中考数学专题3动态几何问题
中考几何-动态试题解法(解析版)
中考几何动态试题解法专题知识点概述一、动态问题概述1.就运动类型而言,有函数中的动点问题有图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。
2.就运动对象而言,几何图形中的动点问题有点动、线动、面动三大类。
3.就图形变化而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等。
4.动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,属于初中数学难点,综合性强,只有完全掌握才能拿高分。
二、动点与函数图象问题常见的四种类型1.三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。
2.四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。
3.圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象。
4.直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象。
三、图形运动与函数图象问题常见的三种类型1.线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
2.多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
3.多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
四、动点问题常见的四种类型解题思路1.三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系。
中考数学重难点专题讲座动态几何含答案
中考数学重难点专题讲座第三讲 动态几何问题【前言】从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。
动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。
在这一讲,我们着重研究一下动态几何问题的解法,第一部分 真题精讲【例1】(2010,密云,一模)如图,在梯形ABCD 中,AD BC ∥,3AD =,5DC =,10BC =,梯形的高为4.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t (秒).(1)当MN AB ∥时,求t 的值;(2)试探究:t 为何值时,MNC △为等腰三角形.【思路分析1】本题作为密云卷压轴题,自然有一定难度,题目中出现了两个动点,很多同学看到可能就会无从下手。
但是解决动点问题,首先就是要找谁在动,谁没在动,通过分析动态条件和静态条件之间的关系求解。
对于大多数题目来说,都有一个由动转静的瞬间,就本题而言,M ,N 是在动,意味着BM,MC 以及DN,NC 都是变化的。
但是我们发现,和这些动态的条件密切相关的条件DC,BC 长度都是给定的,而且动态条件之间也是有关系的。
所以当题中设定MN M N t D DE AB ∥BC E ABEDABMCNED AB DE ∥AB MN ∥DE MN∥MC NC EC CD =1021035t t -=-5017t =MN NC =NF BC ⊥BC F 2MC FC =4sin 5DF C CD ∠==3cos 5C ∠=310225tt -=⨯258t =ABMCNFD MN MC =M MH CD ⊥2CN CH =()321025t t =-⨯6017t =A B MCN HD MC CN =102t t -=103t =258t =6017103MNC △423=BC x x (3)过点A 作AQ ⊥BC 交CB 的延长线于点Q ,①点D 在线段BC 上运动时,∵∠BCA=45o ,可求出AQ= CQ=4.∴ DQ=4-x , 易证△AQD ∽△DCP ,∴CP CD DQ AQ = , ∴44CP x x =-, 24x CP x ∴=-+.②点D 在线段BC 延长线上运动时,∵∠BCA=45o ,可求出AQ= CQ=4,∴ DQ=4+x . 过A 作AC AG ⊥交CB 延长线于点G , 则ACF AGD ∆≅∆.∴ CF ⊥BD ,∴△AQD ∽△DCP ,∴CP CD DQ AQ = , ∴44CP x x =+, 24x CP x ∴=+.【例3】(2010,怀柔,一模)已知如图,在梯形ABCD 中,24AD BC AD BC ==∥,,,点M 是AD 的中点,MBC △是等边三角形. (1)求证:梯形ABCD 是等腰梯形;(2)动点P 、Q 分别在线段BC 和MC 上运动,且60MPQ =︒∠保持不变.设PC x MQ y ==,,求y 与x 的函数关系式;(3)在(2)中,当y 取最小值时,判断PQC △的形状,并说明理由.GA BCDE F ADM【思路分析1】本题有一点综合题的意味,但是对二次函数要求不算太高,重点还是在考察几何方面。
中考数学专题——动态问题(非常全面)
(中考数学专题3) 动态几何问题【例1】如图,在梯形ABCD 中,AD BC ∥,3AD =,5DC =,10BC =,梯形的高为4.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t (秒).D NCM B A(1)当MN AB ∥时,求t 的值;(2)试探究:t 为何值时,MNC △为等腰三角形.【例3】在△ABC 中,∠ACB=45º.点D (与点B 、C 不重合)为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .(1)如果AB=AC .如图①,且点D 在线段BC 上运动.试判断线段CF 与BD 之间的位置关系,并证明你的结论.(2)如果AB ≠AC ,如图②,且点D 在线段BC 上运动.(1)中结论是否成立,为什么?(3)若正方形ADEF 的边DE 所在直线与线段CF 所在直线相交于点P ,设AC =42,3=BC ,CD=x ,求线段CP 的长.(用含x 的式子表示)【例4】已知如图,在梯形ABCD 中,24AD BC AD BC ==∥,,,点M 是AD 的中点,MBC △是等边三角形.(1)求证:梯形ABCD 是等腰梯形;(2)动点P 、Q 分别在线段BC 和MC 上运动,且60MPQ =︒∠保持不变.设PC x MQ y ==,,求y与x 的函数关系式; (3)在(2)中,当y 取最小值时,判断PQC △的形状,并说明理由.【例5】已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF BD ⊥交BC 于F ,连接DF ,G 为DF 中点,连接EG CG ,. (1)直接写出线段EG 与CG 的数量关系;(2)将图1中BEF ∆绕B 点逆时针旋转45︒,如图2所示,取DF 中点G ,连接EG CG ,,. 你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.(3)将图1中BEF ∆绕B 点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?(不要求证明)A DC B P M Q 60图3图2图1FEABCDABC DEFGGFED C BA【总结】 通过以上五道例题,我们研究了动态几何问题当中点动,线动,乃至整体图形动这么几种可能的方式。
2022年中考数学专题复习:动态几何问题
2022年中考数学专题复习:动态几何问题1.在△ABC中,AB = AC,△ABC = 30°,△BDE是等边三角形,连接CD、AE.(1)如图1,当A、B、D三点在同一直线上时,AE、BC交于点P,且AE△AC.若PC = 4,求PE的长;(2)如图2,当B、E、C三点在同一直线上时,F是CD中点,连接AF、EF,求证:AE = 2AF;(3)如图3,在(2)的条件下,AB=8,E在直线BC上运动,将△AEF沿EF翻折得到△MEF,连接DM,G是AB上一点,且BG=14AB,O是直线BC上的另一个动点,连接OG,将△BOG沿OG翻折得到△HOG,连接HM,当HM最小时,直接写出此时点D到直线EM的距离.2.如图1和图2,在△ABC中,AB=AC=5,sinC=35.点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0≤x≤3及3≤x≤9时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK=94,请直接写出点K被扫描到的总时长.3.如图,在等腰梯形ABCD中,AB△CD,AB=8cm,CD=2cm,AD=6cm.点P从A 点出发,以2cm/s的速度沿AB向B点运动(运动到B点即停止);点Q从C点出发,以1cm/s的速度沿CD−DA向A点运动(当点P停止运动时,点Q也即停止),设P、Q同时出发并运动了t秒.(1)求梯形ABCD的高和△A的度数;(2)当PQ将梯形ABCD分成两个直角梯形时,求t的值;(3)试问是否存在这样的t的值,使四边形PBCQ的面积是梯形ABCD面积的一半,若存在,请求出t的值;若不存在,请说明理由.4.如图1,点O 是正方形ABCD 两对角线的交点,分别延长OD 到点G ,OC 到点E ,使OG =2OD ,OE =2OC ,然后以OG 、OE 为邻边作正方形OEFG ,连结AG 、DE .(1)猜想AG 与DE 的数量关系,请直接写出结论;(2)正方形ABCD 固定,将正方形OEFG 绕点O 逆时针旋转,旋转角为α(0°<α<180°),得到图2,请判断:(1)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由; (3)在正方形OEFG 旋转过程中,请直接写出: △当α=30°时,△OAG 的度数;△当△AEG 的面积最小时,旋转角α的度数.5.如图1,在ABC 中,90,ACB CD ∠=︒平分ACB ∠,且AD BD ⊥于点D .(1)判断ABD △的形状;(2)如图2,在(1)的结论下,若3,75BQ DQ BQD ==∠=︒,求AQ 的长; (3)如图3,在(1)的结论下,若将DB 绕着点D 顺时针旋转()090αα︒<<︒得到DP ,连接BP ,作DE BP ⊥交AP 于点F .试探究AF 与DE 的数量关系,并说明理由.6.如图,在Rt ABCAB=,4∠=︒,5AC=.动点P从点A出发,沿AB △中,90C⊥交AC或BC于点Q,以每秒4个单位长度的速度向终点B运动.过点P作PQ AB分别过点P、Q作AC、AB的平行线交于点M.设PQM与ABC重叠部分的面积为t t>秒.S,点P运动的时间为()0(1)当点Q在AC上时,CQ的长为______(用含t的代数式表示).(2)当点M落在BC上时,求t的值.(3)当PQM与ABC的重合部分为三角形时,求S与t之间的函数关系式.(4)点N为PM中点,直接写出点N到ABC的两个顶点的距离相等时t的值.7.如图,△ABC是等边三角形,AB=4cm,动点P从A出发,以2cm/s的速度沿AB 向点B匀速运动,过点P作PQ△AB,交折线AC﹣CB于点Q,以PQ为边作等边三角形PQD,使A,D在PQ异侧,设点P的运动时间是x(s)(0<x<2).(1)AP的长为cm(用含x的代数式表示);(2)当Q与C重合时,则x=s;(3)△PQD的周长为y(cm),求y关于x的函数解析式,并写出自变量的取值范围.8.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P 在线段BC上以3cm/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.设P点的运动时间为t.(1)CP=cm.(用含t的式子表示);(2)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?9.如图,在Rt△ABC中,△B=90°,BC=5 ,△C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向A点匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF△BC于点F,连接DE、EF.(1)AC的长是________,AB的长是________.(2)在D、E的运动过程中,线段EF与AD的关系是否发生变化?若不变化,那么线段EF与AD是何关系,并给予证明;若变化,请说明理由.(3)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(4)当t为何值,△BEF的面积是2 ?10.在Rt△ABC中,△BAC=90°,AB=AC,动点D在直线BC上(不与点B,C重合),连接AD,把AD绕点A逆时针旋转90°得到AE,连接DE,F,G分别是DE,CD的中点,连接FG.【特例感知】(1)如图1,当点D是BC的中点时,FG与BD的数量关系是,FG 与直线BC的位置关系是;【猜想论证】(2)当点D在线段BC上且不是BC的中点时,(1)中的结论是否仍然成立?△请在图2中补全图形;△若成立,请给出证明;若不成立,请说明理由.【拓展应用】(3)若AB=AC,其他条件不变,连接BF、CF.当△ACF是等边三角形时,请直接写出△BDF的面积.11.如图,等腰三角形△ABC的腰长AB=AC=5cm,BC=8cm,动点P从B出发沿BC 向C运动,速度为2cm/s.动点Q从C出发沿CA向A运动,速度为1cm/s,当一个点到达终点时两个点同时停止运动.点P'是点P关于直线AC的对称点,连接PP′和P′Q,P′P和AC相交于点E.设运动时间为t秒.(1)若当t的值是多少时,P'P恰好经过点A?(2)设△P′PQ的面积为y,求y与t之间的函数关系式(0<t≤4);(3)是否存在某一时刻t,使PQ平分△P′PC?若存在,求出相应的t值,若不存在,请说明理由;(4)是否存在某一时刻t,使点Q在PC的垂直平分线上?若存在,求出相应的t值,若不存在,请说明理由.12.如图,△ABC为等腰三角形,AB=AC,将CA绕点C顺时针旋转至CD,连接AD,E为直线CD上一点,连接AE;(1)如图1,若△BAC=60°,△ACD=90°,E为CD中点,AB=△BCE的面积;(2)如图2,若△ACD=90°,点E在线段CD上且△DAE+△ABC=90°,AE的延长线与BC的延长线交于点F,连接DF,求证:BC=;(3)如图3,AB=1,△BAC=90°,△ACD=105°,若BE恰好平分△AEC,点P为线段AE上的动点,点E′与点E关于直线DP对称,AE′与CD交于点Q,连接CE′,当'+-''的值最小时,直接写出CQ的值.AE CE13.已知,如图△,在平行四边形ABCD中,AB=3cm,BC=5cm,AC△AB,△ACD 沿AC的方向匀速平移得到△PNM,速度为1cm/s:同时,点Q从点C出发,沿CB方向匀速移动,速度为1cm/s,当△PNM停止平移时,点Q也停止移动,如图△,设移动时间为t(s)(0<t<4),连接PQ,MQ,MC,解答下列问题:(1)CQ=,BQ=,AP=,CP=.(2)当t为何值时,PQ∥MN;(3)设△OMC的面积为y(cm2),求y与t之间的函数关系式;(4)是否存在某一时刻t,使S△QMC:S四边形ABQP=1:4.若存在,求出t的值;若不存在,请说明理由.14.如图,等腰ABC的底边BC=8,高AD=2,M是AB中点,连接MD.动点E从点B出发,以每秒1个单位的速度沿BC向点C运动,到点C停止,另一动点F从点B出发,以相同的速度沿BC运动,到点D停止.已知点E比点F早出发1秒,当点F出发后,以EF为边作正方形EFGH,使点G、H和点A在BC的同侧,设点E运动的时间为t秒.(1)当t≥1时,用含t的代数式表示EF的长;(2)设正方形EFGH面积为S 1,正方形EFGH与ABC重叠面积为S2,当S1:S2=2时,求t的值;(3)在点F开始运动时,点P从点D出发,以每秒DM ﹣MB﹣BM﹣MD运动,到达点D停止,在点E的整个运动过程中,求点P在正方形EFGH内(含边界)的时长.15.如图1,正方形ABCD中,点P、Q是对角线BD上的两个动点,点P从点B出发沿着BD以1cm/s的速度向点D运动;点Q同时从点D出发沿着DB以2cm的速度向点B运动.设运动的时间为x s,△AQP的面积为y cm2,y与x的函数图象如图2所示,根据图象回答下列问题:(1)a=.(2)当x为何值时,APQ的面积为6cm2;(3)当x为何值时,以PQ为直径的圆与APQ的边有且只有三个公共点.16.如图1,有一张矩形纸条ABCD ,边AB 、BC 的长分别是方程27100x x -+=的两个根()AB BC >,E 为CD 上一点,1CE =. (1)连接AE ,BE ,试说明90AEB =︒∠.(2)如图2,M 为边AB 上一个动点,将四边形BCEM 沿ME 折叠,使点B ,C 分别落在点B ′,C '上,边MB '与边CD 交于点N . △如图3,当点M 与点A 重合时,求N 到ME 的距离.△在点M 从点A 运动到点B 的过程中,求点N 相应运动的路径长(路程).17.如图,已知在Rt ABC 中,90ACB ∠=︒,8AC =,16BC =,D 是AC 上的一点,3CD =,点P 从B 点出发沿射线BC 方向以每秒2个单位的速度向右运动.设点P 的运动时间为t ,连接AP .(1)当3t =秒时,求AP 的长度;(2)当ABP △为等腰三角形时,求t 的值;(3)过点D 作DE AP ⊥于点E ,连接PD ,在点P 的运动过程中,当PD 平分APC ∠时,直接写出t 的值.18.如图,已知在Rt△ABC 中,△ACB =90°,AB =10,AC =6,点D 是斜边AB 上的动点,联结CD ,作DE △CD 交射线CB 于点E ,设AD =x . (1)当点D 是边AB 的中点时,求线段DE 的长; (2)当△BED 是等腰三角形时,求x 的值; (3)如果DEy DB=,求y 关于x 的函数解析式,并写出它的定义域.19.已知:如图,在长方形ABCD 中,4cm,6cm AB BC ==,点E 为AB 中点.点P 在线段BC 上以每秒2cm 的速度由点B 向点C 运动,同时,点Q 在线段CD 上由点C 向点D 运动.设点P 的运动时间为t 秒,解答下列问题:(1)线段,BP PC 的长可用含t 的式子分别表示为 cm , cm ;(2)若某一时刻BPE 与CQP 全等,求此时t 的值和点Q 的运动速度.20.在平面直角坐标系中,点A(0,4),点B(4,0),连接AB,点P(0,t)是y 轴上的一动点,以BP为一直角边构造等腰直角△BPC(B,P,C的顺序为顺时针),且△BPC=90°,过点A作AD△x轴并与直线BC交于点D,连接PD.(1)如图1,当t=2时,求点C的坐标;(2)如图2,当t>0时,求证:△ADC=△PDB;(3)如图3,当t<0时,求DP﹣DA的值(用含有t的式子表示).。
中考数学专题:动态几何与函数问题
中考数学专题:动态几何与函数问题中考数学专题:动态几何与函数问题以下是查字典数学网为您推荐的中考数学专题:动态几何与函数问题,希望本篇文章对您学习有所帮助。
中考数学专题:动态几何与函数问题【前言】在第三讲中我们已经研究了动态几何问题的一般思路,但是那时候没有对其中夹杂的函数问题展开来分析。
整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。
而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。
但是这两种侧重也没有很严格的分野,很多题型都很类似。
所以相比昨天第七讲的问题,这一讲将重点放在了对函数,方程的应用上。
其中通过图中已给几何图形构建函数是重点考察对象。
不过从近年中考的趋势上看,要求所构建的函数为很复杂的二次函数可能性略小,大多是一个较为简单的函数式,体现了中考数学的考试说明当中减少复杂性增大灵活性的主体思想。
但是这也不能放松,所以笔者也选择了一些较有代表性的复杂计算题仅供参考。
【例1】如图①所示,直角梯形OABC的顶点A、C分别在y轴正半轴与轴负半轴上.过点B、C作直线 .将直线平移,平移后的直线与轴交于点D,与轴交于点E.(2)当时,阴影部分的面积=直角梯形的面积的面积 (基本上实际考试中碰到这种求怪异图形面积的都要先想是不是和题中所给特殊图形有割补关系)【例2】已知:在矩形中,, .分别以所在直线为轴和轴,建立如图所示的平面直角坐标系. 是边上的一个动点(不与重合),过点的反比例函数的图象与边交于点 .(1)求证:与的面积相等;(2)记,求当为何值时,有最大值,最大值为多少?(3)请探索:是否存在这样的点,使得将沿对折后,点恰好落在上?若存在,求出点的坐标;若不存在,请说明理由.【思路分析】本题看似几何问题,但是实际上△AOE和△FOB 这两个直角三角形的底边和高恰好就是E,F点的横坐标和纵坐标,而这个乘积恰好就是反比例函数的系数K。
中考数学经典总复习专题动线、动形问题完美全文
学 (2)点P 、 Q在运动的过程中,△PCQ面积S有最 大值吗?若有,请求出最大值;若没有,请说明理 由。
动点与函数相结合
抛 与物y轴线交y于= 点 x122C+,m抛x+n物与线x轴的交对于称A轴、交Bx两轴点于,
合 点D,已知A(﹣1,0),C(0,2). 作 (1)求抛物线的表达式;
学 存在,请说明理由;
y
解析:
C
AO
DB
x
动点与函数相结合
抛 与物y轴线交y于= 点 x122C+,m抛x+n物与线x轴的交对于称A轴、交Bx两轴点于,
合 点D,已知A(﹣1,0),C(0,2).
作 互
( 3)点E 是 线 段 BC上的一个动点,过点E 作x轴的垂线与抛物线相交于点F,当点E 运动到什么位置时,四边形CDBF的面积
8
1 2
3
x2+ 2
;
x+2;
∴抛物线的对称轴是x= ∴OD= .3
32.
∵C(0,2 2),
∴OC=2.
5
在Rt△OCD中,由勾股定理,得CD= .2
∵△CDP是以CD为腰的等腰三角形,
∴CP1=CP2=CP3=CD. 作CH⊥x轴于H,
∴HP1=HD=2,
∴∴DP1P(1=4.,32 4),P2(
中考数学---动线、动形问题
• 数学因运动而充满活力,数学因变化而精彩纷呈。动态题是中考 中必考的内容。
• 本节课重点来探究动态几何中的动线、动形问题。
• 一、关于动线、动形问题的解题方法:
• 1.“以静制动”,把动态问题转化成静态问题;
• 2.图形的运动主要有翻折、平移、旋转,在运动过程中,分清哪 些量不变,哪些量发生了变化,以不变的量作为解题基础,以变 化中的规律和特点作为解题的关键。
九年级数学中考专题:动态几何综合压轴题
2023年九年级数学中考专题:动态几何综合压轴题1.如图1,在△ABC 中,点P 为BC 边中点,直线a 绕顶点A 旋转.若B 、P 在直线a 的异侧,BM △直线a 于点M ,CN △直线a 于点N ,连接PM 、PN ; (1)延长MP 交CN 于点E (如图2). △求证:△BPM △△CPE ; △求证:PM =PN ;(2)若直线a 烧点A 旋转到图3的位置时,点B 、P 在直线a 的同侧,其它条件不变.此时PM =PN 还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)若直线a 绕点A 旋转到与BC 边平行的位置时,其它条件不变.请直接判断四边形MBCN 的形状及此时PM =PN 还成立吗?(不必说明理由)2.如图△,在Rt ABC △中,90ABC ∠=︒,AB BC =,延长CA 至点E ,作DE CE ⊥交BA 的延长线于点D ,连接CD ,点F 为CD 的中点,连接EF ,BF .(1)直接写出线段EF 和BF 之间的数量关系为______.(2)将ADE 绕A 顺时针旋转到图△的位置,猜想EF 和BF 之间的数量关系,并加以证明;(3)若AC =:5AD BC =,将ADE 绕点A 顺时针旋转,当A ,E ,B 共线时,请直接写出EF 的长.3.如图,O 是正ABC 内一点,OA =3,OB =4,OC =5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ′,连接AO ′、OO ′, (1)OO ′= .(2)求△AOB 的度数及四边形AOB O '的面积.(3)直接写出AOC AOB S S +△△的值,AOC AOB S S +△△= .4.如图1,在△ABC 中,△C =90°,△ABC =30°,AC =1,D 为△ABC 内部的一动点(不在边上),连接BD ,将线段BD 绕点D 逆时针旋转60°,使点B 到达点F 的位置;将线段AB 绕点B 顺时针旋转60°,使点A 到达点E 的位置,连接AD ,CD ,AE ,AF ,BF ,EF .(1)求证:△BDA △△BFE ;(2)△CD +DF +FE 的最小值为 ; △当CD +DF +FE 取得最小值时,求证:AD △BF .(3)如图2,M ,N ,P 分别是DF ,AF ,AE 的中点,连接MP ,NP ,在点D 运动的过程中,请判断△MPN 的大小是否为定值.若是,求出其度数;若不是,请说明理由.5.已知在ABC 中,O 为BC 边的中点,连接AO ,将AOC 绕点O 顺时针方向旋转(旋转角为钝角),得到EOF ,连接AE ,CF .(1)如图1,当△BAC =90°且AB =AC 时,则AE 与CF 满足的数量关系是 ; (2)如图2,当△BAC =90°且AB ≠AC 时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)如图3,延长AO 到点D ,使OD =OA ,连接DE ,当AO =CF =5,BC =6时,求DE 的长.6.已知,在ABC 中,AB AC =,D 是平面上一点,连接AD ,把AD 绕点A 逆时针旋转至点E ,使DAE BAC ∠=∠.连接DE 并延长,交AB 于点O ,交BC 于点F .连接BD 和CE ,CE 的延长线分别交AB ,BD 于点P ,G .(1)如图1,求证:BGC DAE ∠=∠;(2)如图2,若点F 是BC 的中点,//AD CB ,求证12AE BC =; (3)在(2)的条件下,若G 是BD 的中点,连接,OG FG .当5,3AB AD ==时,请直接写出OFG △的周长.7.【问题探究】(1)如图1,△ABC和△DEC均为等腰直角三角形,△ACB=△DCE=90°,点B,D,E 在同一直线上,连接AD,BD.△请探究AD与BD之间的位置关系?并加以证明.△若AC=BC,DC=CE AD的长.【拓展延伸】(2)如图2,△ABC和△DEC均为直角三角形,△ACB=△DCE=90°,AC BC,CD CE=1.将△DCE绕点C在平面内顺时针旋转,设旋转角△BCD为α(0°≤α<360°),作直线BD,连接AD,当点B,D,E在同一直线上时,画出图形,并求线段AD的长.8.如图1和图2,四边形ABCD中,已知AD=DC,△ADC=90°,点E、F分别在边AB、BC上,△EDF=45°.(1)观察猜想:如图1,若△A、△DCB都是直角,把△DAE绕点D逆时针旋转90°至△DCG,使AD与DC重合,易得EF、AE、CF三条线段之间的数量关系,直接写出它们之间的关系式_____;(2)类比探究:如图2,若△A、△C都不是直角,则当△A与△C满足数量关系_____时,EF、AE、CF三条线段仍有(1)中的关系,并说明理由;(3)解决问题:如图3,在△ABC中,△BAC=90°,AB=AC=D、E均在边BC上,且△DAE=45°,若BD=1,求AE的长.9.如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC 、BE ,点P 为DC 的中点.(1)观察图1,猜想线段AP 与BE 的数量关系是______,位置关系是______; (2)把ADE 绕点A 逆时针方向旋转到图2的位置,(1)中的结论是否仍然成立,若成立请证明;若不成立,请写出新的结论并说明理由;(3)把ADE 绕点A 在平面内自由旋转,若6DE =,10BC =,请直接写出线段AP 长的取值范围.10.已知AOB 和△MON 都是等腰直角三角形,△AOB =△MON =90°. (1)如图1:连AM ,BN ,求证:AOM △BON ;(2)若将Rt MON 绕点O 顺时针旋转,当点A ,M ,N 恰好在同一条直线上时,如图2所示,线段OH //BN ,OH 与AM 交点为H ,若OB =4,ON =3,求出线段AM 的长; (3)若将MON 绕点O 顺时针旋转,当点N 恰好落在AB 边上时,如图3所示,MN 与AO 交点为P ,求证:MP 2+PN 2=2PO 2.11.如图1,在Rt ABC △中,90BAC ∠=︒,AB AC =,点D 是BC 边上一动点,连接AD ,把AD 绕点A 顺时针旋转90°,得到AE ,连接DE .(1)如图1所示,若4BC =,在D 点运动过程中,当8tan 11BDE ∠=时,求线段CD 的长.(2)如图2所示,点F 是线段DE 的中点,连接BF 并延长交CA 延长线于点M ,连接DM ,交AB 于点N ,连接CF ,AF ,当点N 在线段CF 上时,求证:AD BF CF +=.(3)如图3,若AB =ABC 绕点A 顺时针旋转得AB C ''△,连接CC ',P 为线段CC '上一点,且CC ''=,连接BP ,将BP 绕点B 顺时针旋转60°得到BQ ,连接PQ ,K 为PQ 的中点,连接CK ,请直接写出线段CK 的最大值.12.已知:如图1,将一块45︒角的直角三角板DEF 与正方形ABCD 的一角重合,连结AF 、CE ,点M 是CE 的中点,连结DM .(1)请你猜想AF 与DM 的数量关系是___________.(2)如图2,把正方形ABCD 绕着点D 逆时针旋转α角(090α︒<<︒). △AF 与DM 的数量关系是否仍成立,若成立,请证明:若不成立,请说明理由;△若60α=︒,且3FDM MDC ∠=∠,求DEDC的值.13.在等腰直角三角形ABC 中,290AC BC ACB ==∠=︒,,点M 为射线CA 上一个动点.过点M 作ME BM ⊥,交射线BA 于E ,将线段BM 绕点B 逆时针旋转90︒得到线段BN ,过点N 作NF BN ⊥交BC 延长线于点F ,连接EF .(1)如图1,当点M 在边AC 上时,线段,,EM EF NF 的数量关系为_______; (2)如图2,当点M 在射线CA 上时,判断线段,,EM EF NF 的数量关系并说明理由; (3)当点M 在射线CA 上运动时,能否存在BEF △为等腰三角形,若不存在,请说明理由;若存在,请直接写出CM 的长.14.如图,等腰Rt CEF 绕正方形ABCD 的顶点C 顺时针旋转,且AB CE EF ==,90CEF ∠=︒.连接AF 与射线BE 交于点G .(1)如图1,当点B 、C 、F 三点共线时,则ABE ∠ FEM ∠(填“>”、“=”或“<”),则AG FG (填“>”、“=”或“<”);(2)如图2,当点B 、C 、F 三点不共线时,求证:AG GF =;(3)若等腰CEF △从图1的位置绕点C 顺时针旋转α(090α︒<≤︒),当直线AB 与直线EF 相交构成的4个角中最小角为30°时,直接写出α的值.15.在菱形ABCD 中,4AB =,60ABC ∠=︒,E 是对角线AC 上一点,F 是线段BC 延长线上一点,且CF AE =,连接BE 、EF .(1)如图1,若E 是线段AC 的中点,求EF 的长;(2)如图2,若E 是线段AC 延长线上的任意一点,求证:BE EF =. (3)如图3,若E 是线段AC 延长线上的一点,12CE AC =,将菱形ABCD 绕着点B 顺时针旋转α︒(0360)α≤≤,请直接写出在旋转过程中DE 的最大值.16.如图,等边三角形ABC 中,D 为AB 边上一点(点D 不与点,A B 重合),连接CD ,将CD 平移到BE (其中点B 和C 对应),连接AE .将BCD △绕着点B 逆时针旋转至BAF △,延长AF 交BE 于点G .(1)连接DF ,求证:BDF 是等边三角形; (2)求证:,,D F E 三点共线;(3)当2BG EG =时,求tan AEB ∠的值.17.ABC 为等边三角形,CD AB ⊥于点D ,点E 为边BC 上一点,点F 为线段CD 上一点,连接EF ,且CE EF =.(1)如图1,若342AB CE ==,,连接BF ,G 为BF 的中点,连接DG ,求线段DG 的长:(2)如图2,将CEF △绕点C 逆时针方向旋转一定的角度得到CMN ,连接BN ,点H为BN 的中点,连接AH HM ,,求证:AH =:(3)如图3,在(2)问的条件下,线段HM 与线段CN 交于点P ,连接AM ,交线段CN 于点Q ,当2CQ PN a ==时,请直接用含a 的式子表示PQ 的长.18.在ABC 中,90ACB ∠=︒.将ABC 绕点C 逆时针旋转一定角度(旋转角度不大于180︒),得到DEC (点D ,E 分别与点A ,B 对应),连接AD ,BE .(1)如图1,当点A ,C ,E 在同一条直线上时,直接写出AD 与BE 的位置关系为__________;(2)如图2,当点D 落在AB 上时,(点D 不与点A 重合),请判断AD 与BE 的位置关系,并证明你的结论;(3)如图3,将ABC 绕点C 逆时针旋转60︒时,延长AD 与直线BC ,BE 分别相交于点F ,G ,连接CG ,试探究线段CG 与DE 之间满足的数量关系,并说明理由.19.如图△,在矩形ABCD 中,1AB =,对角线AC ,BD 相交于点O ,60COD ∠=︒,点E 是线段CD 上一点,连接OE ,将线段OE 绕点O 逆时针旋转60︒得到线段OF ,连接DF .(1)求证:DF CE =;(2)连接EF 交OD 于点P ,求DP 的最大值;(3)如图△,点E 在射线CD 上运动,连接AF ,在点E 的运动过程中,若AF AB =,求OF 的长.20.将等边三角形ABC 如图放置在平面直角坐标系中,8AB =,E 为线段AO 的中点,将线段AE 绕点A 逆时针旋转60°得线段AF ,连接EF . (△)如图1,求点E 的坐标;(△)在图1中,EF 与AC 交于点G ,连接EC ,N 为EC 的中点,连接NG ,求线段NG 的长.请你补全图形,并完成计算;(△)如图2,将AEF △绕点A 逆时针旋转,M 为线段EF 的中点,N 为线段CE 的中点,连接MN ,请直接写出在旋转过程中MN 的取值范围.参考答案:1.(2)成立(3)四边形MBCN的是矩形,PM=PN.2.(1)EF BF=;(2)FE FB=,(33.(1)4;(2)150°,(3)64.(2)(3)是,△MPN=30°.5.(1)AE CF=;(2)成立,(36.(3)47.(1)△AD BD⊥;△4;(2)8.(1)EF=AE+CF;(2)△A+△C=180°;(39.(1)12AP BE=,AP BE⊥;(2)12AP BE=,AP BE⊥仍成立;(3AP≤≤.10.(2;11.(1)3219;(3)312.(1)AF=2DM,(2)△AF=2DM仍然成立;13.(1)结论:EM+EF=FN;(2)结论:EF=EM=FN;(3)2或2+14.(1)=;=;(3)15°或75°15.(1)(3)16.tan AEB∠=17.(1;(318.(1)AD BE⊥;(2)AD BE⊥,(3)CG DE=19.(2)DP的最大值为14;(3)1OF=20.(△)(0,E;(△;(△)44MN≤≤答案第1页,共1页。
中考数学复习:专题三:动点或最值问题
点拨:在 Rt△AOB 中,∵∠ABO=30°,AO=1,∴AB=2,BO = 22-12= 3,①当点 P 从 O→B 时,如图 1、图 2 所示,点 Q 运动的 路程为 3;②当点 P 从 B→C 时,如图 3 所示,这时 QC⊥AB,则∠ACQ =90°,∵∠ABO=30°,∴∠BAO=60°,∴∠OQD=90°-60°= 30°,∴cos30°=ACQQ,∴AQ=cosC3Q0°=2,∴OQ=2-1=1,则点 Q 运动的路程为 QO=1;③当点 P 从 C→A 时,如图 3 所示,点 Q 运动的 路程为 QQ′=2- 3;④当点 P 从 A→O 时,点 Q 运动的路程为 AO=1, ∴点 Q 运动的总路程为 3+1+2- 3+1=4,故答案为 4
【点评】 本题主要考查轴对称的应用,利用最小值的常规解法确定 出点A的对称点,从而确定出AP+PQ的最小值的位置是解题的关键,利 用条件证明△AA′D是等边三角形,借助几何图形的性质可以减少复杂的 计算.
[对应训练] 2.(1)(2016·贵港)如图,抛物线 y=-112x2+32x+53与 x 轴交于 A,B 两点,与 y 轴交于点 C.若点 P 是线段 AC 上方的抛物线上一动点,当 △ACP 的面积取得最大值时,点 P 的坐标是( B ) A.(4,3) B.(5,3152) C.(4,3152) D.(5,3)
解决最值问题的两种方法: (1)应用几何性质: ①三角形的三边关系:两边之和大于第三边,两边之差小于第三边; ②两点间线段最短; ③连接直线外一点和直线上各点的所有线段中,垂线段最短; ④定圆的所有弦中,直径最长. (2)运用代数证法: ①运用配方法求二次三项式的最值; ② 运用一元二次方程根的判别式.
【例 2】 (2016·雅安)如图,在矩形 ABCD 中,AD=6,AE⊥BD, 垂足为 E,ED=3BE,点 P,Q 分别在 BD,AD 上,则 AP+PQ 的最小 值为( D )
中考数学复习:专题三:动点或最值问题
(2)(2016·泸州)如图,在平面直角坐标系中,已知点A(1,0),B(1-a ,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动 ,且始终满足∠BPC=90°,则a的最大值是___6_.
专题三 动点或最值问题
动点问题是指以几何知识和图形为背景,渗入运动变化观点的一类问 题,常见的形式是:点在线段、射线或弧线上运动等.此类题的解题方 法:
1.利用动点(图形)位置进行分类,把运动问题分割成几个静态问题, 然后运用转化的思想和方法将几何问题转化为函数和方程问题.
2.利用函数与方程的思想和方法将要解决图形的性质(或所求图形面 积)直接转化为函数或方程.
点拨:∵点 A,B 的坐标分别为(8,0),(0,2 3),∴BO=2 3,AO =8,由 CD⊥BO,C 是 AB 的中点,可得 BD=DO=12BO= 3=PE, CD=21AO=4,设 DP=a,则 CP=4-a,
延长 BP 交 CE 于 F,当 BP 所在直线与 EC 所在直线第一次垂直时, ∠FCP=∠DBP,又∵EP⊥CP,PD⊥BD,∴∠EPC=∠PDB=90°,∴ △EPC∽△PDB,∴DPEP=DPCB,即 a3=4-3a,解得 a1=1,a2=3(舍去), ∴DP=1,又∵PE= 3,∴P(1, 3)
【点评】 本题主要考查轴对称的应用,利用最小值的常规解法确定 出点A的对称点,从而确定出AP+PQ的最小值的位置是解题的关键,利 用条件证明△AA′D是等边三角形,借助几何图形的性质可以减少复杂的 计算.
[对应训练] 2.(1)(2016·贵港)如图,抛物线 y=-112x2+32x+53与 x 轴交于 A,B 两点,与 y 轴交于点 C.若点 P 是线段 AC 上方的抛物线上一动点,当 △ACP 的面积取得最大值时,点 P 的坐标是( B ) A.(4,3) B.(5,3152) C.(4,3152) D.(5,3)
2023年中考数学高频考点训练——反比例函数-动态几何问题
2023年中考数学高频考点训练——反比例函数-动态几何问题一、综合题1.如图1,在平面直角坐标系中,直线AB 与反比例函数(0)ky x x =>的图象交于点A (1,3)和点B (3,n),与x 轴交于点C ,与y 轴交于点D .(1)求反比例函数的表达式及n 的值;(2)将△OCD 沿直线AB 翻折,点O 落在第一象限内的点E 处,EC 与反比例函数的图象交于点F .①请求出点F 的坐标;②在x 轴上是否存在点P ,使得△DPF 是以DF 为斜边的直角三角形?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.2.如图,一次函数y =﹣x +4的图象与反比例ky x =(k 为常数,且k ≠0)的图象交于A (1,a ),B 两点.(1)求反比例函数的表达式及点B 的坐标;(2)①在x 轴上找一点P ,使P A +PB 的值最小,求满足条件的点P 的坐标;②在x 轴上找一点M ,使|MA ﹣MB |的值为最大,直接写出M 点的坐标.3.如图,在平面直角坐标系xOy 中,直线l :y =kx ﹣1(k≠0)与函数y mx =(x >0)的图象交于点A (3,2).(1)求k ,m 的值;(2)将直线l 沿y 轴向上平移t 个单位后,与y 轴交于点C ,与函数y mx =(x >0)的图象交于点D .①当t =2时,求线段CD 的长;②若≤CD≤2,结合函数图象,直接写出t 的取值范围.4.如图,在矩形ABCD 中,已知点A (2,1),且AB =4,AD =3,把矩形ABCD 的内部及边上,横、纵坐标均为整数的点称为靓点,反比例函数y =kx (x >0)的图象为曲线L .(1)若曲线L 过AB 的中点.①求k 的值.②求该曲线L 下方(包括边界)的靓点坐标.(2)若分布在曲线L 上方与下方的靓点个数相同,求k 的取值范围.5.在平面直角坐标系xOy 中,反比例函数(0)ky k x =≠的图象过点(23)A ,.(1)求k 的值;(2)过点(0)(0)P m m ≠,作x 轴的垂线,分别交反比例函数(0)ky k x =≠,4y x=-的图象于点M ,N .①当2m =-时,求MN 的长;②若5MN ≥,直接写出m 的取值范围.6.如图,已知直线OA 与反比例函数(0)my m x =≠的图像在第一象限交于点A .若4OA =,直线OA 与x 轴的夹角为60°.(1)求点A 的坐标;(2)求反比例函数的解析式;(3)若点P 是坐标轴上的一点,当AOP 是直角三角形时,直接写出点P 的坐标.7.(1)探究新知:如图1,已知ABC 与ABD 的面积相等,试判断AB 与CD 的位置关系,并说明理由.(2)结论应用:如图2,点M ,N 在反比例函数(0)ky k x =>的图象上,过点M作ME y ⊥轴,过点N 作NF x ⊥轴,垂足分别为E ,F .试证明://MN EF .(3)拓展延伸:若(2)中的其他条件不变,只改变点M ,N 在反比例函数(0)ky k x =>图象上的位置,如图3所示,MN 与x 轴、y 轴分别交于点A 、点B ,若3BM =,请求AN 的长.8.如图,在第一象限内有一点A (4,1),过点A 作AB ⊥x 轴于B 点,作AC ⊥y 轴于C 点,点N 为线段AB 上的一动点,过点N 的反比例函数y =nx 交线段AC 于M 点,连接OM ,ON ,MN .(1)若点N 为AB 的中点,则n 的值为;(2)求线段AN 的长(用含n 的代数式表示);(3)求△AMN 的面积等于14时n 的值.9.如图,直线26y x =+与反比例函数()0ky k x =>的图象交于点()1A m ,,与x 轴交于点B .平行于x 轴的直线()08y n n =<<交反比例函数的图象于点M ,交AB 于点N ,连接BM .(1)求m 的值和反比例函数的表达式;(2)当n 为何值时,BMN 的面积最大?10.已知正比例函数y 1=ax 的图象与反比例函数y 2=6ax -的图象交于A ,B 两点,且A 点的横坐标为﹣1.(1)试确定上述正比例函数和反比例函数的表达式.(2)根据图象回答,当x 取何值时,反比例函数的值大于正比例函数的值.(3)点M (m ,n )是反比例函数图象上一动点,其中0<n <3,过点M 作MD ∥y 轴交x 轴于点D ,过点B 作BC ∥x 轴交y 轴于点C ,交直线MD 于点E ,当四边形OMEB 面积为3时,请判断DM 与EM 大小关系并给予证明.11.如图,将一张Rt ABC 纸板的直角顶点放在(2,1)C 处,两直角边BC ,AC 分别与x ,y 轴平行(BC AC >),纸板的另两个定点A ,B 恰好是直线15y kx =+与双曲线2m y x =(0)m >的交点.(1)求m 和k 的值;(2)将此Rt ABC 纸板向下平移,当双曲线2my x =(0)m >与Rt ABC 纸板的斜边所在直线只有一个公共点时,求Rt ABC 纸板向下平移的距离.12.在矩形AOBC 中,分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.A 点坐标为(03),,B 点坐标为(40),,F 是BC 上的一个动点(不与B 、C 重合),过F 点的反比例函数0)y x=>的图象与AC 边交于点E ,连接OE OF ,,作直线EF .(1)若2CF =,求反比例函数解新式;(2)在(1)的条件下求出EOF 的面积;(3)在点F 的运动过程中,试说明ECFC 是定值.13.如图,在平面直角坐标系xOy 中,双曲线y 1=kx 与直线y 2=mx +n 交于点A ,E ,AE 交x 轴于点C ,交y 轴于点D ,AB x ⊥轴于点B ,C 为OB 中点.若D 点坐标为(0,﹣2),且S △AOD =4(1)求双曲线与直线AE 的解析式;(2)写出E 点的坐标;(3)观察图象,直接写出y 1≥y 2时x 的取值范围.14.如图,在平面直角坐标系xOy 中,反比例函数(0)my x x =>的图像经过点342A ⎛⎫⎪⎝⎭,,点B 在y 轴的负半轴上,AB 交x 轴于点C ,C 为线段AB 的中点.(1)m =,点C 的坐标为;(2)若点D 为线段AB 上的一个动点,过点D 作//DE y 轴,交反比例函数图象于点E ,求ODE 面积的最大值.15.如图,在平面直角坐标系中,一次函数12y x =-+与反比例函数2(0)k y x x =<相交于点B ,与x 轴相交于点A ,点B 的横坐标为-2.(1)求k 的值;(2)直接写出当0x <且12y y <时,x 的取值范围;(3)设点M 是直线AB 上的一点,过点M 作//MN x 轴,交反比例函数2(0)ky x x =<的图象于点N .若以A ,O ,M ,N 为顶点的四边形为平行四边形,求点M 的坐标.16.如图1,已知点A (a ,0),B (0,b ),且a 、b 满足0,平行四边形ABCD 的边AD 与y 轴交于点E ,且E 为AD 中点,双曲线ky x =经过C 、D 两点.(1)a=,b=;(2)求D 点的坐标;(3)点P 在双曲线ky x =上,点Q 在y 轴上,若以点A 、B 、P 、Q 为顶点的四边形是平行四边形,试求满足要求的所有点Q 的坐标;17.如图,已知直线y=-2x 与双曲线y=kx (k<0)上交于A 、B 两点,且点A 的纵坐标为-2(1)求k 的值;(2)若双曲线y=kx (k<0)上一点C 的纵坐标为12,求△BOC 的面积;(3)若A 、B 、P 、Q 为顶点组成的四边形为正方形,直接写出过点P 的反比例函数解析式。
中考一轮复习--专题三 动点(面)问题
1
2
3
4
5
6
1.(2019·江苏苏州)如图,菱形ABCD的对角线AC,BD交于点
O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A'B'O'.当
点A'与点C重合时,点A与点B'之间的距离为( C )
A.6
B.8
C.10
D.12
由折叠知△A1DE≌△ADE,
所以A1D=AD=1.
由 A1B+A1D≥BD,得 A1B≥BD-A1D= 5-1.
故 A1B 长的最小值是 5-1.
类型一
类型二
类型三
类型二 图形中的动点问题
例2如图(1),已知正方形ABCD,E是线段BC上一点,N是线段BC延
长线上一点,以AE为边在直线BC的上方作正方形AEFG.
∴在线段 BC 上点 H 的左右两边各有一个点 P 使 PE+PF=9,同理在
线段 AB,AD,CD 上都存在两个点使 PE+PF=9.即共有 8 个点 P 满足
PE+PF=9.
1
2
3
4
5
6
5.(2019·辽宁锦州)如图,在矩形ABCD中,AB=3,BC=2,M是AD边的中
点,N是AB边上的动点,将△AMN沿MN所在直线折叠,得到△A'MN,连
AC的中点,连接BD,点F是BC边上的动点(不与点B、C重合),过点B
作BE⊥BD交DF延长线于点E,连接CE,下列结论:
①若BF=CF,则CE2+AD2=DE2;
15
②若∠BDE=∠BAC,AB=4,则CE= 8 ;
初中数学北师大版九年级下册中考专题动态几何
6
F' 2 2 G
4
2
小结
模型一:动点到定点定长模型
模型二
模型三
课后思考题
同学们再见!
折叠得到△EB’F ,连接B’D,则B’D的 最小值是 10 1
.
= 动点到定点的距离 定长
DE 12 32 10
A
3
D
1
B'
E
1
B'
B ' D DE B ' E 10 1
BF
3
C
变式3:在平行四边形ABCD 中,∠BCD=30°,BC=4, CD=3 3 ,M 是 AD 边的中点,N 是 AB 边上一动点,将 △AMN 沿 MN 所在直线翻折得到△A'MN,连接 MC, 则 A'C 长度的最小值是 5 。
设△ACD的面积为S1,△ABF的面积为S2,记S=S1-S2, S是否存在最大值?若存在,求出S的最大值;
若不存在,请说明理由;
6
DH 2 3 DF ' 2 3 2
H
SABF '最小
1 2
AB
DF '
1 2
6 (2
3 2)
6 36
1 S1 2 6 3 3 3
Smax S1 S2 3 3 (6 3 6) 6 3 3
点 C 落在点 P 处。
6
(1)点 P 到边 AB 距离的最小值是 5
。
A
= 动点到定点的距离 定长
sin A BC 8 4 AB 10 5
FH 4 4 16 55
P'H FH FP' 16 2 6
5
5
变式: △ABP的面积的最小值是 6
中考数学压轴专题训练——动态(动点)几何问题的解题技巧(含答案)
(2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行.为什么?
(3)当t为何值时,△EDQ为直角三角形.
答案:
1、解:1)PD=PE。以图②为例,连接PC
∵△ABC是等腰直角三角形,P为斜边AB的中点,
∴PC=PB,CP⊥AB,∠DCP=∠B=45°,
(3)如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC,连结CL,点E是CL上任一点,EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;
3.在 中,AC=BC, ,点D为AC的中点.
(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连结CF,过点F作 ,交直线AB于点H.判断FH与FC的数量关系并加以证明.
动态几何问题的解题技巧
解这类问题的基本策略是:
1.动中觅静:这里的“静”就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性.
2.动静互化:“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动”与“静”的关系.
3.以动制动:以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点来研究变动元素的关系.
又∵∠DPC+∠CPE=90°,∠CPE+∠EPB=90°
∴∠DPC=∠EPB
∴△DPC≌△EPB(AAS)
∴PD=PE
2)能,①当EP=EB时,CE= BC=1
②当EP=PB时,点E在BC上,则点E和C重合,CE=0
③当BE=BP时,若点E在BC上,则CE=
中考数学复习专题复习:动点问题PPT课件
角形?
若△PBC为等腰三角形
D
C
则PB=BC
A 30° P
7
4 B
∴7-t=4 ∴t=3
如图:已知 ABCD中,AB=7,BC=4,∠A=30°
(2)若点P从点A沿射线AB运动,速度仍是1cm/s。
当t为何值时,△PBC为等腰三角形?
D
C
4 P
A
7
B
1、如图:已知 ABCD中,AB=7,BC=4,∠A=30°
中考数学专题复习---动点问题
• 一、概念引入
动态几何的三种类型:
动点问题、动线问题、动形问题。
本节课重点来探究动态几何中的第一种类型----动点问题。
1、如图:已知平行四边形ABCD中,AB=7,BC=4,∠A=30°
(1)点P从点A沿AB边向点B运动,速度为1cm/s。
若设运动时间为t(s),连接PC,当t为何值时,△PBC为等腰三
y 4 t 2 4t 5
五、小结: • 本节课你学到了什么?
收获一:化动为静 收获二:分类讨论 收获三:数形结合 收获四:构建函数模型、方程模型
• 六.作业
• 如图,已知抛物线对称轴为直线x=4,且与x轴交于A、B两 点(A在B左侧),B点坐标为(6,0),过点B的直线与抛 物线交于点C(3,2.25).
(2)设△ APQ的面积为y,求y与t之间的函数关系。
A
D
P
Q
B
C
1.1)解:
D
Q
B
若PQ∥BC
A 则△ AQP~△ABC
AQ AP AB AC
P 5 t 2t
C
10
6
t 15 7
1.2)解:过Q作QN垂直AC于N
中考数学专题:《动态动点几何问题》带答案
《动态几何问题》专题突破训练(附答案)1.如图,在直角三角形ABC 中,∠ACB =90°,AB =5cm ,BC =4cm .动点P 从点A 出发,沿线段AB 向终点B 以5cm /s 的速度运动,同时动点Q 从点A 出发沿射线AC 以5cm /s 的速度运动,当点P 到达终点时,点Q 也随之停止运动;连接PQ ,设∠APQ 与∠ABC 重叠部分图形的面积为S (cm 2),点P 运动的时间为t (s )(t >0).(1)直接写出AC = cm ;(2)当点A 关于直线PQ 的对称点A '落在线段BC 上时,求t 的值;(3)求S 与t 之间的函数关系式;(4)若M 是PQ 的中点,N 是AB 的中点,当MN 与BC 平行时,t = ;当MN 与AB 垂直时,t = .2.如图,矩形ABCD 中,P 是边AD 上的一动点,联结BP 、CP ,过点B 作射线交线段CP 的延长线于点E ,交边AD 于点M ,且使得ABE CBP =∠∠,如果2AB =,5BC =,AP x =,PM y =(1)求y 关于x 的函数解析式,并写出它的定义域;(2)当4AP =时,求 tan EBP ∠;(3)如果EBC ∆是以EBC ∠为底角的等腰三角形,求AP 的长A-,点3.如图,平行四边形ABCO位于直角坐标系中,O为坐标原点,点(8,0)()C BC交y轴于点.D动点E从点D出发,沿DB方向以每秒1个单位长度的速度3,4终点B运动,同时动点F从点O出发,沿射线OA的方向以每秒2个单位长度的速度运动,当点E运动到点B时,点F随之停止运动,运动时间为t(秒).(1)用t的代数式表示:BE=________,OF=________(2)若以A,B,E,F为顶点的四边形是平行四边形时,求t的值.(3)当BEF恰好是等腰三角形时,求t的值.4.在∠ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作∠ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE为多少?说明理由;(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论,不需证明.5.问题情境:如图1,已知正方形ABCD与正方形CEFG,B、C、G在一条直线上,M是AF的中点,连接DM,EM.探究DM,EM的数量关系与位置关系.小明的思路是:小明发现AD//EF,所以通过延长ME交AD于点H,构造∠EFM和∠HAM全等,进而可得∠DEH是等腰直角三角形,从而使问题得到解决,请你参考小明同学的思路,探究并解决下列问题:(1)猜想图1中DM、EM的数量关系,位置关系.(2)如图2,把图1中的正方形CEFG绕点C旋转180°,此时点E在线段DC的延长线上,点G落在线段BC上,其他条件不变,(1)中结论是否成立?请说明理由;(3)我们可以猜想,把图1中的正方形CEFG绕点C旋转任意角度,如图3,(1)中的结论(“成立”或“不成立”)拓展应用:将图1中的正方形CEFG绕点C旋转,使D,E,F三点在一条直线上,若AB=13,CE=5,请画出图形,并直接写出MF的长.6.如图,已知抛物线y=﹣x2+bx+c经过点A(﹣1,0),B(3,0),与y轴交于点C,点P 是抛物线上一动点,连接PB,PC.(1)求抛物线的解析式;(2)如图1,当点P在直线BC上方时,过点P作PD上x轴于点D,交直线BC于点E.若PE=2ED,求∠PBC的面积;(3)抛物线上存在一点P,使∠PBC是以BC为直角边的直角三角形,求点P的坐标.7.如图,已知ABC 和ADE 均为等腰三角形,AC =BC ,DE =AE ,将这两个三角形放置在一起.(1)问题发现:如图①,当60ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,则CEB ∠= °,线段BD 、CE 之间的数量关系是 ;(2)拓展探究:如图②,当90ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,请判断CEB ∠的度数及线段BD 、CE 之间的数量关系,并说明理由;(3)解决问题:如图③,90ACB AED ∠∠︒==,AC =AE =2,连接CE 、BD ,在AED 绕点A 旋转的过程中,当DE BD ⊥时,请直接写出EC 的长.8.如图,∠O 的半径为5,弦BC =6,A 为BC 所对优弧上一动点,∠ABC 的外角平分线AP 交∠O 于点P ,直线AP 与直线BC 交于点E .(1)如图1,①求证:点P 为BAC 的中点;②求sin∠BAC 的值;(2)如图2,若点A 为PC 的中点,求CE 的长;(3)若∠ABC 为非锐角三角形,求PA •AE 的最大值.9.如图1,已知∠ABC 中,∠ACB =90°,AC =BC =6,点D 在AB 边的延长线上,且CD =AB .(1)求BD 的长度;(2)如图2,将∠ACD 绕点C 逆时针旋转α(0°<α<360°)得到∠A'CD'.①若α=30°,A'D'与CD 相交于点E ,求DE 的长度;②连接A'D 、BD',若旋转过程中A'D =BD'时,求满足条件的α的度数.(3)如图3,将∠ACD 绕点C 逆时针旋转α(0°<α<360°)得到∠A'CD',若点M 为AC 的中点,点N 为线段A'D'上任意一点,直接写出旋转过程中线段MN 长度的取值范围.10.如图,P 是等边ABC 内的一点,且5PA =,4PB =,3PC =,将APB △绕点B 逆时针旋转,得到CQB △.(1)求点P 与点Q 之间的距离;(2)求BPC ∠的度数;(3)求ABC 的面积ABC S.11.如图,在矩形ABCD 中,6AB cm =,8BC cm =,如果点E 由点B 出发沿BC 方向向点C 匀速运动,同时点F 由点D 出发沿DA 方向向点A 匀速运动,它们的速度分别为2/cm s 和1/cm s ,FQ BC ⊥,分别交AC ,BC 于点P 和Q ,设运动时间为()04ts t <<.(1)连接EF ,若运动时间t =_______s 时,EF =;(2)连接EP ,当EPC 的面积为23cm 时,求t 的值;(3)若EQP ADC ∽△△,求t 的值.12.如图,边长为ABCD 中,P 是对角线AC 上的一个动点(点P 与A 、C 不重合),连接BP ,将BP 绕点B 顺时针旋转90°得到BQ ,连接QP ,QP 与BC 交于点E ,其延长线与AD (或AD 延长线)交于点F .(1)连接CQ ,证明:CQ AP =;(2)设AP x =,CE y =,试写出y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)试问当P 点运动到何处时,PB PE +的值最小,并求出此时CE 的长.(画出图形,直接写出答案即可)13.已知:O 是ABC ∆的外接圆,且,60,AB BC ABC D =∠=︒为O 上一动点. (1)如图1,若点D 是AB 的中点,求DBA ∠的度数.(2)过点B 作直线AD 的垂线,垂足为点E .①如图2,若点D 在AB 上.求证CD DE AE =+.②若点D 在AC 上,当它从点A 向点C 运动且满足CD DE AE =+时,求ABD ∠的最大值.14.抛物线239344y x x =--与x 轴交于点A ,与y 轴交于点B .线段OA 上有一动点P (不与O A 、重合),过点P 作y 轴的平行线交直线AB 于点C ,交抛物线于点M (1)求直线AB 的解析式;(2)点N 为线段AB 下方抛物线上一动点,点D 是线段AB 上一动点;①若四边形CMND 是平行四边形,证明:点M N 、横坐标之和为定值;②在点P N D 、、运动过程中,平行四边形CMND 的周长是否存在最大值?若存在,求出此时点D 的坐标,若不存在,说明理由15.如图,在平面直角坐标系中,点C 在x 轴上,90,10cm,6cm OCD D AO OC CD ︒∠=∠====.(1)请求出点A 的坐标.(2)如图(2),动点P Q 、以每秒1cm 的速度分别从点O 和点C 同时出发,点P 沿OA AD DC 、、运动到点C 停止,点Q 沿CO 运动到点O 停止,设P Q 、同时出发t 秒. ①是否存在某个时间t (秒),使得OPQ △为直角三角形?若存在,请求出值;若不存在,请说明理由.②若记POQ △的面积为()2cm y ,求()2cm y 关于t (秒)的函数关系式. 16.已知,点O 是等边ABC 内的任一点,连接OA ,OB ,OC .(∠)如图1所示,已知150AOB ∠=︒,120BOC ∠=︒,将BOC 绕点C 按顺时针方向旋转60︒得ADC .①求DAO ∠的度数:②用等式表示线段OA ,OB ,OC 之间的数量关系,并证明;(∠)设AOB α∠=,BOC β∠=.①当α,β满足什么关系时,OA OB OC ++有最小值?并说明理由;②若等边ABC 的边长为1,请你直接写出OA OB OC ++的最小值.17.如图,在正方形ABCD 中,AB =4,动点P 从点A 出发,以每秒2个单位的速度,沿线段AB 方向匀速运动,到达点B 停止.连接DP 交AC 于点E ,以DP 为直径作∠O 交AC 于点F ,连接DF 、PF .(1)则∠DPF 是 三角形;(2)若点P 的运动时间t 秒.①当t 为何值时,点E 恰好为AC 的一个三等分点;②将∠EFP 沿PF 翻折,得到∠QFP ,当点Q 恰好落在BC 上时,求t 的值.18.已知四边形ABCD 为矩形,对角线AC 、BD 相交于点O ,AD AO =.点E 、F 为矩形边上的两个动点,且60EOF ∠=︒.(1)如图1,当点E 、F 分别位于AB 、AD 边上时,若75OEB ∠=︒,求证:AD BE =;(2)如图2,当点E 、F 同时位于AB 边上时,若75OFB ∠=︒,试说明AF 与BE 的数量关系;(3)如图3,当点E 、F 同时在AB 边上运动时,将OEF 沿OE 所在直线翻折至OEP ,取线段CB 的中点Q .连接PQ ,若()20AD a a =>,则当PQ 最短时,求PF 之长.19.如图,在∠ABC中,AB=BC=AC=12cm,点D为AB上的点,且BD=34AB,如果点P在线段BC上以3cm/s的速度由B点向终点C运动,同时,点Q在线段CA上由C点向终点A运动.当一点到达终点时,另一点也随之停止运动.(1)如(图一)若点Q的运动速度与点P的运动速度相等,经过1s后,∠BPD与∠CQP是否全等,请说明理由.(2)如(图二)若点Q的运动速度与点P的运动速度相等(点P不与点B和点C重合),连接点A与点P,连接点B与点Q,并且线段AP,BQ相交于点F,求∠AFQ的度数.(3)若点Q的运动速度为6cm/s,当点Q运动几秒后,可得到等边∠CQP?20.如图,Rt∠ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若∠BPQ与∠ABC相似,求t的值;(2)试探究t为何值时,∠BPQ是等腰三角形;(3)试探究t为何值时,CP=CQ;(4)连接AQ,CP,若AQ∠CP,求t的值.21.如图1,在正方形ABCD 中,4AB m =,点P 从点D 出发,沿DA 向点A 匀速运动,速度是1/cm s ,同时,点Q 从点A 出发,沿AB 方向,向点B 匀速运动,速度是2/cm s ,连接PQ 、CP 、CQ ,设运动时间为()(02)t s t <<.()1是否存在某一时刻,使得//PQ BD 若存在,求出t 的值;若不存在,说明理由; ()2设PQC △的面积为()2S cm ,求S 与t 之间的函数关系式;()3如图2,连接AC ,与线段PQ 相交于点M ,是否存在某一时刻t ,使QCM S :4PCM S =:5?若存在,直接写t 的值;若不存在,说明理由.22.如图,在 RtΔABC 中,∠C=90°,BC=5cm ,tanA 512=.点 M 在边 AB 上,以 2 cm/s 的速度 由点B 出发沿BA 向点A 匀速运动;同时点N 在边AC 上,以1 cm/s 的速度由A 出发沿AC 向点C 匀速运动.当点M 到达A 点时,点M ,N 同时停止运动.连接MN ,设点M 运动的时间为t (单位:s).(1)求AB 的长;(2)当t 为何值时,ΔAMN 的面积为∠ABC 面积的326; (3)是否存在时间t ,使得以A ,M ,N 为顶点的三角形与ΔABC 相似?若存在,求出时间t 的值;若不存在,请说明理由.23.如图,抛物线y =ax 2+bx+3与x 轴交于A ,B 两点,且点B 的坐标为(2,0),与y 轴交于点C ,抛物线对称轴为直线x 12=-.连接AC ,BC ,点P 是抛物线上在第二象限内的一个动点.过点P 作x 轴的垂线PH ,垂足为点H ,交AC 于点Q .过点P 作PG∠AC 于点G . (1)求抛物线的解析式.(2)求PQG 周长的最大值及此时点P 的坐标.(3)在点P 运动的过程中,是否存在这样的点Q ,使得以B ,C ,Q 为顶点的三角形是等腰三角形?若存在,请写出此时点Q 的坐标;若不存在,请说明理由.24.如图,直线1:1l y kx =+与x 轴交于点D ,直线2:l y x b =-+与x 轴交于点A ,且经过定点(1,5)B -,直线1l 与2l 交于点(2,)C m .(1)求k 、b 和m 的值;(2)求ADC ∆的面积;(3)在x 轴上是否存在一点E ,使BCE ∆的周长最短?若存在,请求出点E 的坐标;若不存在,请说明理由;(4)若动点P 在线段DA 上从点D 开始以每秒1个单位的速度向点A 运动,设点P 的运动时间为t 秒.是否存在t 的值,使ACP ∆为等腰三角形?若存在,直接写出t 的值;若不存在,清说明理由.25.如图,已知抛物线2()30y ax bx a =++≠与x 轴交于点(1,0)A 和点(3,0)B -,与y 轴交于点C .(1)求抛物线的解析式;(2)设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使CMP ∆为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由; (3)作直线BC ,若点(,0)D d 是线段BM 上的一个动点(不与B 、M 重合),过点D 作x 轴的垂线交抛物线于点F ,交BC 于点E ,当BDE CEF S S ∆∆=时,求d 的值.26.正方形ABCD 和等腰Rt DEF △共顶点D ,90DEF ∠=︒,DE EF =,将DEF 绕点D 逆时针旋转一周.(1)如图1,当点F 与点C 重合时,若2AD =,求AE 的长;(2)如图2,M 为BF 中点,连接AM 、ME ,探究AM 、ME 的关系,并说明理由; (3)如图3,在(2)条件下,连接DM 并延长交BC 于点Q ,若22AD DE ==,在旋转过程中,CQ 的最小值为_________.27.综合与探究 如图,抛物线245y x bx c =++经过点()0,4A ,()10B ,,与x 轴交于另一点C (点C 在点B 的右侧),点()P m n ,是第四象限内抛物线上的动点.(1)求抛物线的函数解析式及点C 的坐标;(2)若APC △的面积为S ,请直接写出S 关于m 的函数关系表达式,并求出当m 的值为多少时,S 的值最大?最大值为多少?(3)是否存在点P ,使得PCO ACB ∠=∠?若存在,求出点P 的坐标;若不存在,请说明理由.28.某学校活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程: 操作发现:(1)如图1,分别以AB 和AC 为边向∠ABC 外侧作等边∠ABD 和等边∠ACE ,连接BE 、CD ,请你完成作图并证明BE =CD .(要求:尺规作图,不写作法但保留作图痕迹)类比探究:(2)如图2,分别以AB 和AC 为边向∠ABC 外侧作正方形ABDE 和正方形ACFG ,连接CE 、BG ,则线段CE 、BG 有什么关系?说明理由.灵活运用:(3)如图3,在四边形ABCD 中,AC 、BD 是对角线,AB =BC ,∠ABC =60°,∠ADC =30°,AD =3,BD =5,求CD 的长.参考答案1.(1)3;(2)38t =;(3)当305t <≤时,210S t =;当315t <≤时,215309S t t =-+-;(4)38;58.2.(1)4y x x =-.定义域为25x <≤;(2)34;(3)4或53+ 3.(1)5-t ,2t ;(2)3t =或133t =;(3)53t =或910t = 4.(1)90°;(2)①α+β=180°;②点D 在直线BC 上移动,α+β=180°或α=β.5.(1)DM∠EM ,DM =ME ;(2)结论成立;(3)成立;拓展应用: 6.(1)y =﹣x 2+2x +3;(2)3;(3)点P 的坐标为(1,4)或(﹣2,﹣5)7.(1)60BD CE ,=;(2)45CEB BD ∠︒=,;(3)CE 的长为或48.(1)①证明;②3sin 5BAC ∠=;(2)CE =;(3)80.9.(1)﹣(2);②45°或225°;(3)﹣+310.(1)4PQ =;(2)150BPC ∠=︒;(3)9ABC S =. 11.(1)23;(2)2;(3)212.(1)见解析;(2)2(06)y x x =+<<;(3)P 位置如图所示,此时PB PE +的值最小,6CE =-13.(1)30DBA ∠=;(2)①;②当点D 运动到点I 时ABI ∠取得最大值,此时30ABD ∠=.14.(1)334y x =-;(2)①证明;②存在;点D 的坐标为111111,,3434⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭;. 15.(1)(8,6)A .(2)①存在,40 s 9t =或者50 s 9t =.②233(010)10S t t t =-+<<. 16.(1)①90°;②线段OA ,OB ,OC 之间的数量关系是OA 2+OB 2=OC 2,证明;(2)①当α=β=120°时,OA+OB+OC 有最小值.证明;②线段OA+OB+OC17.(1)等腰直角;(2)①当t 为1时,点E 恰好为AC 的一个三等分点;.18.(1)证明;(2)2AF BE =;(3).2FP a =19.(1)BPD CQP ≌;(2)60︒(3)4320.(1)1或3241;(2)23或89或6457;(3)329-;(4)78. 21.()1存在,43t =;()2228(02)S t t t =-+<<;()3存在,1t = 22.(1)13cm ;(2)t=2或92s ;(3)存在,15637t =或16938t =s23.(1)y 12=-x 212-x+3;(2))9108,P(32-,218);(3)存在,Q 1(,+3),Q 2(﹣1,2)24.(1)12k =,4b =,2m =;(2)6;(3存在,8(7E ,0);(4)存在,6-4或2.25.(1)223y x x =--+;(2)存在,P (-或(1,-或(1,6)-或5(1,)3-;(3)d =26.(1)AE =(2)AM ME =,AM ME ⊥;(3)227.(1)2424455x x y -+=;点C 的坐标为(5,0);(2)当m =52时,S 的值最大,最大值为252;(3)存在点P ,使得使得∠PCO =∠ACB .点P 的坐标为(2,-125). 28.(1);(2)CE=BG ;(3)CD=4。
中考必考--数学动点经典例题分析
中考必考——数学动点经典例题分析动态几何问题已经成为中考试题的一大热点题型.这类试题以运动的点、线段、变化的角、图形的面积为基本条件,给出一个或多个变量,要求确定变量与其他量之间的关系,或变量在一定条件为定值时,进行相关的几何计算和综合解答。
下面是几个例题及分析(2000年·上海)如图1在半径为6,圆心角为90的扇形OAB 的弧AB上有一个动点P,PH⊥OA垂足为⊥OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO、GP、GH中有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH= x,G=y求y关于x的函数解析式,并写出函数的定义域(即自变量x 的取值范围)(3)如果⊥PGH是等腰三角形试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变于是线段GO、GP、GH中,有长度保持不变的线段,这条线段是GH=2/3 M=2/3.120P=2.(2)在Rt⊥POH中,OH=√OP2−PH2=√36−x2⊥MH=12OH=12√36−x2在Rt⊥POH中MP=√PH2+MH2=12√36+3x21.分析:此题为点动题,因此,1)搞清动点所走的路线及速度,这样就能求出相应线段的长;2)分析在运动中点的几种特殊位置由题意知,点P 为动点,所走的路线为: ABC 速度为1cm/s。
而t=2s,故可求出AP 的值,进而求出⊥APE 的面积2.分析:两点同时运动,点P 在前,点Q在后,速度相等,因此两点距出发点A的距离相差总是2cm.P在AB边上运动后,又到BC边上运动因此PM、N 截平行四边形ABCD 所得图形不同.故分两种情况:(1)⊥当P、Q 都在AB 上运动时,PM、N 截平行四边形ABCD 所得的图形永远为直角梯形.此时0≤t≤6.⊥当P在BC上运动,而Q在A 边上运动时,画出相应图形,所成图形为六边形DFOBPG,不规则图形面积用割补法.此时6<t≤8.可以尝试自己解答一下吆!以上是数学动点例题及解析,你学会如何解答此类问题了么?。
初中动态几何问题
题的一种构造方法,同时也展示了一种数学的创造过程,反
映了几何本身的实质。 动态几何问题,是以几何知识和具体的几何图形为背景,
渗透运动变化的观点,通过点、线、形的运动,图形的平移、
翻折、旋转等把图形的有关性质和图形之间的数量关系位置 关系看作是在变化的、相互依存的状态之中,要求对运动变 化过程伴随的数量关系的图形的位置关系等进行探究。对学 生分析问题的能力,对图形的想象能力,动态思维
的认识过程,以及人们对几何的研究过程何应用过程,都是不
断发展、不断进步、不断深入的,也就是说它不是一成不变的, 而是动态变化的,不断完善的。 “几何就是在不断变化的几何图形中,研究不变的、特殊 的、为我们所用的几何规律”。
只是人们早期的研究和原来教材中出现的以及用来考
察学生的几何问题较多的是相对静态的几何问题,并延续
辅助,使学生对动态变化有一定的感性认识,之后应让学生 通过画图、操作等形成动态联想,敏锐地抓住其中等量或变 量关系,从“静”中能看到“动”,又能从“动”中看到 “静”,抓住其中的特性,找到问题的突破口。 5、在课堂教学中,从课本知识(习题)出发,编制和设计一
些学生较能接受和容易联想到的动态型几何问题,立足平时,
年 占分比例
2003 2004 2005 2006 2007
—— 16.7% 15% 13.3% 10%
10% 10% 10% 10% ——
【05河北】如图,在直角梯形ABCD中,AD∥BC,∠C=90°, BC=16,DC=12,AD=21。动点P从点D出发,沿射线DA的方 向以每秒2两个单位长的速度运动,动点Q从点C出发,在线段 CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D, C同时出发,当点Q运动到点B时,点P随之停止运动。设运动 的时间为t(秒)。 (1)设△BPQ的面积为S,求S与t之间的函数关系式; (2)当t为何值时,以B,P,Q三点为顶点的三角形是等腰 三角形? (3)当线段PQ与线段AB相交于点O,且2AO=OB时,求∠BQP 的正切值; (4)是否存在时刻t,使得PQ⊥BD?若存在,求出t的值; 若不存在,请说明理由。 A P D
中考数学动态几何专题复习
中考数学动态几何专题复习图形的运动变化问题。
【典型例题】例1. 已知;⊙O 的半径为2,∠AOB =60°,M 为AB ⋂的中点,MC ⊥AO 于C,MD ⊥OB 于D ,求CD 的长。
分析:连接OM 交CD 于E ,∵∠AOB =60°,且M 为AB ⋂中点∴∠AOM =30°,又∵OM =OA =2 ∴OC =3∴CE CD ==323,例2. 如图,AB 是 ⊙O 的直径,⊙O 过AE 的中点D ,DC ⊥BC ,垂足为C 。
(1)由这些条件,你能推出哪些正确结论?(要求:不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程,写出4个结论即可) (2)若∠ABC 为直角,其它条件不变,除上述结论外,你还能推出哪些新的正确结论?并画出图形。
(要求:写出6个结论即可,其它要求同(1)) 分析:(1)AB =BE DC =CE ∠A =∠E DC 为⊙O 切线(2)若∠ABC 为直角则∠A =∠E =45°,DC =BCDC ∥AB ,DC =CE ,BE 为⊙O 的切线DC AB BE ==1212例3. 在直径为AB 的半圆内划出一块三角形区域,使三角形的一边为AB ,顶点C 在半圆上,现要建造一个内接于△ABC 的矩形水池DEFN ,其中DE 在AB 上,如图的设计方案是AC =8,BC =6。
(1)求△ABC 中AB 边上的高h ;(2)设DN =x ,当x 取何值时,水池DEFN 的面积最大?分析:(1)∵AB 为半圆直径∴∠ACB =90°∵AC =8,BC =6 ∴AB =10∴△ABC 中AB 边上高h =4.8m (2)设DN =x ,CM =h =4.8 则MP =xNF AB CPCM =NF x104848=-..NF x=-102512 S ND NF =·=-=-+=--x x x x x x ()()102512251210251224522当x =125时,水池面积最大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学专题3 动态几何问题第一部分 真题精讲【例1】如图,在梯形ABCD 中,AD BC ∥,3AD =,5DC =,10BC =,梯形的高为4.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t (秒).CM B(1)当MN AB ∥时,求t 的值;(2)试探究:t 为何值时,MNC △为等腰三角形.【思路分析1】本题作为密云卷压轴题,自然有一定难度,题目中出现了两个动点,很多同学看到可能就会无从下手。
但是解决动点问题,首先就是要找谁在动,谁没在动,通过分析动态条件和静态条件之间的关系求解。
对于大多数题目来说,都有一个由动转静的瞬间,就本题而言,M ,N 是在动,意味着BM,MC 以及DN,NC 都是变化的。
但是我们发现,和这些动态的条件密切相关的条件DC,BC 长度都是给定的,而且动态条件之间也是有关系的。
所以当题中设定MN//AB 时,就变成了一个静止问题。
由此,从这些条件出发,列出方程,自然得出结果。
【解析】 解:(1)由题意知,当M 、N 运动到t 秒时,如图①,过D 作DE AB ∥交BC 于E 点,则四边形ABED 是平行四边形.AB M CNE D∵AB DE ∥,AB MN ∥.∴DE MN ∥. (根据第一讲我们说梯形内辅助线的常用做法,成功将MN 放在三角形内,将动态问题转化成平行时候的静态问题) ∴MC NC EC CD =. (这个比例关系就是将静态与动态联系起来的关键) ∴ 1021035t t -=-.解得5017t =. 【思路分析2】第二问失分也是最严重的,很多同学看到等腰三角形,理所当然以为是MN=NC 即可,于是就漏掉了MN=MC,MC=CN 这两种情况。
在中考中如果在动态问题当中碰见等腰三角形,一定不要忘记分类讨论的思想,两腰一底一个都不能少。
具体分类以后,就成为了较为简单的解三角形问题,于是可以轻松求解 【解析】(2)分三种情况讨论:① 当MN NC =时,如图②作NF BC ⊥交BC 于F ,则有2MC FC =即.(利用等腰三角形底边高也是底边中线的性质)∵4sin 5DF C CD ∠==,∴3cos 5C ∠=,∴310225tt -=⨯,解得258t =.AB M CNF D② 当MN MC =时,如图③,过M 作MH CD ⊥于H . 则2CN CH =,∴()321025t t =-⨯.∴6017t =.AB M CN HD③ 当MC CN =时, 则102t t -=. 103t =.综上所述,当258t =、6017或103时,MNC △为等腰三角形.【例2】在△ABC 中,∠ACB=45º.点D (与点B 、C 不重合)为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .(1)如果AB=AC .如图①,且点D 在线段BC 上运动.试判断线段CF 与BD 之间的位置关系,并证明你的结论. (2)如果AB ≠AC ,如图②,且点D 在线段BC 上运动.(1)中结论是否成立,为什么?(3)若正方形ADEF 的边DE 所在直线与线段CF 所在直线相交于点P ,设AC=3=BC ,CD=x ,求线段CP 的长.(用含x 的式子表示)【思路分析1】本题和上题有所不同,上一题会给出一个条件使得动点静止,而本题并未给出那个“静止点”,所以需要我们去分析由D 运动产生的变化图形当中,什么条件是不动的。
由题我们发现,正方形中四条边的垂直关系是不动的,于是利用角度的互余关系进行传递,就可以得解。
【解析】:(1)结论:CF 与BD 位置关系是垂直;证明如下: AB=AC ,∠ACB =45º,∴∠ABC=45º. 由正方形ADEF 得 AD=AF ,∵∠DAF=∠BAC =90º, ∴∠DAB=∠FAC ,∴△DAB ≌△FAC , ∴∠ACF=∠ABD . ∴∠BCF=∠ACB+∠ACF= 90º.即 CF ⊥BD .【思路分析2】这一问是典型的从特殊到一般的问法,那么思路很简单,就是从一般中构筑一个特殊的条件就行,于是我们和上题一样找AC 的垂线,就可以变成第一问的条件,然后一样求解。
(2)CF ⊥BD .(1)中结论成立.A可证:△GAD ≌△CAF ∴∠ACF=∠AGD=45º ∠BCF=∠ACB+∠ACF= 90º. 即CF ⊥BD【思路分析3】这一问有点棘手,D 在BC 之间运动和它在BC 延长线上运动时的位置是不一样的,所以已给的线段长度就需要分情况去考虑到底是4+X 还是4-X 。
分类讨论之后利用相似三角形的比例关系即可求出CP. (3)过点A 作AQ ⊥BC 交CB 的延长线于点Q , ①点D 在线段BC 上运动时,∵∠BCA=45º,可求出AQ= CQ=4.∴ DQ=4-x ,易证△AQD ∽△DCP ,∴CP CD DQ AQ = , ∴44CP xx =-,24x CP x ∴=-+.②点D 在线段BC 延长线上运动时,∵∠BCA=45º,可求出AQ= CQ=4,∴ DQ=4+x .过A 作AC AG ⊥交CB 延长线于点G ,则ACF AGD ∆≅∆.∴ CF ⊥BD ,∴△AQD ∽△DCP ,∴CP CD DQ AQ = , ∴44CP xx =+,24x CP x ∴=+.【例3】已知如图,在梯形ABCD 中,24AD BC AD BC ==∥,,,点M 是AD 的中点,MBC △是等边三角形. (1)求证:梯形ABCD 是等腰梯形;(2)动点P 、Q 分别在线段BC 和MC 上运动,且60MPQ =︒∠保持不变.设PC x MQ y ==,,求y 与x 的函数关系式;(3)在(2)中,当y 取最小值时,判断PQC △的形状,并说明理由.【思路分析1】本题有一点综合题的意味,但是对二次函数要求不算太高,重点还是在考察几何方面。
第一问纯静态问题,自不必说,只要证两边的三角形全等就可以了。
第二问和例1一样是双动点问题,所以就需要研究在P,Q 运动过程中什么东西是不变的。
题目给定∠MPQ=60°,这个度数的意义在哪里?其实就是将静态的那个等边三角形与动态条件联系了起来.因为最终求两条线段的关系,所以我们很自然想到要通过相似三角形找比例关系.怎么证相似三角形呢? 当然是利用角度咯.于是就有了思路. 【解析】(1)证明:∵MBC △是等边三角形 ∴60MB MC MBC MCB ===︒,∠∠ ∵M 是AD 中点 ∴AM MD = ∵AD BC ∥∴60AMB MBC ==︒∠∠, 60DMC MCB ==︒∠∠ ∴AMB DMC △≌△ ∴AB DC =∴梯形ABCD 是等腰梯形.(2)解:在等边MBC △中,4MB MC BC ===,60MBC MCB ==︒∠∠,60MPQ =︒∠A D CB PM Q 60∴120BMP BPM BPM QPC +=+=︒∠∠∠∠ (这个角度传递非常重要,大家要仔细揣摩) ∴BMP QPC =∠∠ ∴BMP CQP △∽△ ∴PC CQBM BP= ∵PC x MQ y ==, ∴44BP x QC y =-=-,∴444x y x -=- ∴2144y x x =-+ (设元以后得出比例关系,轻松化成二次函数的样子)【思路分析2】第三问的条件又回归了当动点静止时的问题。
由第二问所得的二次函数,很轻易就可以求出当X 取对称轴的值时Y 有最小值。
接下来就变成了“给定PC=2,求△PQC 形状”的问题了。
由已知的BC=4,自然看出P 是中点,于是问题轻松求解。
(3)解: PQC △为直角三角形 ∵()21234y x =-+ ∴当y 取最小值时,2x PC ==∴P 是BC 的中点,MP BC ⊥,而60MPQ =︒∠, ∴30CPQ =︒∠, ∴90PQC =︒∠以上三类题目都是动点问题,这一类问题的关键就在于当动点移动中出现特殊条件,例如某边相等,某角固定时,将动态问题化为静态问题去求解。
如果没有特殊条件,那么就需要研究在动点移动中哪些条件是保持不变的。
当动的不是点,而是一些具体的图形时,思路是不是一样呢?接下来我们看另外两道题.【例4】已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF BD ⊥交BC 于F ,连接DF ,G 为DF 中点,连接EG CG ,. (1)直接写出线段EG 与CG 的数量关系;(2)将图1中BEF ∆绕B 点逆时针旋转45︒,如图2所示,取DF 中点G ,连接EG CG ,,.你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.(3)将图1中BEF ∆绕B 点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?(不要求证明)FEABCDABCDEFGGFED CBA【思路分析1】这一题是一道典型的从特殊到一般的图形旋转题。
从旋转45°到旋转任意角度,要求考生讨论其中的不动关系。
第一问自不必说,两个共斜边的直角三角形的斜边中线自然相等。
第二问将△BEF 旋转45°之后,很多考生就想不到思路了。
事实上,本题的核心条件就是G 是中点,中点往往意味着一大票的全等关系,如何构建一对我们想要的全等三角形就成为了分析的关键所在。
连接AG 之后,抛开其他条件,单看G 点所在的四边形ADFE ,我们会发现这是一个梯形,于是根据我们在第一讲专题中所讨论的方法,自然想到过G 点做AD,EF 的垂线。
于是两个全等的三角形出现了。
(1)CG EG =(2)(1)中结论没有发生变化,即CG EG =.证明:连接AG ,过G 点作MN AD ⊥于M ,与EF 的延长线交于N 点. 在DAG ∆与DCG ∆中,∵AD CD ADG CDG DG DG =∠=∠=,,, ∴DAG DCG ∆∆≌.∴AG CG =.在DMG ∆与FNG ∆中,∵DGM FGN FG DG MDG NFG ∠=∠=∠=∠,,, ∴DMG FNG ∆∆≌.∴MG NG =在矩形AENM 中,AM EN =在Rt AMG ∆与Rt ENG ∆中,∵AM EN MG NG ==,, ∴AMG ENG ∆∆≌.∴AG EG =. ∴EG CG =M N图2ABCDEFG【思路分析2】第三问纯粹送分,不要求证明的话几乎所有人都会答出仍然成立。
但是我们不应该止步于此。
将这道题放在动态问题专题中也是出于此原因,如果△BEF 任意旋转,哪些量在变化,哪些量不变呢?如果题目要求证明,应该如何思考。