北京市海淀区2014届高三下学期期末练习(二模)数学文

合集下载

【2014海淀二模】北京市海淀区2014届高三下学期期末练习 语文 参考答案

【2014海淀二模】北京市海淀区2014届高三下学期期末练习 语文 参考答案

海淀区高三年级第二学期期末练习语文参考答案及评分标准2014.5一、本大题共7小题,共15分。

1. C2. A3. C4.D5.C6.B7.D(第2小题3分,其余每小题2分)二、本大题共5小题,共25分。

8. B 9.A 10.B (每小题3分)11.逐一(全部) (1分)观览南岳上的幽洞异岩(1分),既要从整体上(1分)观看,又要了解它们的细微之处(1分)。

(共4分)12. 评分参考:结合文章内容恰当,2分;联系生活实际恰当,2分。

思考感悟,5分。

语言表达,3分。

(共12分)三、本大题共3小题,共21分。

13.孔子曰/所谓圣人者/德合于天地/变通无方/穷万事之终始/协庶品之自然/敷其大道而遂成情性/明并日月/化行若神/下民不知其德/睹者不识其邻/此谓圣人也。

(共5分,每答对2处得1分。

答错2处扣1分,扣完5分为止)参考译文:孔子说:“所谓圣人,他们的品德符合天地之道,变通自如,能探究万事万物的终始,使万事万物符合自然法则,依照万事万物的自然规律来成就它们。

光明如日月,教化如神灵。

下面的民众不知道他的德行,看到他的人也不知道他就在身边。

这样的人就是圣人。

”14.①《左传》或《左氏春秋》《春秋左氏传》彼竭我盈②君子生非异也善假于物也③悟已往之不谏知来者之可追④天姥连天向天横势拔五岳掩赤城⑤范仲淹化作相思泪(共8分。

每空1分,有错则该空不得分。

学生如多写,选前4道小题评分)15.① C(3分)②评分标准:拟人(移情)手法,1分;分析诗句内容,2分;赏析表达效果2分(诗人情感1分)。

四、本大题共3小题,共13分。

16.A (3分)17.答案要点:赋税收入;则为中央提供最及时(或“较充分”)的经济援助(或“物质保障”)。

(每点2分,共4分。

意思对即可。

)18.答案要点:①保定、廊坊对北京:分担、承接北京部分职能(1分);缓解北京人口、交通、环境资源等压力;有利于解决北京的“大城市病”。

(后两点答出一点即可,1分)②北京对保定:提高其政治、文化、教育水平(答出两点即可得2分)。

2014年高三一模数学(文)北京市海淀区试题Word版带答案.doc

2014年高三一模数学(文)北京市海淀区试题Word版带答案.doc

海淀区高三年级第二学期期中练习数 学 (文科) 2014.4一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.52i=- A.2i - B.2i + C.12i + D. 12i -解析:55(2)22(2)(2)i i i i i +==+--+2. 已知集合{}{}1,0,1,sin π,,A B y y x x A A B =-==∈=则A.1 B.0 C. 1 D.解析:{0}B =,所以{0}A B ⋂=3. 抛物线28y x =上到其焦点F 距离为5的点有 A.0个B.1个C. 2个D. 4个解析:根据抛物线的定义抛物线上的任意一点到焦点的距离等于到准线的距离,有两个点。

4. 平面向量,a b 满足||2=a ,||1=b ,且,a b 的夹角为60︒,则()⋅+a a b = A.1B. 3C.5D. 7解析:()a a b a a a b +=•+•=4+1=5 5. 函数()2sin f x x x =+的部分图象可能是A B C D解析:由题得函数为奇函数,关于原点对称,x=1时,函数值为正,答案为A 。

6. 已知等比数列{}n a 的前n 项和为n S ,且1S ,22S a +,3S 成等差数列,则数列{}n a 的公比为A .1B .2C .12D .3 解析:根据题意有22132()S a S S +=+,2111112()a a q a a q a q +=++解得q=3.OyxOyxOyxOyx7. 已知()x f x a 和()x g x b 是指数函数,则“(2)(2)f g ”是“ab ”的A.充分不必要条件B.必要不充分条件C.充分必要条件D. 既不充分也不必要条件解析:根据题意函数式指数函数,a ,b>0,所以22a b >,a b >,反之也成立,所以为充分必要条件。

8. 已知(1,0)A ,点B 在曲线:G ln y x =上,若线段AB 与曲线:M 1y x=相交且交点恰为线段AB 的中点,则称B 为曲线G 关于曲线M 的一个关联点.那么曲线G 关于曲线M 的关联点的个数为A .0B .1C .2D .4解析:A(1,0),设0,0(ln )B x x 则AB 的中点坐标001ln (,)22x x +,因为中点在1y x =上,所以00(1)ln 4x x +=,利用数形结合,满足条件的点个数1个。

2014年二模----海淀

2014年二模----海淀

、选择题:本大题共1. sin(—150:)的值为2 .已知命题A . a _0,有C. a 0,有2014年二模----海淀8小题,每小题5分,共40 分.D .-32“—a 0,e a -1成立a /e ::: 1成立e a -1成立a 0,有 a /e -1成立3 •执行如图所示的程序框图,若输出的A . -2B . 16 C. -2 或8 D . -2 或16S为4,则输入的X应为4 •在极坐标系中,圆T =2s in二的圆心到极轴的距离为A. 1B. 2C. 3D. 2x y -1 _0,5 .已知P(x, y)是不等式组x-y,3_0,表示的平面区域内的一点,x乞0A(1,2) , O为坐标原点,则OA OP的最大值A . 2B . 3C . 5D . 66 . 一观览车的主架示意图如图所示,其中O为轮轴的中心,距地面32m (即OM长),巨轮的半径为30m, AM =BP=2m,巨轮逆时针旋转且每12分钟转动一圈.若点M为吊舱P的初始位置,经过t分钟,该吊舱P距离地面的高度为h(t) m,贝y h(t)=n nA. 30si n( t ) 3012 2n n丄C . 30si n(—t ) 326 2n nB . 30si n( —t ) 30 6 2n nD . 30si n(—t )6 2BPhA7.已知等差数列{a n}单调递增且满足a1 ' a10 = 4,则a8的取值范围是A. (2,4) B .C . (2/::) D . (4,8•已知点E,F 分别是正方体 ABCD —AB I GD !的棱AB, AA 的中 点,点M ,N 分别是线段 D 1E 与C 1F 上的点,则满足与平面 ABCD 平 行的直线MN 有 A • 0条B • 1条C . 2条D .无数条二、填空题:本大题共6小题,每小题5分,共30分.9 •满足不等式x 2-xc0的x 的取值范围是 _____________ .5311.已知(ax 1)的展开式中x 的系数是10,则实数a 的值是 _____________________113.已知hl 是曲线C: y的两条互相平行的切线,x则h 与12的距离的最大值为14.已知集合M 二{1,2,3,山,100}, A 是集合M 的非空子集,把集合A 中的各元素之和记作 S(A). ① 满足S( A) =8的集合A 的个数为 _____________ ; ② S(A)的所有不同取值的个数为 ________________ .10.已知双曲线2b 2 “的一条渐近线为 y =2x ,则双曲线的离心率为B i12.已知斜三棱柱的三视图如图所示,该斜三棱柱的体 积为 ______________ .-1B主视图z 1^-1-俯视图三、解答题:本大题共6小题,共80分•解答应写出文字说明,演算步骤或证明过程.15.(本小题满分13分)在锐角二ABC中,a=2、7si nA且b= 21 •(I)求B的大小;(n)若a =3c,求c的值.16.(本小题满分14分)如图,在三棱柱ABC-ARG 中,AA _底面ABC, AB _ AC , AC = AB = AA , E,F 分别是棱BC , A i A的中点,G为棱CC i上的一点,且C i F //平面AEG .CG(I)求——的值;CC 1(n)求证:EG _AC ;(川)求二面角 A - AG -E的余弦值.F17.(本小题满分13分)某单位有车牌尾号为2的汽车A和尾号为6的汽车B,两车分属于两个独立业务部门.对一段时间内两辆汽车的用车记录进行统计,在非限行日,A车日出车频率0.6, B车日出车频率0. 5 .该地区汽车限行规定如下:现将汽车日出车频率理解为日出车概率,且 A , B两车出车相互独立.(I)求该单位在星期一恰好出车一台的概率;(n)设X表示该单位在星期一与星期二两天的出车台数之和,求望EX的分布列及其数学期(X).18.(本小题满分13分)已知函数f(x)=(x-a)sinx cosx,x (0,二).(I)当a =上时,求函数2n(n)当a 时,求函数2f (x)值域;f (x)的单调区间.19.(本小题满分14分)已知椭圆G的离心率为,其短轴两端点为A(0,1),B(0, 一1).2(I)求椭圆G的方程;(H)若C,D是椭圆G上关于y轴对称的两个不同点,直线AC,BD与x轴分别交于点M ,N •判断以MN为直径的圆是否过点A,并说明理由.20.(本小题满分13分)对于自然数数组(a,b,c),如下定义该数组的极差:三个数的最大值与最小值的差.如果(a,b,c)的极差d _1,可实施如下操作f :若a,b,c中最大的数唯一,则把最大数减2,其余两个数各增加1 ;若a,b,c中最大的数有两个,则把最大数各减1,第三个数加2,此为一次操作,操作结果记为f1(a,b,c),其级差为4 .若4 _1,则继续对f1(a,b,c)实施操作f,…,实施n次操作后的结果记为f n(a,b,c),其极差记为d n .例如:f1(1,3,3) =(3,2,2), f2(1,3,3) = (1,3,3).(I)若(a,b,c) =(1,3,14),求d1,d2 和d2014 的值;(n)已知(a,b,c)的极差为d且a cb <c,若n = 1,2,3, |||时,恒有dn=d,求d的所有可能取值;(川)若a,b,c是以4为公比的正整数等比数列中的任意三项,求证:存在n满足d n =0 .海淀区高三年级第二学期期末练习参考答案数学(理科) 2014. 5、选择题:本大题共8小题,每小题5分,共40分.1 . A 2. C 3. D 4. A. 5. D 6. B 7. C 8. D二、填空题:本大题共6小题,每小题5分,共30分.9. 0 :::x :::1{或(0,1) } 10. . 5 11. 1 12. 2 13. 2 214. 6, 5050 {本题第一空3分,第二空2分}三、解答题:本大题共6小题,共80分.15.解:(I)由正弦定理可得 a _ bsinA si nB--------------------------- 2 分因为 a =2 7sin A, b =21所以sin B = bsi nA 21s in A 3a " 2.7 si nA - 2-------------------------- 5分在锐角-ABC 中,B = 60°-------------------------- 7 分(n) 由余弦定理可得b2 =a2亠c2 -2accosB --------------------------- 9分又因为a =3c所以21 =9c2 c2 -3c2,即c2 =3 ----------------------------- 11 分解得c = .3 ------------------------------ 12 分经检验,由cos A = 2 2b c -a2bc 2.7::0 可得A 90o不符合题意, 所以C = 3舍去. ------------------ 13分16.解:(I)因为GF II平面AEG又GF u 平面ACC1A1,平面ACGA I 平面AEG =AG ,所以GF IIAG .-------------------------------- 3分因为F 为AA 中点,且侧面 ACGA 为平行四边形(n)因为AA 丄底面ABC ,由题意知二面角A -AG -E 为钝角,16•解:所以G 为CG 中点,所以CGCG----------------------- 4 分所以AA 丄AB , AA 丄AC , ------------------------------- 5 分又 AB _AC ,如图,以A 为原点建立空间直角坐标系 A-xyz ,设AB=2 ,贝U 由 AB =AC =A A可得 C(2,0,0), B(0,2,0),G(2,0,2), A i (0,0,2) ------- 6 分因为巳G 分别是BC,CC i 的中点, 所以 E(1,1,0),G(2,0,1) . ------------------------- 7 分uuur uuuEG CA =(1, —1,1) (—2,0,2) =0 • ----------------urn uuu 所以 EG _CA i , 所以EG _ AC •----------------------------- 9 分(川)设平面 AEG 的法向量n =(x, y, z),则uur n AE =0, uuu n AG =0,即 f 7=0, 2x z =0.------------------------ 10 分令 x =1,则 y»1,zT ,所以 n =(1,-1,-2) .------------------------- 11 分 由已知可得平面 AAG 的法向量m =(0,1,0) ----------------------------- 12 分所以 n m76 cos :: n, m =|n | |m|6------------------------------- 13 分所以二面角A -AG-E 的余弦值为------------------------------ 14 分C i zA i(I)设A 车在星期i 出车的事件为 A i , B 车在星期i 出车的事件为 B i , i =123,4,5由已知可得 P(A) =0.6,P(BJ =0.5 设该单位在星期一恰好出一台车的事件为 C, ------------------------------- 1 分因为A,B 两车是否出车相互独立,且事件AB 1,A1B 1互斥 ------------- 2分所以 P(C) =P(A B &B I ) =P(A B 1) P(A 1B I ) =P(A I )P(B 1) P(A 1)P(B I )= 0.6 (1—0.5) (1—0.6) 0.5-------------------------- 4 分=0.5所以该单位在星期一恰好出一台车的概率为0.5 .------------------------ 5 分{答题与设事件都没有扣 1分,有一个不扣分}(H) X 的可能取值为0,1,2,3-------------------------- 6 分 P( X = 0)=P 乙A 1B)PbA 刁 0. 4 0. 5 =0. 40. 0 8P( X =1 )= P (C )P 2(A ) P(AB)P(A) 0. 5 0. 4 0. 4 0 = 5 0. 6 0. 3 2P ( X = 2 )= P £A 1B ) PGA ) P( C) P( A ) 0. 6 0.5 0. 4 0 = 5 0. 6 0. 4 2P(X ^3^P(A 1B 1)P(A 2^0.6 0.5 0.6=0.18所以列为------------- 11分E(X)=0 0.08 1 0.32 2 0.42 3 0.18 =1.7 ____________________________ 13 分18.解:f (x) =(x -Jsinx COSX , X :=(0, n2n由 f '(x) =0得 X 二------------------------- 2 分2f ( x) , f ' (的)-------------------------- 10 分n⑴当a 石时,nf ' (x > x ) ccxs------------------------------- 1 分4 分因为 f(0)=1 , f(冗)=-1 , 所以函数f(x)的值域为(一1,1).-------------------------------------------------- 5 分(n) f '(x) =(x _a)cos x ,n①当厂…时,f(x),f(x)----------------------------------------------- 9 分所以函数f(x )的单调增区间为(2,a ),单调减区间为(°》和(a ,n②当a - n 时,----------------------------------------------- 13 分19. 解 :2 2(I)由已知可设椭圆 G 的方程为:^2 —1(a 1).a 1所以函数f (x)的单调增区间为nn,单调减区间为(%).J 2由e 二牙,可得 解得a 2 =2 ,2a 2 -1 1°一 a 2 22 2所以椭圆的标准方程为 -=1 . ----------------------------------------- 4 分2 1(n)法一:设 C(x o ,y o ),且 X 。

北京市海淀区高三数学下学期期末练习 文(海淀二模)(含解析)

北京市海淀区高三数学下学期期末练习 文(海淀二模)(含解析)

海淀区高三年级第二学期期末练习数 学(文科)2013.5本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作 答无效。

考试结束后,将本试卷和答题卡一并交回。

—、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出 符合题目要求的一项.1. 集合{}|(1)(2)0A x x x =-+≤,B ={}0x x <,则A B = A .(,0]-∞ B .(,1]-∞ C .[1,2] D .[1,)+∞ 【答案】B【解析】{}|(1)(2)0{21}A x x x x x =-+≤=-≤≤,所以A B ={1}x x ≤,即选B.2 已知1211ln ,sin ,222a b c -===,则a,b ,c 的大小关系为A. a < b < cB. a <c <bC.b <a<cD. b <c < a【答案】A【解析】1ln 02a =<,110sin sin 262π<<=所以102b <<,12122c -==>,所以,a 大小关系为cb a >>。

选A.3. 如图,在边长为a 的正方形内有不规则图形Ω. 向正方形内随机撒豆子,若 撒在图形Ω内和正方形内的豆子数分别为,m n ,则图形Ω面积的估计值为A.ma nB.na mC. 2ma nD. 2na m【答案】C【解析】设图形Ω面积的为S ,则由实验结果得2S m a n=,解2ma S n =,所以选C.4.俯视图A.180B.240C.276D.300 【答案】B【解析】由三视图可知,该几何体的下面部分是边长为6的正方体。

上部分为四棱锥。

四棱锥的底面为正方形,边长为 6.侧面三角形的斜高为 5.所以该几何体的表面积为21656542402⨯+⨯⨯⨯=,选B. 5 下列函数中,为偶函数且有最小值的是A.f(x) =x 2 +xB.f(x) = |lnx|C.f(x) =xsinxD.f(x) =e x +e -x【答案】D【解析】A ,B 为非奇非偶函数。

【2014海淀二模】北京市海淀区2014届高三下学期期末练习 文科数学 Word版含答案-推荐下载

【2014海淀二模】北京市海淀区2014届高三下学期期末练习 文科数学 Word版含答案-推荐下载

D
代代
C
C1
B1 A1
F B
E A
开始
S=0,n=1
S=S+n
n n2 1
否 n>10

输出 S
结束
试卷集合_Wuz
三、解答题: 本大题共 6 小题,共 80 分.解答应写出文字说明, 演算步骤或证明过程.
15.(本小题满分 13 分) 已知函数 f (x) 2 3 sin x cos x 2sin2 x a , a R .
x

x
6.已知向量 AC , AD 和 AB 在正方形网格中的位置如图所示,
若 AC AB AD ,则
A. 2
B. 2

y y
,那么集合
B. x R,x2 x 1 0 D. x R,x2 x 1 0
1 1
C. y cos x
D. (1,1)
D. 3
x

y

1
B AD
C
A

0
2014.5
的距离为
2的 2
① 测量 A,C,b ② 测量 a,b,C
则一定能确定 A, B 间距离的所有方案的序号为
A.①②
B. ②③
试卷集合_Wuz
8. 已知点 E, F 分别是正方体 ABCD A1B1C1D1 的棱 AB, AA1 的中点,点 D1
符合题目要求的一项.
1.
已知全集为
R
,集合
A

{x
|
x
≥ 1}
A.{x | x 1} B.{x | x 1} C.{x | x 1} D.{x | x 1}

北京市海淀区2014届高三下学期期末练习(二模)数学文试题 含答案

北京市海淀区2014届高三下学期期末练习(二模)数学文试题 含答案

海淀区高三年级第二学期期末练习参考答案数 学 (文科) 2014.5 阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。

2.其它正确解法可以参照评分标准按相应步骤给分。

一、选择题:本大题共8小题,每小题5分,共40分.1.C2.B3.D4.B5.A6.A7.D8.B二、填空题:本大题共6小题,每小题5分,共30分.10.2 11.8 12.①② 13.2,0 14.5,3.6{第13,14题的第一空3分,第二空2分}三、解答题: 本大题共6小题,共80分.15.解:(Ⅰ)()2cos21f x x x a =++- --------------------------4分12cos2)12x x a =++- π2sin(2)16x a =++- ---------------------------6分 ∴周期2ππ.2T == ----------------------------7分 (Ⅱ)令()0f x =,即π2sin(2)1=06x a ++-, ------------------------------8分 则π=12sin(2)6a x -+, --------------------------------9分 因为π1sin(2)16x -≤+≤, ---------------------------------11分 所以π112sin(2)36x -≤-+≤, --------------------------------12分 所以,若()f x 有零点,则实数a 的取值范围是[1,3]-. -----------------------------13分 16.解:(Ⅰ)上半年的鲜疏价格的月平均值大于下半年的鲜疏价格的月平均值.--------------------4分 (Ⅱ)从2012年2月到2013年1月的12个月中价格指数环比下降的月份有4月、5月、6月、9月、10月. ------------------------------------------6分设“所选两个月的价格指数均环比下降”为事件A , --------------------------------------7分在这12个月份中任取连续两个月共有11种不同的取法,------------------------------8分其中事件A 有(4月,5月),(5月,6月),(9月,10月),共3种情况. ---------9分 ∴3().11P A = -----------------------------------------10分 (Ⅲ)从2012年11月开始,2012年11月,12月,2013年1月这连续3个月的价格指数方差最大.-----------------------------------------13分17.解:(I )1A A ⊥Q 底面ABC ,1A A ∴⊥AB , -------------------------2分 AB AC ⊥Q ,1A A AC A =I ,AB ∴⊥面11A ACC . --------------------------4分 (II )Q 面DEF //面1ABC ,面ABC I 面DEF DE =,面ABC I 面1ABC AB =, AB ∴//DE , ---------------------------7分Q 在ABC ∆中E 是棱BC 的中点,D ∴是线段AC 的中点. ---------------------------8分 (III )Q 三棱柱111ABC A B C -中1A A AC =∴侧面11A ACC 是菱形, 11AC AC ∴⊥, --------------------------------9分 由(1)可得1AB AC ⊥, Q 1AB AC A =I ,1AC ∴⊥面1ABC , --------------------------------11分 1AC ∴⊥1BC . -------------------------------12分 又,E F Q 分别为棱1,BC CC 的中点,EF ∴//1BC , ------------------------------13分 1EF AC ∴⊥. ------------------------------14分18. 解:(Ⅰ)由已知可得2'()24f x x ax =++. ---------------------------------1分'(0)4f ∴=, ---------------------------------2分 又(0)f b =()f x ∴在0x =处的切线方程为4y x b =+. ---------------------------------4分令321443x ax x b x b +++=+,整理得2(3)0x a x +=. 0x ∴=或3x a =-, -----------------------------------5分 0a ≠Q 30a ∴-≠, ----------------------------------------6分 ()f x ∴与切线有两个不同的公共点. ----------------------------------------7分 (Ⅱ)()f x Q 在(1,1)-上有且仅有一个极值点,∴2'()24f x x ax =++在(1,1)-上有且仅有一个异号零点, ---------------------------9分1由二次函数图象性质可得'(1)'(1)0f f -<, -------------------------------------10分即(52)(52)0a a -+<,解得52a >或52a <-, ----------------------------12分 综上,a 的取值范围是55(,)(,)22-∞-+∞U . -------------------------------13分 19.解:(Ⅰ)由已知可设椭圆G 的方程为:2221(1)x y a a+=> --------------------------------------------1分由e ,可得222112a e a -==,----------------------------------------------------------------3分 解得22a =, -----------------------------------------------------------4分 所以椭圆的标准方程为2212x y +=. ----------------------------------------------------5分 (Ⅱ)法一:设00(,),C x y 则000(,),0D x y x -≠ ------------------------------------------------------6分 因为(0,1),(0,1)A B -,所以直线BC 的方程为0011y y x x +=-, ------------------------------------------------------7分 令0y =,得001M x x y =+,所以00(,0)1x M y +. ----------------------------------------------8分 所以0000(,1),(,1),1x AM AD x y y =-=--+u u u u r u u u r -------------------------------------------9分 所以200011x AM AD y y -⋅=-++u u u u r u u u r , ---------------------------------------------10分 又因为2200121x y +=,代入得200002(1)111y AM AD y y y -⋅=+-=-+u u u u r u u u r --------------------11分 因为011y -<<,所以0AM AD ⋅≠u u u u r u u u r . -----------------------------------------------------------12分所以90MAN ∠≠o , -------------------------------------------------------13分所以点A 不在以线段MN 为直径的圆上. ---------------------------------------------14分 法二:设直线BC 的方程为1y kx =-,则1(,0)M k. ------------------------------------------------6分 由22220,1,x y y kx ⎧+-=⎨=-⎩化简得到222(1)20x kx +--=,所以22(12)40k x kx +-=,所以12240,21k x x k ==+, -------------------------------------8分所以22222421112121k k y kx k k k -=-=-=++, 所以222421(,)2121k k C k k -++,所以222421(,)2121k k D k k --++ ----------------------------------------9分 所以2221421(,1),(,1),2121k k AM AD k k k --=-=-++u u u u r u u u r ---------------------------------------------10分 所以2222421210212121k AM AD k k k ---⋅=-+=≠+++u u u u r u u u r , --------------------------------------12分 所以90MAN ∠≠o , ---------------------------------------13分所以点A 不在以线段MN 为直径的圆上. ------------------------------------14分20.解: (Ⅰ)①因为5135514S =<-,数列1,3,5,2,4-不是“Γ数列”, ---------------------------------2分 ②因为31113311284S =>-,又34是数列2323333,,444中的最大项 所以数列2323333,,444是“Γ数列”. ----------------------------------------------4分 (Ⅱ)反证法证明:假设存在某项i a <0,则12111i i k k k i k a a a a a a S a S -+-+++++++=->L L .设12111max{,,,,,,,}j i i k k a a a a a a a -+-=L L ,则12111k i i i k k j S a a a a a a a k a -+--=+++++++L L ≤(-1),所以(1)j k k a S ->,即1k j S a k >-, 这与“Γ数列”定义矛盾,所以原结论正确. --------------------------8分 (Ⅲ)由(Ⅱ)问可知10,0b d ≥≥.①当0d =时,121m m m S S b b b m m ====<-L ,符合题设; ---------------------9分 ②当0d >时,12m b b b <<<L由“Γ数列”的定义可知1m m S b m ≤-,即111(1)[(1)](1)2m b m d mb m m d -+-≤+- 整理得1(1)(2)2m m d b --≤(*)显然当123m b =+时,上述不等式(*)就不成立所以0d >时,对任意正整数3m ≥,1(1)(2)2m m d b --≤不可能都成立.综上讨论可知{}n b 的公差0d =. --------------------------------------------------13分。

2014北京海淀区高三期末数学(文)试题答案

2014北京海淀区高三期末数学(文)试题答案

海淀区高三年级第一学期期末练习数学(文)参考答案及评分标准2014.1阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。

2.其它正确解法可以参照评分标准按相应步骤给分。

一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分,共30分)三、解答题(本大题共6小题,共80分)15.(本小题共13分)解:(Ⅰ)πcosππ2()2sinππ44sin cos44f=+=+=+------------------------3分(Ⅱ)由sin cos0x x+≠得ππ,4x k k≠-∈Z.因为cos2()2sinsin cosxf x xx x=++22cos sin2sinsin cosx xxx x-=++------------------------------------5分cos sinx x=+π)4x+,-------------------------------------7分所以()f x的最小正周期2πT=. -------------------------------------9分因为函数siny x=的对称轴为ππ+,2x k k=∈Z, ------------------------------11分又由πππ+,42x k k+=∈Z,得ππ+,4x k k=∈Z,9. 2 10.16 11. 712.{1,2,4}13.50,1015 14.1-;①②③所以()f x 的对称轴的方程为ππ+,4x k k =∈Z .-----------------------------------13分16.(本小题共13分)解:(Ⅰ)由上图可得0.010.190.290.451a ++++=,所以0.06a =. ----------------------------------4分(Ⅱ)设事件A 为“甲队员射击,命中环数大于7环”,它包含三个两两互斥的事件:甲队员射击,命中环数为8环,9环,10环.所以()0.290.450.010.75P A =++=. ----------------------------------9分 (Ⅲ)甲队员的射击成绩更稳定. ---------------------------------13分 17.(本小题共14分)解:(Ⅰ)因为底面ABCD 是菱形,所以//CD AB . ----------------------------1分 又因为CD ⊄平面PAB , -------------------3分 所以//CD 平面PAB . --------------------------4分 (Ⅱ)因为PA PB =,点E 是棱AB 的中点,所以PE AB ⊥. ----------------------------------5分 因为平面PAB ⊥平面ABCD ,平面PAB平面ABCD AB =,PE ⊂平面PAB ,----------------------------------7分所以PE ⊥平面ABCD , ------------------------------------8分 因为AD ⊂平面ABCD ,所以PE AD ⊥. ------------------------------------9分 (Ⅲ)因为CA CB =,点E 是棱AB 的中点,所以CE AB ⊥. --------------------------------10分 由(Ⅱ)可得PE AB ⊥, ---------------------------------11分 所以AB ⊥平面PEC , --------------------------------13分 又因为AB ⊂平面PAB ,所以平面PAB ⊥平面PEC . --------------------------------14分18.(本小题共13分)解:(Ⅰ)'()(1)e x f x x a =++,x ∈R . -------------------------------2分因为函数()f x 是区间[3,)-+∞上的增函数,所以'()0f x ≥,即10x a ++≥在[3,)-+∞上恒成立.------------------------------3分 因为1y x a =++是增函数,所以满足题意只需310a -++≥,即2a ≥. -------------------------------5分 (Ⅱ)令'()0f x =,解得1x a =-- -------------------------------6分 (),'()f x f x 的情况如下:--------------------------------------10分①当10a --≤,即1a ≥-时,()f x 在[0,2]上的最小值为(0)f , 若满足题意只需2(0)e f ≥,解得2e a ≥,所以此时,2e a ≥; --------------------------------------11分②当012a <--<,即31a -<<-时,()f x 在[0,2]上的最小值为(1)f a --, 若满足题意只需2(1)e f a --≥,求解可得此不等式无解,所以a 不存在; ------------------------12分③当12a --≥,即3a ≤-时,()f x 在[0,2]上的最小值为(2)f , 若满足题意只需2(2)e f ≥,解得1a ≥-,所以此时,a 不存在. ------------------------------13分综上讨论,所求实数a 的取值范围为2[e ,)+∞. 19. (本小题共14分)解:(Ⅰ)由题意可得1c =, ----------------------------------1分 又由题意可得12c a =, 所以2a =, ----------------------------------2分所以2223b a c =-=, ----------------------------------3分所以椭圆C 的方程为22143x y +=. ---------------------------------4分所以椭圆C 的右顶点(2,0)A , --------------------------------5分 代入圆F 的方程,可得21r =,所以圆F 的方程为22(1)1x y -+=. ------------------------------6分 (Ⅱ)法1:假设存在直线l :(2)y k x =-(0)k ≠满足条件, -----------------------------7分由22(2),143y k x x y =-⎧⎪⎨+=⎪⎩得2222(43)1616120k x k x k +-+-=----------------------------8分设11(,)B x y ,则21216243k x k +=+, ---------------------------------9分可得中点22286(,)4343k kP k k -++, --------------------------------11分由点P 在圆F 上可得2222286(1)()14343k k k k --+=++化简整理得20k = --------------------------------13分 又因为0k ≠,所以不存在满足条件的直线l . --------------------------------14分 (Ⅱ)法2:假设存在直线l 满足题意.由(Ⅰ)可得OA 是圆F 的直径, -----------------------------7分 所以OP AB ⊥. ------------------------------8分 由点P 是AB 中点,可得||||2OB OA ==. --------------------------------9分设点11(,)B x y ,则由题意可得2211143x y +=. --------------------------------10分又因为直线l 的斜率不为0,所以214x <, -------------------------------11分所以22222211111||3(1)3444x x OB x y x =+=+-=+<,-------------------------------13分这与||||OA OB =矛盾,所以不存在满足条件的直线l . --------------------------14分 20. (本小题共13分)解:(Ⅰ)只有y =是N 函数. ----------------------------3分 (Ⅱ)函数()[ln ]1g x x =+是N 函数.证明如下:显然,*x ∀∈N ,*()[ln ]1g x x =+∈N . ---------------------------------------4分不妨设*[ln ]1,x k k +=∈N ,由[ln ]1x k +=可得1ln k x k -≤<, 即11e e k k x -≤≤<.因为*k ∀∈N ,恒有11e e e (e 1)1k k k ---=->成立, 所以一定存在*x ∈N ,满足1e e k k x -≤<, 所以设*k ∀∈N ,总存在*x ∈N 满足[ln ]1x k +=,所以函数()[ln ]1g x x =+是N 函数. ---------------------------------------8分 (Ⅲ)(1)当0b ≤时,有2(2)[]0f b a =⋅≤,所以函数()[]x f x b a =⋅都不是N 函数. ---------------------------9分(2)当0b >时,① 若0a ≤,有(1)[]0f b a =⋅≤,所以函数()[]x f x b a =⋅都不是N 函数. ------------------10分② 若01a <≤,由指数函数性质易得 x b a b a ⋅≤⋅,所以*x ∀∈N ,都有()[][]x f x b a b a =⋅≤⋅所以函数()[]x f x b a =⋅都不是N 函数. -----------------11分③ 若1a >,令12m m b a b a +⋅-⋅>,则2log (1)am b a >⋅-,所以一定存在正整数k 使得 12k k b a b a +⋅-⋅>, 所以*12,n n ∃∈N ,使得112k k b a n n b a +⋅<<<⋅, 所以12()(1)f k n n f k <<≤+.又因为当x k <时,x k b a b a ⋅<⋅,所以()()f x f k ≤; 当1x k >+时,1x k b a b a +⋅>⋅,所以()(1)f x f k ≥+, 所以*x ∀∈N ,都有*1{()|}n f x x ∉∈N ,所以函数()[]x f x b a =⋅都不是N 函数.------------------13分综上所述,对于任意实数,a b ,函数()[]x f x b a =⋅都不是N 函数.。

北京市海淀区2014届高三下学期期末练习(二模)数学理试题(WORD版)

北京市海淀区2014届高三下学期期末练习(二模)数学理试题(WORD版)

北京市海淀区2014届高三下学期期末练习(二模)数 学 (理科) 2014.5本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上 作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.sin(150)-的值为A .12-B .12 C. D2.已知命题:p “0a ∀>,有e 1a≥成立”,则p ⌝为 A. 0a ∃≤,有e 1a≤成立 B. 0a ∃≤,有e 1a≥成立 C. 0a ∃>,有e 1a<成立 D. 0a ∃>,有e 1a≤成立 3. 执行如图所示的程序框图,若输出的S 为4,则输入的x 应为A.-2B.16C.-2或8D. -2或164. 在极坐标系中,圆θρsin 2=的圆心到极轴的距离为 A .1C.D. 25.已知(,)P x y 是不等式组10,30,0x y x y x +-≥⎧⎪-+≥⎨⎪≤⎩表示的平面区域内的一点,(1,2)A ,O 为坐标原点,则OA OP ⋅的最大值A.2B.3C.5D.66.一观览车的主架示意图如图所示,其中O 为轮轴的中心,距地面32m (即OM 长),巨轮的半径为30m ,AM =2BP =m ,巨轮逆时针旋转且每12分钟转动一圈.若点M 为吊舱P 的初始位置,经过t 分钟,该吊舱P 距离地面的高度为()h t m ,则()h t =A.ππ30sin()30122t -+B.ππ30sin()3062t -+C.ππ30sin()3262t -+D.ππ30sin()62t -7.已知等差数列{}n a 单调递增且满足1104a a +=,则8a 的取值范围是A. (2,4)B. (,2)-∞C. (2,)+∞D.(4,)+∞ 8.已知点,E F 分别是正方体1111ABCD A B C D -的棱1,AB AA 的中点,点,M N 分别是线段1D E 与1C F 上的点,则满足与平面ABCD 平行的直线MN 有A.0条B.1条C.2条D.无数条二、填空题:本大题共6小题,每小题5分,共30分.9. 满足不等式20x x -<的x 的取值范围是________.10.已知双曲线22221x y a b-=的一条渐近线为2y x =,则双曲线的离心率为________.11.已知5(1)ax +的展开式中3x 的系数是10,则实数a 的值是12.已知斜三棱柱的三视图如图所示,该斜三棱柱的体积为______.13. 已知12,l l 是曲线1:C y x=的两条互相平行的切线,则1l 与2l 的距离的最大值为_____.14.已知集合{1,2,3,,100}M =,A 是集合M 的非空子集,把集合A 中的各元素之和记作()S A .①满足()8S A =的集合A 的个数为_____;②()S A 的所有不同取值的个数为_____.三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15.(本小题满分13分)1D主视图俯视图在锐角ABC ∆中,a A =且b . (Ⅰ)求B 的大小;(Ⅱ)若3a c =,求c 的值.16.(本小题满分14分)如图,在三棱柱111ABC A B C -中,1AA ⊥底面ABC ,AB AC ⊥,的一点,1AC AB AA ==,,E F 分别是棱BC ,1A A 的中点,G 为棱1CC 上且1C F //平面AEG . (Ⅰ)求1CG CC 的值;(Ⅱ)求证:1EG A C ⊥;(Ⅲ)求二面角1A AG E --的余弦值.17.(本小题满分13分)某单位有车牌尾号为2的汽车A 和尾号为6的汽车B ,两车分属于两个独立业务部门.对一段时间内两辆汽车的用车记录进行统计,在非限行日,A 车日出车频率0.6,B 车日出车频率0.5.该地区汽车限行规定如下:现将汽车日出车频率理解为日出车概率,且A ,B 两车出车相互独立. (Ⅰ)求该单位在星期一恰好出车一台的概率;(Ⅱ)设X 表示该单位在星期一与星期二两天的出车台数之和,求X 的分布列及其数学期望E (X ).18.(本小题满分13分)已知函数()()sin cos ,(0,)f x x a x x x π=-+∈.(Ⅰ)当π2a =时,求函数()f x 值域; (Ⅱ)当π2a >时,求函数()f x 的单调区间.19.(本小题满分14分)已知椭圆G,其短轴两端点为(0,1),(0,1)A B -. (Ⅰ)求椭圆G 的方程;(Ⅱ)若,C D 是椭圆G 上关于y 轴对称的两个不同点,直线,AC BD 与x 轴分别交于点,M N .判断1以MN 为直径的圆是否过点A ,并说明理由.20.(本小题满分13分)对于自然数数组(,,)a b c ,如下定义该数组的极差:三个数的最大值与最小值的差.如果(,,)a b c 的极差1d ≥,可实施如下操作f :若,,a b c 中最大的数唯一,则把最大数减2,其余两个数各增加1;若,,a b c 中最大的数有两个,则把最大数各减1,第三个数加2,此为一次操作,操作结果记为1(,,)f a b c ,其级差为1d .若11d ≥,则继续对1(,,)f a b c 实施操作f ,…,实施n 次操作后的结果记为(,,)n f a b c ,其极差记为n d .例如:1(1,3,3)(3,2,2)f =,2(1,3,3)(1,3,3)f =. (Ⅰ)若(,,)(1,3,14)a b c =,求12,d d 和2014d 的值; (Ⅱ)已知(,,)a b c 的极差为d 且a b c <<,若1,2,3,n =时,恒有n d d =,求d 的所有可能取值;(Ⅲ)若,,a b c 是以4为公比的正整数等比数列中的任意三项,求证:存在n 满足0n d =.数学(理科)参考答案2014.5阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。

北京海淀区高三二模数学 文科 试卷及答案解析

北京海淀区高三二模数学 文科 试卷及答案解析
5 / 13
又因为 BC AD , BC CE 1, AD=3 所以四边形 BCEF 为正方形, AF FE ED 1 ,得 AE 2 所以 BC AE, BC= 1 AE
2 在图 2 中设点 M 为线段 D1E 的中点,连结 MG, MC , 因为点 G 是 AD1 的中点, 所以 GM AE, GM = 1 AE
2 所以 GM BC,GM =BC ,所以四边形 MGBC 为平行四边形 所以 BG CM 又因为 CM 平面 D1EC , BG 平面 D1EC 所以 BG 平面 D1EC (Ⅱ) 因为平面 D1EC 平面 ABCE ,
平面 D1EC 平面 ABCE EC , D1E EC, D1E 平面 D1EC , 所以 D1E 平面 ABCE 又因为 AB 平面 ABCE 所以 D1E AB 又 AB 2, BE 2, AE 2 ,满足 AE2 AB2 BE2 , 所以 BE AB 又 BE D1E E 所以 AB 平面 D1EB (Ⅲ) CE D1E,CE AE , AE D1E E
又因为 BF EC , EC 平面 D1EC , BF 平面 D1EC 所以 BF 平面 D1EC
又因为 GF BF F 所以平面 BFG 平面 D1EC 又因为 BG 面GFB ,所以 BG 平面 D1EC 方法 3: 在图 1 的等腰梯形 ABCD 内,过 B作 AE 的垂线,垂足为 F , 因为 CE AD ,所以 BF EC
an1 an2 2 3n2 an2 an3 2 3n3
2 / 13

a3 a2 2 32
a2 a1 2 31 把上面 n 1 个等式叠加,得到

2014年北京市海淀区高三一模数学(文)试题和答案

2014年北京市海淀区高三一模数学(文)试题和答案

海淀区高三年级第二学期期中练习数学 (文科) 2014.4本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.52i=- A.2i - B.2i + C.12i + D. 12i - 2. 已知集合{}{}1,0,1,sin π,,A B y y x x A A B =-==∈=则 A.{}1- B.{}0 C. {}1 D.Æ 3. 抛物线28y x =上到其焦点F 距离为5的点有 A.0个B.1个C. 2个D. 4个4. 平面向量,a b 满足||2=a ,||1=b ,且,a b 的夹角为60︒,则()⋅+a a b = A.1B.3C.5D. 75. 函数()2sin f x x x =+的部分图象可能是A BCD6. 已知等比数列{}n a 的前n 项和为n S ,且1S ,22S a +,3S 成等差数列,则数列{}n a 的公比为 A.1 B.2C.12D.3 7. 已知()x f x a =和()x g x b =是指数函数,则“(2)(2)f g >”是“a b >”的A.充分不必要条件B.必要不充分条件C.充分必要条件D. 既不充分也不必要条件8. 已知(1,0)A ,点B 在曲线:G ln y x =上,若线段AB 与曲线:M 1y x=相交且交点恰为线段AB 的中点,则称B 为曲线G关于曲线M 的一个关联点.那么曲线G 关于曲线M 的关联点的个数为 A .0 B .1 C .2 D .4二、填空题:本大题共6小题,每小题5分,共30分.9.双曲线221 3x y m -=的离心率为2,则m =__________.10. 李强用流程图把早上上班前需要做的事情做了如下几种方案,则所用时间最少的方案是_______方案一: 方案二: 方案三:11. 在ABC ∆中,3a =,5b =,120C =,则s i n ______,_______.s i n Ac B==12. 某商场2013年一月份到十二月份月销售额呈现先下降后上升的趋势,现有三种函数模型: ①()x f x p q =⋅,(0,1)q q >≠;②()log (0,1)xp f x q p p =+>≠;③2()f x x px q =++. 能较准确反映商场月销售额()f x 与月份x 关系的函数模型为 _________(填写相应函数的序号),若所选函数满足(1)10,(3)2f f ==,则()f x =_____________. 13.一个空间几何体的三视图如图所示,该几何体的表面积为__________.14. 设不等式组20,20x y x ay ++≥⎧⎨++≤⎩表示的区域为1Ω,不等式221x y +≤表示的平面区域为2Ω.(1) 若1Ω与2Ω有且只有一个公共点,则a = ;(2) 记()S a 为1Ω与2Ω公共部分的面积,则函数()S a 的取值范围是 .三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.O y x O y xO yxO y x 俯视图主视图侧视图求()f x 在[,]22-上的取值范围.16.(本小题满分13分)某出租车公司为了解本公司出租车司机对新法规的知晓情况,随机对100名出租车司机进行调查.调查问卷共10道题,答题情况如下表:(Ⅰ)如果出租车司机答对题目数大于等于9,就认为该司机对新法规的知晓情况比较好,试估计该公司的出租车司机对新法规知晓情况比较好的概率;(Ⅱ)从答对题目数少于8的出租车司机中任选出两人做进一步的调查,求选出的两人中至少有一名女出租车司机的概率.17. (本小题满分14分)如图1,在Rt △ABC 中,∠ABC=90°,D 为AC 中点,AE BD ⊥于E (不同于点D ),延长AE 交BC 于F ,将△ABD 沿BD 折起,得到三棱锥1A BCD -,如图2所示. (Ⅰ)若M 是FC 的中点,求证:直线DM //平面1A EF ;(Ⅱ)求证:BD ⊥1A F ;(Ⅲ)若平面1A BD ⊥平面BCD ,试判断直线1A B 与直线CD 能否垂直?并说明理由.18. (本小题满分13分)已知函数()ln f x x x =.(Ⅰ)求()f x 的单调区间;(Ⅱ) 当1k ≤时,求证:()1f x kx ≥-恒成立. 19. (本小题满分14分)已知1122(,),(,)A x y B x y 是椭圆22:24C x y +=上两点,点M 的坐标为(1,0).(Ⅰ)当,A B 关于点(1,0)M 对称时,求证:121x x ==;(Ⅱ)当直线AB 经过点(0,3) 时,求证:MAB ∆不可能为等边三角形. 20. (本小题满分13分)在平面直角坐标系中,对于任意相邻三点都不共线的有序整点列(整点即横纵坐标都是整数的点)()A n :123,,,,nA A A A 与()B n :123,,,,nB B B B ,其中3n ≥,若同时满足:①两点列的起点和终点分别相同;②线段11i i i i A A B B ++⊥,其中1,2,3,,1i n =-,则称()A n 与()B n 互为正交点列.(Ⅰ)试判断(3)A :123(0,2),(3,0),(5,2)A A A 与(3)B :123(0,2),(2,5),(5,2)B B B 是否互为正交点列,并说明理由;(Ⅱ)求证:(4)A :12340,0),3,1),6,0)(((,9,1)(A A A A 不存在正交点列(4)B ;(Ⅲ)是否存在无正交点列(5)B 的有序整数点列(5)A ?并证明你的结论.海淀区高三年级第二学期期中练习参考答案数学(文科) 2014.4阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。

2014北京各区高考数学二模试题及答案解析

2014北京各区高考数学二模试题及答案解析

2014北京各区高考数学二模
试题及答案解析
2014年北京市各县区的高考二模对于测验高三考生的复习成果和接下来的高考志愿填报具有非常重要的参考价值。

本人特将一模试题进行整理汇总,以下是2014年北京各城区高考二模试题及答案汇总,供考生
参考!
北京市西城区2014年高三二模试卷
数 学(理科) 2014.5
第Ⅰ卷(选择题 共40分)
一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合
题目要求的一项.
1.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =,
则实数a 的取值范围是( ) (A )(,2]-∞-
(B )[2,)-+∞
(C )(,2]-∞
(D )[2,)+∞
2.在复平面内,复数2
=(12i)z +对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限
(D )第四象限
3.直线2y x =为双曲线22
22 1(0,0)x y C a b a b
-=>>:的一条渐近线,则双曲线C 的离心率是( )
(A (B (C
(D。

北京市海淀区2014届高三下学期期末练习 理科数学 Word版含答案.

北京市海淀区2014届高三下学期期末练习 理科数学 Word版含答案.

北京市海淀区2014届高三下学期期末练习(二模数学 (理科 2014.5本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.sin(150-的值为A .12-B .12 C. D2.已知命题:p “0a ∀>,有e 1a≥成立”,则p ⌝为 A. 0a ∃≤,有e 1a≤成立 B. 0a ∃≤,有e 1a≥成立 C. 0a ∃>,有e 1a<成立 D. 0a ∃>,有e 1a≤成立 3. 执行如图所示的程序框图,若输出的S 为4,则输入的x 应为A.-2B.16C.-2或8D. -2或164. 在极坐标系中,圆θρsin 2=的圆心到极轴的距离为 A .1C.D. 25.已知(,P x y 是不等式组10,30,0x y x y x +-≥⎧⎪-+≥⎨⎪≤⎩表示的平面区域内的一点,(1,2A ,O 为坐标原点,则OA OP ⋅的最大值A.2B.3C.5D.66.一观览车的主架示意图如图所示,其中O 为轮轴的中心,距地面32m (即OM 长,巨轮的半径为30m ,AM =2BP =m ,巨轮逆时针旋转且每12分钟转动一圈.若点M 为吊舱P 的初始位置,经过t 分钟,该吊舱P 距离地面的高度为(h t m ,则(h t =A.ππ30sin(30122t -+B.ππ30sin(3062t -+ C.ππ30sin(3262t -+ D.ππ30sin(62t -7.已知等差数列{}n a 单调递增且满足1104a a +=,则8a 的取值范围是A. (2,4B. (,2-∞C. (2,+∞D.(4,+∞8.已知点,E F 分别是正方体1111ABCD A B C D -的棱1,AB AA 的中点,点,M N 分别是线段1D E 与1C F 上的点,则满足与平面ABCD 平行的直线MN 有A.0条B.1条C.2条D.无数条二、填空题:本大题共6小题,每小题5分,共30分.9. 满足不等式20x x -<的x 的取值范围是________.10.已知双曲线22221x y a b-=的一条渐近线为2y x =,则双曲线的离心率为________.11.已知5(1ax +的展开式中3x 的系数是10,则实数a 的值是12.已知斜三棱柱的三视图如图所示,该斜三棱柱的体积为______.13. 已知12,l l 是曲线1:C y x=的两条互相平行的切线,则1l 与2l 的距离的最大值为_____.14.已知集合{1,2,3,,100}M =,A 是集合M 的非空子集,把集合A 中的各元素之和记作(S A .①满足(8S A =的集合A 的个数为_____;②(S A 的所有不同取值的个数为_____.三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15.(本小题满分13分在锐角ABC ∆中,a A =且b .1D D主视图俯视图(Ⅰ求B 的大小;(Ⅱ若3a c =,求c 的值.16.(本小题满分14分如图,在三棱柱111ABC A B C -中,1AA ⊥底面ABC ,AB AC ⊥,1AC AB AA ==,,E F 分别是棱BC ,1A A 的中点,G 为棱1CC 上的一点,且1C F //平面AEG . (Ⅰ求1CG CC 的值;(Ⅱ求证:1EG A C ⊥;(Ⅲ求二面角1A AG E --的余弦值.17.(本小题满分13分某单位有车牌尾号为2的汽车A 和尾号为6的汽车B ,两车分属于两个独立业务部门.对一段时间内两辆汽车的用车记录进行统计,在非限行日,A 车日出车频率0.6,B 车日出车频率0.5.该地区汽车限行规定如下:现将汽车日出车频率理解为日出车概率,且A ,B 两车出车相互独立. (Ⅰ求该单位在星期一恰好出车一台的概率;(Ⅱ设X 表示该单位在星期一与星期二两天的出车台数之和,求X 的分布列及其数学期望E (X .18.(本小题满分13分已知函数((sin cos ,(0,f x x a x x x π=-+∈.(Ⅰ当π2a =时,求函数(f x 值域; (Ⅱ当π2a >时,求函数(f x 的单调区间.19.(本小题满分14分已知椭圆G,其短轴两端点为(0,1,(0,1A B -. (Ⅰ求椭圆G 的方程;(Ⅱ若,C D 是椭圆G 上关于y 轴对称的两个不同点,直线,AC BD 与x 轴分别交于点,M N .判断以MN 为直径的圆是否过点A ,并说明理由.120.(本小题满分13分对于自然数数组(,,a b c ,如下定义该数组的极差:三个数的最大值与最小值的差.如果(,,a b c 的极差1d ≥,可实施如下操作f :若,,a b c 中最大的数唯一,则把最大数减2,其余两个数各增加1;若,,a b c 中最大的数有两个,则把最大数各减1,第三个数加2,此为一次操作,操作结果记为1(,,f a b c ,其级差为1d .若11d ≥,则继续对1(,,f a b c 实施操作f ,…,实施n 次操作后的结果记为(,,n f a b c ,其极差记为n d .例如:1(1,3,3(3,2,2f =,2(1,3,3(1,3,3f =. (Ⅰ若(,,(1,3,14a b c =,求12,d d 和2014d 的值; (Ⅱ已知(,,a b c 的极差为d 且a b c <<,若1,2,3,n =时,恒有n d d =,求d 的所有可能取值;(Ⅲ若,,a b c 是以4为公比的正整数等比数列中的任意三项,求证:存在n 满足0n d =.数学(理科参考答案2014.5阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。

北京市海淀区2014届高三下学期期末练习(二模)数学理试题(WORD版)

北京市海淀区2014届高三下学期期末练习(二模)数学理试题(WORD版)

北京市海淀区2014届高三下学期期末练习(二模)数 学 (理科) 2014.5本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上 作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.sin(150)-的值为A .12-B .12 C. D2.已知命题:p “0a ∀>,有e 1a≥成立”,则p ⌝为 A. 0a ∃≤,有e 1a≤成立 B. 0a ∃≤,有e 1a≥成立 C. 0a ∃>,有e 1a<成立 D. 0a ∃>,有e 1a≤成立 3. 执行如图所示的程序框图,若输出的S 为4,则输入的x 应为A.-2B.16C.-2或8D. -2或164. 在极坐标系中,圆θρsin 2=的圆心到极轴的距离为 A .1C.D. 25.已知(,)P x y 是不等式组10,30,0x y x y x +-≥⎧⎪-+≥⎨⎪≤⎩表示的平面区域内的一点,(1,2)A ,O 为坐标原点,则OA OP ⋅的最大值A.2B.3C.5D.66.一观览车的主架示意图如图所示,其中O 为轮轴的中心,距地面32m (即OM 长),巨轮的半径为30m ,AM =2BP =m ,巨轮逆时针旋转且每12分钟转动一圈.若点M 为吊舱P 的初始位置,经过t 分钟,该吊舱P 距离地面的高度为()h t m ,则()h t =A.ππ30sin()30122t -+B.ππ30sin()3062t -+C.ππ30sin()3262t -+D.ππ30sin()62t -7.已知等差数列{}n a 单调递增且满足1104a a +=,则8a 的取值范围是A. (2,4)B. (,2)-∞C. (2,)+∞D.(4,)+∞ 8.已知点,E F 分别是正方体1111ABCD A B C D -的棱1,AB AA 的中点,点,M N 分别是线段1D E 与1C F 上的点,则满足与平面ABCD 平行的直线MN 有A.0条B.1条C.2条D.无数条二、填空题:本大题共6小题,每小题5分,共30分.9. 满足不等式20x x -<的x 的取值范围是________.10.已知双曲线22221x y a b-=的一条渐近线为2y x =,则双曲线的离心率为________.11.已知5(1)ax +的展开式中3x 的系数是10,则实数a 的值是12.已知斜三棱柱的三视图如图所示,该斜三棱柱的体积为______.13. 已知12,l l 是曲线1:C y x=的两条互相平行的切线,则1l 与2l 的距离的最大值为_____.14.已知集合{1,2,3,,100}M =,A 是集合M 的非空子集,把集合A 中的各元素之和记作()S A .①满足()8S A =的集合A 的个数为_____;②()S A 的所有不同取值的个数为_____.三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15.(本小题满分13分)1D主视图俯视图在锐角ABC ∆中,a A =且b . (Ⅰ)求B 的大小;(Ⅱ)若3a c =,求c 的值.16.(本小题满分14分)如图,在三棱柱111ABC A B C -中,1AA ⊥底面ABC ,AB AC ⊥,的一点,1AC AB AA ==,,E F 分别是棱BC ,1A A 的中点,G 为棱1CC 上且1C F //平面AEG . (Ⅰ)求1CG CC 的值;(Ⅱ)求证:1EG A C ⊥;(Ⅲ)求二面角1A AG E --的余弦值.17.(本小题满分13分)某单位有车牌尾号为2的汽车A 和尾号为6的汽车B ,两车分属于两个独立业务部门.对一段时间内两辆汽车的用车记录进行统计,在非限行日,A 车日出车频率0.6,B 车日出车频率0.5.该地区汽车限行规定如下:现将汽车日出车频率理解为日出车概率,且A ,B 两车出车相互独立. (Ⅰ)求该单位在星期一恰好出车一台的概率;(Ⅱ)设X 表示该单位在星期一与星期二两天的出车台数之和,求X 的分布列及其数学期望E (X ).18.(本小题满分13分)已知函数()()sin cos ,(0,)f x x a x x x π=-+∈.(Ⅰ)当π2a =时,求函数()f x 值域; (Ⅱ)当π2a >时,求函数()f x 的单调区间.19.(本小题满分14分)已知椭圆G,其短轴两端点为(0,1),(0,1)A B -. (Ⅰ)求椭圆G 的方程;(Ⅱ)若,C D 是椭圆G 上关于y 轴对称的两个不同点,直线,AC BD 与x 轴分别交于点,M N .判断1以MN 为直径的圆是否过点A ,并说明理由.20.(本小题满分13分)对于自然数数组(,,)a b c ,如下定义该数组的极差:三个数的最大值与最小值的差.如果(,,)a b c 的极差1d ≥,可实施如下操作f :若,,a b c 中最大的数唯一,则把最大数减2,其余两个数各增加1;若,,a b c 中最大的数有两个,则把最大数各减1,第三个数加2,此为一次操作,操作结果记为1(,,)f a b c ,其级差为1d .若11d ≥,则继续对1(,,)f a b c 实施操作f ,…,实施n 次操作后的结果记为(,,)n f a b c ,其极差记为n d .例如:1(1,3,3)(3,2,2)f =,2(1,3,3)(1,3,3)f =. (Ⅰ)若(,,)(1,3,14)a b c =,求12,d d 和2014d 的值; (Ⅱ)已知(,,)a b c 的极差为d 且a b c <<,若1,2,3,n =时,恒有n d d =,求d 的所有可能取值;(Ⅲ)若,,a b c 是以4为公比的正整数等比数列中的任意三项,求证:存在n 满足0n d =.数学(理科)参考答案2014.5阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。

2014海淀二模试题及答案word版

2014海淀二模试题及答案word版

海淀区高三年级第二学期期末练习英语2014.5本试卷共12页,共150分。

考试时长120分钟。

考生务必将答案写在答卷纸上,在试卷上作答无效。

考试结束后,将本试卷和答题纸一并交回。

第一部分:听力理解(共三节,30分)第一节(共5小题;每小题1.5分,共7.5分)听下面5段对话。

每段对话后有一道小题,从每题所给的A、B、C三个选项中选出最佳选项。

听完每段对话后,你将有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话你将听一遍。

1. What does the boy want for breakfast?A. Bread.B. Pancakes.C. Sandwich.2. What did the man do in his vacation?A. He stayed at home.B. He took someC. He did a part-time job.3. How does the man feel about the interview?A. Confident.B. Uncertain.C. Disappointed.4. What is the man doing?A. Making an apology.B. Making an offer.C. Making a request.5. Here is the post office?第二节(共10小题,每小题1.5分,共15分)听下面4段对话。

每段对话后有几道小题,从每题所给的A、B、C三个选项中选出最佳选项。

听每段对话前,你将有5秒钟时间阅读每小题,听完后,美小题将给出5秒钟的作答时间。

每段对话你将听两遍。

听完第6段材料,回答第6至7小题。

6. What happened to the man in today’s game?A. He broke his leg.B. He injured his ankle.C. He hurt his back.7. What does the woman ask the man to do?A. Give up sports.B. Lie comfortably.C. Stop arguing.听第7段材料,回答第8至9题。

北京市海淀区2014届高三下学期期末练习(二模)文科数学试卷(带解析)

北京市海淀区2014届高三下学期期末练习(二模)文科数学试卷(带解析)

北京市海淀区2014届高三下学期期末练习(二模)文科数学试卷(带解析)1)【答案】C【解析】考点:集合的运算.2.已知命题)【答案】B【解析】x∃∈RB.考点:命题的否定.3)【答案】D【解析】选D.考点:函数的性质.4)【答案】B【解析】考点:比较大小5.下面给出的四个点中,,)【答案】A【解析】)【答案】A【解析】考点:向量的运算.A.①②B.②③C.①③D.①②③【答案】D【解析】;②测量考点:解三角形.8)A.0条B.1条C.2条D.无数条【答案】B【解析】81012141618考点:线面垂直的判定.9______.【解析】考点:复数的模.10【答案】2 【解析】考点:抛物线与双曲线的几何性质.11.执行如图所示的程序框图,则输出S 的值为_______.【答案】8【解析】考点:算法框图.12(或向右)_____.(填上符合要求的函数对应的序号)【答案】①②【解析】不同,因此仅通过向左(或向右)平移就能与函图象重合,而考点:三角函数图像变化.13.已知实数且,函数若数列满足【答案】2,0【解析】考点:等差数列的性质.14.农业技术员进行某种作物的种植密度试验,把一块试验田划分为8块面积相等的区域(除了种植密度,其它影响作物生长的因素都保持一致),种植密度和单株产量统计如下:根据上表所提供信息,第_____号区域的总产量最大,该区域种植密度为_____株第13,14题的第一空3分,第二空2分}【答案】5,3.6【解析】试题分析:由图中数据可得,,总产量即第考点:二次函数.15(1(2.【答案】(1(2【解析】试题分析:(1利用二倍角公式将函数化为s21-,由周期;(2)若函数有零点,即,有解,移项得(1分分分(2)8分9分11分12分分考点:三角恒等变化,三角函数的周期,值域.16.下图为某地区2012年1月到2013年1月鲜蔬价格指数的变化情况:记Δx =本月价格指数-上月价格指数.规定:当Δ0x >时,称本月价格指数环比增长; 当0x ∆<时,称本月价格指数环比下降;当0x ∆=时,称本月价格指数环比持平.(1) 比较2012年上半年与下半年鲜蔬价格指数月平均值的大小(不要求计算过程); (2) 直接写出从2012年2月到2013年1月的12个月中价格指数环比下降..的月份.若从这12个月中随机选择连续的两个月进行观察,求所选两个月的价格指数都.环比下降的概率; (3)由图判断从哪个月开始连续三个月的价格指数方差最大.(结论不要求证明) 【答案】(1)上半年鲜蔬价格指数月平均值大于下半年鲜蔬价格指数月平均值;(2);(3)2013年1月这连续3个月的价格指数方差最大.【解析】试题分析:(1)由折线统计图可知,上半年的价格指数普遍比较高,下半年的价格指数普遍比较低,故可得上半年鲜蔬价格指数月平均值大于下半年鲜蔬价格指数月平均值;(2)由折线统计图可知,折线下降的月份即为价格指数环比下降的月份,从这12个月中随机选择连续的两个月,选法有(2月,3月),(3月,4月),(4月,5月),(5月,6月),(6月,7月),(7月,8月),(8月,9月),(9月,10月),(10月,11月),(11月,12月),(12月,1月),共1种方法,而所选两个月的价格指数都环比下降的有(4月,5月),(5月,6月),(9月,10月),共3种情况,由古典概率的求法,即可求出所选两个月的价格指数都环比下降的概率;(3)可由图观察,连续三个月的极差越大,方差就越大,显然2012年11月,12月,2013年1月这连续3个月的价格指数方差最大. (1)上半年鲜蔬价格指数月平均值大于下半年鲜蔬价格指数月平均值....4分(2)从2012年2月到2013年1月的12个月中价格指数环比下降的月份有:4月、5月、6月、9月、10月. 6分设“所选两个月的价格指数均环比下降”为事件A , 7分在这12个月份中任取连续两个月共有11种不同的取法, 8分其中事件A 有(4月,5月),(5月,6月),(9月,10月),共3种情况. 9分分(3)从2012年11月开始,2012年11月,12月,2013年1月这连续3个月的价格指数方差最大. 13分考点:古典概率,统计变量中平均数,极差,方差. 17.(本小题满分14分)E、F分别是棱.(1)求证:AB⊥平面AA1C1C;(2(3A1C.【答案】(1)详见解析;(2(3)详见解析.【解析】试题分析:(1)求证:AB⊥平面AA1C1C,证明线面垂直,只需证明线线垂直,得结论;(2(3A1C,证明线线垂直,只需证明一条直线垂直于另一条直线所在的平面,则由(2)(12分ACA=分(2)面//面1ABC,面ABC7分. 8分(319分由(1)可得C ,1AC A =,面,11分. 12分13分分考点:线面垂直的判定,线面垂直的性质,面面平行的性质.18(1(2.【答案】(1)详见解析;(25(,)2+∞ 【解析】试题分析:(1()x 总有两个不同的公共点,先从有两个不同的公共点,(2有且仅有一个极值点,且在解的两边异号,(1分2分分5分6分. 7分(2在上有且仅有一个异号零点,9分10分12分 综上,的取值范围是5(,)2+∞.13分考点:导数的几何意义,函数的极值. 19(1(2.【答案】(1(2【解析】试题分析:(1短轴端点分别为(2即(1分3分分分(2分7分分分2x-10分22x y分AD≠. 12分13分. 14分分8分分所以10分所以22212 k--,12分所以,13分. 14分考点:椭圆的方程,直线与椭圆的位置关系,圆的性质.20.Γ数列”.(1Γ数列”,并说明理由;(2Γ(3均构成“Γ【答案】(1(2)详见解析;(3【解析】试题分析:Γ数列”,根据“Γ数列”的定义,就是“Γ数列”,有一项不满足就不是“Γ一项,符合定义,故是“Γ数列”;(2)Γ数列”,盾,从而得证;(32(1 2分所以数列是“数列”.4分(2)反证法证明:12111max{,,,,,,,i i k k a a a a a a -+-,即kS a >,所以原结论正确. 8分(3)由(2m =9分b <*)*)就不成立.分考点:新定义,等差数列的通项公式.。

【2014海淀二模】北京市海淀区2014届高三下学期期末练习 理科4份(语数英理综) Word版含答案

【2014海淀二模】北京市海淀区2014届高三下学期期末练习 理科4份(语数英理综) Word版含答案

海淀区高三年级第二学期期末练习语文2014.5本试卷共8页,150分。

考试时长150分钟。

考生务必将答案答在答题纸上,在试卷上作答无效。

考试结束后,将本试卷和答题纸一并交回。

一、本大题共7小题,共15分.阅读下面文字,按要求完成1-4题。

武侠小说大师古龙说过一句经典的话:一个人如果【】,就放他去菜市场,他会重新①(萌发/激发)对生活的热爱。

作家雪小禅对菜市场②(一见钟情/情有独钟),她说:“我有一个癖.好,就是每到一个地方都会去菜市场逛逛,因为那里充满了烟火气息和旺盛的生命力……”这与古龙先生所见大抵③(相同/略同)。

走进菜市场,你会发现这真是一个生龙活虎的世界:摆摊者撸起袖子大声吆喝,迅速装袋、过秤、收钱、找零,整个过程极富节奏感。

买菜的大都是主妇,为一日三餐的性价比,她们使出浑身解.数,在这里“斗智”一番。

就连平素较弱的女性,为了准备一桌丰盛可控的饭菜,一进菜市场,便也仔细地【】蔬菜,麻利地装进大袋小袋……菜市场蕴含着无穷的生活哲理。

姜昆的相声段子就巧妙地拿“菜市场”说事:“生活就是大白菜,④,内容丰富,层出不穷。

”通俗易懂,又让人忍俊不禁。

1.填入文中两处【】内词语的字形和加点字的读音全都正确的一项是(2分)A.走头无路癖好(pǐ)浑身解数(jiè)挑拣B.走投无路癖好(pì)浑身解数(xiè)挑捡C.走投无路癖好(pǐ)浑身解数(xiè)挑拣D.走头无路癖好(pì)浑身解数(jiè)挑捡2.依次填入文中横线①-③处的词语,最恰当的一项是(3分)A.①萌发②情有独钟③相同B.①激发②情有独钟③略同C.①萌发②一见钟情③略同D.①激发②一见钟情③相同3.对文中的女性形象特点概括不正确的一项是(2分)A.精明能干B.持家有道C.世俗小气D.热爱生活4.填入文中横线④处的句子,与上下文衔接最恰当的一项是(2分)A.种了一茬又一茬B.吃了一顿有一顿C.品了一遍又一遍D.扒了一层又一层5.有顾客在超市买菜时把大白菜剥得只剩菜芯儿,把芹菜叶子择得干干净净。

北京市海淀区2014届高三下学期期末练习(二模)数学理试题(WORD版)

北京市海淀区2014届高三下学期期末练习(二模)数学理试题(WORD版)

北京市海淀区2014届高三下学期期末练习(二模)数 学 (理科) 2014.5本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上 作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符1.2.3.4. 5.6.一观览车的主架示意图如图所示,其中为轮轴的中心,距地面32m (即OM 长),巨轮的半径为30m ,AM =2BP =m ,巨轮逆时针旋转且每12分钟转动一圈.若点M 为吊舱P 的初始位置,经过t 分钟,该吊舱P 距离地面的高度为()h t m ,则()h t =A.ππ30sin()30122t -+ B.ππ30sin()3062t -+ C.ππ30sin()3262t -+ D.ππ30sin()62t -7.已知等差数列{}n a 单调递增且满足1104a a +=,则8a 的取值范围是A.(2,4) B. (,2)-∞ C. (2,)+∞ D.(4,)+∞8.点9. 10.11.12.14.已知集合{1,2,3,,100}M = ,A 是集合M 的非空子集,把集合A 中的各元素之和记作()S A . ①满足()8S A =的集合A 的个数为_____;②()S A 的所有不同取值的个数为_____.三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15.(本小题满分13分)在锐角ABC ∆中,a A =且b =.(Ⅰ)求B 的大小;(Ⅱ)若3a c =,求c 的值.16.(本小题满分14分)且17.((18.19.(本小题满分14分)已知椭圆G ,其短轴两端点为(0,1),(0,1)A B -. (Ⅰ)求椭圆G 的方程;(Ⅱ)若,C D 是椭圆G 上关于y 轴对称的两个不同点,直线,AC BD 与x 轴分别交于点,M N .判断以MN 为直径的圆是否过点A ,并说明理由.120.(本小题满分13分)对于自然数数组(,,)a b c ,如下定义该数组的极差:三个数的最大值与最小值的差.如果(,,)a b c 的极差1d ≥,可实施如下操作f :若,,a b c 中最大的数唯一,则把最大数减2,其余两个数各增加1;若,,a b c 中最大的数有两个,则把最大数各减1,第三个数加2,此为一次操作,操作结果记为1(,,)f a b c ,其级差为1d .若11d ≥,则继续对1(,,)f a b c 实施操作f ,…,实施n 次操作后的结果记为(,,)n f a b c ,其极差记为n d .例如:1(1,3,3)(3,2,2)f =,2(1,3,3)(1,3,3)f =. (Ⅰ)若(,,)(1,3,14)a b c =,求12,d d 和2014d 的值;(Ⅱ)已知(,,)a b c 的极差为d 且a b c <<,若1,2,3,n = 时,恒有n d d =,求d 的所有可能取值; (Ⅲ)若,,a b c 是以4为公比的正整数等比数列中的任意三项,求证:存在n 满足0n d =.数学(理科)参考答案2014.5阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

17.(本小题满分 14 分) 如 图 , 在 三 棱 柱 ABC A1B1C1 中 , AA1 底 面 ABC ,
C1 B1 F
A1
C E B
A
AB AC, AC AA1 ,E、F 分别是棱 BC、CC1 的中点.
(Ⅰ)求证:AB⊥平面 AA1 C1C; (Ⅱ)若线段 AC 上的点 D 满足平面 DEF //平面 ABC1 ,试确定点 D 的位置,并说明理由; (Ⅲ)证明: EF ⊥A1C.
3 . 11
-----------------------------------------10 分
(Ⅲ)从 2012 年 11 月开始,2012 年 11 月,12 月,2013 年 1 月这连续 3 个月的价格指数方差最大. -----------------------------------------13 分 17.解: (I)
A1 B1
侧面 A1 ACC1 是菱形,
AC AC1 , 1 由(1)可得 AB AC , 1 AB AC1 A , AC 面 ABC1 , 1 AC BC1 . 1 又 E, F 分别为棱 BC, CC1 的中点, EF // BC1 , EF AC1 .
C.2 条
D.无数条
二、填空题:本大题共 6 小题,每小题 5 分,共 30 分.
9. 复数 2+i 的模等于______.
开始
10. 若抛物线 y 2 2 px ( p 0) 的准线经过双曲线 x 2 y 2 1 的左顶
S=0,n=1 S=S+n
点,则
p _____.
11. 执行如图所示的程序框图,则输出 S 的值为_______. 12. 下列函数中: ① y sin 2 x ;② y cos 2 x ;③ y 3sin(2 x
记 Δx 本月价格指数 上月价格指数. 规定:当 Δx 0 时,称本月价格指数环比增长; 当 x 0 时,称本月价格指数环比下降;当 x 0 时,称本月价格指数环比持平. (Ⅰ) 比较 2012 年上半年与下半年鲜蔬价格指数月平均值的大小(不要求计算过程); (Ⅱ) 直接写出从 2012 年 2 月到 2013 年 1 月的 12 个月中价格指数环比下降 的月份. 若从这 12 个月 .. 中随机选择连续的两个月进行观察,求所选两个月的价格指数都 环比下降的概率; . (Ⅲ) 由图判断从哪个月开始连续三个月的价格指数方差最大. (结论不要求证明)
19.(本小题满分 14 分) 已知椭圆 G 的离心率为
2 ,短轴端点分别为 A(0,1), B(0, 1) . 2
(Ⅰ)求椭圆 G 的标准方程; (Ⅱ) 若 C , D 是椭圆 G 上关于 y 轴对称的两个不同点, 直线 BC 与 x 轴交于点 M , 判断以线段 MD 为直径的圆是否过点 A ,并说明理由.
18.(本小题满分 13 分)
1 3 2 已知函数 f ( x ) x ax 4 x b ,其中 a, b R 且 a 0 . 3
(Ⅰ)求证:函数 f ( x ) 在点 (0, f (0)) 处的切线与 f ( x ) 总有两个不同的公共点; (Ⅱ)若函数 f ( x ) 在区间 (1,1) 上有且仅有一个极值点,求实数 a 的取值范围.
3. 下列函数中,既是偶函数又在区间 上单调递增的是 (0, +) A. y x 3 B. y
x
C. y cos x
D. y 2
x
4.设 a log2 3 , b log4 3 , c sin90 ,则 A. a c b B. b c a C. c a b D. c b a
∴周期 T
所以,若 f ( x) 有零点,则实数 a 的取值范围是 [1,3] . 16.解:
(Ⅰ)上半年的鲜疏价格的月平均值大于下半年的鲜疏价格的月平均值.--------------------4 分 (Ⅱ)从 2012 年 2 月到 2013 年 1 月的 12 个月中价格指数环比下降的月份有 4 月、5 月、6 月、9 月、10 月. ------------------------------------------6 分
阅卷须知: 1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。 2.其它正确解法可以参照评分标准按相应步骤给分。
一、选择题:本大题共 8 小题,每小题 5 分,共 40 分.
1.C 2.B 3.D 4.B 5.A 6.A 7.D 8.B
二、填空题:本大题共 6 小题,每小题 5 分,共 30 分.
结束
若数列 {an } 满足 an f (n) (n N* ) ,且 {an } 是等差数列,则 a ___, b ____. 14. 农业技术员进行某种作物的种植密度试验,把一块试验田划分为 8 块面积相等的区域(除了种 植密度,其它影响作物生长的因素都保持一致),种植密度和单株产量统计如下:
2(
3 1 sin 2 x cos2 x ) a 1 2 2 π 2sin(2 x ) a 1 6
---------------------------6 分 ----------------------------7 分 ------------------------------8 分 --------------------------------9 分 ---------------------------------11 分 --------------------------------12 分 -----------------------------13 分
2π π. 2 π (Ⅱ)令 f ( x) 0 ,即 2sin(2 x ) a 1=0 , 6 π 则 a =1 2sin(2 x ) , 6 π 因为 1 sin(2 x ) 1 , 6 π 所以 1 1 2sin(2 x ) 3 , 6
1. 已知全集为 R ,集合 A {x | x ≥ 1} ,那么集合 ð R A 等于 A. {x | x 1} B. {x | x 1} C. {x | x 1} D. {x | x 1}
2. 已知命题 p: x R,x2 x 1 0 ,则 p 为 A. x R,x2 x 1 0 C. x R,x2 x 1 0 B. x R,x2 x 1 0 D. x R,x2 x 1 0
北京市海淀区 2014 届高三下学期期末练习(二模) 数 学 (文科) 2014.5
本试卷共 4 页,150 分。考试时长 120 分钟。考生务必将答案答在答题卡上,在试卷上 作答无效。考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共 8 小题,每小题 5 分,共 40 分.在每小题列出的四个选项中,选出 符合题目要求的一项.
A.①②
B. ②③
C. ①③
D. ①②③
C1 B1 A1 D1
8. 已知点 E , F 分别是正方体 ABCD A1B1C1D1 的棱 AB, AA 1 的中点,点
M , N 分别是线段 D1E 与 C1F 上的点,则与平面 ABCD 垂直的直线 MN 有
D
F C A E B
A.0 条
B.1 条
设“所选两个月的价格指数均环比下降”为事件 A, --------------------------------------7 分
在这 12 个月份中任取连续两个月共有 11 种不同的取法,------------------------------8 分 其中事件 A 有(4 月,5 月),(5 月,6 月),(9 月,10 月),共 3 种情况. ---------9 分 ∴ P( A)
(Ⅱ)若 an 为“Γ数列”,求证: ai 0 对 i 1,2,
, k 恒成立;
(Ⅲ)设 bn 是公差为 d 的无穷项等差数列,若对任意的正整数 m ≥ 3 , b1 , b2 , 均构成“Γ数列”,求 bn 的公差 d .
, bm
北京市海淀区 2014 届高三下学期期末练习(二模) 数 学 (文科) 参考答案 2014.5
n n2 1

4
),

其图象仅通过向左(或向右)平移就能与函数 f ( x) sin 2 x 的图象 是_____.(填上符合要求的函数对应的序号)
n>10
是 输出 S
重合的
a x , x 3, 13. 已知实数 a 0 且 a 1 ,函数 f ( x ) ax b , x 3.
7. 如图所示,为了测量某湖泊两侧 A,B 间的距离,李宁同学首先选定 了与 A,B 不共线的一点 C ,然后给出了三种测量方案:( ABC 的角
B
A, B, C 所对的边分别记为 a, b, c ):
① 测量 A, C, b ② 测量 a, b, C ③测量 A, B, a
A
则一定能确定 A,B 间距离的所有方案的序号为
20.(本小题满分 13 分) 给定正整数 k 3 ,若项数为 k 的数列 an 满足:对任意的 i 1,2,
, k ,均有 ai ≤
Sk (其中 k -1
Sk a1 a2
ak ),则称数列 an 为“Γ数列”.
3 32 33 (Ⅰ)判断数列 1,3,5,2,4 和 , 2 , 3 是否是“Γ数列”,并说明理由; 4 4 4
种植密度(株数/m2)
5 4.5 4 3 2.4 2 1
1.28 1.0 0.72 0.6 0.4 0.2
单株产量(千克)
区域
1 2 3 4 5 6 7 8
区域
1 2 3 4 5 6 7 8
O
代号
相关文档
最新文档