电工电子第三章
电工电子学第三章
负半周
3
设正弦交流电流: 设正弦交流电流:
Im
Ψ
i
O π T 2π π
ωt
i = I m sin (ω t + ψ )
初相角:决定正弦量起始位置 初相角: 角频率:决定正弦量变化快慢 角频率: 幅值:决定正弦量的大小 幅值:
幅值、角频率、初相角成为正弦量的三要素。 幅值、角频率、初相角成为正弦量的三要素。
5
3.1.2 幅值与有效值 幅值: 幅值:Im、Um、Em
幅值必须大写, 幅值必须大写, 下标加 m。
有效值: 有效值:与交流热效应相等的直流定义为交流电的 有效值。 有效值。
∫0
T
2 i 2R dt = I RT
交流
直流
则有
I =
1 T
∫
T
0
i 2dt
Im 1 T 2 2 有效值必 = ∫0 Imsin ωt dt = 2 须大写 T U Em 同理: 同理: U = m E= 2 2
12
3. 正弦量的相量表示
实质:用复数表示正弦量 实质: 复数表示形式 为复数: 设A为复数 为复数 (1) 代数式 A =a + jb 式中: a = r cos ψ 式中
+j
b
A
r ψ
0
2 2
a
+1
b = r sin ψ
(2) 三角式 由欧拉公式: 由欧拉公式
r = a + b 复数的模 b ψ = arctan 复数的辐角 a
16
⑥“j”的数学意义和物理意义 因子: 旋转 90o因子:e± j90o
± j90o
e
= cos 90° ± jsin90° = ±j
电工与电子技术第三章 集成运算放大器及其应用
各级工作点相互影响 适于放大直流或变化缓慢的信号 电压放大倍数为各级放大倍数之积 零点漂移
零点漂移---当输入信号为零时,输出端电压 偏离原来的起始电压缓慢地无规则的上下漂动, 这种现象叫零点漂移。
产生原因---温度变化、电源电压的波动、电 路元件参数的变化等等。
第一级产生的零漂对放大电路影响最大。
∴ i 1= i f
即 ui/R1=-uo/ Rf
uo、ui 符合比例关系,负号表示输出输入电 压变化方向相反。
电路中引入深度负反馈, 闭环放大倍数Auf 与运放的Au无关,仅与R1、Rf 有关。
当R1=Rf 时, uo=-ui ,该电路称为反相器。 R2--平衡电阻 同相端与地的等效电阻 。其作用是保持输入 级电路的对称性,以保持电路的静态平衡。
共模信号--极性相同,幅值相同的信号。
u i1= u i2
差模输入(信号)
ui1 ui2 ui 2
IC1 IC2
UCE1 UCE2 u0 UCE1 Δ UCE2 2 UCE1
Ad 2 UCE1 / ui 2 UCE1 / 2ui1 UCE1 / ui1
i3 ui3 R3
i f u0 Rf
ui1 R1 i1
Rf if
ui2 R2 i2 ui3 R3 i3
- + +∞
uo
RP
u0 ui1 ui 2 ui 3 R f R1 R2 R3
uo R f ( ui1 ui2 ui3 ) R1 R2 R3
若 R1 R2 R3 R f
AOUi
uo
I-≈I+ ≈0
二、Rf if
ui R1 i1 R2
电工与电子技术之电工技术第三章课后题解
第3章 正弦交流电路的稳态分析本章的主要任务是学习正弦量、正弦交流电路和相量法的基本概念、正弦交流电路的稳态分析与计算、正弦交流电路功率的概念和计算。
在此基础上理解和掌握功率因数提高的意义,和谐振的概念。
本章基本要求(1) 正确理解正弦量和正弦交流电路概念; (2) 正确理解相量法引入的意义;(3) 正确理解有功功率和功率因数的概念; (4) 掌握相量法;(5) 掌握电路定律的相量形式和元件约束方程的相量形式; (6) 分析计算正弦稳态电路; (7) 了解功率因数提高的意义; (8) 了解谐振的概念。
本章习题解析3-1 已知正弦电压和电流的三角函数式,试用有效值相量表示它们,并画出它们的相量图。
(1))20sin(210 +=t i ωA ,)60sin(2150 +=t u ωV (2))20sin(28 -=t i ωA ,)45sin(2120 -=t u ωV (3))30sin(25 +=t i ωA ,)90sin(2100 +=t u ωV解 (1)︒∠=2010IA ,︒∠=60150U V ,相量图如图3-1(a )所示。
(2))20(10︒-∠=IA ,)45(120︒-∠=U V ,相量图如图3-1(b )所示 (3)︒∠=305IA ,︒∠=90100U V ,相量图如图3-1(c )所示3-2 已知电压、电流的相量表示式,试分别用三角函数式、波形图及相量1+j (a )1+(b )1+j(c )图3-1图表示它们。
(1)4030j U+= V ,43j I += A (2)100=UV ,43j I -= A (3)V 10045 j e U=,A 44j I +=解 (1))13.53(504030︒∠=+=j U=︒+︒13.53sin 5013.53cos 50j ,V )13.53(543︒∠=+=j I=︒+︒13.53sin 513.53cos 5j ,A 波形图相量图如图3-2(a )所示。
《电工电子学》第3章习题答案
第3章习题答案3.2.1 选择题1.晶体管能够放大的外部条件是___C______。
(a) 发射结正偏,集电结正偏 (b) 发射结反偏,集电结反偏(c) 发射结正偏,集电结反偏2.当晶体管工作于饱和状态时,其__A_______。
(a) 发射结正偏,集电结正偏 (b) 发射结反偏,集电结反偏(c) 发射结正偏,集电结反偏3. 测得晶体管三个电极的静态电流分别为0.06mA,3.66mA和3.6mA。
则该管的为___C______。
(a) 40 (b) 50 (c) 604.反向饱和电流越小,晶体管的稳定性能___A______。
(a) 越好 (b) 越差 (c) 无变化5.温度升高,晶体管的电流放大系数b___A______。
(a) 增大 (b) 减小 (c) 不变6.温度升高,晶体管的管压降|UBE|__B_______。
(a) 升高 (b) 降低 (c) 不变7.对PNP型晶体管来说,当其工作于放大状态时,__C______极的电位最低。
(a) 发射极 (b) 基极 (c) 集电极8.温度升高,晶体管输入特性曲线____B____。
(a) 右移 (b) 左移 (c) 不变9.温度升高,晶体管输出特性曲线___A_____。
(a) 上移 (b) 下移 (c) 不变10.温度升高,晶体管输出特性曲线间隔___C_____。
(a) 不变 (b) 减小 (c) 增大11.晶体管共射极电流放大系数b随集电极电流iC___B_____。
(a) 不变化 (b) 有一定变化 (c) 无法判断12.当晶体管的集电极电流时,下列说法正确的是__C_____。
(a) 晶体管一定被烧毁 (b) 晶体管的 (c) 晶体管的一定减小13.对于电压放大器来说,___B____越小,电路的带负载能力越强。
(a) 输入电阻 (b) 输出电阻 (c) 电压放大倍数14.在单级共射放大电路中,若输入电压为正弦波形,则输出与输入电压的相位___B____。
徐淑华电工电子技术ppt第三章
u
Um
wt
u U m sin( w t )
有效值:
与交流热效应相等的直流 定义为交流电的有效值
10
热效应相当
有 效 值 概 念
T 0
i R dt I RT
2
2
交流
直流
I
1 T
T
i dt
2
(方均根值)
0
当 i I m sin
w
t 时, 可得,
I
Im 2
11
w t
i
相量图 相量式
.
I
I
I I
瞬时值 -- 小写 u, i, e; 最大值 --大写+下标m;
有效值 – 大写 U, I, E; 复数、相量 --- 大写 + ―.‖
34
例6
判断下列各式的正误:
u 100 sin w t 10000
瞬时值 复数
U 50 e
复数
j15 °
2. 正弦波的相量表示方法
1) 正弦量的相量表示
在线性正弦交流电路中的电源频率单一时,电路中所有 的电压电流为同频率正弦量,此时,w 可不考虑,主要 研究正弦量的幅度与初相位的变化 可用一个有向线段(矢量)表示正弦量: 其长度表示正弦量的有效值; 其与横轴的夹角表示正弦量的初相位。
描述正弦量的有向线段称为相量 (phasor ):
3.2 单一参数的正弦交流电路
3.2.1. 电阻元件的正弦交流电路
u iR
设
u
i
R
i 2 I sinw t Im sinw t
R R u i · = 2I · sinw t
电工电子学第三章
第三章电路的暂态分析1、研究暂态过程的意义暂态过程是一种自然现象暂态过程是一种自然现象,,对它的研究很重要对它的研究很重要。
暂态过程的存在有利有弊暂态过程的存在有利有弊。
有利的方面有利的方面,,如电子技术中常用它来产生各种波形术中常用它来产生各种波形;;不利的方面不利的方面,,如在暂态过程发生的瞬间态过程发生的瞬间,,可能出现过压或过流可能出现过压或过流,,致使设备损坏备损坏,,必须采取防范措施必须采取防范措施。
设:t =0 时换路---旧稳态的终了瞬间---换路后的初始瞬间0+0-C(4) 由t=0+时的等效电路求所需的u(0+)、i(0+)。
(0+)、C L Ci L(0+)、i R(0+) 、i S(0+) 。
mA 522210)0(=+×=−L imA155)10(0105)0()0(10)0(=−−−−=−+−+−=+C R S i i i mA10V10S断开=−+U u u C R SR+U 0_CC u i21R u U _++_+_合在1,1合到2,根据换路定则)0()0(U u u C C =−=+SR+U 0_CC u i21Ru +_+_SR+U 0_CC u i21Ru +_+_,和工程上工程上,,t =(3~5)τ认为暂态过程结束,电路到达新的稳态新的稳态。
的物理意义: 决定电路暂态过程变化的快慢。
τ的物理意义 决定电路暂态过程变化的快慢。
U0uCτ1 τ 2τ3τ1 < τ 2 < τ3t36.8%U0τ1 τ2 τ321结论: 暂态过程曲线变化越慢, 结论:τ 越大,暂态过程曲线变化越慢,uc 新的稳态所需要的时间越长。
达到 新的稳态所需要的时间越长。
1 SRi+ U0 _2+ uR _uc ( t ) = U 0 eC−t RC+ uC _电路中的电流, 电路中的电流,电阻两 端的电压变化的规律? 端的电压变化的规律?uR = − uC = −U 0 eU0 uR i= e =− R R−t RCt duC U 0 − RC i=C e =− dt Rt − RC或电路中各量的暂态过程同时发生,也同时结束; 电路中各量的暂态过程同时发生,也同时结束; 并且具有相同的时间常数。
电工电子学第三章习题答案 (2)
第三章交流电路3-1 试写出表示u A =)120314sin(2220,314sin 22200-==t u tV u B A 和V t u C )120314sin(22200+=的,并画出相量图。
解:V U V U V U C B A 0.00120220,120220,0220∠=-∠=∠=•••3-2 如图所示的是时间t=0时电压和电流的相量图,并已知U=220V ,I 1=10A ,I 2=52A ,试分别用三角函数式和复数式表示各正弦量。
3-3已知正弦电流i 1=22sin(100πt+60°)A, i 2=32sin(100πt+30°)A,试用相量法求i=i 1+i 2。
解A tg j j j j I I I 010000210.4284.4)598.3232.3(3914.23232.3598.3)213232(23321230sin 330cos 360sin 260cos 2∠=∠=+=⨯+⨯+⨯+⨯=+++=+=-•••i= 4.842 sin (100πt+42.00) A3-4在图示电路中,已知R=100Ω,L=31.8mH ,C=318uF 。
求电源的频率和电压分别为50Hz 、100V 和1000Hz 、100V 的两种情况下,开关S 合向a 、b 、c 位置时电流表的读数,并计算各元件中的有功功率和 无功功率.解:当F=50HZ 、U=100V 时,S 接到a ,Ia=)(1100100A =;有功功率为:P=UIa=100WS 接到b ,Ib=)(1099.9100108.312501003A LV ==⨯⨯⨯=-πω 无功功率为:Q=UIb=1000Var S 接到c ,)(10100103182506A C V Ic =⨯⨯⨯⨯==-πω。
无功功率为:q=UIc=-1000Var当F=1000HZ 、U=100V 时S 接到a ,Ia=)(1100100A =;有功功率为:P=UIa=100WS 接到b ,Ib=)(5.08.199100108.31210001003A L V ==⨯⨯⨯=-πω 无功功率为:Qb=UIb=50Var S 接到c ,)(8.19910010318210006A C V Ic=⨯⨯⨯⨯==-πω。
《电工电子技术》(曹建林) 习题详解:第3章
第3章习题详解四、分析计算题1、磁性材料在外磁场作用下可被磁化,达到很高的磁导率,这是由于在磁性材料内部具有许多称为磁畴的小区域。
在无外磁场作用时,各个磁畴间的磁性相互抵消,对外不显示磁性。
在外磁场H 作用下,磁畴逐渐转到与外磁场相同的方向上,开始时由于外磁场较小,磁畴转向外磁场方向的较少,故显示的磁性不大。
当外磁场H 继续增大时,磁畴则随着外磁场H 的增强,转向外磁场方向的磁畴也增加,且增加较多,便产生了一个很强的与外磁场同方向的磁化磁场,而使磁性材料内的磁感应强度B 大大增加。
因此磁导率不是常数。
2、(1)U1=2311=219.91(V) 21U U =k=955 U2=955U1=955×219.91=35.99(V) (2)I2=RL U 2=6099.35=0.6A 21I I =k 1=559 I1=559×I2=559×0.6=0.098(A) P1=U1×I1=219.91×0.098=21.58(W)3、(1)21U U =21N N =100500=5 U2=U1/5=5220=44(V ) I2=RL U 2=1144=4(A) P2=U2I2=44×4=176(W)∆P=P1-P2=η2P -P2=44(W)(2)21I I =12N N =500100=51 I1=51I2=51×4=0.8(A) 4、∵U1:U2:U3=220:U2:U3=10:1:2∴U2=101220⨯=22(V)U3=102220 =44(V) S1=S2+S3即U1I1=U2I2+U3I3=22×2+44×0.4=61.6I1=16.61U =2206.61=0.28(A) 5、由于变压器原绕组中主磁电动势远远大于其线圈电阻及漏抗产生的压降,即U 1≈E 1,所以电流I 1≠U 1/R 1=22A 。
电工与电子技术基础第三章习题答案
第3章电路的暂态过程一、思考题解答3.1 思考题【思3.1.1】电路在换路前储能元件没有储能,则在t=0-和t=0+的电路中,可将电容元件视为短路,电感元件视为开路。
如果换路前储能元件已有储能,且电路已处于稳态,则在t=0-电路中,电容元件视为开路,电感元件视为短路。
在t=0+电路中,电容元件可用一理想电压源代替,其电压为u C(0-);电感元件可用一理想电流源代替,其电流为i L(0-)。
【思3.1.2】根据换路定律可知,开关S断开瞬间电容器的电压值不能突变,则在t=0+时的等效电路可简化为如图3-2所示的电路。
u C(0+)=u C(0-)=112+×6=2V,i2(0+)=0,i1(0+)=i C(0+)=622-=2A【思3.1.3】根据换路定律可知,开关S断开瞬间电感的电流值不能突变,则在t=0+时的等效电路可简化为如图3-3所示的电路。
i L(0+)=i L(0-)=42=2A,U V=R V×i L(0+)=-2500×2=-5kV图3-2 思考题3.1.2的0+电路图图3-3 思考题3.1.3的0+电路图【思3.1.4】根据换路定律可知,开关S闭合瞬间电容器的电压值不能突变,则在t=0+时的等效电路可简化为如图3-4(a)所示的电路。
(1) i1(0+)=0,i(0+)=i2(0+)=100Au R1(0+)=100×1=100V,u R2(0+)=u C(0+)=0第3章 电路的暂态过程• 1 •1(2) i (∞)=i 1(∞)=100199+=1A ,i 2(∞)=0 u R1(∞)=1×1=1V ,u R2(∞)=u C (∞)=99×1=99 V(3) 根据换路定律可知,当S 闭合瞬间电感的电流值不能突变,则在t =0+时的等效电路可简化为如图3-4(b)所示的电路。
i 2(0+)=0,i (0+)=i 1(0+)=100199+=1A u R1(0+)=1×1=1V ,u R2(∞)=u L (0+)=99×1=99 V S 闭合后电路达到稳态时,i 1(∞)=0,i (∞)=i 2(∞)=1001=100A u R1(∞)=100×1=100V ,u R2(∞)=u C (∞)=(a) (b) 图3-4 思考题3.1.4的0+电路图【思3.1.5】i L (0+)=i L (0-)=013E R R R ++=12222++=2Au C (0+)=u C (0-)=2×2=4Vt =0+时的等效电路如图3-5所示,可得12=2×[2+i C (0+)]+2×i C (0+)+4 所以,i C (0+)=124422--+=1A ,u L (0+)=12-2×(2+1)-2×2=2V【思3.1.6】(1) 根据换路定律可知,开关S 闭合瞬间电容器可视为短路,各电感可视为开路。
邓允主编《电工电子技术及应用(第二版)》第三章习题详解
2
220 10 2 X L
2
3-8
一台 220V/110V 的单相变压器, N1=2000 匝, N2=1000 匝, 变比 K= N1/ N2=2,
有人为省线,将一次绕组、二次绕组匝数减为 20 匝和 10 匝,变压器能否正常工作? 为什么? 【解】变压器不能正常工作。 因为变压器二次绕组匝数太少,其电流将增加,超过其额定值,变压器将因通过 的电流过大而烧坏。 3-9 变压器能否变换直流电压?如果将额定电压为 220V 的变压器接到 220V 直
所以 I 2 N
一盏白炽灯的额定电流为 I
PN 60 0.273 U N 220
由于变压器二次侧的额定电流为 45.45A,一盏白炽灯的额定电流为 0.273A 因此,能够接入白炽灯的数量为 3-12 多少? 【解】因为
200 I 5 3.6 45.45 166 (盏) 0.27
2
所以 I 3-7
HL B L 95 50 10 3 0.095 (A)=95(mA) N N 0.01 500
一台 220V/110V 的单相变压器,原边加额定电压 220V 时,测得一次绕组电
阻为 10Ω,试问一次侧电流是否等于 22A? 【解】不是 22A。 因为变压器接交流电,电流 I
求二次绕组匝数?若用此变压器给 40W 的白炽灯供电, 压器一次绕组匝数 N1 =1100 匝, 问一次绕组电流 I1、二次绕组电流 I2 为多少? 【解】 根据
U1 N1 U 2 N2
3
N2
U 2 N1 36 1100 180 (匝) U1 220
根据 P UI
I2
电工电子技术基础-第3章
R +
4
R 10 , U1 U 2 , I1 I 2 , Z1 (5 j 5) , 同相时 Z 等于多少。 和I Z R jX 。试求 U
2 L 2
I
[ 解] 由于 U1 U 2 , I1 I 2 ,所以 Z1 Z 2 。
( 1)
10 30 V , Z 5 j 5 ,求 I 和 P。 (2) U 30 15 V , I 3 165 A , 求 R、X 和 P。 5e j 60 V ,求 R、X 和 P。 (3) U Z 100 30 V , I
(1) u 10 2 sin t V ; (2) u 10 2 sin(t
1
[ 解]
10 0 V 10 V ; U 10 90 V j10 V ; U
10 90 V j10 V ; U 10 135 V 7.07 j 7.07 V U
du 4 106 100 220 2 cos100 t A 88 2 cos100 t m A dt 1 1 104 ( 2) X C C 2 fC 4 i C
10 jX I U 0.1 60 V 79.6 30 V C j 4
1
U 1 ,所以, C 159 F Z 2 j 20 j I2 C
T。 8 [解](1)由 f 1000 H Z 得 2 f 6280 rad/ s i 100 sin(6280t
) m A 100 sin(6280 0.375 ) m A 100 m A 4 4 (2) i 100 sin(t ) m A 100 sin(1.25 ) m A 0 4 4 (3) i 100 sin(t ) m A 100 sin( ) m A 70.7 m A 4 2 4 2 7 (4) i 100 sin(t ) m A 100 sin( T ) m A 100 m A 4 T 8 4
电工与电子技术基础第3章 三相电路
3.3 三相电路功率
3.3.1 三相功率分析计算
⒈ 三相电路总功率 有功功率: 无功功率: 视在功率: 功率因数:
⒉ 对称三相电路总功率
有功功率: 无功功率: Up、Ip分别为每相负载的相电压、相电流的有效值;
是三相负载相电压与对应的相电流之间的相位差角。
【例63--160】 已知某三相对称负载阻抗Z=(6+j8)Ω,线电压Ul =380V,试求该三相对称负载分别作Y形联结和Δ形联结时的 P、Q、S、 解:因电路对称,电路总的功率因数即每相负载的功率因数。
3-3
3-9
图3-9 三相不对称有中线电路
⒉ 无中线
3-4
3-10
3-3
a)
b)
图3-10 三相不对称无中线电路
结论
⑴ 三相负载不对称且无中线,将引起负载相电压不对称, 负载电压过高过低,轻者使其不能正常工作,重者将损 坏负载设备。
⑵ 在三相负载不对称情况下,应采用三相四线制。即 联结中线,并使ZN →0,则 →0。这样各相负载虽因 阻抗不同,但两端电压仍能保持均衡。
第3章 目录
3.1 三相电路基本概念
3.1.1 对称三相电源概述 3.1.2 三相电源联结 3.1.3 三相负载联结
3.2 三相电路分析计算
3.2.1 对称三相电路分析计算 3.2.2 不对称三相电路分析计算
3.3 三相电路功率
3.3.1 三相功率分析计算 3.3.2 三相功率测量
3.4 安全用电 3.5 习题
⑴ 负载Y形联结:
⑵ 负载Δ形联结: 从上例计算中得出,PΔ=3PY,表明三相对称负载作Δ形 联结时吸收的功率是Y形联结时的3倍。
⑵ 负载Δ形联结 不对称负载: 对称负载:
电工电子技术第3章电路的暂态分析
电流通过N匝线圈产生 ψNΦ(磁链) 电感: L ψ NΦ ( H、mH)
ii
线性电感: L为常数; 非线性电感: L不为常数 线圈的电感与线圈的尺寸、匝数以及附近的介质
的导磁性能等有关。 L μ S N 2 l
L μS N2 (H)
i
l
S — 线圈横截面积(m2)
+
-
l —线圈长度(m)
3 .3 .1 RC电路的零输入响应
零输入响应: 无电源激励, 输 入信号为零, 仅由电容元件的 + 初实始质储:能RC所电产路生的的放电电路过的程响应。U -
2 t 0 R
1
S
+
iC
u
–
R
u
+ C–
c
图示电路
uC(0)U
换t =路0时前开电关路S已 处1稳, 电态容uCC(经0电)阻UR 放电
由于物体所具有的能量不能跃变而造成
在换路瞬间储能元件的能量也不能跃变
∵ C 储能:
WC
1 2
CuC2
∵ L储能:
WL
1 2
L iL2
\ u C 不能突变
iL不能突变
2. 换路定则
设:t=0 — 表示换路瞬间 (定为计时起点) t=0-— 表示换路前的终了瞬间 t=0+—表示换路后的初始瞬间(初始值)
1) 由t =0+的电路求其它电量的初始值; 2) 在 t =0+时的电压方程中 uC = uC( 0+)、
t =0+时的电流方程中 iL = iL ( 0+)。
例1.暂态过程初始值的确定
S C R2
已知:换路前电路处稳态,
《电工电子技术基础》第3章三相交流电路.ppt
3.1 三相电源的连接方式 3.2 三相负载的连接方式 3.3 三相电路的功率
第1章
3.1 三相电源的连接方式
1. 对称三相交流电
A
定子 首端: A B C 三绕组在空间
↓↓↓
位置互差120o
Y×
N
Z
尾端: X Y Z
•
转子
转子装有磁极并以 的速度旋。三
个线圈中便产生三个单相电动势。
C×
S
中线的作用在于,使星形连接的不对称负载得到相 等的相电压。为了确保零线在运行中不断开,其上不允 许接保险丝也不允许接刀闸。
第3页
1.负载的Δ形连接:
iA 线电流
A
iAB
Δ接负载的端电压等于电源线电压;
火线上通过的电流称为线电流Il; 负载中通过的电流称为相电流IP;
接时 U l: U p
uAB uCA Z
三个线电压也是对称的,
e C uA
ZX
Y
u AB
u CA
N
且超前与其相对应的相电 压30°电角。
UC
A
-UA
N
-
30 UBN
30
UAB
- 30
UCN
uB
u BC
B C
•
•
•
•
•
UABUANUBN UAN(UBN)
•
•
•
•
•
UBC UBNUCN UBN(UCN)
•
•
•
•
•
UCA UCNUAN UCN(UAN)
由相量图还可看出,在三相对称情况下,线电流是相 电流的1.732倍,相位滞后与其相对应的相电流30°。
第3页
电工与电子技术基础课件第三章正弦交流电
_
正弦交流电的优越性:
正半周
便于传输;易于变换
便于运算;
有利于电器设备的运行;
.....
负半周
二、正弦交流电的产生
正弦交流电通常是由交流发电机产生的。图3-2a 所示是最简单的交流发电机的示意图。发电机由定子和 转子组成,定子上有N、S两个磁极。转子是一个能转 动的圆柱形铁心,在它上面缠绕着一匝线圈,线圈的两 端分别接在两个相互绝缘的铜环上,通过电刷A、B与 外电路接通。
1 F 106 F
1pF 1012 F
图3-17 电容器的图形符号
(2) 电容器的基本性质 实验现象1
1)图3-18a是将一个电容器和一个灯泡串联起来接在直流电 源上,这时灯泡亮了一下就逐渐变暗直至不亮了,电流表的指 针在动了一下之后又慢慢回到零位。 2)当电容器上的电压和外加电源电压相等时,充电就停止了, 此后再无电流通过电容器,即电容器具有隔直流的特性,直流 电流不能通过电容器。
1.电容器的基本知识 (1)电容器——是储存电荷的容器
组成:由两块相互平行、靠得很近而 又彼此绝缘的金属板构成。
电容元件的图形符号
电容量 C q
u 1)C是衡量电容器容纳电荷本领大小的物理量。 2)电容的SI单位为法[拉], 符号为F; 1 F=1 C/V。
常采用微法(μF)和皮法(pF)作为其单位。
第一节 交流电的基本概念
一、交流电
交流电——是指大小和方向 都随时间作周期性的变化的
电动势、电压和电流的总称。
正弦交流电——接正弦规律 变化的交流电。
图3-1 电流波形图 a)稳恒直流 b)脉动直流
c)正弦波 d)方波
正弦量: 随时间按正弦规律做周期变化的量。
ui
电工电子技术及技能(程周)第三章
14
15
谢谢!
图3.4 可变电容和微调电容的外形、符号及实物图
9
3.1 电容
3.1.4电容的类型和额定值
2.电容的额定值 (1)电容器的成品上都标明电容值、允许误差和额定电压等,这些数值统称为额定值。 (2)标称容量:电容器上所标明的电容值称为标称容量。 (3)误差及允许误差:电容器的标称容量与实际容量之间的差值称为电容器的误差。实际电容 器的误差限定在允许误差范围之内,此误差称为允许误差。 (4)额定工作电压:电容器上所标明的额定工作电压通常指直流工作电压。在交流电路中,所 加的交流电压最大值不能超过额定工作电压值,否则电容器有被击穿的危险,因此,该电压也 称为击穿电压或耐压。 3.电容器的作用 (1)在电力系统中,其主要功能是改善电力系统的运行条件,提高功率因数。 (2)在电子电路中主要起获得振荡、滤波、移相、旁路、隔直、耦合等作用。
电工电子技术及技能(程周)第三章
3 电容和电感 1 3.1电容 2 3.2电感
2
3.1 电容 观察与思考
3
3.1 电容
3.1.1电容器
1.任何两个彼此绝缘而又相互靠近的导体,都可以看成一个电容器,这两个导体称为电容 器的两个极。 2.平行板电容器:两块靠近而且平行放置的金属板组成的电容器称为平行板电容器。 3.在电容器两个极施加电压U时,在介质中建立起电场,能量被存储在介质中,如图3.1所 示。
10
3.2 电感 3.2.1电感器 1.空心电感线圈:绕在非铁磁材料骨架上的线圈,称为空心电感线圈,常见的空心电感线圈如 图3.7所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
盐城工学院电工电子课程组
例2: 换路前电路处稳态。 试求图示电路中各个电压和电流的初始值。 i R R iC R 2 2 R3 + iC R2 iL iL 2 t =0 +
_
U 8V
4
4
i1
R1 + u_ 4 C
+ uL _
U _ 8V
+
R1 4V _
4
若 uc 发生突变,
1 2 ∵ C 储能: C CuC W 2
\ u C 不能突变
1 2 ∵ L储能:W L Li L 2
\ i L不能突变
章目录 上一页 下一页 返回 退出
盐城工学院电工电子课程组
2.换路定则
设:t=0 — 表示换路瞬间 (定为计时起点) t=0-— 表示换路前的终了瞬间 t=0+—表示换路后的初始瞬间(初始值)
R3 4
1A
t = 0+时等效电路
解:(2) 由t = 0+电路求 iC(0+)、uL (0+) uc (0+) iL (0+) 由图可列出 U Ri (0 ) R2 iC (0 ) uC (0 ) 带入数据
盐城工学院电工电子课程组
i (0 ) iC (0 ) i L (0 ) 8 2i (0 ) 4iC (0 ) 4 i ( 0 ) iC ( 0 ) 1
uidt
0
t
t
0
Ri dt 0
2
表明电能全部消耗在电阻上,转换为热能散发。
盐城工学院电工电子课程组
章目录 上一页 下一页 返回 退出
3.1.2 电感元件
描述线圈通有电流时产生磁 场、储存磁场能量的性质。
i +
u
1.物理意义 电流通过一匝线圈产生 电流通过N匝线圈产生 电感:
-
Φ (磁通)
章目录 上一页 下一页 返回 退出
i
R1 R2 R3
u2 -
+
I
O
t
(a)
3.2 储能元件和换路定则
S R
+
U
uC
+ uC C –
U
暂态
–
iC (b)
o 稳态
t
图(b) 合S前: iC 0 , uC 0
合S后: uC 由零逐渐增加到U
所以电容电路存在暂态过程(C储能元件)
盐城工学院电工电子课程组
盐城工学院电工电子课程组
章目录 上一页 下一页 返回
退出
3.2 储能元件和换路定则
1.电路中产生暂态过程的原因
例:
+
S
U
-
图(a): 合S前:i
0 uR1 uR 2 uR 3 0
电流 i 随电压 u 比例变化。 合S后:
所以电阻电路不存在暂态过程 (R耗能元件)。
盐城工学院电工电子课程组
第3章 电路的暂态分析
3.1 电阻元件、电感元件、电容元件 3.2 储能元件和换路定则 3.3 RC电路的响应
3.4 一阶线性电路暂态分析的三要素法
3.5 微分电路和积分电路 3.6 RL电路的响应
盐城工学院电工电子课程组
章目录 上一页 下一页 返回
退出
第3章 电路的暂态分析
本章要求 : 1. 了解电阻元件、电感元件与电容元件的特征; 2. 理解电路的暂态和稳态、零输入响应、零状 态响应、全响应的概念,以及时间常数的物 理意义; 3. 掌握换路定则及初始值的求法; 4. 掌握一阶线性电路分析的三要素法。
暂态过程初始值的确定 例1. C R2 S 已知:换路前电路处稳态, t=0 + C、L 均未储能。 L R1 U 试求:电路中各电压和电 流的初始值。 (a) 解:(1)由换路前电路求
uC (0 ), i L (0 )
由已知条件知 uC (0 ) 0, i L (0 ) 0 根据换路定则得: uC (0 ) uC (0 ) 0
章目录 上一页 下一页 返回 退出
产生暂态过程的必要条件: (1) 电路中含有储能元件 (内因) (2) 电路发生换路 (外因)
换路: 电路状态的改变。如: duC 则 iC 电路接通、切断、 短路、电压改变或参数改变 dt 一般电路不可能! 产生暂态过程的原因: 由于物体所具有的能量不能跃变而造成 在换路瞬间储能元件的能量也不能跃变
+ uL L _
解: 由t = 0-电路求 uC(0–)、iL (0–) (1) 换路前电路已处于稳态:电容元件视为开路; 由t = 0-电路可求得: 电感元件视为短路。 R1 U 4 U i L (0 ) 1A R1 R3 R R1 R3 4 4 2 4 4 44 R1 R3
uL (0 )
t = 0+时等效电路
1 1 4 4 41 1 V 3 3
R2 iC (0 ) uC (0 ) R3 i L (0 )
盐城工学院电工电子课程组
章目录 上一页 下一页 返回
退出
计算结果:
+
R 2 U 8V t =0
iC
R2 iL 4
R3 4
盐城工学院电工电子课程组
章目录 上一页 下一页 返回 退出
3.1 电阻元件、电感元件与电容元件
3.1.1 电阻元件
描述消耗电能的性质 根据欧姆定律:
线性电阻
i
u iR
+ u _ R
即电阻元件上的电压与通过的电流成线性关系
金属导体的电阻与导体的尺寸及导体材料的 导电性能有关,表达式为:R l S 电阻的能量 W
章目录 上一页 下一页 返回
退出
例2: 换路前电路处稳态。 试求图示电路中各个电压和电流的初始值。 i R R iC R 2 2 R3 + iC R2 iL 2 iL t =0 +
_
U 8V 4 4
i1
R1 + uC 4 _
+ uL _
U _ 8V
+
R1 4V _
4
R3 4
1A
1 解:解之得 iC (0 ) A 3 并可求出
2) 根据换路定律求出 uC( 0+)、iL ( 0+) 。 (2)其它电量初始值的求法。
1) 由t =0+的电路求其它电量的初始值;
2) 在 t =0+时的电压方程中 uC = uC( 0+)、 t =0+时的电流方程中 iL = iL ( 0+)。
盐城工学院电工电子课程组
章目录 上一页 下一页 返回 退出
R3 4
R1 + uC C 4 _
+ uL L _
解:(1) i L (0 ) 1 A 由换路定则:
t = 0 -等效电路
uC (0 ) R3 i L (0 ) 4 1 4 V
i L (0 ) i L (0 ) 1 A uC (0 ) uC (0 ) 4 V
3.1.3 电容元件
描述电容两端加电源后,其两个极板 + 上分别聚集起等量异号的电荷,在介质 u 中建立起电场,并储存电场能量的性质。 _ 电容:
i C
q C u
(F )
du iБайду номын сангаасC dt
u
电容元件
当电压u变化时,在电路中产生电流: 电容元件储能
将上式两边同乘上 u,并积分,则得:
t
0
ui dt
L (0 ) L (0 ) 0
盐城工学院电工电子课程组
章目录 上一页 下一页 返回 退出
例1: 暂态过程初始值的确定 i (0 ) C + uC (0+) u2(0+) _ C R2 S + iL(0+ ) R2 i1(0+ ) t=0 + + + + L u U R1 U _ 1(0+) _ uL(0+) R1 (a)
盐城工学院电工电子课程组
章目录 上一页 下一页 返回
退出
3.3 RC电路的响应
一阶电路暂态过程的求解方法 一阶电路 仅含一个储能元件或可等效为一个储能元件的线 性电路, 且由一阶微分方程描述,称为一阶线性电 路。 求解方法 1. 经典法: 根据激励(电源电压或电流),通过求解 电路的微分方程得出电路的响应(电压和电流)。 2. 三要素法 初始值
ψ NΦ L i i
ψ NΦ(磁链)
( H)
线性电感: L为常数; 非线性电感: L不为常数 dψ di e L 2.自感电动势: L dt dt
盐城工学院电工电子课程组
章目录 上一页 下一页 返回 退出
3.电感元件储能 di 根据基尔霍夫定律可得:u e L L 将上式两边同乘上 i ,并积分,则得:
0
1 2 Cudu Cu 2
章目录 上一页 下一页 返回 退出
盐城工学院电工电子课程组
电容元件储能
电场能
1 2 W Cu 2
即电容将电能转换为电场能储存在电容中,当电压 增大时,电场能增大,电容元件从电源取用电能; 当电压减小时,电场能减小,电容元件向电源放还 能量。 本节所讲的均为线性元件,即R、L、C都是常数。
求 稳态值 (三要素) 时间常数
盐城工学院电工电子课程组
章目录 上一页 下一页 返回 退出
3.3.1 RC电路的零输入响应
零输入响应: 无电源激励, 输 入信号为零, 仅由电容元件的 + U 初始储能所产生的电路的响应。 实质:RC电路的放电过程 图示电路 uC (0 ) U 换路前电路已处稳态 uC (0 ) U t =0时开关 S 1 , 电容C 经电阻R 放电 1.电容电压 uC 的变化规律(t 0) (1) 列 KVL方程 uR uC 0 一阶线性常系数 duC 齐次微分方程 C C uR R dt duC 代入上式得 RC uC 0