a ;(2)设函数()()()x f x g x xf x .证明: 1g x .【答案】1;证明见详解【分析】(1)由 n 1'l a f x a x f x x , 'ln x y a x x ay xf x ,又0x 是函数 y xf x 的极值点,所以 '0ln 0y a ,解得1a ;(2)由(1)得 ln 1f x x ,ln 1()()()ln 1x x x f x g x xf x x x ,1x 且0x ,当 0,1x 时,要证ln 1()1ln 1x x g x x x , 0,ln 10x x ∵, ln 10x x ,即证 ln 1ln 1x x x x ,化简得 1ln 10x x x ;同理,当 ,0x 时,要证ln 1()1ln 1x x g x x x , 0,ln 10x x ∵, ln 10x x ,即证 ln 1ln 1x x x x ,化简得 1ln 10x x x ;令 1ln 1h x x x x ,再令1t x ,则 0,11,t ,1x t ,令 1ln g t t t t , '1ln 1ln g t t t ,当 0,1t 时, '0g x , g x 单减,假设 1g 能取到,则 10g ,故 10g t g ;当 1,t 时, '0g x , g x 单增,假设 1g 能取到,则 10g ,故 10g t g ;综上所述,ln 1()1ln 1x x g x x x 在 ,00,1x 恒成立3.(2021年全国高考甲卷数学(文)试题)设函数22()3ln 1f x a x ax x ,其中0a .(1)讨论 f x 的单调性;(2)若 y f x 的图像与x 轴没有公共点,求a 的取值范围.【答案】(1) f x 的减区间为10,a,增区间为1,+a;(2)1a e .【分析】(1)函数的定义域为 0, ,又 23(1)()ax ax f x x,因为0,0a x ,故230ax ,当10x a 时,()0f x ;当1x a时,()0f x ;所以 f x 的减区间为10,a,增区间为1,+a .(2)因为 2110f a a 且 y f x 的图与x 轴没有公共点,所以 y f x 的图象在x 轴的上方,由(1)中函数的单调性可得 min 1133ln 33ln f x f a a a,故33ln 0a 即1a e.4.(2021年全国高考甲卷数学(理)试题)已知0a 且1a ,函数()(0)a x x f x x a.(1)当2a 时,求 f x 的单调区间;(2)若曲线 y f x 与直线1y 有且仅有两个交点,求a 的取值范围.【答案】(1)20,ln2上单调递增;2,ln2上单调递减;(2) 1,,e e .【分析】(1)当2a 时,令 '0f x 得2ln 2x,当20ln 2x 时, 0f x ,当2ln 2x 时, 0f x ,∴函数 f x 在20,ln2上单调递增;2,ln2上单调递减;(2) ln ln 1ln ln a x a x x x a f x a x x a a x a x a,设函数 ln x g x x ,则 21ln x g x x,令 0g x ,得x e ,在 0,e 内 0g x , g x 单调递增;在 ,e 上 0g x , g x 单调递减;1max g x g e e,又 10g ,当x 趋近于 时, g x 趋近于0,所以曲线 y f x 与直线1y 有且仅有两个交点,即曲线 y g x 与直线ln a y a有两个交点的充分必要条件是ln 10a a e ,这即是 0g a g e ,所以a 的取值范围是 1,,e e .5.(2021年全国新高考Ⅰ卷数学试题)已知函数 1ln f x x x .(1)讨论 f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b ,证明:112e a b.【答案】(1) f x 的递增区间为 0,1,递减区间为 1,+ ;(2)证明见解析.【分析】(1)函数的定义域为 0, ,又 1ln 1ln f x x x ,当 0,1x 时, 0f x ,当 1,+x 时, 0f x ,故 f x 的递增区间为 0,1,递减区间为 1,+ .(2)因为ln ln b a a b a b ,故 ln 1ln +1b a a b ,即ln 1ln +1a b a b ,故11f f a b,设1211,x x a b,由(1)可知不妨设1201,1x x .因为 0,1x 时, 1ln 0f x x x , ,x e 时, 1ln 0f x x x ,故21x e .先证:122x x ,若22x ,122x x 必成立.若22x ,要证:122x x ,即证122x x ,而2021x ,故即证 122f x f x ,即证: 222f x f x ,其中212x .设 2,12g x f x f x x ,则 2ln ln 2g x f x f x x x ln 2x x ,因为12x ,故 021x x ,故 ln 20x x ,所以 0g x ,故 g x 在 1,2为增函数,所以 10g x g ,故 2f x f x ,即 222f x f x 成立,所以122x x 成立,综上,122x x 成立.设21x tx ,则1t ,结合ln 1ln +1a b a b ,1211,x x a b 可得: 11221ln 1ln x x x x ,即: 111ln 1ln ln x t t x ,故11ln ln 1t t t x t ,要证:12x x e ,即证 11t x e ,即证 1ln 1ln 1t x ,即证: 1ln ln 111t t t t t ,即证: 1ln 1ln 0t t t t ,令 1ln 1ln ,1S t t t t t t ,则 112ln 11ln ln 111t S t t t t t t,先证明一个不等式: ln 1x x .设 ln 1u x x x ,则 1111x u x x x ,当10x 时, 0u x ;当0x 时, 0u x ,故 u x 在 1,0 上为增函数,在 0,+ 上为减函数,故 max 00u x u ,故 ln 1x x 成立由上述不等式可得当1t 时,112ln 11t t t,故 0S t 恒成立,故 S t 在 1, 上为减函数,故 10S t S ,故 1ln 1ln 0t t t t 成立,即12x x e 成立.综上所述,112e a b.6.(2021年全国新高考2卷数学试题)已知函数2()(1)x f x x e ax b .(1)讨论()f x 的单调性;(2)从下面两个条件中选一个,证明:()f x 有一个零点①21,222e a b a ;②10,22a b a .【答案】(1)答案见解析;(2)证明见解析.【解析】【分析】(1)首先求得导函数的解析式,然后分类讨论确定函数的单调性即可;(2)由题意结合(1)中函数的单调性和函数零点存在定理即可证得题中的结论.【详解】(1)由函数的解析式可得:'2x f x x e a ,当0a 时,若 ,0x ,则 '0,f x f x 单调递减,若 0,x ,则 '0,f x f x 单调递增;当102a 时,若,ln 2x a ,则 '0,f x f x 单调递增,若ln 2,0x a ,则 '0,f x f x 单调递减,若 0,x ,则 '0,f x f x 单调递增;当12a时, '0,f x f x 在R 上单调递增;当12a 时,若 ,0x ,则 '0,f x f x 单调递增,若0,ln 2x a ,则 '0,f x f x 单调递减,若ln 2,x a ,则 '0,f x f x 单调递增;(2)若选择条件①:由于2122e a ,故212a e ,则 21,010b af b ,而 210b f b b e ab b ,而函数在区间 ,0 上单调递增,故函数在区间 ,0 上有一个零点.2ln 22ln 21ln 2f a a a a a b 22ln 21ln 22a a a a a22ln 2ln 2a a a a ln 22ln 2a a a ,由于2122e a ,212a e ,故 ln 22ln 20a a a ,结合函数的单调性可知函数在区间 0, 上没有零点.综上可得,题中的结论成立.若选择条件②:由于102a ,故21a ,则 01210f b a ,当0b 时,24,42e a ,2240f e a b ,而函数在区间 0, 上单调递增,故函数在区间 0, 上有一个零点.当0b 时,构造函数 1x H x e x ,则 1xH x e ,当 ,0x 时, 0,H x H x 单调递减,当 0,x 时, 0,H x H x 单调递增,注意到 00H ,故 0H x 恒成立,从而有:1x e x ,此时:22111x f x x e ax b x x ax b 211a x b ,当x 2110a x b ,取01x,则 00f x ,即:00,10f f,而函数在区间 0, 上单调递增,故函数在区间 0, 上有一个零点.2ln 22ln 21ln 2f a a a a a b 22ln 21ln 22a a a a a22ln 2ln 2a a a a ln 22ln 2a a a ,由于102a ,021a ,故 ln 22ln 20a a a ,结合函数的单调性可知函数在区间 ,0 上没有零点.综上可得,题中的结论成立.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.7.(2021年天津卷数学试题)已知0a ,函数()x f x ax xe .(I )求曲线()y f x 在点(0,(0))f 处的切线方程:(II )证明()f x 存在唯一的极值点(III )若存在a ,使得()f x a b 对任意x R 成立,求实数b 的取值范围.【答案】(I )(1),(0)y a x a ;(II )证明见解析;(III ),e 【解析】【分析】(I )求出 f x 在0x 处的导数,即切线斜率,求出 0f ,即可求出切线方程;(II )令 0f x ,可得(1)x a x e ,则可化为证明y a 与 y g x 仅有一个交点,利用导数求出 g x 的变化情况,数形结合即可求解;(III )令 2()1,(1)xh x x x e x ,题目等价于存在(1,)x ,使得()h x b ,即min ()b h x ,利用导数即可求出 h x 的最小值.【详解】(I )()(1)x f x a x e ,则(0)1f a ,又(0)0f ,则切线方程为(1),(0)y a x a ;(II )令()(1)0x f x a x e ,则(1)x a x e ,令()(1)x g x x e ,则()(2)x g x x e ,当(,2)x 时,()0g x , g x 单调递减;当(2,)x 时,()0g x , g x 单调递增,当x 时, 0g x , 10g ,当x 时, 0g x ,画出 g x 大致图像如下:所以当0a 时,y a 与 y g x 仅有一个交点,令 g m a ,则1m ,且()()0f m a g m ,当(,)x m 时,()a g x ,则()0f x , f x 单调递增,当 ,x m 时,()a g x ,则()0f x , f x 单调递减,x m 为 f x 的极大值点,故()f x 存在唯一的极值点;(III )由(II )知max ()()f x f m ,此时)1(1,m a m e m ,所以 2max {()}()1(1),m f x a f m a m m e m ,令 2()1,(1)x h x x x e x ,若存在a ,使得()f x a b 对任意x R 成立,等价于存在(1,)x ,使得()h x b ,即min ()b h x , 2()2(1)(2)x x h x x x e x x e ,1x ,当(1,1)x 时,()0h x , h x 单调递减,当(1,)x 时,()0h x , h x 单调递增,所以min ()(1)h x h e ,故b e ,所以实数b 的取值范围 ,e .【点睛】关键点睛:第二问解题的关键是转化为证明y a 与 y g x 仅有一个交点;第三问解题的关键是转化为存在(1,)x ,使得()h x b ,即min ()b h x .8.(2021年浙江卷数学试题)设a ,b 为实数,且1a ,函数 2R ()x f x a bx e x(1)求函数 f x 的单调区间;(2)若对任意22b e ,函数 f x 有两个不同的零点,求a 的取值范围;(3)当a e 时,证明:对任意4b e ,函数 f x 有两个不同的零点12,x x ,满足2212ln 2b b e x x e b .(注: 2.71828e 是自然对数的底数)【答案】(1)0b 时,()f x 在R 上单调递增;0b 时,函数的单调减区间为,log ln a b a ,单调增区间为log ,ln a b a;(2)21,e ;(3)证明见解析.【解析】【分析】(1)首先求得导函数的解析式,然后分类讨论即可确定函数的单调性;(2)将原问题进行等价转化,然后构造新函数,利用导函数研究函数的性质并进行放缩即可确定实数a 的取值范围;(3)结合(2)的结论将原问题进行等价变形,然后利用分析法即可证得题中的结论成立.【详解】(1)2(),()ln x x f x b f a x e a x a b ,①若0b ,则()ln 0x f x a a b ,所以()f x 在R 上单调递增;②若0b ,当,log ln a b x a时, '0,f x f x 单调递减,当log ,ln a b x a时, '0,f x f x 单调递增.综上可得,0b 时,()f x 在R 上单调递增;0b 时,函数的单调减区间为,log ln a b a ,单调增区间为log ,ln a b a.(2)()f x 有2个不同零点20x a bx e 有2个不同解ln 20x a e bx e 有2个不同的解,令ln t x a ,则220,0ln ln t tb b e e e e t a a t t ,记22222(1)(),()t t t t e t e e e e e t e g t g t t t t ,记2()(1),()(1)10t t t t h t e t e h t e t e e t ,又(2)0h ,所以(0,2)t 时,()0,(2,)h t t 时,()0h t ,则()g t 在(0,2)单调递减,(2,) 单调递增,22(2),ln ln b b g e a a e,22222,ln ,21b b e a a e e∵.即实数a 的取值范围是21,e .(3)2,()x a e f x e bx e 有2个不同零点,则2x e e bx ,故函数的零点一定为正数.由(2)可知有2个不同零点,记较大者为2x ,较小者为1x ,1222412x x e e e e b e x x ,注意到函数2x e e y x在区间 0,2上单调递减,在区间 2, 上单调递增,故122x x ,又由5245e e e 知25x ,122211122x e e e e b x x x b,要证2212ln 2b b e x x e b ,只需22ln e x b b,222222x x e e e b x x 且关于b 的函数 2ln e g b b b在4b e 上单调递增,所以只需证 22222222ln 52x x e x e x x x e,只需证2222222ln ln 02x x x e x e e x e ,只需证2ln ln 202x e x x e,242e ∵,只需证4()ln ln 2x x h x x e 在5x 时为正,由于 11()44410x x x h x xe e e x x x,故函数 h x 单调递增,又54520(5)ln 5l 20n 2ln 02h e e ,故4()ln ln 2x x h x x e 在5x 时为正,从而题中的不等式得证.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.9.(2021年北京卷数学试题)已知函数 232x f x x a.(1)若0a ,求 y f x 在 1,1f 处切线方程;(2)若函数 f x 在1x 处取得极值,求 f x 的单调区间,以及最大值和最小值.【答案】(1)450x y ;(2)函数 f x 的增区间为 ,1 、 4, ,单调递减区间为 1,4 ,最大值为1,最小值为14.【解析】【分析】(1)求出 1f 、 1f 的值,利用点斜式可得出所求切线的方程;(2)由 10f 可求得实数a 的值,然后利用导数分析函数 f x 的单调性与极值,由此可得出结果.【详解】(1)当0a 时, 232x f x x ,则 323x f x x, 11f , 14f ,此时,曲线 y f x 在点1,1f 处的切线方程为 141y x ,即450x y ;(2)因为 232x f x x a ,则 222222223223x a x x x x a f x x a x a ,由题意可得224101a f a ,解得4a ,故 2324x f x x ,222144x x f x x ,列表如下:x,1 1 1,4 4 4,f x 0 0 f x 增极大值减极小值增所以,函数 f x 的增区间为 ,1 、 4, ,单调递减区间为 1,4 .当32x 时, 0f x ;当32x 时, 0f x .所以, max 11f x f , min 144f x f .。
【高中数学】习题课 导数的综合应用
习题课导数的综合应用题型一导数在解决实际问题中的应用【例1】某知名保健品企业新研发了一种健康饮品.已知每天生产该种饮品最多不超过40千瓶,最少1千瓶,经检测知生产过程中该饮品的正品率P与日产量x(x∈N*,单位:千瓶)间的关系为P=4 200-x24 500,每生产一瓶正品盈利4元,每生产一瓶次品亏损2元.(注:正品率=饮品的正品瓶数÷饮品总瓶数×100%)(1)将日利润y(元)表示成日产量x的函数;(2)求该种饮品的最大日利润.解(1)由题意,知每生产1千瓶正品盈利4 000元,每生产1千瓶次品亏损2 000元,故y=4 000×4 200-x24 500x-2 000⎝⎛⎭⎪⎫1-4 200-x24 500x=3 600x-43x3.所以日利润y=-43x3+3 600x(x∈N*,1≤x≤40).(2)令f(x)=-43x3+3 600x,x∈[1,40],则f′(x)=3 600-4x2.令f′(x)=0,解得x=30或x=-30(舍去).当1≤x<30时,f′(x)>0;当30<x≤40时,f′(x)<0,所以函数f(x)在[1,30)上单调递增,在(30,40]上单调递减,所以当x=30时,函数f(x)取得极大值,也是最大值,为f(30)=-43×303+3 600×30=72 000,也即y的最大值为72 000,所以该种饮品的最大日利润为72 000元.规律方法利用导数解决实际应用问题的步骤(1)函数建模:细致分析实际问题中各个量之间的关系,正确设定所求最大值或最小值的变量y 与自变量x ,把实际问题转化为数学问题,即列出函数关系式y =f (x ). (2)确定定义域:一定要从问题的实际意义去考虑,舍去没有实际意义的自变量的范围.(3)求最值:尽量使用导数法求出函数的最值. (4)下结论:根据问题的实际意义给出圆满的答案.【训练1】 如图,要设计一面矩形广告牌,该广告牌含有大小相等的左右两个矩形栏目(即图中阴影部分),这两个栏目的面积之和为18 000 cm 2,四周空白的宽度为10 cm ,两栏目之间的中缝空白的宽度为5 cm.怎样确定广告牌的高与宽的尺寸(单位:cm),能使矩形广告牌的面积最小?解 设广告牌的高和宽分别为x cm ,y cm , 则每个栏目的高和宽分别为(x -20)cm ,y -252 cm , 其中x >20,y >25.∵两个栏目的面积之和为2(x -20)·y -252=18 000,∴y =18 000x -20+25, ∴广告牌的面积S (x )=x ⎝ ⎛⎭⎪⎫18 000x -20+25=18 000xx -20+25x ,∴S ′(x )=18 000[(x -20)-x ](x -20)2+25=-360 000(x -20)2+25.令S ′(x )>0,得x >140;令S ′(x )<0,得20<x <140.∴函数S (x )在(140,+∞)上单调递增,在(20,140)上单调递减, ∴S (x )的最小值为S (140).当x =140时,y =175,故当广告牌的高为140 cm ,宽为175 cm 时,可使广告牌的面积最小,最小面积为24 500 cm 2.题型二 与最值有关的恒成立问题【例2】设函数f(x)=tx2+2t2x+t-1(x∈R,t>0).(1)求f(x)的最小值h(t);(2)若h(t)<-2t+m对t∈(0,2)恒成立,求实数m的取值范围.解(1)∵f(x)=t(x+t)2-t3+t-1(x∈R,t>0),∴当x=-t时,f(x)取最小值f(-t)=-t3+t-1,即h(t)=-t3+t-1.(2)令g(t)=h(t)-(-2t+m)=-t3+3t-1-m,由g′(t)=-3t2+3=0得t=1,t=-1(不合题意,舍去).当t变化时g′(t)、g(t)的变化情况如下表:∴对t∈(0,2),当maxh(t)<-2t-m对t∈(0,2)恒成立,也就是g(t)<0对t∈(0,2)恒成立,只需g(t)max=1-m<0,∴m>1.故实数m的取值范围是(1,+∞).规律方法(1)“恒成立”问题向最值问题转化是一种常见的题型,一般地,可采用分离参数法进行转化.λ≥f(x)恒成立⇔λ≥[f(x)]max;λ≤f(x)恒成立⇔λ≤[f(x)]min.对于不能分离参数的恒成立问题,直接求含参函数的最值即可.(2)此类问题特别要小心“最值能否取得到”和“不等式中是否含等号”的情况,以此来确定参数的范围能否取得“=”.【训练2】设函数f(x)=2x3-9x2+12x+8c,(1)若对任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围;(2)若对任意的x∈(0,3),都有f(x)<c2成立,求c的取值范围.解(1)∵f′(x)=6x2-18x+12=6(x-1)(x-2).∴当x∈(0,1)时,f′(x)>0,f(x)单调递增;当x∈(1,2)时,f′(x)<0,f(x)单调递减;当x∈(2,3)时,f′(x)>0,f(x)单调递增.∴当x=1时,f(x)取极大值f(1)=5+8c.又f(3)=9+8c>f(1),∴x∈[0,3]时,f(x)的最大值为f(3)=9+8c. ∵对任意的x∈[0,3],有f(x)<c2恒成立,∴9+8c<c2,即c<-1或c>9.∴c的取值范围为(-∞,-1)∪(9,+∞).(2)由(1)知f(x)<f(3)=9+8c,∴9+8c≤c2,即c≤-1或c≥9,∴c的取值范围为(-∞,-1]∪[9,+∞). 题型三利用导数证明不等式【例3】已知函数f(x)=ln x-a(x-1)x(a∈R).(1)求函数f(x)的单调区间;(2)求证:对于任意x∈(1,2),不等式1ln x-1x-1<12恒成立.(1)解易知f(x)的定义域为(0,+∞),f′(x)=x-a x2.①若a≤0,则f′(x)>0,f(x)在(0,+∞)上单调递增;②若a>0,当x∈(0,a)时,f′(x)<0,f(x)在(0,a)上单调递减,当x∈(a,+∞)时,f′(x)>0,f(x)在(a,+∞)上单调递增.综上,当a≤0时,f(x)的单调递增区间为(0,+∞),无单调递减区间;当a>0时,f(x)的单调递增区间为(a,+∞),单调递减区间为(0,a). (2)证明∵1<x<2,∴1ln x-1x-1<12等价于(x+1)ln x-2(x-1)>0,令F(x)=(x+1)ln x-2(x-1),即F′(x)=ln x+x+1x-2=ln x+1x-1.由(1)知,当a=1时,f(x)=ln x-1+1x在[1,+∞)上单调递增,∴当x∈[1,2)时,f(x)≥f(1),即ln x +1x -1≥0,F ′(x )≥0, ∴F (x )在[1,2)上单调递增, ∴当x ∈(1,2)时,F (x )>F (1)=0, 即当1<x <2时,1ln x -1x -1<12恒成立.规律方法 (1)证明f (x )>g (x )的一般方法是证明h (x )=f (x )-g (x )>0(利用单调性),特殊情况是证明f (x )min >g (x )max (最值方法),但后一种方法不具备普遍性. (2)证明二元不等式的基本思想是化为一元不等式,一种方法为变换不等式两个变元成为一个整体,另一种方法为转化后利用函数的单调性,如不等式f (x 1)+g (x 1)<f (x 2)+g (x 2)对x 1<x 2恒成立,即等价于函数h (x )=f (x )+g (x )为增函数. 【训练3】 设函数f (x )=ln x -x +1. (1)讨论f (x )的单调性;(2)证明当x ∈(1,+∞)时,1<x -1ln x <x . (1)解 依题意,f (x )的定义域为(0,+∞). f ′(x )=1x -1,令f ′(x )=0,得x =1. ∴当0<x <1时,f ′(x )>0,f (x )单调递增. 当x >1时,f ′(x )<0,f (x )单调递减.(2)证明 由(1)知f (x )在x =1处取得最大值,且最大值f (1)=0. 所以当x ≠1时,ln x <x -1. 故当x ∈(1,+∞)时,x -1ln x >1, 又可将1x 代入ln x <x -1,得ln 1x <1x -1, 即-ln x <1x -1⇔ln x >1-1x ⇔ln x >x -1x ⇔x >x -1ln x , 故当x ∈(1,+∞)时恒有1<x -1ln x <x .题型四 利用导数解决函数的零点或方程的根问题 【例4】 已知函数f (x )=ln x +ax -1,(1)求f (x )的单调区间;(2)当a ≤1时,求函数f (x )在区间(0,e]上零点的个数. 解 (1)f ′(x )=1-ln x -a x2,令f ′(x )=0,得x =e 1-a. f ′(x )及f (x )随x 的变化情况如下表:所以f (x )(2)由(1)可知f (x )的最大值为f (e1-a)=1-e 1-a e1-a ,①当a =1时,f (x )在区间(0,1)上单调递增,在区间(1,e)上单调递减. 又f (1)=0,故f (x )在区间(0,e]上只有一个零点. ②当a <1时,1-a >0,e 1-a >1, 则f (e1-a)=1-e 1-ae1-a <0,所以f (x )在区间(0,e]上无零点.综上,当a =1时,f (x )在区间(0,e]上只有一个零点, 当a <1时,f (x )在区间(0,e]上无零点.规律方法 利用导数研究函数的零点或方程根的方法是借助于导数研究函数的单调性,极值(最值),通过极值或最值的正负、函数的单调性判断函数图象走势,从而判断零点个数或者通过零点的个数求参数范围.【训练4】 若函数f (x )=ax 3-bx +4,当x =2时,函数f (x )取得极值-43. (1)求函数f (x )的解析式;(2)若方程f (x )=k 有3个不同的实数根,求实数k 的取值范围. 解 (1)对f (x )求导得f ′(x )=3ax 2-b , 由题意得⎩⎪⎨⎪⎧f ′(2)=12a -b =0,f (2)=8a -2b +4=-43,解得a =13,b =4(经检验满足题意).∴f (x )=13x 3-4x +4.(2)由(1)可得f ′(x )=x 2-4=(x -2)(x +2). 令f ′(x )=0,得x =2或x =-2.∴当x <-2或x >2时,f ′(x )>0;当-2<x <2时,f ′(x )<0.因此,当x =-2时,f (x )取得极大值283,当x =2时,f (x )取得极小值-43. ∴函数f (x )=13x 3-4x +4的大致图象如图所示. 由图可知,实数k 的取值范围是⎝ ⎛⎭⎪⎫-43,283.一、素养落地1.通过学习利用导数解决实际应用问题、培养学生数学建模素养,通过学习利用导数解决不等式问题及函数零点问题,提升数学运算素养.2.正确理解题意,建立数学模型,利用导数求解是解应用题的主要方法.另外需要特别注意:(1)合理选择变量,正确给出函数表达式; (2)与实际问题相联系;(3)必要时注意分类讨论思想的应用.3.利用导数解决不等式问题与利用导数解决函数的零点问的一般方法都是转化为函数的极值或最值问题. 二、素养训练1.设底为等边三角形的直三棱柱的体积为V ,那么其表面积最小时底面边长为( )A.3V B.32VC.34VD.23V解析 设底面边长为x , 则表面积S =32x 2+43x V (x >0). ∴S ′=3x 2(x 3-4V ).令S ′=0,得x =34V . 答案 C2.已知f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意的正数a ,b ,若a <b ,则必有( ) A.bf (b )≤af (a ) B.bf (a )≤af (b ) C.af (a )≤bf (b )D.af (b )≤bf (a )解析 设g (x )=xf (x ),x ∈(0,+∞), 则g ′(x )=xf ′(x )+f (x )≤0,∴g (x )在区间(0,+∞)上单调递减或g (x )为常函数. ∵a <b ,∴g (a )≥g (b ),即af (a )≥bf (b ),故选A. 答案 A3.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获取最大年利润的年产量为( ) A.13万件 B.11万件 C.9万件D.7万件 解析 因为y ′=-x 2+81,所以当x >9时,y ′<0;当x ∈(0,9)时,y ′>0.所以,函数y =-13x 3+81x -234在(9,+∞)上单调递减,在(0,9)上单调递增. 所以x =9是函数的极大值点.又因为函数在(0,+∞)上只有一个极大值点, 所以函数在x =9处取得最大值. 答案 C4.直线y =a 与函数y =x 3-3x 的图象有三个相异的交点,则a 的取值范围是________.解析f′(x)=3x2-3,令f′(x)=0,得x=1或x=-1.因为当x∈(-∞,-1)∪(1,+∞)时,f′(x)>0,当x∈(-1,1)时,f′(x)<0,所以f(x)极小值=f(1)=-2,f(x)极大值=f(-1)=2.函数y=x3-3x的大致图象如图所示,所以-2<a<2.答案(-2,2)三、审题答题示范(二)利用导数解决不等式问题【典型示例】(12分)已知函数f(x)=ax-e x(a∈R),g(x)=ln x x.(1)求函数f(x)的单调区间①;(2)∃x∈(0,+∞),使不等式f(x)≤g(x)-e x成立②,求a的取值范围.联想解题看到①想到解不等式f′(x)>0求f(x)的单调增区间,解不等式f′(x)<0求f(x)的单调减区间,但需注意讨论不等式中参数a的符号;看到②想到通过分离参数a构造新函数,把不等式问题转化为求函数的最值问题,需注意的是条件为“∃x”,而不是“∀x”,所以要弄清楚问题是求函数的最大值还是最小值.满分示范解(1)因为f′(x)=a-e x,x∈R.当a≤0时,f′(x)<0,f(x)在R上单调递减;2分当a>0时,令f′(x)=0,得x=ln a.由f′(x)>0,得f(x)的单调递增区间为(-∞,ln a);由f′(x)<0,得f(x)的单调递减区间为(ln a,+∞).综上所述,当a≤0时,f(x)的单调递减区间为(-∞,+∞),无单调递增区间;当a>0时,f(x)的单调递增区间为(-∞,ln a),单调递减区间为(ln a,+∞).4分(2)因为∃x ∈(0,+∞),使不等式f (x )≤g (x )-e x , 则ax ≤ln x x ,即a ≤ln xx 2.6分设h (x )=ln x x 2,则问题转化为a ≤⎝ ⎛⎭⎪⎫ln x x 2max ,由h ′(x )=1-2ln xx 3,令h ′(x )=0,得x = e.当x 在区间(0,+∞)内变化时,h ′(x ),h (x )随x 变化的变化情况如下表:x (0,e) e (e ,+∞)h ′(x ) +0 - h (x )极大值12e10分由上表可知,当x =e 时,函数h (x )有极大值,即最大值为12e ,所以a ≤12e . 故a 的取值范围是⎝ ⎛⎦⎥⎤-∞,12e .12分满分心得(1)涉及含参数的函数的单调区间,一般要分类讨论,要依据参数对不等式解集的影响进行分类讨论.(2)解决不等式“恒成立”或“能成立”问题首先要构造函数,利用导数求出最值、求出参数的取值范围,也可分离参数、构造函数,直接把问题转化为求函数的最值.基础达标一、选择题1.对任意的x ∈R ,函数f (x )=x 3+ax 2+7ax 不存在极值点的充要条件是( ) A.0≤a ≤21 B.a =0或a =7 C.a <0或a >21D.a =0或a =21解析 f ′(x )=3x 2+2ax +7a , 当Δ=4a 2-84a ≤0,即0≤a ≤21时,f ′(x )≥0恒成立,函数f (x )不存在极值点. 答案 A2.定义在R 上的函数f (x ),若(x -1)·f ′(x )<0,则下列各项正确的是( ) A.f (0)+f (2)>2f (1) B.f (0)+f (2)=2f (1) C.f (0)+f (2)<2f (1)D.f (0)+f (2)与2f (1)大小不定 解析 ∵(x -1)f ′(x )<0,∴当x >1时,f ′(x )<0;当x <1时,f ′(x )>0,则f (x )在(1,+∞)上单调递减,在(-∞,1)上单调递增, ∴f (0)<f (1),f (2)<f (1), 则f (0)+f (2)<2f (1). 答案 C3.已知函数f (x )=x -sin x ,则不等式f (x +1)+f (2-2x )>0的解集是( ) A.⎝ ⎛⎭⎪⎫-∞,-13 B.⎝ ⎛⎭⎪⎫-13,+∞ C.(-∞,3)D.(3,+∞)解析 因为f (x )=x -sin x ,所以f (-x )=-x +sin x =-f (x ),即函数f (x )为奇函数,函数的导数f ′(x )=1-cos x ≥0,则函数f (x )是增函数,则不等式f (x +1)+f (2-2x )>0等价为f (x +1)>-f (2-2x )=f (2x -2),即x +1>2x -2,解得x <3,故不等式的解集为(-∞,3). 答案 C4.方底无盖水箱的容积为256,则最省材料时,它的高为( ) A.4 B.6 C.4.5D.8解析 设底面边长为x ,高为h , 则V (x )=x 2·h =256,∴h =256x 2,∴S (x )=x 2+4xh =x 2+4x ·256x 2=x 2+4×256x ,∴S ′(x )=2x -4×256x 2.令S ′(x )=0,解得x =8,∴h =25682=4. 答案 A5.若函数f (x )=x 2e x -a 恰有三个零点,则实数a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫4e 2,+∞ B.⎝ ⎛⎭⎪⎫0,4e 2 C.(0,4e 2)D.(0,+∞)解析 令g (x )=x 2e x , 则g ′(x )=2x e x +x 2e x =x e x (x +2). 令g ′(x )=0,得x =0或-2,∴g (x )在(-2,0)上单调递减,在(-∞,-2),(0,+∞)上单调递增. ∴g (x )极大值=g (-2)=4e 2,g (x )极小值=g (0)=0, 又f (x )=x 2e x -a 恰有三个零点,则0<a <4e 2. 答案 B 二、填空题6.某厂生产某种商品x 件的总成本c (x )=1 200+275x 3(单位:万元),已知产品单价的平方与产品件数x 成反比,生产100件这样的产品单价为50万元,则产量定为________件时,总利润最大.解析 设产品的单价为p 万元,根据已知,可设p 2=k x , 其中k 为比例系数.因为当x =100时,p =50,所以k =250 000. 所以p 2=250 000x ,p =500x ,x >0.设总利润为y 万元,y =500x ·x -1 200-275x 3=500x -275x 3-1 200.则y ′=250x -225x 2. 令y ′=0,得x =25.故当0<x <25时,y ′>0,当x >25时,y ′<0,所以,当x =25时,函数y 取得极大值,也是最大值. 答案 257.已知函数f (x )=2x ln x ,g (x )=-x 2+ax -3对一切x ∈(0,+∞),f (x )≥g (x )恒成立,则a 的取值范围是________. 解析 由2x ln x ≥-x 2+ax -3, 得a ≤2ln x +x +3x . 设h (x )=2ln x +3x +x (x >0).则h ′(x )=2x -3x 2+1=(x +3)(x -1)x 2,当x ∈(0,1)时,h ′(x )<0,h (x )单调递减, 当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增. ∴h (x )min =h (1)=4.又f (x )≥g (x )恒成立,∴a ≤4. 答案 (-∞,4]8.已知函数f (x )=x 2-2ln x ,若关于x 的不等式f (x )-m ≥0在[1,e]上有实数解,则实数m 的取值范围是________. 解析 由f (x )-m ≥0得f (x )≥m , 函数f (x )的定义域为(0,+∞), f ′(x )=2x -2x =2(x 2-1)x ,当x ∈[1,e]时,f ′(x )≥0,此时,函数f (x )单调递增,所以f (1)≤f (x )≤f (e). 即1≤f (x )≤e 2-2,要使f (x )-m ≥0在[1,e]上有实数解,则有m ≤e 2-2. 答案 (-∞,e 2-2] 三、解答题9.已知函数f (x )=a +x ·ln x (a ∈R ),试求f (x )的零点个数. 解 f ′(x )=(x )′ln x +x ·1x =x (ln x +2)2x,令f ′(x )>0,解得x >e -2, 令f ′(x )<0,解得0<x <e -2, 所以f (x )在(0,e -2)上单调递减, 在(e -2,+∞)上单调递增. f (x )min =f (e -2)=a -2e ,显然当a >2e 时,f (x )min >0,f (x )无零点, 当a =2e 时,f (x )min =0,f (x )有1个零点, 当a <2e 时,f (x )min <0,f (x )有2个零点.10.一艘轮船在航行中每小时的燃料费和它的速度的立方成正比.已知速度为每小时10海里时,燃料费是每小时6元,而其他与速度无关的费用是每小时96元, 问轮船的速度是多少时,航行1海里所需的费用总和最小?解 设速度为v 海里的燃料费每小时p 元,那么由题设的比例关系得p =k ·v 3,其中k 为比例系数,它可以由v =10,p =6求得,即k =6103=0.006,于是有p =0.006v 3. 又设当船的速度为v 海里时,行1海里所需的总费用为q 元,那么每小时所需的总费用是0.006v 3+96(元),而行1海里所需时间为1v 小时,所以,行1海里的总费用为:q =1v (0.006v 3+96)=0.006v 2+96v . q ′=0.012v -96v 2=0.012v 2(v 3-8 000), 令q ′=0,解得v =20.∴当v <20时,q ′<0; 当v >20时,q ′>0,∴当v =20时q 取得极小值,也是最小值,即速度为20海里/时时,航行1海里所需费用总和最小.能力提升11.已知函数f (x )=e x -ln(x +3),则下列有关描述正确的是( ) A.∀x ∈(-3,+∞),f (x )≥13B.∀x∈(-3,+∞),f(x)>-1 2C.∃x0∈(-3,+∞),f(x0)=-1D.f(x)min∈(0,1)解析因为f(x)=e x-ln(x+3),所以f′(x)=e x-1x+3,显然f′(x)在(-3,+∞)上是增函数,又f′(-1)=1e-12<0,f′(0)=23>0,所以f′(x)在(-3,+∞)上有唯一的零点,设为x0,且x0∈(-1,0),则x=x0为f(x)的极小值点,也是最小值点,且e x0=1x0+3,即x0=-ln(x0+3),故f(x)≥f(x0)=e x0-ln(x0+3)=1x0+3+x0>-12,故选B.答案 B12.已知函数f(x)=12x2-a ln x(a∈R),(1)若f(x)在x=2时取得极值,求a的值;(2)求f(x)的单调区间;(3)求证:当x>1时,12x2+ln x<23x3.(1)解f′(x)=x-ax,因为x=2是一个极值点,所以2-a2=0,则a=4.此时f′(x)=x-4x=(x+2)(x-2)x,因为f(x)的定义域是(0,+∞),所以当x∈(0,2)时,f′(x)<0;当x∈(2,+∞),f′(x)>0,所以当a=4时,x=2是一个极小值点,则a=4.(2)解因为f′(x)=x-ax=x2-ax,所以当a≤0时,f(x)的单调递增区间为(0,+∞).当a>0时,f′(x)=x-ax=x2-ax=(x+a)(x-a)x,当0<x<a时,f′(x)<0,当x>a时,f′(x)>0,所以函数f(x)的单调递增区间(a,+∞);递减区间为(0,a).(3)证明 设g (x )=23x 3-12x 2-ln x ,则g ′(x )=2x 2-x -1x =(x -1)(2x 2+x +1)x>0,又x >1,所以g (x )在x ∈(1,+∞)上为增函数,所以当x >1时,所以g (x )>g (1)=16>0,所以当x >1时,12x 2+ln x <23x 3.创新猜想13.(多选题)已知函数f (x )=x ln x +x 2,x 0是函数f (x )的极值点,以下几个结论中正确的是( ) A.0<x 0<1e B.x 0>1e C.f (x 0)+2x 0<0D.f (x 0)+2x 0>0解析 函数f (x )=x ln x +x 2(x >0),∴f ′(x )=ln x +1+2x , 易知f ′(x )=ln x +1+2x 在(0,+∞)上单调递增, ∵x 0是函数f (x )的极值点,∴f ′(x 0)=0, 即ln x 0+1+2x 0=0,而f ′⎝ ⎛⎭⎪⎫1e =2e >0,当x →0,f ′(x )→-∞,∴0<x 0<1e ,即A 选项正确,B 选项不正确;f (x 0)+2x 0=x 0ln x 0+x 20+2x 0=x 0(ln x 0+x 0+2)=-x 0(x 0-1)>0,即D 正确,C 不正确.故答案为AD. 答案 AD14.(多选题)已知函数f (x )=sin x +x 3-ax ,则下列结论正确的是( ) A.f (x )是奇函数B.若f (x )是增函数,则a ≤1C.当a =-3时,函数f (x )恰有两个零点D.当a =3时,函数f (x )恰有两个极值点解析 对A ,f (x )=sin x +x 3-ax 的定义域为R ,且f (-x )=sin(-x )+(-x )3+ax =-(sin x +x 3-ax )=-f (x ).故A 正确.对B ,f ′(x )=cos x +3x 2-a ,因为f (x )是增函数, 故cos x +3x 2-a ≥0恒成立.即a ≤cos x +3x 2恒成立.令g (x )=cos x +3x 2,则g ′(x )=6x -sin x ,设h(x)=6x-sin x,h′(x)=6-cos x>0,故g′(x)=6x-sin x单调递增,又g′(0)=0,故当x<0时g′(x)<0,当x>0时g′(x)>0.故g(x)=cos x+3x2最小值为g(0)=1.故a≤1.故B正确.对C,当a=-3时由B选项知,f(x)是增函数,故不可能有两个零点,故C错误. 对D,当a=3时f(x)=sin x+x3-3x,f′(x)=cos x+3x2-3,令cos x+3x2-3=0则有cos x=3-3x2.在同一坐标系中作出y=cos x,y=3-3x2的图象易得有两个交点,且交点左右的函数值大小不同.故函数f(x)恰有两个极值点.故D正确.故选ABD.答案ABD高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。
导数的综合应用
导数的综合应用类型一:导数的几何意义及应用例1.已知曲线3431)(3+=x x f 。
(1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)处的切线方程;(3)求一满足斜率为1的切线方程。
变式1.求曲线y=ln(2x-1)上的点到直线2x-y+3=0的最短距离.2.设函数f(x)=ax -b x,曲线y =f(x)在点(2,f(2))处的切线方程为7x -4y -12=0. (1)求f(x)的解析式;(2)证明曲线y =f(x)上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.2. (2010湖北)设函数f(x)=13x 3-a 2x 2+bx +c ,其中a >0.y =f(x)在P(0,f(0))处切线方程为y =1.(1)确定b 、c 的值;(2)设y =f(x)在点(x 1,f(x 1))及(x 2,f(x 2))处的切线都过点(0,2).证明:当x 1≠x 2时, 12()()f x f x ''≠;(3)若过点(0,2)可作曲线y =f(x)的三条不同切线,求a 的取值范围.类型二: 利用导数求解函数的单调性问题例2. 已知函数32()1f x x ax x =+++,a ∈R .(1)讨论函数()f x 的单调区间;(2)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围.变式1.已知函数x a x x f ln 21)(2-=)(R a ∈ (1)若函数)(x f 在2=x 处的切线方程为b x y +=,求b a ,的值;(2)若函数)(x f 在),1(+∞为增函数,求a 的取值范围。
2.已知函数32()(1)(2)f x x a x a a x b =+--++ (,)a b ∈R .(1)若函数()f x 的图象过原点,且在原点处的切线斜率是3-,求,a b 的值;(2)若函数()f x 在区间(1,1)-上不单调...,求a 的取值范围.类型三:求函数的极值问题例3.已知函数f(x)=kx +1x 2+c(c >0,且c≠1,k∈R)恰有一个极大值点和一个极小值点,其中一个是x =-c .(1)求函数f(x)的另一个极值点;(2)求函数f(x)的极大值M 和极小值m ,并求M -m≥1时k 的取值范围.变式1. 函数f(x)=x 3+ax 2+3x -9,已知f(x)有两个极值点x 1,x 2,则x 1·x 2= ( )A .9B .-9C .1D .-12.已知函数f(x)=13x 3-a 2x 2+2x +1,且x 1,x 2是f(x)的两个极值点, 0<x 1<1<x 2<3,则a 的取值范围_________.3.设函数f(x)=2x 3-3(a -1)x 2+1,其中a≥1.(1)求f(x)的单调区间;(2)讨论f(x)的极值.类型四:求解函数的最值问题例4.已知a 是实数,函数f(x)=x 2(x -a)。
高考数学专题复习《导数的综合应用》PPT课件
(1)∀x∈D,f(x)≤k⇔f(x)max≤k;∃x∈D,f(x)≤k⇔f(x)min≤k;
(2)∀x∈D,f(x)≤g(x) ⇔f(x)max≤g(x)min;∃x∈D,f(x)≤g(x) ⇔ f(x)min≤g(x)max.
4.含两个未知数的不等式(函数)问题的常见题型及具体转化策略
(+1)ln
H(x)=
,则
-1
1
=
--2ln
(-1)
2
,
2 -2+1
K'(x)= 2 >0,于是
K(x)在(1,+∞)上单调递增,
所以 K(x)>K(1)=0,于是 H'(x)>0,从而 H(x)在(1,+∞)上单调递增.由洛必达法
(x+1)x
则,可得 lim+
x-1
→1
取值范围是(-∞,2].
第三章
高考大题专项(一) 导数的综合应用
内
容
索
引
01
突破1
利用导数研究与不等式有关的问题
必备知识预案自诊
关键能力学案突破
02
突破2
利用导数研究与函数零点有关的问题
必备知识预案自诊
关键能力学案突破
【考情分析】
从近五年的高考试题来看,对导数在函数中的应用的考查常常是一大一小
两个题目,其中解答题的命题特点是:以三次函数、对数函数、指数函数及
(1)∀x1∈[a,b],x2∈[c,d],f(x1)>g(x2)⇔f(x)在[a,b]上的最小值>g(x)在[c,d]上的
最大值.
(2)∃x1∈[a,b],x2∈[c,d],f(x1)>g(x2)⇔f(x)在[a,b]上的最大值>g(x)在[c,d]上的
导数的综合应用
3 2
2
例2.已知 f ( x) x5 ax3 bx 1 ,当 x 1 时取得极值。且极大值比极小值大4。 (1)求a,b的值。 (2)求函数的极大值和极小值。
f ' x x 1 x 1 5 x 2 3a 5
当n 2时,f x 1
2
a ln x 1 ,
1 当a 0时,令f x 0得:
0
2 2 x1 1 1, x2 1 1, a a a x x1 x x2 此时f x 3 1 x 当x 1, x1 时,f x 0, f x 单调递减; 当x x1, 时,f x 0, f x 单调递增.
1 试确定a、b的值; 2 讨论函数f x 的单调区间; 2 3 若对任意x 0,不等式f x 2c
恒成立,求c的取值范围.
解: f 1 3 c , b c 3 c b 3. 1 1 x 4ax ln x ax 4bx 3 x 3 4a ln x a 4b 又f x 而f 1 0, a 4b 0,解得a 12.
证明: 由f ( x) e x,则f ( x) e 1. 1
x / x
当f ( x) e 1 0时,x 0,
/ x x
函数f ( x) e x在 0, 是增加的; 当f ( x) e 1 0时,x 0,
/ x
函数f ( x) e x在 , 是减少的; 0
20 当a 0时,f x 0恒成立,所以f x 无极值. 2 综上所述,当a>0时,f x 在x 1 取得 a 2 a 2 极小值,极小值为f 1 1 ln a 2 a 当a 0时,f x 无极值.
导数的应用(第1课时)利用导数研究函数的单调性(课件)高二数学(沪教版2020选择性必修第二册)
图 ( 1 ) 中的曲线越来越 “ 陡峭 ”, 在区间 ( 0 , 1 ) 上各点处 的切线斜率始终大于 1 ; 图 ( 2 ) 中的曲线由 “ 陡峭 ” 变得 “ 平缓 ”, 在区间 ( 0 , 1 ) 的右半段的切线斜率小于 1 ; 图 ( 3 ) 中的曲线由 “ 平缓 ” 变得 “ 陡峭 ”, 在区间 ( 0 , 1 ) 的左半段的切线斜率小于 1 ; 图 ( 4 ) 中的曲线越来越 “ 平缓 ”, 在区间 ( 0 , 1 ) 上各点处 的切线斜率始终小于 1. 因此 , 只有图 5-3-1 ( 1 ) 中的图像有可能表示函数 y = f( 可能成为严格递增区间与严格 递减区间的分界点 .
例4.确定函数(f x)=x2的单调区间 .
解函数在x 0处没有定义 .当x 0时,f (x)=-2x3,
方程f′( x )=0 无解 , 所以函数 f( x )没有驻点 . 但当 x >0 时 ,f′( x ) <0 ,f( x ) 单调递减 ; 当 x <0 时 ,f′( x) >0 , f( x ) 单调递增 . 可 见 , 函数 f ( x ) 的严格递增区间为 (-∞,0), 严格 递减区间为(0,+∞)
课本练习 宋老师数学精品工作室
1. 利用导数研究下列函数的单调性 , 并说明所得结果与你 之前的认识是否一致 :
宋老师数学精品工作室 2. 确定下列函数的单调区间 :
随堂检测 宋老师数学精品工作室
1、函数y=x2cos 2x的导数为( )
A.y′=2xcos 2x-x2sin 2x
B.y′=2xcos 2x-2x2sin 2x
上面我们用导数值的正负判断函数在某区间的单调性 . 但导数值还可 以进一步用以判断函数变化速度的快慢 : 导数f′( x 0 ) 是函数 f( x ) 在点 x 0 的切线的斜率 , 所以它描述了曲线 y=f( x ) 在点 x0 附近相 对于x轴的倾斜程度 : 当f′( x 0 ) >0 时 ,f′( x0 ) 越大 , 曲线 y = f ( x ) 在点 x 0 附近相对于 x 轴倾斜得越厉害 ,f( x ) 递增得 越快 ; 而当f′( x 0 ) <0 时 ,f′( x 0 ) 越小 , 曲线y = f ( x ) 在点 x0 附近相对于x轴倾斜得越厉害 , f ( x ) 递减得越快 . 综合这 两个方面 , 导数的绝对值越大 , 函数图像就越 “ 陡峭 ”, 也就是 函数值变化速度越快 .
高考理科数学《导数的综合应用》题型归纳与训练
理科数学《导数的综合应用》题型归纳与训练【题型归纳】题型一 含参数的分类讨论例1 已知函数3()12f x ax x =-,导函数为()f x ', (1)求函数()f x 的单调区间;(2)若(1)6,()f f x '=-求函数在[—1,3]上的最大值和最小值。
【答案】略【解析】(I )22()3123(4)f x ax ax '=-=-,(下面要解不等式23(4)0ax ->,到了分类讨论的时机,分类标准是零)当0,()0,()(,)a f x f x '≤<-∞+∞时在单调递减; 当0,,(),()a x f x f x '>时当变化时的变化如下表:此时,()(,)f x -∞+∞在单调递增, 在(单调递减; (II )由(1)3126, 2.f a a '=-=-=得由(I )知,()(f x -在单调递减,在单调递增。
【易错点】搞不清分类讨论的时机,分类讨论不彻底【思维点拨】分类讨论的难度是两个,(1)分类讨论的时机,也就是何时分类讨论,先按自然的思路推理,由于参数的存在,到了不能一概而论的时候,自然地进入分类讨论阶段;(2)分类讨论的标准,要做到不重复一遗漏。
还要注意一点的是,最后注意将结果进行合理的整合。
题型二 已知单调性求参数取值范围问题 例1 已知函数321()53f x x x ax =++-, 若函数在),1[+∞上是单调增函数,求a 的取值范围【答案】【解析】2'()2f x x x a =++,依题意在),1[+∞上恒有0y '≥成立, 方法1:函数2'()2f x x x a =++,对称轴为1x =-,故在),1[+∞上'()f x 单调递增,故只需0)1('≥f 即可,得3-≥a ,所以a 的取值范围是[3,)+∞;方法2: 由022≥++='a x x y ,得x x a 2--2≥,只需2max --2a x x ≥(),易得2max --23x x =-(),因此3-≥a ,,所以a 的取值范围是[3,)+∞; 【易错点】本题容易忽视0)1('≥f 中的等号 【思维点拨】已知函数()f x 在区间(,)a b 可导:1. ()f x 在区间(,)a b 内单调递增的充要条件是如果在区间(,)a b 内,导函数()0f x '≥,并且()f x '在(,)a b 的任何子区间内都不恒等于零;2. ()f x 在区间(,)a b 内单调递减的充要条件是如果在区间(,)a b 内,导函数()0f x '≤,并且()f x '在(,)a b 的任何子区间内都不恒等于零;说明:1.已知函数()f x 在区间(,)a b 可导,则()0f x '≥在区间内(,)a b 成立是()f x 在(,)a b 内单调递增的必要不充分条件2.若()f x 为增函数,则一定可以推出()0f x '≥;更加具体的说,若()f x 为增函数,则或者()0f x '>,或者除了x 在一些离散的值处导数为零外,其余的值处都()0f x '>;3. ()0f x '≥时,不能简单的认为()f x 为增函数,因为()0f x '≥的含义是()0f x '>或()0f x '=,当函数在某个区间恒有()0f x '=时,也满足()0f x '≥,但()f x 在这个区间为常函数. 题型三 方程与零点1.已知函数()3231f x ax x =-+,若()f x 存在三个零点,则a 的取值范围是( )A. (),2-∞-B. ()2,2-C. ()2,+∞D. ()()2,00,2-⋃ 【答案】D【解析】很明显0a ≠ ,由题意可得: ()()2'3632f x ax x x ax =-=- ,则由()'0f x = 可得1220,x x a==,由题意得不等式: ()()122281210f x f x a a =-+< ,即: 2241,4,22a a a><-<< , 综上可得a 的取值范围是 ()()2,00,2-⋃.本题选择D 选项.【易错点】找不到切入点,“有三个零点”与函数的单调性、极值有什么关系?挖掘不出这个关系就无从下手。
11-导数的应用(1)
1
变式: 1.已知 f ( x) e x ax 1 ,求 f ( x ) 的单调递增区间。
2. (09 辽宁)设 f ( x) ex (ax2 x 1) ,且曲线 y=f(x)在 x=1 处的切线与 x 轴 平行。 (1)求 a 的值,并讨论 f(x)的单调性; (2)证明:当 [0,
2
]时, f( cos ) f(sin ) 2
教 学 过 程
题型二: 已知函数的单调性求参数的范围 例:已知函数 f ( x) x3 ax 1 。 (1) 若 f ( x ) 在实数集 R 上单调递增,求实数 a 的取值范围; (2) 是否存在实数 a,使 f ( x ) 在(-1,1)上单调递减?若存在,求出 a 的取值 范围;若不存在,说明理由。
4 3 2
(1) 当 a
10 时,讨论函数 f ( x ) 的单调性; 3
(2) 若函数 f ( x ) 仅在 x=0 处有极值,求 a 的取值范围; (3) 若对于任意的 a [2, 2] ,不等式 f ( x) 1 在区间[-1,0]上恒成立,求 b 的取值范围。
3
变式: 1. 求函数 y
1 ,且若 x [1, 4a] 时, | f '( x) | 12a 恒成立,试确定 a 的取值范围。 4
配套练习 作 业 教 学 反 思
课 堂 小 结
4
2.已知函数 f ( x) xln(1 x) a( x 1) ,其中 a 为常数。 教 (1)若函数 f ( x ) 在 [1, ) 上为单调增函数,求 a 的取值范围; 学 (2)求 g ( x) f '( x) 过 程
ax 的单调区间。 x 1
题型三:利用导数研究函数的极值与最值 例:设函数 f ( x) x ax 2 x b( x R) ,其中 a, b R
高考大题专项(一) 导数的综合应用
高考大题专项(一)导数的综合应用突破1导数与函数的单调性x3-a(x2+x+1).1.已知函数f(x)=13(1)若a=3,求f(x)的单调区间;(2)略.2.已知函数f(x)=e x-ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)略.13.已知函数f(x)=1-x+a ln x.x(1)讨论f(x)的单调性;(2)略.4.(2019山东潍坊三模,21)已知函数f(x)=x2+a ln x-2x(a∈R).(1)求f(x)的单调递增区间;(2)略.25.(2018全国3,文21)已知函数f(x)=ax 2+x-1 x.(1)求曲线y=f(x)在点(0,-1)处的切线方程;(2)证明:当a≥1时,f(x)+e≥0.6.(2019河南开封一模,21)设函数f(x)=(x-1)e x-k2x2(其中k∈R).(1)求函数f(x)的单调区间;(2)略.37.(2019河北衡水同卷联考,21)已知函数f(x)=x2e ax-1.(1)讨论函数f(x)的单调性;(2)略.8.(2019江西新余一中质检一,19)已知函数f(x)=ln(x-a)x.(1)若a=-1,证明:函数f(x)在(0,+∞)上单调递减;(2)若曲线y=f(x)在点(1,f(1))处的切线与直线x-y=0平行,求a的值;(3)若x>0,证明:ln(x+1)x >xe x-1(其中e是自然对数的底数).突破2利用导数研究函数的极值、最值1.(2019哈尔滨三中模拟)已知函数f(x)=ln x-ax(a∈R).(1)当a=12时,求f(x)的极值;(2)略.42.(2019河北衡水深州中学测试)讨论函数f(x)=ln x-ax(a∈R)在定义域内的极值点的个数.3.(2019陕西咸阳模拟一,21)设函数f(x)=2ln x-x2+ax+2.(1)当a=3时,求f(x)的单调区间和极值;(2)略.54.已知函数f(x)=(x-a)e x(a∈R).(1)当a=2时,求函数f(x)在x=0处的切线方程;(2)求f(x)在区间[1,2]上的最小值.5.(2019湖北八校联考二,21)已知函数f(x)=ln x+ax2+bx.6(1)函数f(x)在点(1,f(1))处的切线的方程为2x+y=0,求a,b的值,并求函数f(x)的最大值;(2)略.6.(2019广东广雅中学模拟)已知函数f(x)=ax+ln x,其中a为常数.(1)当a=-1时,求f(x)的最大值;(2)若f(x)在区间(0,e]上的最大值为-3,求a的值.7.(2019湘赣十四校联考一,21)已知函数f(x)=ln x-mx-n(m,n∈R).7(1)若n=1时,函数f(x)有极大值为-2,求m的值;(2)若对任意实数x>0,都有f(x)≤0,求m+n的最小值.突破3导数在不等式中的应用1.(2019湖南三湘名校大联考一,21)已知函数f(x)=x ln x.(1)略;时,f(x)≤ax2-x+a-1,求实数a的取值范围.(2)当x≥1e2.(2018全国1,文21)已知函数f(x)=a e x-ln x-1.(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;时,f(x)≥0.(2)证明:当a≥1e83.(2019湖南湘潭一模,21)已知函数f(x)=e x-x2-ax.(1)略;(2)当x>0时,f(x)≥1-x恒成立,求实数a的取值范围.4.(2019安徽合肥一模,21)已知函数f(x)=e x-1-a(x-1)+ln x(a∈R,e是自然对数的底数).(1)略;(2)若对x∈[1,+∞),都有f(x)≥1成立,求实数a的取值范围.5.(2019陕西咸阳一模,21)设函数f(x)=x+1-m e x,m∈R.(1)当m=1时,求f(x)的单调区间;(2)求证:当x∈(0,+∞)时,ln e x-1x>x2.96.已知函数f(x)=-a ln x-e xx+ax,a∈R.(1)略;(2)当a=1时,若不等式f(x)+bx-b+1xe x-x≥0在x∈(1,+∞)时恒成立,求实数b的取值范围.7.设函数f(x)=e mx+x2-mx.(1)求证:f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增;(2)若对于任意x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤e-1,求m的取值范围.108.(2019山西太原二模,21)已知x1,x2(x1<x2)是函数f(x)=e x+ln(x+1)-ax(a∈R)的两个极值点.(1)求a的取值范围;(2)求证:f(x2)-f(x1)<2ln a.突破4导数与函数的零点1.(2018全国2,文21)已知函数f(x)=1x3-a(x2+x+1).(1)略;(2)证明:f(x)只有一个零点.2.(2019河北唐山三模,21)已知函数f(x)=x ln x-a(x2-x)+1,函数g(x)=f'(x).(1)若a=1,求f(x)的极大值;(2)当0<x<1时,g(x)有两个零点,求a的取值范围.113.(2019河南开封一模,21)已知函数f(x)=ax 2+bx+1 e x.(1)略;(2)若f(1)=1,且方程f(x)=1在区间(0,1)内有解,求实数a的取值范围.4.(2019安徽安庆二模,21)已知函数f(x)=ax-ln x(a∈R).(1)讨论f(x)的单调性;(2)若f(x)=0有两个相异的正实数根x1,x2,求证:f'(x1)+f'(x2)<0.5.(2019河北石家庄二模,20)已知函数f(x)=1+lnxx.12(1)略;(2)当x>1时,方程f(x)=a(x-1)+1(a>0)有唯一零点,求a的取值范围.x6.(2019山西运城二模,21)已知函数f(x)=x e x-a(ln x+x),a∈R.(1)当a=e时,求f(x)的单调区间;(2)若f(x)有两个零点,求实数a的取值范围.7.已知函数f(x)=(x-2)e x+a(x-1)2有两个零点.(1)求a的取值范围;(2)设x1,x2是f(x)的两个零点,证明:x1+x2<2.138.(2019天津,20)设函数f(x)=ln x-a(x-1)e x,其中a∈R.(1)若a≤0,讨论f(x)的单调性;,(2)若0<a<1e①证明:f(x)恰有两个零点;②设x0为f(x)的极值点,x1为f(x)的零点,且x1>x0,证明3x0-x1>2.参考答案高考大题专项(一)导数的1415综合应用突破1 导数与函数的单调性1.解 (1)当a=3时,f (x )=13x 3-3x 2-3x-3,f'(x )=x 2-6x-3. 令f'(x )=0,解得x=3-2√3或x=3+2√3. 当x ∈(-∞,3-2√3)∪(3+2√3,+∞)时,f'(x )>0; 当x ∈(3-2√3,3+2√3)时,f'(x )<0.故f (x )在(-∞,3-2√3),(3+2√3,+∞)上单调递增,在(3-2√3,3+2√3)上单调递减. 2.证明 (1)当a=1时,f (x )≥1等价于(x 2+1)e -x -1≤0. 设函数g (x )=(x 2+1)e -x -1,则g'(x )=-(x 2-2x+1)e -x =-(x-1)2e -x .当x ≠1时,g'(x )<0,所以g (x )在(0,+∞)上单调递减.而g (0)=0,故当x ≥0时,g (x )≤0,即f (x )≥1.3.解 (1)f (x )的定义域为(0,+∞),f'(x )=-1x 2-1+a x =-x 2-ax+1x 2.①若a ≤2,则f'(x )≤0,当且仅当a=2,x=1时f'(x )=0,所以f (x )在(0,+∞)上单调递减. ②若a>2,令f'(x )=0得,x=a -√a 2-42或x=a+√a 2-42.当x ∈(0,a -√a 2-42)∪a+√a 2-42,+∞时,f'(x )<0;当x ∈a -√a 2-42,a+√a 2-42时,f'(x )>0.所以f (x )在(0,a -√a 2-42),(a+√a 2-42,+∞)上单调递减,在(a -√a 2-42,a+√a 2-42)上单调递增.164.解 (1)函数f (x )的定义域为(0,+∞),f'(x )=2x+a x -2=2x 2-2x+ax,令2x 2-2x+a=0,Δ=4-8a=4(1-2a ),若a ≥1,则Δ≤0,f'(x )≥0在(0,+∞)上恒成立,函数f (x )在(0,+∞)上单调递增; 若a<12,则Δ>0,方程2x 2-2x+a=0,两根为x 1=1-√1-2a 2,x 2=1+√1-2a2, 当a ≤0时,x 2>0,x ∈(x 2,+∞),f'(x )>0,f (x )单调递增; 当0<a<12时,x 1>0,x 2>0,x ∈(0,x 1),f'(x )>0,f (x )单调递增, x ∈(x 2,+∞),f'(x )>0,f (x )单调递增.综上,当a ≥12时,函数f (x )单调递增区间为(0,+∞),当a ≤0时,函数f (x )单调递增区间为1+√1-2a2,+∞,当0<a<12时,函数f (x )单调递增区间为0,1-√1-2a 2,1+√1-2a2,+∞.5.(1)解 f'(x )=-ax 2+(2a -1)x+2e x,f'(0)=2.因此曲线y=f (x )在(0,-1)处的切线方程是2x-y-1=0. (2)证明 当a ≥1时,f (x )+e ≥(x 2+x-1+e x+1)e -x . 令g (x )=x 2+x-1+e x+1, 则g'(x )=2x+1+e x+1.当x<-1时,g'(x )<0,g (x )单调递减;当x>-1时,g'(x )>0,g (x )单调递增;所以g (x )≥g (-1)=0. 因此f (x )+e ≥0.6.解 (1)函数f (x )的定义域为(-∞,+∞),f'(x )=e x +(x-1)e x -kx=x e x -kx=x (e x -k ),①当k ≤0时,令f'(x )>0,解得x>0,∴f (x )的单调递减区间是(-∞,0),单调递增区间是(0,+∞). ②当0<k<1时,令f'(x )>0,解得x<ln k 或x>0,17∴f (x )在(-∞,ln k )和(0,+∞)上单调递增,在(ln k ,0)上单调递减. ③当k=1时,f'(x )≥0,f (x )在(-∞,+∞)上单调递增. ④当k>1时,令f'(x )>0,解得x<0或x>ln k ,所以f (x )在(-∞,0)和(ln k ,+∞)上单调递增,在(0,ln k )上单调递减. 7.解 (1)函数f (x )的定义域为R . f'(x )=2x e ax +x 2·a e ax =x (ax+2)e ax .当a=0时,f (x )=x 2-1,则f (x )在区间(0,+∞)内单调递增,在区间(-∞,0)内单调递减;当a>0时,f'(x )=ax x+2a e ax ,令f'(x )>0得x<-2a 或x>0,令f'(x )<0得-2a <x<0,所以f (x )在区间-∞,-2a 内单调递增,在区间-2a ,0内单调递减,在区间(0,+∞)内单调递增;当a<0时,f'(x )=ax x+2a e ax ,令f'(x )>0得0<x<-2a ,令f'(x )<0得x>-2a 或x<0,所以f (x )在区间(-∞,0)内单调递减,在区间0,-2a 内单调递增,在区间-2a ,+∞内单调递减. 8.(1)证明 当a=-1时,函数f (x )的定义域是(-1,0)∪(0,+∞),所以f'(x )=xx+1-ln (x+1)x 2,令g (x )=xx+1-ln(x+1),只需证当x>0时,g (x )≤0. 又g'(x )=1(x+1)2−1=-x (x+1)2<0在(0,+∞)上恒成立,故g (x )在(0,+∞)上单调递减,所以g (x )<g (0)=-ln 1=0,所以f'(x )<0,故函数f (x )在(0,+∞)上单调递减. (2)解 由题意知,f'(1)=1,且f'(x )=xx -a -ln (x -a )x 2,所以f'(1)=11-a -ln(1-a )=1,即有a1-a -ln(1-a )=0, 令t (a )=a1-a -ln(1-a ),a<1,则t'(a )=1(1-a )2+11-a >0,故t(a)在(-∞,1)上单调递增,又t(0)=0,故0是t(a)的唯一零点,即方程a1-a-ln(1-a)=0有唯一实根0,所以a=0.(3)证明因为xe x-1=ln e xe x-1=ln (ex-1+1)e x-1,故原不等式等价于ln(x+1)x>ln(ex-1+1)e x-1,由(1)知,当a=-1时,f(x)=ln(x+1)x在(0,+∞)上单调递减,故要证原不等式成立,只需证明当x>0时,x<e x-1,令h(x)=e x-x-1,则h'(x)=e x-1>0在(0,+∞)上恒成立,故h(x)在(0,+∞)上单调递增, 所以h(x)>h(0)=0,即x<e x-1,故f(x)>f(e x-1),即ln(x+1)x>ln (ex-1+1)e x-1=xe x-1.突破2利用导数研究函数的极值、最值1.解(1)当a=12时,f(x)=ln x-12x,函数的定义域为(0,+∞),f'(x)=1x−12=2-x2x,令f'(x)=0,得x=2,于是当x变化时,f'(x),f(x)的变化情况如下表:故f(x)的极大值为ln 2-1,无极小值.2.解函数的定义域为(0,+∞),f'(x)=1x -a=1-axx(x>0).1819当a ≤0时,f'(x )>0在(0,+∞)上恒成立,故函数f (x )在(0,+∞)上单调递增,此时函数f (x )在定义域上无极值点; 当a>0时,若x ∈0,1a ,则f'(x )>0,若x ∈1a ,+∞,则f'(x )<0, 故函数f (x )在x=1a 处取极大值.综上可知,当a ≤0时,函数f (x )无极值点,当a>0时,函数f (x )有一个极大值点. 3.解 (1)f (x )的定义域为(0,+∞).当a=3时,f (x )=2ln x-x 2+3x+2, 所以f'(x )=2x -2x+3=-2x 2+3x+2x,令f'(x )=-2x 2+3x+2x=0,得-2x 2+3x+2=0,因为x>0,所以x=2. f (x )与f'(x )在区间(0,+∞)上的变化情况如下:所以f (x )的单调递增区间为(0,2),单调递减区间为(2,+∞). f (x )的极大值为2ln 2+4,无极小值. 4.解 (1)设切线的斜率为k.因为a=2,所以f (x )=(x-2)e x ,f'(x )=e x (x-1).所以f (0)=-2,k=f'(0)=e 0(0-1)=-1. 所以所求的切线方程为y=-x-2,即x+y+2=0. (2)由题意得f'(x )=e x (x-a+1),令f'(x )=0,可得x=a-1.①若a-1≤1,则a≤2,当x∈[1,2]时,f'(x)≥0,则f(x)在[1,2]上单调递增.所以f(x)min=f(1)=(1-a)e.②若a-1≥2,则a≥3,当x∈[1,2]时,f'(x)≤0,则f(x)在[1,2]上单调递减.所以f(x)min=f(2)=(2-a)e2.③若1<a-1<2,则2<a<3,所以f'(x),f(x)随x的变化情况如下表:所以f(x)的单调递减区间为[1,a-1],单调递增区间为[a-1,2].所以f(x)在[1,2]上的最小值为f(a-1)=-e a-1.综上所述,当a≤2时,f(x)min=f(1)=(1-a)e;当a≥3时,f(x)min=f(2)=(2-a)e2;当2<a<3时,f(x)min=f(a-1)=-e a-1.5.解(1)因为f(x)=ln x+ax2+bx,所以f'(x)=1x+2ax+b,则在点(1,f(1))处的切线的斜率为f'(1)=1+2a+b,由题意可得,1+2a+b=-2,且a+b=-2,解得a=b=-1.所以f'(x)=1x-2x-1=-2x2-x+1x=-2x2+x-1x,由f'(x)=0,可得x=12(x=-1舍去),2021当0<x<1时,f'(x )>0,f (x )单调递增;当x>1时,f'(x )<0,f (x )单调递减,故当x=12时,f (x )取得极大值,且为最大值,f 12=-ln 2-34.故f (x )的最大值为-ln 2-34. 6.解 (1)易知f (x )的定义域为(0,+∞),当a=-1时,f (x )=-x+ln x ,f'(x )=-1+1x =1-xx , 令f'(x )=0,得x=1.当0<x<1时,f'(x )>0;当x>1时,f'(x )<0.∴f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.∴f (x )max =f (1)=-1. ∴当a=-1时,函数f (x )的最大值为-1. (2)f'(x )=a+1x ,x ∈(0,e],则1x ∈1e ,+∞.①若a ≥-1e ,则f'(x )≥0,从而f (x )在(0,e]上单调递增,∴f (x )max =f (e)=a e +1≥0,不合题意. ②若a<-1,令f'(x )>0得,a+1>0,又x ∈(0,e],解得0<x<-1; 令f'(x )<0得,a+1x <0,又x ∈(0,e],解得-1a <x ≤e .从而f (x )在0,-1a 上单调递增,在-1a ,e 上单调递减,∴f (x )max =f -1a =-1+ln -1a . 令-1+ln -1a =-3, 得ln -1a =-2,即a=-e 2.∵-e 2<-1e ,∴a=-e 2符合题意.故实数a 的值为-e 2.7.解 (1)函数f (x )的定义域为(0,+∞),当n=1时,f (x )=ln x-mx-1,∵函数f (x )有极大值为-2, 由f'(x )=1x -m=0,得x=1m >0,∴f(1m)=-ln m-1-1=-2,∴m=1.经检验m=1满足题意.故m的值为1.(2)f'(x)=1x-m.①当m<0时,∵x∈(0,+∞),∴f'(x)>0,∴f(x)在(0,+∞)上单调递增.令x=e n,则f(e n)=ln e n-m e n-n=-m e n>0,舍去;②当m=0时,∵x∈(0,+∞),∴f'(x)>0,∴f(x)在(0,+∞)上单调递增,令x=e n+1,则f(e n+1)=ln e n+1-n=1>0,舍去;③当m>0时,若x∈0,1m ,则f'(x)>0,若x∈1m,+∞,则f'(x)<0,∴f(x)在0,1m 上单调递增,在1m,+∞上单调递减.∴f(x)的最大值为f1m=-ln m-1-n≤0, 即n≥-ln m-1.∴m+n≥m-ln m-1,设h(m)=m-ln m-1,令h'(m)=1-1m=0,则m=1.当m∈(0,1)时,h'(m)<0,∴h(m)在(0,1)上单调递减.当m∈(1,+∞)时,h'(m)>0.∴h(m)在(1,+∞)上单调递增.22∴h(m)的最小值为h(1)=0.综上所述,当m=1,n=-1时,m+n的最小值为0.突破3导数在不等式中的应用1.解(2)由已知得a≥xlnx+x+1x2+1,设h(x)=xlnx+x+1x2+1,则h'(x)=(1-x)(xlnx+lnx+2)(x2+1)2.∵y=x ln x+ln x+2是增函数,且x≥1,∴y≥-1-1+2>0,∴当x∈1e,1时,h'(x)>0;当x∈(1,+∞)时,h'(x)<0,∴h(x)在x=1处取得最大值,h(1)=1,∴a≥1.故a的取值范围为[1,+∞).2.(1)解f(x)的定义域为(0,+∞),f'(x)=a e x-1x.由题设知,f'(2)=0,所以a=12e2.从而f(x)=12e2e x-ln x-1,f'(x)=12e2e x-1x.当0<x<2时,f'(x)<0;当x>2时,f'(x)>0.所以f(x)在(0,2)上单调递减,在(2,+∞)上单调递增.(2)证明当a≥1e 时,f(x)≥e xe-ln x-1.设g(x)=e xe-ln x-1,2324则g'(x )=e x−1.当0<x<1时,g'(x )<0;当x>1时,g'(x )>0. 所以x=1是g (x )的最小值点. 故当x>0时,g (x )≥g (1)=0. 因此,当a ≥1时,f (x )≥0.3.解 (2)由题意,当x>0时,e x-x 2-ax ≥1-x ,即a ≤e x x -x-1x +1.令h (x )=e xx -x-1x +1(x>0), 则h'(x )=e x (x -1)-x 2+1x 2=(x -1)(e x -x -1)x 2. 令φ(x )=e x -x-1(x>0),则φ'(x )=e x -1>0. 当x ∈(0,+∞)时,φ(x )单调递增,φ(x )>φ(0)=0. 故当x ∈(0,1)时,h'(x )<0,h (x )单调递减; 当x ∈(1,+∞)时,h'(x )>0,h (x )单调递增. 所以h (x )min =h (1)=e -1,所以a ≤e -1. 故a 的取值范围为(-∞,e -1].4.解 (2)f'(x )=e x-1+1x -a (x ≥1),令g (x )=f'(x ),g'(x )=e x-1-1x 2, 令φ(x )=g'(x ),φ'(x )=e x-1+2x 3>0,∴g'(x )在[1,+∞)上单调递增,g'(x )≥g'(1)=0. ∴f'(x )在[1,+∞]上单调递增,f'(x )≥f'(1)=2-a.当a≤2时,f'(x)≥0,f(x)在[1,+∞)上单调递增,f(x)≥f(1)=1,满足条件; 当a>2时,f'(1)=2-a<0.又f'(ln a+1)=e ln a-a+1lna+1=1lna+1>0,∴∃x0∈(1,ln a+1),使得f'(x)=0,此时,当x∈(1,x0)时,f'(x)<0;当x∈(x0,ln a+1)时,f'(x)>0,∴f(x)在(1,x0)上单调递减,当x∈(1,x0)时,都有f(x)<f(1)=1,不符合题意.综上所述,实数a的取值范围为(-∞,2].5.(1)解当m=1时,f(x)=x+1-e x,f'(x)=1-e x,令f'(x)=0,则x=0.当x<0时,f'(x)>0;当x>0时,f'(x)<0.∴函数f(x)的单调递增区间是(-∞,0),单调递减区间是(0,+∞).(2)证明由(1)知,当m=1时,f(x)max=f(0)=0,∴当x∈(0,+∞)时,x+1-e x<0,即e x>x+1,当x∈(0,+∞)时,要证ln e x-1x>x2,只需证e x-1>x e x 2,令F(x)=e x-1-x e x 2=e x-x(√e)x-1,F'(x)=e x-(√e)x−12x(√e)x=(√e)x(√e)x-1-x2=e x2ex2-1-x2,由e x>x+1可得,e x2>1+x2,25故当x∈(0,+∞)时,F'(x)>0恒成立,即F(x)在(0,+∞)上单调递增,∴F(x)>F(0)=0,即e x-1>x e x2,∴lne x-1x>x2.6.解(2)由题意,当a=1时,f(x)+bx-b+1xe x -x≥0在x ∈(1,+∞)时恒成立, 整理得ln x-b(x-1)e x≤0在(1,+∞)上恒成立.令h(x)=ln x-b(x-1)e x,易知,当b≤0时,h(x)>0,不合题意,∴b>0.又h'(x)=1-bx e x,h'(1)=1-b e.①当b≥1时,h'(1)=1-b e≤0.又h'(x)=1-bx e x在[1,+∞)上单调递减.∴h'(x)≤h'(1)≤0在[1,+∞)上恒成立,则h(x)在[1,+∞)上单调递减.所以h(x)≤h(1)=0,符合题意.②当0<b<1e 时,h'(1)=1-b e>0,h'(1b)=b-e1b<01b>1.又h'(x)=1x-bx e x在[1,+∞)上单调递减,∴存在唯一x0∈(1,+∞),使得h'(x0)=0.∴h(x)在(1,x0)上单调递增,在(x0,+∞)上单调递减.又h(x)在x=1处连续,h(1)=0,∴h(x)>0在(1,x0)上恒成立,不合题意.综上所述,实数b的取值范围为1e,+∞.7.(1)证明f'(x)=m(e mx-1)+2x.若m≥0,则当x∈(-∞,0)时,e mx-1≤0,2627f'(x )≤0;当x ∈(0,+∞)时,e mx -1≥0, f'(x )≥0.若m<0,则当x ∈(-∞,0)时,e mx -1>0,f'(x )<0;当x ∈(0,+∞)时,e mx -1<0,f'(x )>0. 所以f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增.(2)解 由(1)知,对任意的m ,f (x )在[-1,0]上单调递减,在[0,1]上单调递增,故f (x )在x=0处取得最小值.所以对于任意x 1,x 2∈[-1,1],|f (x 1)-f (x 2)|≤e -1的充要条件是{f (1)-f (0)≤e -1,f (-1)-f (0)≤e -1,即{e m -m ≤e -1,e -m +m ≤e -1.设函数g (t )=e t -t-e +1,则g'(t )=e t -1.当t<0时,g'(t )<0;当t>0时,g'(t )>0.故g (t )在(-∞,0)上单调递减,在(0,+∞)上单调递增. 又g (1)=0,g (-1)=e -1+2-e <0,故当t ∈[-1,1]时,g (t )≤0. 当m ∈[-1,1]时,g (m )≤0, g (-m )≤0,即{e m -m ≤e -1,e -m +m ≤e -1.当m>1时,由g (t )的单调性知,g (m )>0,即e m -m>e -1. 当m<-1时,g (-m )>0, 即e -m +m>e -1.综上,m 的取值范围是[-1,1].8.(1)解 由题意得f'(x )=e x +1x+1-a ,x>-1,令g (x )=e x +1x+1-a ,x>-1,则 g'(x )=e x -1(x+1)2,28令h (x )=e x -1(x+1)2,x>-1,则h'(x )=e x +2(x+1)3>0,∴h (x )在(-1,+∞)上单调递增,且h (0)=0. 当x ∈(-1,0)时,g'(x )=h (x )<0,g (x )单调递减, 当x ∈(0,+∞)时,g'(x )=h (x )>0,g (x )单调递增.∴g (x )≥g (0)=2-a.①当a ≤2时,f'(x )=g (x )>g (0)=2-a ≥0. f (x )在(-1,+∞)上单调递增,此时无极值;②当a>2时,∵g1a-1=e 1a -1>0,g (0)=2-a<0,∴∃x 1∈1a-1,0,g (x 1)=0,当x ∈(-1,x 1)时, f'(x )=g (x )>0,f (x )单调递增;当x ∈(x 1,0)时,f'(x )=g (x )<0,f (x )单调递减,∴x=x 1是f (x )的极大值点.∵g (ln a )=11+lna >0,g (0)=2-a<0, ∴∃x 2∈(0,ln a ),g (x 2)=0,当x ∈(0,x 2)时,f'(x )=g (x )<0,f (x )单调递减;当x ∈(x 2,+∞)时,f'(x )=g (x )>0,f (x )单调递增,∴x=x 2是f (x )的极小值点. 综上所述,a 的取值范围为(2,+∞).(2)证明 由(1)得a ∈(2,+∞),1a -1<x 1<0<x 2<ln a ,且g (x 1)=g (x 2)=0,∴x 2-x 1>0,1a <x 1+1<1,1<x2+1<1+ln a,e x2−e x1=x2-x1(x1+1)(x2+1),∴1(x1+1)(x2+1)-a<0,1<x2+1x1+1<a(1+ln a)<a2,∴f(x2)-f(x1)=e x2−e x1+ln x2+1x1+1-a(x2-x1)=(x2-x1)1(x1+1)(x2+1)-a +ln x2+1x1+1<ln a2=2ln a.突破4导数与函数的零点1.(2)证明由于x2+x+1>0,所以f(x)=0等价于x 3x2+x+1-3a=0.设g(x)=x3x2+x+1-3a,则g'(x)=x2(x2+2x+3)(x2+x+1)2≥0,仅当x=0时g'(x)=0,所以g(x)在(-∞,+∞)单调递增,故g(x)至多有一个零点,从而f(x)至多有一个零点.又f(3a-1)=-6a2+2a-13=-6(a-16)2−16<0,f(3a+1)=13>0,故f(x)有一个零点.综上,f(x)只有一个零点.2.解(1)f(x)=x ln x-x2+x+1(x>0),g(x)=f'(x)=ln x-2x+2,g'(x)=1-2=1-2x,当x∈0,12时,g'(x)>0,g(x)单调递增;当x∈12,+∞时,g'(x)<0,g(x)单调递减.又g(1)=f'(1)=0,则当x∈12,1时,f'(x)>0,f(x)单调递增;当x∈(1,+∞)时,f'(x)<0,f(x)单调递减.故当x=1时,f(x)取得极大值f(1)=1.2930(2)g (x )=f'(x )=ln x+1-2ax+a ,g'(x )=1x -2a=1-2axx ,①若a ≤0,则g'(x )>0,g (x )单调递增,至多有一个零点,不合题意. ②若a>0,则当x ∈0,12a 时, g'(x )>0,g (x )单调递增;当x ∈12a ,+∞时,g'(x )<0,g (x )单调递减. 则g 12a ≥g 12=ln 12+1=ln e2>0.不妨设g (x 1)=g (x 2),x 1<x 2,则0<x 1<1<x 2<1.一方面,需要g (1)<0,得a>1.另一方面,由(1)得,当x>1时,ln x<x-1<x ,则x<e x , 进而,有2a<e 2a ,则e -2a <1,且g (e -2a )=-2a e -2a +1-a<0, 故存在x 1,使得0<e -2a <x 1<12a .综上,a 的取值范围是(1,+∞). 3.解 (2)由f (1)=1得b=e -1-a , 由f (x )=1得e x =ax 2+bx+1,设g (x )=e x -ax 2-bx-1,则g (x )在(0,1)内有零点,设x 0为g (x )在(0,1)内的一个零点, 由g (0)=g (1)=0知g (x )在(0,x 0)和(x 0,1)上不单调.设h (x )=g'(x ),则h (x )在(0,x 0)和(x 0,1)上均存在零点,即h (x )在(0,1)上至少有两个零点. g'(x )=e x -2ax-b ,h'(x )=e x -2a ,当a ≤12时,h'(x )>0,h (x )在(0,1)上单调递增,h (x )不可能有两个及以上零点,31当a ≥e2时,h'(x )<0,h (x )在(0,1)上单调递减,h (x )不可能有两个及以上零点, 当12<a<e2时,令h'(x )=0得x=ln(2a )∈(0,1),∴h (x )在(0,ln(2a ))上单调递减,在(ln(2a ),1)上单调递增,h (x )在(0,1)上存在最小值h (ln(2a )), 若h (x )有两个零点,则有h (ln(2a ))<0,h (0)>0,h (1)>0, h (ln(2a ))=3a-2a ln(2a )+1-e 12<a<e2,设φ(x )=32x-x ln x+1-e(1<x<e),则φ'(x )=12-ln x ,令φ'(x )=0,得x=√e , 当1<x<√e 时,φ'(x )>0,φ(x )单调递增;当√e <x<e 时,φ'(x )<0,φ(x )单调递减.∴φmax (x )=φ(√e )=√e +1-e <0, ∴h (ln(2a ))<0恒成立.由h (0)=1-b=a-e +2>0,h (1)=e -2a-b>0,得e -2<a<1.综上,a 的取值范围为(e -2,1). 4.(1)解 f (x )=ax-ln x 的定义域为(0,+∞),所以f'(x )=a-1x =ax -1x .①当a ≤0时,f'(x )<0,所以f (x )在(0,+∞)上为减函数.②当a>0时,由f'(x )>0,得x>1a ,所以f (x )在0,1a 上为减函数,在1a ,+∞上为增函数.(2)证明 解法1:要证f'(x 1)+f'(x 2)<0,即证2a-1x 1−1x 2<0,即2a<1x 1+1x 2.由f (x 1)=f (x 2)得a=ln x 1-ln x2x 12,所以只要证2ln x 1-ln x 2x 12<1x 1+1x 2.不妨设x 1>x 2>0,则只要证2ln x1x 2<(x 1-x 2)1x 1+1x 2⇔2ln x1x 2<x1x 2−x2x 1.令x 1x 2=t>1,则只要证明当t>1时,2ln t<t-1t 成立.32设g (t )=2ln t-t-1t(t>1),则g'(t )=2t -1-1t 2=-(t -1)2t2<0,所以函数g (t )在(1,+∞)上单调递减,所以g (t )<g (1)=0,即2ln t<t-1t 成立. 由上分析可知,f'(x 1)+f'(x 2)<0成立.解法2:要证f'(x 1)+f'(x 2)<0,即证2a-1x 1−1x 2<0,即2a<1x 1+1x 2. 令t 1=1x 1,t 2=1x 2,下证t 1+t 2>2a.由f (x 1)=f (x 2),得ax 1-ln x 1=ax 2-ln x 2,即at 1+ln t 1=at 2+ln t 2.令g (t )=a t +ln t ,g (t 1)=g (t 2),g'(t )=-a t 2+1t =t -at2.由g'(t )>0⇒t>a ,g'(t )<0⇒a>t>0,则g (t )在(0,a )上为减函数,在(a ,+∞)上为增函数. 设t 1∈(0,a ),t 2∈(a ,+∞),令h (t )=g (t )-g (2a-t )=at +ln t-a2a -t -ln(2a-t ). h'(t )=t -a t 2+a -t(2a -t )2 =4a (t -a )(a -t )t 2(2a -t )2,t 1∈(0,a ),h'(t 1)<0.所以h (t )在(0,a )上为减函数,h (t 1)>h (a )=0,即g (t 1)>g (2a-t 1),g (t 2)>g (2a-t 1). 又因为g (t )在(a ,+∞)上为增函数,所以t 2>2a-t 1,即t 1+t 2>2a. 故f'(x 1)+f'(x 2)<0.5.解 (2)当x>1时,方程f (x )=a (x-1)+1x ,即ln x-a (x 2-x )=0,33令h (x )=ln x-a (x 2-x ),有h (1)=0,h'(x )=-2ax 2+ax+1x,令r (x )=-2ax 2+ax+1,x ∈(1,+∞),因为a>0,所以r (x )在(1,+∞)上单调递减,①当r (1)=1-a ≤0即a ≥1时,r (x )<0,即h (x )在(1,+∞)上单调递减,所以h (x )<h (1)=0, 方程f (x )=a (x-1)+1x 无实根.②当r (1)>0即0<a<1时,存在x 0∈(1,+∞),使得x ∈(1,x 0)时,r (x )>0,即h (x )单调递增;x ∈(x 0,+∞)时,r (x )<0,即h (x )单调递减;因此h (x )max =h (x 0)>h (1)=0, 取x=1+1a ,则h 1+1a =ln 1+1a -a (1+1a )2+a 1+1a =ln 1+1a -1+1a , 令t=1+1a (t>1),h (t )=ln t-t ,则h'(t )=1t -1,t>1,所以h'(t )<0,即h (t )在t>1时单调递减,所以h (t )<h (1)=0.故存在x 1∈x 0,1+1a ,使得h (x 1)=0. 综上,a 的取值范围为0<a<1. 6.解 (1)f (x )定义域为(0,+∞),当a=e 时,f'(x )=(1+x )(xe x -e )x.∴0<x<1时,f'(x )<0,x>1时,f'(x )>0.∴f (x )在(0,1)上为减函数;在(1,+∞)上为增函数.(2)记t=ln x+x ,则t=ln x+x 在(0,+∞)上单调递增,且t ∈R .∴f (x )=x e x -a (ln x+x )=e t -at=g (t ).∴f (x )在(0,+∞)上有两个零点等价于g (t )=e t -at 在t ∈R 上有两个零点. ①当a=0时,g (t )=e t 在R 上单调增,且g (t )>0,故g (t )无零点; ②当a<0时,g'(t )=e t -a>0恒成立,∴g (t )在R 上单调递增. 又g (0)=1>0,g1a=e 1a -1<0,故g (t )在R 上只有一个零点;③当a>0时,由g'(t)=e t-a=0可知g(t)在t=ln a时有唯一的极小值g(ln a)=a(1-ln a),若0<a<e,g(t)极小值=a(1-ln a)>0,g(t)无零点;若a=e,g(t)极小值=0,g(t)只有一个零点;若a>e时,g(t)极小值=a(1-ln a)<0,而g(0)=1>0,由于y=lnxx在(e,+∞)上为减函数,可知当a>e时,e a>a a>a2,从而g(a)=e a-a2>0.∴g(t)在(0,ln a)和(ln a,+∞)上各有一个零点.综上可知,当a>e时f(x)有两个零点,即所求a的取值范围是(e,+∞).7.(1)解f'(x)=(x-1)e x+2a(x-1)=(x-1)(e x+2a).①设a=0,则f(x)=(x-2)e x,f(x)只有一个零点.②设a>0,则当x∈(-∞,1)时,f'(x)<0;当x∈(1,+∞)时,f'(x)>0,所以f(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增.又f(1)=-e,f(2)=a,取b满足b<0且b<ln a ,则f(b)>a2(b-2)+a(b-1)2=a(b2-32b)>0,故f(x)存在两个零点.③设a<0,由f'(x)=0得x=1或x=ln(-2a).若a≥-e2,则ln(-2a)≤1,故当x∈(1,+∞)时,f'(x)>0,因此f(x)在(1,+∞)上单调递增.34又当x≤1时,f(x)<0,所以f(x)不存在两个零点.若a<-e2,则ln(-2a)>1,故当x∈(1,ln(-2a))时,f'(x)<0;当x∈(ln(-2a),+∞)时,f'(x)>0.因此f(x)在(1,ln(-2a))上单调递减,在(ln(-2a),+∞)上单调递增.又当x≤1时f(x)<0,所以f(x)不存在两个零点.综上,a的取值范围为(0,+∞).(2)证明不妨设x1<x2,由(1)知,x1∈(-∞,1),x2∈(1,+∞),2-x2∈(-∞,1),f(x)在(-∞,1)上单调递减, 所以x1+x2<2等价于f(x1)>f(2-x2),即f(2-x2)<0.由于f(2-x2)=-x2e2-x2+a(x2-1)2,而f(x2)=(x2-2)e x2+a(x2-1)2=0,所以f(2-x2)=-x2e2-x2-(x2-2)e x2.设g(x)=-x e2-x-(x-2)e x,则g'(x)=(x-1)(e2-x-e x).所以当x>1时,g'(x)<0,而g(1)=0,故当x>1时,g(x)<0.从而g(x2)=f(2-x2)<0,故x1+x2<2.8.(1)解由已知,f(x)的定义域为(0,+∞),且f'(x)=1x -[a e x+a(x-1)e x]=1-ax2e xx.3536因此当a ≤0时,1-ax 2e x >0,从而f'(x )>0, 所以f (x )在(0,+∞)内单调递增. (2)证明 ①由(1)知,f'(x )=1-ax 2e xx.令g (x )=1-ax 2e x ,由0<a<1e,可知g (x )在(0,+∞)内单调递减,又g (1)=1-a e >0,且g ln 1a =1-a ln 1a 21a =1-ln 1a 2<0,故g (x )=0在(0,+∞)内有唯一解,从而f'(x )=0在(0,+∞)内有唯一解,不妨设为x 0,则1<x 0<ln1a. 当x ∈(0,x 0)时,f'(x )=g (x )x >g (x 0)x=0, 所以f (x )在(0,x 0)内单调递增; 当x ∈(x 0,+∞)时,f'(x )=g (x )x <g (x 0)x=0,所以f (x )在(x 0,+∞)内单调递减,因此x 0是f (x )的唯一极值点.令h (x )=ln x-x+1,则当x>1时,h'(x )=1x -1<0,故h (x )在(1,+∞)内单调递减,从而当x>1时,h (x )<h (1)=0,所以ln x<x-1. 从而fln 1a=lnln 1a-aln 1a -1eln1a =lnln 1a -ln 1a +1=h ln 1a <0,又因为f (x 0)>f (1)=0,所以f (x )在(x 0,+∞)内有唯一零点.又f (x )在(0,x 0)内有唯一零点1,从而,f (x )在(0,+∞)内恰有两个零点.②由题意,{f '(x 0)=0,f (x 1)=0,即{ax 02e x 0=1,ln x 1=a (x 1-1)e x 1,从而ln x 1=x 1-1x 02e x 1-x 0,即e x 1-x 0=x 02ln x 1x 1-1.因为当x>1时,ln x<x-1,又x 1>x 0>1,故ex 1-x 0<x 02(x 1-1)1=x 02,两边取对数,得ln e x 1-x 0<ln x 02,于是x 1-x 0<2ln x 0<2(x 0-1),整理得3x 0-x 1>2.。
高中数学经典的解题技巧和方法(导数及其应用)1 (1)
⾼高中数学经典的解题技巧和⾼方法(导数及其应⾼用)导数及其应⽤用是⽤高中数学考试的必考内容,⽤而且是这⽤几年年考试的热点跟增⽤长点,⽤无论是期中、期末还是会考、⽤高考,都是⽤高中数学的必考内容之⽤一。
因此,⽤马博⽤士教育⽤网数学频道编辑部特意针对这两个部分的内容和题型总结归纳了了具体的解题技巧和⽤方法,希望能够帮助到⽤高中的同学们,让同学们有更更多、更更好、更更快的⽤方法解决数学问题。
好了了,下⽤面就请同学们跟我们⽤一起来探讨下集合跟常⽤用逻辑⽤用语的经典解题技巧。
⾸首先,解答导数及其应⾸用这两个⾸方⾸面的问题时,先要搞清楚以下⾸几个⾸方⾸面的基本概念性问题,同学们应该先把基本概念和定理理完全的吃透了了、弄弄懂了了才能更更好的解决问题:1.导数概念及其⽤几何意义(1)了了解导数概念的实际背景。
(2)理理解导数的⽤几何意义。
2.导数的运算(1)能根据导数定义求函数的导数。
(2)能利利⽤用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。
(3)能求简单的复合函数(仅限于形如的复合函数)的导数。
3.导数在研究函数中的应⽤用(1)了了解函数单调性和导数的关系,能利利⽤用导数研究函数的单调性,会求函数的单调区间(其中多项式函数⽤一般不不超过三次)。
(2)了了解函数在某点取得极值的必要条件和充分条件;会⽤用导数求函数的极⽤大值、极⽤小值(其中多项式函数⽤一般不不超过三次);会求闭区间了了函数的最⽤大值、最⽤小值(其中多项式函数⽤一般不不超过三次)。
4.⽤生活中的优化问题会利利⽤用导数解决某些实际问题5.定积分与微积分基本定理理(1)了了解定积分的实际背景,了了解定积分的基本思想,了了解定积分的概念。
(2)了了解微积分基本定理理的含义。
好了了,搞清楚了了导数及其应⾸用的基本内容之后,下⾸面我们就看下针对这两个内容的具体的解题技巧。
⾸一、利利⾸用导数研究曲线的切线考情聚焦:1.利利⽤用导数研究曲线的切线是导数的重要应⽤用,为近⽤几年年各省市⽤高考命题的热点。
导数的综合应用
导数的综合应用一、导数在不等式中的应用考点一 构造函数证明不等式【例1】 已知函数f (x )=1-x -1e x ,g (x )=x -ln x . (1)证明:g (x )≥1;(2)证明:(x -ln x )f (x )>1-1e 2. 证明 (1)由题意得g ′(x )=x -1x(x >0), 当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0,即g (x )在(0,1)上是减函数,在(1,+∞)上是增函数.所以g (x )≥g (1)=1,得证.(2)由f (x )=1-x -1e x ,得f ′(x )=x -2e x , 所以当0<x <2时,f ′(x )<0,当x >2时,f ′(x )>0,即f (x )在(0,2)上是减函数,在(2,+∞)上是增函数,所以f (x )≥f (2)=1-1e 2(当且仅当x =2时取等号).① 又由(1)知x -ln x ≥1(当且仅当x =1时取等号),②且①②等号不同时取得,所以(x -ln x )f (x )>1-1e 2. 规律方法 1.证明不等式的基本方法:(1)利用单调性:若f (x )在[a ,b ]上是增函数,则①∀x ∈[a ,b ],有f (a )≤f (x )≤f (b ),②∀x 1,x 2∈[a ,b ],且x 1<x 2,有f (x 1)<f (x 2).对于减函数有类似结论.(2)利用最值:若f (x )在某个范围D 内有最大值M (或最小值m ),则∀x ∈D ,有f (x )≤M (或f (x )≥m ).2.证明f (x )<g (x ),可构造函数F (x )=f (x )-g (x ),证明F (x )<0.先通过化简、变形,再移项构造不等式就减少运算量,使得问题顺利解决.考点二 利用“若f (x )min >g (x )max ,则f (x )>g (x )”证明不等式【例2】 已知函数f (x )=x ln x -ax .(1)当a =-1时,求函数f (x )在(0,+∞)上的最值;(2)证明:对一切x ∈(0,+∞),都有ln x +1>1ex +1-2e 2x 成立. (1)解 函数f (x )=x ln x -ax 的定义域为(0,+∞).当a =-1时,f (x )=x ln x +x ,f ′(x )=ln x +2.由f ′(x )=0,得x =1e 2. 当x ∈⎝⎛⎭⎫0,1e 2时,f ′(x )<0;当x >1e 2时,f ′(x )>0. 所以f (x )在⎝⎛⎭⎫0,1e 2上单调递减,在⎝⎛⎭⎫1e 2,+∞上单调递增. 因此f (x )在x =1e 2处取得最小值,即f (x )min =f ⎝⎛⎭⎫1e 2=-1e 2,但f (x )在(0,+∞)上无最大值. (2)证明 当x >0时,ln x +1>1e x +1-2e 2x 等价于x (ln x +1)>x ex +1-2e 2. 由(1)知a =-1时,f (x )=x ln x +x 的最小值是-1e 2,当且仅当x =1e 2时取等号. 设G (x )=x ex +1-2e 2,x ∈(0,+∞), 则G ′(x )=1-x ex +1,易知G (x )max =G (1)=-1e 2, 当且仅当x =1时取到,从而可知对一切x ∈(0,+∞),都有f (x )>G (x ),即ln x +1>1ex +1-2e 2x .规律方法 1.在证明不等式中,若无法转化为一个函数的最值问题,则可考虑转化为两个函数的最值问题.2.在证明过程中,等价转化是关键,此处f (x )min >g (x )max 恒成立.从而f (x )>g (x ),但此处f (x )与g (x )取到最值的条件不是同一个“x 的值”.考点三 不等式恒成立或有解问题角度1 不等式恒成立求参数【例3-1】 已知函数f (x )=sin x x(x ≠0). (1)判断函数f (x )在区间⎝⎛⎭⎫0,π2上的单调性; (2)若f (x )<a 在区间⎝⎛⎭⎫0,π2上恒成立,求实数a 的最小值. 解 (1)f ′(x )=x cos x -sin x x 2, 令g (x )=x cos x -sin x ,x ∈⎝⎛⎭⎫0,π2,则g ′(x )=-x sin x , 显然,当x ∈⎝⎛⎭⎫0,π2时,g ′(x )=-x sin x <0,即函数g (x )在区间⎝⎛⎭⎫0,π2上单调递减,且g (0)=0. 从而g (x )在区间⎝⎛⎭⎫0,π2上恒小于零, 所以f ′(x )在区间⎝⎛⎭⎫0,π2上恒小于零, 所以函数f (x )在区间⎝⎛⎭⎫0,π2上单调递减. (2)不等式f (x )<a ,x ∈⎝⎛⎭⎫0,π2恒成立,即sin x -ax <0恒成立. 令φ(x )=sin x -ax ,x ∈⎝⎛⎭⎫0,π2, 则φ′(x )=cos x -a ,且φ(0)=0.当a ≥1时,在区间⎝⎛⎭⎫0,π2上φ′(x )<0,即函数φ(x )单调递减, 所以φ(x )<φ(0)=0,故sin x -ax <0恒成立.当0<a <1时,φ′(x )=cos x -a =0在区间⎝⎛⎭⎫0,π2上存在唯一解x 0, 当x ∈(0,x 0)时,φ′(x )>0,故φ(x )在区间(0,x 0)上单调递增,且φ(0)=0,从而φ(x )在区间(0,x 0)上大于零,这与sin x -ax <0恒成立相矛盾.当a ≤0时,在区间⎝⎛⎭⎫0,π2上φ′(x )>0,即函数φ(x )单调递增,且φ(0)=0,得sin x -ax >0恒成立,这与sin x -ax <0恒成立相矛盾.故实数a 的最小值为1.规律方法 1.破解此类题需“一形一分类”,“一形”是指会结合函数的图象,对函数进行求导,然后判断其极值,从而得到含有参数的方程组,解方程组,即可求出参数的值;“一分类”是指对不等式恒成立问题,常需对参数进行分类讨论,求出参数的取值范围.2.利用导数研究含参数的不等式问题,若能够分离参数,则常将问题转化为形如a ≥f (x )(或a ≤f (x ))的形式,通过求函数y =f (x )的最值求得参数范围.角度2 不等式能成立求参数的取值范围【例3-2】 已知函数f (x )=x 2-(2a +1)x +a ln x (a ∈R ).(1)若f (x )在区间[1,2]上是单调函数,求实数a 的取值范围;(2)函数g (x )=(1-a )x ,若∃x 0∈[1,e]使得f (x 0)≥g (x 0)成立,求实数a 的取值范围.解 (1)f ′(x )=(2x -1)(x -a )x,当导函数f ′(x )的零点x =a 落在区间(1,2)内时,函数f (x )在区间[1,2]上就不是单调函数,即a ∉(1,2),所以实数a 的取值范围是(-∞,1]∪[2,+∞).(2)由题意知,不等式f (x )≥g (x )在区间[1,e]上有解,即x 2-2x +a (ln x -x )≥0在区间[1,e]上有解.因为当x ∈[1,e]时,ln x ≤1≤x (不同时取等号),x -ln x >0,所以a ≤x 2-2x x -ln x 在区间[1,e]上有解. 令h (x )=x 2-2x x -ln x ,则h ′(x )=(x -1)(x +2-2ln x )(x -ln x )2. 因为x ∈[1,e],所以x +2>2≥2ln x ,所以h ′(x )≥0,h (x )在[1,e]上单调递增,所以x ∈[1,e]时,h (x )max =h (e)=e(e -2)e -1, 所以a ≤e(e -2)e -1, 所以实数a 的取值范围是⎝⎛⎦⎥⎤-∞,e(e -2)e -1. 规律方法 1.含参数的能成立(存在型)问题的解题方法a ≥f (x )在x ∈D 上能成立,则a ≥f (x )min ;a ≤f (x )在x ∈D 上能成立,则a ≤f (x )max .2.含全称、存在量词不等式能成立问题(1)存在x 1∈A ,任意x 2∈B 使f (x 1)≥g (x 2)成立,则f (x )max ≥g (x )max ;(2)任意x 1∈A ,存在x 2∈B ,使f (x 1)≥g (x 2)成立,则f (x )min ≥g (x )min .[方法技巧]1.证明不等式的关键是构造函数,将问题转化为研究函数的单调性、最值问题.2.恒(能)成立问题的转化策略.若f (x )在区间D 上有最值,则(1)恒成立:∀x ∈D ,f (x )>0⇔f (x )min >0;∀x ∈D ,f (x )<0⇔f (x )max <0.(2)能成立:∃x ∈D ,f (x )>0⇔f (x )max >0;∃x ∈D ,f (x )<0⇔f (x )min <0.3.证明不等式,特别是含两个变量的不等式时,要注意合理的构造函数.4.恒成立与能成立问题,要注意理解“任意”与“存在”的不同含义,要注意区分转化成的最值问题的异同.二、导数在函数零点中的应用考点一 判断零点的个数【例1】已知二次函数f (x )的最小值为-4,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R }.(1)求函数f (x )的解析式;(2)求函数g (x )=f (x )x-4ln x 的零点个数. 解 (1)∵f (x )是二次函数,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R },∴设f (x )=a (x +1)(x -3)=ax 2-2ax -3a ,且a >0.∴f (x )min =f (1)=-4a =-4,a =1.故函数f (x )的解析式为f (x )=x 2-2x -3.(2)由(1)知g (x )=x 2-2x -3x -4ln x =x -3x-4ln x -2, ∴g (x )的定义域为(0,+∞),g ′(x )=1+3x 2-4x =(x -1)(x -3)x 2,令g ′(x )=0,得x 1=1,x 2=3. 当x 变化时,g ′(X (0,1) 1 (1,3) 3 (3,+∞)g ′(x ) + 0 - 0 +g (x )极大值 极小值当0<x ≤3时,g 当x >3时,g (e 5)=e 5-3e5-20-2>25-1-22=9>0. 又因为g (x )在(3,+∞)上单调递增,因而g (x )在(3,+∞)上只有1个零点,故g (x )仅有1个零点.规律方法 利用导数确定函数零点或方程根个数的常用方法(1)构建函数g (x )(要求g ′(x )易求,g ′(x )=0可解),转化确定g (x )的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出g (x )的图象草图,数形结合求解函数零点的个数.(2)利用零点存在性定理:先用该定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数.考点二 已知函数零点个数求参数的取值范围【例2】 函数f (x )=ax +x ln x 在x =1处取得极值.(1)求f (x )的单调区间;(2)若y =f (x )-m -1在定义域内有两个不同的零点,求实数m 的取值范围.解 (1)函数f (x )=ax +x ln x 的定义域为(0,+∞).f ′(x )=a +ln x +1,因为f ′(1)=a +1=0,解得a =-1,当a =-1时,f (x )=-x +x ln x ,即f ′(x )=ln x ,令f ′(x )>0,解得x >1;令f ′(x )<0,解得0<x <1.所以f (x )在x =1处取得极小值,f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1).(2)y =f (x )-m -1在(0,+∞)内有两个不同的零点,可转化为y =f (x )与y =m +1图象有两个不同的交点. 由(1)知,f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,f (x )min =f (1)=-1,由题意得,m +1>-1,即m >-2,①当0<x <e 时,f (x )=x (-1+ln x )<0;当x >e 时,f (x )>0.当x >0且x →0时,f (x )→0;当x →+∞时,显然f (x )→+∞.由图象可知,m +1<0,即m <-1,②由①②可得-2<m <-1.所以m 的取值范围是(-2,-1).规律方法 与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图象,讨论其图象与x 轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题.考点三 函数零点的综合问题【例3】 设函数f (x )=e 2x -a ln x .(1)讨论f (x )的导函数f ′(x )零点的个数;(2)证明:当a >0时,f (x )≥2a +a ln 2a . (1)解 f (x )的定义域为(0,+∞),f ′(x )=2e 2x -a x(x >0). 当a ≤0时,f ′(x )>0,f ′(x )没有零点;当a >0时,因为y =e 2x 单调递增,y =-a x单调递增, 所以f ′(x )在(0,+∞)上单调递增.又f ′(a )>0,假设存在b 满足0<b <a 4时,且b <14,f ′(b )<0, 故当a >0时,f ′(x )存在唯一零点.(2)证明 由(1),可设f ′(x )在(0,+∞)上的唯一零点为x 0,当x ∈(0,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0.故f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,所以当x =x 0时,f (x )取得最小值,最小值为f (x 0).由于2e 2x 0-a x 0=0,所以f (x 0)=a 2x 0+2ax 0+a ln 2a ≥2a +a ln 2a .故当a >0时,f (x )≥2a +a ln 2a. 规律方法 1.在(1)中,当a >0时,f ′(x )在(0,+∞)上单调递增,从而f ′(x )在(0,+∞)上至多有一个零点,问题的关键是找到b ,使f ′(b )<0.2.由(1)知,函数f′(x)存在唯一零点x0,则f(x0)为函数的最小值,从而把问题转化为证明f(x0)≥2a+a ln 2 a.[方法技巧]1.解决函数y=f(x)的零点问题,可通过求导判断函数图象的位置、形状和发展趋势,观察图象与x轴的位置关系,利用数形结合的思想方法判断函数的零点是否存在及零点的个数等.2.通过等价变形,可将“函数F(x)=f(x)-g(x)的零点”与“方程f(x)=g(x)的解”问题相互转化.3.函数y=f(x)在某一区间(a,b)上存在零点,必要时要由函数零点存在定理作为保证.。
高考大题专项(一) 导数的综合应用
高考大题专项(一) 导数的综合应用突破1 利用导数研究与不等式有关的问题1.(2020全国1,理21)已知函数f (x )=e x +ax 2-x. (1)当a=1时,讨论f (x )的单调性; (2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.2.(2020山东潍坊二模,20)已知函数f (x )=1x +a ln x ,g (x )=e x x .(1)讨论函数f (x )的单调性; (2)证明:当a=1时,f (x )+g (x )-(1+ex 2)ln x>e .3.已知函数f (x )=ln x+a x(a ∈R )的图象在点1e ,f (1e)处的切线斜率为-e,其中e 为自然对数的底数.(1)求实数a 的值,并求f (x )的单调区间; (2)证明:xf (x )>x ex .4.(2020广东湛江一模,文21)已知函数f (x )=ln ax-bx+1,g (x )=ax-ln x ,a>1. (1)求函数f (x )的极值;(2)直线y=2x+1为函数f (x )图象的一条切线,若对任意的x 1∈(0,1),x 2∈[1,2]都有g (x 1)>f'(x 2)成立,求实数a 的取值范围.5.(2020山东济宁5月模拟,21)已知两个函数f(x)=e xx ,g(x)=lnxx+1x-1.(1)当t>0时,求f(x)在区间[t,t+1]上的最大值;(2)求证:对任意x∈(0,+∞),不等式f(x)>g(x)都成立.6.(2020湖北武汉二月调考,理21)已知函数f(x)=(x-1)e x-kx2+2.(1)略;(2)若∀x∈[0,+∞),都有f(x)≥1成立,求实数k的取值范围.7.(2020山东济南一模,22)已知函数f(x)=a(e x-x-1)x2,且曲线y=f(x)在(2,f(2))处的切线斜率为1.(1)求实数a的值;(2)证明:当x>0时,f(x)>1;(3)若数列{x n}满足e x n+1=f(x n),且x1=13,证明:2n|e x n-1|<1.8.(2020湖南长郡中学四模,理21)已知函数f(x)=x ln x.(1)若函数g(x)=f'(x)+ax2-(a+2)x(a>0),试研究函数g(x)的极值情况;(2)记函数F(x)=f(x)-xe x 在区间(1,2)上的零点为x0,记m(x)=min f(x),xe x,若m(x)=n(n∈R)在区间(1,+∞)上有两个不等实数解x1,x2(x1<x2),证明:x1+x2>2x0.突破2 利用导数研究与函数零点有关的问题1.(2020山东烟台一模,21)已知函数f (x )=1+lnxx -a (a ∈R ).(1)若f (x )≤0在(0,+∞)上恒成立,求a 的取值范围,并证明:对任意的n ∈N *,都有1+12+13+ (1)>ln(n+1); (2)设g (x )=(x-1)2e x ,讨论方程f (x )=g (x )的实数根的个数.2.(2020北京通州区一模,19)已知函数f (x )=x e x ,g (x )=a (e x -1),a ∈R . (1)当a=1时,求证:f (x )≥g (x );(2)当a>1时,求关于x 的方程f (x )=g (x )的实数根的个数.3.(2020湖南长郡中学四模,文21)已知函数f(x)=2a e2x+2(a+1)e x.(1)略;(2)当a∈(0,+∞)时,函数f(x)的图象与函数y=4e x+x的图象有唯一的交点,求a的取值集合.4.(2020天津和平区一模,20)已知函数f(x)=ax+be x,a,b∈R,且a>0.x,求函数f(x)的解析式;(1)若函数f(x)在x=-1处取得极值1e(2)在(1)的条件下,求函数f(x)的单调区间;的取值范(3)设g(x)=a(x-1)e x-f(x),g'(x)为g(x)的导函数,若存在x0∈(1,+∞),使g(x0)+g'(x0)=0成立,求ba围.x3+2(1-a)x2-8x+8a+7.5.已知函数f(x)=ln x,g(x)=2a3(1)若曲线y=g(x)在点(2,g(2))处的切线方程是y=ax-1,求函数g(x)在[0,3]上的值域;(2)当x>0时,记函数h(x)={f(x),f(x)<g(x),g(x),f(x)≥g(x),若函数y=h(x)有三个零点,求实数a的取值集合.参考答案高考大题专项(一)导数的综合应用突破1利用导数研究与不等式有关的问题1.解(1)当a=1时,f(x)=e x+x2-x,f'(x)=e x+2x-1.故当x∈(-∞,0)时,f'(x)<0;当x∈(0,+∞)时,f'(x)>0.所以f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增.(2)f(x)≥12x3+1等价于12x3-ax2+x+1e-x≤1.设函数g(x)=(12x3-ax2+x+1)e-x(x≥0),则g'(x)=-12x3-ax2+x+1-32x2+2ax-1e-x=-12x[x2-(2a+3)x+4a+2]e-x=-12x(x-2a-1)(x-2)e-x.①若2a+1≤0,即a≤-12,则当x∈(0,2)时,g'(x)>0.所以g(x)在(0,2)上单调递增,而g(0)=1,故当x∈(0,2)时,g(x)>1,不合题意.②若0<2a+1<2,即-12<a<12,则当x ∈(0,2a+1)∪(2,+∞)时,g'(x )<0;当x ∈(2a+1,2)时,g'(x )>0.所以g (x )在(0,2a+1),(2,+∞)上单调递减,在(2a+1,2)上单调递增.由于g (0)=1,所以g (x )≤1当且仅当g (2)=(7-4a )e -2≤1,即a ≥7-e 24.所以当7-e 24≤a<12时,g (x )≤1.③若2a+1≥2,即a ≥12,则g (x )≤12x 3+x+1e -x .由于0∈7-e 24,12,故由②可得(12x 3+x +1)e -x ≤1.故当a ≥12时,g (x )≤1.综上,a 的取值范围是[7-e 24,+∞).2.(1)解 函数的定义域为(0,+∞),f'(x )=-1x 2+ax =ax -1x 2,当a ≤0时,f'(x )<0,所以f (x )在(0,+∞)上单调递减; 当a>0时,由f'(x )>0,得x>1a ,由f'(x )<0,得0<x<1a , 所以f (x )在(0,1a )上单调递减,在(1a ,+∞)上单调递增, 综上可知:当a ≤0时,f (x )在(0,+∞)上单调递减;当a>0时,f (x )在(0,1a )上单调递减,在(1a ,+∞)上单调递增. (2)证明 因为x>0,所以不等式等价于e x -e x+1>elnxx ,设F (x )=e x -e x+1,F'(x )=e x -e,所以当x ∈(1,+∞)时,F'(x )>0,F (x )单调递增;当x ∈(0,1)时,F'(x )<0,F (x )单调递减,所以F (x )min =F (1)=1.设G (x )=elnxx ,G'(x )=e (1-lnx )x 2, 所以当x ∈(0,e)时,G'(x )>0,G (x )单调递增,当x ∈(e,+∞)时,G'(x )<0,G (x )单调递减,所以G (x )max =G (e)=1.虽然F (x )的最小值等于G (x )的最大值,但1≠e,所以F (x )>G (x ),即e x -e x+1>elnxx ,故原不等式成立.3.(1)解因为函数f(x)的定义域为(0,+∞),f'(x)=1x −ax2,所以f'(1e)=e-a e2=-e,所以a=2e,所以f'(x)=1x−2ex2.令f'(x)=0,得x=2e,当x∈(0,2e)时,f'(x)<0,当x∈(2e,+∞)时,f'(x)>0,所以f(x)在(0,2e)上单调递减,在(2e,+∞)上单调递增.(2)证明设h(x)=xf(x)=x ln x+2e ,由h'(x)=ln x+1=0,得x=1e,所以当x∈(0,1e)时,h'(x)<0;当x∈(1e,+∞)时,h'(x)>0,所以h(x)在(0,1e)上单调递减,在(1e,+∞)上单调递增,所以h(x)min=h(1e )=1e.设t(x)=xe x(x>0),则t'(x)=1-xe x,所以当x∈(0,1)时,t'(x)>0,t(x)单调递增,当x∈(1,+∞)时,t'(x)<0,t(x)单调递减,所以t(x)max=t(1)=1e.综上,在(0,+∞)上恒有h(x)>t(x),即xf(x)>x e x .4.解(1)∵a>1,∴函数f(x)的定义域为(0,+∞).∵f(x)=ln ax-bx+1=ln a+ln x-bx+1,∴f'(x)=1x-b=1-bxx.①当b≤0时,f'(x)>0,f(x)在(0,+∞)上为增函数,无极值;②当b>0时,由f'(x)=0,得x=1b.∵当x∈(0,1b)时,f'(x)>0,f(x)单调递增;当x∈(1b,+∞)时,f'(x)<0,f(x)单调递减,∴f(x)在定义域上有极大值,极大值为f(1b )=ln ab.(2)设直线y=2x+1与函数f(x)图像相切的切点为(x0,y0),则y0=2x0+1.∵f'(x)=1x -b,∴f'(x0)=1x0-b=2,∴x0=1b+2,即bx0=1-2x0.又ln ax 0-bx 0+1=2x 0+1,∴ln ax 0=1,∴ax 0=e . ∴x 0=ea .∴ae =b+2.∵对任意的x 1∈(0,1),x 2∈[1,2]都有g (x 1)>f'(x 2)成立, ∴只需g (x 1)min >f'(x 2)max . ∵g'(x )=a-1x =ax -1x, ∴由g'(x )=0,得x=1a . ∵a>1,∴0<1a <1.∴当x ∈(0,1a )时,g'(x )<0,g (x )单调递减; 当x ∈(1a ,1)时,g'(x )>0,g (x )单调递增.∴g (x )≥g (1a )=1+ln a , 即g (x 1)min =1+ln a.∵f'(x 2)=1x 2-b 在x 2∈[1,2]上单调递减,∴f'(x 2)max =f'(1)=1-b=3-ae .∴1+ln a>3-ae .即lna+a e -2>0.设h (a )=ln a+ae -2,易知h (a )在(1,+∞)上单调递增.又h (e)=0,∴实数a 的取值范围为(e,+∞). 5.(1)解 由f (x )=e x x 得,f'(x )=xe x -e xx 2=e x (x -1)x 2,∴当x<1时,f'(x )<0,当x>1时,f'(x )>0,∴f (x )在区间(-∞,1)上单调递减,在区间(1,+∞)上单调递增.①当t ≥1时,f (x )在区间[t ,t+1]上单调递增,f (x )的最大值为f (t+1)=e t+1t+1.②当0<t<1时,t+1>1,f (x )在区间(t ,1)上单调递减,在区间(1,t+1)上单调递增,∴f (x )的最大值为f (x )max =max{f (t ),f (t+1)}.下面比较f (t )与f (t+1)的大小.f (t )-f (t+1)=e tt−e t+1t+1=[(1-e )t+1]e tt (t+1).∵t>0,1-e <0,∴当0<t ≤1e -1时,f (t )-f (t+1)≥0,故f (x )在区间[t ,t+1]上的最大值为f (t )=e t t ,当1e -1<t<1时,f (t )-f (t+1)<0,f (x )在区间[t ,t+1]上的最大值为f (t+1)=e t+1t+1.综上可知,当0<t ≤1e -1时,f (x )在区间[t ,t+1]上的最大值为f (t )=e t t ,当t>1e -1时,f (x )在区间[t ,t+1]上的最大值为f (t+1)=e t+1t+1. (2)证明 不等式f (x )>g (x )即为e xx>lnx x +1x -1.∵x>0,∴不等式等价于e x >ln x-x+1,令h (x )=e x -(x+1)(x>0),则h'(x )=e x -1>0,∴h (x )在(0,+∞)上为增函数,h (x )>h (0)=0,即e x >x+1,所以,要证e x >ln x-x+1成立,只需证x+1>ln x-x+1成立即可. 即证2x>ln x 在(0,+∞)上成立. 设φ(x )=2x-ln x ,则φ'(x )=2-1x=2x -1x,当0<x<12时,φ'(x )<0,φ(x )单调递减,当x>12时,φ'(x )>0,φ(x )单调递增,∴φ(x )min =φ(12)=1-ln 12=1+ln 2>0,∴φ(x )>0在(0,+∞)上成立,∴对任意x ∈(0,+∞),不等式f (x )>g (x )都成立. 6.解 (1)略(2)f'(x )=x e x -2kx=x (e x -2k ),①当k ≤0时,e x -2k>0,所以,当x<0时,f'(x )<0,当x>0时,f'(x )>0,则f (x )在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增, 所以f (x )在区间[0,+∞)上的最小值为f (0),且f (0)=1,符合题意; ②当k>0时,令f'(x )=0,得x=0或x=ln 2k ,所以当0<k ≤12时,ln 2k ≤0,在区间(0,+∞)上f'(x )>0,f (x )单调递增, 所以f (x )在区间[0,+∞)上的最小值为f (0),且f (0)=1,符合题意;当k>12时,ln 2k>0,当x ∈(0,ln 2k )时,f'(x )<0,f (x )在区间(0,ln 2k )上单调递减, 所以f (ln 2k )<f (0)=1,不满足对任意的x ∈[0,+∞),f (x )≥1恒成立, 综上,k 的取值范围是(-∞,12].7.(1)解 f'(x )=a [(x -2)e x +x+2)]x 3,因为f'(2)=a2=1,所以a=2.(2)证明 要证f (x )>1,只需证h (x )=e x -12x 2-x-1>0.h'(x )=e x -x-1,令c (x )=e x -x-1,则c'(x )=e x -1.因为当x>0时,c'(x )>0,所以h'(x )=e x -x-1在(0,+∞)上单调递增,所以h'(x)=e x-x-1>h'(0)=0.所以h(x)=e x-12x2-x-1在(0,+∞)上单调递增,所以h(x)=e x-12x2-x-1>h(0)=0成立.所以当x>0时,f(x)>1.(3)证明(方法1)由(2)知当x>0时,f(x)>1.因为e x n+1=f(x n),所以x n+1=ln f(x n).设g(x n)=ln f(x n),则x n+1=g(x n),所以x n=g(x n-1)=g(g(x n-2))=…=g((…(g(x1))…))>0.要证2n|e x n-1|<1,只需证|e x n-1|<12n.因为x1=13,所以|e x1-1|=e13-1.因为e-323=e-278<0,所以e 13<32,所以|e x1-1|=e 13-1<12.故只需证|e x n+1-1|<12|e x n-1|.因为x n∈(0,+∞),故只需证e x n+1-1<12e x n−12,即证f(x n)-1<12e x n−12.只需证当x∈(0,+∞)时,φ(x)=12x2-2e x+12x2+2x+2>0,φ'(x)=12x2+x-2e x+x+2,令α(x)=12x2+x-2e x+x+2,则α'(x)=12x2+2x-1e x+1,令β(x)=12x2+2x-1e x+1,则β'(x)=12x2+3x+1e x>0,所以β(x)在区间(0,+∞)上单调递增,故β(x)=12x2+2x-1e x+1>β(0)=0.所以α(x)在区间(0,+∞)上单调递增,故α(x)=12x2+x-2e x+x+2>α(0)=0.所以φ(x)在区间(0,+∞)上单调递增,所以φ(x)=12x2-2e x+12x2+2x+2>φ(0)=0,所以原不等式成立.(方法2)由(2)知当x>0时,f(x)>1.因为e x n+1=f(x n),所以x n+1=ln f(x n).设g(x n)=ln f(x n),则x n+1=g(x n),所以x n=g(x n-1)=g(g(x n-2))=…=g((…(g(x1))…))>0.要证2n|e x n-1|<1,只需证|e x n-1|<12n.因为x1=13,所以|e x1-1|=e13-1.因为e-323=e-278<0,所以e 13<32,所以|e x1-1|=e 13-1<12.故只需证|e x n+1-1|<12|e x n-1|.因为x n∈(0,+∞),故只需证e x n+1-1<12e x n−12,即证f(x n)-1<12e x n−12.只需证当x∈(0,+∞)时,φ(x)=12x2-2e x+12x2+2x+2>0.因为φ(x)=12(x2-4)e x+12(x2+4x+4)=12(x+2)[(x-2)e x+(x+2)],设u(x)=(x-2)e x+(x+2),故只需证u(x)>0.u'(x)=(x-1)e x+1,令v(x)=(x-1)e x+1,则v'(x)=x e x>0,所以v(x)在区间(0,+∞)上单调递增,故v(x)=(x-1)e x+1>v(0)=0,所以u(x)在区间(0,+∞)上单调递增,故u(x)=(x-2)e x+(x+2)>u(0)=0,所以原不等式成立.8.(1)解由题意,得f'(x)=ln x+1,故g(x)=ax2-(a+2)x+ln x+1,故g'(x)=2ax-(a+2)+1x=(2x-1)(ax-1)x,x>0,a>0.令g'(x)=0,得x1=12,x2=1a.①当0<a<2时,1a >12,由g'(x)>0,得0<x<12或x>1a;由g'(x)<0,得12<x<1a.所以g(x)在x=12处取极大值g12=-a4-ln 2,在x=1a处取极小值g1a=-1a-ln a.②当a=2时,1a =12,g'(x)≥0恒成立,所以不存在极值.③当a>2时,1a <12,由g'(x)>0,得0<x<1a或x>12;由g'(x)<0,得1a<x<12.所以g(x)在x=1a处取极大值g1a=-1a-ln a,在x=12处取极小值g12=-a4-ln 2.综上,当0<a<2时,g(x)在x=12处取极大值-a4-ln 2,在x=1a处取极小值-1a-ln a;当a=2时,不存在极值;当a>2时,g(x)在x=1a处取极大值-1a-ln a,在x=12处取极小值-a4-ln 2.(2)证明F(x)=x ln x-xe x ,定义域为x∈(0,+∞),F'(x)=1+ln x+x-1e x.当x∈(1,2)时,F'(x)>0,即F(x)在区间(1,2)上单调递增.又因为F(1)=-1e<0,F(2)=2ln 2-2e2>0,且F(x)在区间(1,2)上的图像连续不断,故根据函数零点存在定理,F(x)在区间(1,2)上有且仅有一个零点.所以存在x0∈(1,2),使得F(x0)=f(x0)-x0e x0=0.且当1<x<x0时,f(x)<xe x;当x>x0时,f(x)>xe x.所以m(x)=min f(x),xe x={xlnx,1<x<x0,xe x,x>x0.当1<x<x0时,m(x)=x ln x,由m'(x)=1+ln x>0,得m(x)单调递增;当x>x 0时,m (x )=x e x ,由m'(x )=1-xe x <0,得m (x )单调递减. 若m (x )=n 在区间(1,+∞)上有两个不等实数解x 1,x 2(x 1<x 2), 则x 1∈(1,x 0),x 2∈(x 0,+∞).要证x 1+x 2>2x 0,即证x 2>2x 0-x 1.又因为2x 0-x 1>x 0,而m (x )在区间(x 0,+∞)上单调递减, 所以可证m (x 2)<m (2x 0-x 1).由m (x 1)=m (x 2),即证m (x 1)<m (2x 0-x 1),即x 1ln x 1<2x 0-x 1e 2x 0-x 1. 记h (x )=x ln x-2x 0-xe 2x 0-x,1<x<x 0, 其中h (x 0)=0. 记φ(t )=t e t ,则φ'(t )=1-te t . 当t ∈(0,1)时,φ'(t )>0; 当t ∈(1,+∞)时,φ'(t )<0. 故φ(t )max =1e .而φ(t )>0,故0<φ(t )<1e . 因为2x 0-x>1, 所以-1e <-2x 0-xe 2x 0-x<0. 因此h'(x )=1+ln x+1e2x 0-x −2x 0-x e 2x 0-x>1-1e >0,即h (x )单调递增,故当1<x<x 0时,h (x )<h (x 0)=0, 即x 1ln x 1<2x 0-x 1e 2x 0-x 1, 故x 1+x 2>2x 0,得证.突破2 利用导数研究 与函数零点有关的问题1.(1)证明 由f (x )≤0可得,a ≥1+lnxx(x>0),令h (x )=1+lnx x ,则h'(x )=1x ·x -(1+lnx )x 2=-lnxx 2. 当x ∈(0,1)时,h'(x )>0,h (x )单调递增;当x ∈(1,+∞)时,h'(x )<0,h (x )单调递减,故h (x )在x=1处取得最大值,要使a ≥1+lnxx,只需a ≥h (1)=1,故a 的取值范围为[1,+∞). 显然,当a=1时,有1+lnxx≤1,即不等式ln x<x-1在(1,+∞)上成立,令x=n+1n >1(n ∈N *),则有ln n+1n <n+1n -1=1n ,所以ln 21+ln 32+…+ln n+1n <1+12+13+…+1n , 即1+12+13+…+1n >ln(n+1).(2)解 由f (x )=g (x ),可得1+lnxx -a=(x-1)2e x ,即a=1+lnxx -(x-1)2e x ,令t (x )=1+lnxx -(x-1)2e x , 则t'(x )=-lnx x 2-(x 2-1)e x ,当x ∈(0,1)时,t'(x )>0,t (x )单调递增;当x ∈(1,+∞)时,t'(x )<0,t (x )单调递减,故t (x )在x=1处取得最大值t (1)=1,又当x →0时,t (x )→-∞,当x →+∞时,t (x )→-∞,所以,当a=1时,方程f (x )=g (x )有一个实数根;当a<1时,方程f (x )=g (x )有两个不同的实数根; 当a>1时,方程f (x )=g (x )没有实数根. 2.(1)证明 设函数F (x )=f (x )-g (x )=x e x -a e x +a.当a=1时,F (x )=x e x -e x +1,所以F'(x )=x e x . 所以当x ∈(-∞,0)时,F'(x )<0; 当x ∈(0,+∞)时,F'(x )>0.所以F (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增. 所以当x=0时,F (x )取得最小值F (0)=0. 所以F (x )≥0,即f (x )≥g (x ).(2)解 设函数F (x )=f (x )-g (x )=x e x -a e x +a.当a>1时,F'(x )=(x-a+1)e x ,令F'(x )>0,即(x-a+1)e x >0,解得x>a-1; 令F'(x )<0,即(x-a+1)e x <0,解得x<a-1.所以F (x )在(-∞,a-1)上单调递减,在(a-1,+∞)上单调递增.所以当x=a-1时,F (x )取得最小值,即F (a-1)=a-e a-1. 令h (a )=a-e a-1,则h'(a )=1-e a-1.因为a>1,所以h'(a )<0.所以h (a )在(1,+∞)上单调递减. 所以h (a )<h (1)=0,所以F (a-1)<0.又因为F (a )=a>0,所以F (x )在区间(a-1,a )上存在一个零点. 所以在[a-1,+∞)上存在唯一的零点.又因为F (x )在区间(-∞,a-1)上单调递减,且F (0)=0, 所以F (x )在区间(-∞,a-1)上存在唯一的零点0.所以函数F (x )有且仅有两个零点,即方程f (x )=g (x )有两个实数根.3.解 (1)略.(2)设t=e x ,则f (t )=2at 2+2(a+1)t 的图像与y=4t+ln t 的图像只有一个交点,其中t>0,则2at 2+2(a+1)t=4t+ln t 只有一个实数解,即2a=2t+lntt 2+t只有一个实数解. 设g (t )=2t+lnt t 2+t,则g'(t )=-2t 2+t -2tlnt+1-lnt(t 2+t )2,g'(1)=0.令h (t )=-2t 2+t-2t ln t+1-ln t , 则h'(t )=-4t-1φ-2ln t-1.设y=1t +2ln t ,令y'=-1t 2+2t =2t -1t 2=0,解得t=12,则y ,y'随t 的变化如表所示0,1212,+∞y' - 0+则当t=12时,y=1t +2ln t 取最小值为2-2ln 2=2×(1-ln 2)>0. 所以-1t -2ln t<0, 即h'(t )=-4t-1t -2ln t-1<0.所以h (t )在(0,+∞)上单调递减. 因此g'(t )=0只有一个根,即t=1. 当t ∈(0,1)时,g'(t )>0,g (t )单调递增; 当t ∈(1,+∞)时,g'(t )<0,g (t )单调递减. 所以,当t=1时,g (t )有最大值为g (1)=1.由题意知,y=2a 与g (t )图像只有一个交点,而a ∈(0,+∞), 所以2a=1,即a=12,所以a 的取值集合为12.4.解 (1)函数f (x )的定义域为(-∞,0)∪(0,+∞).f'(x )=ax 2+bx -b x 2e x,由题知{f '(-1)=0,f (-1)=1e ,即{(a -2b )e -1=0,(-a+b )-1e -1=1e ,解得{a =2,b =1,所以函数f (x )=2x+1x e x (x ≠0). (2)f'(x )=2x 2+x -1x 2e x =(x+1)(2x -1)x 2e x. 令f'(x )>0得x<-1或x>12, 令f'(x )<0得-1<x<0或0<x<12.所以函数f (x )的单调递增区间是(-∞,-1),12,+∞, 单调递减区间是(-1,0),0,12.(3)根据题意易得g (x )=ax-b x -2a e x (a>0), 所以g'(x )=bx 2+ax-bx -a e x .由g (x )+g'(x )=0,得ax-bx -2a e x +bx 2+ax-bx -a e x =0.整理,得2ax 3-3ax 2-2bx+b=0.存在x 0∈(1,+∞),使g (x 0)+g'(x 0)=0成立,等价于存在x 0∈(1,+∞),使2a x 03-3a x 02-2bx 0+b=0成立.设u (x )=2ax 3-3ax 2-2bx+b (x>1),则u'(x )=6ax 2-6ax-2b=6ax (x-1)-2b>-2b. 当b ≤0时,u'(x )>0,此时u (x )在(1,+∞)上单调递增, 因此u (x )>u (1)=-a-b.因为存在x 0∈(1,+∞),使2a x 03-3a x 02-2bx 0+b=0成立, 所以只要-a-b<0即可,此时-1<ba ≤0. 当b>0时,令u (x )=b , 解得x 1=3a+√9a 2+16ab4a>3a+√9a 24a=32>1,x 2=3a -√9a 2+16ab 4a(舍去),x 3=0(舍去),得u (x 1)=b>0.又因为u (1)=-a-b<0,于是u (x )在(1,x 1)上必有零点,即存在x 0>1,使2a x 03-3a x 02-2bx 0+b=0成立,此时ba >0.综上,ba 的取值范围为(-1,+∞). 5.解 (1)因为g (x )=2a3x 3+2(1-a )x 2-8x+8a+7,所以g'(x )=2ax 2+4(1-a )x-8,所以g'(2)=0. 所以a=0,即g (x )=2x 2-8x+7. g (0)=7,g (3)=1,g (2)=-1.所以g (x )在[0,3]上的值域为[-1,7].(2)①当a=0时,g (x )=2x 2-8x+7,由g (x )=0,得x=2±√22∈(1,+∞),此时函数y=h (x )有三个零点,符合题意.②当a>0时,g'(x )=2ax 2+4(1-a )x-8=2a (x-2)x+2a . 由g'(x )=0,得x=2. 当x ∈(0,2)时,g'(x )<0; 当x ∈(2,+∞)时,g'(x )>0.若函数y=h (x )有三个零点,则需满足g (1)>0且g (2)<0,解得0<a<316.③当a<0时,g'(x )=2ax 2+4(1-a )x-8=2a (x-2)x+2a . 由g'(x )=0,得x 1=2,x 2=-2a .(ⅰ)当-2a <2,即a<-1时,因为g (x )极大值=g (2)=163a-1<0,此时函数y=h (x )至多有一个零点,不符合题意.(ⅱ)当-2a =2,即a=-1时,因为g'(x )≤0,此时函数y=h (x )至多有两个零点,不符合题意. (ⅲ)当-2a >2,即-1<a<0时,若g (1)<0,函数y=h (x )至多有两个零点,不符合题意; 若g (1)=0,得a=-320;因为g -2a =1a 28a 3+7a 2+8a+83,所以g -2a >0,此时函数y=h (x )有三个零点,符合题意;若g (1)>0,得-320<a<0. 由g -2a =1a 28a 3+7a 2+8a+83.记φ(a)=8a3+7a2+8a+83,则φ'(a)>0.所以φ(a)>φ-320>0,此时函数y=h(x)有四个零点,不符合题意.综上所述,满足条件的实数a∈-220∪0,316.。
西城学探诊高中数学3.3.4导数的综合应用(一)导学案(无答案)新人教B版选修1_1
§3.3.导数的综合应用(一)
学习目标
1、能够利用函数的导数求函数的单调区间、极值与最值问题;
2、理解数学的分类讨论思想,准确把握解决问题的思路
学习过程
【任务一】基本方法再现
问题:已知函数42()25f x x x =-+(1)求函数)(x f 的单调区间;(2)求函数)(x f 的极值(3)求函数)(x f 在区间[-2,2]上的最大值与最小值.
【任务二】典型例题分析
例题:已知1)(--=ax e x f x (1)求)(x f 的单调增区间;
(2)若)(x f 在定义域R 内单调递增,求a 的取值范围;
(3)是否存在a ,使)(x f 在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a 的值;若不存在,说明理由.
变式训练1. 已知函数1)(3--=ax x x f
(1)若)(x f 在实数集R 上单调递增,求实数a 的取值范围;
(2)是否存在实数a ,使)(x f 在)1,1(-上单调递减?若存在,求出a 的取值范围;若不存在,说明理由;
变式训练2.已知函数()()21
ln 202f x x ax x a =--≠。
(1)若函数()f x 在[]1,4上单调递减,求a 的取值范围;
(2)若函数()f x 存在单调递减区间,求a 的取值范围。
数学导数的综合运用试题
数学导数的综合运用试题1.已知函数(,,且)的图象在处的切线与轴平行. (1)确定实数、的正、负号;(2)若函数在区间上有最大值为,求的值.【答案】(1),(2)【解析】(1) 1分由图象在处的切线与轴平行,知,∴. 2分又,故,. 3分(2) 令,得或. 4分∵,令,得或令,得.于是在区间内为增函数,在内为减函数,在内为增函数.∴是的极大值点,是极小值点. 5分令,得或. 6分分类:①当时,,∴ .由解得, 8分②当时,, 9分∴.由得 . 10分记,∵,∴在上是增函数,又,∴,∴在上无实数根.综上,的值为. 12分2.(本题满分15分)已知函数(),且函数图象过原点.(Ⅰ)求函数的单调区间;(Ⅱ)函数在定义域内是否存在零点?若存在,请指出有几个零点;若不存在,请说明理由.【答案】见解析【解析】(Ⅰ)由题意可知故,则.当时,对,有,所以函数在区间上单调递增;当时,由,得;由,得,此时函数的单调增区间为,单调减区间为.综上所述,当时,函数的单调增区间为;当时,函数的单调增区间为,单调减区间为.(Ⅱ)函数的定义域为,由,得(),令(),则,由于,,可知当,;当时,,故函数在上单调递减,在上单调递增,故.又由(Ⅰ)知当时,对,有,即,(随着的增长,的增长速度越来越快,会超过并远远大于的增长速度,而的增长速度则会越来越慢.则当且无限接近于0时,趋向于正无穷大.)当时,函数有两个不同的零点;当时,函数有且仅有一个零点;当时,函数没有零点.3.若曲线在点处的切线与直线互相垂直,则实数的值为________.【答案】2.【解析】由已知得.【考点】导数的几何意义、两条直线的位置关系等知识,意在考查运算求解能力.4.(本小题满分13分)已知函数 (t∈R) .(Ⅰ)若曲线在处的切线与直线平行,求实数的值;(Ⅱ)若对任意的,恒成立,求实数的取值范围.【答案】(Ⅰ) (Ⅱ)【解析】(Ⅰ) 由题意得,,且,即,解得; 3分(Ⅱ)由(Ⅰ) ,时,.当时,,函数在上单调递增.此时由,解得; 6分(2)当时,,函数在上单调递减.此时由,解得; 9分(3)当时,函数在上递减,在上递增,.此时恒成立,而,所以,. 12分综上,当实数的取值范围为时,对任意的,恒成立. 13分【考点】本题主要考查导数的计算、导数的几何意义及应用导数研究函数的单调性、极值,考查简单不等式恒成立问题的处理方法,意在考查考生的运算能力、分析问题、解决问题的能力及转化与化归思想的应用意识.5.广东理)设函数(其中).(1) 当时,求函数的单调区间;(2) 当时,求函数在上的最大值.【答案】(1) 函数的递减区间为,递增区间为,(2)【解析】(1)根据k的取值化简函数的表达式,明确函数的定义域,然后利用求导研究函数的单调区间,中规中矩;(2)借助构造函数的技巧进行求解,如构造达到证明的目的,构造达到证明的目的.(1) 当时,,令,得,当变化时,的变化如下表:(2),令,得,,令,则,所以在上递增,所以,从而,所以所以当时,;当时,;所以令,则,令,则所以在上递减,而所以存在使得,且当时,,当时,,所以在上单调递增,在上单调递减.因为,,所以在上恒成立,当且仅当时取得“”.综上,函数在上的最大值.【考点】本题考查函数的单调性和函数的最值问题,考查学生的分类讨论思想和构造函数的解题能力.6.天津理)已知函数.(1) 求函数f(x)的单调区间;(2) 证明: 对任意的t>0, 存在唯一的s, 使.(3) 设(2)中所确定的s关于t的函数为, 证明: 当时, 有.【答案】(1)函数的单调递减区间是,单调递增区间是(2)见解析(3)见解析【解析】(1) 函数f(x)的定义域为,,令,得,当变化时,、的变化情况如下表:所以函数的单调递减区间是,单调递增区间是.(2)证明:当时,,令,由(1)知在区间内单调递增,,故存在唯一的,使得成立.(3)证明:因为,由(2)知,,且,从而===,其中,要使成立,只需,当时,若,则由的单调性,有,矛盾,所以即,从而成立;另一方面,令,令,得.当时,;当时,,故对,,因此成立.综上,当时,有.【解题思路与技巧】本题第(1)问,求的单调区间,先求出定义域,然后解导数方程的根,判断根两侧的导数的正负即可;第(2)问,证明时,可构造函数;第(3))问,讨论.【易错点】对第(1)问,求单调区间时,注意定义域优先的原则;第(2)、(3))问,证明时要注意讨论.【考点】本小题主要考查函数的概念、函数的零点、导数的运算、利用导数研究函数的单调性、不等式等基础知识,考查函数思想、化归思想,考查抽象概括能力、综合分析问题和解决问题的能力.7.浙江理)已知,函数(1)求曲线在点处的切线方程;(2)当时,求的最大值.【答案】(1)(2)【解析】此题第(1)问根据导数的加减法运算法则和幂函数的求导公式求出,然后求出和,然后利用直线方程的点斜式即可求出;第(2)求函数区间上的最值,但是函数中含有参数,要对参数进行讨论,而且是求区间上的最值,所有应该对函数在上的最值取绝对值后进行讨论,即讨论和在区间中的函数的极值;所以应对和零的关系进讨论,根据判别式在讨论和1的关系,在此过程中由于出现,所以又要讨论和的关系,然后得到是大于零还是小于零不确定,所以又要讨论和的关系,这也是这个题目的难点所在,此题注意讨论不漏不重;(1)由已知得:,且,所以所求切线方程为:,即为:;(2)由已知得到:,其中,当时,,(1)当时,,所以在上递减,所以,因为;(2)当,即时,恒成立,所以在上递增,所以,因为;(3)当,即时,,且,即+00所以,所以;由,所以(ⅰ)当时,,所以时,递增,时,递减,所以,因为,又因为,所以,所以,所以(ⅱ)当时,,所以,因为,此时,当时,是大于零还是小于零不确定,所以当时,,所以,所以此时当时,,所以,所以此时。
导数函数综合应用(含答案)
导数函数综合应用一.选择题(共6小题)1.定义在R上的函数y=f(x),满足f(4﹣x)=f(x),(x﹣2)f′(x)<0,若x1<x2,且x1+x2>4,则有()A.f(x1)<f(x2)B.f(x1)>f(x2)C.f(x1)=f(x2)D.不确定2.定义在(1,+∞)上的函数f(x)满足下列两个条件:(1)对任意的x∈(1,+∞)恒有f(2x)=2f(x)成立;(2)当x∈(1,2]时,f(x)=2﹣x;记函数g(x)=f(x)﹣k(x﹣1),若函数g(x)恰有两个零点,则实数k的取值范围是()A.[1,2)B.C.D.3.设函数f(x)是定义在实数集上的奇函数,在区间[﹣1,0)上是增函数,且f(x+2)=﹣f(x),则有()A.B.C.D.4.已知函数f(x)=,若函数y=f(x)+|x﹣1|﹣kx在定义域内有且只有三个零点,则实数k的取值范围是()A.[)B.[]C.[﹣)D.[﹣]5.设函数f(x)=,若对任意给定的y∈(2,+∞),都存在唯一的x∈R,满足f(f(x))=2a2y2+ay,则正实数a的最小值是()A.2B.C.D.46.已知函数f(x)=2mx2﹣2(4﹣m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)至少有一个为正数,则实数m的取值范围是()A.(0,2)B.(0,8)C.(2,8)D.(﹣∞,0)二.填空题(共1小题)7.已知函数f(x)=,若关于x的方程f(x)=3恰有两个互异的实数解,则实数a的取值范围是.三.解答题(共19小题)8.已知函数f(x)=﹣alnx(a∈R).(1)讨论f(x)的单调性;(2)若存在实数x0=[1,e],使得f(x0)<0,求正实数a的取值范围.9.已知函数f(x)=x2﹣(a+)x+lnx,其中a>0.(Ⅰ)当a=2时,求曲线y=f(x)在点(1,f(1))处切线的方程;(Ⅱ)当a≠1时,求函数f(x)的单调区间;(Ⅲ)若a∈(0,),证明对任意x1,x2∈[,1](x1≠x2),<恒成立.10.已知函数f(x)=lnx﹣ax2+(2﹣a)x.(1)若f′(1)=﹣6,求函数f(x)在(1,f(1))处的切线;(2)设a>0,证明:当0<x<时,f(+x)>f(﹣x);(3)若函数f(x)的图象与x轴交于A,B两点,线段AB中点的横坐标为x0,证明:f′(x0)<0.11.已知a≠0,函数f(x)=|e x﹣e|+e x+ax(1)讨论f(x)的单调性(2)若对∀x∈(﹣,+∞),不等式f(x)≥恒成立,求a的取值范围(3)已知当a<﹣e时,函数f(x)有两个零点x1,x2(x1<x2),求证:f(x1x2)>a+e12.已知函数f(x)=a(x﹣1)e x(a>0),g(x)=﹣cos x.(1)求函数f(x)的单调区间;(2)若对于任意的实数x1,x2∈[0,],(其中x1≠x2),都有|f(x1)﹣f(x2)|>|g(x1)﹣g(x2)|恒成立求实数a的取值范围.13.已知函数f(x)=a+2lnx﹣ax(a>0),(1)求f(x)的最大值φ(a);(2)若f(x)≤0恒成立,求a的值;(3)在(2)的条件下,设g(x)=在(a,+∞)上的最小值为m,求证:﹣11<f(m)<﹣1014.已知函数f(x)=(x2﹣mx)e x(e为自然对数的底数).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若m=2,2n+1≥0,证明:关于x的不等式nf(x)+1≥e x在(﹣∞,0]上恒成立.15.已知函数f(x)=(其中e是自然对数的底数),g(x)=1﹣ax2(a∈R).(Ⅰ)求函数f(x)的极值;(Ⅱ)设h(x)=f(x)﹣g(x),若a满足0<a<且ln2a+1>0,试判断方程h(x)=0的实数根个数,并说明理由.16.已知函数f(x)=ax2﹣lnx.(1)求函数f(x)的单调区间;(2)若函数f(x)有两个零点x1,x2,求a的取值范围,并证明:x1•x2>1.17.己知p:实数m使得函数f(x)=lnx(m﹣2)x2﹣x在定义域内为增函数:q:实数m使得函数g(x)=mx2+(m+1)x﹣5在R上存在两个零点x1,x2,且x1<1<x2(1)分别求出条件p,q中的实数m的取值范围;(2)甲同学认为“p是q的充分条件”,乙同学认为“p是q的必要条件”,请判断两位同学的说法是否正确,并说明理由.18.已知函数f(x)=In+cos x﹣|x|.(Ⅰ)求证:函数f(x)在[0,+∞)上单调递减;(Ⅱ)若f(2x﹣3)+π+1+ln(2+3π2)<0,求x的取值范围.19.已知函数f(x)=lnx﹣sin(x﹣1),f′(x)为f(x)的导函数.证明:(1)f′(x)在区间(0,2)存在唯一极小值点;(2)f(x)有且仅有2个零点.20.已知函数f(x)=te2x+(t+2)e x﹣1,t∈R.(Ⅰ)当t=﹣1时,求f(x)的单调区间与极值;(Ⅱ)当t>0时,若函数g(x)=f(x)﹣4e x﹣x+1在R上有唯一零点,求t的值.21.已知函数f(x)=e x﹣x2﹣ax+b(e为自然对数的底数).(Ⅰ)若a≥1,判断f(x)极值点个数;(Ⅱ)若f(x)≥f′(x)在x∈[﹣1,1]上恒成立,求a+b的取值范围.22.设函数f(x)=lnx﹣a2x+2a(a∈R)(1)若函数f(x)在上递增,在上递减,求实数a的值.(2)讨论f(x)在(1,+∞)上的单调性;(3)若方程x﹣lnx﹣m=0有两个不等实数根x1,x2,求实数m的取值范围,并证明x1x2<1.23.已知函数f(x)=2x3﹣3(a﹣1)x2﹣6ax+a2+1.(Ⅰ)设﹣1≤a≤1,曲线y=f(x)在点(1,f(1))处的切线在y轴上的截距为b,求b的最小值;(Ⅱ)若f(x)只有一个零点x0,且x0<0,求a的取值范围.24.设函数f(x)=x﹣﹣alnx(a∈R,a>0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个极值点x1和x2,记过A(x1,f(x1)),B(x2,f(x2))的直线的斜率为k.问:是否存在a,使k=2﹣a?若存在,求出a的值;若不存在,请说明理由.25.已知.(1)讨论函数f(x)的单调区间;(2)若f(x)存在极值且f(x)≥0,求实数a的取值范围;(3)求证:当x>1时,.26.已知函数f(x)=(ax+1)e x,a∈R(1)当a=1时,求函数f(x)的最小值.(2)当a=时,对于两个不相等的实数x1,x2,有f(x1)=f(x2),求证:x1+x2<2.导数函数综合应用参考答案与试题解析一.选择题(共6小题)1.定义在R上的函数y=f(x),满足f(4﹣x)=f(x),(x﹣2)f′(x)<0,若x1<x2,且x1+x2>4,则有(B)A.f(x1)<f(x2)B.f(x1)>f(x2)C.f(x1)=f(x2)D.不确定【解答】解:由题意f(4﹣x)=f(x),可得出函数关于x=2对称,又(x﹣2)f′(x)<0,得x>2时,导数为负,x<2时导数为正,即函数在(﹣∞,2)上是增函数,在(2,+∞)上是减函数又x1<x2,且x1+x2>4,下进行讨论若2<x1<x2,显然有f(x1)>f(x2)若x1<2<x2,有x1+x2>4可得x1>4﹣x2,故有f(x1)>f(4﹣x2)=f(x2)综上讨论知,在所给的题设条件下总有f(x1)>f(x2)2.定义在(1,+∞)上的函数f(x)满足下列两个条件:(1)对任意的x∈(1,+∞)恒有f(2x)=2f(x)成立;(2)当x∈(1,2]时,f(x)=2﹣x;记函数g(x)=f(x)﹣k(x﹣1),若函数g(x)恰有两个零点,则实数k的取值范围是(C)A.[1,2)B.C.D.【解答】解:因为对任意的x∈(1,+∞)恒有f(2x)=2f(x)成立,且当x∈(1,2]时,f(x)=2﹣x 所以f(x)=﹣x+2b,x∈(b,2b].由题意得f(x)=k(x﹣1)的函数图象是过定点(1,0)的直线,如图所示红色的直线与线段AB相交即可(可以与B点重合但不能与A点重合)所以可得k的范围为3.设函数f(x)是定义在实数集上的奇函数,在区间[﹣1,0)上是增函数,且f(x+2)=﹣f(x),则有(A)A.B.C.D.【解答】解:根据题意,函数f(x)满足f(x+2)=﹣f(x),当x=﹣时,有f()=﹣f(﹣)=f(),函数f(x)是定义在实数集上的奇函数,在区间[﹣1,0)上是增函数,则f(x)在区间(0,1]上是增函数,则有f()<f()<f(1),则有f()<f()<f(1),4.已知函数f(x)=,若函数y=f(x)+|x﹣1|﹣kx在定义域内有且只有三个零点,则实数k的取值范围是(A)A.[)B.[]C.[﹣)D.[﹣]【解答】解:函数y=f(x)+|x﹣1|﹣kx在定义域内有且只有三个零点,即为方程f(x)+|x﹣1|=kx在[﹣3,+∞)内有3个不等实根,可令g(x)=f(x)+|x﹣1|=,作出g(x)的图象(如右),直线y=kx,当k=0时,y=g(x)和y=0显然有3个交点,符合题意;当直线y=kx与y=x2+3x+1相切,可得x2+(3﹣k)x+1=0,△=(3﹣k)2﹣4=0,解得k=1(k=5舍去),由k=1时,y=g(x)和y=x有两个交点,可得0≤k<1时,符合题意;当k<0时,且直线y=kx经过点(﹣3,1)时,直线y=kx与y=g(x)有3个交点,此时k=﹣,由y=kx绕着原点旋转,可得﹣≤k<0,综上可得,k的范围是[﹣,1).5.设函数f(x)=,若对任意给定的y∈(2,+∞),都存在唯一的x∈R,满足f(f(x))=2a2y2+ay,则正实数a的最小值是(C)A.2B.C.D.4【解答】解:函数f(x)=的值域为R.∵f(x)=2x,(x≤0)的值域为(0,1];f(x)=log2x,(x>0)的值域为R.∴f(x)的值域为(0,1]上有两个解,要想f(f(x))=2a2y2+ay在y∈(2,+∞)上只有唯一的x∈R满足,必有f(f(x))>1 (2a2y2+ay>0).∴f(x)>2,即log2x>2,解得:x>4.当x>4时,x与f(f(x))存在一一对应的关系.∴问题转化为2a2y2+ay>1,y∈(2,+∞),且a>0.∴(2ay﹣1)(ay+1)>0,解得:y>或者y<﹣(舍去).∴≤2,得a.6.已知函数f(x)=2mx2﹣2(4﹣m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)至少有一个为正数,则实数m的取值范围是(B)A.(0,2)B.(0,8)C.(2,8)D.(﹣∞,0)【解答】解:当m≤0时,当x接近+∞时,函数f(x)=2mx2﹣2(4﹣m)x+1与g(x)=mx均为负值,显然不成立当x=0时,因f(0)=1>0当m>0时,若,即0<m≤4时结论显然成立;若,时只要△=4(4﹣m)2﹣8m=4(m﹣8)(m﹣2)<0即可,即4<m<8则0<m<8二.填空题(共1小题)7.已知函数f(x)=,若关于x的方程f(x)=3恰有两个互异的实数解,则实数a的取值范围是(﹣∞,6).【解答】解:函数f(x)=,当x≥1时,方程f(x)=3,可得lnx+1=3,解得x=e2,函数有一个零点;x<1时,函数只有一个零点,即x2﹣4x+a=3,在x<1时只有一个解,因为y=x2﹣4x+a ﹣3开口向上,对称轴为x=2,x<1时,函数是减函数,所以f(1)<3,可得﹣3+a<3,解得a<6.三.解答题(共19小题)8.已知函数f(x)=﹣alnx(a∈R).(1)讨论f(x)的单调性;(2)若存在实数x0=[1,e],使得f(x0)<0,求正实数a的取值范围.【解答】解:(1)由f(x)=﹣alnx(a∈R),得f′(x)=x﹣=(x>0).当a≤0时,f′(x)>0,f(x)在(0,+∞)上单调递增;当a>0时,由f′(x)>0,得x>,由f′(x)<0,得0<x<.∴f(x)在(0,)上单调递减,在(,+∞)上单调递增;(2)由(1)知,当a>0时,f(x)在(0,)上单调递减,在(,+∞)上单调递增.①当,即0<a≤1时,f(x)在[1,e]上单调递增,>0,不合题意;②当1<<e,即1<a<e2时,f(x)在[1,]上单调递减,在[,e]上单调递增,由<0,解得e<a<e2;③当≥e,即a≥e2时,f(x)在[1,e]上单调递减,由<0,解得a≥e2.综上所述,a的取值范围为(e,+∞).9.已知函数f(x)=x2﹣(a+)x+lnx,其中a>0.(Ⅰ)当a=2时,求曲线y=f(x)在点(1,f(1))处切线的方程;(Ⅱ)当a≠1时,求函数f(x)的单调区间;(Ⅲ)若a∈(0,),证明对任意x1,x2∈[,1](x1≠x2),<恒成立.【解答】(Ⅰ)解:当a=2时,f(x)=,f′(x)=,∴f′(1)=,∵f(1)=.∴切线方程为:y+2=(x﹣1),整理得:x+2y+3=0;(Ⅱ)f′(x)x﹣=(x>0),令f′(x)=0,解得:x=a或x=.①若0<a<1,,当x变化时,f′(x),f(x)的变化情况如表:∴f(x)在区间(0,a)和()内是增函数,在(a,)内是减函数;②若a>1,,当x变化时,f′(x),f(x)的变化情况如表:∴f(x)在区间(0,)和(a,+∞)内是增函数,在(,+∞)内是减函数;(Ⅲ)∵0<a<,∴f(x)在[,1]内是减函数,又x1≠x2,不妨设0<x1<x2,则f(x1)>f(x2),.于是等价于,即.令(x>0),∵g′(x)=在[,1]内是减函数,故g′(x)≤g′()=2﹣(a+).从而g(x)在[,1]内是减函数,∴对任意,有g(x1)>g(x2),即,∴当,对任意,恒成立.10.已知函数f(x)=lnx﹣ax2+(2﹣a)x.(1)若f′(1)=﹣6,求函数f(x)在(1,f(1))处的切线;(2)设a>0,证明:当0<x<时,f(+x)>f(﹣x);(3)若函数f(x)的图象与x轴交于A,B两点,线段AB中点的横坐标为x0,证明:f′(x0)<0.【解答】解:(1)函数f(x)的定义域为(0,+∞),∵f(x)=lnx﹣ax2+(2﹣a)x,∴f'(x)=﹣2ax+2﹣a==﹣.f′(﹣1)=a+1=﹣6,解得a=﹣7,则函数f(x)在(1,f(1))处的切线斜率为k=﹣6,切点为(1,16),则所求切线的方程为y﹣16=﹣6(x ﹣1),即为6x+y﹣22=0;(2)证明:设函数g(x)=f(+x)﹣f(﹣x),则g(x)=ln(1+ax)﹣ln(1﹣ax)﹣2ax,g′(x)=+﹣2a=,当x∈(0,)时,g′(x)>0,g(x)递增,而g(0)=0,即有g(x)>0,故当0<x<时,f(+x)>f(﹣x).(3)证明:当a≤0时,f′(x)>0恒成立,因此f(x)在(0,+∞)单调递增,即有函数y=f(x)的图象与x轴至多有一个交点,故a>0,从而f(x)的最大值为f(),且f()>0,不妨设A(x1,0),B(x2,0),0<x1<x2,则0<x1<<x2,由(2)得,f(﹣x1)=f(+﹣x1)>f(x1)=f(x2)=0,又f(x)在(,+∞)单调递减,∴﹣x1<x2,于是x0=,当x∈(,+∞)(a>0)时,f′(x)<0,则f′(x0)<0成立.11.已知a≠0,函数f(x)=|e x﹣e|+e x+ax(1)讨论f(x)的单调性(2)若对∀x∈(﹣,+∞),不等式f(x)≥恒成立,求a的取值范围(3)已知当a<﹣e时,函数f(x)有两个零点x1,x2(x1<x2),求证:f(x1x2)>a+e【解答】解:(1)函数f(x)=|e x﹣e|+e x+ax=,∴f′(x)=,当a>0时,f(x)在R上是增函数;当a<0时,x≥1时,令f′(x)>0,⇒e x>﹣⇒x>ln(﹣),①ln(﹣)≤1,即﹣2e≤a<0,f(x)在(﹣∞,1)是减函数;在(1,+∞)是增函数;②ln(﹣)>1,即a<﹣2e,f(x)在(﹣∞,ln(﹣))是减函数;在(ln(﹣),+∞)是增函数;(2)函数f(x)=|e x﹣e|+e x+ax=,若x∈(﹣,1),ax+e.∴可得﹣,当x∈[1,+∞)时,,即2a,设g(x)=,g′(x)=,所以g(x)在[1,+∞)上是减函数,所以g(x)max=g(1)=﹣e,所以a.综上.(3)证明:∵f(1)=a+e,∴不等式f(x1x2)>a+e转化为f(x1x2)>f(1),∵a<﹣e,∴f(1)=a+e<0,∴f(x)的两个零点x1<1<x2,∴,∴,∴x1x2=,令h(x)=,h′(x)=,令t(x)=e x﹣xe x﹣e,t′(x)=(1﹣x)e x<0,∴t(x)在(1,+∞)上是减函数,t(x)<t(1)=0,即h′(x)<0,h(x)在(1,+∞)是减函数,h(x)<h(1)=1,即x1x2<1,∵a<﹣e时,f(x)在(﹣∞,1)是减函数,∴f(x1x2)>a+e.12.已知函数f(x)=a(x﹣1)e x(a>0),g(x)=﹣cos x.(1)求函数f(x)的单调区间;(2)若对于任意的实数x1,x2∈[0,],(其中x1≠x2),都有|f(x1)﹣f(x2)|>|g(x1)﹣g(x2)|恒成立求实数a的取值范围.【解答】解:(1)函数f(x)的定义域为(﹣∞,+∞),f′(x)=a[e x+(x﹣1)e x]=ax•e x.当x=0时,f′(x)=0;当x<0时,f′(x)<0;当x>0时,f′(x)>0,所以函数f(x)的单调减区间为(﹣∞,0),单调增区间为(0,+∞).(2)不妨设x1<x2,因为g(x)在[0,]上是增函数,所以g(x1)<g(x2),即g(x1)﹣g(x2)<0,由(1)得f(x)在[0,]上是增函数,所以f(x1)<f(x2),即f(x1)﹣f(x2)<0.由题意,得f(x2)﹣f(x1)>g(x2)﹣g(x1),即f(x2)﹣g(x2)>f(x1)﹣g(x1).令h(x)=f(x)﹣g(x)=a(x﹣1)e x+cos x在[0,]上是增函数,则h′(x)=axe x﹣sin x≥0对任意的x恒成立.设F(x)=(0),则F(x)≤0恒成立,.令,则,从而G(x)在[0,]上是减函数,所以,即.当a≥1时,F(x)≤0′,当且仅当a=1,x=0时取等号,所以F(x)在上是减函数,所以当x时,F(x)≤F(0)=0,故a≥1满足题意.当0<a<1时,F′(0)=1﹣a>0,F.由零点存在定理,存在,使得F′(x0)=0.因为G(x)在(0,)上是减函数,所以F′(x)=G(x)﹣a在(0,)上是减函数,所以0<x<x0时,F′(x)>F′(x0)=0,所以F(x)在(0,x0)上是增函数,所以当x∈(0,x0)(这里(0,x0)⊊)时,F(x)>F(0)=0.所以0<a<1不满足题意,综上,实数a的取值范围是[1,+∞).13.已知函数f(x)=a+2lnx﹣ax(a>0),(1)求f(x)的最大值φ(a);(2)若f(x)≤0恒成立,求a的值;(3)在(2)的条件下,设g(x)=在(a,+∞)上的最小值为m,求证:﹣11<f(m)<﹣10【解答】解:(1)∵f(x)=a+2lnx﹣ax(a>0),∴f′(x)=(a>0),由f′(x)>0得0<x<;f′(x)<0得x>;所以f(x)在(0,)上单调递增,在(,+∞)上单调递减.故f(x)max=f()=a﹣2﹣2lna+2ln2即φ(a)=a﹣2﹣2lna+2ln2(a>0)(2)要使f(x)≤0 成立必须φ(a)=a﹣2﹣2lna+2ln2≤0.因为φ′(a)=,所以当0<a<2 时,φ′(a)<0;当a>2 时,φ′(a)>0.所以φ(a)在(0,2)上单调递减,在(2,+∞)上单调递增.∴φ(a)min=φ(2)=0,所以满足条件的a只有2,即a=2.(3)由(2)知g(x)=,∴g′(x)=令u(x)=x-2lnx﹣4,则u′(x)=>0,u(x)是(2,+∞)上的增函数;又u(8)<0,u(9)>0,所以存在x0∈(8,9)满足u(x0)=0,即2lnx0=x0﹣4,且当x∈(2,x0)时,u(x)<0,g′(x)<0;当x∈(x0,+∞)时,u(x)>0,g′(x)>0;所以g(x)在(2,x0)上单调递减;在(x0,+∞)上单调递增.所以g(x)min=g(x0)===x0,即m=x0.所以f(m)=f(x0)=2+2lnx0﹣2x0=x0﹣2∈(﹣11,﹣10),即﹣11<f(m)<﹣10.14.已知函数f(x)=(x2﹣mx)e x(e为自然对数的底数).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若m=2,2n+1≥0,证明:关于x的不等式nf(x)+1≥e x在(﹣∞,0]上恒成立.【解答】解:(Ⅰ)依题意x∈R,f′(x)=(x2﹣mx+2x﹣m)e x=[x2+(2﹣m)x﹣m]e x令y=x2+(2﹣m)x﹣m,则△=(2﹣m)2+4m=4+m2>0令f′(x)=0,则x2+(2﹣m)x﹣m=0解得x=结合二次函数图象可知:∴f(x)的单调递增区间为(﹣∞,)和(,+∞)单调递减区间为(,)(Ⅱ)令g(x)=nf(x)+1﹣e x=n(x2﹣2x)e x﹣e x+1当x∈(﹣∞,0]时,x2﹣2x≥0而2n+1≥0⇔n≥﹣故n(x2﹣2x)e x≥﹣(x2﹣2x)e x∴g(x)≥﹣(x2﹣2x)e x﹣e x+1令h(x)=﹣(x2﹣2x)e x﹣e x+1,x∈(﹣∞,0]∴h′(x)=﹣x2e x≤0故函数h(x)在(﹣∞,0]上单调递减,则h(x)≥h(0)=0则任意的x∈(﹣∞,0],g(x)≥h(x)≥0∴关于x的不等式nf(x)+1≥e x在(﹣∞,0]上恒成立.15.已知函数f(x)=(其中e是自然对数的底数),g(x)=1﹣ax2(a∈R).(Ⅰ)求函数f(x)的极值;(Ⅱ)设h(x)=f(x)﹣g(x),若a满足0<a<且ln2a+1>0,试判断方程h(x)=0的实数根个数,并说明理由.【解答】解:(Ⅰ)易知,当x<0时,f′(x)>0,此时f(x)单调递增;当x>0时,f′(x)<0,此时f(x)单调递减,所以f(x)极大值=f(0)=1,但无极小值.(Ⅱ)因为,所以.导数因为,所以,于是,令h′(x)=0,此时,当x<0时,f′(x)<0,此时f(x)单调递减;当时,f′(x)>0,此时f(x)单调递增;所以.因为,所以,,又函数h(x)在R上连续,故h(x)有一个零点0,且在上也有一个零点;综上,方程h(x)=0有2个实数根.16.已知函数f(x)=ax2﹣lnx.(1)求函数f(x)的单调区间;(2)若函数f(x)有两个零点x1,x2,求a的取值范围,并证明:x1•x2>1.【解答】解:(1)∵函数f(x)=ax2﹣lnx.定义域为(0,+∞)∴f′(x)=2ax﹣=①当a≤0时,f′(x)=<0恒成立,∴f(x)在(0,+∞)上为减函数.②当a>0时,令f′(x)=<0,解得0<x<令f′(x)=>0,解得x>∴f(x)=ax2﹣lnx在(0,)上为减函数,在(,+∞)上为增函数综上a≤0时f(x)的单调减区间为(0,+∞)a>0时f(x)的单调减区间为(0,),增区间是(,+∞).(2)∵函数f(x)有两个零点x1,x2,由(1)知x=是f(x)的最小值点,∴f(x)在(0,+∞)上的最小值f()=a•()2﹣ln<0时,f(x)有两个零点x1,x2∴解得0<a<要证x1•x2>1⇔要证lnx1•x2>ln1⇔要证lnx1+lnx2>0∵函数f(x)有两个零点x1,x2,不防设0<x1<<x2则f(x1)=ax12﹣lnx1=0 ①f(x2)=ax22﹣lnx2=0 ②①+②得:lnx1+lnx2=a(x12+x22),而a(x12+x22)>0,∴lnx1+lnx2>0即x1•x2>1得证.17.己知p:实数m使得函数f(x)=lnx(m﹣2)x2﹣x在定义域内为增函数:q:实数m使得函数g(x)=mx2+(m+1)x﹣5在R上存在两个零点x1,x2,且x1<1<x2(1)分别求出条件p,q中的实数m的取值范围;(2)甲同学认为“p是q的充分条件”,乙同学认为“p是q的必要条件”,请判断两位同学的说法是否正确,并说明理由.【解答】解:(1)p:实数m使得函数f(x)=lnx(m﹣2)x2﹣x在定义域内为增函数:则有在R上恒成立.∴m﹣2=()2﹣∴m.q:实数m使得函数g(x)=mx2+(m+1)x﹣5在R上存在两个零点x1,x2,且x1<1<x2则有m•f(1)<0⇒m(m﹣2)<0⇒0<m<2.(2)由(1)可得p:∴m.,q:0<m<2.∵{m|m}⊈{|0<m<2}{m|m}⊉{|0<m<2}∴p是q的既不充分也不必要条件.故两位同学都错.18.已知函数f(x)=In+cos x﹣|x|.(Ⅰ)求证:函数f(x)在[0,+∞)上单调递减;(Ⅱ)若f(2x﹣3)+π+1+ln(2+3π2)<0,求x的取值范围.【解答】(1)证明:∵函数f(x)=In+cos x﹣|x|.∴x∈[0,+∞)时f(x)=﹣ln(2+3x2)+cos x﹣x ∴f′(x)=﹣sin x﹣1,∴x∈[0,+∞)时f′(x)=﹣sin x﹣1<0,∴函数f(x)在[0,+∞)上单调递减;(2)∵函数f(x)=In+cos x﹣|x|.定义域为R∴f(﹣x)=)=﹣ln(2+3x2)+cos(﹣x)﹣|﹣x|=﹣ln(2+3x2)+cos x﹣x=f(x)∴f(x)是偶函数.由(1)知f(x)在[0,+∞)上单调递减;∴f(x)在(﹣∞,0]上单调递增;又f(2x﹣3)+π+1+ln(2+3π2)<0⇔f(2x﹣3)<f(π)∴|2x﹣3|>π⇔2x﹣3>π或2x﹣3<﹣π解得x>或x<∴x的取值范围为:(﹣∞,)∪(,+∞)19.已知函数f(x)=lnx﹣sin(x﹣1),f′(x)为f(x)的导函数.证明:(1)f′(x)在区间(0,2)存在唯一极小值点;(2)f(x)有且仅有2个零点.【解答】解:(1)令g(x)=f′(x)=,,当x∈(0,1)时,g′(x)<0恒成立,当x∈(1,2)时,>0.∴g′(x)在(1,2)递增,.故存在a∈(1,2)使得,x∈(1,a)时g′(x)<0,x∈(a,2)时,g′(x)>0.综上,f′(x)在区间(0,2)存在唯一极小值点x=a.(2)由(1)可得x∈(0,a)时,g′(x)<0,g(x)单调递减,x∈(a,2)时,g′(x)<0,g(x)单调递增.且g(1)=0,g(2)=.故g(x)的大致图象如下:当x∈(2,3)时,sin(x﹣1)∈(sin1,sin2),sin(x﹣1)>sin30°∴此时g′(x)>0,g(x)单调递增,而g(3)=﹣cos2>0.故存在∈(2,3),使得g(m)=0故在x∈(0,3)上,g(x)的图象如下:综上,x∈(0,1)时,g(x)<0,x∈(1,m)时,g(x)<0,x∈(m,3)时,g(x)>0.∴f(x)在(0,1)递增,在(1,m)递减,在(m,3)递增,而f(1)=0,f(3)=ln3﹣sin2>0,又当x>3时,lnx>1,f(x)>0恒成立.故在(0,+∞)上f(x)的图象如下:∴f(x)有且仅有2个零点.20.已知函数f(x)=te2x+(t+2)e x﹣1,t∈R.(Ⅰ)当t=﹣1时,求f(x)的单调区间与极值;(Ⅱ)当t>0时,若函数g(x)=f(x)﹣4e x﹣x+1在R上有唯一零点,求t的值.【解答】解:(Ⅰ)当t=﹣1时,f(x)=﹣e2x+e x﹣1,则f′(x)=﹣2e2x+e x=e x(1﹣2e x)令f′(x)=0,解得x=﹣ln2∴f(x)的单调递增区间是(﹣∞,﹣ln2),单调递减区间是(﹣ln2,+∞)∴f(x)的极大值是f(﹣ln2)=﹣,无极小值.(Ⅱ)当t>0时,g(x)=f(x)﹣4e x﹣x+1=te2x+(t﹣2)e x﹣x∴g′(x)=2te2x+(t﹣2)e x﹣1=(te x﹣1)(2e x+1)=0,解得x=﹣lnt∴g(x)的单调递减区间是(﹣∞,﹣lnt),单调递增区间是(﹣lnt,+∞)∴g(x)的极小值是g(﹣lnt)∴g(﹣lnt)=0,即lnt﹣+1=0时,能满足题意.令F(t)=lnt﹣+1,则F′(t)=+>0∴F(t)=lnt﹣+1在(0,+∞)上单调递增,唯有t=1时,F(1)=0∴t=121.已知函数f(x)=e x﹣x2﹣ax+b(e为自然对数的底数).(Ⅰ)若a≥1,判断f(x)极值点个数;(Ⅱ)若f(x)≥f′(x)在x∈[﹣1,1]上恒成立,求a+b的取值范围.【解答】解:(Ⅰ)∵f′(x)=e x﹣x﹣a,x∈R,f″(x)=e x﹣1可得函数f′(x)在(﹣∞,0)上单调递减;在(0,+∞)单调递增,f′(x)min=f′(0)=1﹣a当a>1时,1﹣a<0,且f′(﹣a)=e﹣a>0,取b>0,使得b>ln(b+a),∴f′(b)=e b﹣(b+a)>b+a﹣(b+a)=0即函数f′(x)的图象与x轴有两个交点,此时f(x)极值点个数为2,;当a=1时,f′(x)≥0,此时f(x)极值点个数为0;(Ⅱ)f(x)≥f′(x)在x∈[﹣1,1]上恒成立⇔e x﹣x2﹣ax+b≥e x﹣x﹣a在x∈[﹣1,1]上恒成立⇔a+b≥在x∈[﹣1,1]上恒成立.令h(x)=①当1﹣a≥0时,h(x).∴a+b②当1﹣a<0时,h(x)max=h(1)=a﹣综上得,a+b22.设函数f(x)=lnx﹣a2x+2a(a∈R)(1)若函数f(x)在上递增,在上递减,求实数a的值.(2)讨论f(x)在(1,+∞)上的单调性;(3)若方程x﹣lnx﹣m=0有两个不等实数根x1,x2,求实数m的取值范围,并证明x1x2<1.【解答】解:(1)由于函数函数f(x)在上递增,在上递减,由单调性知,是函数的极大值点,无极小值点.所以∵故,经验证成立.(2)∵f(x)=lnx﹣a2x+2a,∴,①当a=0时,在(1,+∞)上单调递增.②当a2≥1,即a≤﹣1或a≥1时,f'(x)<0,∴f(x)在(1,+∞)上单调递减.③当﹣1<a<1且a≠0时,由f'(x)=0得.令f'(x)>0得;令f'(x)<0得.∴f(x)在上单调递增,在上单调递减.综上,当a=0时,f(x)在(1,+∞)上递增;当a≤﹣1或a≥1时,f(x)在(1,+∞)上递减;当﹣1<a<1且a≠0时,f(x)在上递增,在上递减.(3)令h(x)=x﹣lnx(x>0),g(x)=m,当x∈(0,1)时,,h(x)=x﹣lnx(x>0)单调递减;当x∈(1,+∞)时,,h(x)=x﹣lnx(x>0)单调递增;故h(x)在x=1处取得最小值,h(1)=1又当x→0,h(x)→+∞;x→+∞,h(x)→1,∴m∈(1,+∞)不妨设x1<x2,则有0<x1<1<x2,,要证x1x2<1⇔即证⇔即证h(x1)>h()∵h(x1)=h(x2)=m,∴=令,∴p(x)在(1,+∞)上单调递增,故p(x)>p(1)=0即>0,∴∴x1x2<1 得证23.已知函数f(x)=2x3﹣3(a﹣1)x2﹣6ax+a2+1.(Ⅰ)设﹣1≤a≤1,曲线y=f(x)在点(1,f(1))处的切线在y轴上的截距为b,求b的最小值;(Ⅱ)若f(x)只有一个零点x0,且x0<0,求a的取值范围.【解答】解:(Ⅰ)f(x)=2x3﹣3(a﹣1)x2﹣6ax+a2+1的导数为f′(x)=6x2﹣6(a﹣1)x﹣6a,f(x)在点(1,f(1))处的切线斜率为6﹣6(a﹣1)﹣6a=12﹣12a,切点为(1,6﹣9a+a2),可得切线方程为y﹣(6﹣9a+a2)=(12﹣12a)(x﹣1),由x=0,可得b=a2+3a﹣6=(a+)2﹣,由﹣1≤a≤1,可得b在[﹣1,1]上递增,可得b的最小值为﹣8;(Ⅱ)若f(x)只有一个零点x0,且x0<0,可得f(0)>0,f′(x)=6x2﹣6(a﹣1)x﹣6a,由f′(x)=0,可得x=﹣1或x=a,由f(﹣1)<0,且f(a)<0,即为a2+3a+2<0,且a3+2a2﹣1>0,解得<a<﹣1.24.设函数f(x)=x﹣﹣alnx(a∈R,a>0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个极值点x1和x2,记过A(x1,f(x1)),B(x2,f(x2))的直线的斜率为k.问:是否存在a,使k=2﹣a?若存在,求出a的值;若不存在,请说明理由.【解答】解:(1)显然定义域为(0,+∞),∴f′(x)=1+﹣=,(a∈R,a>0).令g(x)=x2﹣ax+2,其判别式△=a2﹣8,①当0<a时,△≤0,f′(x)≥0,f(x)在(0,+∞)上单调递增,②当a时,△>0,令f′(x)=0,得x1=,x2=,∵在(0,x1)上f′(x)>0,在(x1,x2)上f′(x)<0,在(x2,+∞)上f′(x)>0,∴f(x)在(0,x1),(x2,+∞)上为增函数,在(x1,x2)上为减函数.(2)由(1)知,a,∴f(x1)﹣f(x2)=(x1﹣x2)+﹣a(lnx1﹣lnx2),∴k==1+﹣a,∵x1x2=2,∴k=2﹣a,假设存在a,使k=2﹣a,则2﹣a=2﹣a,∴=1,∴lnx1﹣lnx2=x1﹣x2,即x2﹣﹣2lnx2=0(•),其中x2>1,令h(t)=t﹣﹣2lnt,∴h′(t)=1+﹣==>0,∴h(t)在(1,+∞)上是增函数,∴h(t)>h(1)=0,与(•)矛盾.故不存在a使k=2﹣a成立.25.已知.(1)讨论函数f(x)的单调区间;(2)若f(x)存在极值且f(x)≥0,求实数a的取值范围;(3)求证:当x>1时,.【解答】解:(1)显然定义域为(0,+∞),∵f′(x)=x﹣=,①当a≤0时,f′(x)>0,函数f(x)在(0,+∞)上是单调递增函数,②当a>0时,令f′(x)=0,得x=,∵在(0,)上f′(x)<0,∴f(x)是单调递减函数;∵在(,+∞)上f′(x)>0,∴f(x)是单调递增函数.(2)∵f(x)存在极值且f(x)≥0,∴a>0,∴只需f(x)min≥0,由上知f(x)min=f()=a﹣alna=a(1﹣lna)≥0,∴a∈(0,e](3)设F(x)=,∴F′(x)=2x2﹣x﹣=,∵x>1,∴F′(x)>0,即F(x)在(1,+∞)上为增函数,∴F(x)>F(1)=>0,∴F(x)>0在(1,+∞)上恒成立,故当x>1时,.26.已知函数f(x)=(ax+1)e x,a∈R(1)当a=1时,求函数f(x)的最小值.(2)当a=时,对于两个不相等的实数x1,x2,有f(x1)=f(x2),求证:x1+x2<2.【解答】解:(1)当a=1,f(x)=(x+1)e x,∴f′(x)=(x+2)e x,∴f(x)在(﹣∞,﹣2)上单调递减,在(﹣2,+∞)上单调递增,∴f(x)min=f(﹣2)=﹣.(2)当a=时,f(x)=(﹣x+1)e x,对于两个不相等的实数x1,x2,有f(x1)=f(x2),∵f′(x)=(1﹣x)e x,∴f(x)在(﹣∞,1)上单调递增,在(1,+∞)上单调递减,不妨设x1<1<x2,令g(x)=f(x)﹣f(2﹣x),(x<1)∴g′(x)=(1﹣x)(e x﹣e2﹣x),当x<1时,1﹣x>0,x<2﹣x,e x﹣e2﹣x<0,∴g′(x)<0,∴g(x)在(﹣∞,1)单调递减,∴g(x)>g(1)=f(1)﹣f(1)=0,即f(x)﹣f(2﹣x)>0,不妨设x1<1<x2,则2﹣x1>1,由以上可知f(x1)>f(2﹣x1),∵f(x)在(﹣∞,1)上单调递增,在(1,+∞)上单调递减,∵f(x1)=f(x2),∴f(x2)>f(2﹣x1),∵x2>1,2﹣x1>1,∵f(x)在(1,+∞)上单调递减,∴x2<2﹣x1,∴x1+x2<2。
高考数学导数的综合应用问题解答题专题练习
高考数学导数的综合应用问题解答题专题练习一、归类解析题型一:证明不等式【解题指导】(1)证明f (x )>g (x )的一般方法是证明h (x )=f (x )-g (x )>0(利用单调性),特殊情况是证明f (x )min >g (x )max (最值方法),但后一种方法不具备普遍性.(2)证明二元不等式的基本思想是化为一元不等式,一种方法为变换不等式使两个变元成为一个整体,另一种方法为转化后利用函数的单调性,如不等式f (x 1)+g (x 1)<f (x 2)+g (x 2)对x 1<x 2恒成立,即等价于函数h (x )=f (x )+g (x )为增函数.【例】 已知函数f (x )=1-x -1e x ,g (x )=x -ln x . (1)证明:g (x )≥1;(2)证明:(x -ln x )f (x )>1-1e 2. 【变式训练】已知函数f (x )=x ln x -e x +1.(1)求曲线y =f (x )在点(1,f (1))处的切线方程;(2)证明:f (x )<sin x 在(0,+∞)上恒成立.题型二:不等式恒成立或有解问题【解题指导】利用导数解决不等式的恒成立问题的策略(1)首先要构造函数,利用导数求出最值,求出参数的取值范围.(2)也可分离变量,构造函数,直接把问题转化为函数的最值问题.【例 】已知函数f (x )=1+ln x x. (1)若函数f (x )在区间)21,( a a 上存在极值,求正实数a 的取值范围;(2)如果当x ≥1时,不等式f (x )≥k x +1恒成立,求实数k 的取值范围. 【变式训练】已知函数f (x )=e x -1-x -ax 2.(1)当a =0时,求证:f (x )≥0;(2)当x ≥0时,若不等式f (x )≥0恒成立,求实数a 的取值范围. 题型三:求函数零点个数【解题指导】(1)可以通过构造函数,将两曲线的交点问题转化为函数零点问题.(2)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断方程根的情况.【例】已知函数f (x )=2a 2ln x -x 2(a >0).(1)求函数f (x )的单调区间;(2)讨论函数f (x )在区间(1,e 2)上零点的个数(e 为自然对数的底数).【变式训练】设函数f (x )=ln x +m x,m ∈R . (1)当m =e(e 为自然对数的底数)时,求f (x )的极小值;(2)讨论函数g (x )=f ′(x )-x 3的零点的个数. 题型四:根据函数零点情况求参数范围【解题指导】函数的零点个数可转化为函数图象的交点个数,确定参数范围时要根据函数的性质画出大致图象,充分利用导数工具和数形结合思想.【例】 已知函数f (x )=1x-x +a ln x . (1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f x 1-f x 2x 1-x 2<a -2. 【变式训练】【例】已知函数f (x )=x ln x ,g (x )=-x 2+ax -3(a 为实数),若方程g (x )=2f (x )在区间],1[e e上有两个不等实根,求实数a 的取值范围. 二、专题突破训练1.已知函数f (x )=ln x +x ,g (x )=x ·e x -1,求证f (x )≤g (x ).2.已知函数f (x )=ax 2+bx +x ln x 的图象在(1,f (1))处的切线方程为3x -y -2=0.(1)求实数a ,b 的值;(2)设g (x )=x 2-x ,若k ∈Z ,且k (x -2)<f (x )-g (x )对任意的x >2恒成立,求k 的最大值.3.已知函数f (x )=ax -e x (a ∈R ),g (x )=ln x x. (1)求函数f (x )的单调区间;(2)∃x ∈(0,+∞),使不等式f (x )≤g (x )-e x 成立,求a 的取值范围.4.设函数f (x )=ax 2-x ln x -(2a -1)x +a -1(a ∈R ).若对任意的x ∈[1,+∞),f (x )≥0恒成立,求实数a 的取值范围.5.已知函数f (x )=ln x -ax +1-a x -1(a ∈R ).设g (x )=x 2-2bx +4,当a =14时,若∀x 1∈(0,2),总存在x 2∈[1,2],使f (x 1)≥g (x 2),求实数b 的取值范围.6.已知函数f (x )为偶函数,当x ≥0时,f (x )=2e x ,若存在实数m ,对任意的x ∈[1,k ](k >1),都有f (x +m )≤2e x ,求整数k 的最小值.7.已知函数f (x )=a +x ·ln x (a ∈R ),试求f (x )的零点个数.8.已知f (x )=1x +e x e -3,F (x )=ln x +e x e-3x +2. (1)判断f (x )在(0,+∞)上的单调性;(2)判断函数F (x )在(0,+∞)上零点的个数.9.已知函数f (x )=ax 2(a ∈R ),g (x )=2ln x ,且方程f (x )=g (x )在区间[2,e]上有两个不相等的解,求a 的取值范围.10.已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x(x >0). (1)若g (x )=m 有零点,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根.11.已知函数f (x )=(x -2)e x +a (x -1)2有两个零点.(1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2.12.已知函数f (x )=(3-a )x -2ln x +a -3在)41,0(上无零点,求实数a 的取值范围.。
高中数学-导数的应用(一)—单调性练习
高中数学-导数的应用(一)—单调性练习1.函数y =x 2(x -3)的单调递减区间是( ) A .(-∞,0) B .(2,+∞) C .(0,2) D .(-2,2)答案 C解析 y ′=3x 2-6x ,由y ′<0,得0<x <2. 2.函数f(x)=1+x -sinx 在(0,2π)上是( ) A .增函数B .减函数C .在(0,π)上增,在(π,2π)上减D .在(0,π)上减,在(π,2π)上增答案 A解析 ∵f ′(x)=1-cosx>0, ∴f(x)在(0,2π)上递增.3.已知e 为自然对数的底数,则函数y =xe x的单调递增区间是( ) A .[-1,+∞) B .(-∞,-1] C .[1,+∞) D .(-∞,1]答案 A解析 令y ′=(1+x)e x≥0. ∵e x>0,∴1+x≥0,∴x ≥-1,选A.4.(·湖北八校联考)函数f(x)=lnx -ax(a>0)的单调递增区间为( ) A .(0,1a )B .(1a ,+∞)C .(-∞,1a )D .(-∞,a)答案 A解析 由f ′(x)=1x -a>0,得0<x<1a .∴f(x)的单调递增区间为(0,1a).5.(·福建龙岩期中)函数f(x)=x 3+bx 2+cx +d 的图像如图,则函数y =log 2(x 2+23bx +c 3)的单调递减区间为( )A .(-∞,-2)B .[3,+∞)C .[2,3]D .[12,+∞)答案 A解析 由题意可以看出-2,3是函数f(x)=x 3+bx 2+cx +d 的两个极值点,即方程f ′(x)=3x 2+2bx +c =0的两根,所以-2b 3=1,c 3=-6,即2b =-3,c =-18,所以函数y =log 2(x 2+23bx +c 3)可化为y =log 2(x 2-x-6).解x 2-x -6>0得x<-2或x>3.因为二次函数y =x 2-x -6的图像开口向上,对称轴为直线x =12,所以函数y =log 2(x 2-x -6)的单调递减区间为(-∞,-2).故选A. 6.若函数y =a(x 3-x)的递减区间为(-33,33),则a 的取值范围是( ) A .a >0 B .-1<a <0 C .a >1 D .0<a <1答案 A解析 y ′=a(3x 2-1), 解3x 2-1<0,得-33<x <33. ∴f(x)=x 3-x 在(-33,33)上为减函数. 又y =a·(x 3-x)的递减区间为(-33,33).∴a>0. 7.如果函数f(x)的导函数f ′(x)的图像如图所示,那么函数f(x)的图像最有可能的是( )答案 A8.(·四川双流中学)若f(x)=x 3-ax 2+1在(1,3)上单调递减,则实数a 的取值范围是( ) A .(-∞,3] B .[92,+∞)C .(3,92)D .(0,3)答案 B解析 因为函数f(x)=x 3-ax 2+1在(1,3)上单调递减,所以f ′(x)=3x 2-2ax≤0在(1,3)上恒成立,即a≥32x 在(1,3)上恒成立.因为32<92,所以a≥92.故选B.9.(·合肥一中模拟)函数f(x)在定义域R 内可导,若f(x)=f(2-x),且当x ∈(-∞,1)时,(x -1)·f ′(x)<0,设a =f(0),b =f(12),c =f(3),则( )A .a<b<cB .c<a<bC .c<b<aD .b<c<a答案 B解析 由f(x)=f(2-x)可得对称轴为x =1, 故f(3)=f(1+2)=f(1-2)=f(-1).又x∈(-∞,1)时,(x -1)f ′(x)<0,可知f ′(x)>0. 即f(x)在(-∞,1)上单调递增,f(-1)<f(0)<f(12),即c<a<b.10.(·河北唐山期末)已知函数f(x)=ln(e x+e -x)+x 2,则使得f(2x)>f(x +3)成立的x 的取值范围是( ) A .(-1,3) B .(-∞,-3)∪(3,+∞) C .(-3,3) D .(-∞,-1)∪(3,+∞)答案 D解析 因为f(-x)=ln(e -x+e x)+(-x)2=ln(e x+e -x)+x 2=f(x),所以函数f(x)是偶函数.通过导函数可知函数y =e x+e -x在(0,+∞)上是增函数,所以函数f(x)=ln(e x+e -x)+x 2在(0,+∞)上也是增函数,所以不等式f(2x)>f(x +3)等价于|2x|>|x +3|,解得x<-1或x>3.故选D.11.已知f(x)是定义在(0,+∞)上的非负可导函数,且满足xf ′(x)+f(x)≤0.对任意正数a ,b ,若a<b ,则必有( ) A .af (b)≤bf(a) B .bf (a)≤af(b) C .af (a)≤f(b) D .bf (b)≤f(a)答案 A解析 ∵xf′(x)+f(x)≤0,f(x)≥0,∴xf ′(x)≤-f(x)≤0.设y =f (x )x ,则y ′=xf ′(x )-f (x )x 2≤0,故y =f (x )x 为减函数或常数函数.又a<b ,∴f (a )a ≥f (b )b.∵a ,b>0,∴af (b)≤bf(a).12.(·福建南平质检)已知函数f (x)(x∈R )图像上任一点(x 0,y 0)处的切线方程为y -y 0=(x 0-2)(x 02-1)(x -x 0),那么函数f(x)的单调减区间是( ) A .[-1,+∞) B .(-∞,2] C .(-∞,-1)和(1,2) D .[2,+∞)答案 C解析 因为函数f (x)(x∈R )图像上任一点(x 0,y 0)处的切线方程为y -y 0=(x 0-2)(x 02-1)(x -x 0),所以函数f(x)的图像在点(x 0,y 0)处的切线的斜率k =(x 0-2)(x 02-1),函数f(x)的导函数为f ′(x)=(x -2)(x 2-1).由f ′(x)=(x -2)(x 2-1)<0,得x<-1或1<x<2,即函数f(x)的单调递减区间是(-∞,-1)和(1,2).故选C. 13.(·湖北荆州质检)函数f(x)=lnx -12x 2-x +5的单调递增区间为________.答案 (0,5-12) 解析 函数f(x)的定义域为(0,+∞),再由f ′(x)=1x -x -1>0得可解0<x<5-12.14.若函数y =-13x 3+ax 有三个单调区间,则实数a 的取值范围是________.答案 a>0解析 y ′=-x 2+a ,y =-13x 3+ax 有三个单调区间,则方程-x 2+a =0应有两个不等实根,故a>0.15.已知函数f(x)=kx 3+3(k -1)x 2-k 2+1(k>0)的单调递减区间是(0,4). (1)实数k 的值为________;(2)若在(0,4)上为减函数,则实数k 的取值范围是________. 答案 (1)13 (2)0<k≤13解析 (1)f ′(x)=3kx 2+6(k -1)x ,由题意知f ′(4)=0,解得k =13.(2)由f ′(x)=3kx 2+6(k -1)x≤0并结合导函数的图像可知,必有-2(k -1)k ≥4,解得k≤13.又k>0,故0<k≤13.16.设函数f(x)=x(e x-1)-ax 2. (1)若a =12,求f(x)的单调区间;(2)若当x≥0时f(x)≥0,求a 的取值范围.答案 (1)增区间(-∞,-1],[0,+∞),减区间[-1,0] (2)(-∞,1]解析 (1)当a =12时,f(x)=x(e x-1)-12x 2,f ′(x)=e x-1+xe x-x =(e x-1)(x +1).当x∈(-∞,-1)时,f ′(x)>0;当x∈(-1,0)时,f ′(x)<0;当x∈(0,+∞)时,f ′(x)>0. 故f(x)在(-∞,-1],[0,+∞)上单调递增,在[-1,0]上单调递减. (2)f(x)=x(e x -1-ax).令g(x)=e x-1-ax ,则g ′(x)=e x-a.若a≤1,则当x∈(0,+∞)时,g ′(x)>0,g(x)为增函数,而g(0)=0,从而当x≥0时g(x)≥0,即f(x)≥0.若a >1,则当x∈(0,ln a)时,g ′(x)<0,g(x)为减函数,而g(0)=0,从而当x∈(0,lna)时g(x)<0,即f(x)<0.综上得a 的取值范围为(-∞,1].17.(·辽宁大连双基自测)已知函数f(x)=lnx +axx +1(a∈R ).(1)若函数f(x)在区间(0,4)上单调递增,求a 的取值范围; (2)若函数y =f(x)的图像与直线y =2x 相切,求a 的值. 答案 (1)a≥-4 (2)4解析 (1)f ′(x)=1x +a (x +1)-ax (x +1)2=(x +1)2+axx (x +1)2.∵函数f(x)在区间(0,4)上单调递增, ∴f ′(x)≥0在(0,4)上恒成立,∴(x +1)2+ax≥0,即a≥-x 2+2x +1x =-(x +1x)-2在(0,4)上恒成立.∵x +1x≥2,当且仅当x =1时取等号,∴a ≥-4.(2)设切点为(x 0,y 0),则y 0=2x 0,f ′(x 0)=2,y 0=lnx 0+ax 0x 0+1,∴1x 0+a (x 0+1)2=2① 且2x 0=lnx 0+ax 0x 0+1②由①得a =(2-1x 0)(x 0+1)2,③代入②,得2x 0=lnx 0+(2x 0-1)(x 0+1), 即lnx 0+2x 02-x 0-1=0. 令F(x)=lnx +2x 2-x -1,则 F ′(x)=1x +4x -1=4x 2-x +1x >0,∴F(x)在(0,+∞)上单调递增. ∵F(1)=0,∴x 0=1,代入③式得a =4. 18.设函数f(x)=xe kx (k≠0). (1)若k>0,求函数f(x)的单调区间;(2)若函数f(x)在区间(-1,1)内单调递增,求k 的取值范围.答案 (1)增区间为(-1k ,+∞),减区间为(-∞,-1k ) (2)[-1,0)∪(0,1]解析 (1)f ′(x)=(1+kx)e kx, 若k>0,令f ′(x)>0,得x>-1k,所以函数f(x)的单调递增区间是(-1k ,+∞),单调递减区间是(-∞,-1k ).(2)∵f(x)在区间(-1,1)内单调递增, ∴f ′(x)=(1+kx)e kx≥0在(-1,1)内恒成立, ∴1+kx≥0在(-1,1)内恒成立,即⎩⎪⎨⎪⎧1+k·(-1)≥0,1+k·1≥0,解得-1≤k≤1. 因为k≠0,所以k 的取值范围是[-1,0)∪(0,1].1.函数f(x)=(x -3)e x的单调递增区间是( ) A .(-∞,2) B .(0,3) C .(1,4) D .(2,+∞)答案 D解析 f ′(x)=(x -3)′e x+(x -3)(e x)′=(x -2)e x,令f ′(x)>0,解得x>2,故选D. 2.在R 上可导的函数f(x)的图像如图所示,则关于x 的不等式xf ′(x)<0的解集为( ) A .(-∞,-1)∪(0,1) B .(-1,0)∪(1,+∞) C .(-2,-1)∪(1,2) D .(-∞,-2)∪(2,+∞) 答案 A解析 在(-∞,-1)和(1,+∞)上,f(x)递增,所以f ′(x)>0,使xf ′(x)<0的范围为(-∞,-1); 在(-1,1)上,f(x)递减,所以f ′(x)<0,使xf ′(x)<0的范围为(0,1). 综上,关于x 的不等式xf ′(x)<0的解集为(-∞,-1)∪(0,1).3.函数y =3x 2-2lnx 的单调递增区间为________,单调递减区间为__________. 答案 (33,+∞),(0,33) 解析 y ′=6x -2x =6x 2-2x.∵函数的定义域为(0,+∞),∴由y ′>0,得x>33. ∴单调递增区间为(33,+∞). 由y ′<0,得0<x<33.∴单调递减区间为(0,33). 4.(·山西怀仁一中期中)已知函数f(x)的定义域为R ,f(-1)=2,且对任意的x∈R ,f ′(x)>2,则f(x)>2x +4的解集为________. 答案 (-1,+∞)解析 令g(x)=f(x)-2x -4,则g ′(x)=f ′(x)-2>0,∴g(x)在R 上为增函数,且g(-1)=f(-1)-2×(-1)-4=0.原不等式可转化为g(x)>g(-1),解得x>-1,故原不等式的解集为(-1,+∞). 5.已知f(x)=e x-ax -1,求f(x)的单调递增区间. 答案 ①a≤0时,f(x)在R 上单调递增; ②a>0时,f(x)增区间为(lna ,+∞)6.已知函数f(x)=mln(x +1)-xx +1(x>-1),讨论f(x)的单调性.解析 f ′(x)=m (x +1)-1(x +1)2(x>-1) 当m≤0时,f ′(x)<0,函数f(x)在(-1,+∞)上单调递减;当m>0时,令f ′(x)<0,得x<-1+1m ,函数f(x)在(-1,-1+1m )上单调递减;令f ′(x)>0,得x>-1+1m ,函数f(x)在(-1+1m ,+∞)上单调递增.综上所述,当m≤0时,f(x)在(-1,+∞)上单调递减;当m>0时,f(x)在(-1,-1+1m )上单调递减,在(-1+1m,+∞)上单调递增.7.已知函数g(x)=13x 3-a 2x 2+2x +1,若g(x)在区间(-2,-1)内存在单调递减区间,求实数a 的取值范围.答案 (-∞,-22) 解析 g ′(x)=x 2-ax +2,依题意,存在x∈(-2,-1),使不等式g ′(x)=x 2-ax +2<0成立.当x∈(-2,-1)时,a<x +2x ≤-22,所以实数a 的取值范围是(-∞,-22).8.(·四川)已知函数f(x)=-2xlnx +x 2-2ax +a 2,其中a>0. (1)设g(x)是f(x)的导函数,讨论g(x)的单调性;(2)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解. 答案 (1)当x∈(0,1)时,g ′(x)<0,g(x)单调递减; 当x∈(1,+∞)时,g ′(x)>0,g(x)单调递增 (2)略解析 (1)由已知,函数f(x)的定义域为(0,+∞), g(x)=f ′(x)=2(x -1-lnx -a), 所以g ′(x)=2-2x =2(x -1)x.当x∈(0,1)时,g ′(x)<0,g(x)单调递减; 当x∈(1,+∞)时,g ′(x)>0,g(x)单调递增.(2)由f ′(x)=2(x -1-lnx -a)=0,解得a =x -1-lnx.令φ(x)=-2xlnx +x 2-2x(x -1-lnx)+(x -1-lnx)2=(1+lnx)2-2xlnx ,则φ(1)=1>0,φ(e)=2(2-e)<0.于是存在x 0∈(1,e),使得φ(x 0)=0.令a 0=x 0-1-lnx 0=u(x 0),其中u(x)=x -1-lnx (x≥1). 由u ′(x)=1-1x ≥0知,函数u(x)在区间(1,+∞)上单调递增,故0=u(1)<a 0=u(x 0)<u(e)=e -2<1,即a 0∈(0,1). 当a =a 0时,有f ′(x 0)=0,f(x 0)=φ(x 0)=0. 再由(1)知,f ′(x)在区间(1,+∞)上单调递增, 当x∈(1,x 0)时,f ′(x)<0,从而f(x)>f(x 0)=0;当x∈(x 0,+∞)时,f ′(x)>0,从而f(x)>f(x 0)=0;又当x∈(0,1]时,f(x)=(x -a 0)2-2xlnx>0. 故x∈(0,+∞)时,f(x)≥0.综上所述,存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.。
导数的综合应用
导数的综合应用1.曲线的切线方程点P(x 0,f(x 0))在曲线y=f(x)上,且f(x)在(x 0,f(x 0))处存在导数,曲线y=f(x)在点P 处的切线方程为_____________________.2.函数的单调性(1)用导数的方法研究函数的单调性往往很简便, 但要注意规范步骤.求函数单调区间的基本步骤是: ①确定函数f(x)的定义域;②求导数f ′(x);③由f ′(x)>0(或f ′(x)<0),解出相应的x 的范围.当 f ′(x)>0时,f(x)在相应的区间上是______;当f ′(x) <0时,f(x)在相应的区间上是_______.还可以通过列表,写出函数的单调区间.(2)在利用导数研究函数的单调性时,我们往往应用以下的充分条件:设函数f(x)在(a ,b)内可导,若 f ′(x)>0(或f ′(x)<0),则函数f(x)在区间(a,b)内为增函数(或减函数);若函数在闭区间[a,b ]上连续,则单调区间可扩大到闭区间[a,b ]上. 3.函数的极值求可导函数极值的步骤求导数f ′(x)→求方程________的根→检验f ′(x)在方程根左右值的符号,求出极值(若左正右负,则f(x)在这个根处取极大值;若左负右正,则f(x)在这个根处取极小值).4.函数的最值求可导函数在[a,b ]上的最值的步骤: 求f(x)在(a,b)内的极值→求f(a)、f(b)的值→比较f(a)、f(b)的值和_____的大小.5.利用导数解决生活中的优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关 系式y=f(x);(2)求函数的导数f ′(x),解方程f ′(x)=0;(3)比较函数在区间端点和f ′(x)=0的点的函数值的大小,最大(小)者为最大(小)值.基础自测1.已知曲线C:y=2x 2-x 3,点P(0,-4),直线l 过点P 且与曲线C 相切于点Q,则点Q 的横坐标为 ( )A.-1B.1C.-2D.22.函数f(x)=xcos x 的导函数f ′(x)在区间[-π,π]上的图象大致是 ( )3.已知函数f(x)=x m +ax 的导数f ′(x)=2x+1,则数列 (n ∈N *)的前n 项和为 ( )4.a 、b 为实数,且b-a=2,若多项式函数f(x)在区间 (a,b)上的导函数f ′(x)满足f ′(x)<0,则以下式子中一1{}()f n 12A.Β. C. D.111n n n n n n n n ++-++5.函数y=f(x)在其定义域 内可导,其图象如图所示,记y=f(x)的导函数为y=f ′(x),则不等式 f ′(x)≤0的解集为__________.题型分类 深度剖析题型一 函数的极值与导数【例1】已知函数f(x)=x 3+mx 2+nx-2的图象过点(-1, -6),且函数g(x)=f ′(x)+6x 的图象关于y 轴对称.(1)求m 、n 的值及函数y=f(x)的单调区间;(2)若a>0,求函数y=f(x)在区间(a-1,a+1)内的极值.题型二 函数的最值与导数【例2】已知函数f(x)=ax 3-6ax 2+b,问是否存在实数a 、b 使f(x)在[-1,2]上取得最大值3,最小值-29,若存在,求出a 、b 的值;若不存在,请说明理由.3(,3)2 知能迁移1 设函数f (x )=2x 3-3(a +1)x 2+6ax +8,其中a ∈R. (1)若f (x )在x =3处取得极值,求常数a 的值; (2)若f (x )在(-∞,0)上为增函数,求a 的取值范围.知能迁移2 已知函数f (x )=ln x -a x .(1)求函数f (x )的单调增区间;(2)若函数f (x )在[1,e]上的最小值为32,求实数a 的值. 题型三 导数与方程的解 【例3】 已知函数f (x )=x 2-a ln x 在(1,2]是增函数, g (x )=x -a x 在(0,1)为减函数. (1)求f (x )、g (x )的解析式; (2)求证:当x >0时,方程f (x )=g (x )+2有唯一解.知能迁移3 已知f (x )=ax 2(a ∈R),g (x )=2ln x . (1)讨论函数F (x )=f (x )-g (x )的单调性.(2)若方程f (x )=g (x )在区间[2,e]上有两个不等解,求a 的取值范围.题型四 导数与不等问题 【例4】 设函数f (x )=x 4+ax 3+2x 2+b (x ∈R),其中a ,b ∈R.(1)当a =-103时,讨论函数f (x )的单调性; (2)若函数f (x )仅在x =0处有极值,求a 的取值范围; (3)若对于任意的a ∈[-2,2],不等式f (x )≤1在[-1,0]上恒成立,求b 的取值范围.知能迁移4 设函数f (x )=x 2-m ln x ,h (x )=x 2-x +a . (1)当a =0时,f (x )≥h (x )在(1,+∞)上恒成立, (1)求实数m 的取值范围;(2)当m =2时,若函数k(x)=f (x )-h (x )在[1,3]上恰有两个不同零点,求实数a 的取值范围. 一、选择题 1.若函数f (x )=x 3-3x +a 有3个不同的零点,则实数a 的取值范围是 ( )A .(-2,2) B .[-2,2] C .(-∞,-1) D .(1,+∞)2.若a >2,则函数f (x )=13x 3-ax 2+1在区间(0,2)上恰好有 ( ) A .0个零点 B .1个零点 C .2个零点 D .3个零点 3.已知函数f (x )=ln a +ln x x在[1,+∞)上为减函数,则实数a 的取值范围是 ( ) A .0<a <1e B .0<a ≤e C .a ≤e D .a ≥e 4.已知函数f (x )的导函数f ′(x )=a (x +1)(x -a ),若f (x )在x =a 处取到极大值,则a 的取值范围是 ( ) A .(-1,0) B .(2,+∞) C .(0,1) D .(-∞,-3) 5.方程x 3-6x 2+9x -4=0的实根的个数为 ( )A .0B .1C .2D .36.已知对任意x ∈R ,恒有f (-x )=-f (x ),g (-x )=g (x ),且当x >0时, f ′(x )>0, g ′(x )>0,则当x <0时有 ( ) A .f ′(x )>0,g ′(x )>0 B .f ′(x )>0,g ′(x )<0 C .f ′(x )<0,g ′(x )>0 D .f ′(x )<0,g ′(x )<0二、填空题 7.若函数f (x )=x 2+a x +1在x =1处取极值,则a =_____. 8.已知函数f (x )=x 3-3a 2x +a (a >0)的极大值为正数,极小值为负数,则a 的取值范围是__________. 9.设函数f (x )=ax 3-3x +1(x ∈R),若对于任意x ∈ [-1,1],都有f (x )≥0成立,则实数a 的值为_____.三、解答题 10.已知函数f (x )=x 3-32ax 2+b (a ,b 为实数,且a >1)在区间[-1,1]上的最大值为1,最小值为-2. (1)求f (x )的解析式;(2)若函数g (x )=f (x )-mx 在区间[-2,2]上为减函数,求实数m 的取值范围.11.设函数f (x )=-13x 3+2ax 2-3a 2x +b (0<a <1). (1)求函数f (x )的单调区间,并求函数f (x )的极大值和极小值; (2)当x ∈[a +1,a +2]时,不等式|f ′(x )|≤a ,求a 的取值范围.12.已知函数f (x )=⎩⎨⎧ x -ln x (x >12)x 2+2x +a -1(x ≤12) (1)求函数f (x )的单调递增区间; (2)求函数f (x )的零点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
_姓名________
我们的责任:修炼自我,精工学业,同伴互助,追求卓越。
【达标检测】 学习札记 1.(2010· 无锡模拟)已知曲线 C:y=2x2-x3,点 P(0,-4),直线 l 过点 P 且与曲线 C 相切于点 Q, 则点 Q 的横坐标为________. 2.函数 f(x)=x3+ax2+3x-9,已知 f(x)在 x=-3 时取得极值,则 a=________. 3. (2011· 盐城调研)函数 f(x)在定义域 R 内可导, 若 f(x)=f(2-x), 且当 x∈(-∞, 1)时, (x-1)f′(x)<0, 1 则 a=f(0)、b=f( )、c=f(3)的大小关系为________________. 2 4.函数 f(x)=-x3+x2+tx+t 在(-1,1)上是增函数,则 t 的取值范围是________. sin x sin x1 sin x2 5.若函数 f(x)= ,且 0<x1<x2<1,设 a= ,b= ,则 a,b 的大小关系为________. x x1 x2
探究点二 用导数证明不等式 1 例 2 已知 f(x)= x2-aln x(a∈R), 2 (1)求函数 f(x)的单调区间; 1 2 (2)求证:当 x>1 时, x2+ln x< x3. 2 3
变式迁移 2 (2010· 安徽)设 a 为实数,函数 f(x)=ex-2x+2a,x∈R. (1)求 f(x)的单调区间与极值; (2)求证:当 a>ln 2-1 且 x>0 时,ex>x2-2ax+1.
【归纳总结】
b 5.设函数 f(x)=ln x,g(x)=ax+ ,函数 f(x)的图象与 x 轴的交点也在函数 g(x) x 的图象上,且在此点有公共切线. (1)求 a、b 的值; (2)对任意 x>0,试比较 f(x)与 g(x)的大小.
老 师 寄 语:课前预习不可少,自主质疑效果好;课上跟着目标跑,合作探究是法宝;达标训练讲效率,拓展提升很重要。
二 预习自测 1.函数 f(x)=x3-3ax-a 在(0,1)内有最小值,则 a 的取值范围为________. 2.已知 f(x),g(x)都是定义在 R 上的函数,g(x)≠0,f′(x)g(x)<f(x)g′(x),f(x)=ax· g(x) f1 f-1 5 (a>0,且 a≠1), + = ,则 a 的值为____________. g1 g-1 2 3.(已知函数 f(x)=(m-2)x2+(m2-4)x+m 是偶函数,函数 g(x)=-x3+2x2+mx+5 在(-∞,+∞)内 单调递减,则实数 m 为________. π 1 4.函数 f(x)= ex (sin x+cos x)在区间 0,2上的值域为______________. 2 5.f(x)=x(x-c)2 在 x=2 处有极大值,则常数 c 的值为________. 请将预习中不能解决的问题写下来,供课堂解决
【课上探究】 探究点一 讨论函数的单调性 - 例 1 已知函数 f(x)=x2e ax (a>0),求函数在[1,2]上的最大值.
老 师 寄 语:课前预习不可少,自主质疑效果好;课上跟着目标跑,合作探究是法宝;达标训练讲效率, 主备
孙正虎
审校
班级______
【课后作业】 学习札记 1. 设函数 f(x)=ax3-3x+1(x∈R), 若对于任意 x∈[-1,1], 都有 f(x)≥0 成立, 则实数 a 的值为________. 4 2.设 p:f(x)=x3+2x2+mx+1 在(-∞,+∞)内单调递增,q:m≥ ,则 p 3 是 q 的________条件. 4x 3.若函数 f(x)= 2 在区间(m,2m+1)上是单调递增函数,则实数 m 的取值范 x +1 围为________. 4.设函数 f(x)=kx3-3x2+1(k≥0). (1)求函数 f(x)的单调区间; (2)若函数 f(x)的极小值大于 0,求 k 的取值范围.
学习札记
学习内容及过程
aln x 变式迁移 1 设 a>0,函数 f(x)= . x (1)讨论 f(x)的单调性; (2)求 f(x)在区间[a,2a]上的最小值.
学习札记
学习内容及过程 【课前预习】 一 自主梳理 1.已知函数单调性求参数值范围时,实质为恒成立问题. (1) a f ( x) 恒成立 a ; (2) a f ( x) 恒成立 a (3) a f ( x) 有解 a ; ;
泗洪县洪翔中学高三年级数学导学案 主备
孙正虎
审校
班级______
_姓名________
我们的责任:修炼自我,精工学业,同伴互助,追求卓越。
课题
重点
导数的综合应用(1) 利用导数讨论函数单调性
学习 目标
难点
1.应用导数讨论函数的单调性,并会根据函数 的性质求参数范围; 2.会利用导数解决某些实际问题. 利用导数解决一些问题
(4) a f ( x) 有解 a ; 2.求函数单调区间,实质为解不等式问题,但解集一定为定义域的子集. 在某个区间 ( a, b) 内,如果 f ( x) 0, 且 ,那么函数 y f ( x) 在这个区间内单调递增; 如果 f ( x) 0, 且 ,那么函数 y f ( x) 在这个区间内单调递减.