2007-2008-2线性代数期末试卷(B)

合集下载

2007-2008-2线性代数试卷(肖)解答

2007-2008-2线性代数试卷(肖)解答

2007-2008-2线性代数期考试卷B 参考答案和评分标准一、单项选择题(每题3分,共30分)1.D 2.C 3.A 4.C 5.B 6.D 7.B 8.C 9.D 10. A 。

二、填空题(每题4分,共20分)1. 0; 2. 3 ; 3. n+a ,()1,1, (1)n R ∈; 4. 2221232y y y -++,222123z z z -++; 5. n 。

三、解答题(每题10分,共40分)1.解:系数矩阵初等变换过程如下:121323(1)(1)(1)11111111110110121121000E E E λλλμλμλμμλμμ---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪→--→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭ , ——-(4分) 当0μ≠而且1λ≠时,齐次线性方程组只有零解。

——-(7分) 当0μ=或者1λ=时,齐次线性方程组有非零解。

——-(10分)2.解:()()()322001112442113λλλλλλλ----=--+=---, ——-(3分) 2λ=是3重特征值。

——-(4分) 000000111111111000⎛⎫⎛⎫ ⎪ ⎪-→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,得两个线性无关的特征向量 ()11,1,0T x =,()20,1,1Tx =。

——-(8分) 矩阵A 的属于特征值2的特征向量为 1122x k x k x =+,其中12,k k 不全为零。

——————————-(10分)3.解:(1)()123123100101,,,,,110012111110αααβββ⎛⎫ ⎪= ⎪ ⎪-⎝⎭—————(2分) 1β在基{}123,,ααα的坐标是()1,1,1T -;2β在基{}123,,ααα的坐标是()0,1,2T -;3β在基{}123,,ααα的坐标是()1,1,2T -。

基{}123,,ααα到基{}123,,βββ的过渡矩阵为101111122⎛⎫ ⎪- ⎪ ⎪--⎝⎭———————————-(7分) (2)()()123123231231232222223ααααβββββββββββ=-+=-+--++-=-+ 所求的坐标为()2,2,3T -。

(完整版)线性代数期末测试题及其答案.doc

(完整版)线性代数期末测试题及其答案.doc

线性代数期末考试题一、填空题(将正确答案填在题中横线上。

每小题 5 分,共 25 分)1 3 1 1.若0 5 x 0,则__________。

1 2 2x1 x2 x3 02.若齐次线性方程组x1 x2 x3 0 只有零解,则应满足。

x1x2x303.已知矩阵A,B,C (c ij )s n,满足 AC CB ,则 A 与 B 分别是阶矩阵。

4.已知矩阵A为 3 3的矩阵,且| A| 3,则| 2A|。

5.n阶方阵A满足A23A E 0 ,则A1。

二、选择题(每小题 5 分,共 25 分)6.已知二次型 f x12 x22 5x32 2tx1x2 2x1 x3 4x2 x3,当t取何值时,该二次型为正定?()A. 40 B.4 4C. 0 t4 4 1t5t D. t2 5 5 5 51 42 1 2 37.已知矩阵A 0 3 4 , B 0 x 6 ,且 A ~ B ,求x的值()0 4 3 0 0 5A.3B.-2C.5D.-58 .设 A 为 n 阶可逆矩阵,则下述说法不正确的是()A. A0B. A 1 0C.r (A) nD.A 的行向量组线性相关9 .过点( 0, 2, 4)且与两平面x 2z 1和 y 3z 2 的交线平行的直线方程为()1xy 2 z 4A.312xy 2 z 4C.31 2x y2 z 4B.32 2x y2 z 4D.322103 1 .已知矩阵 A, 其特征值为()51A. 12, 2 4 B. C.12,24D.三、解答题(每小题 10 分,共 50 分)1 12,2, 22441 1 00 2 1 3 40 2 1 30 1 1 011.设B, C 0 2 1 且 矩 阵满足关系式0 0 1 1 00 10 0 0 2T X(C B)E,求。

a1 12212. 问 a 取何值时,下列向量组线性相关?111, 2a ,3。

2 1 21 a22x 1 x 2x 3 313.为何值时,线性方程组x 1 x 2x 3 2有唯一解,无解和有无穷多解?当方x 1 x 2x 32程组有无穷多解时求其通解。

线性代数期末考试试卷+答案.

线性代数期末考试试卷+答案.

×××大学线性代数期末考试题一、填空题(将正确答案填在题中横线上。

每小题 分,共 分)若022150131=---x ,则=χ 。

.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 。

.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。

.矩阵⎪⎪⎪⎭⎫⎝⎛=323122211211a a a a a a A 的行向量组线性 。

.n 阶方阵A 满足032=--E A A ,则=-1A 。

二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。

每小题 分,共 分) 若行列式D 中每个元素都大于零,则0〉D 。

( ) 零向量一定可以表示成任意一组向量的线性组合。

( )向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。

( )⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=010*********0010A ,则A A =-1。

( ) 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。

三、单项选择题 每小题仅有一个正确答案,将正确答案题号填入括号内。

每小题 分,共 分设A 为n 阶矩阵,且2=A ,则=T A A ( )。

① n 2② 12-n③ 12+n④n 维向量组 s ααα,,, 21( )线性无关的充要条件是( )。

① s ααα,,, 21中任意两个向量都线性无关 ② s ααα,,, 21中存在一个向量不能用其余向量线性表示 ③ s ααα,,, 21中任一个向量都不能用其余向量线性表示 ④ s ααα,,, 21中不含零向量 下列命题中正确的是 。

① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关设A ,B 均为 阶方阵,下面结论正确的是 。

07-08线代BA卷答案

07-08线代BA卷答案

2007-2008学年第二学期期末试卷-A 卷线性代数B课程号: 11020063B 课序号: 01-13 开课系: 数学与数量经济学院一、填空题(每小题3分,共15分)1.6427811694143211111= 12 。

2.设 A 为3阶可逆矩阵,1=A ,则=-*1)(A 1 。

3. 设321,,ααα线性无关,则321211,,αααααα+++线性____无 ___关。

4. 设A 为4阶方阵,且()3=A r ,则齐次线性方程组*0A X =(*A 是A 的伴随矩阵)的基础解系所包含的线性无关向量的个数为 3 。

5.设T T T ===),3,1(,)3,2,1(,)1,1,1(321t ααα,若向量组321,,ααα线性相关,则=t 5 。

二、单项选择题(每小题2分,共10分)1.非齐次线性方程组AX B =中未知量的个数为n ,方程个数为m ,系数矩阵A 的秩为r , 则 B 。

(A )r = m 时,方程组AX B =有解(B )r = n 时,方程组AX B =有唯一解(C )m = n 时,方程组AX B =有唯一解(D )r 〈 n 时,方程组AX B =有无穷多解2.设A 为n 阶矩阵,且0A =,则A 的列向量中C 。

(A )必有两个向量对应分量成比例(B )必有一个向量为零向量(C )必有一个向量是其余向量的线性组合(D )任一向量是其余向量的线性组合3.设A 为n 阶单位矩阵,则矩阵A 的特征值为 B。

(A )0λ= (B )1λ= (C )2λ= (D )3λ=4.下面结论不正确的是C 。

(A )相似矩阵有相同的特征值(B )相似矩阵有相同的行列式(C )相似矩阵的秩一定不相同(D )实对称矩阵的属于不同特征值的特征向量是正交的5.123(2,1,3),(3,1,1),(1,1,2)ααα==-=-,则向量组1α,2α,3α是A。

(A ) 线性无关 (B )线性相关(C )1α可以由2α,3α线性表示 (D )3α可以由1α,2α线性表示三(10分)计算下列n 阶行列式 ab b b a b bb a D n==1[(1)]()n a n b a b -+-- 四(10分)解矩阵方程 A 2X AX =+,其中A = 3 0 1 1 1 00 1 4⎛⎫ ⎪ ⎪ ⎪⎝⎭ 5 -2 -2 4 -3 -2 -2 2 3X ⎛⎫ ⎪= ⎪ ⎪⎝⎭五(10分) 已知向量组()5,4,3,11-=α,()9,7,2,22-=α,()12,9,3,33=α试求这个向量组的一个极大无关组,并把其余向量用此极大无关组线性表示。

线性代数期末考试(B卷)及答案

线性代数期末考试(B卷)及答案

北京师范大学XX 分校2007-2008学年第一学期期末考试(B 卷)开课单位: 应用数学系 课程名称: 线性代数 任课教师:__ __ 考试类型:_ 闭卷_ 考试时间:__120 __分钟 学院___________ 姓名___________ 学号______________ 班级____________试卷说明:(本试卷共4页,满分100分)------------------------------------------------------------------------------------------------------一、 填空(每空3分,共30分)1、行列式123345__0____567= 2、行列式sin cos cos sin _______+-=-1313113xxxx 3、设行列式 -5 11 1 31 0 2D =1,则______-+=21222350A A A4、设A ,B 均为三阶方阵且||,||A B ==45,则||______=20A B5、设A 为3阶方阵,且A =2,则A-=12 46、设矩阵A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭12311102103,则A 的秩()R A = 37、已知3阶矩阵A 的伴随矩阵的行列式A *=9,则=A 38、向量组,,,αααα⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1234111322023001线性相关还是无关 线性相关试卷装订线9、设向量()(),,,,,x αα==1232963线性相关,则___1____=x10、设5元方程组=0A x 的系数矩阵A 的秩为3,则其解向量的秩应为 2二、选择题(每小题3分,共15分)1、行列式13632196233418第2行第2列元素的代数余子式A =22( D )(A )6; (B )9; (C )12; (D )15。

线性代数期末考试试题及答案

线性代数期末考试试题及答案

线性代数期末考试试题及答案一、选择题(每题2分,共10分)1. 下列矩阵中,哪个是可逆矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 1]C. [1, 1; 1, 1]D. [0, 0; 0, 0]2. 如果向量v = (3, -2),那么其对应的单位向量是什么?A. (1, -2/3)B. (3/√13, -2/√13)C. (3/√29, -2/√29)D. (3/√10, -2/√10)3. 对于矩阵A,|A|表示其行列式,那么|A| = 0表示:A. A是单位矩阵B. A是零矩阵C. A不是满秩矩阵D. A是可逆矩阵4. 矩阵的特征值是什么?A. 矩阵的对角元素B. 矩阵的迹C. 满足Av = λv的非零向量v对应的λD. 矩阵的行列式5. 下列哪个矩阵是对称矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 2]C. [1, -1; 1, 1]D. [1, 0; 0, 1]二、填空题(每题3分,共15分)6. 如果矩阵A的秩为1,那么A的零空间的维数是_________。

7. 对于任意非零向量α和β,如果α + β和α - β都是零向量,那么向量α和β_________。

8. 一个向量空间的一组基的向量数量至少是_________。

9. 如果矩阵A是n阶方阵,且A^2 = I(单位矩阵),那么矩阵A是_________矩阵。

10. 对于实数域上的向量空间,任意两个非零向量的标量积是_________的。

三、简答题(每题10分,共20分)11. 解释什么是线性变换,并给出一个线性变换的例子。

12. 证明如果矩阵A和B是可交换的,即AB = BA,那么它们的行列式之积等于各自行列式的乘积,即|AB| = |A||B|。

四、计算题(每题15分,共30分)13. 给定矩阵A = [4, 1; 3, 2],求A的逆矩阵A^-1。

14. 设向量空间V是所有2x2实对称矩阵的集合,证明V是一个向量空间,并找出一组基。

2007线性代数考试试题B

2007线性代数考试试题B

,考试作弊将带来严重后果!华南理工大学期末考试《 线性代数-2007》试卷B1. 考前请将密封线内填写清楚;所有答案请直接答在试卷上(或答题纸上); .考试形式:开(闭)卷;本试卷共 五大题,满分100分, 考试时间120分钟单项选择题(每小题2分,共40分)。

.设矩阵22, B 23, C 32A ⨯⨯⨯为矩阵为矩阵为矩阵,则下列矩阵运算无意义的是【 】A . BAC B. ABC C . BCA D. CAB设n 阶方阵A 满足A 2 +E =0,其中E 是n 阶单位矩阵,则必有 【 】A. 矩阵A 不是实矩阵B. A=-EC. A=ED. det(A)=1设A 为n 阶方阵,且行列式det(A)=1 ,则det(-2A)= 【 】A. 2-B. ()n2- C. n 2- D. 1设A 为3阶方阵,且行列式det(A)=0,则在A 的行向量组中 【 】A.必存在一个行向量为零向量B.必存在两个行向量,其对应分量成比例C. 存在一个行向量,它是其它两个行向量的线性组合D. 任意一个行向量都是其它两个行向量的线性组合.设向量组321,,a a a 线性无关,则下列向量组中线性无关的是 【 】A .133221,,a a a a a a --- B. 212132,,a a a a - C. 32322,2,a a a a + D. 1321,,a a a a -6.向量组(I): )3(,,1≥m a a m 线性无关的充分必要条件是 【 】A.(I)中任意一个向量都不能由其余m-1个向量线性表出B.(I)中存在一个向量,它不能由其余m-1个向量线性表出C.(I)中任意两个向量线性无关D.存在不全为零的常数0,,,111≠++m m m a k a k k k 使7.设a 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 存在非零解的充分必要条件是【 】A .A 的行向量组线性相关B . A 的列向量组线性相关 C. A 的行向量组线性无关 D. A 的列向量组线性无关8.设i a 、i b 均为非零常数(i =1,2,3),且齐次线性方程组⎩⎨⎧=++=++00332211332211x b x b x b x a x a x a的基础解系含2个解向量,则必有 【 】 A.03221= b b a a B.02121≠ b b a a C.332211b a b a b a == D.02131= b b a a9.方程组12312312321 21 3 321x x x x x x x x x a ++=⎧⎪++=⎨⎪++=+⎩有解的充分必要的条件是 【 】A. a=-3B. a=-2C. a=3D. a=110. 设η1,η2,η3是齐次线性方程组Ax = 0的一个基础解系,则下列向量组中也为该方程组的一个基础解系的是 【 】A. 可由η1,η2,η3线性表示的向量组B. 与η1,η2,η3等秩的向量组C.η1-η2,η2-η3,η3-η1D. η1,η1-η3,η1-η2-η3 11. 已知非齐次线性方程组的系数行列式为0,则【 】A. 方程组有无穷多解B. 方程组可能无解,也可能有无穷多解C. 方程组有唯一解或无穷多解D. 方程组无解12.n 阶方阵A 相似于对角矩阵的充分必要条件是A 有n 个 【 】A.互不相同的特征值B.互不相同的特征向量C.线性无关的特征向量D.两两正交的特征向量13. 下列子集能作成向量空间R n 的子空间的是 【 】A. }0|),,,{(2121=a a a a a nB. }0|),,,{(121∑==ni i n a a a aC. },,2,1,|),,,{(21n i z a a a a i n =∈D. }1|),,,{(121∑==n i i n a a a a 14.若2阶方阵A 相似于矩阵⎥⎦⎤⎢⎣⎡=3- 20 1B ,E 为2阶单位矩阵,则方阵E –A 必相似于矩阵【 】A. ⎥⎦⎤⎢⎣⎡4 10 1B. ⎥⎦⎤⎢⎣⎡4- 1 0 1-C. ⎥⎦⎤⎢⎣⎡4 2-0 0 D. ⎥⎦⎤⎢⎣⎡4- 2-0 1-15.若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=8020001 a a A 正定,则实数a 的取值范围是 【 】A .a < 8 B. a >4 C .a <-4 D .-4 <a <4二、填空题(每小题2分,共20分)。

《线性代数》期末考试题及详细答案(本科A、B试卷)

《线性代数》期末考试题及详细答案(本科A、B试卷)

XXX 学年期末考试试卷《线性代数》期末考试题及详细答案(本科A 、B 试卷)A 卷一、填空题 (将正确答案填在题中横线上。

每小题2分,共10分)。

1、设1D =3512, 2D =345510200,则D =12DD OO=_____________。

2、四阶方阵A B 、,已知A =116,且=B ()1-12A 2A --,则B =_____________。

3、三阶方阵A 的特征值为1,-1,2,且32B=A -5A ,则B 的特征值为_____________。

4、若n 阶方阵A 满足关系式2A -3A-2E O =,若其中E 是单位阵,那么1A -=_____________。

5、设()11,1,1α=,()21,2,3α=,()31,3,t α=线性相关,则t=_____________。

二、单项选择题 (每小题仅有一个正确答案,将正确答案的番号填入下表内,每小题2分,共20分)。

1、若方程13213602214x x xx -+-=---成立,则x 是:课程代码: 适用班级:命题教师:任课教师:(A )-2或3; (B )-3或2; (C )-2或-3; (D )3或2; 2、设A 、B 均为n 阶方阵,则下列正确的公式为: (A )()332233A B+3AB +B A B A +=+; B )()()22A B A+B =A B --; (C )()()2A E=A E A+E --; (D )()222AB =A B ; 3、设A 为可逆n 阶方阵,则()**A=?(A )A E ; (B )A ; (C )nA A ; (D )2n A A -;4、下列矩阵中哪一个是初等矩阵:(A )100002⎛⎫ ⎪⎝⎭; (B )100010011⎛⎫⎪⎪ ⎪⎝⎭; (C )011101001-⎛⎫ ⎪- ⎪ ⎪⎝⎭; (D )010002100⎛⎫⎪- ⎪ ⎪⎝⎭;5、下列命题正确的是:(A )如果有全为零的数1,k 2k 3,,,m k k 使1122m m k k k αααθ+++=,则1,α2α,,m α 线性无关; (B )向量组1,α2α,,m α 若其中有一个向量可由向量组线性表示,则1,α2α,,m α线性相关;(C )向量组1,α2α,,m α 的一个部分组线性相关,则原向量组本身线性相关; (D )向量组1,α2α,,m α线性相关,则每一个向量都可由其余向量线性表示。

2007-2008第二学期线代试卷B及答案

2007-2008第二学期线代试卷B及答案

武汉理工大学教务处试题标准答案及评分标准用纸 课程名称:线性代数 ( B 卷) 一、选择题(每小题3分,共12分)1、 B2、 A3、 A4、 C 二、填空题(每小题3分,共12分)1、 6006⎛⎫⎪⎝⎭; 2、. 1201113002A --⎛⎫ ⎪= ⎪ ⎪⎝⎭; 3、(1,1,-1); 4、 6; 三、1、121000121000(1)2121000121121n n n x x n xn x n n D x x n n x xn nn n-+-++⎡⎤==+⎢⎥⎣⎦+-+--………………………(6分) (1)12(1)(1)2n n n n n x x --+⎡⎤=-+⎢⎥⎣⎦…………………………………………………………………………………(9分) 2、 记1200A A A ⎛⎫=⎪⎝⎭,则1111200A A A ---⎛⎫= ⎪⎝⎭, ……………………………………………………………(2分) 又*11211,10A A ⎛⎫==⎪-⎝⎭,故112110A -⎛⎫=⎪-⎝⎭…………………………………………………………(4分)*21211,31A A -⎛⎫=-=⎪-⎝⎭,故122131A --⎛⎫=⎪-⎝⎭………………………………………………………(6分) 所以1210010000021031A-⎛⎫ ⎪- ⎪= ⎪- ⎪-⎝⎭。

…………………………………………………………………(9分) 3、记()1234,,,A αααα=,对A 进行行初等变换,将其化为行最简形:1211241012213631A -⎛⎫ ⎪- ⎪=⎪--- ⎪-⎝⎭~121100320032064-⎛⎫ ⎪- ⎪ ⎪- ⎪-⎝⎭~12110032000000-⎛⎫ ⎪- ⎪ ⎪ ⎪⎝⎭~11203200130000000⎛⎫-⎪ ⎪ ⎪- ⎪ ⎪⎪ ⎪⎝⎭…………………(5分)()2R A =,又显然13,αα线性无关,所以13,αα即为原向量组的一个最大无关组;………………………(7分) 且212αα=,4131233ααα=--。

线性代数B期末试卷及答案

线性代数B期末试卷及答案

2008 -2009学年第二学期《线性代数 B 》试卷量组1,2, ,m , 的秩为5. 设A 为实对称阵,且AI M 0,则二次型f =x T A x 化为f =y T A -1 y 的线性变换是x= __________ .T6. 设 R 3 的两组基为 a 11,1,1 ,a 2 1,0, 1 ,a 3 1,0,1 ;2,3,4 , 3 3,4,3 ,则由基 a !,a 2,a 3到基 1, 2, 3的过渡矩阵为、单项选择题(共6小题,每小题3分,满分18 分)一一一-二二 -三四五六总分(共 0 0 12. A 为n 阶方阵,AA T = E 且A 0,则A E |.3•设方阵A1 2 24 t 3 , B 为三阶非零矩阵,且AB=O,则t 3114.设向量组m线性无关,向量 不能由它们线性表示,贝U 向1(1,2,1,)T ,22009年6月22日6小题,每小题3分,满分18分)、填空题 1 0 0 10 01.设D n 为n 阶行列式,则D n = 0的必要条件是[]. (A) D n 中有两行元素对应成比例; (B) D n 中各行元素之和为零; (C) D n 中有一行元素全为零;(D)以D n 为系数行列式的齐次线性方程组有非零解.2.若向量组 ,,线性无关,,, 线性相关,则[](A)必可由,, 线性表示; (B)必可由,, 线性表示; (C)必可由,, 线性表示; (D)必可由,,线性表示.3.设3阶方阵A 有特征值0,— 1,1,其对应的特征向量为P i , P 2,P 3, 令1 亠( P 1, P 2, P 3),则 P —1AP =[ ].1 0 00 0 0(A) 01 0 ;(B) 01 0 ;0 0 0 0 0 10 01 0(C) 0 10 ;(D) 0 00 .0 0 —10 0—14. 设 a 1, a, a 线性无关,则下列向量组线性相关的是[](A) a, a, a - a ;(B) a 1,a + a, a 1+ a ;(C) a +( 也, a + a, a + a ; (D) a 1- a, a - a, a - a .5. 若矩阵A a x 4有一个3阶子式不为0,则A 的秩R ( A )=[]. (A) 1; (B) 2; (C) 3;(D) 4.6. 实二次型f 二X T A X 为正定的充分必要条件是[].(A) A 的特征值全大于零; (B) A 的负惯性指数为零;(C)AI > 0 ;(D) R(A) = n .、解答题(共5小题,每道题8分,满分40分)。

线性代数B期末试卷及答案

线性代数B期末试卷及答案

线性代数B期末试卷及答案2008 – 2009学年第⼆学期《线性代数B 》试卷⼀⼆三四五六总分⼀、填空题(共6⼩题,每⼩题 3 分,满分18分)1。

设??-=*8030010000100001A ,则A =。

2。

A 为n 阶⽅阵,T AA =E 且=+3.设⽅阵12243,311t -??=-A B 为三阶⾮零矩阵,且AB=O ,则=t . 4。

设向量组m ααα,,,21 线性⽆关,向量不能由它们线性表⽰,则向量组,,,,21m ααα的秩为。

5.设A 为实对称阵,且|A |≠0,则⼆次型f =x T A x 化为f =y T A —1 y 的线性变换是x = .6.设3R 的两组基为()T11,1,1a =,()21,0,1a T=-,()31,0,1a T=;),1,2,1(1=βT ,()()232,3,4,3,4,3ββ==T T,则由基123,,a a a 到基123,,βββ的过渡矩阵为 .得分6⼩题,每⼩题3分,满分18分)1.设D n为n阶⾏列式,则D n=0的必要条件是[ ].(A)D n中有两⾏元素对应成⽐例;(B) D n中各⾏元素之和为零;(C) D n中有⼀⾏元素全为零;(D)以D n为系数⾏列式的齐次线性⽅程组有⾮零解.2.若向量组,,线性⽆关,,,线性相关,则[ ].(A)必可由,,线性表⽰;(B) 必可由,,线性表⽰;(C)必可由,,线性表⽰;(D)必可由,,线性表⽰.3.设3阶⽅阵A有特征值0,-1,1,其对应的特征向量为P1,P2,P3,令P=(P1,P2,P3),则P-1AP=[ ]。

(A)100010000-;(B)000010001-;(C)000010001-; (D)100000001-.4.设α1,α2,α3线性⽆关,则下列向量组线性相关的是[ ].(A)α1,α2,α3 - α1;(B)α1,α1+α2,α1+α3;(C)α1+α2,α2+α3,α3+α1; (D)α1-α2,α2—α3,α3—α1.5.若矩阵A3×4有⼀个3阶⼦式不为0,则A的秩R(A) =[ ].(A) 1; (B)2;(C)3; (D)4.6.实⼆次型f=x T Ax为正定的充分必要条件是[].(A) A的特征值全⼤于零;(B) A的负惯性指数为零;(C)|A| > 0 ; (D) R(A) = n .得分三、解答题(共5⼩题,每道题8分,满分40分)1。

2007年-2008年-自考-线性代数-经管类-真题详细答案

2007年-2008年-自考-线性代数-经管类-真题详细答案

全国2007年4月高等教育自学考试线性代数(经管类)参考答案课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分) 1.设A 为3阶方阵,且2||=A ,则=-|2|1A ( D ) A .—4 B .—1 C .1D .44218||2|2|131=⨯==--A A . 2.设矩阵A =(1,2),B =⎪⎪⎭⎫⎝⎛4321,C =⎪⎪⎭⎫ ⎝⎛654321,则下列矩阵运算中有意义的是( B ) A .ACBB .ABCC .BACD .CBA3.设A 为任意n 阶矩阵,下列矩阵中为反对称矩阵的是( B ) A .A +A TB .A -A TC .AA TD .A T A)()()(T T T T T T T A A A A A A A A --=-=-=-,所以A -A T 为反对称矩阵.4.设2阶矩阵A =⎪⎪⎭⎫ ⎝⎛d cb a,则A *=( A ) A .⎪⎪⎭⎫ ⎝⎛--a cb dB .⎪⎪⎭⎫ ⎝⎛--a bc d C .⎪⎪⎭⎫ ⎝⎛--a cb dD .⎪⎪⎭⎫ ⎝⎛--a bc d5.矩阵⎪⎪⎭⎫⎝⎛-0133的逆矩阵是( C )A .⎪⎪⎭⎫⎝⎛-3310B .⎪⎪⎭⎫⎝⎛-3130C .⎪⎪⎭⎫ ⎝⎛-13110D .⎪⎪⎪⎭⎫ ⎝⎛-01311 6.设矩阵A =⎪⎪⎪⎭⎫⎝⎛--500043200101,则A 中( D )A .所有2阶子式都不为零B .所有2阶子式都为零C .所有3阶子式都不为零D .存在一个3阶子式不为零7.设A 为m×n 矩阵,齐次线性方程组Ax =0有非零解的充分必要条件是( A ) A .A 的列向量组线性相关 B .A 的列向量组线性无关 C .A 的行向量组线性相关D .A 的行向量组线性无关Ax =0有非零解⇔n A r <)(⇔ A 的列向量组线性相关.8.设3元非齐次线性方程组Ax=b 的两个解为T )2,0,1(=α,T )3,1,1(-=β,且系数矩阵A 的秩r (A )=2,则对于任意常数k , k 1, k 2,方程组的通解可表为( C ) A .k 1(1,0,2)T +k 2(1,-1,3)T B .(1,0,2)T +k (1,—1,3)T C .(1,0,2)T +k (0,1,-1)TD .(1,0,2)T +k (2,-1,5)TT )2,0,1(=α是Ax=b 的特解,T )1,1,0(-=-βα是Ax =0的基础解系,所以Ax=b 的通解可表为=-+)(βααk (1,0,2)T +k (0,1,—1)T .9.矩阵A =⎪⎪⎪⎭⎫ ⎝⎛111111111的非零特征值为( B )A .4B .3C .2D .1111111111)3(111111333111111111||-------=---------=---------=-λλλλλλλλλλλλA E )3(0000111)3(2-=-=λλλλλ,非零特征值为3=λ.10.4元二次型413121214321222),,,(x x x x x x x x x x x f +++=的秩为( C ) A .4 B .3 C .2 D .1⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛=000000001110000100000000000111100001000100011111A ,秩为2. 二、填空题(本大题共10小题,每小题2分,共20分)11.若,3,2,1,0=≠i b a i i 则行列式332313322212312111b a b a b a b a b a b a b a b a b a =__0__. 行成比例值为零.12.设矩阵A =⎪⎪⎭⎫ ⎝⎛4321,则行列式|A TA |=__4__.4)2(4321||||||||222=-====A A A A A TT.13.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000333232131323222121313212111x a x a x a x a x a x a x a x a x a 有非零解,则其系数行列式的值为__0__.14.设矩阵A =⎪⎪⎪⎭⎫⎝⎛100020101,矩阵E A B -=,则矩阵B 的秩r(B )= __2__.E A B -==⎪⎪⎪⎭⎫ ⎝⎛000010100,r(B )=2.15.向量空间V={x =(x 1,x 2,0)|x 1,x 2为实数}的维数为__2__.16.设向量)3,2,1(=α,)1,2,3(=β,则向量α,β的内积),(βα=__10__.17.设A 是4×3矩阵,若齐次线性方程组Ax =0只有零解,则矩阵A 的秩r(A )= __3__.18.已知某个3元非齐次线性方程组Ax =b 的增广矩阵A 经初等行变换化为:⎪⎪⎪⎭⎫ ⎝⎛-----→1)1(0021201321a a a A ,若方程组无解,则a 的取值为__0__.0=a 时,2)(=A r ,3)(=A r .19.设3元实二次型),,(321x x x f 的秩为3,正惯性指数为2,则此二次型的规范形是232221y y y -+. 秩3=r ,正惯性指数2=k ,则负惯性指数123=-=-k r .规范形是232221y y y -+.20.设矩阵A =⎪⎪⎪⎭⎫ ⎝⎛-300021011a 为正定矩阵,则a 的取值范围是1<a .011>=∆,0121112>-=-=∆a a,0)1(33000210113>-=-=∆a a ⇒1<a .三、计算题(本大题共6小题,每小题9分,共54分)21.计算3阶行列式767367949249323123.解:0760300940200320100767367949249323123==.22.设A = ⎪⎪⎪⎭⎫⎝⎛--523012101,求1-A .解: ⎪⎪⎪⎭⎫ ⎝⎛--100010001523012101→ ⎪⎪⎪⎭⎫⎝⎛---103012001220210101→ ⎪⎪⎪⎭⎫⎝⎛---127012001200210101 → ⎪⎪⎪⎭⎫ ⎝⎛---127012002200210202→ ⎪⎪⎪⎭⎫ ⎝⎛----127115125200010002→ ⎪⎪⎪⎭⎫⎝⎛----2/112/71152/112/5100010001, =-1A ⎪⎪⎪⎭⎫⎝⎛----2/112/71152/112/5. 23.设向量组T )1,2,1,1(1-α,T )2,4,2,2(2--α,T )1,6,0,3(3-α,T )4,0,3,0(4-α. (1)求向量组的一个极大线性无关组;(2)将其余向量表为该极大线性无关组的线性组合.解:=),,,(4321αααα⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----4121064230210321→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---4440000033000321 →⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---0000330044400321→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0000110011100321→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-0000110000103021→⎪⎪⎪⎪⎪⎭⎫⎝⎛-0000110000103001.(1)321,,ααα是一个极大线性无关组;(2)=4α32103ααα++-.24.求齐次线性方程组 ⎪⎩⎪⎨⎧=++=-+=++000543321521x x x x x x x x x 的基础解系及通解.解:⎪⎪⎪⎭⎫ ⎝⎛-=111000*********A →⎪⎪⎪⎭⎫ ⎝⎛--111001010010011→⎪⎪⎪⎭⎫⎝⎛--010001010010011→⎪⎪⎪⎭⎫ ⎝⎛010001010010011,⎪⎪⎪⎩⎪⎪⎪⎨⎧==-==--=55453225210x x x x x x x x x x , 基础解系为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00011,⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--10101,通解为T T k k )1,0,1,0,1()0,0,0,1,1(21--+-=η.25.设矩阵A =⎪⎪⎭⎫ ⎝⎛1221,求正交矩阵P ,使AP P 1-为对角矩阵.解:)3)(1(324)1(1221||22-+=--=--=----=-λλλλλλλλA E ,特征值11-=λ,32=λ. 对于11-=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎭⎫⎝⎛→⎪⎪⎭⎫⎝⎛----=-00112222A E λ,⎩⎨⎧=-=2221x x x x ,基础解系为⎪⎪⎭⎫⎝⎛-=111α,单位化为⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛-==21211121||1111ααβ; 对于32=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎭⎫⎝⎛-→⎪⎪⎭⎫⎝⎛--=-00112222A E λ,⎩⎨⎧==2221x x x x ,基础解系为⎪⎪⎭⎫⎝⎛=112α,单位化为⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛==21211121||1222ααβ. 令⎪⎪⎪⎪⎭⎫ ⎝⎛-=21212121P ,则P 是正交矩阵,使⎪⎪⎭⎫ ⎝⎛-=-30011AP P . 26.利用施密特正交化方法,将下列向量组化为正交的单位向量组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00111α, ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=01012α.解:正交化,得正交的向量组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==001111αβ,⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-=012/12/10011210101||),(1211222βββααβ; 单位化,得正交的单位向量组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==002/12/1001121||1111ββp ,⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-==06/26/16/1012/12/162||1222ββp . 四、证明题(本大题6分)27.证明:若A 为3阶可逆的上三角矩阵,则1-A 也是上三角矩阵.证:设⎪⎪⎪⎭⎫⎝⎛=33232213121100a a a a a a A ,则⎪⎪⎪⎭⎫⎝⎛==*-3323133222123121111||1||1A A A A A A A A A A A A A , 其中000332312=-=a a A ,00002213=-=a A ,00121123=-=a aA , 所以⎪⎪⎪⎭⎫⎝⎛=-3332223121111||1A A A A A A A A 是上三角矩阵.全国2007年7月高等教育自学考试线性代数(经管类)试题答案课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分) 1.设A 是3阶方阵,且|A |=21-,则|A -1|=( A ) A .—2B .21- C .21D .22.设A 为n 阶方阵,λ为实数,则=||A λ( C ) A .||A λB .||||A λC .||A n λD .||||A n λ3.设A 为n 阶方阵,令方阵B =A +A T ,则必有( A ) A .B T =BB .B =2AC .B B T -=D .B =0B A A A A A A A A B T T T T T T T T =+=+=+=+=)()(.4.矩阵A =⎪⎪⎭⎫ ⎝⎛--1111的伴随矩阵A *=( D ) A .⎪⎪⎭⎫ ⎝⎛--1111 B .⎪⎪⎭⎫ ⎝⎛--1111 C .⎪⎪⎭⎫⎝⎛--1111D .⎪⎪⎭⎫ ⎝⎛--11115.下列矩阵中,是初等矩阵的为( C )A .⎪⎪⎭⎫⎝⎛0001 B .⎪⎪⎪⎭⎫ ⎝⎛--100101110 C .⎪⎪⎪⎭⎫ ⎝⎛101010001D .⎪⎪⎪⎭⎫ ⎝⎛0013000106.若向量组)0,1,1(1+=t α,)0,2,1(2=α,)1,0,0(23+=t α线性相关,则实数t =( B )A .0B .1C .2D .30)1)(1(2111)1(100021011222=-+=++=++t t t t t t ⇒1=t .7.设A 是4×5矩阵,秩(A )=3,则( D ) A .A 中的4阶子式都不为0 B .A 中存在不为0的4阶子式 C .A 中的3阶子式都不为0D .A 中存在不为0的3阶子式8.设3阶实对称矩阵A 的特征值为021==λλ,23=λ,则秩(A )=( B ) A .0 B .1 C .2 D .3A 相似于⎪⎪⎪⎭⎫⎝⎛=200000000D ,秩(A )= 秩(D )=1.9.设A 为n 阶正交矩阵,则行列式=||2A ( C )A .-2B .-1C .1D .2A 为正交矩阵,则E A A T =,==22||||A A 1||||||==A A A A T T . 10.二次型2.2),,(y x z y x f -=的正惯性指数p 为(B )A .0B .1C .2D .3二、填空题(本大题共10小题,每小题2分,共20分)11.设矩阵A =⎪⎪⎭⎫ ⎝⎛1121,则行列式=||TAA __1__. 1)1(1121||||||||22=-====A A A AA T T .12.行列式1694432111中)2,3(元素的代数余子式=32A __—2__.2421132-=-=A . 13.设矩阵A =⎪⎪⎭⎫ ⎝⎛21,B =⎪⎪⎭⎫ ⎝⎛21,则=B A T__5__. 521)2,1(=⎪⎪⎭⎫⎝⎛=B A T .14.已知βααα=+-32125,其中)1,4,3(1-=α,)3,0,1(2=α,)5,2,0(-=β,则=3α⎪⎭⎫ ⎝⎛-211,1,1.⎪⎭⎫ ⎝⎛-=-=+---=211,1,1)11,2,2(21)]3,0,1(5)1,4,3()5,2,0[(213α 15.矩阵A =⎪⎪⎪⎭⎫⎝⎛-613101的行向量组的秩=__2__.⎪⎪⎪⎭⎫ ⎝⎛-613101→⎪⎪⎪⎭⎫ ⎝⎛-603001→⎪⎪⎪⎭⎫⎝⎛-003001,秩=2. 16.已知向量组)1,1,1(1=α,)0,2,1(2=α,)0,0,3(3=α是3R 的一组基,则向量)3,7,8(=β在这组基下的坐标是)1,2,3(.设332211αααβx x x ++=,即)0,0,3()0,2,1()1,1,1()3,7,8(321x x x ++=,得⎪⎩⎪⎨⎧==+=++37283121321x x x x x x ,解得⎪⎩⎪⎨⎧===123321x x x . 17.已知方程组⎩⎨⎧=+-=-0202121tx x x x 存在非零解,则常数t =__2__.02211=-=--t t,2=t .18.已知3维向量T )1,3,1(-=α,T )4,2,1(-=β,则内积=),(βα__1__.19.已知矩阵A =⎪⎪⎪⎭⎫ ⎝⎛x 01010101的一个特征值为0,则x =__1__.0|0|=-A E ,所以0||=A ,即0111101010101=-==x xx,1=x .20.二次型323121232221321822532),,(x x x x x x x x x x x x f +-+++=的矩阵是⎪⎪⎪⎭⎫ ⎝⎛--541431112. 三、计算题(本大题共6小题,每小题9分,共54分)21.计算行列式D=210121012的值.解:4)26(2123210121230210121012=+--=---=--=.22.设矩阵A =⎪⎪⎭⎫ ⎝⎛3512,B =⎪⎪⎭⎫⎝⎛0231,求矩阵方程XA =B 的解X . 解:⎪⎪⎭⎫⎝⎛--→⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎭⎫ ⎝⎛→⎪⎪⎭⎫ ⎝⎛=252610022501101220016101210013512),(E A⎪⎪⎭⎫ ⎝⎛--→25131001,⎪⎪⎭⎫ ⎝⎛--=-25131A ,⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛==-26512251302311BA X . 23.设矩阵A =⎪⎪⎪⎭⎫ ⎝⎛---a 363124843121,问a 为何值时,(1)秩(A )=1;(2)秩(A )=2.解:⎪⎪⎪⎭⎫ ⎝⎛---a 363124843121→⎪⎪⎪⎭⎫ ⎝⎛--900000003121a →⎪⎪⎪⎭⎫ ⎝⎛--000090003121a . (1)9=a 时,秩(A )=1;(2)9≠a 时,秩(A )=2.24.求向量组1α=⎪⎪⎪⎭⎫ ⎝⎛-111,2α=⎪⎪⎪⎭⎫ ⎝⎛531,3α=⎪⎪⎪⎭⎫ ⎝⎛626,4α=⎪⎪⎪⎭⎫⎝⎛-542的秩与一个极大线性无关组.解:⎪⎪⎪⎭⎫ ⎝⎛--565142312611→⎪⎪⎪⎭⎫ ⎝⎛--3126028402611→⎪⎪⎪⎭⎫ ⎝⎛--142014202611→⎪⎪⎪⎭⎫⎝⎛--000014202611, 秩为2,1α,2α是一个极大线性无关组.25.求线性方程组⎪⎩⎪⎨⎧=++=+=++362232234232132321x x x x x x x x 的通解.解:⎪⎪⎪⎭⎫ ⎝⎛=362232203421A →⎪⎪⎪⎭⎫ ⎝⎛---322032203421→⎪⎪⎪⎭⎫ ⎝⎛000032203421→⎪⎪⎪⎭⎫⎝⎛000032200201→⎪⎪⎪⎭⎫ ⎝⎛00002/31100201,⎪⎪⎩⎪⎪⎨⎧=-=-=333231232x x x x x x ,通解为⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎭⎫ ⎝⎛11202/30k .26.设矩阵⎪⎪⎪⎭⎫ ⎝⎛--=1630310104A ,求可逆矩阵P 及对角矩阵D ,使得D AP P =-1.解:2)1)(2(31104)1(1630310104||-+=--+-=-----+=-λλλλλλλλλA E ,特征值21-=λ,132==λλ.对于21-=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛-----=-00013050300013001531300000511210510513630510102A E λ⎪⎪⎪⎭⎫ ⎝⎛-→0003/1103/501,⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=3332313135x x x x x x ,基础解系为 ⎪⎪⎪⎭⎫⎝⎛-=13/13/51α;对于132==λλ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛----=-0000000210210210210630210105A E λ,⎪⎩⎪⎨⎧==-=3322212x x x x x x ,基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=0122α,⎪⎪⎪⎭⎫⎝⎛=1003α.令⎪⎪⎪⎭⎫ ⎝⎛--=101013/1023/5P ,⎪⎪⎪⎭⎫⎝⎛-=100010002D ,则P 是可逆矩阵,使D AP P =-1.四、证明题(本大题6分)27.设向量组1α,2α线性无关,证明向量组211ααβ+=,212ααβ-=也线性无关. 证:设02211=+ββk k ,即0)()(212211=-++ααααk k ,0)()(221121=-++ααk k k k .由1α,2α线性无关,得⎩⎨⎧=-=+002121k k k k ,因为021111≠-=-,方程组只有零解,所以1β,2β线性无关.全国2007年10月高等教育自学考试线性代数(经管类)试题答案课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分) 1.设行列式2211b a b a =1,2211c a c a =2,则222111c b a c b a ++=( D ) A .—3B .-1C .1D .3222111c b a c b a ++=2211b a b a +2211c a c a =1+2=3.2.设A 为3阶方阵,且已知2|2|=-A ,则=||A ( B ) A .-1B .41-C .41 D .12|2|=-A ,2||)2(3=-A ,41||-=A .3.设矩阵A ,B ,C 为同阶方阵,则=T ABC )(( B ) A .A T B T C TB .C T B T A TC .C T A T B TD .A T C T B T4.设A 为2阶可逆矩阵,且已知⎪⎪⎭⎫⎝⎛=-4321)2(1A ,则A =( D )A .2⎪⎪⎭⎫⎝⎛4321B .⎪⎪⎭⎫⎝⎛432121C .214321-⎪⎪⎭⎫⎝⎛D .1432121-⎪⎪⎭⎫⎝⎛ ⎪⎪⎭⎫ ⎝⎛=-4321)2(1A ,143212-⎪⎪⎭⎫ ⎝⎛=A ,1432121-⎪⎪⎭⎫⎝⎛=A . 5.设向量组s ααα,,,21 线性相关,则必可推出( C ) A .s ααα,,,21 中至少有一个向量为零向量 B .s ααα,,,21 中至少有两个向量成比例C .s ααα,,,21 中至少有一个向量可以表示为其余向量的线性组合D .s ααα,,,21 中每一个向量都可以表示为其余向量的线性组合6.设A 为m×n 矩阵,则齐次线性方程组Ax=0仅有零解的充分必要条件是( A ) A .A 的列向量组线性无关 B .A 的列向量组线性相关 C .A 的行向量组线性无关D .A 的行向量组线性相关Ax=0仅有零解⇔n A r =)(⇔ A 的列向量组线性无关.7.已知21,ββ是非齐次线性方程组Ax =b 的两个不同的解,21,αα是其导出组Ax =0的一个基础解系,21,C C 为任意常数,则方程组Ax =b 的通解可以表为( A ) A .)()(212121121ααC αC ββ++++ B .)()(212121121ααC αC ββ+++-C .)()(212121121ββC αC ββ-+++ D .)()(212121121ββC αC ββ+++- )(2121ββ+是Ax =b 的特解,211,ααα+是Ax =0的基础解系. 8.设3阶矩阵A 与B 相似,且已知A 的特征值为2,2,3,则=-||1B ( A )A .121 B .71 C .7 D .12B 相似于⎪⎪⎪⎭⎫⎝⎛300020002,12300020002||==B ,121||||11==--B B .9.设A 为3阶矩阵,且已知0|23|=+E A ,则A 必有一个特征值为( B )A .23-B .32-C .32 D .23 0|23|=+E A ⇒032=--A E ⇒A 必有一个特征值为32-. 10.二次型312123222132142),,(x x x x x x x x x x f ++++=的矩阵为( C ) A .⎪⎪⎪⎭⎫⎝⎛104012421B .⎪⎪⎪⎭⎫⎝⎛100010421C .⎪⎪⎪⎭⎫⎝⎛102011211D .⎪⎪⎪⎭⎫⎝⎛120211011二、填空题(本大题共10小题,每小题2分,共20分)11.设矩阵A =⎪⎪⎪⎭⎫ ⎝⎛100012021,B =⎪⎪⎪⎭⎫ ⎝⎛310120001,则A+2B =⎪⎪⎪⎭⎫⎝⎛720252023.12.设3阶矩阵A =⎪⎪⎪⎭⎫ ⎝⎛002520310,则=-1)(T A ⎪⎪⎪⎭⎫⎝⎛--002/1130250.→),(E A T⎪⎪⎪⎭⎫⎝⎛100010001053021200→⎪⎪⎪⎭⎫⎝⎛001100010200053021→⎪⎪⎪⎭⎫⎝⎛--001130010200010021 →⎪⎪⎪⎭⎫⎝⎛---001130250200010001→⎪⎪⎪⎭⎫ ⎝⎛--002/1130250100010001,=-1)(T A ⎪⎪⎪⎭⎫⎝⎛--002/1130250.13.设3阶矩阵A =⎪⎪⎪⎭⎫ ⎝⎛333022001,则A *A =⎪⎪⎪⎭⎫⎝⎛600060006.==*E A A A ||⎪⎪⎪⎭⎫⎝⎛==6000600066333022001E E .14.设A 为m ×n 矩阵,C 是n 阶可逆矩阵,矩阵A 的秩为r ,则矩阵B =AC 的秩为__r__. B =AC ,其中C 可逆,则A 经过有限次初等变换得到B ,它们的秩相等.15.设向量)1,1,1(=α,则它的单位化向量为⎪⎪⎭⎫⎝⎛31,31,31.16.设向量T )1,1,1(1=α,T )0,1,1(2=α,T )0,0,1(3=α,T )1,1,0(=β,则β由321,,ααα线性表出的表示式为3210αααβ-+=.设332211αααβk k k ++=,即⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛001011111110321k k k ,⎪⎩⎪⎨⎧==+=++110121321k k k k k k ,⎪⎩⎪⎨⎧-===101321k k k .17.已知3元齐次线性方程组⎪⎩⎪⎨⎧=++=++=-+0320320321321321x x x ax x x x x x 有非零解,则a =__2__.02412141121200132132111=-=+=+=-a a a a ,2=a .18.设A 为n 阶可逆矩阵,已知A 有一个特征值为2,则1)2(-A 必有一个特征值为41. 2=λ是A 的特征值,则41)2(1=-λ是1)2(-A 的特征值.19.若实对称矩阵A =⎪⎪⎪⎭⎫ ⎝⎛a a a 000103为正定矩阵,则a 的取值应满足30<<a .031>=∆,031322>-==∆a a a,0)3(00010323>-==∆a a aa a ⇒30<<a . 20.二次型2221212122),(x x x x x x f -+=的秩为__2__.⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎭⎫ ⎝⎛-=301112111112A ,秩为2.三、计算题(本大题共6小题,每小题9分,共54分)21.求4阶行列式1111112113114111的值.解:6300102010011000100010011020130011111112113114111===.22.设向量)4,3,2,1(=α,)0,2,1,1(-=β,求(1)矩阵βαT ;(2)向量α与β的内积),(βα.解:(1)()⎪⎪⎪⎪⎪⎭⎫⎝⎛----=-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=08440633042202110,2,1,14321βαT ;(2)50621),(=++-=βα. 23.设2阶矩阵A 可逆,且⎪⎪⎭⎫ ⎝⎛=-21211b ba a A ,对于矩阵⎪⎪⎭⎫ ⎝⎛=10211P ,⎪⎪⎭⎫ ⎝⎛=01102P ,令21AP P B =,求1-B . 解:⎪⎪⎭⎫ ⎝⎛-=-102111P ,⎪⎪⎭⎫ ⎝⎛=-011012P ,111121----=P A P B=⎪⎪⎭⎫⎝⎛0110⎪⎪⎭⎫ ⎝⎛2121b b a a ⎪⎪⎭⎫ ⎝⎛-1021=⎪⎪⎭⎫⎝⎛2121a ab b ⎪⎪⎭⎫ ⎝⎛-1021=⎪⎪⎭⎫⎝⎛--12112122a a a b b b .24.求向量组T )3,1,1,1(1=α,T )1,5,3,1(2--=α,T )4,1,2,3(3-=α,T )2,10,6,2(4--=α的秩和一个极大线性无关组.解:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----24131015162312311→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------85401246041202311→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------0700070041202311→⎪⎪⎪⎪⎪⎭⎫⎝⎛------0000070041202311, 秩为3,321,,ααα是一个极大线性无关组.25.给定线性方程组⎪⎩⎪⎨⎧-=++-=++-=++223321321321ax x x x ax x a x x x .(1)问a 为何值时,方程组有无穷多个解;(2)当方程组有无穷多个解时,求出其通解(用一个特解和导出组的基础解系表示).解:(1)⎪⎪⎪⎭⎫ ⎝⎛---=2112113111a a a A →⎪⎪⎪⎭⎫ ⎝⎛-----a a a a a 110010103111,1=a 时,方程组有无穷多解;(2)1=a 时,A →⎪⎪⎪⎭⎫ ⎝⎛-000000002111,⎪⎩⎪⎨⎧==---=33223212x x x x x x x ,通解为⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-10101100221k k . 26.求矩阵A =⎪⎪⎪⎭⎫ ⎝⎛------011101110的全部特征值及对应的全部特征向量.解:100010111)2(1111111)2(1212112111111||--+=+=+++==-λλλλλλλλλλλλλλλA E)2()1(2+-=λλ,特征值21-=λ,132==λλ.对于21-=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---=-000330211330330211112121211211121112A E λ⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛--→000110101000110211,⎪⎩⎪⎨⎧===333231x x x x x x ,基础解系为⎪⎪⎪⎭⎫⎝⎛=111α,对应的全部特征向量为αk (k 是任意非零常数);对于132==λλ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛=-000000111111111111A E λ,⎪⎩⎪⎨⎧==--=3322321x x x x x x x ,基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=0111α,⎪⎪⎪⎭⎫⎝⎛-=1012α,对应的全部特征向量为2211ααk k +(21,k k 是不全为零的任意常数). 四、证明题(本大题6分)27.设A 是n 阶方阵,且0)(2=+E A ,证明A 可逆.证:由0)(2=+E A ,得022=++E A A ,E A A =+-)2(2,E A E A =+-)2(.所以A 可逆,且)2(1E A A +-=-.16全国2008年1月高等教育自学考试线性代数(经管类)试题答案课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分) 1.设A 为三阶方阵且2||-=A 则=|3|A A T ( D ) A .—108B .—12C .12D .108108)2(27||3|3|223=-⨯==A A A T .2.如果方程组⎪⎩⎪⎨⎧=+=-=-+0404033232321kx x x x x kx x 有非零解,则k =( B )A .-2B .—1C .1D .20)1(1241434014013=+=-=--k kkk ,1-=k .3.设A 、B 为同阶方阵,下列等式中恒正确的是( D ) A .BA AB =B .111)(---+=+B A B AC .||||||B A B A +=+D .T T T B A B A +=+)(4.设A 为四阶矩阵,且2||=A ,则=*||A ( C ) A .2B .4C .8D .12=*||A 82||||331===-A A n .5.设β可由向量)0,0,1(1=α,)1,0,0(2=α线性表示,则下列向量中β只能是( B )A .)1,1,2(B .)2,0,3(-C .)0,1,1(D .)0,1,0(-),0,(212211k k k k =+=ααβ.6.向量组s ααα,,,21 的秩不为s (2≥s )的充分必要条件是( C ) A .s ααα,,,21 全是非零向量 B .s ααα,,,21 全是零向量C .s ααα,,,21 中至少有一个向量可由其它向量线性表出D .s ααα,,,21 中至少有一个零向量s ααα,,,21 的秩不为s ⇔s ααα,,,21 线性相关.177.设A 为m n ⨯矩阵,方程AX =0仅有零解的充分必要条件是( C ) A .A 的行向量组线性无关 B .A 的行向量组线性相关 C .A 的列向量组线性无关D .A 的列向量组线性相关AX =0仅有零解⇔n A r =)(⇔A 的列向量组线性无关.8.设A 与B 是两个相似n 阶矩阵,则下列说法错误..的是( D ) A .||||B A =B .秩(A )=秩(B)C .存在可逆阵P ,使B AP P =-1D .BE A E -=-λλ9.与矩阵A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010001相似的是( A )A .⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020001B .⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010011C .⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200011001D .⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020101有相同特征值的同阶对称矩阵一定(正交)相似.10.设有二次型232221321),,(x x x x x x f +-=,则),,(321x x x f ( C )A .正定B .负定C .不定D .半正定当0,0,1321===x x x 时,0>f ;当0,1,0321===x x x 时0<f .总之,f 有正有负. 二、填空题(本大题共10小题,每小题2分,共20分) 11.若0211=k ,则k =21. 012211=-=k k ,21=k . 12.设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤411023,B =⎢⎣⎡⎥⎦⎤010201,则AB =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡241010623. AB =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤411023⎢⎣⎡⎥⎦⎤010201=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡241010623.1813.设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤220010002,则=-1A ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-2/110010002/1. ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100010001220010002→⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-120010001200010002→⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-2/110010002/1100010001. 14.设A 为33⨯矩阵,且方程组Ax =0的基础解系含有两个解向量,则秩(A )= __1__.秩(A )=123=-=-r n .15.已知A 有一个特征值2-,则E A B 22+=必有一个特征值__6__.2-=λ是A 的特征值,则62)2(222=+-=+λ是E A B 22+=的特征值.16.方程组0321=-+x x x 的通解是T T k k )1,0,1()0,1,1(21+-.⎪⎩⎪⎨⎧==+-=3322321x x x x x x x ,通解是⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-10101121k k . 17.向量组)0,0,1(1=α,)0,1,1(2=α,)0,2,5(3-=α的秩是__2__.⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛-000010001025011001,秩是2. 18.矩阵A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200020002的全部特征向量是T T T k k k )1,0,0()0,1,0()0,0,1(321++不全为零)(321,,k k k .2321===λλλ,⎪⎪⎪⎭⎫ ⎝⎛=-000000000A E λ,⎪⎩⎪⎨⎧===332211x x x x x x ,基础解系为⎪⎪⎪⎭⎫ ⎝⎛001,⎪⎪⎪⎭⎫ ⎝⎛010,⎪⎪⎪⎭⎫⎝⎛100. 19.设三阶方阵A 的特征值分别为1,1,2-,且B 与A 相似,则=|2|B __—16__. =|2|B 16)2(810001000223-=-⨯=-.1920.矩阵A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-301012121所对应的二次型是3121232221321243),,(x x x x x x x x x x f +++-=. 三、计算题(本大题共6小题,每小题9分,共54分)21.计算四阶行列式1002210002100021的值.解:151500021000210002118002100021000211040210021000211002210002100021-=-==-=.22.设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤101111123,求1-A .解:⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100010001101111123→⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤001010100123111101→⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤---301110100220010101 →⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤----121110100200010101→⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤----121110200200010202→⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-----121110121200010002→⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤---2/112/11102/112/1100010001,1-A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤---2/112/11102/112/1.23.设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-200200011,B =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤300220011,且A ,B ,X 满足E X B A B E T T =--)(1,求X ,1-X . 解:由E X B A B E T T =--)(1,得E X A B E B T =--)]([1,即E X A BB BE T =--)(1,20E X A B T =-)(,=-1X ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-100020002100020002)(TT A B ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=10002/10002/1X . 24.求向量组)4,2,1,1(1-=α,)2,1,3,0(2=α,)14,7,0,3(3=α,)6,5,1,2(4=α,)0,2,1,1(5-=α 的一个极大线性无关组.解:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--021165121470321304211→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---4002130213021304211→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---4004000000021304211→⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--0004000000021304211, 421,,ααα是一个极大线性无关组.25.求非齐次方程组⎪⎪⎩⎪⎪⎨⎧=-+-+=+++-=-+++=++++12334523622232375432154325432154321x x x x x x x x x x x x x x x x x x x 的通解.解:=A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----12133452362210231123711111→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------236281023622102362210711111 →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------0006000000002362210711111→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------0000000006002362210711111 →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000001002362210711111→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000001002362010711011→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---00000000010023620101651001, ⎪⎪⎪⎩⎪⎪⎪⎨⎧===--=++-=5544354254106223516x x x x x x x x x x x ,通解为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-1006501021000231621k k .2126.设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤----020212022,求P 使AP P 1-为对角矩阵.解:λλλλλλλλλ4)2(4)2)(1(2021222||-----=--=-A E 86323+--=λλλ )2(3)42)(2()2(3)8(23+-+-+=+-+=λλλλλλλλ)4)(1)(2()45)(2(2--+=+-+=λλλλλλ,特征值21-=λ,12=λ,43=λ.对于21-=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---=-220220012220232012220232024A E λ→⎪⎪⎪⎭⎫⎝⎛--000220012 →⎪⎪⎪⎭⎫ ⎝⎛--000110012→⎪⎪⎪⎭⎫ ⎝⎛--000110102→⎪⎪⎪⎭⎫ ⎝⎛--0001102/101,⎪⎪⎩⎪⎪⎨⎧===33323121x x x x xx ,基础解系为⎪⎪⎪⎭⎫ ⎝⎛=112/11α;对于12=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛-=-120120021120101021120202021A E λ→⎪⎪⎪⎭⎫ ⎝⎛-000120021→⎪⎪⎪⎭⎫⎝⎛--000120101→⎪⎪⎪⎭⎫ ⎝⎛0002/110101,⎪⎪⎩⎪⎪⎨⎧=-=-=33323121x x x x x x ,基础解系为⎪⎪⎪⎭⎫ ⎝⎛--=12/112α;对于43=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛=-000210022420210022420232022A E λ→⎪⎪⎪⎭⎫ ⎝⎛000210011→⎪⎪⎪⎭⎫ ⎝⎛-000210201,22⎪⎩⎪⎨⎧=-==33323122xx x x x x ,基础解系为⎪⎪⎪⎭⎫⎝⎛-=1223α. 令⎪⎪⎪⎭⎫ ⎝⎛---=11122/11212/1P ,则P 是可逆矩阵,使=-AP P 1⎪⎪⎪⎭⎫ ⎝⎛-400010002.四、证明题(本大题6分)27.设321,,ααα是齐次方程组Ax =0的基础解系,证明1α,21αα+,321ααα++也是Ax =0的基础解系. 证:(1)Ax =0的基础解系由3个线性无关的解向量组成.(2)321,,ααα是Ax =0的解向量,则1α,21αα+,321ααα++也是Ax =0的解向量. (3)设0)()(321321211=+++++ααααααk k k ,则0)()(332321321=+++++αααk k k k k k ,由321,,ααα线性无关,得⎪⎩⎪⎨⎧==+=++000332321k k k k k k ,系数行列式01100110111≠=,只有零解0321===k k k ,所以1α,21αα+,321ααα++线性无关.由(1)(2)(3)可知,1α,21αα+,321ααα++也是Ax =0的基础解系.23全国2008年4月高等教育自学考试线性代数(经管类)试题答案课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分)1.设行列式D =333231232221131211a a a a a a a a a =3,D 1=333231312322212113121111252525a a a a a a a a a a a a +++,则D 1的值为( C ) A .—15B .-6C .6D .15D 1=620222555333231232221131211333131232121131111=+=+D a a a a a a a a a a a a a a a a a a . 2.设矩阵⎪⎪⎭⎫ ⎝⎛+d b a 04=⎪⎪⎭⎫⎝⎛-32c b a ,则( C ) A .3,1,1,3==-==d c b a B .3,1,3,1===-=d c b a C .3,0,1,3==-==d c b aD .3,0,3,1===-=d c b a3,0,4,2===-=+d c b a b a ⇒3,0,1,3==-==d c b a .3.设3阶方阵A 的秩为2,则与A 等价的矩阵为( B )A .⎪⎪⎪⎭⎫⎝⎛000000111B .⎪⎪⎪⎭⎫⎝⎛000110111C .⎪⎪⎪⎭⎫⎝⎛000222111D .⎪⎪⎪⎭⎫⎝⎛3332221114.设A 为n 阶方阵,2≥n ,则=-|5|A ( A ) A .||)5(A n -B .||5A -C .||5AD .||5A n5.设A =⎪⎪⎭⎫ ⎝⎛4321,则=*||A ( B )A .-4B .—2C .2D .424321||||||121-====--*A A A n . 6.向量组s ααα,,,21 (2>s )线性无关的充分必要条件是( D ) A .s ααα,,,21 均不为零向量B .s ααα,,,21 中任意两个向量不成比例C .s ααα,,,21 中任意1-s 个向量线性无关D .s ααα,,,21 中任意一个向量均不能由其余1-s 个向量线性表示247.设3元线性方程组b Ax =,A 的秩为2,1η,2η,3η为方程组的解,T )4,0,2(21=+ηη,T )1,2,1(31-=+ηη,则对任意常数k ,方程组b Ax =的通解为( D )A .T T k )1,2,1()2,0,1(-+B .T T k )4,0,2()1,2,1(+-C .T T k )1,2,1()4,0,2(-+D .T T k )3,2,1()2,0,1(+取b Ax =的特解:T )2,0,1()(2121=+=ηηη; 0=Ax 的基础解系含一个解向量:T )3,2,1()()(312132=+-+=-=ηηηηηηα.8.设3阶方阵A 的特征值为2,1,1-,则下列矩阵中为可逆矩阵的是( D ) A .A E -B .A E --C .A E -2D .AE --22-不是A 的特征值,所以0|2|≠--A E ,A E --2可逆.9.设λ=2是可逆矩阵A 的一个特征值,则矩阵12)(-A 必有一个特征值等于( A ) A .41 B .21 C .2 D .42=λ是A 的特征值,则41)(12=-λ是12)(-A 的特征值.10.二次型432423222143212),,,(x x x x x x x x x x f ++++=的秩为( C ) A .1 B .2 C .3 D .4⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00001100001000011100110000100001A ,秩为3. 二、填空题(本大题共10小题,每小题2分,共20分)11.行列式332313322212312111b a b a b a b a b a b a b a b a b a =__0__. 行成比例值为零.12.设矩阵A =⎪⎪⎭⎫ ⎝⎛4321,P =⎪⎪⎭⎫ ⎝⎛1011,则=T AP ⎪⎪⎭⎫ ⎝⎛4723. =TAP ⎪⎪⎭⎫ ⎝⎛4321⎪⎪⎭⎫ ⎝⎛1101=⎪⎪⎭⎫⎝⎛4723.2513.设矩阵A =⎪⎪⎪⎭⎫ ⎝⎛111110100,则=-1A ⎪⎪⎪⎭⎫ ⎝⎛--001011110.⎪⎪⎪⎭⎫⎝⎛100010001111110100→⎪⎪⎪⎭⎫ ⎝⎛001010100100110111→⎪⎪⎪⎭⎫ ⎝⎛--001011101100010011→⎪⎪⎪⎭⎫ ⎝⎛--001011110100010001. 14.设矩阵A =⎪⎪⎪⎭⎫⎝⎛54332221t ,若齐次线性方程组Ax =0有非零解,则数t =__2__. 02121412014022154332221||=-=----=----==t t t t A ,2=t .15.已知向量组⎪⎪⎪⎭⎫ ⎝⎛-=2111α,⎪⎪⎪⎭⎫ ⎝⎛-=1212α,⎪⎪⎪⎭⎫⎝⎛=113t α的秩为2,则数t =__-2__.⎪⎪⎪⎭⎫ ⎝⎛--11212111t →⎪⎪⎪⎭⎫ ⎝⎛+--123013011t t t →⎪⎪⎪⎭⎫ ⎝⎛+--20013011t t t ,秩为2,则2-=t . 16.已知向量T )3,0,1,2(=α,T k ),1,2,1(-=β,α与β的内积为2,则数k =32.2),(=βα,即23022=++-k ,3/2=k .17.设向量Tb ⎪⎪⎭⎫⎝⎛=21,21,α为单位向量,则数b =__0__. 112121||22=+=++=b b α,0=b . 18.已知λ=0为矩阵A =⎪⎪⎪⎭⎫ ⎝⎛-----222222220的2重特征值,则A 的另一特征值为__4__.021==λλ,220321++=++λλλ,所以43=λ.19.二次型32212322213212452),,(x x x x x x x x x x f +--+=的矩阵为⎪⎪⎪⎭⎫⎝⎛---510122021.2620.已知二次型232221321)2()1()1(),,(x k x k x k x x x f -+-++=正定,则数k 的取值范围为2>k .⎪⎩⎪⎨⎧>->->+020101k k k ,⎪⎩⎪⎨⎧>>->211k k k ,2>k . 三、计算题(本大题共6小题,每小题9分,共54分)21.计算行列式D =4001030100211111的值.解:2202100111011112200210111011113110121011111114001030100211111-=----=----=------=.22.已知矩阵A =⎪⎪⎪⎭⎫ ⎝⎛-210011101,B =⎪⎪⎪⎭⎫⎝⎛410011103,(1)求A 的逆矩阵1-A ;(2)解矩阵方程B AX =.解:(1)⎪⎪⎪⎭⎫ ⎝⎛-100010001210011101→⎪⎪⎪⎭⎫ ⎝⎛---100011001210110101→⎪⎪⎪⎭⎫ ⎝⎛----111011001100110101→⎪⎪⎪⎭⎫ ⎝⎛-----111122112100010001→⎪⎪⎪⎭⎫ ⎝⎛-----111122112100010001,1-A =⎪⎪⎪⎭⎫ ⎝⎛-----111122112; (2)==-B A X 1⎪⎪⎪⎭⎫ ⎝⎛-----111122112⎪⎪⎪⎭⎫ ⎝⎛410011103=⎪⎪⎪⎭⎫⎝⎛-----322234225.23.设向量)1,1,1,1(--=α,)1,1,1,1(--=β,求(1)矩阵βαT A =;(2)2A .27解:(1)βαT A ===--⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--)1,1,1,1(1111⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------111111*********1; (2)2A =⎪⎪⎪⎪⎪⎭⎫⎝⎛--------111111*********1⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------111111*********1=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------4444444444444444. 24.设向量组T )4,2,1,1(1-=α,T )2,1,3,0(2=α,T )14,7,0,3(3=α,T )0,2,1,1(4-=α,求向量组的秩和一个极大线性无关组,并将其余向量用该极大线性无关组线性表示.解:⎪⎪⎪⎪⎪⎭⎫⎝⎛--=01424271210311301),,,(4321αααα→⎪⎪⎪⎪⎪⎭⎫⎝⎛-4220011003301301→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-2110011001101301→⎪⎪⎪⎪⎪⎭⎫⎝⎛-2000000001101301→⎪⎪⎪⎪⎪⎭⎫⎝⎛1000000001101301→⎪⎪⎪⎪⎪⎭⎫⎝⎛0000100001101301, 向量组的秩为3,421,,ααα是一个极大线性无关组,=3α42103ααα++.25.已知线性方程组⎪⎩⎪⎨⎧=+-=-+--=+ax x x x x x x x 32132131522312 ,(1)求当a 为何值时,方程组无解、有解;(2)当方程组有解时,求出其全部解(要求用其一个特解和导出组的基础解系表示).解:=),(b A ⎪⎪⎪⎭⎫ ⎝⎛----a 51223111201→⎪⎪⎪⎭⎫ ⎝⎛+---211011101201a →⎪⎪⎪⎭⎫ ⎝⎛+--300011101201a . (1)3-≠a 时,方程组无解,3-=a 时,方程组有解;(2)3-=a 时,),(b A →⎪⎪⎪⎭⎫ ⎝⎛--000011101201,⎪⎩⎪⎨⎧=+=--=333231121x x x x x x ,全部解为⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-112011k .2826.设矩阵A =⎪⎪⎭⎫⎝⎛2178,(1)求矩阵A 的特征值与对应的全部特征向量;(2)判定A 是否可以与对角阵相似,若可以,求可逆阵P 和对角阵Λ,使得Λ=-AP P 1. 解:)9)(1(9102178||2--=+-=----=-λλλλλλλA E ,特征值11=λ,92=λ. 对于11=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎭⎫ ⎝⎛→⎪⎪⎭⎫⎝⎛----=-00111177A E λ,⎩⎨⎧=-=2221x x x x ,基础解系为 ⎪⎪⎭⎫⎝⎛-=111α,对应的全部特征向量为11αk (1k 是任意非零常数);对于92=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎭⎫⎝⎛--=-00717171A E λ,⎩⎨⎧==22217x x x x ,基础解系为 ⎪⎪⎭⎫ ⎝⎛=172α,对应的全部特征向量为22αk (2k 是任意非零常数).令⎪⎪⎭⎫ ⎝⎛-=1171P ,⎪⎪⎭⎫ ⎝⎛=Λ9001,则P 是可逆矩阵,使得Λ=-AP P 1.四、证明题(本题6分)27.设n 阶矩阵A 满足A A =2,证明A E 2-可逆,且A E A E 2)2(1-=--.证:由A A =2,得E A A E A A E A E A E =+-=+-=--4444)2)(2(2,所以A E 2-可逆,且A E A E 2)2(1-=--.29全国2008年7月高等教育自学考试线性代数(经管类)试题答案课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分)1.设3阶方阵],,[321ααα=A ,其中i α(3,2,1=i )为A 的列向量,且2||=A ,则=+=|],,3[|||3221ααααB ( C )A .-2B .0C .2D .6333231232221131211||a a a a a a a a a A =,2||333||333232312322222113121211==+++=A a a a a a a a a a a a a B . 2.若方程组⎩⎨⎧=-=+002121x kx x x 有非零解,则k =( A )A .—1B .0C .1D .201111||=--=-=k k A ,1-=k .3.设A ,B 为同阶可逆方阵,则下列等式中错误的是( C ) A .||||||B A AB =B .111)(---=A B ABC .111)(---+=+B A B AD .T T T A B AB =)(反例:⎪⎪⎭⎫ ⎝⎛=1001A ,⎪⎪⎭⎫⎝⎛--=1001B . 4.设A 为三阶矩阵,且2||=A ,则=-*|)(|1A ( A ) A .41 B .1 C .2 D .441||1||1||1|)(|211====-*-*A A A A n . 5.已知向量组A :4321,,,αααα中432,,ααα线性相关,那么( B ) A .4321,,,αααα线性无关B .4321,,,αααα线性相关C .1α可由432,,ααα线性表示D .43,αα线性无关部分相关⇒全体相关.。

经济数学《线性代数》期末试卷二(含答案解析)

经济数学《线性代数》期末试卷二(含答案解析)

《线性代数》试卷二一.选择题(每题3分,共30分)1.若行列式1023145xx 中,代数余子式121A =-,则21A =( ) A.2 B.2- C.3 D.3- 【解答】由于31211(1)4545x A x =-=-=-,可解得1x =,进而有32102(1)215A =-=,故选A.2.已知A ,B 均为n 阶方阵,则必有( )A.222()2A B A AB B +=++ B.TTT()AB A B = C.n n AB O ⨯=时,A ,B 中至少有一个为零矩阵 D.以上都不对 【解答】本题考察矩阵的乘法运算的性质.在A ,B 相乘可换时,选项A 才成立;()T T T AB B A =,故选项B 是错误的;n n AB O ⨯=说明B 的列向量组均为齐次方程组0Ax =的解向量,故选项C 亦不成立.故选D.3.设A 是m n ⨯矩阵,B 是n m ⨯矩阵,且AB E =,其中E 为m 阶单位矩阵,则( ). A. ()()r A r B m == B.()(),r A m r B n == C. ()(),r A n r B m == D. ()()r A r B n ==【解答】显然有()min{(),()}max{(),()}r AB r A r B r A r B m ≤≤≤,于是由AB E =可知()()r A r B m ==.故选A.4.向量组12,,,m ααα(3≥m )线性无关的充要条件是( )A. 存在不全为零的数12,,,s k k k ,使11220s s k k k ααα+++=;B. 所给向量组中任意两个向量都线性无关;C. 所给向量组中存在一个向量,它不能用其余向量线性表示;D. 所给向量组中任意一个向量都不能用其余向量线性表示.【解答】本题考察线性无关的定义.选项A 为线性相关的定义;选项B.选项C 为必要条件;故选D.5.设向量⎪⎪⎪⎭⎫ ⎝⎛=001α,⎪⎪⎪⎭⎫ ⎝⎛=100β,下列选项中( )为βα,的线性组合.A.1B.⎪⎪⎪⎭⎫ ⎝⎛-=403ηC.⎪⎪⎪⎭⎫ ⎝⎛=022ηD.⎪⎪⎪⎭⎫⎝⎛-=010η【解答】由βα,的第二个分量均为零易知其线性组合亦必满足第二个分量为零,因此选B.6.当λ取( )时,方程组12323232132(3)(4)(2)x x x x x x x +-=-⎧⎪-=-⎨⎪-=--+-⎩λλλλλλ有无穷多解.A.1B.2C.3D.4【解答】思路同上题,欲使该方程组有无穷多解,系数行列式12131301λλ--=--必为零.故选C.7.设A 为n 阶实矩阵,T A 是A 的转置矩阵,则对于线性方程组(Ⅰ)0Ax =和(Ⅱ)T 0A Ax =必有( ).A.(Ⅱ)的解是(Ⅰ)的解,(Ⅰ)的解也是(Ⅱ)的解 B .(Ⅱ)的解是(Ⅰ)的解,但(Ⅰ)的解不是(Ⅱ)的解 C .(Ⅱ)的解不是(Ⅰ)的解,(Ⅰ)的解不是(Ⅱ)的解 D .(Ⅰ)的解是(Ⅱ)的解,但(Ⅱ)的解不是(Ⅰ)的解【解答】事实上,齐次方程组(Ⅰ)0Ax =和(Ⅱ)T 0A Ax =为同解方程组.证明如下:一方面,显然(Ⅰ)的解是(Ⅱ)的解;另一方面,设β是(Ⅱ)的解,则T0A A β=,进而()()TT T 0A A A A ββββ==,由此可知0A β=,即β亦是(Ⅰ)的解.命题得证. 由此可知选A.8.设1λ与2λ是A 的两个互异特征值,ξ与η分别为其特征向量,则下列说法正确的是( ) A .对任意非零常数12,k k ,12k k ξη+均为A 的特征向量 B .存在非零常数12,k k ,使得12k k ξη+均为A 的特征向量C .对任意非零常数12,k k ,12k k ξη+均不是A 的特征向量D .存在唯一的一组非零常数12,k k ,使得12k k ξη+均为A 的特征向量【解答】首先易知,ξ与η线性无关.又知对于任意非零常数12,k k ,若12k k ξη+为属于特征值3λ的特征向量,则有()123132A k k k k ξηλξλη+=+,()12121122A k k k A k A k k ξηξηλξλη+=+=+同时成立,于是()()1132230k k λλξλλη-+-=进而可知123λλλ==,与题设矛盾.故12k k ξη+不是A 的特征向量.选C.9.设矩阵1111400011110000,1111000011110000A B ⎛⎫⎛⎫⎪⎪⎪⎪== ⎪ ⎪⎪⎪⎝⎭⎝⎭,则A 与B ( ).A.合同且相似B.合同但不相似C.不合同但相似D.不合同且不相似【解答】易知A 为对称矩阵且其特征值为4,0,0,0,故A 必可正交对角化为矩阵B .进而A 与B 合同且相似.故选A.10.二次型()2221231231223,,244f x x x x x ax x x x x =++--经正交变换化为标准形22212325f y y by =++,则( )A.3,1a b ==B.3,1a b ==-C.3,1a b =-= D.3,1a b =-=-【解答】由题意知,矩阵12022202A a -⎛⎫⎪=-- ⎪ ⎪-⎝⎭的特征值为2,5,b ,直接计算可知3,1a b ==-,故选B.二.填空题(每题3分,共18分)1.设A 为4阶方阵,且A 的行列式13A =,则12A -= . 【解答】易知13A -=,故1412216348A A --==⨯=.2.已知1231100011000100000101n n na a a D a a ---=-,若12--=+n n n n D a D kD ,则k = .【解答】按最后一行展开,得()()121312100011000100110000011n n n n n n a a a D a D a +-----=+---()()1121211n n n n n n n n a D D a D D +-----=+--=+,所以1k =.3.若非齐次方程组123412341234 242 217411x x x x x x x x x x x x λ+-+=⎧⎪-++=⎨⎪+-+=⎩ 有解,则λ=【解答】非齐次方程组有解当且仅当增广矩阵化为行阶梯阵时,最后一个非零行不具有“有且只有最后一个元素非零”的形式,于是直接计算可知5λ=。

武汉大学线代试题2007-2008B(工54A卷)

武汉大学线代试题2007-2008B(工54A卷)

武汉大学数学与统计学院2007-2008第二学期《线性代数B 》 (A 卷,工54)学院 专业 学号 姓名注:所有答题均须有详细过程,内容必须写在答题纸上,凡写在其它地方一律无效。

一、(10分) 计算下列行列式;1. 123123123123n n n n nx a a a a a x a a a a a x a a D a a a xa +++=+;2. 若12312,,,,αααββ都是四维列向量,且四阶行列式12311223,,m n αααβααβα==求四阶行列式()32112αααββ+.二、(10分)若有不全为零的数12,,,,m λλλ使1111m m m m O λαλαλβλβ+++++=成立,则12,,,m ααα线性相关,12,,,m βββ也线性相关.试讨论该结论是否正确?三、(12分)设3阶方阵200121101⎛⎫⎪=- ⎪ ⎪⎝⎭A ,试求:1、A 的特征值和特征向量;2、kA (k 为正整数)及其特征值和特征向量。

四、(15分)当λ为何值时,方程组123123123322,x x x x x x x x x λλλλ++=-⎧⎪++=-⎨⎪++=-⎩有唯一解、无解、有无穷多解?在有解时,求出方程组的解.五、(15分)设二次型()22212312313,,222T f x x x X AX ax x x bx x ==+-+()0,b >其中二次型的矩阵A 的特征值之和为1,特征值之积为12.-1、,a b 的值;2、用正交变换将二次型f 化为标准形,并写出所用的正交变换与正交矩阵.六(18分)在四维实向量构成的线性空间4R 中,已知:12341111011100110001,,,αααα⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭;1234111111102001100,,,a a ββββ--⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭。

线性代数期末考试试卷+答案

线性代数期末考试试卷+答案

大学线性代数期末考试题一、填空题(将正确答案填在题中横线上。

每小题2分,共10分)1. 若022150131=---x ,则=χ__________。

2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 。

3.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。

4.矩阵⎪⎪⎪⎭⎫⎝⎛=323122211211a a a a a a A 的行向量组线性 。

5.n 阶方阵A 满足032=--E A A ,则=-1A 。

二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。

每小题2分,共10分)1. 若行列式D 中每个元素都大于零,则0〉D 。

( )2. 零向量一定可以表示成任意一组向量的线性组合。

( )3. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。

( )4. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=010*********0010A ,则A A =-1。

( )5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。

( )三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。

每小题2分,共10分)1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。

① n2② 12-n③ 12+n ④ 42. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( )。

① s ααα,,, 21中任意两个向量都线性无关 ② s ααα,,, 21中存在一个向量不能用其余向量线性表示 ③ s ααα,,, 21中任一个向量都不能用其余向量线性表示④ s ααα,,, 21中不含零向量 3. 下列命题中正确的是( )。

① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。

线代期末考试B卷及答案

线代期末考试B卷及答案

2011-2012学年第一学期期末考试《线性代数》试卷 (B )评阅人:_____________ 总分人:______________一、单项选择题。

(本大题共10小题,每小题3分,共30分) 1.下列等式中正确的是( ) A .()222A B A AB BA B +=+++ B .()TT T AB A B = C .()()A B A B A B -+=-22 D .()33A A A A -=-22.设⎪⎪⎪⎭⎫ ⎝⎛=311132213A 则21a 的代数余子式21A 的值为 ( )A. 1.B. 1-C. 2.D. 2-3.设12,ββ是非齐次线性方程组AX b =的两个解,则下列向量中仍为方程组解的是( ) A .ββ12+B .12ββ-C .1222ββ+ D .12325ββ+ 4.设0λ是可逆矩阵A 的一个特征值,则21A -必有一个特征值是( )A .210λ B .021λ C .20λD .2λ 5.设向量组(I):1α,2α,…r α,向量组(II):1α,2α,…r α,1r +α,…,s α则必有( )。

A .若(I)线性无关,则(II)线性无关B .若(II)线性无关,则(I)线性无关C .若(I)线性无关,则(II)线性相关D .若(II)线性相关,则(I)线性相关6.设⎪⎪⎪⎭⎫ ⎝⎛-=211121113A 的三个特征值分别是321,,λλλ,则321λλλ++的值等于( ) A. 0. B. 1. C. 2. D. 3.7.已知A 是一个43⨯阶矩阵,则下列命题正确的是( )__________________系__________专业___________班级 姓名_______________ 学号_______________………………………………(密)………………………………(封)………………………………(线)………………………………2 A. 若A 中所有三阶子式都为零,则 2.R AB. 若 2.R A则A 中所有三阶子式都为零C. 若A 中所有二阶子式都不为零,则 2.R AD. 若 2.R A则A 中所有二阶子式都不为零8..设n 阶方阵A 的0=A 则A 的列向量( )A .0)(=A RB . 0)(≠A RC .线性相关D .线性无关 9.设向量组A 可由向量组B 线性表示,则有( )A. )()(B R A R ≤B. )()(B R A R ≥C. )()(B R A R =D. 不能确定)(A R 和)(B R 的大小. 10.设n 元线性方程组Ax =b 且为()()n b A R A R ==,,则该方程组( )A.有唯一解;B.有无穷多解;C.无解;D.不确定。

2007-2008线性代数

2007-2008线性代数

2007-2008第二学期考试课程:线性代数班级: 学号:一、选择题(每题3分,共15分)1.设行列式D =333231232221131211a a a a a a a a a =3,D 1=333231312322212113121111252525a a a a a a a a a a a a +++,则D 1的值为( ) (A) -15 (B) –6 (C) 6 (D) 152.设A 为n 阶方阵,2n ≥,则5A -=( )(A) (5)n A - (B) (5)A - (C) 5A (D) 5n A 3. 向量组12,,S ααα (2s >) 线性无关的充分必要条件是( )(A) 12,,S ααα 均不为零向量(B) 12,,S ααα 中任意两个向量不成比例 (C) 12,,S ααα 中任意1s -个向量线性无关(D)12,,S ααα 中任意一个向量均不能由其余的1s -个向量线性表示4.设λ=2是可逆矩阵A 的一个特征值,则矩阵21()A -必有一个特征值等于( )(A)14(B)12(C) 2 (D) 45. 设n n j i a A ⨯=)(, 则二次型∑=+++=ni n n i i i n x a x a x ax x x f 12221121)(),,,( 的矩阵为( )(A) A (B) 2A (C) A A T(D) TAA二.填空题(每题3分,共15分)1. 设矩阵1234A ⎛⎫= ⎪⎝⎭,1101p ⎛⎫= ⎪⎝⎭,则TAP =2. 方阵 1 2 32 2 13 4 3A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则1A -=3. 已知向量组⎪⎪⎪⎭⎫ ⎝⎛-=α2111,⎪⎪⎪⎭⎫ ⎝⎛-=α1212,⎪⎪⎪⎭⎫ ⎝⎛=α113t 的秩为2,则数t =__________4. 设矩阵⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=18121321841812132b a A 为正交矩阵,则=a ,=b 5.已知二次型222123123(,,)(1)(1)(3)f x x x k x k x k x =++-+-正定,则数k 的取值范围为________三.解答题(10分)计算n 阶行列式12121233 3n n n x x x x x x x x x +++四.解答题(14分)当λ为何值时,非齐次线性方程组12312321231x x x x x x x x x λλλλλ⎧++=⎪++=⎨⎪++=⎩有唯一解,无解,无穷多解,并求出无穷多解时的通解。

2007线性代数期末试卷(B)

2007线性代数期末试卷(B)

学院: 专业:班级:装姓名:线学号:2005级线性代数期末试卷(B)一、单项选择题(每小题3分,共15分)1.当()k ≠时,方程组02020kx z x ky z kx y z +=⎧⎪++=⎨⎪-+=⎩只有零解。

A. 0;B. -1 ;C. 2 ;D. -22.设,A B 均为n 阶方阵,且()0A B E -=, 则 ( ) A. 0A =或 B E =;B. 0A =或 0B E -=;C. 0A =或 1B =;D. A BA =.3.以初等矩阵100001010⎛⎫ ⎪ ⎪ ⎪⎝⎭左乘矩阵001100010A ⎛⎫ ⎪= ⎪⎪⎝⎭相当于对矩阵A 施行( )的初等变换.A. 23r r ↔,B. 23c c ↔,C. 13r r ↔, B. 13c c ↔,4.设向量组的秩为r ,则( )A. 该向量组所含向量的个数必大于r 。

B. 该向量组中任何r 个向量必线性无关,任何1r +个向量必线性相关。

C. 该向量组中有r 个向量线性无关,有1r +个向量线性相关。

D. 该向量组中有r 个向量线性无关,任何1r +个向量必线性相关。

5.设A 为n 阶方阵,则“0是A 的一个特征值“是“A 为奇异矩阵“的( )A. 充分非必要条件;B. 必要非充分条件;C. 既非充分也非必要条件;D. 充分必要条件。

二、填空题(每小题3分,共15分) 6. 设()2201x x e f x =,则()'0f =7. 设A,B 均为n 阶方阵,2,3A B ==-,则*12A B -= 。

8.设A 是43⨯矩阵,且()2R A =,而102020103B ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,则()R AB = 。

9. 设()()()1231,1,1,,0,,1,3,2a b ααα===,若1,23,ααα线性相关,则,a b 满足关系式 。

10.设n 阶方阵A 有n 个特征值0,1,2,,1n -,且方阵B 与A 相似,则B E += 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学院:
专业:
班级:

姓名:
线
学号: 2008年春线性代数期末试卷(B)
一、单项选择题(每小题3分,共15分) 1.行列式2222111a ab b a a b b +=( ) A. ()3a b -; B. ()3b a -; C. ()3a b +; D. ()2a b -.
2. 设n 阶方阵,,A B C 满足关系式ABC E =,其中E 是n 阶单位阵,则必有( ) A. ACB E =; B. CBA E =; C. BAC E =; D. B C A E =.
3. 对于齐次线性方程组,以下说法正确的是( )
A. 若0AX =有解,则必有0A ≠;
B. 若0AX =无解,则必有0A =;
C. 若0AX =有非零解,则必有0A ≠;
D. 若0AX =唯有零解,则必有0A ≠。

4. 已知()()()1232,6,12,4,2,1,2,1,1,3,6,2,T
T T
ααα==-=-
()43,5,10,2,T α=()52,1,2,10T
α=-,则该向量组得秩为( )
A. 2;
B. 1;
C. 4;
D. 3。

5. 实二次型()2
322212
13214,,x x x x tx x x x f +++=秩为2,则=t ().
A. 1;
B. 4;
C. 3;
D. 2.
二、填空题(每小题3分,共15分) 6.设A 为33⨯矩阵,且A =2,则=*A A ;
7.设矩阵020003400A ⎛⎫ ⎪= ⎪ ⎪⎝⎭
,则1A -=
8.设矩阵110211301A -⎛⎫ ⎪= ⎪ ⎪⎝⎭
,则齐次线性方程组0AX =的自由向量的个数为 个;
9.矩阵1234234534564567A ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭
,则A 的秩为
10.实二次型()222121212,tx x x x x x f ++=正定,则t 应满足不等式
三、计算题(每小题10分,共50分)
11. 计算行列式11111111
1111
1111x x D y y
+-=+-
12.解矩阵方程100301120121023X ⎛⎫⎛⎫ ⎪= ⎪ ⎪⎝⎭ ⎪⎝⎭
13.
求线性方程组⎪⎪⎩⎪⎪⎨⎧=--+=--+=+-+=+-13413212302432143214321421x x x x x x x x x x x x x x x 的通解。

14.已知向量组()()()()12341,2,2,3,6,6,1,,0,3,
0,4,2T T T T
αααα====-,
求出它的一个最大无关组。

15.
利用施密特正交化向量组121121,1102αα⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭。

16.已知方阵
100
212
312
A
-⎛⎫

= ⎪

⎝⎭
,求m
A
17. 设方阵A 有一个特征值为2=λ,证明:方阵E A A B 22+-=有一个特征值为4。

相关文档
最新文档