初中2017届数学一摸考试答题卡 (2)

合集下载

(完整)初中数学答题卡模板

(完整)初中数学答题卡模板

贴条形码区
第Ⅰ卷 选择题(30分)(请使用2B 铅笔填涂)
第Ⅱ卷 非选择题(90分)(请使用0.5mm 黑色字迹的签字笔书写) 二、填空题(每小题3分,共12分)
13 14 15 16 三、解答题 (共72分) 17、(8分) (1) (2)
18(6分) 19(8分)
20(10分)
21(10分)
考 号
注意事项
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内
2. 选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3. 请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4. 作图可先使用铅笔画出,确定后必须用黑色字迹的签字
笔描黑。

5.
保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

填涂样例
恩施市双河中学考试答题卡
九年级数学
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
缺考标记:考生禁填!由监考负责人用黑色字迹的签字笔填涂。

请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
正确填涂 错误填涂 学校 姓名
23. (10分)24. (10分)
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效。

2017年中考数学一模试卷及答案

2017年中考数学一模试卷及答案

2017年中考数学一模试卷一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x 2﹣2x+4具有相同对称轴的是( ) A .y=4x 2+2x+1B .y=2x 2﹣4x+1C .y=2x 2﹣x+4D .y=x 2﹣4x+22.如图,点D 、E 位于△ABC 的两边上,下列条件能判定DE ∥BC 的是( )A .AD •DB=AE •ECB .AD •AE=BD •EC C .AD •CE=AE •BD D .AD •BC=AB •DE 3.已知一个坡的坡比为i ,坡角为α,则下列等式成立的是( ) A .i=sinα B .i=cosα C .i=tanα D .i=cotα4.已知向量和都是单位向量,则下列等式成立的是( ) A .B .C .D .||﹣||=05.已知二次函数y=x 2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为( )A .y=(x+2)2+3 B .y=(x+2)2﹣3 C .y=(x ﹣2)2+3 D .y=(x ﹣2)2﹣36.Word 文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC ,已知AB=AC ,当它以底边BC 水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC 以腰AB 水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是( )图形图①图②图③图④图⑤绝对高度1.52.01.22.4?0 0 0 绝对宽度2.001.502.503.60?A .3.60和2.40B .2.56和3.00C .2.56和2.88D .2.88和3.00二.填空题(本大题共12题,每题4分,共48分)7.已知线段a 是线段b 、c 的比例中项,如果a=3,b=2,那么c= . 8.化简:= .9.已知点P 是线段AB 的黄金分割点(AP >BP ),若AB=2,则AP ﹣BP= .10.已知二次函数y=f (x )的图象开口向上,对称轴为直线x=4,则f (1) f (5)(填“>”或“<”)11.求值:sin60°•tan30°= .12.已知G 是等腰直角△ABC 的重心,若AC=BC=2,则线段CG 的长为 . 13.两个相似三角形的相似比为2:3,则它们的面积之比为 .14.等边三角形的周长为C ,面积为S ,则面积S 关于周长C 的函数解析式为 .15.如图,正方形ABCD 的边EF在△ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上,已知BC=6,△ABC 的面积为9,则正方形DEFG 的面积为 .16.如图,小明家所在小区的前后两栋楼AB 、CD ,小明在自己所住楼AB 的底部A 处,利用对面楼CD 墙上玻璃(与地面垂直)的反光,测得楼AB 顶部B 处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB 的高度是 米.17.如图,在△ABC 中,∠C=90°,AC=8,BC=6,D 是边AB 的中点,现有一点P 位于边AC 上,使得△ADP与△ABC相似,则线段AP的长为.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN的面积是菱形ABCD面积的,则cosA= .三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.21.如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l翻折,恰好使点A与点B 重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C(4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.参考答案与试题解析一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是()A.y=4x2+2x+1 B.y=2x2﹣4x+1 C.y=2x2﹣x+4 D.y=x2﹣4x+2【考点】二次函数的性质.【分析】根据对称轴方程分别确定各个抛物线的对称轴后即可作出判断.【解答】解:抛物线y=x2﹣2x+4的对称轴为x=1;A、y=4x2+2x+1的对称轴为x=﹣,不符合题意;B、y=2x2﹣4x+1的对称轴为x=1,符合题意;C、y=2x2﹣x+4的对称轴为x=,不符合题意;D、y=x2﹣4x+2的对称轴为x=2,不符合题意,故选B.【点评】此题考查了二次函数的性质,牢记对称轴方程公式是解答本题的关键,难度不大.2.如图,点D、E位于△ABC的两边上,下列条件能判定DE∥BC的是()A.AD•DB=AE•EC B.AD•AE=BD•EC C.AD•CE=AE•BD D.AD•BC=AB•DE【考点】平行线分线段成比例.【分析】根据选项选出能推出对应线段成比例的即可.【解答】解:∵AD•CE=AE•BD,∴,∴DE∥BC,故选C.【点评】本题考查了平行线分线段成比例定理,熟练掌握平行线分线段成比例定理是解题的关键.3.已知一个坡的坡比为i,坡角为α,则下列等式成立的是()A.i=sinαB.i=cosαC.i=tanαD.i=cotα【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡比的定义:斜坡垂直高度与水平宽度的比值,即坡角的正弦值,据此即可判断.【解答】解:i=tanα.故选C.【点评】本题考查了坡比的定义,理解坡比是斜坡垂直高度与水平宽度的比值,即坡角的正弦值,是关键.4.已知向量和都是单位向量,则下列等式成立的是()A.B.C. D.||﹣||=0【考点】*平面向量.【专题】推理填空题.【分析】根据向量和都是单位向量,可知||=||=1,由此即可判断.【解答】解:∵已知向量和都是单位向量,∴||=||=1,∴||﹣||=0,故选D.【点评】本题考查平面向量、单位向量,属于概念题目,记住概念是解题的关键.5.已知二次函数y=x2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3【考点】二次函数图象与几何变换.【分析】直接根据“上加下减、左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,二次函数y=x2的图象向左平移个单位得到y=(x+2)2,由“上加下减”的原则可知,将二次函数y=(x+2)2的图象向上平移3个单位可得到函数y=(x+2)2+3,【点评】本题考查的是二次函数的图象与几何变换,熟知“上加下减、左加右减”的原则是解答此题的关键.6.Word文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC,已知AB=AC,当它以底边BC水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC以腰AB水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是()图形图①图②图③图④图⑤绝对高度 1.50 2.01.22.4?绝对宽度2.01.52.53.6?A.3.60和2.40 B.2.56和3.00 C.2.56和2.88 D.2.88和3.00【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质,勾股定理可求AB,即图⑤绝对宽度,再根据三角形面积公式可求图⑤绝对高度.【解答】解:图④,过A点作AD⊥BC于D,BD=3.60÷2=1.80,在Rt△ABD中,AB==3,图⑤绝对宽度为3;图⑤绝对高度为:2.40×3.60÷2×2÷3=4.32×2÷3故选:D.【点评】此题考查了勾股定理,等腰三角形的性质,解题的关键是熟练掌握图形的绝对高度和绝对宽度的定义.二.填空题(本大题共12题,每题4分,共48分)7.已知线段a是线段b、c的比例中项,如果a=3,b=2,那么c= .【考点】比例线段.【分析】根据比例中项的定义可得b2=ac,从而易求c.【解答】解:∵线段a是线段b、c的比例中项,∴a2=bc,即32=2×c,∴c=.故答案是:.【点评】本题考查了比例线段,解题的关键是理解比例中项的定义.8.化简: = ﹣﹣7.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解: =2﹣4﹣3﹣3=﹣﹣7.故答案为:.【点评】此题考查了平面向量的运算法则.注意掌握去括号时的符号变化是解此题的关键.9.已知点P是线段AB的黄金分割点(AP>BP),若AB=2,则AP﹣BP= 2﹣4 .【考点】黄金分割.【分析】根据黄金分割的概念、黄金比值计算即可.【解答】解:∵点P是线段AB的黄金分割点,AP>BP,∴AP=AB=﹣1,则BP=2﹣AP=3﹣,∴AP﹣BP=(﹣1)﹣(3﹣)=2﹣4,故答案为:2﹣4.【点评】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.10.已知二次函数y=f(x)的图象开口向上,对称轴为直线x=4,则f(1)>f(5)(填“>”或“<”)【考点】二次函数的性质.【分析】根据对称轴及开口方向确定其增减性即可确定答案.【解答】解:∵二次函数y=f(x)的图象开口向上,对称轴为直线x=4,∴当x的取值越靠近4函数值就越小,反之越大,∴f(1)>f(5),故答案为:>.【点评】考查了二次函数的性质,解题的关键是根据对称轴及开口方向确定其增减性,难度不大.11.求值:sin60°•tan30°=.【考点】特殊角的三角函数值.【专题】计算题.【分析】先根据特殊角的三角函数值计算出各数,再根据二次根式的乘法进行计算即可.【解答】解:原式=×=.故答案为:.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.12.已知G是等腰直角△ABC的重心,若AC=BC=2,则线段CG的长为.【考点】三角形的重心;等腰直角三角形.【分析】根据三角形的重心到顶点的距离等于到对边中点的距离的2倍解答即可.【解答】解:∵G是等腰直角△ABC的重心,AC=BC=2,∴CG=,故答案为:【点评】本题考查了三角形的重心,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键.13.两个相似三角形的相似比为2:3,则它们的面积之比为4:9 .【考点】相似三角形的性质.【专题】探究型.【分析】直接根据相似三角形的性质进行解答即可.【解答】解:∵两个相似三角形的相似比为2:3,∴它们的面积之比为4:9.故答案为:4:9【点评】本题考查的是相似三角形的性质,即相似三角形面积的比等于相似比的平方.14.等边三角形的周长为C,面积为S,则面积S关于周长C的函数解析式为S=C2.【考点】根据实际问题列二次函数关系式.【分析】直接利用等边三角形的性质得出AD的长,再利用三角形面积求法得出答案.【解答】解:如图所示:过点A作AD⊥BC于点D,∵等边三角形的周长为C,∴AB=BC=AC=,∴DC=BD=,∴AD==C,∴S=×C×=C2.故答案为:S=×C×=C2.【点评】此题主要考查了等边三角形的性质以及三角形面积求法,正确表示出三角形的高是解题关键.15.如图,正方形ABCD的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知BC=6,△ABC的面积为9,则正方形DEFG的面积为 4 .【考点】相似三角形的判定与性质;正方形的性质.【分析】由DG∥BC得△ADG∽△ABC,利用相似三角形对应边上高的比等于相似比,列方程求解.【解答】解:作AH⊥BC于H,交DG于P,如图所示:∵△ABC的面积=BC•AH=9,BC=6,∴AH=3,设正方形DEFG的边长为x.由正方形DEFG得,DG∥EF,即DG∥BC,∵AH⊥BC,∴AP⊥DG.由DG∥BC得△ADG∽△ABC∴.∵PH⊥BC,DE⊥BC∴PH=ED,AP=AH﹣PH,即,由BC=6,AH=3,DE=DG=x,得,解得x=2.故正方形DEFG的面积=22=4;故答案为:4.【点评】本题考查了相似三角形的判定与性质、正方形的性质.关键是由平行线得到相似三角形,利用相似三角形的性质列方程.16.如图,小明家所在小区的前后两栋楼AB、CD,小明在自己所住楼AB的底部A处,利用对面楼CD墙上玻璃(与地面垂直)的反光,测得楼AB顶部B处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB的高度是27 米.【考点】解直角三角形的应用-仰角俯角问题.【分析】作PE⊥AB于点E,在直角△AEP中,利用三角函数求得AE的长,根据AB=2AE即可求解.【解答】解:作PE⊥AB于点E,在直角△AEP中,∠APE=∠α,则AE=PE•tan∠APE=30×0.45=13.5(米),则AB=2AE=27(米).故答案是:27.【点评】本题考查解直角三角形、仰角、俯角的定义,解题的关键是记住特殊三角形的边之间关系,学会把问题转化为方程解决,属于中考常考题型.17.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC上,使得△ADP与△ABC相似,则线段AP的长为4或.【考点】相似三角形的判定.【分析】先根据勾股定理求出AB的长,再分△ADP∽△ABC与△ADP∽△ACB两种情况进行讨论即可.【解答】解:∵在△ABC中,∠C=90°,AC=8,BC=6,∴AB==10.∵D是边AB的中点,∴AD=5.当△ADP∽△ABC时, =,即=,解得AP=4;当△ADP∽△ACB时, =,即=,解得AP=.故答案为:4或.【点评】本题考查的是相似三角形的判定,在解答此题时要注意进行分类讨论,不要漏解.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN的面积是菱形ABCD面积的,则cosA= .【考点】菱形的性质;解直角三角形.【分析】如图,连接AN、CM,延长BM交AD于H.AN是菱形ABCD的角平分线,同理CM也是菱形ABCD 的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,因为四边形BMDN的面积是菱形ABCD面积的,所以S△AMB=S△AMD=S△CNB=S△CND=4a,推出AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,由△ABO∽△BNO,推出OB2=OA•ON=5k2,推出OB=k,AB=AD==k,由AD•BH=•BD•AO,推出BH==,再利用勾股定理求出AH即可解决问题.【解答】解:如图,连接AN、CM,延长BM交AD于H.∵AB⊥BN,AD⊥DN,∴∠ABN=∠ADN=90°,在Rt△ANB和Rt△AND中,,∴△ABN≌△ADN,∴∠BAN=∠DAN,∴AN是菱形ABCD的角平分线,同理CM也是菱形ABCD的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,∵四边形BMDN的面积是菱形ABCD面积的,∴S△AMB=S△AMD=S△CNB=S△CND=4a,∴AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,∵△ABO∽△BNO,∴OB2=OA•ON=5k2,∴OB=k,AB=AD==k,∵AD•BH=•BD•AO,∴BH==,∴AH===k,∴cosA===.故答案为【点评】本题考查菱形的性质、全等三角形的判定和性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会利用参数解决问题,学会利用面积法求线段,所以中考常考题型.三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.【考点】二次函数的三种形式.【分析】利用配方法把一般式化为顶点式,根据二次函数的性质解答即可.【解答】解:y=x2﹣4x+5=(x﹣4)2﹣3,∴抛物线开口向上,对称轴x=4,顶点(4,﹣3).【点评】本题考查的是二次根式的三种形式,正确利用配方法把一般式化为顶点式是解题的关键.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.【考点】*平面向量;梯形.【专题】计算题.【分析】(1)作BM ∥CD 交AD 、EF 于M 、N 两点,将问题转化到△ABM 中,利用相似三角形的判定与性质求EN ,由EF=EN+NF=EN+AD 进行求解;(2)由=、=得BC=AD ,EB=AB ,根据=可得答案.【解答】解:(1)作BM ∥CD 交AD 、EF 于M 、N 两点,又AD ∥BC ,EF ∥AD ,∴四边形BCFN 与MNFD 均为平行四边形.∴BC=NF=MD=2,∴AM=AD ﹣MD=1.又=2,∴=,∵EF ∥AD ,∴△BEN ∽△BAM ,∴,即,∴EN=,则EF=EN+NF=;(2)∵=, =,∴BC=AD ,EB=AB ,∴==, ==,则==+. 【点评】本题主要考查了平行四边形的判定与性质、相似三角形的判定与性质及向量的运算,熟练掌握相似三角形的判定与性质得出对应边的长度之比和向量的基本运算是解题的关键.21.如图,在△ABC 中,∠ACB=90°,AB=5,tanA=,将△ABC 沿直线l 翻折,恰好使点A 与点B 重合,直线l 分别交边AB 、AC 于点D 、E ;(1)求△ABC 的面积;(2)求sin ∠CBE 的值.【考点】翻折变换(折叠问题).【分析】(1)根据∠A 的正切用BC 表示出AC ,再利用勾股定理列方程求出BC ,再求出AC ,然后根据直角三角形的面积公式列式计算即可得解;(2)设CE=x ,表示出AE ,再根据翻折变换的性质可得BE=AE ,然后列方程求出x ,再利用锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:(1)∵∠ACB=90°,tanA=,∴=,∴AC=2BC ,在Rt △ABC 中,BC 2+AC 2=AB 2,即BC 2+4BC 2=25,解得BC=,所以,AC=2,△ABC 的面积=AC •BC=××2=5;(2)设CE=x ,则AE=AC ﹣CE=2﹣x ,∵△ABC沿直线l翻折点A与点B重合,∴BE=AE=2﹣x,在Rt△BCE中,BC2+CE2=BE2,即2+x2=(2﹣x)2,解得x=,所以,CE=,BE=2﹣x=2﹣=,所以,sin∠CBE===.【点评】本题考查了翻折变换的性质,锐角三角函数的定义,此类题目,利用勾股定理列出方程求出相关的线段的长度是解题的关键.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)【考点】解直角三角形的应用-坡度坡角问题.【分析】作BE⊥AD于点E,设AB=x米,在直角△ABE中,根据三角函数,利用x表示出AE和BE的长,则在直角△BED中,利用勾股定理表示出BD的长,在直角△ABC中利用勾股定理表示出BC,根据BC=BD即可列方程求解.【解答】解:作BE⊥AD于点E,设AB=x米,在直角△ABE中,∠BAE=90°﹣∠DAH=90°﹣30°=60°,则AE=AB•cos∠BAE=xcos60°=x(米),BE=AB•sin∠BAE=xsin60°=x(米).则DE=AD﹣AE=12﹣x,在直角△BED中,BD2=BE2+DE2=(x)2+(12﹣x)2=144+x2﹣12x,在直角△ABC中,BC2=AC2+AB2=72+x2=49+x2.∵BC=BD,∴144+x2﹣12x=49+x2.解得x=≈7.9答:电线杆AB的高度约是7.9米.【点评】本题考查了解直角三角形的应用,坡度坡角问题,正确作出辅助线,利用AB的长表示抽BD和BC是关键.23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.【考点】相似三角形的判定与性质.【分析】(1)证出△ABD∽△ACB,得出对应角相等即可;(2)由相似三角形的性质得出对应边成比例求出AD=,BD=,得出BD=CD,由等腰三角形的性质得出∠DBC=∠ACB,证出∠ABD=∠BDC,再证明点B、E、D、F四点共圆,由圆周角定理得出,即可得出结论.【解答】(1)证明:∵AB是AD与AC的比例中项.∴,又∵∠A=∠A,∴△ABD∽△ACB,∴∠ACB=∠ABD;(2)证明:∵△ABD∽△ACB,∴,即,解得:AD=,BD=,∴CD=AC﹣AD=6﹣=,∴BD=CD,∴∠DBC=∠ACB,∵∠ACB=∠ABD,∴∠ABD=∠BDC,∵∠EDF=∠A+∠C,∠A+∠C=180°﹣∠ABC,∴∠EDF+∠ABC=180°,∴点B、E、D、F四点共圆,∴,∴DE=DF.【点评】本题考查了相似三角形的判定与性质、等腰三角形的判定与性质、四点共圆、圆周角定理等知识;熟练掌握相似三角形的判定与性质,证明四点共圆是解决问题(2)的关键.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C(4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.【考点】二次函数综合题.【分析】(1)利用待定系数法直接求出抛物线的解析式;(2)设出D,E坐标,根据平移,用k表示出平移后的抛物线解析式,利用坐标轴上点的特点得出m+n=16,mn=63﹣,进而利用相似三角形得出比例式建立方程即可求出k【解答】解:(1)∵抛物线过点A(1,0)、B(3,0),∴设抛物线的解析式为y=a(x﹣1)(x﹣3),∵C(4,6),∴6=a(4﹣1)(4﹣3),∴a=2,∴抛物线的解析式为y=2(x﹣1)(x﹣3)=2x2﹣8x+6;(2)如图,设点D(m,0),E(n,0),∵A(1,0),∴AD=m﹣1,AE=n﹣1由(1)知,抛物线的解析式为y=2x2﹣8x+6=2(x﹣2)2﹣2;∴将此抛物线先沿x轴方向向右平移6个单位,得到抛物线的解析式为y=2(x﹣8)2﹣2;∴再沿y轴方向平移k个单位,得到的抛物线的解析式为y=2(x﹣8)2﹣2﹣k;令y=0,则2(x﹣8)2﹣2﹣k=0,∴2x2﹣32x+126﹣k=0,根据根与系数的关系得,∴m+n=16,mn=63﹣,∵A(1,0),C(4,6),∴AC2=(4﹣1)2+62=45,∵△ACD∽△AEC,∴,∴AC2=AD•AE,∴45=(m﹣1)(n﹣1)=mn﹣(m+n)+1,∴45=63﹣﹣16+1,∴k=6,即:k=6,向下平移6个单位.【点评】此题是二次函数综合题,主要考查了待定系数法,平移的性质,相似三角形的性质,根与系数的关系,解本题的关键是设出了点D,E的坐标,借助韦达定理直接求出k.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.【考点】三角形综合题;等腰三角形的性质;勾股定理;相似三角形的判定与性质;解直角三角形.【专题】压轴题;面积法.【分析】(1)先根据∠ACB=90°,AC=3,BC=4,求得AB=5,sinA=,tanB=,再根据△ACD为直角三角形,求得AD,在Rt△CDE中,求得DE,最后根据BE=AB﹣AD﹣DE进行计算即可;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,进而得出∠CED=∠CDE,再根据∠B=∠DCE,∠CDE=∠BDC,得到∠BCD=∠CED=∠CDE=∠BDC,最后求得AD的长;(3)先作CH⊥AB于H,Rt△ACH中,求得CH和AH的长,在Rt△CDH中,根据勾股定理得出:CD2=x2﹣x+9,再判定△BDC∽△CDE,得出CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),最后求得y关于x的函数解析式,并写出定义域.【解答】(1)在△ABC中,∠ACB=90°,AC=3,BC=4,∴AB=5,sinA=,tanB=,如图,当CD⊥AB时,△ACD为直角三角形,∴CD=AC•sinA=,∴AD==,又∵∠DCE=∠ABC,∴在Rt△CDE中,DE=CD•tan∠DCE=×=,∴BE=AB﹣AD﹣DE=5﹣﹣=;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,∴唯有∠CED=∠CDE,又∵∠B=∠DCE,∠CDE=∠BDC,∴∠BCD=∠CED=∠CDE=∠BDC,∴BD=BC=4,∴AD=5﹣4=1;(3)如图所示,作CH⊥AB于H,∵×BC×AC=AB×CH,∴CH=,∴Rt△ACH中,AH==,∴在Rt△CDH中,CD2=CH2+DH2=()2+(﹣x)2=x2﹣x+9,又∵∠CDE=∠BDC,∠DCE=∠B,∴△BDC∽△CDE,∴CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),解得.【点评】本题属于三角形综合题,主要考查了相似三角形的判定与性质,等腰三角形的性质,勾股定理以及解直角三角形的综合应用,解决问题的关键是中辅助线构造直角三角形,根据勾股定理以及面积法进行求解.。

2017中考数学一模备考试卷(有答案)

2017中考数学一模备考试卷(有答案)

2017中考数学一模备考试卷(有答案)A级基础题1.已知点P(1,-3)在反比例函数y=kx(k≠0)的图象上,则k的值是()A.3B.-3C.13D.-132.对于反比例函数y=3x,下列说法正确的是()A.图象经过点(1,-3)B.图象在第二、四象限C.x>0时,y随x的增大而增大D.x 3.在同一直角坐标系下,直线y=x+1与双曲线y=1x的交点的个数为()A.0个B.1个C.2个D.不能确定4.当a≠0时,函数y=ax+1与函数y=ax在同一坐标系中的图象可能是()A正比例函数B反比例函数C相交D垂直5.已知反比例函数y=bx(b为常数),当x>0时,y随x的增大而增大,则一次函数y=x+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.矩形的长为x,宽为y,面积为9,则y与x之间的函数关系用图象表示大致为()A正方形B长方形C圆D梯形7已知A(2,y1),B(3,y2)是反比例函数y=-2x图象上的两点,则y1____y2(填“>”或“ 8如图3­3­10,已知A点是反比例函数y=kx(k≠0)的图象上一点,AB⊥y轴于B,且△ABO的面积为3,则k的值为________.9.已知一个函数的图象与y=6x的图象关于y轴成轴对称,则该函数的解析式为__________.10.已知反比例函数的图象经过点(m,2)和(-2,3),则m的值为______.11.某地计划用120~180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?B级中等题12如图3­3­11,菱形OABC的顶点C的坐标为(3,4).顶点A在x轴的正半轴上,反比例函数y=kx(x>0)的图象经过顶点B,则k的值为()A.12B.20C.24D.3213.下列图形中,阴影部分面积最大的是()ABCD14如图3­3­12,已知一次函数y1=kx+b与反比例函数y2=mx 的图象交于A(2,4),B(-4,n)两点.(1)分别求出y1和y2的解析式;(2)写出当y1=y2时,x的值;(3)写出当y1>y2时,x的取值范围.C级拔尖题15.如图3­3­13,等腰梯形ABCD放置在平面直角坐标系中,已知A(-2,0),B(6,0),D(0,3),反比例函数的图象经过点C.(1)求点C坐标和反比例函数的解析式;(2)将等腰梯形ABCD向上平移m个单位长度后,使点B恰好落在双曲线上,求m的值.反比例函数1.B2.D3.C4.C5.B6.C解析:由矩形的面积知xy=9,可知它的长x与宽y之间的函数关系式为y=9x(x>0),是反比例函数图象,且其图象在第一象限.故选C.7. 11.(1)由题意,得y=360x,把y=120代入y=360x,得x=3;把y=180代入y=360x,得x=2,∴自变量的取值范围为2≤x≤3.∴y=360x(2≤x≤3).(2)设原计划平均每天运送土石方x万米3,则实际平均每天运送土石方(x+0.5)万米3,根据题意,得360x-360x+0.5=24,解得x=2.5或x=-3.经检验x=2.5或x=-3均为原方程的根,但x=-3不符合题意,故舍去.x+0.5=2.5+0.5=3(万米3)答:原计划每天运送2.5万米3,实际每天运送3万米3.12.D13.C14.解:(1)将A(2,4)代入反比例解析式,得m=8,∴反比例函数解析式为y2=8x.将B(-4,n)代入反比例解析式,得n=-2,即B(-4,-2),将点A与点B坐标代入一次函数解析式,得2k+b=4,-4k+b=-2,解得k=1,b=2.则一次函数解析式为y1=x+2.(2)联立两函数解析式,得y=x+2,y=8x,解得x=2,y=4,或x=-4,y=-2.则当y1=y2时,x的值为2或-4.(3)利用图象,得当y1>y2时,x的取值范围为-42.15.解:(1)如图8,过点C作CE⊥AB于点E,∵四边形ABCD是等腰梯形,∴AD=BC,DO=CE.∴△AOD≌△BEC(HL).∴AO=BE=2.∵BO=6,∴DC=OE=4,∴C(4,3).设反比例函数的解析式为y=kx(k≠0),∵反比例函数的图象经过点C,∴3=k4,解得k=12.∴反比例函数的解析式为y=12x.(2)将等腰梯形ABCD向上平移m个单位长度后得到梯形A′B′C′D′,如图9,∴点B′(6,m).∵点B′(6,m)恰好落在双曲线y=12x上,∴当x=6时,m=126=2.即m=2.这篇中考数学一模备考试卷的内容,希望会对各位同学带来很大的帮助。

2017年杭州市上城区中考一模数学试卷及答案(pdf版)

2017年杭州市上城区中考一模数学试卷及答案(pdf版)

A. 11
B. 12
C. 13
D. 11 或 12
8.已知 x 4 是关于 x 的方程 x2 m 1 x 2m 0 的一个实数根,并且这个方程的两个实数根
恰好是等腰 △ABC 的两条边长,则 △ABC 的周长为( )
A. 7
B. 10
C. 11
D. 10 或 11
9.已知平面直角坐标系中, M 在第一象限内,点 M 的坐标
∴ A1B1 A1B2 , C1B1∥A1B2 ∵∠C1B1 A1 =60°,∴∠B1 A1B2 =120° ∴ △B1 A1B2 是顶角为 120°的等腰三角形 ∴ B1B2 = 3B1 A1 ∵ B1 A1 =3 cm,∴ B1B2 =3 3 cm ∵六个菱形均全等,∴ B1B7 =18 3 cm
的最小值为 a,所以最短切线长为 a2 1 ;
10. 连接 BE,EC,则△MEB≌△NEC,得 BM=CN,①正确;AM+CN=AM+BM= 2 当它在延长
线上时,不成立,所以②错误; S△EMN
=
1 2
EM
2

1 2

AE sin
2
=
1 2

2 sin2
=
1 sin2

15.如图所示,以 BC 为底边的等腰三角形有两种,图 1 的面积为 8 4 3 ,图 2 的面积为 8 4 3 ;
A
O
O
B
C
学1
BA C 学2
16.提示:如下图所示,当 A、B、C 在一条直线上时,点 A、B、C 不能构成三角形,因为
A(a,a-1),B(b,b),C(c,c+2),则直线

2017年初中学业数学模拟试卷及答案

2017年初中学业数学模拟试卷及答案

2017年初中学业模拟考试数学试题本试卷分第Ⅰ卷和第Ⅱ卷两部分,共8页.满分120分.考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将区县、毕业学校、姓名、考试号、座号填写在答题卡和试卷规定的位置上,并核对监考教师粘贴的考号条形码是否与本人信息一致.2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能写在试卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;需要在答题卡上作图时,可用2B铅笔,但必须把所画线条加黑.4.答案不能使用涂改液、胶带纸、修正带修改.不按以上要求作答的答案无效.不允许使用计算器.第Ⅰ卷(选择题共48分)一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题4分,共48分,错选、不选或选出的答案超过一个,均记0分.1、观察下列银行标志,从图案看既是轴对称图形又是中心对称图形的有A .1个B .2个C .3个D .4个2、小明将一个直角三角板(如左图)绕它的一条直角边所在的直线旋转一周形成一个几何体,将这个几何体的侧面展开得到的大致图形是A .B .C .D . 3、下列计算正确的是A .+=B .1)(11=C . 1211()()24xy xy xy -=D .﹣(﹣a )4÷a 2=a 24、如图,一束光线与水平面成︒60 的角度照射地面,现在地面AB 上支放一个平面镜CD ,使这束光线经过平面镜反射后成水平光线,则平面镜CD 与地面AB 所成角DCB ∠的度数等于A .︒30B .︒45C .︒50D .︒60 5、甲、乙两人5次射击命中的环数如下:则以下判断中,正确的是 A .‾x 甲=‾x 乙,S 甲2=S 乙2 B .‾x 甲=‾x 乙,S 甲2>S 乙2C .‾x 甲=‾x 乙,S 甲2 <S 乙2D .‾x 甲<‾x 乙,S 甲2<S 乙26、一只盒子中有红球m 个,白球8个,黑球n 个,每个球除颜色外都相同,从中任取一个球,取得是白球的概率与不是白球的概率相同,那么m 与n 的大小关系是 A .m + n = 8 B .m + n = 4 C . m = n = 4 D . m = 3,n =57、在下图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是A .点AB .点BC .点CD .点D 8、用计算器计算时,下列说法错误的是A .“计算431-21B .“计算281035-⨯C .“已知SinA=0.3,求锐角AD .“计算521⎪⎭⎫ ⎝⎛”的按键顺序是9、如图,AB 是⊙的直径,弦CD 垂直平分OB ,则∠BDC 的度数为A .15°B .20°C .30°D .45°10、已知一列数:1,―2,3,―4,5,―6,7,… 将这列数排成下列形式:第1行 1 第2行 -2 3第3行 -4 5 -6第4行 7 -8 9 -10 第5行 11 -12 13 -14 15 …… ……按照上述规律排下去,那么第100行从左边数第5个数是 A .-4955 B .4955 C .-4950 D .495011、函数x y 4=和x y 1=在第一象限内的图象如图,点P 是xy 4=的图象上一动点,PC ⊥x 轴于点C ,交x y 1=的图象于点A ,PD ⊥y 轴于D ,交xy 1=的图象于点B ,给出如下4个结论:①△ ODB 与△OCA 的面积相等;②线段PA 与PB 始终相等;③四边形PAOB 的面积大小不会发生变化;④CA=31AP .其中正确的结论是A .①②③B .①②④C .②③④D .①③④12、如图,在矩形ABCD 中,BC=8,AB=6,经过点B 和点D 的两个动圆均与AC 相切,且与AB 、BC 、AD 、DC 分别交于点G 、H 、E 、F ,则EF+GH 的最小值是A .6B .8C .9.6D .10第Ⅱ卷(非选择题 共72分)二、填空题:本题共5小题,每小题4分,共20分,只要求填写最后结果. 13、分解因式()()11+---++b a b a b a =.14、已知022=--a a ,则代数式111--a a 的值为. 15、 如图,已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若ABC ∆与△111A B C 是位似图形,且顶点都在格点上,则位似中心的坐标是.16、如图,三角板ABC 的两直角边AC ,BC 的长分别为40cm 和30cm ,点G 在斜边A B 上,且BG =30cm ,将这个三角板以G 为中心按逆时针旋转90°至△A′B′C′的位置,那么旋转前后两个三角板重叠部分(四边形EFGD )的面积为____________.17、如图,在以AB 为直径的半圆中,有一个边长为1的内接正方形CDEF ,则以AC 和BC 的长为两根的二次项为1的一元二次方程是 .三、解答题:本大题共7小题,共52分.解答要写出必要的文字说明、证明过程或演算步骤.18、(本题满分5分)如图,直线a ∥b ,RtABC 的顶点B 在直线a 上,∠C =90°, ∠β=55°,求∠α的度数.19、(本题满分6分)某校对九年级学生进行了一次数学学业水平测试,成绩评定分为A、B、C、D四个等级(注:等级A、B、C、D分别代表优秀、良好、合格、不合格),学校从九年级学生中随机抽取50名学生的数学成绩进行统计分析,并绘制成扇形统计图(如图所示).根据图中所给的信息回答下列问题:(1)随机抽取的九年级学生数学学业水平测试中,D等级人数的百分率和D等级学生人数分别是多少?(2)这次随机抽样中,学生数学学业水平测试成绩的中位数落在哪个等级?(3)若该校九年级学生有800名,请你估计这次数学学业水平测试中,成绩达合格以上(含合格)的人数大约有多少人?20、(本题满分6分)已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE;(2)连接DE,线段DE与AB之间有怎样的位置和数量关系?请证明你的结论.21、(本题满分8分) 已知:一元二次方程04522=--x x 的某个根,也是一元二次方程 049)2(2=++-x k x 的根,求k 的值.22、(本题满分8分)如图,王刚在研究性学习活动中,对自己家所在的小区进行调查后发现,小区汽车入口宽AB 为3.2m ,在入口的一侧安装了停止杆CD ,其中AE 为支架.当停止杆仰起并与地面成60°角时,停止杆的端点C 恰好与地面接触,此时CA 为0.7m .在此状态下,若一辆货车高3m ,宽2.5m ,入口两侧不能通车,那么这辆货车在不碰杆的情况下,能从入口内通过吗?请你通过计算说明.(参考数据:3≈1.7)23、(本题满分9分)已知抛物线的顶点为(1,0),且经过点(0,1).(1)求该抛物线对应的函数的解析式; (2)将该抛物线向下平移个单位,设得到的抛物线的顶点为A ,与轴的两个交点为B 、C ,若△ABC 为等边三角形.①求的值;②设点A 关于轴的对称点为点D ,在抛物线上是否存在点P ,使四边形CBDP 为菱形?若存在,写出点P 的坐标;若不存在,请说明理由.24、(本题满分10分)在Rt △ABC 中,∠ACB =90°,BC =30,AB =50.点P 是AB 边上任意一点,直线PE ⊥AB ,与边AC 或BC 相交于E .点M 在线段AP 上,点N 在线段BP 上,EM =EN ,sin ∠EMP =1213. (1)如图1,当点E 与点C 重合时,求CM 的长;(2)如图2,当点E 在边AC 上时,点E 不与点A 、C 重合,设AP =x ,BN =y ,求y 关于x 的函数关系式,并写出x 的取值范围;(3)若△AME ∽△ENB ,求AP 的长.图1 图2 备用图初中学业模拟考试数学参考答案及评分标准一.选择题(每小题4分,共48分) 1--12:BDCAB ABDCB DC 二.填空题(每小题4分,共20分) 13、 (a +b -1)214、2115、 (9,0) 16、 144cm 217、x 2﹣5x+1=0 三.解答题18、解:过点C作CE∥a,……………………………………………………………………………………1分∵a∥b,∴CE∥a∥b,∴∠BCE=∠α,∠ACE=∠β=55°,………………………………………………………………………3分∵∠C=90°,∴∠α=∠BCE=∠ABC﹣∠ACE=35°.…………………………………………………………………5分19、解:(1)∵1-30%-48%-18% = 4%,∴D等级人数的百分率为4%,………………………………………………………………………………1分∵4%×50 = 2,∴D等级学生人数为2人,…………………………………………………………………2分(2) ∵A等级学生人数为30%×50 = 15人,B等级学生人数为48%×50 = 24人,C等级学生人数为18%×50 = 9人,D等级学生人数为4%×50 = 2人,∴中位数落在B等级.………………………………………………………………………………………4分(3) 800×(30%+48%+18%)= 768,∴成绩达合格以上(含合格)的人数大约有768人.………………………………………………………6分20、解:(1)证明:∵AB=AC,AD是BC边上的中线,∴AD⊥BC,BD=CD.∵AE∥BC,CE⊥AE,∴四边形ADCE是矩形.∴AD=CE.在Rt△ABD与Rt△CAE中,AD CEAB CA=⎧⎨=⎩, ∴Rt △ABD ≌Rt △CAE (HL).………………………………………………………………………………3分 (2) DE ∥AB ,DE=AB .………………………………………………………………………………4分 证明:∵四边形ADCE 是矩形, ∴AE=CD=BD ,AE ∥BD , ∴四边形ABDE 是平行四边形,∴DE ∥AB ,DE=AB .……………………………………………………………………………………………6分 21、解:由25204x x --=,得212951(1),,422x x x -===-,………………………………………………2分 当152x =是29(2)04x k x -++=的根时, 21119204x x kx --+=,11404kx -+=,5722k =,75k =…………………………………………………………………………………………………5分 当212x =-是29(2)04x k x -++=的根时,22229204x x kx --+=, 21404kx -+=, 1722k -=,7k =-. ……………………………………………………………………………………………8分 22、解:如图,在AB 之间找一点F ,使BF =2.5m ,过点F 作GF ⊥AB 交CD 于点G ,…………………………………2分∵AB =3.2m ,CA =0.7m ,BF =2.5m ,∴CF =AB -BF +CA =1.4m ,………………………………………………………………………………4分分 ∵2.38<3,∴这辆货车在不碰杆的情况下,不能从入口内通过.………………………………………… 8分(或者设GF=3,求出BF ,再与2.5去比较)23.解:(1)由题意可得,解得∴抛物线对应的函数的解析式为.…………………………….…………….……3分 (2)①将向下平移个单位得:-=,可知A (1,-),B (1-,0),C (1+,0),BC =2.………………………………….……….…….……5分 由△ABC 为等边三角形,得,由>0,解得=3.…………….……….……6分 ②不存在这样的点P .………….………………………………………….………………………7分∵点D 与点A 关于轴对称,∴D (1,3).由①得BC =2.要使四边形CBDP 为菱形,需DP ∥BC ,DP =BC .由题意,知点P 的横坐标为1+2, 当=1+2时-m ==,故不存在这样的点P .………….……………………….…………………9分24、解:(1)如图1,∵∠ABC=90°,BC=30,AB=50,∴AC=40,∵PE ⊥AB ,∴∠EPM=90°,∴sin ∠A=AB BC =AC CP ,∴405030CP =,∴24=CP , ∴在RT ΔCMP 中,sin ∠EMP=CM CP ,即131224=CM ,∴CM=26.…………………2分图1 图2(2)如图2,∠EPM=90°,∠ABC=90°∴tan ∠A=AC BC =APEP , ∴x EP =4030,∴x EP 43=, ∴在RT ΔEMP 中,sin ∠EMP=EM EP ,即131243=EM x , ∴x EM 4839=,∴x PM 4815=,∵EM=EN ,∴x PM PN 4815==, ∴x x y 481550--==x 162150-…………………………………………….…4分 如图1,点E 与点C 重合时,32==x AP ,又∵点E 不与点A 、C 重合∴320<<x ……………5分(3)∵EM=EN ,∴∠EMP=∠ENP ,∴∠EMA=∠ENB ,当点E 在线段AC 上,∴如图3,△AME 的顶点A 、M 、E 分别与△ENB 的顶点E 、N 、B 对应,图3 图4 ∴BNEM EN AM =, ∴(x x 4815-):(x 4839)=(x 4839):(x 162150-) ∴22=x ,………………………………………………………………………………7分当点E 在线段BC 上,∴如图4,△AME 的顶点A 、M 、E 分别与△ENB 的顶点E 、N 、B 对应, ∴BNEM EN AM =, ∵BP=x -50,∴EP=)50(34x -∴EM=)50(913x -,MP=)50(95x -, ∴BN=)50(9550x x ---,∴[)50(95x x --]:)50(913x -=)50(913x -:[)50(9550x x ---], ∴42=x . ……………………………………………………………………………9分 综上AP 的长为22或42.…………………………………………………………10分。

2017天桥数学中考-一模

2017天桥数学中考-一模

2017年九年级复习调查考试数 学 试 卷本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共3页,满分为45分;第Ⅱ卷共4页,满分为75分.本试题共6页,满分为120分.考试时间为120分钟.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的考点、姓名、准考证号、座号填写在答题卡上和试卷规定的位置上.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题 共45分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1. 23-的相反数是 A .23- B .23C .32-D .322.我国最新研制的巨型计算机“曙光3000超级服务器”,它的运算峰值可以达到每秒403200000000次.这个数字用科学记数法来表示A .4032×108B .4.032×1010C .4.032×1011D .4.032×1012 3.下列运算正确的是A .523x x x =+B .62322x x x =⋅C .6239)3(x x = D .236x x x =÷4.下面几个几何体,主视图是圆的是A .B .C .D .5.下列图形中,既是轴对称图形又是中心对称图形的是A .B .C .D .6.如图,直线m ∥n ,∠1=70°,∠2=30°,则∠A 等于A .30°B .35°C .40°D .50°7.化简22a ba b b a+--的结果是 A .a b + B .b a - C .a b - D .a b --A BCm n1 2第6题图8.如图,将△PQR 向右平移2个单位长度,再向下平移3个单位长度,则顶点P 平移后的坐标是 A .(﹣2,﹣4) B .(﹣2,4) C .(2,﹣3) D .(﹣1,﹣3) 9.如图函数)0(≠+=k b k b kx y 为常数,、的图象,关于x 的不等式0>+b kx 的解集为 A .0>x B .0<x C .2>x D .2<x10.在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中有红球5个,黄球4个,其余为白球,从袋中随机摸出一个球,“摸出黄球”的概率为31,则袋中白球的个数为 A .2B .3C .4D .1211.如图,将等腰直角三角形ABC 绕点A 逆时针旋转15度得到△AEF ,若AC =,则阴影部分的面积为A .1B .C .D .12.为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为100元的药品进行连续两次降价后为81元.设平均每次降价的百分率为x ,则下列方程正确的是 A .81)1(1002=-x B .100)1(812=-x C .81)21(100=-x D .100)21(81=-x 13.已知直线l :x y 33=,过A (0,1)作y 轴的垂线交l 于B ,过B 作l 的垂线交y 轴于A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2…;按此作法继续下去,则点A 4的纵坐标为 A .44 B .43C .42D .414.如图,正方形ABCD 中,点E ,F 分别在BC ,CD 上,△AEF 是等边三角形,连接AC 交EF 于点G ,下列结论:①CE =CF ,②∠AEB =75°,③AG =2GC , ④BE+DF=EF ,⑤S △CEF =2S △ABE ,其中结论正确的个数为A .2个B .3个C .4个D .5个第8题图第9题图 第11题图 第13题图 第14题图15.已知抛物线)0(2>>++=a b c bx ax y 与x 轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y 轴左侧;②关于x 的方程022=+++c bx ax 无实数根; ③0≥+-c b a ;④ab cb a -++的最小值为3.其中,正确结论的个数为A .1个B .2个C .3个D .4个第Ⅱ卷(非选择题 共75分)注意事项:1.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题纸各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.2.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 二、填空题(本大题共6个小题,每小题3分,共18分) 16.分解因式:___________2=+xy x .17.计算:=-+-0)2(29________.18.有一组数据:2,a ,4,6,7,它们的平均数是5,则这组数据的中位数是_______. 19.如图,△ABC 中∠C =90°,若CD ⊥AB 于D ,且BD=4,AD =9,则tan A =_______. 20.在Rt △ABC 中,∠C=90°,AC =6,BC =8,点D 在AB 上,若以点D 为圆心,AD 为半径的圆与BC 相切,则⊙D 的半径为_______. 21.如图,点A 为函数)0(9>=x x y 图象上一点,连结OA ,交函数)0(1>=x xy 的图象于点B ,点C 是x 轴上一点,且AO=AC ,则△ABC第20题图第19题图第21题图xyBCO A三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.) 22.(本小题满分7分)完成下列各题: (1)化简:2)()2(b a b a a ++-;(2)解不等式组⎩⎨⎧>+>-②①062-02x x ,并把解集在数轴上表示出来.23.(本小题满分7分)完成下列各题:(1)如图,在平行四边形ABCD 中,已知点E 在AB 上,点F 在CD 上,且AE=CF .求证:DE=BF .(2)如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,若C ∠=20°,求CDA ∠的度数.24.(本小题满分8分)甲、乙两公司各为“希望工程”捐款2000元.已知乙公司比甲公司人均多捐20元,且乙公司的人数是甲公司的人数的54.问甲、乙两公司人均捐款各为多少元?第23(1)题图ADB C O第23(2)题图为了解学生体育训练的情况,某市从全市九年级学生中随机抽取部分学生进行了一次体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)求本次抽样测试的学生人数;(2)求出扇形图中∠α的度数,并把条形统计图补充完整;(3)该市九年级共有学生9000名,如果全部参加这次体育测试,则测试等级为D的约有多少人?26.(本小题满分9分)如图,已知点D在反比例函数xmy=的图象上,过点D做x轴的平行线交y轴于点B (0,3).过点A(5,0)的直线bkxy+=与y轴交于点C,且BD=OC,52tan=∠OAC.(1)求反比例函数xmy=和直线bkxy+=的解析式.(2)连接CD,试判断线段AC与线段CD的关系,并说明理由.的度数.第26题图xyMEDCBAO如图,正方形OABC 的边OA ,OC 在坐标轴上,点B 的坐标为(-4,4).点P 从点A 出发,以每秒1个单位长度的速度沿x 轴向点O 运动;点Q 从点O 同时出发,以相同的速度沿x 轴的正方向运动,规定点P 到达点O 时,点Q 也停止运动.连接BP ,过P 点作BP 的垂线,与过点Q 平行于y 轴的直线l 相交于点D .BD 与y 轴交于点E ,连接PE .设点P 运动的时间为t (s ).(1)∠PBD 的度数为__________,点D 的坐标为___________(用t 表示); (2)当t 为何值时,△PBE 为等腰三角形?(3)△POE周长是否随时间t 的变化而变化,若变化,说明理由;若不变,试求这个定值.28.(本小题满分9分)如图,在平面直角坐标系中,矩形OCDE 的三个顶点分别是C (3,0),D (3,4),E (0,4).点A 在DE 上,以A 为顶点的抛物线过点C ,且对称轴x =1交x 轴于点B .连接EC ,AC .点P ,Q 为动点,设运动时间为t 秒.(1)直接写出点A 坐标,并求出该抛物线的函数表达式.(2)在图①中,若点P 在线段OC 上从点O 向点C 以1个单位/秒的速度运动,同时,点Q 在线段CE 上从点C 向点E 以2一个点随之停止运动.当t (3)在图②中,若点P 在对称轴上从点P作PF ⊥AB ,交AC 于点F ,过点F AQ ,CQ .当t 为何值时,△ACQ第27题图第27题图(备用图)。

(完整word版)中考数学答题卡

(完整word版)中考数学答题卡

滨州市二0一六年初中学生学业考试数学模拟试卷答题卡姓名 座号准考证号请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效。

中考数学一模考试试题练习2017年(附答案)

中考数学一模考试试题练习2017年(附答案)

中考数学一模考试试题练习2017年(附答案)初中的学习至关重要,广大中学生朋友们一定要掌握科学的学习方法,提高学习效率。

以下是精品学习网初中频道为大家提供的中考数学一模考试试题练习,供大家复习时使用A级基础题1.若二次函数y=ax2的图象经过点P(-2,4),则该图象必经过点( )A.(2,4)B.(-2,-4)C.(-4,2)D.(4,-2)2.抛物线y=x2+bx+c的图象先向右平移2个单位长度,再向下平移3个单位长度,所得图象的函数解析式为y=(x-1)2-4,则b,c的值为( )A.b=2,c=-6B.b=2,c=0C.b=-6,c=8D.b=-6,c=23.如图3 4 11,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是( )A.abc 0B.2a+b 0C.a-b+c 0D.4ac-b2 04.二次函数y=ax2+bx的图象如图3 4 12,那么一次函数y=ax+b的图象大致是( )5.若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是( )A.抛物线开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为-4D.抛物线与x轴的交点为(-1,0),(3,0)6.二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x -3 -2 -1 0 1y -3 -2 -3 -6 -11则该函数图象的顶点坐标为( )A.(-3,-3)B.(-2,-2)C.(-1,-3)D.(0,-6)7.若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为__________.8.请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解析式______________.9.已知抛物线y=-x2+bx+c经过点A(3,0),B(-1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.B级中等题10.已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两实数根是( )A.x1=1,x2=-1B.x1=1,x2=2C.x1=1,x2=0D.x1=1,x2=311.二次函数y=ax2+bx+c的图象如图3 4 13,给出下列结论:①2a+b ②b a ③若-1图3 4 1312.已知二次函数y=x2-2mx+m2-1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图3 4 14,当m=2时,该抛物线与y轴交于点C,顶点为D,求C,D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.C级拔尖题13.如图3 4 15,已知抛物线y=1a(x-2)(x+a)(a 0)与x轴交于点B,C,与y轴交于点E,且点B 在点C的左侧.(1)若抛物线过点M(-2,-2),求实数a的值;(2)在(1)的条件下,解答下列问题;①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.14已知二次函数y=mx2+nx+p图象的顶点横坐标是2,与x轴交于A(x1,0),B(x2,0),x1 0(1)求证:n+4m=0;(2)求m,n的值;(3)当p 0且二次函数图象与直线y=x+3仅有一个交点时,求二次函数的最大值.15.(2013年广东湛江)如图3 4 16,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴与B,C两点(点B在点C的左侧),已知A点坐标为(0,-5).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与△C的位置关系,并给出证明;(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形.若存在,求点P的坐标;若不存在,请说明理由.参考答案:1.A2.B 解析:利用反推法解答,函数y=(x-1)2-4的顶点坐标为(1,-4),其向左平移2个单位长度,再向上平移3个单位长度,得到函数y=x2+bx+c,又△1-2=-1,-4+3=-1,平移前的函数顶点坐标为(-1,-1),函数解析式为y=(x+1)2-1,即y=x2+2x,b=2,c=0.3.D4.C5.C6.B7.k=0或k=-1 8.y=x2+1(答案不唯一)9.解:(1)△抛物线y=-x2+bx+c经过点A(3,0),B(-1,0),抛物线的解析式为y=-(x-3)(x+1),即y=-x2+2x+3.(2)△y=-x2+2x+3=-(x-1)2+4,抛物线的顶点坐标为(1,4).10.B 11.①③④12.解:(1)将点O(0,0)代入,解得m= 1,二次函数关系式为y=x2+2x或y=x2-2x.(2)当m=2时,y=x2-4x+3=(x-2)2-1,D(2,-1).当x=0时,y=3,C(0,3).(3)存在.接连接C,D交x轴于点P,则点P为所求.由C(0,3),D(2,-1)求得直线CD为y=-2x+3.当y=0时,x=32,P32,0.13.解:(1)将M(-2,-2)代入抛物线解析式,得-2=1a(-2-2)(-2+a),解得a=4.(2)①由(1),得y=14(x-2)(x+4),当y=0时,得0=14(x-2)(x+4),解得x1=2,x2=-4.△点B在点C的左侧,B(-4,0),C(2,0).当x=0时,得y=-2,即E(0,-2).S△BCE=12 6 2=6.②由抛物线解析式y=14(x-2)(x+4),得对称轴为直线x=-1,根据C与B关于抛物线对称轴x=-1对称,连接BE,与对称轴交于点H,即为所求.设直线BE的解析式为y=kx+b,将B(-4,0)与E(0,-2)代入,得-4k+b=0,b=-2,解得k=-12,b=-2. 直线BE的解析式为y=-12x-2.将x=-1代入,得y=12-2=-32,则点H-1,-32.14.(1)证明:△二次函数y=mx2+nx+p图象的顶点横坐标是2,抛物线的对称轴为x=2,即-n2m=2,化简,得n+4m=0.(2)解:△二次函数y=mx2+nx+p与x轴交于A(x1,0),B(x2,0),x1 0OA=-x1,OB=x2,x1+x2=-nm,x1 x2=pm.令x=0,得y=p,C(0,p). OC=|p|.由三角函数定义,得tan CAO=OCOA=-|p|x1,tan CBO=OCOB=|p|x2.△tan CAO-tan CBO=1,即-|p|x1-|p|x2=1.化简,得x1+x2x1 x2=-1|p|.将x1+x2=-nm,x1 x2=pm代入,得-nmpm=-1|p|化简,得n=p|p|= 1.由(1)知n+4m=0,当n=1时,m=-14;当n=-1时,m=14.m,n的值为:m=14,n=-1(此时抛物线开口向上)或m=-14,n=1(此时抛物线开口向下).(3)解:由(2)知,当p 0时,n=1,m=-14,抛物线解析式为:y=-14x2+x+p.联立抛物线y=-14x2+x+p与直线y=x+3解析式得到-14x2+x+p=x+3,化简,得x2-4(p-3)=0.△二次函数图象与直线y=x+3仅有一个交点,一元二次方程根的判别式等于0,即=02+16(p-3)=0,解得p=3.y=-14x2+x+3=-14(x-2)2+4.当x=2时,二次函数有最大值,最大值为4.15.解:(1)设此抛物线的解析式为y=a(x-3)2+4,此抛物线过点A(0,-5),-5=a(0-3)2+4,a=-1.抛物线的解析式为y=-(x-3)2+4,即y=-x2+6x-5.(2)抛物线的对称轴与△C相离.证明:令y=0,即-x2+6x-5=0,得x=1或x=5,B(1,0),C(5,0).设切点为E,连接CE,由题意,得,Rt△ABO△Rt△BCE.ABBC=OBCE,即12+524=1CE,解得CE=426.△以点C为圆心的圆与直线BD相切,△C的半径为r=d=426.又点C到抛物线对称轴的距离为5-3=2,而2 426.则此时抛物线的对称轴与△C相离.(3)假设存在满足条件的点P(xp,yp),△A(0,-5),C(5,0),AC2=50,AP2=(xp-0)2+(yp+5)2=x2p+y2p+10yp+25,CP2=(xp-5)2+(yp-0)2=x2p+y2p-10xp+25.①当A=90 时,在Rt△CAP中,由勾股定理,得AC2+AP2=CP2,50+x2p+y2p+10yp+25=x2p+y2p-10xp+25,整理,得xp+yp+5=0.△点P(xp,yp)在抛物线y=-x2+6x-5上,yp=-x2p+6xp-5.xp+(-x2p+6xp-5)+5=0,解得xp=7或xp=0,yp=-12或yp=-5.点P为(7,-12)或(0,-5)(舍去).②当C=90 时,在Rt△ACP中,由勾股定理,得AC2+CP2=AP2,50+x2p+y2p-10xp+25=x2p+y2p+10yp+25,整理,得xp+yp-5=0.△点P(xp,yp)在抛物线y=-x2+6x-5上,yp=-x2p+6xp-5,xp+(-x2p+6xp-5)-5=0,解得xp=2或xp=5,yp=3或yp=0.点P为(2,3)或(5,0)(舍去)综上所述,满足条件的点P的坐标为(7,-12)或(2,3).这就是我们为大家准备的中考数学一模考试试题练习的内容,希望符合大家的实际需要。

2017年pyq一模数学试题答题卡

2017年pyq一模数学试题答题卡
2017 年九年级综合测试题答题卡——数学
学校:
注意事项: 选择题作答必须用 2B 铅笔,修改时用 塑料橡皮擦干净。 主观题作答必须用黑色墨迹签字笔 / 钢 笔填写,答题不得超出答题框。 保持卡面清洁,不要折叠,不要弄破。
班级:
姓名:
准 考
座位号:
证 号


11. 14. ; ; 12. 15. ; ; 13. 16. ; 。
三、17.
答题卡
第 1 页
共 6 页
请不要在此区域答题或书写!
三、18.
Q A
D P
B
第 18 题
第 18 题
C
答题卡
第 2 页
共 6 页
学校: 三、19.
班级:
姓名:
座位号:
三、20.
D A F
B
E
第 20 题
C
第 20 题
第一卷
1 2 3
选择题(每小题 3 分,共 30 分)

5 6 7

9 10

二、填空题 (每小题 3 分,共 18 8 分) 4
二、
三、21.
答题卡
第 3 页
共 6 页
三第 4 页
共 6 页
学校:
班级:
姓名:
座位号:
三、24.
B M P N A
第 24 题
第 24 题
Q C
B
A
C
备用图 1
B
A
备用图 2
C
答题卡
第 5 页
共 6 页
三、25.
y
3

最新2017深圳中考数学答题卡

最新2017深圳中考数学答题卡
在上海,随着轨道交通的发展,地铁商铺应运而生,并且在重要商圈已经形成一定的气候,投资经营地铁商铺逐渐为一大热门。在人民广场地下的迪美购物中心,有一家DIY自制饰品店--“碧芝自制饰品店”
五、创业机会和对策分析
(4)信息技术优势
价格便宜些□服务热情周到□店面装饰有个性□商品新颖多样□
附件(一):
二、资料网址:
可见“体验化消费”广受大学生的欢迎、喜欢,这是我们创业项目是否成功的关键,必须引起足够的注意。
除了“漂亮女生”形成的价格,优惠等条件的威胁外,还有“碧芝”的物品的新颖性,创意的独特性等,我们必须充分预见到。
调研结论:综上分析,我们认为在学院内开发“DIY手工艺品”商店这一创业项目是完全可行的。
深圳市2017年初中毕业生学业考试
数学试卷
班级:姓名:座位号:考号:
得分
一、选择题:本大题共12小题,每小题3分, 满分36分.
题号பைடு நூலகம்
1
2
3
4
5
6
7
8
9
10
11
12
答案
得分
二、填空题:本大题共4小题,每小题3分 , 满分12分.
题号
13
14
1 5
1 6
答案
但这些困难并非能够否定我们创业项目的可行性。盖茨是由一个普通退学学生变成了世界首富,李嘉诚是由一个穷人变成了华人富豪第一人,他们的成功表述一个简单的道理:如果你有能力,你可以从身无分文变成超级富豪;如果你无能,你也可以从超级富豪变成穷光蛋。

2017学年第一学期八年级期中测试数学试题卷之二(含答题卡及答案)

2017学年第一学期八年级期中测试数学试题卷之二(含答题卡及答案)

2017学年第一学期八年级期中测试数 学 试 题 卷一、选择题(本大题共10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1. 下列图形中是轴对称图形的是(▲)A .B .C .D . 2. 以下列各组线段为边,能组成三角形的是(▲) A .1,1,2 B .1,2,2 C .1,2,3 D .1,2,43. 如图,工人师傅砌门时,常用木条EF 固定长方形门框ABCD ,使其不变形,这样做的根据是(▲) A .三角形有稳定性 B .长方形的四个角都是直角 C .长方形是轴对称图形 D .两点之间线段最短4. 如图,△ABF ≌△ACE .若AB =5,AF =2,BF =4,则CE 的长度是(▲) A .6 B .5 C .4 D .35. 如图,将两根钢条AA ′,BB ′的中点O 连在一起,使AA ′,BB ′可以绕着点O 自由转动,就做成了一个测量工件,由三角形全等得出A ′B ′的长等于内槽宽AB ;那么判定△OAB ≌△OA ′B ′的理由是(▲) A .角角边 B .角边角 C .边边边 D .边角边 6. 点A (2,3)关于y 轴的对称点A ′的坐标是(▲) A .(2-,3) B .(2-,3-) C .(2,3-) D .(3-,2) 7. 下面说法正确是(▲) A .各个角都相等的四边形是正方形 B .各条边都相等的四边形是正方形 C .各个角都相等,各条边都相等的四边形是正方形 D .都不正确1.2.3.第3题图 F E CB A第4题图 第5题图8. 如图,若△ABC ≌△ADE ,且∠B =60°,则∠BAD 的度数为(▲) A .70° B .60° C .50° D .45°9. 如图是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱AC ,DE 垂直于横梁BC ,AC =4m ,∠B =30°,则立柱DE 的长度是(▲) A .4m B .3m C .2m D .1m10.如图所示的正方形网格中,网格线的交点称为格点.已知A ,B 是两格点,如果C 也是图中的格点,且使得△ABC 为等腰直角三角形,则点C 的个数是(▲) A .9 B .8 C .7 D .6二、填空题(本大题共10小题,每小题2分,共20分) 11.如图,△ABC 是等腰三角形,AB =AC ,∠A =36°,则∠B = ▲ . 12.如图,在△ABC 中,∠A =50°,∠B =60°,则外角∠ACD = ▲ . 13. 如图,∠AOB =45°,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E ,且PD =PE ,则∠AOP = ▲ .14.已知等腰三角形的两条边长分别为2和5,则它的周长为 ▲ . 15.如图,点P 是线段AB 垂直平分线上的一点,P A =2,则PB = ▲ . 16.如图,C 岛在A 岛的北偏东30°方向,C 岛在B 岛的北偏西45°方向,则从C 岛看A ,B两岛的视角∠ACB 等于 ▲ .17.如图,在△ABC 中,AB =AC ,AD 是BC 边上的中线,点E ,F ,G ,H 在AD 上,△ABC的总面积为10 cm 2,则阴影部分的面积为 ▲ cm 2.18.如图所示,小明从A 点出发,沿直线前进10米后左转36°,再沿直线前进10米,又向左转36°,…,照这样走下去,他第一次回到出发地A 点时,一共走的路程是 ▲ 米. 19.如图,三角形纸片中,AB =8cm ,AC =6cm ,BC =5cm .沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则△ADE 的周长为 ▲ cm .A 第8题图 E DC B 第10题图 A BC ED B A 第9题图 AC B 第11题图 A CB 第12题图A DP E C B O 第13题图P BA 第15题图第17题图20.如图,△ABC 中,∠ACB =90°,203AC =cm ,BC =5cm ,253AB =cm .AB ∥l ,BD ⊥l ,垂足为D ,BD =4cm ,CD =3cm .点P 从A 点出发以每秒1cm 的速度沿A ﹣C ﹣B ﹣A 路径向终点A 运动;过点P 作PE ⊥l 于E .则点P 运动时间为 ▲ 秒时,△PEC 与△BCD 全等.三、解答题(本大题共6小题,第21题7分,第22题8分,第23题8分,第24题8分,第25题9分,第26题10分,共50分)21.(7分)已知AB =AC ,∠B =∠C=90°.求证:△ABD ≌△ACD .22.(8分)如图,在Rt △ABC 中,∠C =90°,∠ABC =30°,AD平分∠BAC 交BC 于点D . (1)求∠BAD 的度数;(2)△ABD 是什么三角形?并说明理由.23.(8分)如图,在五边形ABCDE 中,AB =AE ,∠B =∠E ,BC =ED ,点F 是CD 的中点,连接AF .那么AF 垂直于CD 吗?试说明理由.24.(8分)如图所示,(1)作出△ABC 关于x 轴对称的△A ′B ′C ′,并写出△A ′B ′C ′三个顶点的坐标.(2)在y 轴上画出点P ,使P A +PB 最小.(保留作图痕迹)第18题图A 36°36° D C B 第19题图 lD C BA 第20题图A DC B 第21题图D C BA第22题图D B C AEF 第23题图 B CA xy第24题图25.(9分)[定义]:我们把三角形被一边上中线分成的两个三角形叫做“同伴三角形”.[性质]:如果两个三角形是“同伴三角形”,那么这两个三角形的面积相等.[应用]:如图,△ABD 与△ACD 是“同伴三角形”,CE ∥AB ,BC 与AE 相交于点D . (1)求证:△ACD 与△CDE 是“同伴三角形”;(2)若△ABD 的面积为1cm 2,点P 是直线BC 上的一动点,连接AP ,PE ,当出现一个三角形和△ABC 是“同伴三角形”时,求此时△PBE 的面积.26.(10分)(1)情境观察:如图1,在△ABC 中,AB =AC ,∠BAC =2∠CAD ,CE ⊥AB ,垂足为E ,且AE =CE ,AD ,CE 交于点F .①△AEF 与△CEB 全等吗? ▲ .②线段AF 与线段CD 的数量关系: ▲ . (2)问题探究:如图2,在△ABC 中,BA =BC ,∠B =90°,∠BAC =2∠CAD ,CD ⊥AD ,垂足为D ,AD 与BC 交于点F . 求证:AF =2CD . (3)拓展延伸:如图3,△ABC 中,BA =BC ,∠B =90°,点M 是直线AC (不与点A ,点C 重合)上的一动点,∠BAC =2∠CMD ,过点C 作CD ⊥MD ,垂足为D ,线段MD 与直线BC 交于点F .则线段MF 与线段CD 有怎样的数量关系?并说明理由.ABCDF 图2ABCMDF 图3图1CABDE F A备用图CBA备用图CBAD C B E第25题图2017学年第一学期八年级期中测试数学答题卡此方框为缺考学生标记,由监考员用2B 铅笔填涂一、 选择题(共10小题,每小题3分,满分30分) 1 6 2 7 3 8 4 9 5 10 三、解答题(共6小题,满分50分) 21.(满分7分) 学校 条 形 码粘 贴 处班级姓名注意事项: 1、选择题作答必须用2B 铅笔,修改时用橡皮擦干净。

2017中考数学一模测试卷(含答案)

2017中考数学一模测试卷(含答案)

2017中考数学一模测试卷(含答案)中考数学是历年“拉分”科目,很多学生与自己心仪的高中失之交臂,主要原因就是数学“失手”。

下文为大家准备了中考数学一模测试卷的内容。

A级基础题1.在数0,2,-3,-1.2中,属于负整数的是( )A.0B.2C.-3D.-1.22.下列四个实数中,绝对值最小的数是( )A.-5B.-2C.1D.43.-2是2的( )A.相反数B.倒数C.绝对值D.算术平方根4.-3的倒数是( )A.3B.-3C.13D.-135.下列各式,运算结果为负数的是( )A.-(-2)-(-3)B.(-2)×(-3)C.(-2)2D.(-3)-36.计算:12-7×(-4)+8÷(-2)的结果是( )A.-24B.-20C.6D.367.如果+30m表示向东走30m,那么向西走40m表示为______________.8.计算:-(-3)=______,|-3|=______,(-3)-1=______,(-3)2=______.9.若a=1.9×105,b=9.1×104,则a______b(填“”).10.计算:|-5|-(2-3)0+6×13-12+(-1)2.B级中等题11.实数a,b在数轴上的位置如图1-1-4所示,以下说法正确的是( )图1-1-4A.a+b=0B.b0D.|b| 12.北京时间2011年3月11日,日本近海发生9.0级强烈地震.本次地震导致地球当天自转快了0.0000016秒.这里的0.0000016秒用科学记数法表示__________秒.13.观察下列顺序排列的等式:a1=1-13,a2=12-14,a3=13-15,a4=14-16……试猜想第n个等式(n为正整数):an=__________.14.计算:|1-3|+-12-3-2cos30°+(π-3)0.C级拔尖题15.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a-b|=2013,且AO=2BO,则a+b的值为________.16.观察下列等式:第1个等式:a1=11×3=12×1-13;第2个等式:a2=13×5=12×13-15;第3个等式:a3=15×7=12×15-17;第4个等式:a4=17×9=12×17-19;……请解答下列问题:(1)按以上规律列出第5个等式:a5=__________________=__________________;(2)用含有n的代数式表示第n个等式:an=__________________=__________________(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.1.C2.C3.A4.D5.D6.D7.-40m 8.3 3 -13 9 9.>10.解:原式=5-1+(2-3)+1=4.11.D 12.1.6×10-6 13.1n-1n+214.解:原式=3-1-8-2×32+1=-8.15.-67116.解:(1)19×1112×19-111(2)12n-1×2n+112×12n-1-12n+1(3)a1+a2+a3+a4+...+a100=12×1-13+12×13-15+12×15-17+...+12×1199-1201=12×1-13+13-15+15-17+ (1199)1201=12×1-1201=12×200201=100201.精心整理,仅供学习参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档