2013年湖南省张家界市中考数学试卷及答案

合集下载

湖南省张家界市中考数学试卷及答案解析()

湖南省张家界市中考数学试卷及答案解析()

湖南省张家界市中考数学试卷一、选择题(本大题共8个小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣5的倒数是()A.B.C.﹣5 D.52.如图是由4个完全相同的小正方体组成的立体图形,则它的俯视图是()A.B.C.D.3.下列运算正确的是()A.(x﹣y)2=x2﹣y2B.x2•x4=x6C.D.(2x2)3=6x64.如图,将一块直角三角板的直角顶点放在直尺的一边上.如果∠1=50°,那么∠2的度数是()A.30° B.40° C.50° D.60°5.在校田径运动会上,小明和其他三名选手参加100米预赛,赛场共设1,2,3,4四条跑道,选手以随机抽签的方式决定各自的跑道.若小明首先抽签,则小明抽到1号跑道的概率是()A.B.C.D.6.如图,AB是⊙O的直径,BC是⊙O的弦.若∠OBC=60°,则∠BAC的度数是()A.75° B.60° C.45° D.30°7.如表是我市4个区县今年5月31日最高气温(℃)的统计结果:永定区武陵源区慈利县桑植县32 32 33 30该日最高气温的众数和中位数分别是()A.32℃,32℃ B.32℃,33℃ C.33℃,33℃ D.32℃,30℃8.在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,满分18分)9.因式分解:x2﹣4=.10.据统计,张家界接待中外游客突破50000000人次,旅游接待人次在全国同类景区和旅游目的地城市中名列前茅.将50000000人用科学记数法表示为人.11.如图,在△ABC中,点D、E、F分别是边AB、BC、CA上的中点,且AB=6cm,AC=8cm,则四边形ADEF的周长等于cm.12.若关于x的一元二次方程x2﹣2x+k=0无实数根,则实数k的取值范围是k>1.13.如图,点P是反比例函数(x<0)图象的一点,PA垂直于y轴,垂足为点A,PB垂直于x轴,垂足为点B.若矩形PBOA的面积为6,则k的值为.14.如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是cm.三、解答题(本大题共10个小题,满分58分.请考生用黑色碳素笔在答题卡相应的题号后答题区域内作答,必须写出运算步骤、推理过程或文字说明,超出答题区域的作答无效.)15.计算:.16.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(﹣1,2)、B(﹣2,1)、C(1,1)(正方形网格中每个小正方形的边长是1个单位长度).(1)△A1B1C1是△ABC绕点逆时针旋转度得到的,B1的坐标是;(2)求出线段AC旋转过程中所扫过的面积(结果保留π).17.先化简,后求值:,其中x满足x2﹣x﹣2=0.18.在读书月活动中,某校号召全体师生积极捐书,为了解所捐书籍的种类,图书管理员对部分书籍进行了抽样调查,根据调查数据绘制了如下不完整的统计图表.请你根据统计图表所提供的信息回答下面问题:某校师生捐书种类情况统计表种类频数百分比A.科普类12 nB.文学类14 35%C.艺术类m 20%D.其它类 6 15%(1)统计表中的m=,n=;(2)补全条形统计图;(3)本次活动师生共捐书2000本,请估计有多少本科普类图书?19.已知:如图,在四边形ABCD中,AB∥CD,E是BC的中点,直线AE交DC的延长线于点F.试判断四边形ABFC的形状,并证明你的结论.20.求不等式组的解集,并把它们的解集在数轴上表示出来.21.如图,某建筑物AC顶部有一旗杆AB,且点A,B,C在同一条直线上,小明在地面D处观测旗杆顶端B的仰角为30°,然后他正对建筑物的方向前进了20米到达地面的E处,又测得旗杆顶端B的仰角为60°,已知建筑物的高度AC=12m,求旗杆AB的高度(结果精确到0.1米).参考数据:≈1.73,≈1.41.22.张家界到长沙的距离约为320km,小明开着大货车,小华开着小轿车,都从张家界同时去长沙,已知小轿车的速度是大货车的1.25倍,小华比小明提前1小时到达长沙.试问:大货车和小轿车的速度各是多少?23.如图,AB是⊙O的直径,C是⊙O上的一点,直线MN经过点C,过点A作直线MN的垂线,垂足为点D,且∠BAC=∠CAD.(1)求证:直线MN是⊙O的切线;(2)若CD=3,∠CAD=30°,求⊙O的半径.24.已知抛物线y=a(x﹣1)2﹣3(a≠0)的图象与y轴交于点A(0,﹣2),顶点为B.(1)试确定a的值,并写出B点的坐标;(2)若一次函数的图象经过A、B两点,试写出一次函数的解析式;(3)试在x轴上求一点P,使得△PAB的周长取最小值;(4)若将抛物线平移m(m≠0)个单位,所得新抛物线的顶点记作C,与原抛物线的交点记作D,问:点O、C、D能否在同一条直线上?若能,请求出m的值;若不能,请说明理由.湖南省张家界市中考数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣5的倒数是()A.B.C.﹣5 D.5【考点】倒数.【分析】根据倒数的定义进行解答即可.【解答】解:∵(﹣5)×(﹣)=1,∴﹣5的倒数是﹣.故选:A.【点评】本题考查的是倒数的定义,即乘积是1的两数互为倒数.2.如图是由4个完全相同的小正方体组成的立体图形,则它的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】直接从上往下看,看到平面图形就是俯视图,选择正确选项即可.【解答】解:根据题意,从上面看原图形可得到,故选C.【点评】本题主要考查了简单组合体的三视图的知识,俯视图是从上往下看得到的平面图形.3.下列运算正确的是()A.(x﹣y)2=x2﹣y2B.x2•x4=x6C.D.(2x2)3=6x6【考点】幂的乘方与积的乘方;算术平方根;同底数幂的乘法;完全平方公式.【专题】探究型.【分析】计算出各个选项中式子的正确结果,即可得到哪个选项是正确的.【解答】解:∵(x﹣y)2=x2﹣2xy+y2,故选项A错误;∵x2•x4=x6,故选项B正确;∵=3,故选项C错误;∵(2x2)3=8x6,故选项D错误;故选B.【点评】本体考查完全平方差公式、同底数幂的乘法、算术平方根、积的乘方,解题的关键是明确它们各自的计算方法.4.如图,将一块直角三角板的直角顶点放在直尺的一边上.如果∠1=50°,那么∠2的度数是()A.30° B.40° C.50° D.60°【考点】平行线的性质.【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【解答】解:如图,,∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°﹣50°=40°.故选B.【点评】此题考查了平行线的性质.注意两直线平行,同位角相等定理的应用是解此题的关键.5.在校田径运动会上,小明和其他三名选手参加100米预赛,赛场共设1,2,3,4四条跑道,选手以随机抽签的方式决定各自的跑道.若小明首先抽签,则小明抽到1号跑道的概率是()A.B.C.D.【考点】概率公式.【分析】根据概率概率=所求情况数与总情况数之比.【解答】解:小明选择跑道有4种结果,抽到跑道1只有一种结果,小明抽到1号跑道的概率是,故选:B.【点评】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.6.如图,AB是⊙O的直径,BC是⊙O的弦.若∠OBC=60°,则∠BAC的度数是()A.75° B.60° C.45° D.30°【考点】圆周角定理.【分析】根据AB是⊙O的直径可得出∠ACB=90°,再根据三角形内角和为180°以及∠OBC=60°,即可求出∠BAC的度数.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,又∵∠OBC=60°,∴∠BAC=180°﹣∠ACB﹣∠ABC=30°.故选D.【点评】本题考查了圆周角定理以及角的计算,解题的关键是找出∠ACB=90°.本题属于基础题,难度不大,解决该题型题目时,找出直径所对的圆周角为90°是关键.7.如表是我市4个区县今年5月31日最高气温(℃)的统计结果:永定区武陵源区慈利县桑植县32 32 33 30该日最高气温的众数和中位数分别是()A.32℃,32℃ B.32℃,33℃ C.33℃,33℃ D.32℃,30℃【考点】众数;中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:在这一组数据中32是出现次数最多的,故众数是32;处于这组数据中间位置的数是32、32,那么由中位数的定义可知,这组数据的中位数是32.故选A.【点评】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8.在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.【解答】解:A、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,对称轴x=>0,应在y轴的右侧,故不合题意,图形错误;B、对于直线y=ax+b来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2+bx来说,对称轴x=<0,应在y轴的左侧,故不合题意,图形错误;C、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象开口向上,对称轴x=>0,应在y轴的右侧,故符合题意;D、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,a<0,故不合题意,图形错误;故选:C.【点评】此主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.二、填空题(本大题共6个小题,每小题3分,满分18分)9.因式分解:x2﹣4=(x+2)(x﹣2).【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式得出答案.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【点评】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.10.据统计,张家界接待中外游客突破50000000人次,旅游接待人次在全国同类景区和旅游目的地城市中名列前茅.将50000000人用科学记数法表示为5×107人.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将50000000用科学记数法表示为:5×107.故答案为:5×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.如图,在△ABC中,点D、E、F分别是边AB、BC、CA上的中点,且AB=6cm,AC=8cm,则四边形ADEF的周长等于14cm.【考点】三角形中位线定理.【分析】首先证明四边形ADEF是平行四边形,根据三角形中位线定理求出DE、EF即可解决问题.【解答】解:∵BD=AD,BE=EC,∴DE=AC=4cm,DE∥AC,∵CF=FA,CE=BE,∴EF=AB=3cm,EF∥AB,∴四边形ADEF是平行四边形,∴四边形ADEF的周长=2(DE+EF)=14cm.故答案为14.【点评】本题考查三角形中位线定理、平行四边形的判定和性质等知识,解题的关键是出现中点想到三角形中位线定理,记住三角形中位线平行于第三边且等于第三边的一半,属于中考常考题型.12.若关于x的一元二次方程x2﹣2x+k=0无实数根,则实数k的取值范围是k>1.【考点】根的判别式.【分析】根据一元二次方程无实数根的条件△<0求出k的范围.【解答】解:∵关于x的一元二次方程x2﹣2x+k=0无实数根,∴△=b2﹣4ac=(﹣2)2﹣4×1×k<0,∴k>1,故答案为k>1.【点评】此题是根的判别式,主要考查了根的判别式,△>0,一元二次方程有两个不相等的实数根,△=0,一元二次方程由两个相等的实数根,△<0,一元二次方程无实数根.13.如图,点P是反比例函数(x<0)图象的一点,PA垂直于y轴,垂足为点A,PB垂直于x轴,垂足为点B.若矩形PBOA的面积为6,则k的值为﹣6.【考点】反比例函数系数k的几何意义.【分析】根据矩形PBOA的面积为6,得出|k|=6,再根据反比例函数的图象得出k<0,从而求出k的值.【解答】解:∵矩形PBOA的面积为6,∴|k|=6,∵反比例函数(x<0)的图象过第二象限,∴k<0,∴k=﹣6;故答案为:﹣6.【点评】本题主要考查了反比例函数y=中k的几何意义,用到的知识点是过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,注意k的取值范围.14.如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是8cm.【考点】翻折变换(折叠问题);矩形的性质.【分析】设AH=a,则DH=AD﹣AH=8﹣a,通过勾股定理即可求出a值,再根据同角的余角互补可得出∠BFE=∠AEH,从而得出△EBF∽△HAE,根据相似三角形的周长比等于对应比即可求出结论.【解答】解:设AH=a,则DH=AD﹣AH=8﹣a,在Rt△AEH中,∠EAH=90°,AE=4,AH=a,EH=DH=8﹣a,∴EH2=AE2+AH2,即(8﹣a)2=42+a2,解得:a=3.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH.又∵∠EAH=∠FBE=90°,∴△EBF∽△HAE,∴===.∵C△HAE=AE+EH+AH=AE+AD=12,∴C△EBF=C△HAE=8.故答案为:8.【点评】本题考查了翻折变换、矩形的性质、勾股定理以及相似三角形的判定及性质,解题的关键是找出△EBF∽△HAE.本题属于中档题,难度不大,解决该题型题目时,通过勾股定理求出三角形的边长,再根据相似三角形的性质找出周长间的比例是关键.三、解答题(本大题共10个小题,满分58分.请考生用黑色碳素笔在答题卡相应的题号后答题区域内作答,必须写出运算步骤、推理过程或文字说明,超出答题区域的作答无效.)15.计算:.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】首先计算绝对值、零次幂、负整数指数幂、特殊角的三角函数值,然后再计算乘法,最后计算加减即可.【解答】解:原式=+1+2﹣2×,=+3﹣,=3.【点评】此题主要考查了实数的运算,解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.16.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(﹣1,2)、B(﹣2,1)、C(1,1)(正方形网格中每个小正方形的边长是1个单位长度).(1)△A1B1C1是△ABC绕点C逆时针旋转90度得到的,B1的坐标是(1,﹣2);(2)求出线段AC旋转过程中所扫过的面积(结果保留π).【考点】扇形面积的计算;坐标与图形变化-旋转.【分析】(1)利用旋转的性质得出)△A1B1C1与△ABC的关系,进而得出答案;(2)利用扇形面积求法得出答案.【解答】解:(1)△A1B1C1是△ABC绕点C逆时针旋转90度得到的,B1的坐标是:(1,﹣2),故答案为:C,90,(1,﹣2);(2)线段AC旋转过程中所扫过的面积为以点C为圆心,AC为半径的扇形的面积.∵AC==,∴面积为:=,即线段AC旋转过程中所扫过的面积为.【点评】此题主要考查了扇形面积求法以及旋转变换,正确得出旋转角是解题关键.17.先化简,后求值:,其中x满足x2﹣x﹣2=0.【考点】分式的化简求值.【专题】计算题.【分析】先把括号内通分,再把分子分母因式分解和除法运算化为乘法运算,接着约分得到原式=x+1,然后利用因式分解法解x2﹣x﹣2=0,再利用分式有意义的条件把满足题意的x的值代入计算即可.【解答】解:原式=•=•=x﹣1,解方程x2﹣x﹣2=0,得x1=﹣1,x2=2,当x=2时,原分式无意义,所以当x=﹣1时,原式=﹣1﹣1=﹣2.【点评】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.注意分式有意义的条件.18.在读书月活动中,某校号召全体师生积极捐书,为了解所捐书籍的种类,图书管理员对部分书籍进行了抽样调查,根据调查数据绘制了如下不完整的统计图表.请你根据统计图表所提供的信息回答下面问题:某校师生捐书种类情况统计表种类频数百分比A.科普类12 nB.文学类14 35%C.艺术类m 20%D.其它类 6 15%(1)统计表中的m=8,n=30%;(2)补全条形统计图;(3)本次活动师生共捐书2000本,请估计有多少本科普类图书?【考点】条形统计图;用样本估计总体;频数(率)分布表.【分析】(1)根据频率之和为1可得n的值,再根据科普类书籍的数量和百分比求得总数,由频数之和等于总数可得m的值;(2)由(1)中m的值即可补全条形图;(3)用样本中科普类书籍的百分比乘以总数可得答案.【解答】解:(1)n=1﹣35%﹣20%﹣15%=30%,∵此次抽样的书本总数为12÷30%=40(本),∴m=40﹣12﹣14﹣6=8,故答案为:8,30%.(2)补全条形图如图:(3)2000×30%=600(本)答:估计有600本科普类图书.【点评】本题考查的是条形统计图和频数分布表,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,熟练掌握频数之和等于总数、频率之和等于1是解题的关键.19.已知:如图,在四边形ABCD中,AB∥CD,E是BC的中点,直线AE交DC的延长线于点F.试判断四边形ABFC的形状,并证明你的结论.【考点】平行四边形的判定;全等三角形的判定与性质.【分析】利用平行线的性质得出∠BAE=∠CFE,由AAS得出△ABE≌△FCE,得出对应边相等AE=EF,再利用平行四边形的判定得出即可.【解答】解:四边形ABFC是平行四边形;理由如下:∵AB∥CD,∴∠BAE=∠CFE,∵E是BC的中点,∴BE=CE,在△ABE和△FCE中,,∴△ABE≌△FCE(AAS);∴AE=EF,又∵BE=CE∴四边形ABFC是平行四边形.【点评】此题主要考查了平行四边形的判定、全等三角形的判定与性质等知识;熟练掌握平行四边形的判定方法,证明三角形全等是解决问题的关键.20.求不等式组的解集,并把它们的解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】首先分别解不等式进而得出不等式组的解集,再数轴上表示出解集即可.【解答】解:,解不等式①得:x<3,解不等式②得:x≥﹣2,则不等式组的解集是:﹣2≤x<3.解集在数轴上表示如下:.【点评】此题主要考查了解一元一次不等式组以及在数轴上表示出不等式的解集,正确解出不等式是解题关键.21.如图,某建筑物AC顶部有一旗杆AB,且点A,B,C在同一条直线上,小明在地面D处观测旗杆顶端B的仰角为30°,然后他正对建筑物的方向前进了20米到达地面的E处,又测得旗杆顶端B的仰角为60°,已知建筑物的高度AC=12m,求旗杆AB的高度(结果精确到0.1米).参考数据:≈1.73,≈1.41.【考点】解直角三角形的应用-仰角俯角问题.【分析】首先根据三角形外角的性质可得∠DBE=60°﹣30°=30°,根据等角对等边可得BE=DE,然后在Rt△BEC中,根据三角形函数可得BC=BE•sin60°,进而可得BC长,然后可得AB的长.【解答】解:∵∠BEC=60°,∠BDE=30°,∴∠DBE=60°﹣30°=30°,∴BE=DE=20,在Rt△BEC中,BC=BE•sin60°=20×=10≈17.3(米),∴AB=BC﹣AC=17.3﹣12=5.3(米),答:旗杆AB的高度为5.3米.【点评】此题主要考查了解直角三角形的应用,关键是证明BE=DE,掌握三角形函数定义.22.张家界到长沙的距离约为320km,小明开着大货车,小华开着小轿车,都从张家界同时去长沙,已知小轿车的速度是大货车的1.25倍,小华比小明提前1小时到达长沙.试问:大货车和小轿车的速度各是多少?【考点】分式方程的应用.【分析】设大货车的速度是x千米/时,则小轿车的速度是1.25x/时,根据时间关系列出方程,解方程即可.【解答】解:设大货车的速度是x千米/时,则小轿车的速度是1.25x/时,由题意,得,解得:x=64;经检验,x=64是原方程的解,且符合题意,则1.25 x=1.25×64=80;答:大货车的速度是64千米/时,小轿车的速度是80千米/时.【点评】本题考查了分式方程分应用、分式方程的解法;根据时间关系列出方程是解决问题的关键.23.如图,AB是⊙O的直径,C是⊙O上的一点,直线MN经过点C,过点A作直线MN的垂线,垂足为点D,且∠BAC=∠CAD.(1)求证:直线MN是⊙O的切线;(2)若CD=3,∠CAD=30°,求⊙O的半径.【考点】切线的判定.【分析】(1)连接OC,推出AD∥OC,推出OC⊥MN,根据切线的判定推出即可;(2)求出AD、AC长,证△ADC∽△ACB,得出比例式,代入求出AB长即可.【解答】(1)证明:连接OC,因为OA=OC,所以∠BAC=∠ACO.因为AC平分∠BAD,所以∠BAC=∠CAD,故∠ACO=∠CAD.所以OC∥AD,又已知AD丄MN,所以OC丄MN,所以,直线MN是⊙O的切线;(2)解:已知AB是⊙O的直径,则∠ACB=90°,又AD丄MN,则∠ADC=90°.因为CD=3,∠CAD=30°,所以AD=3,AB=6在Rt△ABC和Rt△ACD中,∠BAC=∠CAD,所以Rt△ABC∽Rt△ACD,则,则AB=4,所以⊙O的半径为2.【点评】本题考查了切线的判定,等腰三角形的判定和性质,平行线性质,相似三角形的性质和判定的应用,主要考查学生运用定理进行推理和计算的能力.24.已知抛物线y=a(x﹣1)2﹣3(a≠0)的图象与y轴交于点A(0,﹣2),顶点为B.(1)试确定a的值,并写出B点的坐标;(2)若一次函数的图象经过A、B两点,试写出一次函数的解析式;(3)试在x轴上求一点P,使得△PAB的周长取最小值;(4)若将抛物线平移m(m≠0)个单位,所得新抛物线的顶点记作C,与原抛物线的交点记作D,问:点O、C、D能否在同一条直线上?若能,请求出m的值;若不能,请说明理由.【考点】二次函数综合题.【分析】(1)把A(0,﹣2)代入y=a(x﹣1)2﹣3即可得到结论;(2)设一次函数的解析式为y=kx+b将A、B两点的坐标代入解析式解方程组即可得到结论;(3)连接EB交x轴于点P,则P点即为所求,求出过E、B点的一次函数解析式为y=﹣5x+2,即可得到结论;(4)如图2,设抛物线向右平移m(若m>0表示向右平移,若m<0表示向左平移)个单位,得到新的抛物线的顶点C(1+m,﹣3),解方程组得到两抛物线的交点D(),解一元二次方程得到m=2或m=﹣3,即可得到结论.【解答】解:(1)把A(0,﹣2)代入y=a(x﹣1)2﹣3得﹣2=a(0﹣1)2﹣3,解得:a=1,∵顶点为B,∴B(1,﹣3);(2)设一次函数的解析式为y=kx+b将A、B两点的坐标代入解析式求得:,∴k=﹣1,b=﹣2,∴写出一次函数的解析式为y=﹣x﹣2,;(3)A点关于x轴的对称点记作E,则E(0,2),如图1,连接EB交x轴于点P,则P点即为所求,理由:在△PAB中,AB为定值,只需PA+PB取最小值即可,而PA=PE,从而只需PE+PB取最小值即可,∵两点之间线段最短,∴PE+PB≤EB,∴E、P、B三点在同一条直线上时,取得最小值.由于过E、B点的一次函数解析式为y=﹣5x+2,当y=0时,x=,∴P(,0);(4)如图2,设抛物线向右平移m(若m>0表示向右平移,若m<0表示向左平移)个单位,则所得新的抛物线的顶点C(1+m,﹣3),∴新抛物线解析式为y=(x﹣1﹣m)2﹣3解得,∴两抛物线的交点D(),∴经过O、C的一次函数解析式是y=﹣x,若O、C、D在同一直线上,则有,化简整理得m3+m2﹣6m=0,∵m≠0,∴m2+m﹣6=0,解得:m=2或m=﹣3,∴O、C、D三点能够在同一直线上,此时m=2或m=﹣3.即抛物线向右平移2个单位,或者向左平移3个单位,均满足题目要求.【点评】本题考查了待定系数法求函数的解析式,二次函数的性质,平移的性质,解一元二次方程,轴对称﹣最短距离问题,熟练掌握二次函数的性质是解题的关键.。

2013年湖南省张家界市中考数学试卷(解析版)

2013年湖南省张家界市中考数学试卷(解析版)

2013年中考数学模拟试卷参考答案一、选择题(每题3分,共30分)BCBDC DCCBA二、填空题11. 2 12. 2(x-2)(x+2) 13.190/m 14.12 15.2013216.(2.4, 0.8)三、解答题(第17-19题每题6分;第20-21题每题8分;第22-23题每题10分;第24题12分,共66分)17.(本题满分6分)解:原式=(x 2-2xy+y 2) +(2xy-2y 2 ) .......................................2分=x 2 -y 2 .................................................1分 ∴ 原式=12-√22 .................................................1分=1-2 .................................................1分=-1 .................................................1分18.(本题满分6分) 解: x=2,y=119.(本题满分6分)解: (1)4341-1-1)(===(取出红球)取出白球P P ...................................3分(2)设袋中的红球有x 只,则有4118=+x x (或431818=+x )...............................2分 解得6=x (此处分式方程不检验不扣分) 答:袋中的红球有6只. ...............................1分20.(本题满分8分)解:(1)① 作∠BAC 的平分线交BC 于点D ;.....................2分② 过D 作DE ⊥AB ,垂足为点E ; ......................1分③ 过D 作DF ⊥AC ,垂足为点F 。

张家界市中考数学试卷及答案解析(word版)

张家界市中考数学试卷及答案解析(word版)

湖南省张家界市中考数学试卷一.选择题(本大题共8个小题,每小题3分,满分24分,在每小题给出四个选项中,只有一项是符合题目要求.)1.2018绝对值是()A.2018B.﹣2018C.D.2.若关于x分式方程=1解为x=2,则m值为()A.5B.4C.3D.23.下列图形中,既是中心对称图形,又是轴对称图形是()A. B. C. D.4.下列运算正确是()A.a2+a=2a3B.=aC.(a+1)2=a2+1D.(a3)2=a65.若一组数据a1,a2,a3平均数为4,方差为3,那么数据a1+2,a2+2,a3+2平均数和方差分别是()A.4,3B.6,3C.3,4D.6,56.如图,AB是⊙O直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()A.8cmB.5cmC.3cmD.2cm7.下列说法中,正确是()A.两条直线被第三条直线所截,内错角相等B.对角线相等平行四边形是正方形C.相等角是对顶角D.角平分线上点到角两边距离相等8.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256…,则2+22+23+24+25+…+21018末位数字是()A.8B.6C.4D.0二.填空题(本大题共6个小题,每小题3分,满分18分)9.因式分解:a2+2a+1=.10.目前世界上能制造芯片最小工艺水平是5纳米,而我国能制造芯片最小工艺水平是16纳米,已知1纳米=10﹣9米,用科学记数法将16纳米表示为米.11.在一个不透明袋子里装有3个白色乒乓球和若干个黄色乒乓球,若从这个袋子里随机摸岀一个乒乓球,恰好是黄球概率为,则袋子内共有乒乓球个数为.12.如图,将△ABC绕点A逆时针旋转150°,得到△ADE,这时点B,C,D恰好在同一直线上,则∠B度数为.13.关于x一元二次方程x2﹣kx+1=0有两个相等实数根,则k=.14.如图,矩形ABCD边AB与x轴平行,顶点A坐标为(2,1),点B与点D都在反比例函数y=(x>0)图象上,则矩形ABCD周长为.三.解答题(本大题共9个小题,共计58分,解答应写出文字说明.证明过程或演算过程)15.(5.00分)(﹣1)0+(﹣1)﹣2﹣4sin60°+.16.(5.00分)解不等式组,写出其整数解.17.(5.00分)在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE,垂足为F.(1)求证.DF=AB;(2)若∠FDC=30°,且AB=4,求AD.18.(5.00分)列方程解应用题《九章算术》中有“盈不足术”问题,原文如下:“今有共買羊,人出五,不足四十五;人出七,不足三.问人数.羊價各幾何?”题意是:若干人共同出资买羊,每人出5元,则差45元;每人出7元,则差3元.求人数和羊价各是多少?19.(6.00分)阅读理解题在平面直角坐标系xOy中,点P(x0,y0)到直线Ax+By+C=0(A2+B2≠0)距离公式为:d=,例如,求点P(1,3)到直线4x+3y﹣3=0距离.解:由直线4x+3y﹣3=0知:A=4,B=3,C=﹣3所以P(1,3)到直线4x+3y﹣3=0距离为:d==2根据以上材料,解决下列问题:(1)求点P1(0,0)到直线3x﹣4y﹣5=0距离.(2)若点P2(1,0)到直线x+y+C=0距离为,求实数C值.20.(6.00分)如图,点P是⊙O直径AB延长线上一点,且AB=4,点M为上一个动点(不与A,B重合),射线PM与⊙O交于点N(不与M重合)(1)当M在什么位置时,△MAB面积最大,并求岀这个最大值;(2)求证:△PAN∽△PMB.21.(8.00分)今年是我市全面推进中小学校“社会主义核心价值观”教育年.某校对全校学生进行了中期检测评价,检测结果分为A(优秀).B(良好).C(合格).D (不合格)四个等级.并随机抽取若干名学生检测结果作为样本进行数据处理,制作了如下所示不完整统计表(图1)和统计图(图2).等级频数频率A a0.3B350.35C31bD40.04请根据图提供信息,解答下列问题:(1)本次随机抽取样本容量为;(2)a=,b=;(3)请在图2中补全条形统计图;(4)若该校共有学生800人,据此估算,该校学生在本次检测中达到“A(优秀)”等级学生人数为人.22.(8.00分)2017年9月8日﹣10日,第六届翼装飞行世界锦标赛在我市天门山风景区隆重举行,来自全球11个国家16名选手参加了激烈角逐.如图,某选手从离水平地面1000米高A点出发(AB=1000米),沿俯角为30°方向直线飞行1400米到达D点,然后打开降落伞沿俯角为60°方向降落到地面上C点,求该选手飞行水平距离BC.23.(10.00分)如图,已知二次函数y=ax2+1(a≠0,a为实数)图象过点A(﹣2,2),一次函数y=kx+b(k≠0,k,b为实数)图象l经过点B(0,2).(1)求a值并写出二次函数表达式;(2)求b值;(3)设直线l与二次函数图象交于M,N两点,过M作MC垂直x轴于点C,试证明:MB=MC;(4)在(3)条件下,请判断以线段MN为直径圆与x轴位置关系,并说明理由.参考答案与试题解析一.选择题(本大题共8个小题,每小题3分,满分24分,在每小题给出四个选项中,只有一项是符合题目要求.)1.2018绝对值是()A.2018B.﹣2018C.D.【分析】直接利用绝对值性质分析得出答案.【解答】解:2018绝对值是:2018.故选:A.2.若关于x分式方程=1解为x=2,则m值为()A.5B.4C.3D.2【分析】直接解分式方程进而得出答案.【解答】解:∵关于x分式方程=1解为x=2,∴x=m﹣2=2,解得:m=4.故选:B.3.下列图形中,既是中心对称图形,又是轴对称图形是()A. B. C. D.【分析】根据轴对称图形与中心对称图形概念进行判断即可.【解答】解:A.不是轴对称图形,是中心对称图形.故错误;B.是轴对称图形,不是中心对称图形.故错误;C.是轴对称图形,也是中心对称图形.故正确;D.是轴对称图形,不是中心对称图形.故错误.故选:C.4.下列运算正确是()A.a2+a=2a3B.=aC.(a+1)2=a2+1D.(a3)2=a6【分析】根据合并同类项法则:把同类项系数相加,所得结果作为系数,字母和字母指数不变;=a (a≥0);完全平方公式:(a±b)2=a2±2ab+b2;幂乘方法则:底数不变,指数相乘进行计算即可.【解答】解:A.a2和a不是同类项,不能合并,故原题计算错误;B.=|a|,故原题计算错误;C.(a+1)2=a2+2a+1,故原题计算错误;D.(a3)2=a6,故原题计算正确;故选:D.5.若一组数据a1,a2,a3平均数为4,方差为3,那么数据a1+2,a2+2,a3+2平均数和方差分别是()A.4,3B.6,3C.3,4D.6,5【分析】根据数据a1,a2,a3平均数为4可知(a1+a2+a3)=4,据此可得出(a1+2+a2+2+a3+2)值;再由方差为3可得出数据a1+2,a2+2,a3+2方差.【解答】解:∵数据a1,a2,a3平均数为4,∴(a1+a2+a3)=4,∴(a1+2+a2+2+a3+2)=(a1+a2+a3)+2=4+2=6,∴数据a1+2,a2+2,a3+2平均数是6;∵数据a1,a2,a3方差为3,∴[(a1﹣4)2+(a2﹣4)2+(a3﹣4)2]=3,∴a1+2,a2+2,a3+2方差为:[(a1+2﹣6)2+(a2+2﹣6)2+(a3+2﹣6)2]=[(a1﹣4)2+(a2﹣4)2+(a3﹣4)2]=3.故选:B.6.如图,AB是⊙O直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()A.8cmB.5cmC.3cmD.2cm【分析】根据垂径定理可得出CE长度,在Rt△OCE中,利用勾股定理可得出OE 长度,再利用AE=AO+OE即可得出AE长度.【解答】解:∵弦CD⊥AB于点E,CD=8cm,∴CE=CD=4cm.在Rt△OCE中,OC=5cm,CE=4cm,∴OE==3cm,∴AE=AO+OE=5+3=8cm.故选:A.7.下列说法中,正确是()A.两条直线被第三条直线所截,内错角相等B.对角线相等平行四边形是正方形C.相等角是对顶角D.角平分线上点到角两边距离相等【分析】根据平行线性质.正方形判定.矩形判定.对顶角性质.角平分线性质逐个判断即可.【解答】解:A.两条平行线被第三条直线所截,内错角才相等,错误,故本选项不符合题意;B.对角线相等四边形是矩形,不一定是正方形,错误,故本选项不符合题意;C.相等角不一定是对顶角,错误,故本选项不符合题意;D.角平分线上点到角两边距离相等,正确,故本选项符合题意;故选:D.8.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256…,则2+22+23+24+25+…+21018末位数字是()A.8B.6C.4D.0【分析】通过观察发现:2n个位数字是2,4,8,6四个一循环,所以根据2018÷4=504…2,得出22018个位数字与22个位数字相同是4,进而得出答案.【解答】解:∵2n个位数字是2,4,8,6四个一循环,2018÷4=504…2,∴22018个位数字与22个位数字相同是4,故2+22+23+24+25+…+21018末位数字是2+4+8+6+…+2+4尾数,则2+22+23+24+25+…+21018末位数字是:2+4=6.故选:B.二.填空题(本大题共6个小题,每小题3分,满分18分)9.因式分解:a2+2a+1=(a+1)2.【分析】直接利用完全平方公式分解因式得出答案.【解答】解:a2+2a+1=(a+1)2.故答案为:(a+1)2.10.目前世界上能制造芯片最小工艺水平是5纳米,而我国能制造芯片最小工艺水平是16纳米,已知1纳米=10﹣9米,用科学记数法将16纳米表示为 1.6×10﹣8米.【分析】由1纳米=10﹣9米,可得出16纳米=1.6×10﹣8米,此题得解.【解答】解:∵1纳米=10﹣9米,∴16纳米=1.6×10﹣8米.故答案为:1.6×10﹣8.11.在一个不透明袋子里装有3个白色乒乓球和若干个黄色乒乓球,若从这个袋子里随机摸岀一个乒乓球,恰好是黄球概率为,则袋子内共有乒乓球个数为10.【分析】设有x个黄球,利用概率公式可得=,解出x值,可得黄球数量,再求总数即可.【解答】解:设有x个黄球,由题意得:=,解得:x=7,7+3=10,故答案为:10.12.如图,将△ABC绕点A逆时针旋转150°,得到△ADE,这时点B,C,D恰好在同一直线上,则∠B度数为15°.【分析】先判断出∠BAD=150°,AD=AB,再判断出△BAD是等腰三角形,最后用三角形内角和定理即可得出结论.【解答】解:∵将△ABC绕点A逆时针旋转150°,得到△ADE,∴∠BAD=150°,AD=AB,∵点B,C,D恰好在同一直线上,∴△BAD是顶角为150°等腰三角形,∴∠B=∠BDA,∴∠B=(180°﹣∠BAD)=15°,故答案为:15°.13.关于x一元二次方程x2﹣kx+1=0有两个相等实数根,则k=±2.【分析】根据题意可得△=0,进而可得k2﹣4=0,再解即可.【解答】解:由题意得:△=k2﹣4=0,解得:k=±2,故答案为:±2.14.如图,矩形ABCD边AB与x轴平行,顶点A坐标为(2,1),点B与点D都在反比例函数y=(x>0)图象上,则矩形ABCD周长为12.【分析】根据矩形性质.结合点A坐标得到点D横坐标为2,点B纵坐标为1,根据反比例函数解析式求出点D坐标,点B坐标,根据矩形周长公式计算即可.【解答】解:∵四边形ABCD是矩形,点A坐标为(2,1),∴点D横坐标为2,点B纵坐标为1,当x=2时,y==3,当y=1时,x=6,则AD=3﹣1=2,AB=6﹣2=4,则矩形ABCD周长=2×(2+4)=12,故答案为:12.三.解答题(本大题共9个小题,共计58分,解答应写出文字说明.证明过程或演算过程)15.(5.00分)(﹣1)0+(﹣1)﹣2﹣4sin60°+.【分析】直接利用负指数幂性质以及零指数幂性质以及特殊角三角函数值.二次根式性质分别化简得出答案.【解答】解:原式=1+1﹣4×+2=2.16.(5.00分)解不等式组,写出其整数解.【分析】先求出每个不等式解集,再求出不等式组解集即可.【解答】解:∵解不等式①得:x<3,解不等式②得:x≥﹣1,∴不等式组解集为﹣1≤x<3,∴不等式组整数解为﹣1,0,1,2.17.(5.00分)在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE,垂足为F.(1)求证.DF=AB;(2)若∠FDC=30°,且AB=4,求AD.【分析】(1)利用“AAS”证△ADF≌△EAB即可得;(2)由∠ADF+∠FDC=90°.∠DAF+∠ADF=90°得∠FDC=∠DAF=30°,据此知AD=2DF,根据DF=AB可得答案.【解答】证明:(1)在矩形ABCD中,∵AD∥BC,∴∠AEB=∠DAF,又∵DF⊥AE,∴∠DFA=90°,∴∠DFA=∠B,又∵AD=EA,∴△ADF≌△EAB,∴DF=AB.(2)∵∠ADF+∠FDC=90°,∠DAF+∠ADF=90°,∴∠FDC=∠DAF=30°,∴AD=2DF,∵DF=AB,∴AD=2AB=8.18.(5.00分)列方程解应用题《九章算术》中有“盈不足术”问题,原文如下:“今有共買羊,人出五,不足四十五;人出七,不足三.问人数.羊價各幾何?”题意是:若干人共同出资买羊,每人出5元,则差45元;每人出7元,则差3元.求人数和羊价各是多少?【分析】可设买羊人数为未知数,等量关系为:5×买羊人数+45=7×买羊人数+3,把相关数值代入可求得买羊人数,代入方程等号左边可得羊价.【解答】解:设买羊为x人,则羊价为(5x+45)元钱,5x+45=7x+3,x=21(人),5×21+45=150(员),答:买羊人数为21人,羊价为150元.19.(6.00分)阅读理解题在平面直角坐标系xOy中,点P(x0,y0)到直线Ax+By+C=0(A2+B2≠0)距离公式为:d=,例如,求点P(1,3)到直线4x+3y﹣3=0距离.解:由直线4x+3y﹣3=0知:A=4,B=3,C=﹣3所以P(1,3)到直线4x+3y﹣3=0距离为:d==2根据以上材料,解决下列问题:(1)求点P1(0,0)到直线3x﹣4y﹣5=0距离.(2)若点P2(1,0)到直线x+y+C=0距离为,求实数C值.【分析】(1)根据点到直线距离公式即可求解;(2)根据点到直线距离公式,列出方程即可解决问题.【解答】解:(1)d==1;(2)=,∴|C+1|=2,∴C+1=±2,∴C1=﹣3,C2=1.20.(6.00分)如图,点P是⊙O直径AB延长线上一点,且AB=4,点M为上一个动点(不与A,B重合),射线PM与⊙O交于点N(不与M重合)(1)当M在什么位置时,△MAB面积最大,并求岀这个最大值;(2)求证:△PAN∽△PMB.【分析】(1)当M在弧AB中点时,三角形MAB面积最大,此时OM与AB垂直,求出此时三角形面积最大值即可;(2)由同弧所对圆周角相等及公共角,利用两对角相等三角形相似即可得证.【解答】解:(1)当点M在中点处时,△MAB面积最大,此时OM⊥AB,∵OM=AB=×4=2,∴S=AB•OM=×4×2=4;△ABM(2)∵∠PMB=∠PAN,∠P=∠P,∴△PAN∽△PMB.21.(8.00分)今年是我市全面推进中小学校“社会主义核心价值观”教育年.某校对全校学生进行了中期检测评价,检测结果分为A(优秀).B(良好).C(合格).D (不合格)四个等级.并随机抽取若干名学生检测结果作为样本进行数据处理,制作了如下所示不完整统计表(图1)和统计图(图2).等级频数频率A a0.3B350.35C31bD40.04请根据图提供信息,解答下列问题:(1)本次随机抽取样本容量为100;(2)a=30,b=0.31;(3)请在图2中补全条形统计图;(4)若该校共有学生800人,据此估算,该校学生在本次检测中达到“A(优秀)”等级学生人数为240人.【分析】(1)根据统计图表中数据可以求得本次样本容量;(2)根据(1)中样本容量和表格中数据可以求得a.b值;(3)根据a值可以将条形统计图补充完整;(4)根据统计图中数据可以解答本题.【解答】解:(1)本次随机抽取样本容量为:35÷0.35=100,故答案为:100;(2)a=100×0.3=30,b=31÷100=0.31,故答案为:30,0.31;(3)由(2)知a=30,补充完整条形统计图如右图所示;(4)800×0.3=240(人),故答案为:240.22.(8.00分)2017年9月8日﹣10日,第六届翼装飞行世界锦标赛在我市天门山风景区隆重举行,来自全球11个国家16名选手参加了激烈角逐.如图,某选手从离水平地面1000米高A点出发(AB=1000米),沿俯角为30°方向直线飞行1400米到达D点,然后打开降落伞沿俯角为60°方向降落到地面上C点,求该选手飞行水平距离BC.【分析】如图,作DE⊥AB于E,DF⊥BC于F,根据题意得到∠ADE=30°,∠CDF=30°,利用含30度直角三角形三边关系计算出AE=AD=700,DE=AE=700,则BE=300,所以DF=300,BF=700,再在Rt△CDF中计算出CF,然后计算BF和CF和即可.【解答】解:如图,作DE⊥AB于E,DF⊥BC于F,∠ADE=30°,∠CDF=30°,在Rt△ADE中,AE=AD=×1400=700,DE=AE=700,∴BE=AB﹣AE=1000﹣700=300,∴DF=300,BF=700,在Rt△CDF中,CF=DF=×300=100,∴BC=700+100=800.答:选手飞行水平距离BC为800m.23.(10.00分)如图,已知二次函数y=ax2+1(a≠0,a为实数)图象过点A(﹣2,2),一次函数y=kx+b(k≠0,k,b为实数)图象l经过点B(0,2).(1)求a值并写出二次函数表达式;(2)求b值;(3)设直线l与二次函数图象交于M,N两点,过M作MC垂直x轴于点C,试证明:MB=MC;(4)在(3)条件下,请判断以线段MN为直径圆与x轴位置关系,并说明理由.【分析】(1)将点A坐标代入二次函数表达式中可求出a值,进而可得出二次函数表达式;(2)将点B坐标代入一次函数表达式中可求出b值;(3)过点M作ME⊥y轴于点E,设点M坐标为(x,x2+1),则MC=x2+1,由勾股定理可求出MB长度,进而可证出MB=MC;(4)过点N作ND⊥x轴于D,取MN中点为P,过点P作PF⊥x轴于点F,过点N作NH⊥MC于点H,交PF于点Q,由(3)结论可得出MN=NB+MB=ND+MC,利用中位线定理可得出PQ=MH,进而可得出PF=MN,由此即可得出以MN 为直径圆与x轴相切.【解答】解:(1)∵二次函数y=ax2+1(a≠0,a为实数)图象过点A(﹣2,2),∴2=4a+1,解得:a=,∴二次函数表达式为y=x2+1.(2)∵一次函数y=kx+b(k≠0,k,b为实数)图象l经过点B(0,2),∴2=k×0+b,∴b=2.(3)证明:过点M作ME⊥y轴于点E,如图1所示.设点M坐标为(x,x2+1),则MC=x2+1,∴ME=|x|,EB=|x2+1﹣2|=|x2﹣1|,∴MB=,=,=,=,=x2+1.∴MB=MC.(4)相切,理由如下:过点N作ND⊥x轴于D,取MN中点为P,过点P作PF⊥x轴于点F,过点N作NH⊥MC于点H,交PF于点Q,如图2所示.由(3)知NB=ND,∴MN=NB+MB=ND+MC.∵点P为MN中点,PQ∥MH,∴PQ=MH.∵ND∥HC,NH∥DC,且四个角均为直角,∴四边形NDCH为矩形,∴QF=ND,∴PF=PQ+QF=MH+ND=(ND+MH+HC)=(ND+MC)=MN.∴以MN为直径圆与x轴相切.。

2013年中考数学试题按章节考点分类:第40章动态型问题

2013年中考数学试题按章节考点分类:第40章动态型问题

四十章动态型问题18.(2013江苏苏州,18,3分)如图①,在梯形ABCD中,AD∥BC,∠A=60°,动点P从A点出发,以1cm/s的速度沿着A→B→C→D的方向不停移动,直到点P到达点D后才停止.已知△PAD的面积S(单位:cm2)与点P移动的时间(单位:s)的函数如图②所示,则点P从开始移动到停止移动一共用了(4+2)秒(结果保留根号).×=×=1×BE=3××=3,CD===2AB+BC+CD=2+2+2=4+24+21=4+24+223.(2013贵州省毕节市,23,12分)如图①,有一张矩形纸片,将它沿对角线AC剪开,得到△ACD和△A′BC′.(1)如图②,将△ACD沿A′C′边向上平移,使点A与点C′重合,连接A′D和BC,四边形A′BCD是形;(2)如图③,将△ACD的顶点A与A′点重合,然后绕点A沿逆时针方向旋转,使点D、A、B在同一直线上,则旋转角为度;连接CC′,四边形CDBC′是形;(3)如图④,将AC边与A′C′边重合,并使顶点B和D在AC边的同一侧,设AB、CD相交于E,连接BD,四边形ADBC是什么特殊四边形?请说明你的理由。

第23题图解析:(1)利用平行四边形的判定,对角线互相平分的四边形是平行四边形得出即可;(2)利用旋转变换的性质以及直角梯形判定得出即可;(3)利用等腰梯形的判定方法得出BD ∥AC,AD=CE,即可得出答案.解案:解:(1)平行四边形;证明:∵AD=AB,AA′=AC,∴A′C与BD互相平分,∴四边形A′BCD 是平行四边形;(2)∵DA 由垂直于AB ,逆时针旋转到点D 、A 、B 在同一直线上, ∴旋转角为90度;证明:∵∠D=∠B=90°,A ,D ,B 在一条直线上,∴CD ∥BC′,∴四边形CDBC′是直角梯形; 故答案为:90,直角梯; (3)四边形ADBC 是等腰梯形;证明:过点B 作BM ⊥AC ,过点D 作DN ⊥AC ,垂足分别为M ,N ,∵有一张矩形纸片,将它沿对角线AC 剪开,得到△ACD 和△A′BC′.∴△ACD ≌△A′BC′,∴BM=ND ,∴BD ∥AC ,∵AD=BC ,∴四边形ADBC 是等腰梯形.点评:此题主要考查了图形的剪拼与平行四边形的判定和等腰梯形的判定、直角梯形的判定方法等知识,熟练掌握判定定理是解题关键.26.(2013年广西玉林市,26,12分)如图,在平面直角坐标系xOy 中,矩形AOCD 的顶点A 的坐标是(0,4),现有两动点P ,Q ,点P 从点O 出发沿线段OC (不包括端点O ,C )以每秒2个单位长度的速度匀速向点C 运动,点Q 从点C 出发沿线段CD (不包括端点C 、D )以每秒1个单位长度的速度匀速向点D 运动.点P ,Q 同时出发,同时停止.设运动的时间为t (秒),当t=2(秒)时,PQ=52.(1)求点D 的坐标,并直接写出t 的取值范围;(2)连接AQ 并延长交x 轴于点E ,把AE 沿AD 翻折交CD 延长线于点F ,连接EF ,则△AEF 的面积S 是否随t 的变化而变化?若变化,求出S 与t 的函数关系式;若不变化,求出S 的值.(3)在(2)的条件下,t 为何值时,四边形APQF 是梯形?解:(1)设OC=x , 当t=2时,OP=4,PC=x -4;CQ=2.在Rt △PQC 中,222CQ PC PQ +=,()()2222452+-=x ,解得01=x (不合题意,舍去),82=x ,∴D 点坐标(8,4);(2)由翻折可知,点Q 和点F 关于直线AD 对称,∴QD=DF=4-t ,而AD=8,∴()t t S AQF 83242821-=-⨯⨯=∆. 设经过A (0,4)、Q (8,t )两点的一次函数解析式为b kx y +=,故有:⎩⎨⎧+==b k t b 84,解得84-=t k ,∴一次函数的解析式为484+-=x t y ,易知一次函数与x 轴的交点的坐标为(t -432,0),∴EC=t -432-8,∴()t t t S E Q F842843221=-⨯⎪⎭⎫⎝⎛--⨯=∆, ∴328832=+-=+=∆∆∆t t S S S QFE AFQ AFE .∴△AEF 的面积S 不随t 的变化而变化,S 的值为32.(3)因AP 与QF 不平行,要想使四边形APQF 是梯形,须有P Q ∥AF.∵AF=AQ ,∴∠AFQ =∠AQF ,而∠CQE =∠AQF ,要想P Q ∥AF ,须有∠AFQ =∠PQC ,故只需具备条件∠PQC =∠CQE ,又∵QC ⊥PE ,∴∠ CQP=∠QCE ,QC=QC ,∴△CQP ≌△QCE ,∴PC=CE ,即8-2t=t-432-8,解得5261+=t (不合题意,舍去),5262-=t .故当526-=t 时,四边形APQF 是梯形.22. (2013珠海,22,9分)如图,在等腰梯形ABCD 中AB ∥CD,AB =高CE=对角线AC 、BD 交于H ,平行于线段BD 的两条直线MN 、RQ 同时从点A 出发沿AC 方向向点C 匀速平移,分别交等腰梯形ABCD 的边于M 、N 和R 、Q ,分别交对角线AC 于F 、G ;当直线RQ 到达点C 时,两直线同时停止移动.记等腰梯形ABCD 被直线MN 扫过的面积为1S ,被直线RQ 扫过的面积为2S ,若直线MN 平移的速度为1单位/秒,直线RQ 平移的速度为2单位/秒,设两直线移动的时间为x 秒.(1)填空:∠AHB =____________; AC =_____________; (2) 若213S S =,求x;(3) 若21S mS =,求m 的变化范围.第22题备用图【解析】(1) 如图第22题-1所示,平移对角线DB,交AB 的延长线于P.则四边形BPCD 是平行四边形,BD=PC,BP =DC .因为等腰梯形ABCD,AB ∥CD,所以AC =BD. 所以AC =PC.又高CE =AB =所以AE =EP =所以∠AHB =90°AC =4;第22题图-1⑵直线移动有两种情况:302x <<及322x ≤≤,需要分类讨论.①当302x <<时, 有2214S AG S AF ⎛⎫== ⎪⎝⎭.∴213S S ≠②当322x ≤≤时,先用含有x 的代数式分别表示1S ,2S ,然后由213S S =列出方程,解之可得x 的值; (3) 分情况讨论:①当302x <<时, 214S m S ==.②当322x ≤≤时,由21S mS =,得()222188223x S m S x --===2123643x ⎛⎫--+ ⎪⎝⎭.然后讨论这个函数的最值,确定m 的变化范围.【答案】(1) 90°,4;(2)直线移动有两种情况:302x <<及322x ≤≤.①当302x <<时,∵MN ∥BD,∴△AMN ∽△ARQ,△ANF ∽△AQG. 2214S AG S AF ⎛⎫== ⎪⎝⎭.∴213S S ≠ ②当322x ≤≤时, 如图第22题-2所示, 第22题图-2CG =4-2x,CH =1,14122BCDS ∆=⨯⨯=. ()22422821CRQ x S x ∆-⎛⎫=⨯=- ⎪⎝⎭2123S x =,()22882S x =-- 由213S S =,得方程()22288233x x --=⨯,解得165x =(舍去),22x =.∴x =2. (3) 当302x <<时,m =4 当322x ≤≤时, 由21S mS =,得()2288223x m x --==2364812x x -+-=2123643x ⎛⎫--+ ⎪⎝⎭.M 是1x 的二次函数, 当322x ≤≤时, 即当11223x ≤≤时, M 随1x 的增大而增大. 当32x =时,最大值m =4. 当x =2时,最小值m =3.∴3≤m ≤4.【点评】本题是一道几何代数综合压轴题,重点考查等腰梯形, 相似三角形的性质,二次函数的增减性和最值及分类讨论,由特殊到一般的数学思想等的综合应用.解题时,(1)小题,通过平移对角线,将等腰梯形转化为等腰三角形,从而使问题得以简化,是我们解决梯形问题常用的方法.(2) 小题直线移动有两种情况:302x <<及322x ≤≤,需要分类讨论.这点万不可忽略,解题时用到的知识点主要是相似三角形面积比等于相似比的平方.(3) 小题仍需要分情况讨论.对于函数2123643m x ⎛⎫=--+ ⎪⎝⎭,讨论它的增减性和最值是个难点. 讨论之前点明我们把这个函数看作“M 是1x的二次函数”对顺利作答至关重要.16、(2013·湖南省张家界市·16题·3分)已知线段AB=6,C 、D 是AB 上两点,且AC=DB=1,P 是线段CD 上一动点,在AB 同侧分别作等边三角形APE 和等边三角形PBF ,G 为线段EF 的中点,点P 由点C 移动到点D 时,G 点移动的路径长度为________.【分析】不好意思,本题做不出来,还请高手补充 18.(2013湖北荆州,18,3分)如图(1)所示,E 为矩形ABCD的边AD 上一点,动点P 、Q 同时从点B 出发,点P 沿折线BE —ED —DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒.设P 、Q 同发t 秒时,△BPQ 的面积为y cm 2.已知y 与t 的函数关系图象如图(2)(曲线OM 为抛物线的一部分),则下列结论:①AD =BE =5;②cos ∠ABE =35;③当0<t ≤5时,y =25t 2;④当t =294秒时,△ABE ∽△QBP ;其中正确的结论是__▲__(填序号).【解析】首先,分析函数的图象两个坐标轴表示的实际意义及函数的图象的增减情况. 横轴表示时间t ,纵轴表示△BPQ 的面积y .当0<t ≤5时,图象为抛物线,图象过原点,且关于y 轴对称,y 随的t 增大而增大,t=5的时候,△BPQ 的面积最大,图(1) 图(2)第18题图Q图(3)A C P D B5<t <7时,y 是常函数,△BPQ 的面积不变,为10.从而得到结论:t=5的时候,点Q 运动到点C ,点P 运动到点E , 所以BE =BC=AD =5×1=5cm ,5<t <7时,点P 从E →D ,所以ED =2×1=2cm ,AE=3 cm ,AB=4 cm. cos ∠ABE =54=BE AB . 设抛物线OM 的函数关系式为2at y =(,0≠a 0<t ≤5),把(5,10)代入得到a 2510=,所以52=a , 所以当0<t ≤5时, y =52t 2 当t >5时,点P 位于线段CD 上,点Q 与点C 重合,.当t =294秒,点P 位于P ’处,C P ’=CD -DP ’=4-(294-7)=415cm.在△ABE 和△Q ’BP ’中,34''==CP B Q AE AB ,∠A =Q ’=90°,所以△ABE ∽△Q ’BP ’ 【答案】①③④【点评】本题综合考察了动点问题、二次函数、三角形相似、常函数、锐角三角函数、分段函数的知识,综合性强。

湖南省张家界市中考数学试题(word版,含答案)

湖南省张家界市中考数学试题(word版,含答案)
相关资料
科目:数学(初中)
(试题卷)
注意事项:
1、答题前,考生务必将自己的姓名、准考证号写在答 题卡和该试题卷的封面上,并将准考证号下面相应的信息点 用 2B 铅笔涂黑。 2、考生作答时,选择题和非选择题均须写在答题卡上,
在草稿纸和本试题卷上答题无效。考生在答题卡上按如 下要求答题: 1 选择题部分用 2B 铅笔把对应题目的答案标号所 在方 框涂黑,修改时用橡皮擦干净,不留痕迹。 2 非选择题部分(包括填写填和解答题)请按题号 用 0.5 毫米黑色墨水签字笔书写,否则作答无效。
又HG∥EF
2 3
1 3
HE=HG ……………………………………………9 分
EFGH 是菱形…………………………10 分
25、解:(1)由题意知:
0a2c 3a02 20c ……………………………………1分
a1
解得 c3 ……………………………………………2 分
是 2015,则 m 的值是( )
A. 46
B. 45
C.44
按此规律,若m3 分裂后其中有一个奇数
D. 43
二、填空题(本大题共 8 个小题,每小题 3 分,满分 24 分)
9.因式分解: x 2 1=
.
10. 如图, AC 与 BD 相交于点O ,且 AB CD ,请添加一个条

,使得ABO ≌ CDO .
的位置关系是( )
A.相离 C.相 B.相交

D. 以上三种情况均有可能
3. 下列运算正确的是( )
A . x 2 x3 x6 B. 5x 2x 3x C. ( x 2 ) 3 = x5 D. ( 2x ) 2 4x 2
4. 下列四个立体图形中,它们各自的三视图有两个相同,而另一个不同的是( )

2013中考数学真题及答案汇编相当经典不用花钱(八)

2013中考数学真题及答案汇编相当经典不用花钱(八)

【答案】B 【解析】方差小的比较稳定,故选 B。 5.(2013 山西,5,2 分)下列计算错误的是( )
A.x3+ x3=2x3
B.a6÷a3=a2
C.
12 2
3
1 1 D. 3
3
【答案】B
【解析】a6÷a3= a63 a3 ,故 B 错,A、C、D 的计算都正确。
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根保通据护过生高管产中线工资敷艺料设高试技中卷术资配0料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高高与中中带资资负料料荷试试下卷卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并中3试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2013年湖南张家界中考数学试卷及答案(word解析版)

2013年湖南张家界中考数学试卷及答案(word解析版)

湖南省张家界市2013年中考数学试卷一、选择题(本大题共8个小题,每小题3分,共计24分)﹣3.(3分)(2013•张家界)把不等式组的解集在数轴上表示正确的是()解:.29.(3分)(2013•张家界)我国除了约960万平方千米的陆地面积外,还有约3000000平方6,则这组数据的平均数是4.11.(3分)(2013•张家界)如图,⊙A、⊙B、⊙C两两外切,它们的半径都是a,顺次连接三个圆心,则图中阴影部分的面积是.∴阴影部分的面积是:.故答案为:是∴=13.(3分)(2013•张家界)如图,直线x=2与反比例函数和的图象分别交于A、分别代入、,得16.(3分)(2013•张家界)如图,OP=1,过P作PP1⊥OP,得OP1=;再过P1作P1P2⊥OP1且P1P2=1,得OP2=;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下,,故答案为:17.(6分)(2013•张家界)计算:.2×﹣18.(6分)(2013•张家界)先简化,再求值:,其中x=.=•=.请按要求完成下列操作:先将格点△ABC绕A点逆时针旋转90°得到△A1B1C1,再将△A1B1C1每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家5月份用水12吨,交水费20元.请问:该市规定的每户月用水标准量是(1)统计表中的m=5,n=10;(2)补全频数分布直方图;2000×=1200行常态化立体巡航.如图1,在一次巡航过程中,巡航飞机飞行高度为2001米,在点A测得高华峰顶F点的俯角为30°,保持方向不变前进1200米到达B点后测得F点俯角为45°,如图2.请据此计算钓鱼岛的最高海拔高度多少米.(结果保留整数,参考数值:=1.732,=tan30°,∴+1(解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210234nMN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;=为Q(2,3),点D在x轴正半轴上,且OD=OC.(1)求直线CD的解析式;(2)求抛物线的解析式;(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ∽△CDO;(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P 点和F点移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值;若不存+3=″===。

2013年全国各地中考数学解析汇编第13章 相交线与平行线

2013年全国各地中考数学解析汇编第13章  相交线与平行线

(最新最全)2013年全国各地中考数学解析汇编(按章节考点整理)第十三章 相交线与平行线13.1 相交线(2013浙江丽水3分,7题)如图,小明在操场上从A 点出发,先沿南偏东30°方向走到B 点,再沿南偏东60°方向走到C 点.这时,∠ABC 的度数是( )A.120°B.135°C.150°D.160° 【解析】∠ABC=30°+90°+30°=150°. 【答案】C【点评】本题考查角度的计算,理解方向角的含义是解题的突破口.易对方向角的概念理解不透而出现错误.(2013湖北襄阳,5,3分)如图2,直线l ∥m ,将含有45°角的三角形板ABC 的直角顶点C 放在直线m 上,若∠1=25°,则∠2的度数为A .20°B .25°C .30°D .35° 【解析】易得∠1+∠2=∠B =45°,所以∠2=45°-∠1=45°-25°=20°. 【答案】A【点评】本题考查平行线的性质、三角形的外角,过点B 作辅助平行线,或延长CB 与直线l 相交,或延长AB 与直线m 相交,均可解决问题.13.2 线段的垂直平分线4.(2013江西,4,3分)如图,有a 、b 、c 三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线( ) .A. a 户最长B. b 户最长C. c 户最长D. 三户一样长解析:将竖直方向的电线向右平移到一条直线上,水平方向的电线向下平移到一条直线上,易得出三户所用电线一样长. 解答:解:选项D .图2点评:本题考查了数学与物理学之间的联系、数学在日常生活中的应用,利用平移知识或直接测量很易得出答案.5.(2013江西,5,3分)如图,如果在阳光下你的身影的方向为北偏东60︒方向,那么太阳相对于你的方向是( ) .A .南偏西60︒B .南偏西30︒C .北偏东60︒D .北偏东30︒解析:根据投影的定义,身影的方向与太阳相对于自己的方向刚好相反.解答:解:因为身影的方向为北偏东60︒方向,太阳相对于自己的方向是南偏西60︒ ,所以选项A 点评:本题主要考查投影与方位角的知识,准确理解投影的定义和方位角的表示方法是解题的关键.13.3 平行线的性质与判定(2013福州,4,4分,)如图,直线a ∥b ,∠1=70°,那么∠2的度数是( ) A .50° B. 60° C.70° D. 80°解析:因为a ∥b ,,由平行线的性质,可得∠1=∠2=70°。

湖南省2013年最新中考数学试题及答案

湖南省2013年最新中考数学试题及答案

ABCDEO(第5题图) 2121-2013湖南省初中数学试题在考试过程中请你注意以下几点:1.答选择题时,请将答案直接填在选择题答题表中.2.试卷共8页,满分120分,考试时间120分钟.一、选择题(本大题共有8个小题,每小题3分,满分24分.) 1.2-的倒数是A. 2B.C. 2-D.2.2008年5月12日,四川汶川发生里氏8.0级地震,国内外社会各界纷纷向灾区捐款捐物,抗震救灾.截止6月4日12时,全国共接收捐款约为43 681 000 000元人民币.这笔款额用科学记数法表示(保留三个有效数字)正确的是A. 1110437.0⨯ B. 10104.4⨯ C. 101037.4⨯ D. 9107.43⨯ 3.在下面的四个几何体中,它们各自的左视图与主视图不相同的是4.对于反比例函数xk y 2=(0≠k ),下列说法不正确...的是 A. 它的图象分布在第一、三象限 B. 点(k ,k )在它的图象上 C. 它的图象是中心对称图形D. y 随x 的增大而增大5.如图,四边形ABCD 是菱形,过点A 作BD 的平行线交CD 的延长线于点E ,则下列式子不成立...的是 A. DE DA = B. CE BD = C. 90=∠EAC ° D. E ABC ∠=∠26.如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为 A. 0 B. -1 C. 1 D. 27.如图,三个大小相同的正方形拼成六边形ABCDEF ,一动点P正方体长方体圆柱 圆锥 A B C D(第8题图)从点A 出发沿着A →B →C →D →E 方向匀速运动,最后到 达点E .运动过程中PEF ∆的面积(s )随时间(t )变化的图 象大致是8.如图,小明从半径为5cm 的圆形纸片中剪下40%圆周的一个扇形,然后利用剪下的扇形制作成一个圆锥形玩具纸 帽(接缝处不重叠),那么这个圆锥的高为 A.3cm B.4cmC.21cmD.62cm 二、填空题(本大题共8个小题,每小题3分,满分24分)将结果直接填写在每题的横线上.9.分解因式:92-x = . 10.化简211xx x -÷的结果是 . 11. “五一”期间,某服装商店举行促销活动,全部商品八折销售.小华购买一件标价为180 元的运动服,打折后他比按标价购买节省了 元.12. 关于x 的一元二次方程022=+-m mx x 的一个根为1,则方程的另一根为13.如图是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(下底挖去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、∠2,则∠1+∠2= 度.40%5=R (图1) (图2)(第13题图) A B C 1OD1C 2O 2C …… (第15题图) y60% ABDC(第7题图) A BC DE. F.P.·14.2008年6月2日,奥运火炬在荆州古城传递,208名火炬手参加了火炬传递,其中8位火炬手所跑的路程(单位:米)如下:60,70,100,60,80,70,90,100,则这组数据的中位数是 .15.如图,矩形ABCD 的面积为5,它的两条对角线交于点1O ,以AB 、1AO 为两邻边作 平行四边形11O ABC ,平行四边形11O ABC 的对角线交于点2O ,同样以AB 、2AO 为两邻边作平行四边形22O ABC ,……,依次类推,则平行四边形n n O ABC 的面积 为 .16.如图,ABC ∆中,点A 的坐标为(0,1),点C 的坐标为(4,3),如果要使ABD ∆与ABC ∆ 全等,那么点D 的坐标是 .三、解答题(本大题共9个小题,满分72分.) 17.(本题满分5分)计算:20)21(8)21(3--+-+-18.(本题满分5分)解不等式组⎪⎩⎪⎨⎧>+-≥+x x x 1102 并把解集表示在下面的数轴上.C19. (本题满分7分)为了降低能源消耗,减少环境污染,国务院办公厅下发了“关于限制生产销售使用塑料购物袋的通知”(简称“限塑令”),并从2008年6月1日起正式实施.小宇同学为了了解“限塑令”后使用购物袋的情况,6月8日到某集贸市场对部分购物者进行了调查,据了解该市场按塑料购物袋的承重能力提供了0.1元,0.2元,0.3元三种质量不同的塑料袋.下面两幅图是这次调查得到的不完整的统计图(若每人每次只使用一个购物袋),请你根据图中的信息,回答下列问题:(1)这次调查的购物者总人数是 ;(2)请补全条形统计图,并说明扇形统计图中20 元部分所对应的圆心角是 度0.3元部分所对应的圆心角是 度;(3)若6月8日到该市场购物的人数有3000人次,则该市场需销售塑料购物袋多少个?并根据调查情况,谈谈你的看法.20.(本题满分7分)在数学活动课上,九年级(1)班数学兴趣小组的同学们测量 校园内一棵大树的高度,设计的方案及测量数据如下:(1)在大树前的平地上选择一点A ,测得由点A 看大树顶端C 的仰角为35°; (2)在点A 和大树之间选择一点B (A 、B 、D 在同一直线上),测得由点B 看大树顶端C 的仰角恰好为45°; (3)量出A 、B 两点间的距离为4.5米. 请你根据以上数据求出大树CD 的高度.(可能用到的参考数据:sin35°≈0.57 cos35°≈0.82 tan35°≈0.70)类别21. (本题满分8分)A 箱中装有3张相同的卡片,它们分别写有数字1,2,4;B 箱中也装有3张相同的卡片,它们分别写有数字2,4,5;现从A 箱、B 箱中各随机 地取出1张卡片,请你用画树形(状)图或列表的方法求: (1)两张卡片上的数字恰好相同的概率.(2)如果取出A 箱中卡片上的数字作为十位上的数字,取出B 箱中卡片上的数字作为个位上的数字,求两张卡片组成的两位数能被3整除的概率.22. (本题满分8分)如图,AB 为半圆O 的直径,点C 在半圆O 上,过点O 作BC 的平行线交AC 于点E ,交过点A 的直线于点D ,且BAC D ∠=∠.(1)求证:AD 是半圆O(2)若2=BC ,2=CE ,求23. (本题满分10分)小华将一张矩形纸片(如图1)沿对角线2),其中α=∠ACB ,然后将这两张三角形纸片按如图3所示的位置摆放,∆EFD 纸片的直角顶点D 落在∆ACB 纸片的斜边AC 上,直角边DF 落在AC 所在的直线上.(1) 若ED 与BC 相交于点G ,取AG 的中点M ,连接MB 、MD ,当∆EFD 纸片沿CA 方向平移时(如图3),请你观察、测量MB 、MD 的长度,猜想并写出MB与MD 的数量关系,然后证明你的猜想;(2) 在(1)的条件下,求出BMD ∠的大小(用含α的式子表示),并说明当45=α°时, BMD ∆是什么三角形?(3) 在图3的基础上,将∆EFD 纸片绕点C 逆时针旋转一定的角度(旋转角度小于90°),此时CGD ∆变成CHD ∆,同样取AH 的中点M ,连接MB 、MD (如图4),请继续探究MB 与MD 的数量关系和BMD ∠的大小,直接写出你的猜想,不需要证明,并说明α为何值时,BMD ∆为等边三角形.24.(本题满分10分)华宇公司获得授权生产某种奥运纪念品,经市场调查分析,该纪念品的销售量1y (万件)与纪念品的价格x (元/件)之间的函数图象如图所示,该公司纪念品的生产数量2y (万件)与纪念品的价格x (元/件)近似满足函数关系式85232+-=x y .,若每件纪念品的价格不小于20元,且不大于40元.请解答下列问题:(1) 求1y 与x 的函数关系式,并写出x 的取值范围;(2) 当价格x 为何值时,使得纪念品产销平衡(生产量与销售量相等); (3) 当生产量低于销售量时,政府常通过向公司补贴纪念品的价格差来提高生产A B A BCD EF 图1图2A BCDE FGM 图3ABCDEFMH图4量,促成新的产销平衡.若要使新的产销平衡时销售量达到46万件,政府应对该纪念品每件补贴多少元?25.(本题满分12分)如图,直角梯形OABC 中,AB ∥OC ,O 为坐标原点,点A 在y 轴正半轴上,点C 在x 轴正半轴上,点B 坐标为(2,23),∠BCO = 60°,BC OH ⊥于点H .动点P 从点H 出发,沿线段HO 向点O 运动,动点Q 从点O 出发,沿线段OA 向点A 运动,两点同时出发,速度都为每秒1个单位长度.设点P 运动的时间为t 秒.(1) 求OH 的长;(2) 若OPQ ∆的面积为S (平方单位). 求S 与t 之间的函数关系式.并求t 为何值时,OPQ ∆的面积最大,最大值是多少?x (元/件))(3)设PQ与OB交于点M.①当△OPM为等腰三角形时,求(2)中S的值.②探究线段OM长度的最大值是多少,直接写出结论.参考答案及评分标准说明:本试卷中的解答题一般只给出一种解法,对于其它解法,只要推理严谨、运算合理、结果正确,均给满分.对部分正确的,参照本评分说明酌情给分.一、选择题(每小题3分,共24分) 1—8 D C B D B A B C 二、填空题(每小题3分,共24分)9. )3)(3(-+x x 10.x -1 11. 36 12.2- 13. 90 14. 75 15.n2516.)14(-, )31(,- )1,1(-- (第14题不写单位不扣分) 三、解答题(共72分)17.(5分)解:原式=42213-++ ………………………………………………(3分)=22………………………………………………………………(5分) 18.(5分)解:02≥+x 的解集是:2-≥xx x >+-121的解集是:1<x 所以原不等式的解集是:12<≤-x ………………………………………(3分)解集表示如图…………………………………………………………………(5分)19.(7分)解:(1)120……………………………………………………………………(1分)(2)条形统计图,如图所示,…………………………………………………… (2分)0.2元的圆心角是99°,0.3元的圆心角是36°…………………(4分)(3)该市场需销售塑料购物袋的个数是1875120753000=⨯………………(6分) 只要谈的看法涉及环保、节能等方面,且观念积极向上,即可给分……(7分)20.(7分)(1)解:在ACD Rt ∆中,035tan CDAD =在BCD Rt ∆中,045tan CDBD =而5.4=-BD AD类别即5.445tan 35tan 00=-CDCD …………………………………………(5分) 解得:5.10=CD所以大树的高为5.10米………………………………………………(7分)21.(8分)解:(1)由题意可列表:∴两张卡片上的数字恰好相同的概率是92.………………………(4分) (2)由题意可列表:∴两张卡片组成的两位数能被3整除的概率是95………………(8分) (画树状图略)22.(8分)(1)证明:∵AB 为半⊙O 的直径∴90=∠BCA又∵BC ∥OD , ∴AC OE ⊥ ∴090=∠+∠DAE D 而D ∠=∠∴090=∠+∠DAE OAE ∴AD 是半圆O 分)(2)∵AC OE ⊥ ∴222==CE AC 在ABC Rt ∆中,22=+=BC AC AB 分)由DOA ∆∽ABC ∆可得:BC OAAC AD =即2322=AD ∴6=AD …………………………………………………………(8分)23. (10分)解:(1)MB =MD ………………………………………………………(1分)证明:∵AG 的中点为M ∴在ABG Rt ∆中, AG MB 21=在ADG Rt ∆中,AG MD 21=∴MB =MD ………………………………………………(3分)(2)∵BAM ABM BAM BMG ∠=∠+∠=∠21 2 4 2 (1,2) (2,2) (4,2) 4 (1,4) (2,4) (4,4) 5 (1,5) (2,5) (4,5) 1 2 4 2 12 22 42 4 14 24 44 5 15 2545A B A B同理DAM ADM DAM DMG ∠=∠+∠=∠2∴BMD ∠=DAM BAM ∠+∠22=BAC ∠2 而α-=∠090BAC∴α21800-=∠BMD …………………………………………(6分)∴当045=α时,090=∠BMD ,此时BMD ∆为等腰直角三角形.…(8分)(3)当CGD ∆绕点C 逆时针旋转一定的角度,仍然存在MB =MD , α21800-=∠BMD ………………………………………………(9分) 故当060=α时,BMD ∆为等边三角形.…………………………(10分) 24. (10分)解:(1)设y 与x 的函数解析式为:b kx y +=,将点)60,20(A 、)28,36(B代入b kx y +=得:⎩⎨⎧+=+=b k b k 36282060解得:⎩⎨⎧=-=1002b k∴1y 与x 的函数关系式为:⎩⎨⎧≤<=≤≤+-=)4028(28)2820(100211x y x x y ……(3分)(2)当2820≤≤x 时,有⎪⎩⎪⎨⎧+-=+-=10028523x y x y 解得:⎩⎨⎧==4030y x ……………………………………………………(5分)当4028≤≤x 时,有⎪⎩⎪⎨⎧=+-=288523y x y 解得:⎩⎨⎧==2838y x∴当价格为30元或38元,可使公司产销平衡.…………………(7分)(3)当461=y 时,则8523461+-=x ,∴261=x 当462=y 时,则1002462+-=x ,∴272=x∴112=-x x∴政府对每件纪念品应补贴25.(12分)解:(1)∵AB ∥OC ∴ 090=∠=∠AOC OAB 在OAB Rt ∆中,2=AB ,=AO ∴4=OB , 060=∠ABO ∴060=∠BOC 而060=∠BCO∴BOC ∆为等边三角形∴3223430cos 0=⨯==OB OH …(3分) (2)∵t PH OH OP -=-=32∴t OP x p 23330cos 0-== 2330sin 0t OP y p -== ∴)233(2121t t x OQ S p -⋅⋅=⋅⋅==t t 23432+- (320<<t )…………………………(6分)即433)3(432+--=t S ∴当3=t 时,=最大S 433………………………………………(7分)(3)①若OPM ∆为等腰三角形,则:(i )若PM OM =,MOP MPO ∠=∠=∠ ∴PQ ∥OC∴p y OQ =即23tt -= 解得:332=t此时33233223)332(432=⨯+⨯-=S (ii )若OM OP =,75=∠=∠OMP OPM ∴045=∠OQP过P 点作OA PE ⊥,垂足为E ,则有: EP EQ =即t t t 233)213(-=-- 解得:2=t 此时332232432-=⨯+⨯-=S (iii )若PM OP =,AOB PMO POM ∠=∠=∠∴PQ ∥OA 此时Q 在AB 上,不满足题意.……………………………………………(10分)②线段OM 长的最大值为23……………………………………………………(12分)。

张家界市2013学年初中毕业学业考试(含答案)

张家界市2013学年初中毕业学业考试(含答案)

【试卷名:张家界市2013年初中毕业学业考试(化学)】【供稿人:东田教育】【题目】下列属于物理变化的是( )A.菜刀生锈B.水结成冰C.食物腐烂D.燃放鞭炮【答案】B【解释】【题目】酥脆的饼干在空气中放置一段时间后会逐渐变软,由此说明空气中含有( )A.氧气B.氮气C.水蒸气D.二氧化碳【答案】C【解释】【题目】人尿中含有一种常见的化学肥料—尿素[化学式为CO(NH2)2]。

则尿素属于( )A.氮肥B.磷肥C.钾肥D.复合肥【答案】A【解释】【题目】近年来我国连续发现多个超大型钨矿、钼矿、镍矿和铀矿。

这里的钨、钼、镍、铀是指( )A.单质B.分子C.原子D.元素【答案】D【解释】【题目】我国的科学家利用滤纸和二氧化钛(化学式为TiO2)薄膜制造出一种新型“纳米纸”,这种纸能继续与多种物质分子结合并展现出不同特性。

二氧化钛中钛元素的化合价是( )A .+2B .+3C .+4D .+5【答案】C【解释】【题目】实验是学习化学的重要手段,下列实验操作中正确的是( )A . 倾倒液体B .取固体药品C . 稀释浓硫酸D .闻气味【答案】D【解释】【题目】下列属于复分解反应的是( )A .4P+5O 2======2P 2O 5B .2NaOH+H2SO4====Na 2SO 4+2H 2OC .2CuO+C======2Cu+C O 2↑D .2H 2O 2======2H 2O+ O 2↑ 【答案】B【解释】【题目】2013年6月3日,吉林德惠市某禽业公司因氨气爆炸应付重大火灾事故,造成大量人员伤亡。

氨气在氧气中燃烧的化学方程式:4NH 3+3O 2======6H 2O+X,则X 应为( )A .N 2B .NOC .2N 2D .NO 2【答案】C【解释】点燃 高温 MnO 2 点燃【题目】张家界市盛产五倍子,从其中提前的高纯度单宁酸(化学式为C76H52O46)适用于啤酒酿造。

下列有关单宁酸的说法不正确的是( )A.单宁酸属于有机物B.单宁酸由76个碳元素、52个氢元素和46个氧元素组成C.单宁酸不属于氧化物D.单宁酸分子由碳原子、氢原子和氧原子构成【答案】B【解释】【题目】氧气是我们身边常见的物质,下列关于氧气的叙述正确的是( )A.氧气具有可燃性B.物质与氧气的反应一定是化合反应C.氧气的化学性质比较活泼D.鱼、虾等能在水中生成,是由于氧气极易溶于水【答案】C【解释】【题目】防火、灭火、自救等安全知识是每个中学生应该了解的生活常识。

张家界市初中毕业生学业考试(中考)数学真题试卷附答案

张家界市初中毕业生学业考试(中考)数学真题试卷附答案

湖南省张家界市2013年初中毕业学业考试试卷数 学考生注意:本卷共三道大题,满分120分,时量120分钟一、选择题(本大题共8小题,每小题3分,满分24分)1、-2013的绝对值是( )A .-2013 B. 2013 C.20131 D. -20131 2、 下列运算正确的是( )A. 3a-2a=1B. 248x x x =÷C. ()222-=-D. ()363282y x y x -=- 3, 把不等式组⎩⎨⎧≤->5121x x 的解集在数轴上表示正确的是( )4、如图放置的四个几何体中,俯视图不是圆的几何体的个数是( )5、下列各式能用完全平方公式进行因式分解的是( )A . 12++x xB . 122-+x x C. 12-x D. 962+-x xA. 1B.2C.3D.46、顺次连接等腰梯形四边中点所得的四边形一定是( )A. 矩形B.正方形C.菱形D.直角梯形7、下列事件是必然事件的是( )A .有两边及一角对应相等的两个三角形全等B. 方程012=+-x x 有两个不等实根C. 面积之比为1︰4的两个相似三角形的周长之比也是1︰4D. 圆的切线垂直于过切点的半径8、若正比例函数y =mx ()0≠m ,y 随x 的增大而减小,则它和二次函数m mx y +=2的图象大致是( )二、 填空题(本大题共8个小题,每小题3分,共计24分)9、我国除了约960万平方千米的陆地面积外,还有约3000000平方千米的海洋面积。

把3000000用科学记数法表示为 .10、若3,a, 4, 5的众数是4,则这组数据的平均数是 .11、如图,⊙A 、⊙B 、⊙C 两两外切,它们的半径都是a ,顺次连接三个圆心得到△ABC,则图中阴影部分的面积之和是 .11题图 12题图 13题图12、如图,⊙O 的直径A B ⊥弦CD,且∠BAC=40°,则∠BOD= .13、如图,直线x=2与反比例函数y=x 2,y=-x1的图象分别交于A,B 两点,若点P 是y 轴上任意一点,则△PAB 的面积是 .14、若关于x 的一元二次方程k 2x +4x+3=0有实根,则的非负整数值是 .15、从1,2,3这三个数字中任意取出两个不同的数字,则取出的两个数字都是奇数的概率是 .16、如图,OP=1,过P 作OP PP ⊥1且11=PP ,得21=OP ;再过1P 作121OP P P ⊥且21P P =1,得32=OP ;又过2P 作232OP P P ⊥且132=P P ,得=3OP 2;…依此法继续作下去,得=2012OP .三、解答题(本大题共9个小题,共计72分)17、(本小题6分)计算:|13|60sin 2)21()2013(20-++--- π18、(本小题6分)先化简,再求值:⎪⎭⎫ ⎝⎛+-+÷+-1111222x x x x x ,其中 12+=x19、(本小题6分)如图,在方格纸中,以格点连线为边的三角形叫做格点三角形。

张家界中考数学试卷及答案解析

张家界中考数学试卷及答案解析
考 列表法与树状图法. 点:
分 首先列出树状图,可以直观的看出总共有几种情况,再找出都是奇数的情况,根
析: 据概率公式进行计算即可.
解 解:如图所示:
答:
取出的两个数字都是奇数的概率是: =, 故答案为:.
点 评:
此题主要考查了画树状图,以及概率公式,关键是正确画出树状图.
16.(3 分)(2013•张家界)如图,OP=1,过 P 作 PP1⊥OP,得 OP1= ;再过 P1 作
答:
故选 B.
点 此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实
评: 际运算当中.
绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;
0 的绝对值是 0.
2.(3 分)(2013•张家界)下列运算正确的是( )
3a﹣2a=1
x8﹣x4=x2
A.
B.
C.
﹣ D. (2x2y)3=
评: 解答本题的关键,难度一般.
14.(3 分)(2013•张家界)若关于 x 的一元二次方程 kx2+4x+3=0 有实根,则 k 的非负 整数值是 1 .
考 根的判别式;一元二次方程的定义.
点:
专 计算题.
题:
分 根据方程有实数根,得到根的判别式的值大于等于 0 列出关于 k 的不等式,求出
析: 不等式的解集得到 k 的范围,即可确定出 k 的非负整数值.
评: 三视图中.
5.(3 分)(2013•张家界)下列各式中能用完全平方公式进行因式分解的是( )
x2+x+1
x2+2x﹣1
x2﹣1
x2﹣6x+9
A.
B.

张家界市中考数学试题有答案(Word版)

张家界市中考数学试题有答案(Word版)

湖南省张家界市普通初中学业水平考试试卷数 学考生注意:本试卷包括选择题、填空题和解答题三部分,共三道大题,满分100分,时量120分钟. 请考生在答题卡上答题,在草稿纸、试题卷上答题无效.一、选择题(本大题共8个小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.2018的绝对值是( )A 2018B 2018- C20181 D 20181-2.若关于x 的分式方程113=--x m 的解为2=x ,则m 的值为( ) A 5 B 4 C 3 D 23. 下列图形中,既是中心对称图形,又是轴对称图形的是( )A B C D4.下列运算正确的是( )A 322a a a =+B a a =2C ()1122+=+a a D ()23a =6a5.若一组数据1a ,2a ,3a 的平均数为4,方差为3,那么数据21+a ,22+a ,23+a 的平均数和方差分别是( )A 4, 3B 6 3C 3 4D 6 56.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,cm CD cm OC 8,5==,则=AE ( ) A cm 8 B cm 5 C cm 3 D cm 27.下列说法中,正确的是 ( )A 两条直线被第三条直线所截,内错角相等B 对角线相等的平行四边形是正方形C 相等的角是对顶角D 角平分线上的点到角两边的距离相等8.观察下列算式: 221=, 422=, 823=, 1624=,3225=, 6426=, 12827=, 25628=…,则+++++543222222 (2018)2+的未位数字是( )A 8B 6C 4D 0 二、填空题(本大题共6个小题,每小题3分,满分18分)9.因式分解:=++122a a .10.目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米=910-米,用科学记数法将16纳米表示为 米. 11.在一个不透明的袋子里装有3个白色乒乓球和若干个黄色乒乓球,若从这个袋子里随机摸岀一个乒乓球,(6题图)恰好是黄球的概率为107,则袋子内共有乒乓球的个数为 . 12.如图,将ABC ∆绕点A 逆时针旋转︒150,得到ADE ∆,这时点D C B 、、恰好在同一直线上,则B∠的度数为______.13.关于x 的一元二次方程012=+-kx x 有两个相等的实数根,则=k .14.如图,矩形ABCD 的边AB 与x 轴平行,顶点A 的坐标为(2,1),点B 与点D 都在反比例函数xy 6=)0(>x 的图象上,则矩形ABCD 的周长为________.三、解答题(本大题共9个小题,共计58分,解答应写出文字说明、证明过程或演算过程) 15.(本小题满分5分)()13-+()21---︒60sin 4+1216.(本小题满分5分)解不等式组 ,写出其整数解17.(本小题满分5分)在矩形ABCD 中,点E 在BC 上,AD AE =,DF ⊥AE ,垂足为F .(1)求证.AB DF =(2)若︒=∠30FDC ,且4=AB ,求AD .18. 列方程解应用题(本小题满分5分)《九章算术》中有“盈不足术”的问题,原文如下:“今有共買羊,人出五,不足四十五;人出七,不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊,每人出5元,则差45元;每人出7元,则差3元.求人数和羊价各是多少?19. 阅读理解题(本小题满分6分)在平面直角坐标系xoy 中,点()0,0y x P 到直线0=++C By Ax ()022≠+B A 的距离公式为:2200BA CBy Ax d +++=,例如,求点()3,1P 到直线0334=-+y x 的距离. 解:由直线0334=-+y x 知:3,3,4-===C B A所以()3,1P 到直线0334=-+y x 的距离为:2343331422=+-⨯+⨯=d根据以上材料,解决下列问题: (1)求点()0,01P 到直线0543=--y x 的距离.51212{<-≥+x x (12题图)(2)若点()0,12P 到直线0=++C y x 的距离为2,求实数C 的值. 20、(本小题满分6分)如图,点P 是⊙O 的直径AB 延长线上一点,且AB =4,点M为上一个动点(不与B A 、重合),射线PM 与⊙O 交于点N (不与M 重合)(1) 当M 在什么位置时,MAB ∆的面积最大,并求岀这个最大值;(2)求证:PAN ∆∽PMB ∆.21、(本小题满分8分)今年是我市全面推进中小学校“社会主义核心价值观”教育年.某校对全校学生进行了中期检测评价,检测结果分为A (优秀)、B (良好)、C (合格)、D (不合格)四个等级.并随机抽取若干名学生的检测结果作为样本进行数据处理,制作了如下所示不完整的统计表(图1)和统计图(图2).(图1) (图2)请根据图1、图2提供的信息,解答下列问题:(1)本次随机抽取的样本容量为 ; (2)=a ,=b . (3)请在图2中补全条形统计图.(4)若该校共有学生800人,据此估算,该校学生在本次检测中达到“A (优秀)”等级的学生人数为人.22.(本小题满分8分)2017年9月8日—10日,第六届翼装飞行世界锦标赛在我市天门山风景区隆重举行,来自全球11个国家的16名选手参加了激烈的角逐.如图,某选手从离水平地面1000米高的A 点出发(AB=1000米),沿俯角为︒30的方向直线飞行1400米到达D 点,然后打开降落伞沿俯角为︒60的方向降落到地面上的C 点,求该选手飞行的水平距离BC .23.(本小题满分10分)如图,已知二次函数12+=ax y 为实数)a a ,0(≠的图象过点等级频数频率 A a0.3 B35 0.35C 31 bD40.04)2,2(-A ,一次函数b kx y +=为实数)b k k ,,0(≠的图象l 经过点)2,0(B . (1) 求a 值并写出二次函数表达式; (2) 求b 值;(3) 设直线l 与二次函数图象交于N M 、两点,过M 作MC 垂直x 轴于点C , 试证明:MC MB =;(4) 在(3)的条件下,请判断以线段MN 为直径的圆与x 轴的位置关系,并说明理由.数学参考答案一、选择题(本大题共8个小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A2.C3.C4.D5.B6.A7. D8.B二、填空题(本大题共6个小题,每小题3分,满分18分)9.()21+a 10. 8106.1-⨯ 11. 10 12. 15 13. 2± 14. 12三、解答题(本大题共10个小题,满分58分.请考生用黑色碳素笔在答题卡相应的题号后答题区域内作答,必须写出运算步骤、推理过程或文字说明,超出答题区域的作答无效.) 15.解:原式= 3223211+⨯-+ ……………………4分 =2 ……………………5分(说明:第一步计算每对一项得1分) 16.解:解.由(1)得:62<x3<x ……………………1分由(2)得:1-≥x ……………………2分 ∴不等式组的解集为:31<≤-x ……………………4分∴满足条件的整数为:-1; 0; 1; 2 ……………………5分 17.证明:(1)在矩形ABCD 中 AD ∥BC∴21∠=∠ ……………………1分 又 AE DF ⊥ ODFA 90=∠∴B DFA ∠=∠∴ …………………2分 又EA AD =EAB ADF ∆≅∆∴∴AB DF = ……………………3分(2) 09031=∠+∠0903=∠+∠FDC0301=∠=∠∴FDC ……………………4分∴DF AD 2=又AB DF =8422=⨯==∴AB AD …………………5分18.解:设有x 人,则 …………………1分 37455+=+x x …………………3分 21=x15045215=+⨯元 …………………4分 答:有21人,羊为150元 …………………5分19.解:(1)1435040322=+-⨯-⨯=d …………………2分(2)201112C +⨯+⨯=…………………3分21=+∴C …………………4分21±=+∴C …………………5分11=∴C 32-=∴C …………………6分20.解:(1)当点M 在 AB 弧的中点处时, 最大 ………………1分 (其它表述合理均给分) 因为此时:242121=⨯==AB OM ………………2分4242121=⨯⨯=⋅=∴∆OM AB S ABM……………3分 (2)PAN PMB ∠=∠ …………4分P P ∠=∠ …………5分PMB ∽∆∆∴PAM …………6分21.(1)100 …………………2分 (2)30=a b=0.31 ………4分 (3)见图(2) ……………6分 (4)240 ……………8分 22.过点D 作AB DE ⊥于E BC DF ⊥于点F由题意知 ………1分 在 中. 70014002121=⨯==AD AE ……………………2分 ADDE ADE COS =∠ ……………………3分 ABMS ∆ 30=∠ADE 30=∠CDF DAE Rt∆3700231400=⨯=DE …………………4分3007001000=-=-=AE AB EB ……………5分 300==BE DFDFFC CDF =∠tan ……………………6分310033300=⨯=FC ……………………7分380031003700=+=+=+=∴FC DE FC BF BC (米) ……………8分解(1)1)2(22+-⨯=a41=a …………………1分 1412+=∴x y …………………2分(2)b k +⨯=02 …………………3分 2=b …………………4分(3)过点M 作y ME ⊥轴于点E ,设)141,(2+x x M ………………5分 1412+=x MCx ME =∴ 141214122-=-+=x x EB ………………6分22EB ME MB +=222)141(-+=x x121161242+-+=x x x 12116124++=x x 1412+=x ……………………………7分 MC MB =∴(4) 相切 ……………………………8分过点N 作x ND ⊥轴于D ,取MN 的中点为P ,过点P 作x PF ⊥轴于点F,过点N 作MC NH ⊥于点H ,交PF 于点P.由(3)知ND NB = MB NB MN +=∴MC ND +=MH PG 21= ……………………………9分又HC GF ND == GF PG PF +=∴ GF PG PF 222+=∴ HC ND MH ++= MC ND +=MN PF 21=∴ ∴以MN 为直径的圆与x 轴相切 ………………10分(其他方法只要合理参照给分)。

张家界市2013年初中毕业学业考试试卷

张家界市2013年初中毕业学业考试试卷

张家界市2013年初中毕业学业考试试卷(一)化学考生注意:本学科试卷共有五道大题,满分100分,时量90分钟。

可能用到的相对原子质量:H:1 C:12 O:16 Ca:40 Cl:35.5一、我会选择:在下列各题的四个选项中,只有一个选项符合题目要求,请将符合项目要求的序号填在下面表格中(本大题共40分,其中1-5题每小题2分;6-15题每小题32.生活中常见到的下列现象中,发生了化学变化的是()A.电灯泡发光B.液化气燃烧C.湿衣服在空气中晾干D.水的蒸发3.下列各组物质,按混合物、化合物、单质顺序排列的是()A、冰水共存物、干冰、氮气B、石油、煤、天然气C、洁净的空气、氯化氢、液态氧D、纯碱、酒精、水银4.日常生活所见的“加碘食盐”、“高钙牛奶”、“富硒西瓜”这里的碘、钙、硒是()A.原子B.分子C.单质D.元素5.下列物品中,不属于有机高分子合成材料制品的()A.橡胶轮胎B.塑料袋C.腈纶衣服D.铝合金窗6.下列各组物质的名称、俗称、化学式表示同一种物质的是()A.氢氧化钠烧碱NaOHB. 熟石灰氢氧化钙CaOC.碳酸钠火碱Na2CO3D.碳酸钙氧化钙Ca(OH)27.下列物质的用途与其化学性质相关的是()A、用铝作导线B、用金刚石切割玻璃C、用活性炭作净水剂D、用氮气作食品包装袋的填充气8.下列实验现象描述正确的是()A.硫在氧气中燃烧,发出明亮的蓝紫色火焰B.铁丝在氧气中燃烧,发出耀眼强光C. 打开盛有浓盐酸的瓶盖后,瓶口出现白烟D.用石蕊溶液染成的干燥的紫色纸花放入二氧化碳中,纸花变红9.以下对O2、CO2、SO2、MnO2四种物质组成的说法中,正确的是()A.都含有氧分子B.都含量有2个氧原子C.都含有氧元素D.都是氧化物10.我国台湾地区查出了在饮料等六大食品中违法添加对人体有害的邻苯二甲酸酯类物质,邻苯二甲酸二(2-乙基己基)酯的化学式C24H3804,下列有关说法正确的是()A.该物质是氧化物B. 该物质的分子中碳、氢、氧原子个数比12:19:2C.该物质的相对分子质量为76D.该物质属于有机高分子化合物11.正确、规范的化学实验操作是科学探究成败的关键因素之一,下列实验操作中正确的是()12.一年来的初中化学学习,使我们了解了不少化学知识,根据你的知识和经验,以下实验在家中不能完成的是()A. 除去热水瓶中的水垢B.区分纯碱和食盐C.区分硬水和软水D.除去C和CuO反应后的残留在试管壁上红色固体13.下列反应不属于复分解反应的是()A. H2SO4+Ca(OH)2=CaSO4+2H2OB. H2SO4+BaCl2=BaSO4↓+2HClC. 2HCl+Fe = FeCl2+H2↑D. 2HCl+CaCO3=CaCl2+H2O+CO2↑14.在进一步学习中,我们还知道了许多健康常识,比如:下列四种做法中有益于人体健康的是()A.健康人应多吃纯氧B.长期饮用硬水补钙C.食用加碘盐D.吸烟提神15.下列各组反应,能发生化学反应的是()A.铜和稀硫酸B.银和稀盐酸C.氯化钾和硝酸钠D.铝和硝酸铜二、我会填空(本题共26分)16.请你用化学用语填空:(1)地壳中含量最多的元素____________ (2)5个铁离子______________(3)酒精_____________________17.目前,一些发达国家已基本采用新一代饮用水消毒剂ClO2,有的国家还颁布强制使用ClO2的法律和法规。

张家界市中考数学试卷

张家界市中考数学试卷

张家界市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题(本题有10小题,每小题3分,共30分) (共10题;共30分)1. (3分) 9的算术平方根是()A . ±3B . -3C . 3D .2. (3分) 2013年6月11日,神舟十号飞船发射成功,神舟十号飞船身高9米,重约8吨,飞行速度约每秒7900米,将数7900用科学记数法表示,表示正确的是A . 0.79×104B . 7.9×104C . 7.9×103D . 0.79×1033. (3分)(2016·德州) 图中三视图对应的正三棱柱是()A .B .C .D .4. (3分)如图,四边形ABCD内接于⊙O,E是CB的延长线上一点,∠EBA=125°,则∠D=()A . 65°B . 120°C . 125°D . 130°5. (3分)下列说法正确的是A . 一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖B . 为了解某品牌灯管的使用寿命,可以采用普查的方式C . 一组数据6、8、7、8、9、10的众数和平均数都是8D . 若甲组数据的方差S甲2=0.05,乙组数据的方差S乙2=0.1,则乙组数据比甲组数据稳定6. (3分) (2018九上·唐河期末) 已知关于x的方程kx2+(1-k)x-1=0,下列说法正确的是().A . 当时,方程无解B . 当时,方程有两个相等的实数解C . 当时,方程有一个实数解D . 当时,方程总有两个不相等的实数解7. (3分)(2014·湖州) 如图,已知正方形ABCD,点E是边AB的中点,点O是线段AE上的一个动点(不与A、E重合),以O为圆心,OB为半径的圆与边AD相交于点M,过点M作⊙O的切线交DC于点N,连接OM、ON、BM、BN.记△MNO、△AOM、△DMN的面积分别为S1、S2、S3 ,则下列结论不一定成立的是()A . S1>S2+S3B . △AOM∽△DMNC . ∠MBN=45°D . MN=AM+CN8. (3分)(2019·嘉善模拟) 在平面直角坐标系中,已知点A(1,2)和点B(4,5),当直线y=kx﹣2k(k 为常数)与线段AB有交点时,k的取值范围为()A . k≤﹣2或k≥B . ﹣2≤k≤C . ﹣2≤k≤0或0≤k≤D . ﹣2<k<0或0<k<9. (3分)如图,已知AB=AD,∠1=∠2=50°,∠D=100°,那么∠ACB的度数为()A . 30B . 40C . 50D . 6010. (3分)用正方形纸板制成一副七巧板,如图①,将它拼成“小天鹅”图案,如图②,若其中阴影部分的面积为6,则正方形纸板的面积为()A . 12B . 16C . 18D . 25二、填空题(本题有6小题,每小题4分,共24分) (共6题;共24分)11. (4分)(2020·南昌模拟) 计算: ________.12. (4分) (2018八上·韶关期末) 化简: =________.13. (4分) (2019九上·路北期中) 如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=20,CD=16,求线段OE的长________.14. (4分) (2019九上·中原月考) 在一个不透明的袋子中装有20个蓝色小球、若干个红色小球和10个黄色小球,这些球除颜色不同外其余均相同,小李通过多次摸取小球试验后发现,摸取到红色小球的频率稳定在0.4左右,若小明在袋子中随机摸取一个小球,则摸到黄色小球的概率为 ________15. (4分) (2020九上·苏州期末) 如图,以AB为直径的半圆O内有一条弦AC,点P是弦AC上一个动点,连接BP,并延长交半圆O于点D,若AB=10,AC=8,则的最大值是________.16. (4分)在反比例函数y=(x>0)的图象上,有一系列点A1、A2、A3、…、An、An+1 ,若A1的横坐标为2,且以后每点的横坐标与它前一个点的横坐标的差都为2.现分别过点A1、A2、A3、…、An、An+1作x轴与y轴的垂线段,构成若干个矩形如图所示,将图中阴影部分的面积从左到右依次记为S1 , S2 , S3 ,…,Sn ,则S1=________ ,S1+S2+S3+…+Sn=________.(用n的代数式表示).三、解答题(本题有8小题,共66分) (共8题;共66分)17. (6分) (2019八上·毕节月考) 化简:(1)(2)(3)(4)18. (6分) (2019七下·巴南月考) 解不等式(组)(1)2(x+5)≤3(x+4),并写出非正整数解(2) ,并在数轴上表示解集19. (6分)(2020·衡阳) 小华同学将笔记本电脑水平放置在桌子上,当是示屏的边缘线与底板的边缘线所在水平线的夹角为120°时,感觉最舒适(如图①).侧面示意图为图②;使用时为了散热,他在底板下面垫入散热架,如图③,点B、O、C在同一直线上,,,.(1)求的长;(2)如图④,垫入散热架后,要使显示屏的边缘线与水平线的夹角仍保持120°,求点到的距离.(结果保留根号)20. (8.0分)(2018·南山模拟) “共享单车,绿色出行”,现如今骑共享单车出行不但成为一种时尚,也称为共享经济的一种新形态,某校九(1)班同学在街头随机调查了一些骑共享单车出行的市民,并将他们对各种品牌单车的选择情况绘制成如下两个不完整的统计图(A:摩拜单车;B:ofo单车;C:HelloBike).请根据图中提供的信息,解答下列问题:(1)求出本次参与调查的市民人数;(2)将上面的条形图补充完整;(3)若某区有10000名市民骑共享单车出行,根据调查数据估计该区有多少名市民选择骑摩拜单车出行?21. (8分) (2016九上·肇庆期末) 如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求证:AE是⊙O的切线;(2)当BC=4时求劣弧AC的长.22. (10分) (2020八下·高邮期末) 为了满足市场上的口罩需求,某厂购进A、B两种口罩生产设备若干台,已知购买A种口罩生产设备共花费360万元,购买B种口罩生产设备共花费480万元.购买的两种设备数量相同,且两种口罩生产设备的单价和为140万元.(1)求A、B两种口罩生产设备的单价;(2)已知该厂每生产一盒口罩需要各种成本40元,如果按照每盒50元的价格进行销售,每天可以售出500盒.后来经过市场调查发现,若每盒口罩涨价1元,则口單的销量每天减少20盒,要保证每天销售口罩盈利6000元,且规避过高涨价风险,则每盒口罩可涨价多少元?23. (10.0分)(2019·萧山模拟) 如图,已知一张长方形纸片,AB=CD=a,AD=BC=b(a<b<2a).将这张纸片沿着过点A的折痕翻折,使点B落在AD边上的点F,折痕交BC于点E,将折叠后的纸片再次沿着另一条过点A的折痕翻折,点E恰好与点D重合,此时折痕交DC于点G.(1)在图中确定点F、点E和点G的位置;(2)连接AE,则∠EAB=________;(3)用含有a、b的代数式表示线段DG的长.24. (12分)(2013·遵义) 如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,﹣),且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).(1)求抛物线的解析式及A、B两点的坐标;(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由;(3)以AB为直径的⊙M相切于点E,CE交x轴于点D,求直线CE的解析式.参考答案一、选择题(本题有10小题,每小题3分,共30分) (共10题;共30分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(本题有6小题,每小题4分,共24分) (共6题;共24分) 11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(本题有8小题,共66分) (共8题;共66分)17-1、17-2、17-3、17-4、18-1、18-2、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、。

张家界中考网:2013中考数学试题及答案发布

张家界中考网:2013中考数学试题及答案发布
张家界2013年中考数学答案:点击进入免费下载(word版)
租赁期满或合同提前终止后乙方在不损坏房屋结构及墙体设施的情况下对能够搬走的设备应当及时搬走如逾期超过三天不搬则视为乙方放弃该设备的所有权该设备的所有权转由甲方无偿取得乙方进行装修的不能拆下搬走的部分则直接由甲方无偿取得
张家界中考网:,学子们一定十分关注成绩线的指标,小编也是和大家一样。为了能给大家在2014年中考考试考出好成绩,小编已在分享2013年张家界中考数学试题及答案。(CTRL+D即可收藏)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题谷网题谷一下作业全会2013年湖南省张家界市中考数学试卷一、选择题(本大题共8个小题,每小题3分,共计24分)DD3.(3分)(2013•张家界)把不等式组的解集在数轴上表示正确的是().C D.4.(3分)(2013•张家界)下面四个几何体中,俯视图不是圆的几何体的个数是()8.(3分)(2013•张家界)若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大.C D.二、填空题(本大题共8个小题,每小题3分,共计24分)9.(3分)(2013•张家界)我国除了约960万平方千米的陆地面积外,还有约3000000平方千米的海洋面积,3000000用科学记数法表示为_________.10.(3分)(2013•张家界)若3,a,4,5的众数是4,则这组数据的平均数是_________.11.(3分)(2013•张家界)如图,⊙A、⊙B、⊙C两两外切,它们的半径都是a,顺次连接三个圆心,则图中阴影部分的面积是_________.12.(3分)(2013•张家界)如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=_________.13.(3分)(2013•张家界)如图,直线x=2与反比例函数和的图象分别交于A、B两点,若点P是y轴上任意一点,则△PAB的面积是_________.14.(3分)(2013•张家界)若关于x的一元二次方程kx2+4x+3=0有实根,则k的非负整数值是_________.15.(3分)(2013•张家界)从1,2,3这三个数字中任意取出两个不同的数字,则取出的两个数字都是奇数的概率是_________.16.(3分)(2013•张家界)如图,OP=1,过P作PP1⊥OP,得OP1=;再过P1作P1P2⊥OP1且P1P2=1,得OP2=;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,得OP2012=_________.三、解答题(本大题共9个小题,共计72分)17.(6分)(2013•张家界)计算:.18.(6分)(2013•张家界)先简化,再求值:,其中x=.19.(6分)(2013•张家界)如图,在方格纸上,以格点连线为边的三角形叫做格点三角形,请按要求完成下列操作:先将格点△ABC绕A点逆时针旋转90°得到△A1B1C1,再将△A1B1C1沿直线B1C1作轴反射得到△A2B2C2.20.(8分)(2013•张家界)为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家5月份用水12吨,交水费20元.请问:该市规定的每户月用水标准量是多少吨?21.(8分)(2013•张家界)某班在一次班会课上,就“遇见路人摔倒后如何处理”的主题进行讨论,并对全班50名(1)统计表中的m=_________,n=_________;(2)补全频数分布直方图;(3)若该校有2000名学生,请据此估计该校学生采取“马上救助”方式的学生有多少人?22.(8分)(2013•张家界)国家海洋局将中国钓鱼岛最高峰命名为“高华峰”,并对钓鱼岛进行常态化立体巡航.如图1,在一次巡航过程中,巡航飞机飞行高度为2001米,在点A测得高华峰顶F点的俯角为30°,保持方向不变前进1200米到达B点后测得F点俯角为45°,如图2.请据此计算钓鱼岛的最高海拔高度多少米.(结果保留整数,参考数值:=1.732,=1.414)23.(8分)(2013•张家界)阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数).24.(10分)(2013•张家界)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB 的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.25.(12分)(2013•张家界)如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x 轴正半轴上,且OD=OC.(1)求直线CD的解析式;(2)求抛物线的解析式;(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ∽△CDO;(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.2013年湖南省张家界市中考数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,共计24分)DD3.(3分)(2013•张家界)把不等式组的解集在数轴上表示正确的是().C D.,4.(3分)(2013•张家界)下面四个几何体中,俯视图不是圆的几何体的个数是()EF=ACBD GH=EH=8.(3分)(2013•张家界)若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大.C D.二、填空题(本大题共8个小题,每小题3分,共计24分)9.(3分)(2013•张家界)我国除了约960万平方千米的陆地面积外,还有约3000000平方千米的海洋面积,3000000用科学记数法表示为3×106.10.(3分)(2013•张家界)若3,a,4,5的众数是4,则这组数据的平均数是4.11.(3分)(2013•张家界)如图,⊙A、⊙B、⊙C两两外切,它们的半径都是a,顺次连接三个圆心,则图中阴影部分的面积是.阴影部分的面积是:故答案为:12.(3分)(2013•张家界)如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=80°.是∴,13.(3分)(2013•张家界)如图,直线x=2与反比例函数和的图象分别交于A、B两点,若点P是y轴上任意一点,则△PAB的面积是.分别代入、﹣,﹣﹣(﹣AB2=AB=故答案是:14.(3分)(2013•张家界)若关于x的一元二次方程kx+4x+3=0有实根,则k的非负整数值是1.≤15.(3分)(2013•张家界)从1,2,3这三个数字中任意取出两个不同的数字,则取出的两个数字都是奇数的概率是.=,故答案为:16.(3分)(2013•张家界)如图,OP=1,过P作PP1⊥OP,得OP1=;再过P1作P1P2⊥OP1且P1P2=1,得OP2=;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,得OP2012=.,==,=故答案为:三、解答题(本大题共9个小题,共计72分)17.(6分)(2013•张家界)计算:.×﹣18.(6分)(2013•张家界)先简化,再求值:,其中x=.+1.19.(6分)(2013•张家界)如图,在方格纸上,以格点连线为边的三角形叫做格点三角形,请按要求完成下列操作:先将格点△ABC绕A点逆时针旋转90°得到△A1B1C1,再将△A1B1C1沿直线B1C1作轴反射得到△A2B2C2.20.(8分)(2013•张家界)为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家5月份用水12吨,交水费20元.请问:该市规定的每户月用水标准量是多少吨?21.(8分)(2013•张家界)某班在一次班会课上,就“遇见路人摔倒后如何处理”的主题进行讨论,并对全班50名(1)统计表中的m=5,n=10;(2)补全频数分布直方图;(3)若该校有2000名学生,请据此估计该校学生采取“马上救助”方式的学生有多少人?×=120022.(8分)(2013•张家界)国家海洋局将中国钓鱼岛最高峰命名为“高华峰”,并对钓鱼岛进行常态化立体巡航.如图1,在一次巡航过程中,巡航飞机飞行高度为2001米,在点A测得高华峰顶F点的俯角为30°,保持方向不变前进1200米到达B点后测得F点俯角为45°,如图2.请据此计算钓鱼岛的最高海拔高度多少米.(结果保留整数,参考数值:=1.732,=1.414)x∴+123.(8分)(2013•张家界)阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S﹣S=22014﹣1即S=2﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数).(=24.(10分)(2013•张家界)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB 的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.EF==13OC=EF=6.525.(12分)(2013•张家界)如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x 轴正半轴上,且OD=OC.(1)求直线CD的解析式;(2)求抛物线的解析式;(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ∽△CDO;(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.a=y=+3===的周长存在最小值,最小值为。

相关文档
最新文档