9、磁电式传感器-1
磁电式转速传感器功能特点及技术参数
磁电式转速传感器采用电磁感应原理来达到测速目的。
具有输出信号大,抗干扰性能好,不需外接电源,可在烟雾、油气、水气等恶劣环境中使用。
下面就让艾驰商城小编对磁电式转速传感器功能特点及技术参数来一一为大家做介绍吧。
磁电式转速传感器的特点:磁电式转速传感器是针对测速齿轮而设计的发电型传感器(无源),测速齿轮旋转引起的磁隙变化,在探头线圈中产生感生电动势,其幅度与转速有关,转速越高输出电压越高,输出频率与转速成正比,转速进一步增高,磁路损耗增大,输出电势已趋饱和,当转速过高时,磁路损耗加剧,电势锐减。
磁电式转速传感器的性能指标:直流电阻:150~200(25℃)齿轮形式:模数2~4(渐开线齿轮)使用温度:-10~+120℃抗振动:20g螺纹规格:M16×1(或客户要求)测量范围:10~15000r/min(60齿)输出信号幅值:60r/min》100mV(测试条件:发讯齿轮,齿数为60,材料为电工钢,模数为2,传感器端面距齿顶1mm)。
信号幅值大小,与转速成正比,与端面和齿顶间隙的大小成反比。
输出电压波形:渐开线齿轮—近似正弦波,若齿轮略有偏心则为调幅正弦波;孔板—近似方波艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。
如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城/。
传感器的分类
传感器的分类
常见的非电基本被测量和派生被测量见表1-1。
热电式传感器所基于的物理原理主要包括热电效应、热阻效应、热 辐射、磁导率随温度变化的特性等,因此按照工作原理,可将热电式传 感器分为热敏电阻、热电偶、PN结型测温传感器、辐射高温计等。下 面主要介绍热敏电阻。
传感器的分类
热敏电阻是最常见的温度检测元件之一,其测量精度高、种类 多、发展较成熟,它由一种半导体材料制成,特点是电阻随温度变化 而显著变化,能直接将温度的变化转换为电量的变化。
热敏电阻是利用半导体的电阻值随温度变化的特性制成的一种 热敏元件。热敏电阻的导电性能主要由内部的载流子(电子和空穴) 密度和迁移率所决定,当温度升高时,外层电子在热激发下大量成为 载流子,载流子的密度大大增加,活动能力加强,从而导致其阻值的 急剧下降。
传感器的分类
按照电阻的阻值随温度变化的情形,可将热敏电阻分为三类:阻 值随温度的上升而减小的负温度系数(negative temperature coefficient,NTC)热敏电阻,它的主要材料是过渡金属氧化物半导 体陶瓷;阻值随温度的上升而增加的正温度系数(positive temperature coefficient,PTC)热敏电阻,其主要材料是掺杂的半 导体陶瓷;临界温度系数热敏电阻(critical temperature resistor, CTR),它的阻值在特定的温度范围内随温度升高而降低3~4个数量 级,主要材料是二氧化钒,并添加了一些金属氧化物,可组成理想的 控制开关。在温度测量中,主要采用的是NTC和PTC热敏电阻,尤其 是NTC热敏电阻。
磁电式传感器的工作原理
磁电式传感器的工作原理
磁电式传感器是一种常用的用于测量和检测磁场的传感器。
其工作原理基于磁性材料在外加磁场作用下产生的磁电势。
磁电式传感器通常由两个主要部分组成:磁敏感元件和信号处理电路。
磁敏感元件是通常由铁磁材料制成的,比如镍、铁、钴等。
这些材料在外加磁场的作用下会发生剩余磁化现象,即使在磁场消失后,仍能保持一定的磁性。
当外加磁场作用在磁敏感元件上时,磁性材料内部的磁矩会发生改变。
这种磁矩的改变会导致磁敏感元件两端产生电势差,即磁电势。
这个电势差与外加磁场的强度成正比,可以通过测量电势差来间接测量磁场的强度。
信号处理电路用于放大和处理由磁敏感元件产生的微弱电势差。
通常,这些电路会对输入的电势差进行放大和滤波,以提高测量的准确性和稳定性。
然后,信号处理电路将处理后的电信号转换为数字信号或模拟信号,供其他设备使用或进行进一步的数据处理。
总而言之,磁电式传感器通过利用磁敏感元件在外加磁场作用下产生的磁电势,实现对磁场强度的测量和检测。
其工作原理简单可靠,广泛应用于各种领域,比如工业控制、汽车电子、电力系统等。
汽车传感器与测试技术实验指导书(2个实验)
实验一位移传感器性能实验一、实验目的:1、、了解电涡流传感器原理;2、掌握电涡流传感器的应用方法;二、基本原理:电涡流传感器的基本原理通以高频电流的线圈产生磁场,当有导电体接近时,因导电体涡流效应产生涡流损耗,而涡流损耗与导电体离线圈的距离有关,因此可以进行位移测量。
三、需用器件与单元:电涡流传感器、电涡流传感器实验模块、测微头、直流电源、数显单元(主控台电压表)、测微头、铁圆片。
四、实验步骤:测微头的组成与使用测微头组成和读数如图8-2测微头读数图图8-2 测位头组成与读数测微头组成:测微头由不可动部分安装套、轴套和可动部分测杆、微分筒、微调钮组成。
测微头读数与使用:测微头的安装套便于在支架座上固定安装,轴套上的主尺有两排刻度线,标有数字的是整毫米刻线(1mm/格),另一排是半毫米刻线(0.5mm/格);微分筒前部圆周表面上刻有50等分的刻线(0.01mm/格)。
用手旋转微分筒或微调钮时,测杆就沿轴线方向进退。
微分筒每转过1格,测杆沿轴方向移动微小位移0.01毫米,这也叫测微头的分度值。
测微头的读数方法是先读轴套主尺上露出的刻度数值,注意半毫米刻线;再读与主尺横线对准微分筒上的数值、可以估读1/10分度,如图8-2甲读数为3.678mm,不是 3.178mm;遇到微分筒边缘前端与主尺上某条刻线重合时,应看微分筒的示值是否过零,如图6-2乙已过零则读2.514mm;如图8-2丙未过零,则不应读为2mm,读数应为1.980mm。
测微头使用:测微头在实验中是用来产生位移并指示出位移量的工具。
一般测微头在使用前,首先转动微分筒到10mm处(为了保留测杆轴向前、后位移的余量),再将测微头轴套上的主尺横线面向自己安装到专用支架座上,移动测微头的安装套(测微头整体移动)使测杆与被测体连接并使被测体处于合适位置(视具体实验而定)时再拧紧支架座上的紧固螺钉。
当转动测微头的微分筒时,被测体就会随测杆而位移。
电涡流传感器测位移1)电涡流传感器和测微头的安装、使用参阅图8-5。
作业题1、测试系统的组成是什么各部分的主要作用是什
第12章
传感器的典型应用
1、电涡流式位移传感器是一种非接触式测振传感器, 其基本原理是什么?P186
2、什么是光栅?什么是莫尔条纹?P201
3、磁尺测量装置有那几部分组成?P205 4、什么是压磁效应?压磁式力传感器的工作原理是 什么?P219
5、图中所示为一直流电桥,供电电源电动势 E=3V,R3=R4=100Ω,R1R2为相同型号的电 阻应变片,其电阻均为50Ω,灵敏度系数K=2.0。 两只应变片分别粘贴在等强度梁同一截面的正 反两面。设等强度梁在受力后产生的应变为 5000με,试求此时电桥输出电压U0。
b
R1 R1 R2 R2
6、为什么霍尔元件一般采用N型半导体材料?
7、霍尔灵敏度与霍尔元件厚度之间有什么关系?
第10章 作业
1、热电偶温度传感器的工作原理是什么?
2、热电偶的基本定律有哪些?
3、为什么要对热电偶进行冷端补偿?常用的方法有哪些? 补偿导线的作用是什么?连接补偿导线要注意什么?
4、电阻式温度传感器的工作原理是什么?有几种类型?
5、金属热阻温度传感器常用的材料有哪几种?
第11章 光电式传感器
1、光电效应有哪几种?分别对应什么光电元件? 2、试比较光敏电阻、光电池、光敏二极管的性能差异,简 述在不同场合下应选哪种元件最为合适? 3、简述光电倍增管的工作原理。 4、用光电传感器测转速,试画出其原理结构简图,并说明 其工作原理。
上篇 测试技术基础
作业题:
1、测试系统的组成是什么?各部分的主要作 用是什么?P2
2、静态响应特性的指标主要有哪些?P26 3、简要回答什么是分辨力、测量范围和稳定 度。P27
第5章 电阻应变式传感器
本章作业: 1、什么是应变效应?金属电阻应变片与半导体应变片的工作原理有何异同? 2、试说明电阻应变片有哪些途? 3、采用阻值为120Ω、灵敏度系数K=2.0的金属电阻应变片和阻值为120Ω的固定电阻 组成电桥,供桥电压为4V,并假定负载电阻无穷大。当应变片上的应变分别为1με和 1000με时,试求单臂工作电桥、双臂工作电桥及全桥工作时的输出电压,并比较三种 情况下的灵敏度。 4、采用阻值R=120Ω、灵敏度系数K=2.0的金属电阻应变片与阻值R=120Ω的固定电阻 组成电桥,供桥电压为10V。当应变片应变为1000με时,若要使输出电压大于10mV, 则可采用何种接桥方式(设输出阻抗为无穷大)?
磁电感应式传感器工作原理
图 7 - 5 是动圈式振动速度传感器结构示意图。 其结构主 要由钢制圆形外壳制成, 里面用铝支架将圆柱形永久磁铁与外 壳固定成一体, 永久磁铁中间有一小孔, 穿过小孔的芯轴两端 架起线圈和阻尼环, 芯轴两端通过圆形膜片支撑架空且与外壳 相连。
第7章 磁电式传感器
第7章 磁电式传感器
第7章 磁电式传感器
(7 - 13)
EH=
IB bdae
(7 -14)
第7章 磁电式传感器将上源自代入式(7 - 10)得UH =
IB ned
(7 -15)
式中令RH =1/(ne), 称之为霍尔常数, 其大小取决于导
体载流子密度,则
UH =RH
IB d
K
HIB
(7 - 16)
式中KH=RH/d称为霍尔片的灵敏度。由式(7 - 16)可见, 霍尔
第7章 磁电式传感器
第7章 磁电式传感器
7.1
磁电感应式传感器又称磁电式传感器, 是利用电磁感应 原理将被测量(如振动、位移、转速等)转换成电信号的 一种传感器。 它不需要辅助电源就能把被测对象的机械量 转换成易于测量的电信号, 是有源传感器。由于它输出功率 大且性能稳定, 具有一定的工作带宽(10~1000 Hz), 所以 得到普遍应用。
但在室温时其霍尔系数较大。砷化铟的霍尔系数较小, 温 度系数也较小, 输出特性线性度好。 表 7 - 1 为常用国产霍尔 元件的技术参数。
第7章 磁电式传感器
第7章 磁电式传感器
第7章 磁电式传感器
2. 霍尔元件基本结构
霍尔元件的结构很简单, 它由霍尔片、 引线和壳体组成, 如图 7 - 9(a)所示。 霍尔片是一块矩形半导体单晶薄片, 引出四个引线。1、1′两根引线加激励电压或电流,称为激 励电极;2、2′引线为霍尔输出引线,称为霍尔电极。 霍尔 元件壳体由非导磁金属、陶瓷或环氧树脂封装而成。 在电 路中霍尔元件可用两种符号表示,如图7- 9(b)所示。
常用传感器工作原理(磁电式)
dφ e = −N dt
磁通φ的变化率与磁场强度 磁通φ的变化率与磁场强度 B 、磁路磁阻Rm 线圈的运动速度 v 、 有关,改变其中一个因素,都会改变线圈的输出感应电动势。 有关,改变其中一个因素,都会改变线圈的输出感应电动势。
根据以上原理, 根据以上原理,磁电式传 感器在结构上可以分为动 圈式和磁阻式两类。 圈式和磁阻式两类。
e = −N dt
磁电式传感器是利用电磁感应原理,将运动速度、 磁电式传感器是利用电磁感应原理,将运动速度、位移等物理 量转换成线圈中的感应电动势输出。 量转换成线圈中的感应电动势输出。 工作时不需要外加电源, 工作时不需要外加电源,可直接将被测物体的机械能转换为电 量输出。是典型的有源传感器。 量输出。是典型的有源传感器。 特点:输出功率大,稳定可靠,可简化二次仪表, 特点:输出功率大,稳定可靠,可简化二次仪表,但频率响 应低。通常在10— 适合作机械振动测量、 应低。通常在 —100HZ适合作机械振动测量、转速测量。 适合作机械振动测量 转速测量。 传感器尺寸大、 传感器尺寸大、重。 2
f n = .60 N
磁阻式磁电传感器使用方便,结构简单, 磁阻式磁电传感器使用方便,结构简单,在不同场合下可用来 测量转速、偏心量、振动等,产生感应电动势的频率作为输出 产生感应电动势的频率作为输出, 测量转速、偏心量、振动等 产生感应电动势的频率作为输出, 而电势的频率取决于磁通变化的频率。
6
§3 磁电式传感器测量电路
§2 磁阻式磁电传感器
磁阻式传感器其线圈和磁铁彼此不做相对运动,由运动着的物 体(导磁材料)来改变磁路的磁阻,从而引起磁力线增强或减 弱,使线圈产生感应电动势。
测量齿轮由导磁材料制成, 测量齿轮由导磁材料制成,安 装在被测旋转体上, 装在被测旋转体上,随之一起 转动,每转过一个齿, 转动,每转过一个齿,传感器 磁路磁阻变化一次, 磁路磁阻变化一次,线圈产生 的感应电动势的变化频率(r/s) 的感应电动势的变化频率(r/s) 等于测量齿轮上齿轮的齿数N 等于测量齿轮上齿轮的齿数 和转速的n(r/min)乘积。 乘积。 和转速的 乘积
磁电式传感器原理
磁电式传感器原理
磁电式传感器是一种常用的物理量测量装置,它利用磁电效应实现对磁场的测量。
磁电效应是指当磁场作用于特定的材料时,会在材料中产生电势差或电流。
磁电式传感器的工作原理可以分为两个步骤:磁场的感应和电信号的转换。
首先,当磁场作用于磁电式传感器中的磁敏材料时,磁敏材料内部的自由电子会受到力的作用,从而形成一个电势差或电流。
这是由于磁场会改变电子的运动轨迹,导致电荷在材料中的分布发生变化。
这个电势差或电流的大小与磁场的强度成正比。
然后,磁电式传感器会将产生的电势差或电流信号转换成可用的测量信号。
这通常通过将电势差转换成电压信号或通过电流信号经过放大和滤波后得到。
这样的测量信号可以用来表示磁场的强度或与其他物理量的关系。
磁电式传感器有许多应用领域,包括磁场测量、运动传感、接近开关等。
它们通常具有灵敏度高、响应速度快、稳定性好等特点,可以实现对磁场的准确测量。
同时,磁电式传感器还可以通过改变磁敏材料的性质或结构,实现对不同范围和分辨率的测量需求。
磁电式转速传感器安全操作及保养规程
磁电式转速传感器安全操作及保养规程磁电式转速传感器是一种常见的机械传动系统测量设备,用于测量旋转设备的转速和位置。
为了保证长期稳定地使用,需要注意安全操作和定期保养。
安全操作规程1. 使用前检查传感器的完好状态在使用磁电式转速传感器前,需要先仔细检查设备的完好状态。
检查传感器是否损坏或磨损,是否存在松动的电缆和接头等情况,如果存在则需要及时修复或更换,确保传感器正常工作。
2. 正确安装传感器正确的安装传感器可以保证其测量的准确性,同时也可以防止传感器在使用过程中发生松动或意外脱落的情况。
安装前需要确认传感器的位置和安装方式,根据实际情况选择合适的安装方式,同时注意安装过程中需要使传感器和测量物体保持一定的距离,避免传感器受到不必要的振动或摩擦。
3. 正确接线在接线时,需要按照传感器的接线要求进行连接,防止因接线不当导致传感器无法正常工作或发生电气故障。
同时还需要注意保持接线端子的清洁和干燥,避免因进水或腐蚀导致接线松动。
4. 避免外力干扰为了有效避免传感器受到外力干扰,需要将传感器绑扎或固定在空间中尽量稳定的位置。
避免传感器在运转过程中受到撞击和振动,避免流体、粉尘、杂质等污染物进入传感器内部,也要避免安装过程中虚连或漏接,接线不当等可能导致电接触不良等故障。
5. 注意防护和维护在传感器长期使用过程中,需要加强对设备的防护和维护,同时也需要注意安全操作。
如在检修或拆卸传感器时,首先应断开电源并确保传感器处于安全状态。
检查传感器的机械结构和电气连接是否松动或磨损。
定期清除传感器表面和周围的污垢、灰尘等,保持设备表面的清洁度,减少传感器表面电磁波影响和增加损耗。
保养规程1. 定期检测电气性能为了保证传感器持续稳定的工作,在设备使用过程中,需要定期检测传感器的电气性能,包括检查传感器的输出信号是否正常、检查传感器电路是否有短路、接触不良等情况。
2. 清洁设备表面由于传感器通常安装在机械部件上,受到外界物理损伤、污垢等影响,表面会出现不同程度的损坏,清洁设备表面是一项重要的保养工作。
磁电式转速传感器的原理
磁电式转速传感器的原理一、引言磁电式转速传感器是一种常用的测量设备,用于测量旋转物体的转速。
它通过感应磁场的变化来测量转速,具有精度高、可靠性好等优点。
本文将详细介绍磁电式转速传感器的原理和工作机制。
二、磁电式转速传感器的结构磁电式转速传感器通常由磁电式传感器和信号处理电路两部分组成。
2.1 磁电式传感器磁电式传感器由磁敏感元件和磁场产生元件组成。
磁敏感元件通常是由铁氧体或硅钢片制成的磁致伸缩材料,具有磁致伸缩效应。
磁场产生元件通常是由永磁体或电磁线圈组成,用于产生磁场。
2.2 信号处理电路信号处理电路主要用于放大、滤波和处理磁电式传感器输出的信号。
它通常由放大器、滤波器、比较器和计数器等组成。
三、磁电式转速传感器的原理磁电式转速传感器的原理基于磁致伸缩效应和霍尔效应。
3.1 磁致伸缩效应磁致伸缩效应是指在磁场作用下,磁敏感元件的尺寸会发生微小的变化。
当转子上的齿轮通过磁电式传感器时,磁敏感元件会受到磁场的影响,发生尺寸变化,从而产生电压信号。
3.2 霍尔效应霍尔效应是指当导体中有电流通过时,垂直于电流方向的磁场会在导体两侧产生电势差。
磁电式转速传感器中的磁敏感元件通常会产生一个垂直于磁场方向的电势差,该电势差与转速成正比。
四、磁电式转速传感器的工作原理磁电式转速传感器的工作原理如下:1.磁场产生元件产生一个恒定的磁场。
2.当转子上的齿轮通过磁电式传感器时,磁致伸缩效应使磁敏感元件的尺寸发生微小变化。
3.磁致伸缩效应引起磁敏感元件两侧产生电势差,即霍尔效应。
4.信号处理电路对电势差进行放大、滤波和处理。
5.最终输出一个与转速成正比的电压信号。
五、磁电式转速传感器的应用磁电式转速传感器广泛应用于各个领域,如汽车、航空航天、工业自动化等。
它可以用于测量发动机转速、风扇转速、电机转速等。
六、总结磁电式转速传感器是一种测量旋转物体转速的重要设备。
本文详细介绍了磁电式转速传感器的原理和工作机制,包括磁致伸缩效应和霍尔效应。
磁电转速传感器的工作原理和特点
现在的柴油机正在经历以柴油机电控化为核心的第3 次技术飞跃。
ECU 技术是柴油机电控化的核心技术之一,它采集发动机的相位、转速( n )、燃油压力、油门位置、温度等信号,通过一定的算法得出泵油和喷油的参数,并驱动相应的执行器工作。
在ECU 中,曲轴和凸轮轴相位传感器信号是整个发动机工作时序的基础,其作用相当于芯片中的时钟。
发动机的n 、喷油相位以及判缸信号等都是通过这两个传感器计算处理得出的。
因此,设计一种抗干扰能力强,可靠性高的曲轴和凸轮轴传感器信号处理模块对整个柴油机电控单元来说至关重要。
常用的发动机曲轴和凸轮轴相位传感器有霍尔式传感器和磁电式传感器两种。
磁电式传感器具有成本低、结构简单、耐腐蚀、耐冲击、可靠性高和稳定性好等优点,故本研究采用两个磁电式传感器分别测量6 缸发动机的曲轴和凸轮轴相位信号。
其中,一个磁电式传感器用于测量曲轴相位即48 X信号( X 代表齿数,即曲轴齿轮盘被48 等分,但缺3 个齿);另外一个磁电式传感器用于判断凸轮轴相位即7 X 信号(凸轮轴上的齿轮盘被6 等分,但上止点的位置多1 个齿)。
通过对7 X 和48 X 信号的捕捉可计算发动机的n 及相位。
1.磁电式传感器的特性(1)工作原理磁电式传感器的工作原理如图1 所示,它主要由旋转的触发轮(被等分的齿轮盘,上面有多齿或缺齿)和相对静止的感应线圈两部分组成。
当柴油机运行时,触发轮与传感器之间的间隙周期性变化,磁通量也会以同样的周期变化,从而在线圈中感应出近似正弦波的电压信号。
(2)输出特性由磁电式传感器工作原理可知,其产生的交流电压信号的频率与齿轮转速和齿数成正比。
在齿数确定的情况下,传感器线圈输出的电压频率正比于齿轮的转速,其关系为式中,n 为发动机转速,r/ s;z 为触发轮被等分的齿数;f 为磁电式传感器的输出信号频率,Hz 。
磁电式传感器的输出电压不仅与传感器和触发轮间的间隙( d )有关,而且与n 有关。
磁电式传感器
Hale Waihona Puke 电式传感器磁电式传感器的优点和局限性
磁电式传感器具有以下优点:结构简单、可 靠性高、寿命长、测量准确度高、抗干扰能 力强等。同时,磁电式传感器也存在一些局 限性,例如对温度和湿度的变化比较敏感, 容易受到外界磁场的影响,以及输出信号较 小需要放大处理等。因此,在实际应用中需 要根据具体需求选择合适的传感器类型和规 格
磁电式传感器
磁电式传感器的未来发展趋势
随着科技的不断进步和应用需求的不断提高,磁电式传感器的发展趋势如下
高精度与高可靠性:为了满足各种高精度和高可靠性应用的需求,需要不断提 高磁电式传感器的测量准确度和稳定性。可以采用新型材料和技术手段优化传 感器的结构和工艺,提高其性能指标。同时加强传感器的可靠性设计,提高其 稳定性和使用寿命
2
由于其结构简单、测量准确、可靠 性高、寿命长等优点,磁电式传感 器在工业自动化、航空航天、能源、
交通等领域得到了广泛应用
磁电式传感器
磁电式传感器的原理
磁电式传感器的工作原理基于法 拉第电磁感应定律,当导体线圈 在磁场中作切割磁感线运动时, 线圈中就会产生感应电动势。感 应电动势的大小与导体线圈的匝 数、磁感应强度B、线圈面积和 切割速度成正比。因此,通过测 量感应电动势的大小,就可以确 定被测量的变化
由于磁电式传感器具有测量准确、可靠性高、寿命长等优点,因此广泛应用于以下领域
电力工业:用于测量发电机、变压器的磁场电流和位移,以及电缆的局部放电 等 航空航天:用于测量飞机的飞行速度、加速度、陀螺仪等 能源:用于风力发电机的转速和功率测量,以及水轮机的流量和压力测量等
磁电式传感器 1 交通:用于测量汽车和火车的速度、加速度、里程表等 2 机器人:用于机器人的定位、导航和控制等 3 环境监测:用于测量空气质量、水质等环境参数 4 自动化生产线:用于测量生产线上物体的位置、速度等参数,实现自动化控制 5 医疗器械:用于测量心脏、呼吸等生理参数 6 安全监控:用于监控摄像头、红外探测器等安全设备中的磁场变化,实现报警功能 7 科学实验:用于磁场、电流等物理量的测量和实验研究
磁电型传感器与测量电路.
图8-4 磁电传感器的灵敏度特性
8.1.3 磁电感应式传感器的测量电路 磁电感应式传感器可直接输出感应电势,而且具有较高 的灵敏度,对测量电路无特殊要求。用于测量振动速度时, 能量全被弹簧吸收,磁铁与线圈之间相对运动速度接近于振 动速度,磁路间隙中的线圈切割磁力线时,产生正比于振动 速度的感应电动势,直接输出速度信号。如果要进一步获得 振动位移和振动加速度,可分别接入积分电路和微分电路, 将速度信号转换成与位移和加速度有关的电信号输出。
8.2 霍尔传感器及应用
霍尔传感器是目前国内外应用最为广泛的一种磁敏传感 器,它利用磁场作为媒介,可以检测很多的物理量,如微位 移、加速度、转速、流量、角度等,也可用于制作高斯计、 电流表、功率计、乘法器、接近开关和无刷直流电机等。它 可以实现非接触测量,而且在很多情况下,可采用永久磁铁 来产生磁场,不需附加能源。因此,这种传感器广泛应用于 自动控制、电磁检测等各个领域中。 霍尔传感器有霍尔元件和霍尔集成电路两种类型。目前, 霍尔传感器已从分立型结构发展到集成电路阶段。霍尔集成 电路是把霍尔元件、放大器、温度补偿电路及稳压电源等做 在一个芯片上的集成电路型结构。与前者相比,霍尔集成电 路更具有微型化、可靠性高、寿命长、功耗低以及负载能力 强等优点,正越来越受到人们的重视,应用日益广泛。
图8-6a 积分电路
2.微分电路 已知加速度和速度、时间关系为
dv a dt
同样设传感器输出电压为 微分放大器输入电压: Ui=e=sv,通过微分电路(如图 8-6b所示)输出电压为
dU i (t ) U o (t ) Ri RC dt
上式结果表示微分电路的 输出电压Uo正比于输入信号Ui 对时间的微分值,即正比于加 速度a。
(
传感器作业及习题知识讲解
3.电感式传感器和涡流式传感器都是通过电感量的变化检测信号的,所以它们结构和工作原理没有任何不同。
4.自感式电感传感器改变空气隙等效截面积类型变换器转换关系为非线形的,改变空气隙长度类型的为线形的。
5.变压器式电感传感器多采用差动结构,并用线圈间互感M的大小确定被测非电量的数值。
讨论习题
1.试说明金属应变片与半导体应变片的相同和不同之处。
思考题
1.在传感器测量电路中,直流电桥与交流电桥有什么不同,如何考虑应用场合?用电阻应变片组成的半桥、全桥电路与单桥相比有哪些改善?
4、电感式传感器
作业习题
1.叙述变磁阻式传感器的工作原理。
2.说明差动变压器(螺线管式)传感器的结构形式与输出特性。
9.在膜厚传感器上,厚度l越大,线圈的自感系数是变大还是变小?
10.将非电量的变化转换成线圈______ (或______)变化,这种测量装置叫做电感式传感器。该传感器按转换原理不同可分为_______式或_______式两大类。
11.判断题:
1.对变间隙的电容式传感器而言即使采用差动结构也不能完全消除非线性误差。
4)石英晶体和压电陶瓷均呈压电现象,压电机理也一样,但后者的压电常数要大的多。
5)在压电式传感器的测量线路中,电荷放大器的低频特性要比电压放大器的好的多。
6)压电晶体有三个互相垂直的轴,分别为X轴(电轴)、Y轴(力轴)、Z轴(光轴),当沿某一轴的方向施加外作用力时,会在另外两个轴的表面出现电荷。
2.什么是正压电效应?什么是逆压电效应?压电效应有哪些种类?压电传感器的结构和应用特点是什么?能否用压电传感器测量静态压力?
讨论习题
1.霍尔元件能够测量哪些物理参数?霍尔元件的不等位电势的概念是什么?温度补偿的方法有哪几种?
磁电式传感器工作原理
磁电式传感器工作原理
磁电式传感器是一种常用于检测磁场强度的传感器。
它的工作原理基于磁电效应,即当磁场通过特定材料时,会产生电势差。
磁电式传感器通常由感应线圈和磁核组成。
感应线圈是一根绕有导线的线圈,磁核则是材料制成的磁性物体,通常是铁芯。
当没有磁场作用时,感应线圈中不会产生电流。
当外部磁场作用于磁核时,磁核产生的磁通量会穿过感应线圈。
根据法拉第电磁感应定律,当磁通量连续变化时,感应线圈中会产生感应电动势。
这个感应电动势的大小与磁通量的变化率成正比,而磁通量的变化率与外部磁场的强弱有关。
因此,磁电式传感器可以通过测量感应线圈中产生的感应电动势来间接测量外部磁场的强度。
常见的应用包括地磁传感器、电动机转速传感器和磁导航传感器等。
值得注意的是,磁电式传感器的灵敏度取决于感应线圈的设计和磁核材料的选择。
较高的灵敏度可以使传感器对磁场变化更加敏感,而较低的灵敏度则可以使传感器对较弱的磁场更加测量精准。
因此,在实际应用中,需要根据具体需求选择适当的磁电式传感器。
磁电式转速传感器原理
磁电式转速传感器原理磁电式转速传感器是一种常用的测量设备,它能够准确地测量旋转机械设备的转速。
其原理是利用磁场感应原理和电磁感应原理,通过测量磁场变化和感应电压来确定转速。
下面将详细介绍磁电式转速传感器的原理及其工作过程。
1. 磁场感应原理。
磁电式转速传感器内部通常包含一个磁铁和一个线圈。
当旋转机械设备转动时,磁铁也随之旋转,从而改变了线圈周围的磁场分布。
根据法拉第电磁感应定律,磁场的变化会在线圈中感应出一个电动势。
这个感应电压的大小与磁场变化的速度成正比,也就是与旋转速度成正比。
2. 电磁感应原理。
当磁场发生变化时,线圈中就会产生感应电流。
这个感应电流会产生一个磁场,根据洛伦兹力的作用,这个磁场会受到一个力的作用,从而产生一个力矩,使得线圈产生一个转矩,使得线圈跟随磁场的变化而转动。
通过测量线圈的转动角度,就可以确定旋转机械设备的转速。
3. 工作过程。
当旋转机械设备转动时,磁铁也随之旋转,改变了线圈周围的磁场分布,从而在线圈中感应出一个电动势。
这个电动势经过放大和处理后,就可以得到一个与转速成正比的电压信号。
这个电压信号经过模数转换后,就可以得到一个数字信号,用来表示转速的大小。
4. 应用领域。
磁电式转速传感器广泛应用于汽车、船舶、飞机、机床、发电机组等旋转机械设备中,用来测量转速。
它具有测量精度高、响应速度快、结构简单、使用方便等优点。
在工业生产中起着至关重要的作用。
5. 总结。
磁电式转速传感器利用磁场感应原理和电磁感应原理,通过测量磁场变化和感应电压来确定转速,其工作原理简单而实用。
在现代工业中,磁电式转速传感器已经成为不可或缺的测量设备,为生产运行提供了可靠的技术支持。
磁电式轮速传感器工作原理
磁电式轮速传感器工作原理一、磁电式轮速传感器简介磁电式轮速传感器是一种常用的测量车辆车速的传感器,它可以通过测量车轮转动时产生的磁场变化来计算车速。
该传感器通常由磁铁、线圈和信号处理电路组成,可以在车辆的轮毂或制动盘上安装。
二、磁电式轮速传感器的工作原理1. 磁场变化产生电压信号当车辆行驶时,轮毂或制动盘上的磁铁会随着转动而产生磁场变化。
这种磁场变化会在附近的线圈中产生电压信号。
这个原理类似于发电机。
2. 信号处理接下来,经过信号处理电路对这些电压信号进行处理和放大。
通过这样的处理,可以得到一个精确且稳定的输出信号。
3. 计算车速最后,根据输出信号计算出车辆当前的速度。
由于每个轮子都有一个传感器,因此可以同时测量多个轮子的速度,并根据这些数据计算出整个车辆的平均速度。
三、磁电式轮速传感器优点和缺点1. 优点:(1)精度高:磁电式轮速传感器可以提供非常精确的车速测量结果,误差通常在1%以内。
(2)稳定性好:由于信号处理电路的存在,磁电式轮速传感器可以提供稳定的输出信号,不受温度和湿度等环境因素的影响。
(3)适用范围广:磁电式轮速传感器适用于各种车辆类型,包括汽车、卡车、拖拉机等。
2. 缺点:(1)安装位置要求高:磁电式轮速传感器必须安装在车辆轮毂或制动盘上,因此需要一些专业工具和技能来安装和维护。
(2)容易受到外界干扰:由于磁场变化是通过周围的线圈来检测的,因此容易受到周围其他磁场干扰。
这可能会导致误报或错误读数。
四、总结磁电式轮速传感器是一种常用的测量车辆车速的传感器。
它通过测量车轮转动时产生的磁场变化来计算车速。
该传感器具有精度高、稳定性好、适用范围广等优点,但也存在安装位置要求高、容易受到外界干扰等缺点。
磁电式轮速传感器工作原理
磁电式轮速传感器的工作原理1. 引言磁电式轮速传感器是一种常用于测量车辆轮胎转速和车速的传感器。
它通过检测车辆轮胎表面的磁场变化来计算车辆的运动参数。
本文将详细介绍磁电式轮速传感器的基本原理、构造和工作过程。
2. 基本原理磁电式轮速传感器基于法拉第电磁感应定律和霍尔效应,利用磁场与导体运动之间的相互作用来实现测量。
其基本原理如下:2.1 法拉第电磁感应定律法拉第电磁感应定律指出,当导体中有一相对于导体运动的磁场时,会在导体两端产生一个感应电动势。
这个电动势的大小与导体长度、磁场强度以及两者之间的运动速度有关。
2.2 霍尔效应霍尔效应是指当通过一块载流子密度为n、厚度为t、宽度为w的半导体材料时,垂直于载流子流动方向施加一个外加磁场时,在材料的一侧产生一个电压差。
这个电压差被称为霍尔电压,其大小与载流子密度、外加磁场强度以及载流子流动方向的垂直程度有关。
2.3 磁电式轮速传感器原理磁电式轮速传感器通常由一个或多个霍尔元件组成,这些元件放置在车辆轮胎附近。
当车辆行驶时,车轮上的磁铁会与霍尔元件之间产生磁场变化,从而引发霍尔效应。
通过测量霍尔电压的变化,可以计算出车辆的转速和速度。
3. 构造和工作过程磁电式轮速传感器通常由以下几部分组成:磁铁、霍尔元件、信号调理电路和输出接口。
3.1 磁铁磁铁是安装在车轮上的永久磁体,通常是一个环形或弧形的磁体。
它产生一个稳定的磁场,用于激发霍尔元件。
3.2 霍尔元件霍尔元件是用于检测车轮上磁场变化的传感器。
它通常由半导体材料制成,具有一定的载流子密度和尺寸。
霍尔元件通过与磁铁之间的磁场相互作用,产生霍尔电压。
3.3 信号调理电路信号调理电路用于放大、滤波和处理霍尔元件输出的电压信号。
它通常包括放大器、滤波器和比较器等组件,以确保输出信号的准确性和稳定性。
3.4 输出接口输出接口将经过信号调理处理后的电压信号转换为数字或模拟信号,并提供给车辆控制系统或仪表板显示。
3.5 工作过程当车辆行驶时,车轮上的磁铁会与安装在车轮附近的霍尔元件之间产生磁场变化。
2020年国家开放大学电大《传感器与测试技术》形成性考核附答案
《传感器与测试技术》形考1-4形考作业一一、判断题(Y对/N错)1.测试技术在自动控制系统中也是一个十分重要的环节。
Y2.金属应变片的灵敏系数比应变电阻材料本身的灵敏系数小。
Y3.热敏电阻传感器的应用范围很广,但是不能应用于宇宙飞船、医学、工业及家用电器等方面用作测温使用。
N4.电容式传感器的结构简单,分辨率高,但是工作可靠性差。
N5.电容式传感器可进行非接触测量,并能在高温、辐射、强烈振动等恶劣条件下工作。
Y6.电容式传感器不能用于力、压力、压差、振动、位移、加速度、液位的测量。
Y7.电感传感器的基本原理不是电磁感应原理。
N8.电感式传感器可以将被测非电量转换成线圈自感系数L或互感系数M的变化,再由测量电路转换为电压或电流的变化量输出。
Y9.互感传感器本身是变压器,有一次绕组圈和二次绕组。
Y10.差动变压器结构形式较多,有变隙式、变面积式和螺线管式等,但其工作原理基本一样。
Y11.传感器通常由敏感器件、转换器件和基本转换电路三部分组成。
Y12.电容式传感器是将被测量的变化转换成电容量变化的一种传感器。
Y 13.电阻应变片的绝缘电阻是指已粘贴的应变片的引线与被测试件之间的电阻值。
Y14.线性度是指传感器输出量与输入量之间的实际关系曲线偏离拟合直线的程度。
Y15.测量误差越小,传感器的精度越高。
Y16.传感器的灵敏度k等于传感器输出增量与被测量增量之比。
N17.传感器能检测到输入量最小变化量的能力称为分辨力,当分辨力以满量程输出的百分数表示时则称为分辨率。
Y18.测量转换电路首先要具有高精度,这是进行精确控制的基础。
N19.电桥是将电阻、电容、电感等参数的变化转换成电压或者电流输出的一种测量电路。
Y20.电桥有两种类型:直流电桥和交流电桥。
Y二、简答题1.传感器的输出信号通常可以分为哪两类?并举例说明。
答:1模拟式:传感器输出的是模拟电压量;2数字式:传感器输出的是数字量,如编码器式传感器。
2.传感器电路中常用的滤波器有哪些分类方法?答:模拟滤波器的选频作用,分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器;根据构成滤波器的元件类型,可分为RC、LC或晶体谐振滤波器;根据构成滤波器的电路性质,可分为有源滤波器和无源滤波器;根据滤波器所处理的信号性质,可分为模拟滤波器和数字滤波器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
N
S
线圈
S— 单匝线圈截面积 k — 与结构有关的系数。
运动体
8
9
B. 变磁阻式磁电传感器 ◆工作原理 由永磁铁产生恒定磁动势,线圈与磁铁部分相 对静止,由与被测量连结的导磁材料的运动来改变 磁场的磁阻。 磁通势NI
Fm 由于: Rm
因此:改变了磁通量。 (如图) ◆实例:
10
B. 变磁阻式磁电传感器
霍尔片是一块半导体单晶薄片(一般为
4mm×2mm×0.1mm),它的长度方向两端面上
焊有a、b两根引线,通常用红色导线,其焊 接处称为控制电极;在它的另两侧端面的中 间以点的形式对称地焊有c、d两根霍尔输出 引线,通常用绿色导线,其焊接处称为霍尔
电极。
37
二、测量电路
霍尔元件的基本测量电路如图522所示。 激励电流由电源E供给,可 变电阻RP用来调节激励电流I的大小。 RL为输出霍尔电势UH的负载电阻。通 常它是显示仪表、记录装臵或放大器 的输入阻抗。
4
磁通量的变化可以通过以下办法来实现: (1)磁铁与线圈之间作相对运动; (2)磁路中磁阻的变化; (3)恒定磁场中线圈面积的变化等。
分类(根据改变磁通量的不同办法)
1、恒定磁通式磁电传感器 2、变磁阻(变磁通)式磁电传感器
5
A. 恒定磁通式磁电传感器 分为动圈式和动铁式 ★ 线速度型 ◆工作原理 在永久磁铁产生的恒定磁场内,放置一个可动 线圈,当线圈沿磁场方向做直线运动时,线圈相对 于磁场的运动速度为v,若线圈圈数为N,则它所产 生的感应电动势为:
一、磁路的基本概念
i
u1
s
线圈通入电流后, 产生磁通,分主磁通和 漏磁通。
u2
:主磁通 s :漏磁通
铁心
(导磁性能好 的磁性材料)
线圈
磁路:主磁通所经过的闭合路径。
11
安培环路定律:磁场中任何闭合回路磁场强度的线积 分,等于通过这个闭合路径内电流的代数和。
线圈 在无分支的均匀磁路(磁路的 匝数N 材料和截面积相同,各处的磁场 I 强度相等)中,安培环路定律可 写成:
CD-1型振动速度传感器
使用时,将传感器固定在被测振动体上,永久磁 铁、铝架和架体一起随被测体振动。由于质量块有一 定质量,产生惯性力,而弹簧片又非常柔软,因此当 振动频率远大于传感器固有频率时,线圈在磁路系统 的环形气隙中相对永久磁铁运动,以振动体的振动速 度切割磁力线,产生感应电动势,通过引线9接到测量 电路上。 20
NI HL L L S 令: l R 称为磁阻 Rm m s
B
则:
对于均匀磁路
I N
S L
F NI L Rm φ S
磁路中的 欧姆定律
注:由于磁性材料 是非线性的,磁路欧姆定律多用作定性 分析,不做定量计算。
14
磁路与电路的比较
磁路
基本定律 磁阻 磁感应 强度
d
a c b
磁感应强度B为零时的情况
24
磁感应强度B 较大时的情况
作用在半导体薄片上的磁场强度 B越强,霍 尔电势也就越高。霍尔电势UH可用下式表示: UH=KH IB
磁感应强度B为零时的情况
25
霍尔效应演示
d
a b c
当磁场垂直于薄片时,电子受到洛仑 兹力的作用,向内侧偏移,在半导体薄片c、 d方向的端面之间建立起霍尔电势。
工作原理和结构类型
磁电感应式传感器是以电磁感应原理为基础 的,根据电磁感应定律,线圈两端的感应电动势 正比于线圈所包围的磁链对时间的变化率,即
d d W e dt dt
W--线圈匝数: Φ--线圈所包围的磁通量。
若线圈相对磁场运动为速度v或角转度ω时,则 上式可改写为 e=-WBlv 或 e=-WBsω 在传感器中,当结构参数确定后,即B、l、W、 s均为定值,那么感应电势e与线圈相对磁场的运动 速度(v或ω)成正比。
得:
v = -I / nqbd
所以:
若取
UH = -BI / nqd
RH = -1 / nq 则
UH IB RH d
RH被定义为霍尔元件的霍尔系数。显然,霍尔系 数由半导体材料的性质决定,它反映材料霍尔效 应的强弱。
n为半导体中的电子浓度,即单位体积中的电子数,负号表
示电子运动方向与电流方向相反。
26
Байду номын сангаас
一、 霍尔效应
B d
b FL v I UH
FE
l
图 霍尔效应
27
设霍尔元件为N型半导体,当它通电流I时
FL = qvB 当电场力与洛仑兹力相等时,达到动态平衡, 这时有 qEH=qvB
故霍尔电场的强度为
EH=vB
所以,霍尔电压UH可表示为
UH = EH b = vBb
28
流过霍尔元件的电流为 I = dQ / dt =-bdvnq
Ri 是指控制电流极之间的电阻值。 R0 指霍尔电极间的电阻值。 Ri 、R0可以在无磁场时用欧姆表等测量。
41
3.不等位电势U0及零位电阻r0
在额定控制电流I下,不加磁场时霍尔电极
间的空载霍尔电势。 当霍尔元件的激励电流为I时, 若元件所处位臵磁感
应强度为零, 则它的霍尔电势应该为零, 但实际不为零。 这时测得的空载霍尔电势称不等位电势。
v EI
U
l
U H vbB bB 所以 l
U
RH BUb IB RH B U RH B U U H RH d d R d l l bd 比较得出电阻率 与霍尔系数RH和 RH 或 RH 载流子迁移率 之间的关系:
而
31
结论:① 如果是P型半导体,其载流子是空
H dl I
磁路 长度L
NI HL
NI:称为磁动势。一般用 F 表示。 F=NI
12
在非均匀磁路(磁路的材料或截面积不同,或磁场 强度不等)中,总磁动势等于各段磁压降之和。
NI HL
总磁动势
例:
I
N
l0
l
NI H l H 0l0
13
二. 磁路的欧姆定律:
磁电感应式转速传感器
转子2与转轴1固定,转子2、 定子5和永久磁铁3组成磁路 系统。 转子2和定子5的环形端 面上都均匀地铣了一些 齿和槽, 测量转速时,传感器的转轴1和被测物转轴相连接, 因而带动转子2转动。 频率f与转速n及齿数z的关系为: f=z×n/60 式中:z为齿数;n为转速(单位为r/min).
U 0 K H IB B 0 0
42
产生的原因有: ① 霍尔电极安装位臵不对称或不在同一等电位面
上; ② 半导体材料不均匀造成了电阻率不均匀或是几何尺寸
不均匀(如片厚薄不均匀等); ③ 激励电极接触不良造成激励 电流不均匀分布等。 这些工艺上问题都将使等位面歪斜,致使两霍尔电极不在同 一等位面上而产生不等位电势。
29
设
RH KH d
U H K H IB
KH即为霍尔元件的灵敏度,它表示一个霍尔元件在 单位控制电流和单位磁感应强度时产生的霍尔电压的 大小. 单位是mV/(mA· T)
1 KH nqd
30
材料中电子在电场作用下运动速度的大小常用载流子迁 移率来表征,即在单位电场强度作用下,载流子的平均 v 速度值。即 EI
v
式中: B — 磁场的磁感应强度
e NBlv
N S
l — 单匝线圈的有效长度 ◆强调:
补偿线圈
线速度v或角速度ω指的是线圈与磁铁的相对速度, 6 而不是线圈的绝对速度。
线圈
7
A. 恒定磁通式磁电传感器 ★ 角速度型 由永久磁铁产生恒定磁场,线圈在磁场中以 角速度ω旋转,则:
e kNBS
先在金属材料中发现了霍尔效应, 但
由于金属材料的霍尔效应太弱而没有 得到应用。随着半导体技术的发展, 开始用半导体材料制成霍尔元件, 由 于它的霍尔效应显著而得到应用和发
展。霍尔传感器广泛用于电磁测量、
压力、加速度、振动等方面的测量。
霍尔元件是一 种四端元件
23
5.2.1 霍尔效应
半导体薄片置于磁感应强度为B的磁场中, 磁场方向垂直于薄片,当有电流I流过薄片时, 在垂直于电流和磁场的方向上将产生电动势UH, 这种现象称为霍尔效应。
安培环路 定律
I
Φ
N
F NI l Φ Rm B Rm S S HL
欧姆定律 电阻
0
基尔霍夫 电流定律
电路
I + _E R
电流 强度
基尔霍夫 电压定律
E l I R I S J R
S
E I U 0
15
B. 变磁阻式磁电传感器 ◆ 工作原理 如图为测转速的磁阻式磁电传感器。 (1)线圈、 磁铁静止不动,测量齿轮安装在被测 旋转体上,随之一起转动。 (2)每转动一个齿,齿的凹凸引起磁路磁阻变化 一次,磁通也就变化一次,线圈中产生感应电势, 其变化频率等于被测转速与测量齿轮齿数的乘积。 ◆ 特点 结构简单,但输出 信号较小,且因高速轴 上加装齿轮较危险而不 宜测量高转速。
同学们好!
南京 明孝陵 神道
1
第5章 磁电式传感器
磁电式传感器是通过磁电作用将被测量(如 振动、位移、转速等)转换成电信号的一种传感 器。磁电感应式传感器、霍尔式传感器 磁电感应式传感器是利用导体和磁场发生 相对运动产生感应电势的; 霍尔式传感器为载流半导体在磁场中有电 磁效应(霍尔效应)而输出电势的。
38
图5-22 霍尔元件的基本测量电路
39
RL (a)基本测量电路 W E
UH