天津市梅江中学八年级数学下册 20.1.1 平均数(第1课时)教案 新人教版

合集下载

人教版八年级数学下册 20.1.1平均数(第1课时)公开课 教学设计 (1)

人教版八年级数学下册 20.1.1平均数(第1课时)公开课 教学设计 (1)

20.1.1平均数(第一课时)公开课教学设计一、教材分析《平均数》是人教版义务教育课程标准实验教材八年级数学下册第二十章数据的分析第一节教学内容,加权平均数是算术平均数的延伸,本课概念性较强,也是学生学会分析数据,作出决策的基础。

本节内容与学生生活密切相关,能直接指导学生的生活实践。

二、学情分析在学习本课之前学生已学过算术平均数学,有一定合作交流的经验,八年级学生的认知水平又有限可能难以理解“加权平均数”意义,容易使产生畏难情绪。

同时“求加权平均数”作为一类应用题,而现行教材中往往脱离学生生活实际,让学生感到枯燥乏味。

在教学过程中如能让学生理解“权”的含义,对求加权平均数的问题自然会迎刃而解。

为了促进学生发展本节课我根据学生由感知——表象——抽象的认识规律和教学的启发性、直观性和面向全体因材施教等教学原则,通过积极创设真实的、源于生活的问题情境,以“学生发展为本,以活动为主线,以创新为主旨”,采用多媒体教学等有效手段,以引导法为主,辅之以直观演示法、设疑激趣法、讨论法,让学生经历数学活动,激发学生的学习积极性,促进学生发展。

三、教学目标知识与技能:结合实例理解“权”及“加权平均数”的意义,掌握加权平均数的计算公式,并能利用其解决不同情境下的实际问题。

过程与方法:经历情境探求过程,感悟提出“加权平均数”的概念的必要性及“加权平均数”与“算术平均数”的联系与区别;经历解决问题的过程,深化对“权”的各种形式的认识及对“加权平均数”的本质认识。

情感态度价值观:认识“各个数据的重要程度有所不同”的客观事实,体会“根据不同数据的权来计算其平均数”的合理性。

四、教学重难点教学重点:权及加权平均数的概念的理解,计算公式及应用。

难点:加权平均数概念的形成。

五、教学过程(一)、情境创设、1、复习:数据2、3、4、1、2的平均数是________,这个平均数叫做_________平均数.小结:日常生活中,我们常用平均数表示一组数据的“平均水平”平均数一般是指算术平均数,也就是一组数据的和除以这组数据的个数所得的商。

八年级数学下册 20.1.1 平均数 第1课时 平均数学案 (

八年级数学下册 20.1.1 平均数 第1课时 平均数学案 (

20.1.1 平均数第1课时 平均数01 课前预习要点感知1 一组数据里的各个数据的重要程度不一定相同,在计算它们的平均数时,往往给每个数据一个“权”,由此求出的平均数叫做加权平均数.设n 个数x 1、x 2、…、x n 的权分别是w 1、w 2、…、w n ,则这n 个数的加权平均数为:x =x 1w 1+x 2w 2+…+x n w nw 1+w 2+…+w n.预习练习1-1 (南宁中考)某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末成绩(百分制)分别是80分、90分,则小海这个学期的体育综合成绩是86分.要点感知2 在求n 个数的平均数时,如果x 1出现f 1次,x 2出现f 2次,…,x k 出现f k 次(这里f 1+f 2+…+f k =n),那么这n 个数的平均数为x =x 1f 1+x 2f 2+…+x k f kn ,也叫做x 1,x 2,…,x k 这k 个数的加权平均数,其中f 1,f 2,…,f k 分别叫做x 1,x 2,…,x k 的权.预习练习2-1 一组数据中有3个7,4个11和3个9,那么它们的平均数是9.2. 02 当堂训练 知识点1 平均数1.在期中考试中,小英语文、数学、英语、物理四科的成绩分别是92分、98分、95分、91分,则她四科的平均成绩是94分.2.(柳州中考)在一次“社会主义核心价值观”知识竞赛中,四个小组回答正确题数情况如图所示,求这四个小组回答正确题数的平均数.解:设这四个小组回答正确题数的平均数为x ,则 x =6+12+16+104=11.答:这四个小组回答正确题数的平均数为11. 知识点2 加权平均数3.(天津中考)某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取(B)A.甲B.乙C.丙D.丁4.(临沂中考)某中学随机抽查了50名学生,了解他们一周的课外阅读时间,结果如下表所示:则这50名学生一周的平均课外阅读时间是5.3小时.5.如图是根据今年某校九年级学生体育考试跳绳的成绩绘制成的统计图.如果该校九年级共有200名学生参加了这项跳绳考试,根据该统计图给出的信息可得这些同学跳绳考试的平均成绩为175.5.6.甲、乙两名大学生竞选班长,现对甲、乙两名候选人从笔试、口试、得票三个方面表现进行评分,各项成绩如表所示:85(1)如果按笔试占总成绩20%、口试占30%、得票占50%来计算各人的成绩,试判断谁会竞选上?(2)如果将笔试、口试和得票按2∶1∶2来计算各人的成绩,那么又是谁会竞选上?解:(1)甲的成绩为:85×20%+83×30%+90×50%=86.9(分),乙的成绩为:80×20%+85×30%+92×50%=87.5(分),因此,乙会竞选上.(2)甲的成绩为:85×2+83×1+90×2=86.6(分),2+1+2乙的成绩为:80×2+85×1+92×2=85.8(分),2+1+2因此,甲会竞选上.03 课后作业7.(玉林中考)学校抽查了30名学生参加“学雷锋社会实践”活动的次数,并根据数据绘制成了条形统计图,则30名学生参加活动的平均次数是(C)A.2B.2.8C.3D.3.38.某校八年级共有四个班,在一次英语测试中四个班的平均分与各班参加考试的人数如下表:则该校八年级参加这次英语测试的所有学生的平均分约为(精确到0.1)(B)A.83.1分B.83.2分C.83.4分D.83.5分9.(宿迁中考)某校规定学生的数学学期综合成绩是由平时、期中和期末三项成绩按3∶3∶4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分、90分和85分,则他本学期数学学期综合成绩是88分.10.如果x1与x2的平均数是4,那么x1+1与x2+5的平均数是7.11.(梧州中考)某企业招聘员工,要求所有应聘者都要经过笔试与面试两种考核,且按考核总成绩从高到低进行录取,若考核总成绩相同时,则优先录取面试成绩高分者.下面是招聘考核总成绩的计算说明:笔试总成绩=(笔试总成绩+加分)÷2考核总成绩=笔试总成绩+面试总成绩现有甲、乙两名应聘者,他们的成绩情况如下:121(1)甲、乙两人面试的平均成绩为85.35;(2)甲应聘者的考核总成绩为145.6;(3)根据上表的数据,若只应聘1人,则应录取甲.挑战自我12.某班为了从甲、乙两位同学中选出班长,进行了一次演讲答辩与民主测评,A、B、C、D、E五位老师作为评委,对“演讲答辩”情况进行评价,全班50位同学参与了民主测评,结果如下表所示:表1 演讲答辩得分表(单位:分)表2 民主测评票统计表(单位:张)规定:演讲答辩得分按“去掉一个最高分和一个最低分再算平均分”的方法确定;民主测评分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分;综合得分=演讲答辩分×(1-a)+民主测评分×a(0.5≤a≤0.8).(1)当a =0.6时,甲的综合得分是多少?(2)在什么范围内,甲的综合得分高;在什么范围内,乙的综合得分高? 解:(1)甲的演讲答辩得分=90+92+943=92(分), 甲的民主测评得分=40×2+7×1+3×0=87(分),当a =0.6时,甲的综合得分=92×(1-0.6)+87×0.6=36.8+52.2=89(分). (2)∵乙的演讲答辩得分=89+87+913=89(分),乙的民主测评得分=42×2+4×1+4×0=88(分), ∴乙的综合得分=89(1-a)+88a. 由(1)知甲的综合得分=92(1-a)+87a.当92(1-a)+87a >89(1-a)+88a 时,即有a <34.又∵0.5≤a≤0.8,∴当0.5≤a<0.75时,甲的综合得分高. 当92(1-a)+87a <89(1-a)+88a 时,即有a >34.又∵0.5≤a≤0.8,∴当0.75<a≤0.8时,乙的综合得分高.。

人教版八年级数学下册20.1.1平均数(第1课时)公开课优秀教学案例

人教版八年级数学下册20.1.1平均数(第1课时)公开课优秀教学案例
3.教师巡回指导,关注每个小组的学习情况,及时给予反馈和鼓励,提高他们的自信心。
(四)反思与评价
1.教师引导学生回顾本节课所学内容,帮助他们巩固知识点,提高他们的自主学习能力。
2.让学生进行自我评价,发现自己的不足,明确今后的学习方向。
3.教师对学生的学习情况进行总结评价,强调平均数在实际生活中的应用,激发他们的学习兴趣。
1.情境创设贴近生活:本节课通过展示运动员比赛成绩的统计数据和生活实例,让学生感受到平均数的概念和应用,增强了学生的学习兴趣和积极性。
2.问题导向引导思考:本节课设计了丰富的问题,引导学生思考和探讨平均数的定义、性质和计算方法,提高了学生的思维能力和解决问题的能力。
作为一名特级教师,我深知教学内容与过程的重要性。在教学过程中,我将根据学生的实际情况,灵活运用各种教学方法和策略,确保每个学生都能在导入新课、讲授新知、学生小组讨论、总结归纳和作业小结等方面取得良好的学习效果。同时,我会关注学生的个体差异,给予他们个性化的指导和支持,帮助他们充分发挥自己的潜能。
五、案例亮点
作为一名特级教师,我深知教学策略的重要性。在教学过程中,我将根据学生的实际情况,灵活运用各种教学策略,确保每个学生都能在情境创设、问题导向、小组合作和反思与评价等方面取得良好的学习效果。同时,我会关注学生的个体差异,给予他们个性化的指导和支持,帮助他们充分发挥自己的潜能。
四、教学内容与过程
(一)导入新课
2.新课导入:通过具体案例,让学生探究并总结平均数的定义和性质。
3.实践环节:设计一些实际问题,让学生分组讨论,运用平均数解决生活中的问题。
4.总结提升:引导学生总结本节课所学内容,并展望平均数在实际生活中的广泛应用。
5.作业布置:选取一些有关平均数的练习题,巩固所学知识,提高学生的应用能力。

人教版八年级数学下册20.1.1平均数(第一课时)优秀教学案例

人教版八年级数学下册20.1.1平均数(第一课时)优秀教学案例
3.小组合作:教师将学生分成小组,让他们在小组内讨论问题,培养合作意识和团队协作能力。此外,小组竞赛和分享环节进一步激发学生的学习积极性,提高他们的表达能力和交流能力。这种教学方式有助于培养学生的团队合作能力和社交技能。
4.反思与评价:教师引导学生对自己的学习过程进行反思,总结经验教训,提高自我认知。同时,同伴评价和教师评价环节给予学生肯定和鼓励,培养良好的评价习惯。这种教学方式有助于培养学生的自我反思能力和评价能力。
5.寓教于乐:教师运用图形演示、故事引导等多种教学手段,使抽象的数学概念变得形象生动,提高学生的学习兴趣。此外,实践操作环节让学生在动手操作中感受平均数的含义,增强学生的动手能力。这种教学方式有助于培养学生的创新思维和实践能力。
1.贴近生活:本节课以学生熟悉的生活场景为例,如运动会、家庭聚会等,创设实际问题情境,让学生感受到平均数与生活的紧密联系。这种教学方式有助于激发学生的学习兴趣,培养学生的应用能力。
2.问题导向:教师设计具有启发性的问题,引导学生主动思考,探究平均数的性质和求法。同时,鼓励学生提出问题,培养他们的问题意识和解决问题的能力。这种教学方式有助于提高学生的思维能力和批判性思维。
二、教学目标
(一)知识与技能
1.理解平均数的定义和性质,掌握求平均数的方法。
2.能够运用平均数解决实际问题,提高数据分析能力。
3.了解平均数在生活中的应用,培养运用数学知识解决生活问题的能力。
(二)过程与方法
1.通过案例分析、小组讨论等形式,培养学生的合作意识和团队协作能力。
2.利用实践操作,让学生在实际操作中感受平均数的含义,提高动手操作能力。
3.分享讨论成果:鼓励小组成员分享自己的思考和心得,培养学生的表达能力和交流能力。
(四)总结归纳

八年级数学下册 20.1.1 平均数教案 (新版)新人教版

八年级数学下册 20.1.1 平均数教案 (新版)新人教版

平均数教学准备1. 教学目标1、知识与技能:了解通过抽样调查收集数据的方法;会设计简单的方案收集数据。

通过抽样调查,初步感受抽样的必要性,体会用样本估计总体的思想。

了解实验也是获得数据的有效方法。

2、过程与方法:了解通过抽样调查收集数据的方法;会设计简单的方案收集数据。

通过抽样调查,初步感受抽样的必要性,体会用样本估计总体的思想。

了解实验也是获得数据的有效方法。

3、情感态度与价值观:(1)过简单的方案设计和师生双边的教学活动,让学生在运用统计的知识解决实际问题时,体验互动交流精神。

(2)通过实际参与收集整理.描述和分析数据的活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立统计观念,培养重视调查研究的良好习惯和科学态度。

2. 教学重点/难点4、教学重点抽样调查收集数据的方法5、教学难点抽样调查收集数据的方法以及分析整理数据3. 教学用具4. 标签教学过程(一)导入导语:在我们熟知的一些科学家、历史人物中,有很多像你们一样,年轻的时候就显现出了他们在数学上的天赋,如“曹冲称象”就利用他所掌握的数学知识解决了实际问题。

今天我也想请大家帮我解决一个问题,我这瓶子中装有一些豆子,你能用几种方法估计出这个瓶子中豆子的数目?(二)合作交流解读探究【问题1】瓶子中有多少豆子?先让学生初步探讨问题,交流方案;【学生实验参考方案】(一)(全面调查) 直接数瓶子中的豆子;(二)(抽样调查)(什么条件下使用抽样调查?)<1> 先将豆子分成若干等份,数出其中一份豆子的数量,以此估计总量。

<2> 用称重的方法,先称出所有豆子的重量m,再称出一杯豆子的重量n,并数清这杯豆子的粒数p,则这一杯豆子平均每粒重m/p,以此就可以估计出瓶子中豆子的粒数q:q ≈×m【课堂实验】实验步骤:(1)从瓶子中取出一些豆子,记录这些豆子的粒数m;(2)给这些豆子做上记号;(3)把这些豆子放回瓶子中,充分摇匀;(4)从瓶子中再取出一些豆子,记录这些豆子的粒数p和其中带有记号的豆子的粒数n;(5)利用得到的数据m,p,n,估计原来瓶子中豆子的粒数q,q ≈×m(6)数出瓶子中豆子的总数,验证你的估计。

人教版数学八年级下册20.1.1《平均数》教学设计1

人教版数学八年级下册20.1.1《平均数》教学设计1

人教版数学八年级下册20.1.1《平均数》教学设计1一. 教材分析人教版数学八年级下册20.1.1《平均数》是学生在学习了统计学基础知识后进一步研究平均数这一概念。

平均数是描述一组数据集中趋势的重要指标,它在日常生活和各种科学研究中有着广泛的应用。

本节内容通过对平均数的定义、性质和求法的学习,使学生能理解平均数在统计学中的意义,掌握求平均数的方法,并能够运用平均数解决一些实际问题。

二. 学情分析学生在学习本节内容前,已经掌握了统计学的一些基础知识,如数据、统计表、统计图等。

他们具备了一定的数据分析能力,但对于平均数的概念和求法还比较陌生。

因此,在教学过程中,教师需要从学生的实际出发,通过生动具体的实例,引导学生理解平均数的含义,掌握求平均数的方法。

三. 教学目标1.知识与技能目标:使学生理解平均数的含义,掌握求平均数的方法,能够运用平均数解决一些实际问题。

2.过程与方法目标:通过实例分析,培养学生的数据分析能力,提高他们运用数学解决实际问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的良好学习习惯。

四. 教学重难点1.重点:平均数的定义及其求法。

2.难点:理解平均数在统计学中的意义,以及如何运用平均数解决实际问题。

五. 教学方法1.情境教学法:通过生动具体的实例,引导学生理解平均数的含义,掌握求平均数的方法。

2.启发式教学法:在教学过程中,教师要善于提问,引导学生积极思考,提高他们的问题解决能力。

3.小组合作学习法:通过小组讨论、合作交流,培养学生的团队协作能力,提高他们的数据分析能力。

六. 教学准备1.教师准备:熟悉教材内容,了解学生的学习情况,设计好教学过程和教学活动。

2.学生准备:预习教材内容,了解平均数的概念和求法。

3.教学资源:多媒体教学设备、教学课件、练习题等。

七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的主题——平均数。

例如:某班有30名学生,他们的身高分别是160cm、165cm、170cm……200cm,请问该班学生的平均身高是多少?2.呈现(10分钟)教师通过PPT展示平均数的定义和性质,让学生初步了解平均数的概念。

人教版数学八年级下册20.1.1第1课时《 平均数》教学设计

人教版数学八年级下册20.1.1第1课时《 平均数》教学设计

人教版数学八年级下册20.1.1第1课时《平均数》教学设计一. 教材分析《平均数》是人教版数学八年级下册20.1.1第1课时的教学内容。

本节课主要介绍了平均数的定义、性质和求法,以及平均数在实际生活中的应用。

通过本节课的学习,学生能够理解平均数的意义,掌握求平均数的方法,并能运用平均数解决实际问题。

二. 学情分析学生在七年级已经学习了统计学的基本知识,对数据有一定的了解。

但是,对于平均数的定义和求法还不够明确,需要在课堂上进行进一步的讲解和操练。

此外,学生对于平均数在实际生活中的应用还比较陌生,需要通过实例来引导他们理解和掌握。

三. 教学目标1.知识与技能:理解平均数的定义,掌握求平均数的方法,能够运用平均数解决实际问题。

2.过程与方法:通过实例和练习,培养学生的数据分析能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养他们积极思考和合作探究的学习态度。

四. 教学重难点1.重点:平均数的定义和求法。

2.难点:理解平均数在实际生活中的应用。

五. 教学方法1.情境教学法:通过生活实例引入平均数的概念,让学生在具体的情境中理解和掌握。

2.启发式教学法:引导学生通过思考和讨论,自主探索求平均数的方法。

3.实践性教学法:通过大量的练习和实际问题,让学生动手操作,巩固所学知识。

六. 教学准备1.教学PPT:制作相关的教学PPT,展示平均数的定义、性质和求法。

2.练习题:准备一些练习题,用于学生在课堂上进行操练和巩固。

3.实际问题:收集一些实际问题,用于引导学生运用平均数解决实际问题。

七. 教学过程1.导入(5分钟)通过一个生活实例引入平均数的概念,例如:“小明的数学、语文、英语三科成绩分别为90分、80分、85分,那么他的平均成绩是多少?”让学生思考并回答。

2.呈现(10分钟)讲解平均数的定义和性质,以及求平均数的方法。

通过PPT展示相关的知识和实例,让学生理解和掌握。

3.操练(10分钟)让学生分组进行练习,运用平均数的方法求解一些给定的数据。

人教版八年级数学 下册:20.1.1平均数(1)教案

人教版八年级数学 下册:20.1.1平均数(1)教案
1.制订切实可行的学习目标,使学生的学习具有明确的方向。
2.学生已经会求算术平均数,在此处老师可逐步进入权的概念,让学生体会。
活动二:感知权的形式与意义
问题1如果公司想招一名综合能力较强的翻译,请
应试者





85
78
85
73

73
80
82
83
1.计算两名应试者的平均成绩,应该录用谁?
2.听、说、读、写的成绩按照2:1:3:4的比确定.
利家超市新进了三种糖果,应顾客要求,BOSS打算把糖果混合成杂拌糖出售,具体进价和用量如下表:
种类
售价
质量

24元/千克
2千克

19元/千克
2千克

28元/千克
6千克
你能帮超市计算出杂拌糖的售价吗?
试着解决该问题,触发学生思考。引导学生在头脑中形成概念。
通过问题的设置引发学生思考,激发学生的学习积极性和热情。为问题的解决埋下伏笔。
课堂小结
1.算术平均数与加权平均数的区别与联系:
(1)算术平均数是加权平均数的一种特殊情况.(它特殊在各项的权_____)
(2)在实际问题中:
当各项权_______时,计算平均数就要采用算术平均数;
当各项权_______时,计算平均数就要采用加权平均数;
2.加权平均数中“权”的几种表现形式:
整数、比例、百分比。
课时重难点
教学重点:
掌握加权平均数的概念;会求一组数据的加权平均数,理解加权平均数的意义。
教学难点:
理解加权平均数的意义,会求一组数据的加权平均数。
教学过程
教学环节一
教师活动

八年级数学下册 20.1.1 平均数教案1 (新版)新人教版

八年级数学下册 20.1.1 平均数教案1 (新版)新人教版

第二十章数据的分析20.1 数据的集中趋势20.1.1 平均数【教学目标】知识与技能1. 理解数据的“权”和加权平均数的意义。

2. 会计算加权平均数。

过程与方法通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:情感、态度与价值观会用加权平均数分析一组数据的集中趋势,发展数据分析能力,逐步形成数据分析观念.【教学重难点】重点:会求加权平均数.难点:对“权”的理解.【导学过程】【知识回顾】一组数据88,72,86,90,75的平均数是;一组数据12,12,12,12, 4,4,4,4,4,13,的平均数是;一组数据有5个20,4个30,3个40,8个50,则这20个数的平均数为 .【新知探究】探究一、问题1:(先独立完成,然后小组分工合作交流,选代表展示。

)一家公司打算招聘一名英文翻译. 对甲、乙两名应试者进行了听、说、读、写的英语水应试者听说读写甲8578 85 73乙73 80 82 831.如果这家公司想找一名综合能力较强的翻译,那听、说、读、写成绩按多少比确定?计算两名应试者的平均成绩(百分制),从他们的成绩看,应该录取谁?说明方法.2.如果公司要招聘一名笔译能力较强的翻译,那听、说、读、写成绩按2 :1 :3 :4的比确定,计算两名应试者的平均成绩(百分制),从他们的成绩看,应该录取谁?说明方法.归纳: 一般地,若 n 个数 x1 , x2, …, x n 的权分别是 w1 , w2 … , w n,则叫做这 n 个数的加权平均数. 权的意义:——————————————————————————————.思考:如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按3 : 3 : 2 : 2的比确定,那么甲乙两人谁会被录取?探究二、例1(小组合作完成)一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分.各项成选手 演讲内容 演讲能力 演讲效果 A 85 95 95 B9585951、你能确定他俩的名次吗?2、假如你是A 选手,你能设计一种合理方案,使自己获得第一名吗?【知识梳理】(1)加权平均数在数据分析中的作用是什么?(2)权的作用是什么?【随堂练习】1、有m 个数的平均数是x ,n 个数的平均数是y ,则这(m+n )个数的平均数为( ) A ....22x y x y mx ny mx nyB C D m nm n++++++ 2、某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如下表所示: 候选人 测试成绩(百分制) 面试 笔试 甲 86 90 乙9283如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权,计算甲、乙两人各自的平均成绩,看看谁将被录取?。

初中数学人教版八年级下册20.1.1 平均数第1课时 平均数(1)教案

初中数学人教版八年级下册20.1.1 平均数第1课时 平均数(1)教案

初中数学人教版八年级下册实用资料第二十章 数据的分析20.1 数据的集中趋势20.1.1 平均数第1课时 平均数(1)1.使学生理解并掌握数据的权和加权平均数的概念.2.使学生掌握加权平均数的计算方法.重点会求加权平均数.难点对“权”的理解.一、复习导入某校八年级共有班级 1班 2班 3班 4班参考人数 40 42 45 32平均成绩 80 81 82 79x =14×(79+80+81+82)=80.5 平均数的概念及计算公式:一般地,如果有n 个数x 1,x 2,x 3,…,x n ,则有x =x 1+x 2+x 3+…+x n n,其中x 叫做这n 个数的平均数,读作“x 拔”.二、讲授新课问题: 一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们的各项成绩(应试者 听 说 读 写甲 85 78 85 73乙 73 80 82 83(1)(百分制).从他们的成绩看,应该录取谁?(2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶1∶3∶4的比确定计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?对于问题(1),根据平均数公式,甲的平均成绩为:85+78+85+734=80.25, 乙的平均成绩为73+80+82+834=79.5. 因为甲的平均成绩比乙高,所以应该录取甲.对于问题(2),听、说、读、写成绩按照2∶1∶3∶4的比确定,这说明各项成绩的“重要程度”有所不同,读、写的成绩比听、说的成绩更加“重要”.因此,甲的平均成绩为85×2+78×1+85×3+73×42+1+3+4=79.5, 乙的平均成绩为73×2+80×1+82×3+83×42+1+3+4=80.4. 因为乙的平均成绩比甲高,所以应该录取乙.上述问题(1)是利用平均数的公式计算平均成绩,其中的每个数据被认为同等重要.而问题(2)是根据实际需要对不同类型的数据赋予与其重要程度相应的比重,其中的2,1,3,4分别称为听、说、读、写四项成绩的权,相应的平均数79.5,80.4分别称为甲和乙的听、说、读、写四项成绩的加权平均数.一般地,若n 个数x 1,x 2,…,x n 的权分别是w 1,w 2,…,w n ,则x 1w 1+x 2w 2+…+x n w n w 1+w 2+…+w n叫做这n 个数的加权平均数.三、例题讲解【例1】教材第112页例1【例2】为了鉴定某种灯泡的质量,对其中100只灯泡的使用寿命进行了测量,结果如下表:(单位:小时寿命 450 550 600 650 700只数 20 10 30 15 25解:这些灯泡的平均使用寿命为:x =450×20+550×10+600×30+650×15+700×2520+10+30+15+25=597.5(小时) 四、巩固练习1.在一个样本中,2出现了x 1次,3出现了x 2次,4出现了x 3次,5出现了x 4次,则这个样本的平均数为________.【答案】2x 1+3x 2+4x 3+5x 4x 1+x 2+x 3+x 42.某人打靶,有a 次打中x 环,b 次打中y 环,则这个人平均每次中靶________环.【答案】ax +by a +b五、课堂小结师:这节课你学到了什么新知识?生1:数据的权和加权平均数的概念.生2:掌握加权平均数的计算方法.……平均数是统计中的一个重要概念,新教材注重学生在经历统计活动的过程中体会平均数的本质内涵,理解平均数的意义,发展学生的统计观念,基于以上认识,我在设计中突出了让学生在具体情境中体会为什么要学习平均数,注重引导学生在统计的背景中理解平均数的含义,在比较、观察中把握平均数的特征,进而运用平均数解决实际问题,了解它的价值.第2课时 平均数(2)1.加深对加权平均数的理解.2.会根据频数分布表求加权平均数,解决一些实际问题.3.会用计算器求加权平均数的值.重点根据频数分布表求加权平均数.难点根据频数分布表求加权平均数.一、复习导入采用教材原有的引入问题,设计的几个问题如下:(1)请同学们阅读教材中的探究问题,依据统计表可以读出哪些信息?(2)这里的组中值指什么,它是怎样确定的?(3)第二组数据的频数5指什么呢?(4)如果每组数据在本组中分布较为均匀,每组数据的平均值和组中值有什么关系? 设计意图(1)主要是想引出根据频数分布表求加权平均数近似值的计算方法;(2)加深了对“权”的意义的理解:当利用组中值近似取代一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权;二、例题精讲【例2】某跳水队为了解运动员的年龄情况,作了一次年龄调查,结果如下:13岁8人,14岁16人,15岁24人,16岁2人.求这个跳水队运动员的平均年龄(结果取整数).解:这个跳水队运动员的平均年龄为x =13×8+14×16+15×24+16×28+16+24+2≈14(岁). 【例3】某灯泡厂为测量一批灯泡的使用寿命,从中随机抽查了50只灯泡.它们的使用使用寿命/x/h 600≤x<1000 1000≤x<1400 1400≤x<1800 1800≤x<2200 2200≤x<2600灯泡只数 5 10 12 17 6分析:估计这批灯泡的平均使用寿命.解:根据表格,可以得出各小组的组中值,于是x =800×5+1200×10+1600×12+2000×17+2400×650=1672, 即样本平均数为1672.因此,可以估计这批灯泡的平均使用寿命大约是1672 h .三、巩固练习某校为了了解学生做课外作业所用时间的情况,对学生做课外作业所用时间进行调查,下表是该校八年级某班.所用时间t(分钟) 人 数0<t≤10 410<t≤20 620<t≤30 1430<t≤40 1340<t≤50 950<t≤60 4求:(1)(2)该班学生平均每天做数学作业所用的时间.【答案】解:(1)15(2)该班学生平均每天做数学作业所用时间为x =5×4+15×6+25×14+35×13+45×9+55×44+6+14+13+9+4=30.8(分钟) 四、课堂小结1.加权平均数的应用.2.根据频数分布表求加权平均数.3.学会用计算器求加权平均数的值.在统计中算术平均数常用于表示对象的一般水平,它是描述数据集中程度的一个统计量,它可以反映一组数据的一般情况,也可以用它进行不同组数据的比较,以看出组与组之间的差别,可见平均数是统计中的一个重要概念.基于这一认识,这节课注重了以下几个方面:一、在现实生活情境中引入,注重数学与生活的联系.二、创造有效的数学学习方式,理解平均数的意义,学会平均数的算法.20.1.2 中位数和众数第1课时 中位数和众数(1)认识中位数和众数,并会求出一组数据的众数和中位数.重点认识中位数、众数这两种数据代表.难点利用中位数、众数分析数据信息,做出决策.一、复习导入前面已经和同学们研究了平均数这个数据代表.它在分析数据的过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据的过程中又起到怎样的作用.二、讲授新课 月收 入/元 45000 18000 10000 5500 5000 3400 3000 1000 人数 1 1 1 3 6 1 11 1(2)若用(1)算得的平均数反映公司全体员工月收入水平,你认为合适吗?师:同学们知道如何计算这个公司员工月收入的平均数吗?生:根据加权平均数,可以求出这个公司员工月收入的平均数为:45000+18000+10000+5500×3+5000×6+3400+3000×11+10001+1+1+3+6+1+11+1=6276.师:很好!那么用第(1)问中算得的平均数来反映该公司全体员工的月收入水平,你认为合理吗?生:不合理.因为在这25名员工中,仅有3名员工的收入在6276元以上,而另外22名员工的收入都在6276元以下.因此,用月收入的平均数反映所有员工的月收入水平不合理.师:这位同学分析得很好!那么应该选择什么数据来反映该公司员工月收入的水平呢?这就要用到本节课要学习的中位数,利用中位数可以更好地反映这组数据的集中趋势.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则称位于中间位置的数为这组数据的中位数;如果数据的个数是偶数,则称中间两个数据的平均数为这组数据的中位数.利用中位数分析数据可以获得一些信息.例如,上述问题中将公司25名员工月收入数据由小到大排列,得到的中位数为3400,这说明除去月收入为3400元的员工,一半员工收入高于3400元,另一半员工收入低于3400元.【例1】教材第117页例4师:刚才我们学习中位数,下面我们再来学习一个反映数据集中趋势的另一众数,一组数据中出现次数最多的数据称为这组数据的众数.当一组数据有较多的重复数据时,众数往往能更好地反映该组数据的集中趋势.【例2】一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如表所示.你尺码/cm22 22.5 23 23.5 24 24.5 25销售量/双 1 2 5 11 7 3 1码组成的一组数据的众数.一段时间内卖出的300双女鞋的尺码组成一个样本数据,通过分析样本数据可以找出样本数据的众数,进而估计这家鞋店销售哪种尺码的鞋最多.解:由表可以看出,在鞋的尺码组成的数据中,23.5是这组数据的众数,即23.5 cm的鞋销售量最大,因此可以建议鞋店多进23.5 cm的鞋.三、巩固练习1.数据8,9,9,8,10,8,9,9,8,10,7,9,9,8的中位数是________,众数是________.【答案】9 92.一组各不相同的数据23,27,20,18,x,12,它的中位数是21,则x的值是________.【答案】223.数据92,96,98,100,x的众数是96,则其中位数和平均数分别是( )A.97,96 B.96,96.4C.96,97 D.98,97【答案】B4.如果在一组数据中,23,25,28,22出现的次数依次为3,5,3,1,并且没有其他的数据,则这组数据的众数和中位数分别是( )A.24,25 B.23,24C.25,25 D.23,25【答案】C四、课堂小结1.认识了中位数和众数.2.理解了中位数和众数的意义和作用,并能利用它们分析数据信息,做出决策.本次教学中,我通过引导学生在了解中位数和众数的意义之后,让学生利用中位数和众数的知识解决实际问题,沟通了知识与实际生活的联系,让学生体会到中位数与众数知识的实用性.第2课时中位数和众数(2)1.进一步认识到平均数、众数、中位数都是数据的代表.2.了解平均数、中位数、众数在描述数据时的差异.重点了解平均数、中位数、众数之间的差异.难点灵活运用这三个数据代表解决问题.一、复习导入平均数、中位数和众数都可以作为一组数据的代表,是描述一组数据集中趋势的量.它们各有自己的特点,能够从不同的角度提供信息,在实际应用中,需要分析具体问题的情况,选择适当的量反映数据的集中趋势.另外要注意:(1)平均数计算要用到所有的数据,它能够充分利用所有的数据信息,但它受极端值的影响较大;(2)众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算也不受极端值的影响;(3)平均数的大小与一组数据中的每个数据均有关系,任何一个数据的变动都会相应地引起平均数的变动;(4)中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中,也可能不在所给的数据中.当一组数据中的个别数据变动较大时,可用中位数描述其趋势;(5)实际问题中求得的平均数、众数、中位数应带上单位.二、例题讲解【例1得分50 60 70 80 90 100 110 120人数 2 3 6 14 15 5 4 1解:众数90分中位数85分平均数84.6分【例2】公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下:(单位:岁) 甲群:13,13,14,15,15,15,16,17,17.乙群:3,4,5,5,6,6,36,55.(1)甲群游客的平均年龄是________岁,中位数是________岁,众数是________岁,其中能较好地反映甲群游客年龄特征的是________;(2)乙群游客的平均年龄是________岁,中位数是________岁,众数是________岁,其中能较好地反映乙群游客年龄特征的是________.解:(1)15 15 15 众数(2)15 5.5 5,6 中位数【例3】教材第119页例6三、巩固练习职员董事长副董事长董事总经理经理管理员职员人数 1 1 2 1 5 3 20工资5500 5000 3500 3000 2500 2000 1500(2)假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是多少?(精确到元)(3)你认为应该使用平均数和中位数中的哪一个来描述该公司职工的工资水平?【答案】(1)2091 1500 1500 (2)3288 1500 1500 (3)中位数或众数均能反映该公司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平.四、课堂小结1.了解平均数、中位数、众数之间的差异.2.灵活运用这三个数据代表解决问题.本节课首先从复习平均数、中位数和众数的定义开始,接着列出这三种统计量各自的特点和适用条件,为避免太过抽象,在后面设计的例题中都有这些统计量的应用,培养学生应用数学的意识.20.2 数据的波动程度1.了解方差的定义和计算公式.2.理解方差概念的产生和形成过程.3.会用方差比较两组数据的波动大小.重点方差产生的必要性和应用方差公式解决实际问题.难点理解方差的概念并会运用方差的公式解决实际问题.一、情境导入1.请同学们看下面的问题:(幻灯片出示)农科院计划为某地选择合适的甜玉米种子.选择种子时,甜玉米的产量和产量的稳定性是农科院所关心的问题.为了解甲、乙两种甜玉米种子的相关情况,农科院各用10块自然条甲 7.65 7.50 7.62 7.59 7.65 7.64 7.50 7.40 7.41 7.41 乙 7.55 7.56 7.53 7.44 7.49 7.52 7.58 7.46 7.53 7.49 上面两组数据的平均数分别是x 甲≈7.54,x 乙≈7.52,说明在试验田中,甲、乙两种甜玉米的平均产量相差不大.由此可以估计出这个地区种植这两种甜玉米,它们的平均产量相差不大.为了直观地看出甲、乙两种甜玉米产量的分布情况,我们把这两组数据画成下面的图1和图2.师:比较上面的两幅图可以看出,甲种甜玉米在各试验田的产量波动较大,乙种甜玉米在各试验田的产量较集中地分布在平均量附近,从图中看出的结果能否用一个量来刻画呢?这就是我们本节课所要学习的内容——方差.教师说明:从上面看到,对于一组数据,除需要了解它们的平均水平外,还常常需要了解它们的波动大小(即偏离平均数的大小).2.方差的概念教师讲解:为了描述一组数据的波动大小,可以采用不止一种办法,例如,可以先求得各个数据与这组数据的平均数的差的绝对值,再取其平均数,用这个平均数来衡量这组数据的波动大小,通常,采用的是下面的做法:设在一组数据中,各数据与它们的平均数的差的平方的和的平均数是s 2,那么我们用s 2=1n[(x 1-x)2+(x 2-x)2+…+(x n -x)2] 来衡量这组数据的波动大小,并把它叫做这组数据的方差.一组数据的方差越大,说明这组数据的波动越大;数据的方差越小,说明这组数据的波动越小,教师要剖析公式中每一个元素的意义,以便学生理解和掌握.在学生理解了方差的概念之后,再回到了引例中,通过计算甲、乙两种甜玉米的方差,根据理论说明哪种甜玉米的产量更好.教师示范:两组数据的方差分别是s 甲2=(7.65-7.54)2+(7.50-7.54)2+…+(7.41-7.54)210≈0.01, s 乙2=(7.55-7.52)2+(7.56-7.52)2+…+(7.49-7.52)210≈0.002. 显然s 甲2>s 乙2,即甲种甜玉米的波动较大,这与我们从图1和图2看到的结果一致.由此可知,在试验田中,乙种甜玉米的产量比较稳定.正如用样本的平均数估计总体的平均数一样,也可以用样本的方差来估计总体的方差.因此可以推测,在这个地区种植乙种甜玉米的产量比甲种的稳定.综合考虑甲、乙两个品种的平均产量和产量的稳定性,可以推测这个地区比较适合种植乙种甜玉米.这样做使学生深刻地体会到数学来源于实践,又反过来作用于实践,不仅使学生对学习数学产生浓厚的兴趣,而且培养了学生应用数学的意识.二、例题讲解【例1】教材第125页例1【例2】教材第127页例2【例3】(幻灯片出示)已知两组数据:甲:9.9 10.3 9.8 10.1 10.4 10 9.8 9.7乙:10.2 10 9.5 10.3 10.5 9.6 9.8 10.1分别计算这两组数据的方差.让学生自己动手计算,求平均数时激发学生用简化公式计算,找一名学生到黑板计算. 解:根据公式可得x 甲=10+18(-0.1+0.3-0.2+0.1+0.4+0-0.2-0.3) =10+18×0=10 x 乙=10+18(0.2+0-0.5+0.3+0.5-0.4-0.2+0.1) =10+18×0=10 s 甲2=18[(9.9-10)2+(10.3-10)2+…+(9.7-10)2] =18(0.01+0.09+…+0.09) =18×0.44=0.055 s 乙2=18[(10.2-10)2+(10-10)2+…+(10.1-10)2] =18(0.04+0+…+0.01) =18×0.84=0.105 从s 甲2<s 乙2知道,乙组数据比甲组数据波动大.三、巩固练习1.已知一组数据为2,0,-1,3,-4,则这组数据的方差为________.【答案】62.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:甲:7,8,6,8,6,5,9,10,7,4乙:9,5,7,8,7,6,8,6,7,7经过计算,两人射击环数的平均数相同,但s甲2________s乙2,所以确定________去参加比赛.【答案】>乙四、课堂小结1.知识小结:通过这节课的学习,我们知道了对于一组数据,有时只知道它的平均数还不够,还需要知道它的波动大小,而描述一组数据的波动大小的量不止一种,最常用的是方差.2.方法小结:求一组数据方差的方法:先求平均数,再利用平均数求方差.本次教学在解决引例问题时,通过对数据的分析,发现以前学过的统计知识不能解决新问题,引出矛盾,这里设计了小组讨论的环节,让学生在交流中得到启发,进而使学生的思维发生碰撞,产生创新的火花,真正体现“不同的人,在数学上得到不同的发展”.。

【人教版八年级下册】《20.1.1平均数(第1课时)》教案教学设计

【人教版八年级下册】《20.1.1平均数(第1课时)》教案教学设计

20. 1.1平均数第1课时一、教学目标【知识与技能】1.使学生理解数据的权和加权平均数的概念.2.使学生掌握加权平均数的计算方法.【过程与方法】1.通过加权平均数的学习,经历运用数据描述信息,做出推断的过程,形成和发展统计观念.2.通过加权平均数的学习,进一步认识数据的作用,体会统计的思想方法.【情感态度与价值观】渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显、寓纷繁于严谨的辩证统一的数学美.二、课型新授课三、课时第1课时共2课时四、教学重难点【教学重点】会求加权平均数.【教学难点】对“权”的正确理解∙五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2)教师出示问题:如图ABCD四个杯子中装了不同数量的小球,你能让四个杯子中的小球数目相同吗?观察小球演示过程,回顾平均数的有关知识。

(二)探索新知1.出示课件4-7,探究平均数与加权平均数教师出示问题:重庆7月中旬一周的最高气温如下:教师问:你能快速计算这一周的平均最高气温吗?学生答:(38+36+38÷36+38÷36+36)÷7=-7教师问:你还能回忆、归纳出算术平均数的概念吗?学生答:日常生活中,我们常用平均数表示一组数据的“平均水平,,.一般地,对于n个数X1,x2,…,x n,我们把*…+…+”叫n做这n个数的算术平均数,简称平均数.教师问:计算某篮球队10个队员的平均年龄:学生_27×l+28×3+29×l+30×4+31×lCC1X------------------------------------------ =29.1IO教师问:还有其他算法吗?学生2答:平均年龄_27+28+28+28+29+30+30+30+30+31CC1X---------------------------- 二29.110教师问:请问,在年龄确定的时候,影响平均数的因素是什么?学生答:在年龄确定的情况下,队员人数1、3、1、4、1是影响平均数的因素.教师依次出示问题:一家公司打算招聘一名英文翻译.对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们的各项成绩(百分制)如下表所示:教师问:(1)如果这家公司想招一名综合能力较强的翻译,计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?学生答:(1)甲的平均成绩85+78+85+73:80.4乙的平均成绩73+80+82+83=79.54因为80.25>79.5,所以应该录取甲.教师问:(2)如果公司要招聘一名笔译能力较强的翻译,那听、 说、读、写成绩按2:1:3:4的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁?学生答:因为79.5<80.4,所以应该录取乙.教师问:如果公司想招一名口语能力较强的翻译,则应该录取谁?(听、说、读、写的成绩按照3:3:2:2的比确定.)学生答:通过计算比较,应该录取甲.教师问:将问题(1)、(2)、(3)比较,你能体会到权的作用吗? 师生一起解答:同样一张应试者的应聘成绩单,由于各个数据所赋的权数不同,造成的录取结果截然不同.教师强调:数据的权能够反映数据的相对重要程度! 总结点拨:(出示课件10)定义:一般地,若n 个数X1,X 2,—,Xn 的权分别是叫,W2,…,Wn5则,W-毛心+…+XnWn ,叫做这n 个数的加权平均数.Wl+W2+∙∙∙+W n如上题解(2)中平均数79.5称为甲选手的加权平均数;其中2、1、3、4就是甲选手听、说、读、写各项得分的权!(1)甲的平均成绩85×2+78×l+85×3+73×4 L----------------- 二79.2+1+3+4 乙的平均成绩73×2+80×l+82×3+83×42+1+3+4=80.4教师问:权有何意义呢? 师生总结:权的意义:(1)数据的重要程度;(2)权衡轻重或份量大小 考点1:利用加权平均数解答实际问题一次演讲比赛中,评委将从演讲内容,演讲能力,演讲效果三个方面为选手打分,各项成绩均按百分制,然后再按演讲内容占50%,演讲能力占40%,演讲效果占10%的比例,计算选手的综合成绩(百分制).进入决赛的前两名选手的单项成绩如下表所示:由上边的结果可知选手B 获得第一名,选手A 获得第二名.师生共同分析:师生共同讨论解答如下:85×50%+95×40%+95×10%解:选手A 的最后得分是 50%+40%+10% =42.5+38+9. 5=90 选手B 的最后得分是95×50%+85×40%+95×10%50%+40%+10%=47. 5+34+9. 5=91.教师问:你能说说算术平均数与加权平均数的区别和联系吗?师生总结:1.算术平均数是加权平均数的一种特殊情况(它特殊在各项的权相等>2.在实际问题中,各项权不相等时,计算平均数时就要采用加权平均数,当各项权相等时,计算平均数就要采用算术平均数.出示课件14,学生自主练习后口答,教师订正.3.出示课件15-16,探究加权平均数的其它形式教师问:加权平均数有其它表示形式吗?在求n个数的算术平均数时,如果X1出现。

人教版八年级下册(新)数学同步教案20.1.1平均数(第1课时)

人教版八年级下册(新)数学同步教案20.1.1平均数(第1课时)

20.1.1 平均数(第1课时)一、内容和内容解析1.内容加权平均数.2.内容解析数据分析是统计的重要环节,平均数是衡量一组数据集中趋势的重要统计量,它反映了一组数据的平均水平.当一组数据中各个数据重要程度不同时,加权平均数能更好的反映对某些数据的侧重.权反映的是数据的相对重要程度,当一组数据中的每个数据的权相同时,加权平均数就是算术平均数.基于以上分析,本节课的教学重点是:对加权平均数统计意义的理解.二、目标和目标解析1.目标(1)理解加权平均数的意义.(2)会用加权平均数分析一组数据的集中趋势,发展数据分析能力,逐步形成数据分析观念.2.目标解析目标(1)是让学生能理解“权”是数据的相对“重要程度”,体会权的差异对平均数的影响,会计算加权平均数,能了解算术平均数和加权平均数的区别与联系.目标(2)是当学生面对一组数据时,能根据具体情境负于适当的权,会用平均数分析数据的集中趋势,解释其实际意义.三、教学问题诊断分析由于生活经验的局限,同时受认知水平的影响,学生对权的意义和作用的理解可能会有困难,在运用加权平均数分析数据时,容易混淆数据和权.另外学生会受到先前算术平均数学习经验的负迁移,在需要用加权平均数分析数据时却选用算术平均数.部分学生往往只会记住公式,而不会解释数据分析结果的实际意义(统计意义),把统计问题的学习仅仅停留在计算层面.本节课的教学难点是:对权的意义的理解,用加权平均数描述数据的集中趋势.四、教学过程设计 1.创设情境 提出问题当我们收集到数据后,通常是用统计图表整理和描述数据,为了进一步获取信息,还需要对数据进行分析.以前我们学习过平均数,知道它可以反映一组数据的平均水平.本节课我们将在实际问题情境中,进一步探讨平均数的统计意义.设计意图:通过教师讲述章前语(师生共同阅读),让学生回顾调查统计的一般步骤,了解本节课的学习内容,同时体会到数据分析是统计的重要环节,而平均数是数据分析中常用的统计量.问题 1 一家公司打算招聘一名英文翻译,对甲、乙两名候选人进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:如果这家公司想招一名综合能力较强的翻译,该录用谁?录用依据是什么?师生活动:学生提出评判依据,若学生提出以总分作为依据,教师要将学生的回答引导到算术平均数,再通过师生共同计算,理解公式12nx x x nx +++=L 的意义是所有数据的和与数据个数的商,体会公式中分子与分母意义,为后继学习奠定基础.设计意图:回顾小学平均数的意义:一组数据的平均数是这组数据的总和与数据个数的商.说明算术平均数在统计学中能反映一组数据总体的平均水平(集中趋势),为后面引入加权平均数作铺垫.问题2 如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶1∶3∶4的比确定,应该录取谁?追问1:用算术平均数解决问题2合理吗?为什么?追问2:“听、说、读、写成绩按照2∶1∶3∶4的比例确定”说明在计算平均数中哪一项最重要?追问3:如何在计算平均数时体现“听、说、读、写”的差别?师生活动:教师提出问题,学生思考问题解决方案,若不能提出合适的方案,教师再通过3个追问进行引导.设计意图:追问1可引导学生从生活经验入手感性的进行分析;追问2让学生明白参与运算的各项“重要程度”不同,且这个不同点需要体现;追问3让学生自主研究问题的解决方法,将“重要程度”不同的数据纳入计算,并能说明这种计算方式的合理性;初步体会“重要程度”的作用,最后列出正确算式,给出权的意义.从追问1到时追问3,循序渐进,层层深入,为“权”的产生提供自然合理的背景,激发学生进一步思考,获得解决问题的方案——修订平均数的计算方法.2.抽象概括 形成概念思考:这个问题中,各个数据的重要程度不同(权不同),这种计算平均数的方法是否能推广到一般?追问:若n 个数据x 1,x 2,···,x n 的权分别为w 1,w 2,···,w n ,这n 个数据的平均数该如何计算?师生活动:教师引导学生得到加权平均数公式:一般的,若n 个数x 1,x 2,···,x n 的权分别是w 1,w 2,···,w n ,则这n 个数的加权平均数是:112212······n nnx x x w ++++++ w w w w w .设计意图:从特殊到一般,给出加权平均数的一般公式. 3.比较辨别 理解新知问题3:如果这家公司想招一名口语能力较强的翻译,应该侧重哪些分项成绩?如果听、说、读、写成绩按照3∶3∶2∶2的比确定两人的测试成绩,那么谁将被录取?与问题2中的(1)(2)相比较,你能体会到权的作用吗?师生活动:学生独立完成计算过程,难点是对权的作用的讨论,得到结论“同样的一组数据,如果规定的权变化,则加权平均数随之改变”.学生已有进一步的体会,但较难用语言来表达,教师要进行必要的指导.设计意图:在实例中根据需要,改变权的数值,得到不同的结果,让学生再次感受加权平均数中权的作用.问题4:你认为问题1中各数据的权有什么关系?通过上述问题的解决,说说你对权的认识.师生活动:引导学生概括问题1中各数可看作是权相同的,指出两种平均数之间的联系. 设计意图:帮助学生理解两种平均数的区别与联系,再一次体验权的作用. 4.例题教学 应用新知例1 一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均为百分制,然后再按演讲内容占50%、演讲能力占40%、演讲效果占10%计算选手的综合成绩(百分制).进入决赛的前两名选手的单项成绩如下表所示,请确定两人的名次.师生活动:教师指导学生阅读例题,学生自主进行分析,适当的时候提示学生:演讲内容、演讲能力、演讲效果三项成绩在总成绩中的重要程度是用什么数据体现的?它们的权分别是什么?要确定两人的总成绩,实质是求他们各项成绩的加权平均数,如何计算?提示学生权是以百分数的形式呈现的;学生根据加权平均数的计算公式先分别计算出两名选手的总成绩,教师引导并板书解答过程,规范解题格式.设计意图:继续以“权的意义理解”为目标,选取典型的生活实例为背景,通过教师指导,学生自主阅读、分析、解题,提高学生独立分析问题、解决问题的能力,并规范解题格式.追问:A、B两名选手的单项成绩都是两个95分,一个85分,为什么他们的最后得分不同呢?师生活动:教师引导学生进行解题反思,同时引导学生思考:不计算,仅分析数据及其权,可否估计两人的名次.设计意图:通过追问,让学生深入体会权的作用,培养学生的估算能力.5.巩固应用解决问题练习 1 某公司欲招聘一名公关人员,对甲、乙两位应试者进行了面试与笔试,他们的成绩(百分制)如下表所示.(1)如果公司认为面试和笔试同等重要,从他们的成绩看,谁将被录取?(2)如果公司认为,作为公关人员面试成绩应该比笔试成绩更重要,并分别赋予它们6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?师生活动:学生独立解决问题,并说明权的变化怎样影响结果的变化.设计意图:加权平均数的概念提出后,直接进行巩固应用,加深学生对概念的理解.6.深化拓展灵活运用练习2 某广告公司欲招聘职员一名,对A,B,C三名候选人进行了三项素质测试,他们的各项测试成绩如下表所示:(1)公司可从网络维护员、客户经理、创作总监这三种岗位中招聘一名职员,给三项成绩赋予相同的权合理吗?(2)请你设计合理的权重,为公司招聘一名职员.师生活动:教师呈现开放题,学生赋权,重点让学生在加权平均数的应用过程中,主动赋权,体会权的作用.设计意图:设置开放性问题,让学生主动运用权的作用,影响一组数据的平均水平,帮助学生内化权的意义的理解,发展数据分析观念.7.小结结合以下问题,教师与学生一起回顾本节课所学主要内容:(1)加权平均数在数据分析中的作用是什么?(2)权的作用是什么?设计意图:问题(1)引导学生回顾加权平均数的意义,体会它产生的必要性;问题(2)引导学生回顾权的意义和作用.五、目标检测设计1.某次歌唱比赛中,选手小明的唱功、音乐常识、综合知识成绩分别为88分、81分、85分,若这三项按4∶3∶2的比计算比赛成绩,则唱功、音乐常识、综合知识成绩的权分别为________、________、和________,小明的最后成绩是_______.设计意图:考核权的意义和加权平均数的概念.2.某班共有50名学生,平均身高168 cm,其中30名男生的平均身高为170 cm,则20名女生的平均身高为________.设计意图:考核用加权平均数估计数据的集中趋势.3.学校食堂午餐供应5元、8元和12元的3种价格的盒饭.根据食堂某月销售午餐盒饭的统计图,可计算出该月食堂销售午餐盒饭的平均价格是________.设计意图:结合扇形统计图考查加权平均数.4.小明所在班级为希望工程捐款,他统计了全班同学的捐款情况,并绘制成如图所示的统计图,根据统计图,可计算全班同学平均每人捐款_____元.设计意图:考查学生由条形图获取信息并应用加权平均数解决实际问题的能力.。

人教版数学八年级下册-20.1.1平均数-教案(1)

人教版数学八年级下册-20.1.1平均数-教案(1)

20.1.1 平均数(1)【课题】:平均数(1)【设计与执教者】:【教学时间】:40分钟【学情分析】:(适用于特色班)学生在小学已经学习过算术平均数,知道算术平均数的特征与适用范围。

在初一时进一步学习了用抽样调查和全面调查收集数据、用统计图表整理数据,并且知道统计与现实生活联系紧密,统计学习常常采用案例研究的方法。

但是,加权平均数属于新学内容,学生可能在权的理解与运用方面存在问题。

【教学目标】:1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。

【教学重点】:会求加权平均数;.【教学难点】:对“权”的理解.【教学突破点】:先复习平均数的定义,让学生充分的讨论交流,并将加权平均数的公式和平均数相对比,体会“权”的意义【教法、学法设计】:采取师生互动、小组合作探究方法。

借助学生熟悉的生活实例,通过小组合作,认识“加权平均数”的准确含义,理解“权”的意义,归纳出加权平均数的计算公式,引领学生经历从具体到一般的归纳过程。

【课前准备】:课件72.6,二班42个学生的平均分数为80,三班43个学生的平均分数为75.2。

求全年级这次英语测验的平均分。

4.小青在初一年级第二学期的数学成绩 分别为:测验一得89分,测验二得78分, 测验三得 85 分,期中考试得90分, 期末考试得87分.如果按照图所显示的 平时、期中、期末成绩的权重,那么小青该学期的总评成绩应该为多少分?5.老王家的鱼塘中放养了某种鱼1500条,若干年后,准备打捞出售,为了估计鱼塘中这种鱼的总质量,现从鱼塘中捕捞三次,得到数据如下表:鱼的条数 平均每条鱼的质量/千克第1次 15 2.8 第2次 20 3.0 第3次 102.5(1)鱼塘中这种鱼平均每条重约多少千克?(2)若这种鱼放养的成活率是82%,鱼塘中这种鱼约有多少千克?(3)如果把这种鱼全部卖掉,价格为每千克6.2元,那么这种鱼的总收入是多少元?若投资成本为14000元,这种鱼的纯收入是多少元?6.某单位欲从内部招聘管理员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试项目 测试成绩 甲 乙 丙 笔试 75 80 90 面试9370 68根据录用程序组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票(没有弃权票,每位职工只能推荐1人)如下图所示,每得一票记作1分.(1)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用(精确到0.01)?(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4:3:3•的比例确定个人的成绩,那么谁将被录用?7.某风景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人数基本不变,有关数据如下表所示:答案:1.165cm 2.3.7 •3.7 3.75.98 4.87.6分5.•解:(1)2.815 3.020 2.510152010⨯+⨯+⨯++≈2.821(kg)(2)2.82×1500×82%≈3468(kg)(3)总收入为3468×6.2≈21500(元)纯收入为21500-14000=7500(元)6.(1)甲、乙、•丙的民主评议得分分别为:50分,80分,70分.(2)甲的平均成绩为:75935021833++=≈72.67(分),乙的平均成绩为:80708023033++=≈76.67(分),丙的平均成绩为:90689022833++=≈76.00(分).由于76.67>76>72.67,所以候选人乙将被录用.(3)如果将理论考试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么甲的个人成绩为:475393350433⨯+⨯+⨯++=72.9(分),乙的个人成绩为:480370380433⨯+⨯+⨯++=77(分).丙的个人成绩为:490368370433⨯+⨯+⨯++=77.4(分).由于丙的个人成绩最高,所以候选人丙将被录用7.(1)风景区的算法是:调整前的平均价格为:15×(10+10+15+20+25)=16(元);调整后的平均价格为:15×(5+•5+15+25+30)=16(元),而日平均人数没有变化,因此风景区的总收入没有变化;(2)•游客的计算方法:调整前风景区日平均收入为:10×1+10×1+15×2+20×3+25×2=•160(千元);调整后风景区日平均收入为:5×1+5×1+15×2+25×3+30×2=175(千元),所以风景区的日平均收入增加了175160160-×100%≈9.4%;(3)游客的说法较能反映整体实际.。

人教版八年级数学下册 教案 20.1.1 平均数(1)教案

人教版八年级数学下册 教案 20.1.1 平均数(1)教案

20.1.1平均数(第1课时)教案【教材分析】教学目标知识技能1.掌握算术平均数,加权平均数的概念2.会求一组数据的算术平均数和加权平均数过程方法通过对加权平均数的学习,体会数据的权的作用,学习统计的思想方法,并会利用加权平均数解决简单的实际问题.情感态度通过对加权平均数的学习,进一步认识数学与人类生活的密切联系,感受数学结论的确定性,激发学生学好数学的热情.重点会求一组数据的算术平均数和加权平均数难点应用加权平均数对数据做出合理判断.【教学流程】环节导学问题师生活动二次备课情境引入1.数据2、3、4、1、2的平均数是________,这个平均数叫做_________平均数.日常生活中,我们常用平均数表示一组数据的“平均水平”概念一:一般地,对于n个数x1,x2,…,x n,我们把叫做这n个数的算术平均数,简称平均数.教师先出示问题,使学生先复习小学阶段的关于平均数的概念,加以巩固.1.2.4,算术.自主探究合作交流【问题1】例1:一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:应试者听说读写甲85 78 85 73乙73 80 82 83(1)如果公司想招一名综合能力较强的翻译,请计算两名应试者的平均成绩,应该录用谁?(2)如果公司想招一名笔译能力较强的翻译,听、说、读、写的成绩按照2:1:3:4的比确定,计算两名应试者的平均成绩(百分制)。

从他们的成绩看,应该录取谁?思路点拨:(2)因为在录取时重点考虑笔译能力,这家公司按照2:1:3:4的比确定听、说、读、写的成绩,可以反映出各项成绩的“重点程度”不一致,读、写的成绩比听、教师活动:投影片显示【问题1】,分析、描述、数据处理.•选择加权平均数这一工具解决问题.学生活动:参与教师分析,从中领会加权平均数的应用.答案:(1)解:8578857380254+++=.738082837954+++=.甲的平均成绩为80.25,乙的平均成绩为79.5,应该录取甲.(2)自主探究合作交流说的成绩更加“重要”.计算两位候选人的平均成绩,实质就是计算听、说、读、写四项成绩的加权平均数.权就是2、1、3、4.因此在四项成绩的权的分配上与(1)有所不同.【归纳】加权平均数公式:若n个数x1,x2,……,x n的权分别是W1,W2,…,W n,则x=112212n nnx W x W x WW W W+++++叫做这几个数的加权平均数【例1】一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,然后再按演讲内容占50%,演讲能力占40%、演讲效果占10%比例,计算选手的综合成绩(百分制)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
20.1.1平均数
一、教学目标:
1、使学生理解数据的权和加权平均数的概念
2、使学生掌握加权平均数的计算方法
3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。

二、重点、难点和难点突破的方法:
1、重点:会求加权平均数
2、难点:对“权”的理解
三、例习题意图分析
1、教材P136的问题及讨论栏目在教学中起到的作用。

(1)、这个问题的设计和讨论栏目在此处安排最直接和最重要的目的是想引出权的概念和加权平均数的计算公式。

(2)、这个讨论栏目中的错误解法是初学者常见的思维方式,也是已学者易犯的错误。

在这里安排讨论很得当,起揭示思维误区,警示学生、加深认识的作用。

(3)、客观上,教材P136的问题是一个实际问题,它照应了本节的前言——将在实际问题情境中,进一步探讨它们的统计意义,体会它们在解决实际问题中的作用,揭示了统计知识在解决实际问题中的重要作用。

(4)、P137的云朵其实是复习平均数定义,小方块则强调了权意义。

2、教材P137例1的作用如下:
(1)、解决例1要用到加权平均数公式,所以说它最直接、最重要的目的是及时复习巩固公式,并且举例说明了公式用法和解题书写格式,给学生以示范和模仿。

(2)、这里的权没有直接给出数量,而是以比的形式出现,为加深学生对权的意义的理解。

(3)、两个问题中的权数各不相同,直接导致结果有所不同,这既体现了权数在求加权平均数的作用,又反映了应用统计知识解决实际问题时要灵活、体现知识要活学活用。

3、教材P138例2的作用如下:
(1)、这个例题再次将加权平均数的计算公式得以及时巩固,让学生熟悉公式的使用和书写步骤。

(2)、例2与例1的区别主要在于权的形式又有变化,以百分数的形式出现,升华了学生对权的意义的理解。

(3)、它也充分体现了统计知识在实际生活中的广泛应用。

四、课堂引入:
1、若不选择教材中的引入问题,也可以替换成更贴近学生学习生活中的实例,下举一例可供借鉴参考。

数和成绩如下: 求该校初二年级在这次数学考试中的平均成绩?下述计算方法是否合理?为什么? x =
41(79+80+81+82)=80.5
2 五、例习题分析:
例1和例2均为计算数据加权平均数型问题,因为是初学尤其之前与平均数计算公式已经作过比较,所以这里应该让学生搞明白问题中是否有权数,即是选择普通的平均数计算还是加权平均数计算,其次若用加权平均数计算,权数又分别是多少?例2的题意理解很重要,一定要让学生体会好这里的几个百分数在总成绩中的作用,它们的作用与权的意义相符,实际上这几个百分数分别表示几项成绩的权。

六、随堂练习:
1、老师在计算学期总平均分的时候按如下标准:作业占100%、测验占30%、期中占35%、期末考试占
2、为了鉴定某种灯泡的质量,对其中100只灯泡的使用寿命进行测量,结果如下表:(单位:小时)
求这些灯泡的平均使用寿命?
答案:1.x 小关 =79.05 x 小兵 =80 2. x =597.5小时。

相关文档
最新文档