【K12教育学习资料】[学习]广东省广州市南沙区2017年中考数学 计算题强化训练(无答案)
广东省广州市南沙区2017年中考数学计算题强化训练
计算题强化(一) 班级: 姓名: 1、先化简,再求值:2422x x x ---,其中1x =-2、先化简再求值:2132446222--+-•+-+a a a a a a a ,其中31-=a4、已知122=-x x ,求代数式2)1()13)(1(+-+-x x x 的值。
5、(1)计算1020103)5(97)1(-•-•+---π. (2)解方程:111=+-xx x .2017年中考计算题强化(二)班级: 姓名: 1、解方程:1262=++-x x x 2、解方程组:⎩⎨⎧==+1-25y x y x3、解不等式5323>-x 4、解不等式:7)1(6)2(5+-<-x x7、 解不等式组:312(1)312x x x ->+⎧⎪⎨-≤⎪⎩,并在数轴上表示出其解集.(2)若(1)中的不等式的最小整数解是关于x 的方程32=-ax x 的解,求a中考计算题强化(三)班级: 姓名:1、解方程:=3 2、 解方程:3221+=x x3、解方程:632123-=+-x x .4、已知0132=-+x x ,求代数式21144212+--++-•-x x x x x x 的值.5、先化简,再求值:2(1)(1)x x x ++-,其中2x =-.2017年中考计算题强化(四)班级: 姓名:1、解方程046x 2=--x2、先化简,再求值:232()224x x x x x x -÷-+-,其中34x =-3、计算:0003201160sin 8-33)568(cos )21()1(+++---π4、若m 满足式子322m m +>,试判断关于x 的一元二次方240x x m -+=的根的情况.2017中考计算题强化(五)班级: 姓名:1、已知2220a ab b ++=,求代数式(4)(2)(2)a a b a b a b +-+-的值。
2、 化简:2211x x x x -÷+3、先化简式子231111x x x x x -÷--+-,然后从22x -<≤中选择一个合适的整数x 代入求值.4、先化简,再求值:2)2())((a a b b b a b a --+-+,其中22a b =-=.5、先化简,再求值:12+-x x x ÷211x x -+,其中34x x +=。
(完整版)2017年广东省中考数学试题与参考答案
2017年广东省初中毕业生学业考试数 学说明:1.全卷共6页,满分为120 分,考试用时为100分钟。
2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。
用2B 铅笔把对应该号码的标号涂黑。
3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。
4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
5.考生务必保持答题卡的整洁。
考试结束时,将试卷和答题卡一并交回。
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 5的相反数是( ) A. B.5 C.- D.-52.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。
2016年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )A.0.4×B.0.4×C.4×D.4× 3.已知,则的补角为( )A. B. C. D. 4.如果2是方程的一个根,则常数k 的值为( )A.1B.2C.-1D.-25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( )A.95B.90C.85D.80 6.下列所述图形中, 既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.圆 7.如题7图,在同一平面直角坐标系中,直线与双曲线 相交于A 、B 两点,已知点A 的坐标为(1,2), 则点B 的坐标为( ) A.(-1,-2) B.(-2,-1) C.(-1,-1) D.(-2,-2)15159101010910101070A ∠=︒A ∠110︒70︒30︒20︒230x x k -+=11(0)y k x k =≠22(0)k y k x=≠题7图8.下列运算正确的是( )A. B. C. D.9.如题9图,四边形ABCD 内接于⊙O ,DA=DC ,∠CBE=50°, 则∠DAC 的大小为( )A.130°B.100°C.65°D.50°10.如题10图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①;②;③; ④,其中正确的是( ) A.①③ B.②③ C.①④ D.②④二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:a a +2 .12.一个n 边形的内角和是,那么n= . 13.已知实数a,b 在数轴上的对应点的位置如题13图所示, 则 0(填“>”,“<”或“=”).14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 . 15.已知,则整式的值为 .16.如题16图(1),矩形纸片ABCD 中,AB=5,BC=3,先按题16图(2)操作,将矩形纸片ABCD沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按题16图(3)操作:沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG,则A 、H 两点间的距离为 .223a a a +=325·a a a =426()a a =424a a a +=ABF ADF S S =△△4CDF CBF S S =△△2ADF CEF S S =△△2ADF CDF S S =△△720︒ab ÷431a b ÷=863a b ÷-三、解答题(一)(本大题共3题,每小题6分,共18分)17.计算:.18.先化简,再求值,其中x =√5 .19.学校团委组织志愿者到图书馆整理一批新进的图书。
广东省广州市2017年中考数学真题试题(含解析)
广东省广州市2017年中考数学真题试题第一部分选择题(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图1,数轴上两点,A B表示的数互为相反数,则点B表示的()A. -6 B.6 C. 0 D.无法确定【答案】B【解析】试题分析:-6的相反数是6,A点表示-6,所以,B点表示6.故选答案B.考点:相反数的定义2.如图2,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到图形为()【答案】A考点:旋转的特征3. 某6人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁)12,13,14,15,15,15.这组数据中的众数,平均数分别为( )A .12,14B . 12,15C .15,14D . 15,13 【答案】C 【解析】试题分析:15出现次数最多,有3次,所以,众数为15, 11213141515156+++++()=14.故选C.考点: 众数,中位数的求法 4. 下列运算正确的是( ) A .362a b a b ++= B .2233a b a b ++⨯= C. 2a a = D .()0a a a =≥ 【答案】D考点:代数式的运算5.关于x 的一元二次方程280x x q ++=有两个不相等的实数根,则q 的取值范围是( ) A .16q < B .16q > C. 4q ≤ D .4q ≥ 【答案】A 【解析】试题分析:根的判别式为△=6440q ->,解得:16q <.故选答案A. 考点:一元二次方程根的判别式的性质 6. 如图3,O 是ABC ∆的内切圆,则点O 是ABC ∆的( )图3A . 三条边的垂直平分线的交点B .三角形平分线的交点 C. 三条中线的交点 D .三条高的交点 【答案】B 【解析】试题分析:内心到三角形三边距离相等,到角的两边距离相等的点在这个角的角平分线上,故选B 。
2017年广东省中考数学试题(含参考答案)
2017年广东省初中毕业生学业考试数 学说明:1.全卷共6页,满分为120 分,考试用时为100分钟。
2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。
用2B 铅笔把对应该号码的标号涂黑。
3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。
4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
5.考生务必保持答题卡的整洁。
考试结束时,将试卷和答题卡一并交回。
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 5的相反数是( ) A.B.5C.-D.-5 2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。
2016年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )A.0.4×B.0.4×C.4×D.4× 3.已知,则的补角为( )A. B. C. D. 4.如果2是方程的一个根,则常数k 的值为( )A.1B.2C.-1D.-25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( )A.95B.90C.85D.80 6.下列所述图形中, 既是轴对称图形又是中心对称图形的是( ) A.等边三角形 B.平行四边形 C.正五边形 D.圆 7.如题7图,在同一平面直角坐标系中,直线与双曲 线 相交于A 、B 两点,已知点A 的坐标为(1,2), 则点B 的坐标为( )15159101010910101070A ∠=︒A ∠110︒70︒30︒20︒230x x k -+=11(0)y k x k =≠22(0)k y k x=≠A.(-1,-2)B.(-2,-1)C.(-1,-1)D.(-2,-2) 8.下列运算正确的是( )A. B. C. D.9.如题9图,四边形ABCD 内接于⊙O ,DA=DC ,∠CBE=50°, 则∠DAC 的大小为( )A.130°B.100°C.65°D.50°10.如题10图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①;②;③;④,其中正确的是( ) A.①③ B.②③ C.①④ D.②④二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上. 11.分解因式:a a +2 .12.一个n 边形的内角和是,那么n= . 13.已知实数a,b 在数轴上的对应点的位置如题13图所示, 则 0(填“>”,“<”或“=”).14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 . 15.已知,则整式的值为 .16.如题16图(1),矩形纸片ABCD 中,AB=5,BC=3,先按题16图(2)操作,将矩形纸片ABCD 沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按题16图(3)操作:沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG,则A 、H 两点间的距离为 .223a a a +=325·a a a =426()a a =424a a a +=ABF ADF S S =△△4CDF CBF S S =△△2ADF CEF S S =△△2ADF CDF S S =△△720︒ab ÷431a b ÷=863a b ÷-三、解答题(一)(本大题共3题,每小题6分,共18分)17.计算:.18.先化简,再求值,其中x =√5 .19.学校团委组织志愿者到图书馆整理一批新进的图书。
2017年广东省广州市中考数学试卷有答案
数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前广东省广州市2017年初中毕业生学业考试数 学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,数轴上两点A ,B 表示的数互为相反数,则点B 表示 的数为 ( ) A .6- B .6 C .0 D .无法确定2.如下右图,将正方形ABCD 中的阴影三角形绕点A 顺时针旋转90︒后,得到的图形为( )A B C D3.某6人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁)12,13,14,15,15,15.这组数据中的众数,平均数分别为 ( ) A .12,14 B .12,15 C .15,14 D .15,134.下列运算正确的是 ( )A .362a b a b ++=B .2233a b a b++⨯=Ca = D .()0a a a =≥ 5.关于x 的一元二次方程280x x q ++=有两个不相等的实数根,则q 的取值范围是( ) A .16q <B .16q >C .4q ≤D .4q ≥ 6.如图,O 是ABC △的内切圆,则点O 是ABC △的( )A .三条边的垂直平分线的交点B .三条角平分线的交点C .三条中线的交点D .三条高的交点7.计算223()b a b a,结果是( ) A .55a b B .45a bC .5abD .56a b8.如图,E ,F 分别是□ABCD 的边AD ,BC 上的点,6EF =,60DEF ∠=︒,将四边形EFCD 沿EF 翻折,得到EFC D '',ED '交BC 于点G ,则GEF △的周长为( ) A .6 B .12 C .18D .249.如图,在O 中,AB 是直径,CD 是弦,AB CD ⊥,垂足为E ,连接CO ,AD ,20BAD ∠=︒,则下列说法中正确的是( )A .2AD OB = B .CE EO =C .40OCE ∠=︒D .2BOC BAD ∠=∠ 10.0a ≠,函数ay x=与2y ax a =-+在同一直角坐标系中的大致图象可能是 ( )第Ⅱ卷(非选择题 共120分)二、填空题(本大题共6小题,每小题3分,共18分.请把答案填写在题中的横线上) 11.如图,四边形ABCD 中,AD BC ∥,110A ∠=︒,则B ∠= .12.分解因式:29xy x -= .13.当x = 时,二次函数226y x x =-+有最小值.ABCD毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共18页) 数学试卷 第4页(共18页)14.如图,Rt ABC △中,90C ∠=︒,15BC =,15tan 8A =,则AB = .15.如图,圆锥的侧面展开图是一个圆心角为120︒的扇形,则圆锥的母线l = .16.如图,平面直角坐标系中O 是原点,□ABCD 的顶点A ,C 的坐标分别是(8,0),(3,4)点D ,E 把线段OB 三等分,延长,CD CE 分别交OA ,AB 于点F ,G ,连接FG ,则下列结论:①F 是OA 的中点; ②OFD △与BEG △相似; ③四边形DEGF 的面积是203;④3OD =其中正确的结论是 (填写所有正确结论的序号).三、解答题(本大题共9小题,共102分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分9分)解方程组:5,2311.x y x y +=⎧⎨+=⎩18.(本小题满分9分)如图,点,E F 在AB 上,AD BC =,A B ∠=∠,AE BF =.求证:ADF BCE △≌△.19.(本小题满分10分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t (单位:小时),将学生分成五类:A 类(02t ≤≤),B 类(24t <≤),C 类(46t <≤),D 类(68t <≤),E 类(8t >),绘制成尚不完整的条形统计图如图. 根据以上信息,解答下列问题:(1)E 类学生有 人,补全条形统计图; (2)D 类学生人数占被调查总人数的__________%;(3)从该班做义工时间在04t ≤≤的学生中任选2人,求这2人做义工时间都在24t <≤中的概率.20.(本小题满分10分)如图,在Rt ABC △中,90B ∠=︒,30A ∠=︒,AC =.(1)利用尺规作线段AC 的垂直平分线DE ,垂足为E ,交AB 于点D ;(保留作图痕迹,不写作法)(2)若ADE △的周长为a ,先化简()()211T a a a =+--,再求T 的值.数学试卷 第5页(共18页) 数学试卷 第6页(共18页)21.(本小题满分12分)甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的43倍,甲队比乙队多筑路20天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里.22.(本小题满分12分)将直线31y x =+向下平移1个单位长度,得到直线3y x m =+,若反比例函数k y x=的图象与直线3y x m =+相交于点A ,且点A 的纵坐标是3. (1)求m 和k 的值;(2)结合图象求不等式3kx m x+>的解集.23.(本小题满分12分)已知抛物线21y x mx n =-++,直线2y kx b =+,1y 的对称轴与2y 交于点(1,5)A -,点A 与1y 的顶点B 的距离是4.(1)求1y 的解析式;(2)若2y 随着x 的增大而增大,且1y 与2y 都经过x 轴上的同一点,求2y 的解析式.24.(本小题满分14分)如图,矩形ABCD 的对角线AC ,BD 相交于点O ,COD △关于CD 的对称图形为CED △.(1)求证:四边形OCED 是菱形;(2)连接AE ,若6cm AB =,cm BC =. ①求sin EAD ∠的值;②若点P 为线段AE 上一动点(不与点A 重合),连接OP .一动点Q 从点O 出发,以1cm/s 的速度沿线段OP 匀速运动到点P ,再以1.5cm/s 的速度沿线段PA 匀速运动到点A ,到达点A 后停止运动.当点Q 沿上述路线运动到点A 所需要的时间最短时,求AP 的长和点Q 走完全程所需的时间.25.(本小题满分14分)如图,AB 是O 的直径,AC BC =,2AB =,连接AC . (1)求证:45CAB ∠=︒;(2)若直线l 为O 的切线,C 是切点,在直线l 上取一点D ,使BD AB =,BD 所在的直线与AC 所在的直线相交于点E ,连接AD .①试探究AE 与AD 之间的数量关系,并证明你的结论; ②EBCD是否为定值?若是,请求出这个定值;若不是,请说明理由.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-----------------------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共18页) 数学试卷 第8页(共18页)广东省广州市2017年初中毕业生学业考试数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】∵数轴上两点A ,B 表示的数互为相反数,点A 表示的数为6-,∴点B 表示的数为6,故选B 。
广东省2017年中考数学真题试题(含解析)
广东省2017年中考数学真题试题一、选择题(本大题共10小题,每小题3分,共30分)1.5的相反数是( )A .15B .5C .﹣15D .﹣5 【答案】D .【解析】试题分析:根据相反数的定义有:5的相反数是﹣5.故选D .考点:相反数.2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为( )A .0.4×109B .0.4×1010C .4×109D .4×1010【答案】C .【解析】试题分析:4000000000=4×109.故选C .考点:科学记数法—表示较大的数.3.已知∠A =70°,则∠A 的补角为( )A .110°B .70°C .30°D .20°【答案】A .考点:余角和补角.4.如果2是方程230x x k -+=的一个根,则常数k 的值为( )A .1B .2C .﹣1D .﹣2【答案】B .【解析】试题分析:∵2是一元二次方程230x x k -+=的一个根,∴22﹣3×2+k =0,解得,k =2.故选B .考点:一元二次方程的解.5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是( )A .95B .90C .85D .80【答案】B .【解析】试题分析:数据90出现了两次,次数最多,所以这组数据的众数是90.故选B .考点:众数.6.下列所述图形中,既是轴对称图形又是中心对称图形的是( )A .等边三角形B .平行四边形C .正五边形D .圆【答案】D .考点:中心对称图形;轴对称图形.7.如图,在同一平面直角坐标系中,直线1y k x =(1k ≠0)与双曲线2k y x=(2k ≠0)相交于A ,B 两点,已知点A 的坐标为(1,2),则点B 的坐标为( )A .(﹣1,﹣2)B .(﹣2,﹣1)C .(﹣1,﹣1)D .(﹣2,﹣2)【答案】A .【解析】试题分析:∵点A 与B 关于原点对称,∴B 点的坐标为(﹣1,﹣2).故选A .考点:反比例函数与一次函数的交点问题.8.下列运算正确的是( )A .223a a a +=B .325a a a ⋅=C .426()a a = D .424a a a += 【答案】B .考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.9.如图,四边形ABCD 内接于⊙O ,DA =DC ,∠CBE =50°,则∠DAC 的大小为( )A .130°B .100°C .65°D .50°【答案】C .【解析】试题分析:∵∠CBE =50°,∴∠ABC =180°﹣∠CBE =180°﹣50°=130°,∵四边形ABCD 为⊙O 的内接四边形,∴∠D =180°﹣∠ABC =180°﹣130°=50°,∵DA =DC ,∴∠DAC =(180°-∠D )÷2=65°,故选C . 考点:圆内接四边形的性质.10.如图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①S △ABF =S △ADF ;②S △CDF =4S △CEF ;③S △ADF =2S △CEF ;④S △ADF =2S △CDF ,其中正确的是( )A .①③B .②③C .①④D .②④【答案】C .考点:正方形的性质.二、填空题(本大题共6小题,每小题4分,共24分)11.分解因式:a a +2= .【答案】a (a +1).【解析】试题分析:a a +2=a (a +1).故答案为:a (a +1).考点:因式分解﹣提公因式法.12.一个n 边形的内角和是720°,则n = .【答案】6.【解析】试题分析:设所求正n 边形边数为n ,则(n ﹣2)•180°=720°,解得n =6.考点:多边形内角与外角.13.已知实数a ,b 在数轴上的对应点的位置如图所示,则a +b 0.(填“>”,“<”或“=”)【答案】>.【解析】试题分析:∵a在原点左边,b在原点右边,∴a<0<b,∵a离开原点的距离比b离开原点的距离小,∴|a|<|b|,∴a+b>0.故答案为:>.考点:实数大小比较;实数与数轴.14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.【答案】25.【解析】试题分析:∵5个小球中,标号为偶数的有2、4这2个,∴摸出的小球标号为偶数的概率是25,故答案为:25.考点:概率公式.15.已知4a+3b=1,则整式8a+6b﹣3的值为.【答案】﹣1.考点:代数式求值;整体思想.16.如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H 处,折痕为FG,则A、H两点间的距离为.【解析】试题分析:如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,∴AH考点:翻折变换(折叠问题);矩形的性质;综合题.三、解答题(本大题共3小题,每小题6分,共18分)17.计算:()101713π-⎛⎫---+ ⎪⎝⎭. 【答案】9.考点:实数的运算;零指数幂;负整数指数幂.18.先化简,再求值:()211422x x x ⎛⎫+⋅-⎪-+⎝⎭,其中x 5 【答案】2x ,25【解析】试题分析:先计算括号内分式的加法,再计算乘法即可化简原式,将x 的值代入求解可得.试题解析:原式=()()()()222222x x x x x x ++-+--+=2x 当x 5=25考点:分式的化简求值.19.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?【答案】男生志愿者有12人,女生志愿者有16人.【解析】试题分析:设男生志愿者有x 人,女生志愿者有y 人,根据“若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本”,即可得出关于x、y 的二元一次方程组,解之即可得出结论.试题解析:设男生志愿者有x人,女生志愿者有y人,根据题意得:302068050401240x yx y+=⎧⎨+=⎩,解得:1216xy=⎧⎨=⎩.答:男生志愿者有12人,女生志愿者有16人.考点:二元一次方程组的应用.四、解答题(本大题共3小题,每小题7分,共21分)20.如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.【答案】(1)作图见见解析;(2)100°.试题解析:(1)如图所示;(2)∵DE是AB的垂直平分线,∴AE=BE,∴∠EAB=∠B=50°,∴∠AEC=∠EAB+∠B=100°.考点:作图—基本作图;线段垂直平分线的性质.21.如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.【答案】(1)证明见解析;(2)150°.试题解析:(1)证明:如图,连结DB、DF.∵四边形ABCD,ADEF都是菱形,∴AB=BC=CD=DA,AD=DE=EF=FA.在△BAD与△FAD中,∵AB=AF,∠BAD=∠FAD,AD=AD,∴△BAD≌△FAD,∴DB=DF,∴D在线段BF的垂直平分线上,∵AB=AF,∴A在线段BF的垂直平分线上,∴AD是线段BF的垂直平分线,∴AD⊥BF;(2)如图,设AD⊥BF于H,作DG⊥BC于G,则四边形BGDH是矩形,∴DG=BH=12BF.∵BF=BC,BC=CD,∴DG=12CD.在直角△CDG中,∵∠CGD=90°,DG=12CD,∴∠C=30°,∵BC∥AD,∴∠ADC=180°﹣∠C=150°.考点:菱形的性质.22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表(1)填空:①m = (直接写出结果);②在扇形统计图中,C 组所在扇形的圆心角的度数等于 度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?【答案】(1)①52;②144;(2)720.试题解析:(1)①调查的人数为:40÷20%=200(人),∴m =200﹣12﹣80﹣40﹣16=52;②C 组所在扇形的圆心角的度数为80200×360°=144°;故答案为:52,144;(2)九年级体重低于60千克的学生大约有125280200++×1000=720(人). 考点:扇形统计图;用样本估计总体;频数(率)分布表.五、解答题(本大题共3小题,每小题9分,共27分)23.如图,在平面直角坐标系中,抛物线b ax x y ++-=2交x 轴于A (1,0),B (3,0)两点,点P 是抛物线上在第一象限内的一点,直线BP 与y 轴相交于点C .(1)求抛物线b ax x y ++-=2的解析式;(2)当点P 是线段BC 的中点时,求点P 的坐标;(3)在(2)的条件下,求sin ∠OCB 的值.【答案】(1)243y x x =-+-;(2)P 的坐标为(32,34);(3)552.(2)∵点C 在y 轴上,所以C 点横坐标x =0,∵点P 是线段BC 的中点,∴点P 横坐标x P =032+=23, ∵点P 在抛物线243y x x =-+-上,∴y P =233()4322-+⨯-=34,∴点P 的坐标为(32,34);(3)∵PM ∥OC ,∴∠OCB =∠MPB ,PM =34,MB =32,∴PB =,∴sin ∠MPB =55254323==PB BM ,∴sin ∠OCB =552. 考点:抛物线与x 轴的交点;待定系数法求二次函数解析式;解直角三角形.24.如图,AB 是⊙O 的直径,AB =E 为线段OB 上一点(不与O ,B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,AF ⊥PC 于点F ,连接CB .(1)求证:CB 是∠ECP 的平分线;(2)求证:CF =CE ;(3)当34CF CP =时,求劣弧BC 的长度(结果保留π)【答案】(1)证明见解析;(2)证明见解析;(3)3.(2)证明:连接AC .∵AB 是直径,∴∠ACB =90°,∴∠BCP +∠ACF =90°,∠ACE +∠BCE =90°,∵∠BCP =∠BCE ,∴∠ACF =∠ACE ,∵∠F =∠AEC =90°,AC =AC ,∴△ACF ≌△ACE ,∴CF =CE .考点:相似三角形的判定与性质;垂径定理;切线的性质;弧长的计算.25.如图,在平面直角坐标系中,O 为原点,四边形AB CO 是矩形,点A ,C 的坐标分别是A (0,2)和C (230),点D 是对角线AC 上一动点(不与A ,C 重合),连结BD ,作DE ⊥DB ,交x 轴于点E ,以线段DE ,DB 为邻边作矩形BDEF .(1)填空:点B 的坐标为 ;(2)是否存在这样的点D ,使得△DEC 是等腰三角形?若存在,请求出AD 的长度;若不存在,请说明理由;(3)①求证:DE DB 3 ②设AD =x ,矩形BDEF 的面积为y ,求y 关于x 的函数关系式(可利用①的结论),并求出y 的最小值.【答案】(1)(232);(2)AD 的值为2或23(3)①证明见解析;②2323433y x x =-+x =3时,y(3)①由(2)可知,B 、D 、E 、C 四点共圆,推出∠DBC =∠DCE =30°,由此即可解决问题;②作DH ⊥AB 于H .想办法用x 表示BD 、DE 的长,构建二次函数即可解决问题;试题解析:(1)∵四边形AOCB 是矩形,∴BC =OA =2,OC =AB =BCO =∠BAO =90°,∴B (2).故答案为:(2).(2)存在.理由如下:连接BE ,取BE 的中点K ,连接DK 、KC .∵∠BDE =∠BCE =90°,∴KD =KB =KE =KC ,∴B 、D 、E 、C 四点共圆,∴∠DBC =∠DCE ,∠EDC =∠EBC ,∵tan ∠ACO =AO OC =3,∴∠ACO =30°,∠ACB =60° ①如图1中,△DEC 是等腰三角形,观察图象可知,只有ED =EC ,∴∠DBC =∠DCE =∠EDC =∠EBC =30°,∴∠DBC =∠BCD =60°,∴△DBC 是等边三角形,∴DC =BC =2,在Rt △AOC 中,∵∠ACO =30°,OA =2,∴AC =2AO =4,∴AD =AC ﹣CD =4﹣2=2,∴当AD =2时,△DEC 是等腰三角形.②如图2中,∵△DCE 是等腰三角形,易知CD =CE ,∠DBC =∠DEC =∠CDE =15°,∴∠ABD =∠ADB =75°,∴AB =AD =综上所述,满足条件的AD 的值为2或(3)①由(2)可知,B 、D 、E 、C 四点共圆,∴∠DBC =∠DCE =30°,∴tan ∠DBE =DE DB ,∴DE DB ②如图2中,作DH ⊥AB 于H .考点:相似形综合题;最值问题;二次函数的最值;动点型;存在型;分类讨论;压轴题.。
(精品word版)2017年广东省广州市中考数学
2017年广东省广州市中考数学一、选择题(本大题共10小题,每小题3分,共30分)1.如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为( )A.﹣6B.6C.0D.无法确定解析:∵数轴上两点A,B表示的数互为相反数,点A表示的数为﹣6,∴点B表示的数为6.答案:B2.如图,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为( )A.B.C.D.解析:由旋转的性质得,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为A.答案:A.3.某6人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁):12,13,14,15,15,15,这组数据中的众数,平均数分别为( )A.12,14B.12,15C.15,14D.15,13解析:∵这组数据中,12出现了1次,13出现了1次,14出现了1次,15出现了3次,∴这组数据的众数为15,∵这组数据分别为:12、13、14、15、15、15∴这组数据的平均数121314151515146+++++=.答案:C4.下列运算正确的是( ) A.362a b a b ++=B.2233a b a b ++⨯=a =D.|a|=a(a ≥0)解析::A 、36a b+无法化简,故此选项错误;B 、22233a b a b++⨯=,故此选项错误; C 、2a a =,故此选项错误;D 、|a|=a(a ≥0),正确.答案:D.5.关于x 的一元二次方程x 2+8x+q=0有两个不相等的实数根,则q 的取值范围是( ) A.q <16 B.q >16 C.q ≤4 D.q ≥4解析:∵关于x 的一元二次方程x 2+8x+q=0有两个不相等的实数根,∴△=82﹣4q=64﹣4q >0, 解得:q <16. 答案:A.6.如图,⊙O 是△ABC 的内切圆,则点O 是△ABC 的( )A.三条边的垂直平分线的交点B.三条角平分线的交点C.三条中线的交点D.三条高的交点解析:∵⊙O 是△ABC 的内切圆, 则点O 到三边的距离相等,∴点O 是△ABC 的三条角平分线的交点; 答案:B.7.计算()232b a b a⋅的结果是( )A.a 5b 5B.a 4b 5C.ab5D.a5b6解析:原式=26355ba b a ba⋅=.答案:A.8.如图,E,F分别是▱ABCD的边AD、BC上的点,EF=6,∠DEF=60°,将四边形EFCD沿EF 翻折,得到EFC′D′,ED′交BC于点G,则△GEF的周长为( )A.6B.12C.18D.24解析:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠EGF,∵将四边形EFCD沿EF翻折,得到EFC′D′,∴∠GEF=∠DEF=60°,∴∠AEG=60°,∴∠EGF=60°,∴△EGF是等边三角形,∵EF=6,∴△GEF的周长=18.答案:C.9.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是( )A.AD=2OBB.CE=EOC.∠OCE=40°D.∠BOC=2∠BAD解析:∵AB⊥CD,∴BC BD=,CE=DE,∴∠BOC=2∠BAD=40°,∴∠OCE=90°﹣40°=50°.答案:D.10.a≠0,函数yax=与y=﹣ax2+a在同一直角坐标系中的大致图象可能是( )A. B. C. D.解析:当a>0时,函数yax=的图象位于一、三象限,y=﹣ax2+a的开口向下,交y轴的正半轴,没有符合的选项,当a<0时,函数yax=的图象位于二、四象限,y=﹣ax2+a的开口向上,交y轴的负半轴,D选项符合.答案:D.二、填空题(本大题共6小题,每小题3分,共18分)11.如图,四变形ABCD中,AD∥BC,∠A=110°,则∠B=____.解析:∵AD∥BC,∴∠A+∠B=180°,又∵∠A=110°,∴∠B=70°,答案:70°.12.分解因式:xy2﹣9x=____.解析:xy2﹣9x=x(y2﹣9)=x(y﹣3)(y+3).答案:x(y﹣3)(y+3).13.当x=____时,二次函数y=x 2﹣2x+6有最小值____.解析:∵y=x 2﹣2x+6=(x ﹣1)2+5,∴当x=1时,二次函数y=x 2﹣2x+6有最小值5. 答案:1、5.14.如图,Rt △ABC 中,∠C=90°,BC=15,15tan 8A =,则AB=____.解析:∵Rt △ABC 中,∠C=90°,15tan 8A =,BC=15, ∴15158AC =, 解得AC=8,根据勾股定理得,17AB ===.答案:17.15.如图,圆锥的侧面展开图是一个圆心角为120°的扇形,则圆锥的母线l=____.解析:圆锥的底面周长=2cm π=,设圆锥的母线长为R ,则:120180Rπ⨯=,解得R=.答案:.16.如图,平面直角坐标系中O 是原点,▱ABCD 的顶点A ,C 的坐标分别是(8,0),(3,4),点D ,E 把线段OB 三等分,延长CD 、CE 分别交OA 、AB 于点F ,G ,连接FG.则下列结论:①F 是OA 的中点;②△OFD 与△BEG 相似;③四边形DEGF 的面积是203;④OD = 其中正确的结论是____(填写所有正确结论的序号).解析:①∵四边形OABC 是平行四边形, ∴BC ∥OA ,BC=OA , ∴△CDB ∽△FDO , ∴BC BDOF OD=, ∵D 、E 为OB 的三等分点,∴221BD OD ==, ∴2BCOF=, ∴BC=2OF , ∴OA=2OF ,∴F 是OA 的中点; 所以①结论正确;②如图,延长BC 交y 轴于H ,由C(3,4)知:OH=4,CH=3, ∴OC=5, ∴AB=OC=5, ∵A(8,0), ∴OA=8, ∴OA ≠AB ,∴∠AOB ≠∠EBG ,∴△OFD ∽△BEG 不成立, 所以②结论不正确;③由①知:F 为OA 的中点, 同理得;G 是AB 的中点, ∴FG 是△OAB 的中位线, ∴12FG OB =,FG ∥OB , ∵OB=3DE ,∴32FG DE =, ∴32FG DE =, 过C 作CQ ⊥AB 于Q ,S ▱OABC =OA ·OH=AB ·CQ , ∴4×8=5CQ , ∴325CQ =, 1448221OCF S OF OH ∆=⋅=⨯⨯=, 8211522325CGBS BG CQ ∆=⋅=⨯⨯=, 42421AFGS ∆=⨯⨯=, ∴S △CFG =S ▱OABC ﹣S △OFC ﹣S △OBG ﹣S △AFG =8×4﹣8﹣8×4=12, ∵DE ∥FG ,∴△CDE ∽△CFG ,∴249CDE CFG S DE S FG ∆∆⎛⎫=⎪⎭= ⎝, ∴59DEGF CFG S S ∆=四边形, ∴5129DEGF S =四边形, ∴203DEGF S =四边形;所以③结论正确;④在Rt △OHB 中,由勾股定理得:OB 2=BH 2+OH 2,∴OB ==∴OD =所以④结论不正确;故本题结论正确的有:②③; 答案:②③.三、解答题(本大题共9小题,共102分) 17.解方程组52311x y x y +=⎧⎨+=⎩.解析:方程组利用加减消元法求出解即可. 答案:52311x y x y +=⎧⎨+=⎩①②,①×3﹣②得:x=4, 把x=4代入①得:y=1,则方程组的解为41x y =⎧⎨=⎩.18.如图,点E ,F 在AB 上,AD=BC ,∠A=∠B ,AE=BF.求证:△ADF ≌△BCE.解析:根据全等三角形的判定即可求证:△ADF ≌△BCE 答案:∵AE=BF , ∴AE+EF=BF+EF , ∴AF=BE ,在△ADF 与△BCE 中,AD BC A B AF BE =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△BCE(SAS)19.某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t(单位:小时),将学生分成五类:A 类(0≤t ≤2),B 类(2<t ≤4),C 类(4<t ≤6),D 类(6<t ≤8),E 类(t >8).绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题: (1)E 类学生有____人,补全条形统计图; (2)D 类学生人数占被调查总人数的____%;(3)从该班做义工时间在0≤t ≤4的学生中任选2人,求这2人做义工时间都在2<t ≤4中的概率.解析:(1)根据总人数等于各类别人数之和可得E 类别学生数; (2)用D 类别学生数除以总人数即可得;(3)列举所有等可能结果,根据概率公式求解可得. 答案:(1)E 类学生有50﹣(2+3+22+18)=5(人), 补全图形如下:故答案为:5;(2)D 类学生人数占被调查总人数的1850×100%=36%, 故答案为:36;(3)记0≤t ≤2内的两人为甲、乙,2<t ≤4内的3人记为A 、B 、C ,从中任选两人有:甲乙、甲A 、甲B 、甲C 、乙A 、乙B 、乙C 、AB 、AC 、BC 这10种可能结果,其中2人做义工时间都在2<t ≤4中的有AB 、AC 、BC 这3种结果, ∴这2人做义工时间都在2<t ≤4中的概率为310.20.如图,在Rt △ABC 中,∠B=90°,∠A=30°,AC=(1)利用尺规作线段AC 的垂直平分线DE ,垂足为E ,交AB 于点D ,(保留作图痕迹,不写作法)(2)若△ADE 的周长为a ,先化简T=(a+1)2﹣a(a ﹣1),再求T 的值.解析:(1)根据作已知线段的垂直平分线的方法,即可得到线段AC 的垂直平分线DE ;(2)根据Rt △ADE 中,∠A=30°,即可求得a 的值,最后化简T=(a+1)2﹣a(a ﹣1),再求T 的值.答案:(1)如图所示,DE 即为所求;(2)由题可得,21AE AC == ∴Rt △ADE 中,DE=12AD , 设DE=x ,则AD=2x ,∴Rt △ADE 中,x 22=(2x)2,解得x=1,∴△ADE的周长123a=+=∵T=(a+1)2﹣a(a﹣1)=3a+1,∴当(33110T=+=+21.甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的43倍,甲队比乙队多筑路20天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里.解析:(1)根据甲队筑路60公里以及乙队筑路总公里数是甲队筑路总公里数的43倍,即可求出乙队筑路的总公里数;(2)设乙队平均每天筑路8x公里,则甲队平均每天筑路5x公里,根据甲队比乙队多筑路20天,即可得出关于x的分式方程,解之经检验后即可得出结论.答案:(1)60×43=80(公里).答:乙队筑路的总公里数为80公里.(2)设乙队平均每天筑路8x公里,则甲队平均每天筑路5x公里,根据题意得:608020 58x x=﹣,解得:x=0.1,经检验,x=0.1是原方程的解,∴8x=0.8.答:乙队平均每天筑路0.8公里.22.将直线y=3x+1向下平移1个单位长度,得到直线y=3x+m,若反比例函数kyx=的图象与直线y=3x+m相交于点A,且点A的纵坐标是3.(1)求m和k的值;(2)结合图象求不等式3x+m>kx的解集.解析:(1)根据平移的原则得出m的值,并计算点A的坐标,因为A在反比例函数的图象上,代入可以求k的值;(2)画出两函数图象,根据交点坐标写出解集.答案:(1)由平移得:y=3x+1﹣1=3x,∴m=0,当y=3时,3x=3,x=1,∴A(1,3),∴k=1×3=3;(2)画出直线y=3x和反比例函数3yx=的图象:如图所示,由图象得:不等式3x+m >kx的解集为:﹣1<x <0或x >1.23.已知抛物线y 1=﹣x 2+mx+n ,直线y 2=kx+b ,y 1的对称轴与y 2交于点A(﹣1,5),点A 与y 1的顶点B 的距离是4. (1)求y 1的解析式;(2)若y 2随着x 的增大而增大,且y 1与y 2都经过x 轴上的同一点,求y 2的解析式. 函数解析式;H3:二次函数的性质.解析:(1)根据题意求得顶点B 得坐标,然后根据顶点公式即可求得m 、n ,从而求得y 1的解析式;(2)分两种情况讨论:当y 1的解析式为y 1=﹣x 2﹣2x 时,抛物线与x 轴得交点为顶点(﹣1,0),不合题意;当y 1=﹣x 2+2x+8时,解﹣x 2+2x+8=0求得抛物线与x 轴的交点坐标,然后根据A 的坐标和y 2随着x 的增大而增大,求得y 1与y 2都经过x 轴上的同一点(﹣4,0),然后根据待定系数法求得即可.答案:(1)∵抛物线y 1=﹣x 2+mx+n ,直线y 2=kx+b ,y 1的对称轴与y 2交于点A(﹣1,5),点A 与y 1的顶点B 的距离是4. ∴B(﹣1,1)或(﹣1,9),∴()121m-=-⨯-,()()241141n m ⨯--=⨯-或9,解得m=﹣2,n=0或8,∴y 1的解析式为y 1=﹣x 2﹣2x 或y 1=﹣x 2﹣2x+8;(2)当y 1的解析式为y 1=﹣x 2﹣2x 时,抛物线与x 轴得交点为顶点(﹣1,0),不合题意;当y 1=﹣x 2+2x+8时,解﹣x 2+2x+8=0得x=﹣4或2, ∵y 2随着x 的增大而增大,且过点A(﹣1,5), ∴y 1与y 2都经过x 轴上的同一点(﹣4,0), 把(﹣1,5),(﹣4,0)代入得540k b k b -+=-+=⎧⎨⎩,解得53203k b ⎧⎪⎪⎨==⎪⎪⎩;∴252033y x =+.24.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,△COD 关于CD 的对称图形为△CED. (1)求证:四边形OCED 是菱形; (2)连接AE ,若AB=6cm ,BC=√5cm. ①求sin ∠EAD 的值;②若点P 为线段AE 上一动点(不与点A 重合),连接OP ,一动点Q 从点O 出发,以1cm/s 的速度沿线段OP 匀速运动到点P ,再以1.5cm/s 的速度沿线段PA 匀速运动到点A ,到达点A 后停止运动,当点Q 沿上述路线运动到点A 所需要的时间最短时,求AP 的长和点Q 走完全程所需的时间.解析:(1)只要证明四边相等即可证明; (2)①设AE 交CD 于K.由DE ∥AC ,DE=OC=OA ,推出21DK DE KC AC ==,由AB=CD=6,可得DK=2,CK=4,在Rt △ADK中,3AK ===,根据sin DKDAE AK∠=计算即可解决问题;②作PF ⊥AD 于 F.易知2sin 3PF AP DAE AP =⋅∠=,因为点Q 的运动时间23132OP AP t OP AP OP PF =+=+=+,所以当O 、P 、F 共线时,OP+PF 的值最小,此时OF 是△ACD 的中位线,由此即可解决问题. 答案:(1)证明:∵四边形ABCD 是矩形. ∴OD=OB=OC=OA ,∵△EDC 和△ODC 关于CD 对称, ∴DE=DO ,CE=CO , ∴DE=EC=CO=OD ,∴四边形CODE 是菱形.(2)①设AE 交CD 于K. ∵四边形CODE 是菱形, ∴DE ∥AC ,DE=OC=OA , ∴21DK DE KC AC == ∵AB=CD=6, ∴DK=2,CK=4, 在Rt △ADK中,3AK ===,∴2sin 3DK DAE AK ∠==,②作PF ⊥AD 于F.易知2sin 3PF AP DAE AP =⋅∠=, ∵点Q 的运动时间23132OP AP t OP AP OP PF =+=+=+, ∴当O 、P 、F 共线时,OP+PF 的值最小,此时OF 是△ACD 的中位线, ∴OF=12CD=3.21AF AD ==,PF=12DK=1,∴32AP ==, ∴当点Q 沿上述路线运动到点A 所需要的时间最短时,AP 的长为32,点Q 走完全程所需的时间为3s.25.如图,AB 是⊙O 的直径,AC BC =,AB=2,连接AC. (1)求证:∠CAB=45°;(2)若直线l 为⊙O 的切线,C 是切点,在直线l 上取一点D ,使BD=AB ,BD 所在的直线与AC 所在的直线相交于点E ,连接AD.①试探究AE 与AD 之间的是数量关系,并证明你的结论; ②EBCD是否为定值?若是,请求出这个定值;若不是,请说明理由.解析:(1)由AB 是⊙O 的直径知∠ACB=90°,由AC BC =即AC=BC 可得答案;(2)①分∠ABD 为锐角和钝角两种情况,作BF ⊥l 于点F ,证四边形OBFC 是矩形可得AB=2OC=2BF ,结合BD=AB 知∠BDF=30°,再求出∠BDA 和∠DEA 度数可得;同理BF=12BD ,即可知∠BDC=30°,分别求出∠BEC 、∠ADB 即可得;②分D 在C 左侧和点D 在点C 右侧两种情况,作EI ⊥AB ,证△CAD ∽△BAE得AC CD BA AE ==,即AE=√2CD,结合EI=12BE 、EI=AE,可得2222BE EI AE CD ==⨯===,从而得出结论. 答案:(1)如图1,连接BC ,∵AB是⊙O的直径,∴∠ACB=90°,∵AC=BC,∴18090452CAB CBA︒-︒∠=∠==︒;(2)①当∠ABD为锐角时,如图2所示,作BF⊥l于点F,由(1)知△ACB是等腰直角三角形,∵OA=OB=OC,∴△BOC为等腰直角三角形,∵l是⊙O的切线,∴OC⊥l,又BF⊥l,∴四边形OBFC是矩形,∴AB=2OC=2BF,∵BD=AB,∴BD=2BF,∴∠BDF=30°,∴∠DBA=30°,∠BDA=∠BAD=75°,∴∠CBE=∠CBA﹣∠DBA=45°﹣30°=15°,∴∠DEA=∠CEB=90°﹣∠CBE=75°,∴∠ADE=∠AED,∴AD=AE;②当∠ABD为钝角时,如图3所示,同理可得BF=12BD ,即可知∠BDC=30°, ∵OC ⊥AB 、OC ⊥直线l , ∴AB ∥直线l ,∴∠ABD=150°,∠ABE=30°,∴∠BEC=90°﹣(∠ABE+∠ABC)=90°﹣(30°+45°)=15°, ∵AB=DB , ∴∠ADB=12∠ABE=15°, ∴∠BEC=∠ADE , ∴AE=AD ;(3)①如图2,当D 在C 左侧时,由(2)知CD ∥AB ,∠ACD=∠BAE ,∠DAC=∠EBA=30°, ∴△CAD ∽△BAE , ∴AC CD BA AE ==,∴, 作EI ⊥AB 于点I ,∵∠CAB=45°、∠ABD=30°,∴222BE EI AE CD =====, ∴2BECD=; ②如图3,当点D 在点C 右侧时,过点E 作EI ⊥AB 于I , 由(2)知∠ADC=∠BEA=15°, ∵AB ∥CD ,∴∠EAB=∠ACD , ∴△ACD ∽△BAE , ∴AC CD BA AE ==,∴AE =,∵BA=BD ,∠BAD=∠BDA=15°, ∴∠IBE=30°,∴222BE EI AE CD =====, ∴2BECD=.。
广东广州数学(含答案) 2017年中考数学真题试卷
2017年广州市初中毕业生学业考试数学第一部分选择题(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图1,数轴上两点,A B表示的数互为相反数,则点B表示的()A. -6 B.6 C. 0 D.无法确定答案:B解析:-6的相反数是6,A点表示-6,所以,B点表示6。
2.如图2,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到图形为()答案:A解析:顺时针90°后,AD转到AB边上,所以,选A。
3. 某6人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁)12,13,14,15,15,15.这组数据中的众数,平均数分别为()A.12,14 B. 12,15 C.15,14 D. 15,13答案:C解析:15出现次数最多,有3次,所以,众数为15平均数为:11213141515156+++++()=14。
4. 下列运算正确的是( ) A .362a b a b ++= B .2233a b a b++⨯=C. 2a a = D .()0a a a =≥ 答案:D 解析:因为3626a b a b +=+,故A 错,又22233a b a b++⨯=,B 错, 因为2||a a =,所以,C 也错,只有D 是正确的。
5.关于x 的一元二次方程280x x q ++=有两个不相等的实数根,则q 的取值范围是( ) A .16q < B .16q > C. 4q ≤ D .4q ≥ 答案:A解析:根的判别式为△=6440q ->,解得:16q <。
6. 如图3,O 是ABC ∆的内切圆,则点O 是ABC ∆的( )图3A . 三条边的垂直平分线的交点B .三角形平分线的交点 C. 三条中线的交点 D .三条高的交点 答案:B解析:内心到三角形三边距离相等,到角的两边距离相等的点在这个角的角平分线上,故选B 。
广东省广州市2017年中考数学真题试题(含解析)
广东省广州市2017年中考数学真题试题第一部分选择题(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图1,数轴上两点,A B表示的数互为相反数,则点B表示的()A. -6 B.6 C. 0 D.无法确定【答案】B【解析】试题分析:-6的相反数是6,A点表示-6,所以,B点表示6.故选答案B.考点:相反数的定义2.如图2,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到图形为()【答案】A考点:旋转的特征3. 某6人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁)12,13,14,15,15,15.这组数据中的众数,平均数分别为()A.12,14 B. 12,15 C.15,14 D. 15,13【答案】C【解析】试题分析:15出现次数最多,有3次,所以,众数为15, 11213141515156+++++()=14.故选C. 考点: 众数,中位数的求法 4. 下列运算正确的是( )A .362a b a b ++= B .2233a b a b ++⨯=a = D .()0a a a =≥ 【答案】D考点:代数式的运算5.关于x 的一元二次方程280x x q ++=有两个不相等的实数根,则q 的取值范围是( ) A .16q < B .16q > C. 4q ≤ D .4q ≥ 【答案】A 【解析】试题分析:根的判别式为△=6440q ->,解得:16q <.故选答案A. 考点:一元二次方程根的判别式的性质 6. 如图3,O 是ABC ∆的内切圆,则点O 是ABC ∆的( )图3A . 三条边的垂直平分线的交点B .三角形平分线的交点 C. 三条中线的交点 D .三条高的交点 【答案】B 【解析】试题分析:内心到三角形三边距离相等,到角的两边距离相等的点在这个角的角平分线上,故选B 。
2017年广东省中考数学试题与参考答案
2017年广东省初中毕业生学业考试数 学说明:1.全卷共6页,满分为120 分,考试用时为100分钟。
2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。
用2B 铅笔把对应该号码的标号涂黑。
3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。
4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
5.考生务必保持答题卡的整洁。
考试结束时,将试卷和答题卡一并交回。
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 5的相反数是( ) A. B.5 C.- D.-52.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。
2016年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )A.0.4×B.0.4×C.4×D.4× 3.已知,则的补角为( )A. B. C. D. 4.如果2是方程的一个根,则常数k 的值为( )A.1B.2C.-1D.-25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( )A.95B.90C.85D.80 6.下列所述图形中, 既是轴对称图形又是中心对称图形的是( ) A.等边三角形 B.平行四边形 C.正五边形 D.圆 7.如题7图,在同一平面直角坐标系中,直线与双曲线 相交于A 、B 两点,已知点A 的坐标为(1,2), 则点B 的坐标为( ) A.(-1,-2) B.(-2,-1) C.(-1,-1) D.(-2,-2)15159101010910101070A ∠=︒A ∠110︒70︒30︒20︒230x x k -+=11(0)y k x k =≠22(0)k y k x=≠题7图8.下列运算正确的是( )A. B. C. D.9.如题9图,四边形ABCD 内接于⊙O ,DA=DC ,∠CBE=50°, 则∠DAC 的大小为( )A.130°B.100°C.65°D.50°10.如题10图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①;②;③; ④,其中正确的是( ) A.①③ B.②③ C.①④ D.②④二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:a a +2 .12.一个n 边形的内角和是,那么n= . 13.已知实数a,b 在数轴上的对应点的位置如题13图所示, 则 0(填“>”,“<”或“=”).14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 . 15.已知,则整式的值为 .16.如题16图(1),矩形纸片ABCD 中,AB=5,BC=3,先按题16图(2)操作,将矩形纸片ABCD 沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按题16图(3)操作:沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG,则A 、H 两点间的距离为 .223a a a +=325·a a a =426()a a =424a a a +=ABF ADF S S =△△4CDF CBF S S =△△2ADF CEF S S =△△2ADF CDF S S =△△720︒ab ÷431a b ÷=863a b ÷-三、解答题(一)(本大题共3题,每小题6分,共18分)17.计算:.18.先化简,再求值,其中x =√5 .19.学校团委组织志愿者到图书馆整理一批新进的图书。
2017年广东省广州市中考数学试卷含答案
数学试卷第1页(共18页)数学试卷第2页(共18页)绝密★启用前广东省广州市2017年初中毕业生学业考试数学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,数轴上两点A ,B 表示的数互为相反数,则点B 表示的数为()A .6-B .6C .0D .无法确定2.如下右图,将正方形ABCD 中的阴影三角形绕点A 顺时针旋转90︒后,得到的图形为()A B C D3.某6人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁)12,13,14,15,15,15.这组数据中的众数,平均数分别为()A .12,14B .12,15C .15,14D .15,134.下列运算正确的是()A.362a b a b ++=B .2233a b a b++⨯=C .2a a =D .()0a a a =≥5.关于x 的一元二次方程280x x q ++=有两个不相等的实数根,则q 的取值范围是()A .16q <B .16q >C .4q ≤D .4q ≥6.如图,O 是ABC △的内切圆,则点O 是ABC △的()A .三条边的垂直平分线的交点B .三条角平分线的交点C .三条中线的交点D .三条高的交点7.计算223()b a b a,结果是()A .55a bB .45a b C .5ab D .56a b 8.如图,E ,F 分别是□ABCD 的边AD ,BC 上的点,6EF =,60DEF ∠=︒,将四边形EFCD 沿EF 翻折,得到EFC D '',ED '交BC 于点G ,则GEF △的周长为()A .6B .12C .18D .249.如图,在O 中,AB 是直径,CD 是弦,AB CD ⊥,垂足为E ,连接CO ,AD ,20BAD ∠=︒,则下列说法中正确的是()A .2AD OB =B .CE EO =C .40OCE ∠=︒D .2BOC BAD ∠=∠10.0a ≠,函数ay x=与2y ax a =-+在同一直角坐标系中的大致图象可能是()第Ⅱ卷(非选择题共120分)二、填空题(本大题共6小题,每小题3分,共18分.请把答案填写在题中的横线上)11.如图,四边形ABCD 中,AD BC ∥,110A ∠=︒,则B ∠=.12.分解因式:29xy x -=.13.当x =时,二次函数226y x x =-+有最小值.A B C D毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第3页(共18页)数学试卷第4页(共18页)14.如图,Rt ABC △中,90C ∠=︒,15BC =,15tan 8A =,则AB =.15.如图,圆锥的侧面展开图是一个圆心角为120︒的扇形,若圆锥的底面圆半径是5,则圆锥的母线l =.16.如图,平面直角坐标系中O 是原点,□ABCD 的顶点A ,C 的坐标分别是(8,0),(3,4)点D ,E 把线段OB 三等分,延长,CD CE 分别交OA ,AB 于点F ,G ,连接FG ,则下列结论:①F 是OA 的中点;②OFD △与BEG △相似;③四边形DEGF 的面积是203;④45OD =.其中正确的结论是(填写所有正确结论的序号).三、解答题(本大题共9小题,共102分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分9分)解方程组:5,2311.x y x y +=⎧⎨+=⎩18.(本小题满分9分)如图,点,E F 在AB 上,AD BC =,A B ∠=∠,AE BF =.求证:ADF BCE △≌△.19.(本小题满分10分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t (单位:小时),将学生分成五类:A 类(02t ≤≤),B 类(24t <≤),C 类(46t <≤),D 类(68t <≤),E 类(8t >),绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E 类学生有人,补全条形统计图;(2)D 类学生人数占被调查总人数的__________%;(3)从该班做义工时间在04t ≤≤的学生中任选2人,求这2人做义工时间都在24t <≤中的概率.20.(本小题满分10分)如图,在Rt ABC △中,90B ∠=︒,30A ∠=︒,23AC =.(1)利用尺规作线段AC 的垂直平分线DE ,垂足为E ,交AB 于点D ;(保留作图痕迹,不写作法)(2)若ADE △的周长为a ,先化简()()211T a a a =+--,再求T 的值.数学试卷第5页(共18页)数学试卷第6页(共18页)21.(本小题满分12分)甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的43倍,甲队比乙队多筑路20天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里.22.(本小题满分12分)将直线31y x =+向下平移1个单位长度,得到直线3y x m =+,若反比例函数k y x=的图象与直线3y x m =+相交于点A ,且点A 的纵坐标是3.(1)求m 和k 的值;(2)结合图象求不等式3k x m x+>的解集.23.(本小题满分12分)已知抛物线21y x mx n =-++,直线2y kx b =+,1y 的对称轴与2y 交于点(1,5)A -,点A 与1y 的顶点B 的距离是4.(1)求1y 的解析式;(2)若2y 随着x 的增大而增大,且1y 与2y 都经过x 轴上的同一点,求2y 的解析式.24.(本小题满分14分)如图,矩形ABCD 的对角线AC ,BD 相交于点O ,COD △关于CD 的对称图形为CED △.(1)求证:四边形OCED 是菱形;(2)连接AE ,若6cm AB =,cm BC =.①求sin EAD ∠的值;②若点P 为线段AE 上一动点(不与点A 重合),连接OP .一动点Q 从点O 出发,以1cm/s 的速度沿线段OP 匀速运动到点P ,再以1.5cm/s 的速度沿线段PA 匀速运动到点A ,到达点A 后停止运动.当点Q 沿上述路线运动到点A 所需要的时间最短时,求AP 的长和点Q走完全程所需的时间.25.(本小题满分14分)如图,AB 是O 的直径, AC BC=,2AB =,连接AC .(1)求证:45CAB ∠=︒;(2)若直线l 为O 的切线,C 是切点,在直线l 上取一点D ,使BD AB =,BD 所在的直线与AC 所在的直线相交于点E ,连接AD .①试探究AE 与AD 之间的数量关系,并证明你的结论;②EBCD是否为定值?若是,请求出这个定值;若不是,请说明理由.毕业学校_____________姓名________________考生号_____________________________________________-----------------------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第7页(共18页)数学试卷第8页(共18页)广东省广州市2017年初中毕业生学业考试数学答案解析第Ⅰ卷一、选择题1.【答案】B【解析】∵数轴上两点A ,B 表示的数互为相反数,点A 表示的数为6-,∴点B 表示的数为6,故选B 。
2017年广东省广州市中考数学试卷及答案
2017年广东省广州市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为()A.﹣6 B.6 C.0 D.无法确定2.(3分)如图,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为()A.B.C. D.3.(3分)某6人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁):12,13,14,15,15,15,这组数据中的众数,平均数分别为()A.12,14 B.12,15 C.15,14 D.15,134.(3分)下列运算正确的是()A.=B.2×=C.=a D.|a|=a(a≥0)5.(3分)关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16 B.q>16 C.q≤4 D.q≥46.(3分)如图,⊙O是△ABC的内切圆,则点O是△ABC的()A.三条边的垂直平分线的交点 B.三条角平分线的交点C.三条中线的交点D.三条高的交点7.(3分)计算(a2b)3•的结果是()A.a5b5B.a4b5C.ab5D.a5b68.(3分)如图,E,F分别是▱ABCD的边AD、BC上的点,EF=6,∠DEF=60°,将四边形EFCD沿EF翻折,得到EFC′D′,ED′交BC于点G,则△GEF的周长为()A.6 B.12 C.18 D.249.(3分)如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是()A.AD=2OB B.CE=EO C.∠OCE=40°D.∠BOC=2∠BAD10.(3分)a≠0,函数y=与y=﹣ax2+a在同一直角坐标系中的大致图象可能是()A. B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)如图,四边形ABCD中,AD∥BC,∠A=110°,则∠B= .12.(3分)分解因式:xy2﹣9x= .13.(3分)当x= 时,二次函数y=x2﹣2x+6有最小值.14.(3分)如图,Rt△ABC中,∠C=90°,BC=15,tanA=,则AB= .15.(3分)如图,圆锥的侧面展开图是一个圆心角为120°的扇形,若圆锥的底面圆半径是,则圆锥的母线l= .16.(3分)如图,平面直角坐标系中O是原点,▱ABCD的顶点A,C的坐标分别是(8,0),(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB于点F,G,连接FG.则下列结论:①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是;④OD=其中正确的结论是(填写所有正确结论的序号).三、解答题(本大题共9小题,共102分)17.(9分)解方程组.18.(9分)如图,点E,F在AB上,AD=BC,∠A=∠B,AE=BF.求证:△ADF≌△BCE.19.(10分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t(单位:小时),将学生分成五类:A类(0≤t≤2),B类(2<t≤4),C类(4<t≤6),D类(6<t≤8),E类(t>8).绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E类学生有人,补全条形统计图;(2)D类学生人数占被调查总人数的%;(3)从该班做义工时间在0≤t≤4的学生中任选2人,求这2人做义工时间都在2<t≤4中的概率.20.(10分)如图,在Rt△ABC中,∠B=90°,∠A=30°,AC=2.(1)利用尺规作线段AC的垂直平分线DE,垂足为E,交AB于点D,(保留作图痕迹,不写作法)(2)若△ADE的周长为a,先化简T=(a+1)2﹣a(a﹣1),再求T的值.21.(12分)甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的倍,甲队比乙队多筑路20天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里.22.(12分)将直线y=3x+1向下平移1个单位长度,得到直线y=3x+m,若反比例函数y=的图象与直线y=3x+m相交于点A,且点A的纵坐标是3.(1)求m和k的值;(2)结合图象求不等式3x+m>的解集.23.(12分)已知抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.(1)求y1的解析式;(2)若y2随着x的增大而增大,且y1与y2都经过x轴上的同一点,求y2的解析式.24.(14分)如图,矩形ABCD的对角线AC,BD相交于点O,△COD关于CD的对称图形为△CED.(1)求证:四边形OCED是菱形;(2)连接AE,若AB=6cm,BC=cm.①求sin∠EAD的值;②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s 的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.25.(14分)如图,AB是⊙O的直径,=,AB=2,连接AC.(1)求证:∠CAB=45°;(2)若直线l为⊙O的切线,C是切点,在直线l上取一点D,使BD=AB,BD所在的直线与AC所在的直线相交于点E,连接AD.①试探究AE与AD之间的是数量关系,并证明你的结论;②是否为定值?若是,请求出这个定值;若不是,请说明理由.2017年广东省广州市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为()A.﹣6 B.6 C.0 D.无法确定【分析】根据数轴上点的位置,利用相反数定义确定出B表示的数即可.【解答】解:∵数轴上两点A,B表示的数互为相反数,点A表示的数为﹣6,∴点B表示的数为6,故选B【点评】此题考查了数轴,以及相反数,熟练掌握相反数的性质是解本题的关键.2.(3分)如图,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为()A.B. C. D.【分析】根据旋转的性质即可得到结论.【解答】解:由旋转的性质得,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为A,故选A.【点评】本题考查了旋转的性质,正方形的性质,正确的识别图形是解题的关键.3.(3分)某6人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁):12,13,14,15,15,15,这组数据中的众数,平均数分别为()A.12,14 B.12,15 C.15,14 D.15,13【分析】观察这组数据发现15出现的次数最多,进而得到这组数据的众数为15,将六个数据相加求出之和,再除以6即可求出这组数据的平均数.【解答】解:∵这组数据中,12出现了1次,13出现了1次,14出现了1次,15出现了3次,∴这组数据的众数为15,∵这组数据分别为:12、13、14、15、15、15∴这组数据的平均数=14.故选C【点评】此题考查了众数及算术平均数,众数即为这组数据中出现次数最多的数,算术平均数即为所有数之和与数的个数的商.4.(3分)下列运算正确的是()A.=B.2×=C.=a D.|a|=a(a≥0)【分析】直接利用分式的基本性质以及绝对值的性质、二次根式的性质分别化简求出答案.【解答】解:A、无法化简,故此选项错误;B、2×=,故此选项错误;C、=|a|,故此选项错误;D、|a|=a(a≥0),正确.故选:D.【点评】此题主要考查了分式的基本性质以及绝对值的性质、二次根式的性质,正确掌握相关性质是解题关键.5.(3分)关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16 B.q>16 C.q≤4 D.q≥4【分析】根据方程的系数结合根的判别式,即可得出△=64﹣4q>0,解之即可得出q的取值范围.【解答】解:∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△=82﹣4q=64﹣4q>0,解得:q<16.故选A.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.6.(3分)如图,⊙O是△ABC的内切圆,则点O是△ABC的()A.三条边的垂直平分线的交点 B.三条角平分线的交点C.三条中线的交点D.三条高的交点【分析】根据三角形的内切圆得出点O到三边的距离相等,即可得出结论.【解答】解:∵⊙O是△ABC的内切圆,则点O到三边的距离相等,∴点O是△ABC的三条角平分线的交点;故选:B.【点评】本题考查了三角形的内切圆与内心;熟练掌握三角形的内切圆的圆心性质是关键.7.(3分)计算(a2b)3•的结果是()A.a5b5B.a4b5C.ab5D.a5b6【分析】根据积的乘方等于乘方的积,分式的乘法,可得答案.【解答】解:原式=a6b3•=a5b5,故选:A.【点评】本题考查了分式的乘除法,熟记法则并根据法则计算是解题关键.8.(3分)如图,E,F分别是▱ABCD的边AD、BC上的点,EF=6,∠DEF=60°,将四边形EFCD沿EF翻折,得到EFC′D′,ED′交BC于点G,则△GEF的周长为()A.6 B.12 C.18 D.24【分析】根据平行四边形的性质得到AD∥BC,由平行线的性质得到∠AEG=∠EGF,根据折叠的性质得到∠GEF=∠DEF=60°,推出△EGF是等边三角形,于是得到结论.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠EGF,∵将四边形EFCD沿EF翻折,得到EFC′D′,∴∠GEF=∠DEF=60°,∴∠AEG=60°,∴∠EGF=60°,∴△EGF是等边三角形,∵EF=6,∴△GEF的周长=18,故选C.【点评】本题考查了翻折变换的性质、平行四边形的性质、等边三角形的判定,熟练掌握翻折变换的性质是解决问题的关键.9.(3分)如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是()A.AD=2OB B.CE=EO C.∠OCE=40°D.∠BOC=2∠BAD【分析】先根据垂径定理得到=,CE=DE,再利用圆周角定理得到∠BOC=40°,则根据互余可计算出∠OCE的度数,于是可对各选项进行判断.【解答】解:∵AB⊥CD,∴=,CE=DE,∴∠BOC=2∠BAD=40°,∴∠OCE=90°﹣40°=50°.故选D.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.10.(3分)a≠0,函数y=与y=﹣ax2+a在同一直角坐标系中的大致图象可能是()A. B.C.D.【分析】分a>0和a<0两种情况分类讨论即可确定正确的选项.【解答】解:当a>0时,函数y=的图象位于一、三象限,y=﹣ax2+a的开口向下,交y 轴的正半轴,没有符合的选项,当a<0时,函数y=的图象位于二、四象限,y=﹣ax2+a的开口向上,交y轴的负半轴,D选项符合;故选D.【点评】本题考查了反比例函数的图象及二次函数的图象的知识,解题的关键是根据比例系数的符号确定其图象的位置,难度不大.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)如图,四边形ABCD中,AD∥BC,∠A=110°,则∠B= 70°.【分析】根据平行线的性质即可得到结论.【解答】解:∵AD∥BC,∴∠A+∠B=180°,又∵∠A=110°,∴∠B=70°,故答案为:70°.【点评】本题考查了平行线的性质,熟练掌握平行线的性质即可得到结论.12.(3分)分解因式:xy2﹣9x= x(y+3)(y﹣3).【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:xy2﹣9x=x(y2﹣9)=x(y﹣3)(y+3).故答案为:x(y﹣3)(y+3).【点评】本题考查对多项式的分解能力,一般先考虑提公因式,再考虑利用公式分解因式,要注意分解因式要彻底,直到不能再分解为止.13.(3分)当x= 1 时,二次函数y=x2﹣2x+6有最小值 5 .【分析】把x2﹣2x+6化成(x﹣1)2+5,即可求出二次函数y=x2﹣2x+6的最小值是多少.【解答】解:∵y=x2﹣2x+6=(x﹣1)2+5,∴当x=1时,二次函数y=x2﹣2x+6有最小值5.故答案为:1、5.【点评】此题主要考查了二次函数的最值,要熟练掌握,确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值.14.(3分)如图,Rt△ABC中,∠C=90°,BC=15,tanA=,则AB= 17 .【分析】根据∠A的正切求出AC,再利用勾股定理列式计算即可得解.【解答】解:∵Rt△ABC中,∠C=90°,tanA=,BC=15,∴=,解得AC=8,根据勾股定理得,AB===17.故答案为:17.【点评】本题考查了解直角三角形,勾股定理,主要利用了锐角的正切等于对边比邻边.15.(3分)如图,圆锥的侧面展开图是一个圆心角为120°的扇形,若圆锥的底面圆半径是,则圆锥的母线l= 3.【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【解答】解:圆锥的底面周长=2π×=2πcm,则:=2π,解得l=3.故答案为:3.【点评】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为:.16.(3分)如图,平面直角坐标系中O是原点,▱ABCD的顶点A,C的坐标分别是(8,0),(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB于点F,G,连接FG.则下列结论:①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是;④OD=其中正确的结论是①③(填写所有正确结论的序号).【分析】①证明△CDB∽△FDO,列比例式得:,再由D、E为OB的三等分点,则=,可得结论正确;②如图2,延长BC交y轴于H证明OA≠AB,则∠AOB≠∠EBG,所以△OFD∽△BEG不成立;③如图3,利用面积差求得:S△CFG=S▱OABC﹣S△OFC﹣S△OBG﹣S△AFG=12,根据相似三角形面积的比等于相似比的平方进行计算并作出判断;④根据勾股定理进行计算OB的长,根据三等分线段OB可得结论.【解答】解:①∵四边形OABC是平行四边形,∴BC∥OA,BC=OA,∴△CDB∽△FDO,∴,∵D、E为OB的三等分点,∴=,∴,∴BC=2OF,∴OA=2OF,∴F是OA的中点;所以①结论正确;②如图2,延长BC交y轴于H,由C(3,4)知:OH=4,CH=3,∴OC=5,∴AB=OC=5,∵A(8,0),∴OA=8,∴OA≠AB,∴∠AOB≠∠EBG,∴△OFD∽△BEG不成立,所以②结论不正确;③由①知:F为OA的中点,同理得;G是AB的中点,∴FG是△OAB的中位线,∴FG=,FG∥OB,∵OB=3DE,∴FG=DE,∴=,过C作CQ⊥AB于Q,S▱OABC=OA•OH=AB•CQ,∴4×8=5CQ,∴CQ=,S△OCF=OF•OH=×4×4=8,S△CGB=BG•CQ=××=8,S△AFG=×4×2=4,∴S△CFG=S▱OABC﹣S△OFC﹣S△OBG﹣S△AFG=8×4﹣8﹣8﹣4=12,∵DE∥FG,∴△CDE∽△CFG,∴==,∴=,∴,∴S四边形DEGF=;所以③结论正确;④在Rt△OHB中,由勾股定理得:OB2=BH2+OH2,∴OB==,∴OD=,所以④结论不正确;故本题结论正确的有:①③;故答案为:①③.【点评】本题是四边形的综合题,考查了平行四边形的性质、图形与坐标特点、勾股定理、三角形的中位线定理、三角形相似的性质和判定、平行四边形和三角形面积的计算等知识,难度适中,熟练掌握平行四边形和相似三角形的性质是关键.三、解答题(本大题共9小题,共102分)17.(9分)解方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×3﹣②得:x=4,把x=4代入①得:y=1,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(9分)如图,点E,F在AB上,AD=BC,∠A=∠B,AE=BF.求证:△ADF≌△BCE.【分析】根据全等三角形的判定即可求证:△ADF≌△BCE【解答】解:∵AE=BF,∴AE+EF=BF+EF,∴AF=BE,在△ADF与△BCE中,∴△ADF≌△BCE(SAS)【点评】本题考查全等三角形的判定,解题的关键是求证AF=BE,本题属于基础题型.19.(10分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t(单位:小时),将学生分成五类:A类(0≤t≤2),B类(2<t≤4),C类(4<t≤6),D类(6<t≤8),E类(t>8).绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E类学生有 5 人,补全条形统计图;(2)D类学生人数占被调查总人数的36 %;(3)从该班做义工时间在0≤t≤4的学生中任选2人,求这2人做义工时间都在2<t≤4中的概率.【分析】(1)根据总人数等于各类别人数之和可得E类别学生数;(2)用D类别学生数除以总人数即可得;(3)列举所有等可能结果,根据概率公式求解可得.【解答】解:(1)E类学生有50﹣(2+3+22+18)=5(人),补全图形如下:故答案为:5;(2)D类学生人数占被调查总人数的×100%=36%,故答案为:36;(3)记0≤t≤2内的两人为甲、乙,2<t≤4内的3人记为A、B、C,从中任选两人有:甲乙、甲A、甲B、甲C、乙A、乙B、乙C、AB、AC、BC这10种可能结果,其中2人做义工时间都在2<t≤4中的有AB、AC、BC这3种结果,∴这2人做义工时间都在2<t≤4中的概率为.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查条形统计图.20.(10分)如图,在Rt△ABC中,∠B=90°,∠A=30°,AC=2.(1)利用尺规作线段AC的垂直平分线DE,垂足为E,交AB于点D,(保留作图痕迹,不写作法)(2)若△ADE的周长为a,先化简T=(a+1)2﹣a(a﹣1),再求T的值.【分析】(1)根据作已知线段的垂直平分线的方法,即可得到线段AC的垂直平分线DE;(2)根据Rt△ADE中,∠A=30°,AE=,即可求得a的值,最后化简T=(a+1)2﹣a(a ﹣1),再求T的值.【解答】解:(1)如图所示,DE即为所求;(2)由题可得,AE=AC=,∠A=30°,∴Rt△ADE中,DE=AD,设DE=x,则AD=2x,∴Rt△ADE中,x2+()2=(2x)2,解得x=1,∴△ADE的周长a=1+2+=3+,∵T=(a+1)2﹣a(a﹣1)=3a+1,∴当a=3+时,T=3(3+)+1=10+3.【点评】本题主要考查了基本作图以及含30度角的直角三角形的性质,解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.21.(12分)甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的倍,甲队比乙队多筑路20天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里.【分析】(1)根据甲队筑路60公里以及乙队筑路总公里数是甲队筑路总公里数的倍,即可求出乙队筑路的总公里数;(2)设乙队平均每天筑路8x公里,则甲队平均每天筑路5x公里,根据甲队比乙队多筑路20天,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:(1)60×=80(公里).答:乙队筑路的总公里数为80公里.(2)设乙队平均每天筑路8x公里,则甲队平均每天筑路5x公里,根据题意得:﹣=20,解得:x=0.1,经检验,x=0.1是原方程的解,∴8x=0.8.答:乙队平均每天筑路0.8公里.【点评】本题考查了分式方程的应用,解题的关键是:(1)根据数量关系列式计算;(2)找准等量关系,列出分式方程.22.(12分)将直线y=3x+1向下平移1个单位长度,得到直线y=3x+m,若反比例函数y=的图象与直线y=3x+m相交于点A,且点A的纵坐标是3.(1)求m和k的值;(2)结合图象求不等式3x+m>的解集.【分析】(1)根据平移的原则得出m的值,并计算点A的坐标,因为A在反比例函数的图象上,代入可以求k的值;(2)画出两函数图象,根据交点坐标写出解集.【解答】解:(1)由平移得:y=3x+1﹣1=3x,∴m=0,当y=3时,3x=3,x=1,∴A(1,3),∴k=1×3=3;(2)画出直线y=3x和反比例函数y=的图象:如图所示,由图象得:不等式3x+m>的解集为:﹣1<x<0或x>1.【点评】本题考查的是一次函数与反比例函数的交点问题和一次函数的图象的平移问题,涉及到用待定系数法求反比例函数的解析式,并熟知函数图象平移时“上加下减,左加右减”的法则.23.(12分)已知抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.(1)求y1的解析式;(2)若y2随着x的增大而增大,且y1与y2都经过x轴上的同一点,求y2的解析式.【分析】(1)根据题意求得顶点B的坐标,然后根据顶点公式即可求得m、n,从而求得y1的解析式;(2)分两种情况讨论:当y1的解析式为y1=﹣x2﹣2x时,抛物线与x轴的交点是抛物线的顶点(﹣1,0),不合题意;当y1=﹣x2﹣2x+8时,解﹣x2﹣2x+8=0求得抛物线与x轴的交点坐标,然后根据A的坐标和y2随着x的增大而增大,求得y1与y2都经过x轴上的同一点(﹣4,0),然后根据待定系数法求得即可.【解答】解:(1)∵抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.∴B(﹣1,1)或(﹣1,9),∴﹣=﹣1,=1或9,解得m=﹣2,n=0或8,∴y1的解析式为y1=﹣x2﹣2x或y1=﹣x2﹣2x+8;(2)①当y1的解析式为y1=﹣x2﹣2x时,抛物线与x轴交点是(0.0)和(﹣2.0),∵y1的对称轴与y2交于点A(﹣1,5),∴y1与y2都经过x轴上的同一点(﹣2,0),把(﹣1,5),(﹣2,0)代入得,解得,∴y2=5x+10.②当y1=﹣x2﹣2x+8时,解﹣x2﹣2x+8=0得x=﹣4或2,∵y2随着x的增大而增大,且过点A(﹣1,5),∴y1与y2都经过x轴上的同一点(﹣4,0),把(﹣1,5),(﹣4,0)代入得,解得;∴y2=x+.【点评】本题考查了一次函数的性质,二次函数的性质,待定系数法求一次函数和二次函数的解析式,根据题意求得顶点坐标是解题的关键.24.(14分)如图,矩形ABCD的对角线AC,BD相交于点O,△COD关于CD的对称图形为△CED.(1)求证:四边形OCED是菱形;(2)连接AE,若AB=6cm,BC=cm.①求sin∠EAD的值;②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s 的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.【分析】(1)只要证明四边相等即可证明;(2)①设AE交CD于K.由DE∥AC,DE=OC=OA,推出==,由AB=CD=6,可得DK=2,CK=4,在Rt△ADK中,AK===3,根据sin∠DAE=计算即可解决问题;②作PF⊥AD于F.易知PF=AP•sin∠DAE=AP,因为点Q的运动时间t=+=OP+AP=OP+PF,所以当O、P、F共线时,OP+PF的值最小,此时OF是△ACD的中位线,由此即可解决问题.【解答】(1)证明:∵四边形ABCD是矩形.∴OD=OB=OC=OA,∵△EDC和△ODC关于CD对称,∴DE=DO,CE=CO,∴DE=EC=CO=OD,∴四边形CODE是菱形.(2)①设AE交CD于K.∵四边形CODE是菱形,∴DE∥AC,DE=OC=OA,∴==∵AB=CD=6,∴DK=2,CK=4,在Rt△ADK中,AK===3,∴sin∠DAE==,②作PF⊥AD于F.易知PF=AP•sin∠DAE=AP,∵点Q的运动时间t=+=OP+AP=OP+PF,∴当O、P、F共线时,OP+PF的值最小,此时OF是△ACD的中位线,∴OF=CD=3.AF=AD=,PF=DK=1,∴AP==,∴当点Q沿上述路线运动到点A所需要的时间最短时,AP的长为,点Q走完全程所需的时间为3s.【点评】本题考查四边形综合题、矩形的性质、菱形的判定和性质、锐角三角函数、平行线分线段成比例定理、勾股定理、三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用垂线段最短解决最值问题,所以中考压轴题.25.(14分)如图,AB是⊙O的直径,=,AB=2,连接AC.(1)求证:∠CAB=45°;(2)若直线l为⊙O的切线,C是切点,在直线l上取一点D,使BD=AB,BD所在的直线与AC所在的直线相交于点E,连接AD.①试探究AE与AD之间的是数量关系,并证明你的结论;②是否为定值?若是,请求出这个定值;若不是,请说明理由.【分析】(1)由AB是⊙O的直径知∠ACB=90°,由=即AC=BC可得答案;(2)分∠ABD为锐角和钝角两种情况,①作BF⊥l于点F,证四边形OBFC是矩形可得AB=2OC=2BF,结合BD=AB知∠BDF=30°,再求出∠BDA和∠DEA度数可得;②同理BF=BD,即可知∠BDC=30°,分别求出∠BEC、∠ADB即可得;(3)分D在C左侧和点D在点C右侧两种情况,作EI⊥AB,证△CAD∽△BAE得==,即AE=CD,结合EI=BE、EI=AE,可得BE=2EI=2×AE=AE=×CD=2CD,从而得出结论.【解答】解:(1)如图1,连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵AC=BC,∴∠CAB=∠CBA==45°;(2)①当∠ABD为锐角时,如图2所示,作BF⊥l于点F,由(1)知△ACB是等腰直角三角形,∵OA=OB=OC,∴△BOC为等腰直角三角形,∵l是⊙O的切线,∴OC⊥l,又BF⊥l,∴四边形OBFC是矩形,∴AB=2OC=2BF,∵BD=AB,∴BD=2BF,∴∠BDF=30°,∴∠DBA=30°,∠BDA=∠BAD=75°,∴∠CBE=∠CBA﹣∠DBA=45°﹣30°=15°,∴∠DEA=∠CEB=90°﹣∠CBE=75°,∴∠ADE=∠AED,∴AD=AE;②当∠ABD为钝角时,如图3所示,同理可得BF=BD,即可知∠BDC=30°,∵OC⊥AB、OC⊥直线l,∴AB∥直线l,∴∠ABD=150°,∠ABE=30°,∴∠BEC=90°﹣(∠ABE+∠ABC)=90°﹣(30°+45°)=15°,∵AB=DB,∴∠ADB=∠ABE=15°,∴∠BEC=∠ADE,∴AE=AD;(3)①如图2,当D在C左侧时,由(2)知CD∥AB,∠ACD=∠BAE,∠DAC=∠EBA=30°,∴△CAD∽△BAE,∴==,∴AE=CD,作EI⊥AB于点I,∵∠CAB=45°、∠ABD=30°,∴BE=2EI=2×AE=AE=×CD=2CD,∴=2;②如图3,当点D在点C右侧时,过点E作EI⊥AB于I,由(2)知∠ADC=∠BEA=15°,∵AB∥CD,∴∠EAB=∠ACD,∴△ACD∽△BAE,∴==,∴CD,∵BA=BD,∠BAD=∠BDA=15°,∴∠IBE=30°,∴BE=2EI=2×AE=AE=×CD=2CD,∴=2.【点评】本题主要考查圆的综合问题,熟练掌握切线的性质、等腰直角三角形的判定与性质、圆心角定理及相似三角形的判定与性质是解题的关键.。
【配套K12】[学习]广东省广州市南沙区2017年中考数学 考前强化训练(1)(无答案)
考前强化(1)17.(本小题满分9分)解方程组:2547x y x y +=-⎧⎨-=⎩18.(本小题满分9分)如图6,AC是菱形ABCD的对角线,点E、F分别在边AB、AD上,且BE=DF.求证:△ACE≌△ACF.19.(本小题满分10分)在一个纸盒里装有四张除数字以外完全相同卡片,四张卡片上的数字分别为1,2,3,4.先从纸盒里随机取出一张,记下数字为x ,再从剩下的三张中随机取出一张,记下数字为y ,这样确定了点P的坐标(x ,y ).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;ABC DE F图6(2)求点P(x ,y )在函数y =-x +4图象上的概率.20.(本小题满分10分)如图7,一条直线分别交x 轴、y 轴于A、B两点,交反比例数y =mx(m ≠0)位于第二象限的一支于C点,OA=OB=2. (1)m = ;(2)求直线所对应的一次函数的解析式;(3)根据(1)所填m 的值,直接写出分解因式2a +ma +7的结果.21.(本小题满分12分)如图8,△ABC中,D为BC边上的点,∠CAD=∠CDA,E为AB边的中点. (1)尺规作图:作∠C的平分线CF,交AD于点F(保留作图痕迹,不写作法);xyO图7ABC-2 4(2)连结EF,EF与BC是什么位置关系?为什么?(3)若四边形BDFE的面积为9,求△ABD的面积.22.(本小题满分12分)我国实施的“一带一路”战略方针,惠及沿途各国.中欧班列也已融入其中.从我国重庆开往德国的杜伊斯堡班列,全程约11025千米.同样的货物,若用轮船运输,水路路程是铁路路程的1.6倍,水路所用天数是铁路所用天数的3倍,列车平均日速(平均每日行驶的千米数)是轮船平均日速的2倍少49千米.分别求出列车及轮船的平均日速.ABCD 图8· E23.(本小题满分12分)如图9,⊙O的半径OA⊥OC,点D在AC 上,且AD =2CD ,OA=4. (1)∠COD= * °; (2)求弦AD的长;(3)P是半径OC上一动点,连结AP、PD,请求出AP+PD的最小值,并说明理由. (解答上面各题时,请按题意,自行补足图形)24.(本小题满分14分)二次函数y =2x +px +q 的顶点M是直线y =-12x 和直线y =x +m 的交点.(1)若直线y =x +m 过点D(0,-3),求M点的坐标及二次函数y =2x +px +q 的解析式;图9C备用图(2)试证明无论m取任何值,二次函数y=2x+px+q的图象与直线y=x+m总有两个不同的交点;(3)在(1)的条件下,若二次函数y=2x+px+q的图象与y轴交于点C,与x的右交点为A,试在直线y=-12x上求异于M的点P,使P在△CMA的外接圆上.25.(本小题满分14分)已知,如图10,△ABC的三条边BC=a ,CA=b ,AB=c ,D为△ABC内一点,且∠ADB=∠BDC=∠CDA=120°,DA=u ,DB=v ,DC=w . (1)若∠CBD=18°,则∠BCD= * °;(2)将△ACD绕点A顺时针方向旋转90°到△AC D '',画出△AC D '',若∠CAD=20°,求∠CAD '度数;(3)试画出符合下列条件的正三角形:M为正三角形内的一点,M到正三角形三个顶点的距离分别为a 、b 、c ,且正三角形的边长为u +v +w ,并给予证明.ABC Du vwabc图10。
2017年广东省广州市中考数学试题含答案
2017年广州市初中毕业生学业考试数学第一部分选择题(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图1,数轴上两点表示的数互为相反数,则点B表示的()-60m IA.-6B.6C.0D.无法确定答案:B解析:一6的相反数是6,A点表示一6,所以,B点表示6。
2.如图2,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到图形为()(D)答案:A解析:顺时针90°后,AD转到AB边上,所以,选A。
3.某6人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁)12, 13,14,15,15,15.这组数据中的众数,平均数分别为()A.12,14B.12,15C.15,14D.15,13答案:C解析:15出现次数最多,有3次,所以,众数为15平均数为:-(12+13+14+15+15+15)=14o64.下列运算正确的是()3a+b a+b…a+b2a+b r-?,,/八、A.------=-----B.2x----=------C.Ja2=aD.Lz=a(fl>0)623 3 11V7答案:D>-,、,3。
+人a b,,i〜a+b2a+2b…解析:因为------=—+一,故A错,又2x——=-------,B错,62633因为源=|。
|,所以,C也错,只有D是正确的。
5.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则g的取值范围是()A.q<16B.q>16C.q<4D.q>A-答案:A解析:根的判别式为^=64—4q>0,解得:0<16。
6.如图3,O是AABC的内切圆,则点。
是AABC的()A.三条边的垂直平分线的交点B.三角形平分线的交点C.三条中线的交点D.三条高的交点答案:B解析:内心到三角形三边距离相等,到角的两边距离相等的点在这个角的角平分线上,故选B。
2017年广州市中考数学试题(附含答案解析)(K12教育文档)
2017年广州市中考数学试题(附含答案解析)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年广州市中考数学试题(附含答案解析)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年广州市中考数学试题(附含答案解析)(word版可编辑修改)的全部内容。
2017年广州市中考数学试卷一、选择题(共10小题;共50分)1。
如图,数轴上两点,表示的数互为相反数,则点表示的数是A。
B。
C。
D。
无法确定2. 如图,将正方形中的阴影三角形绕点顺时针旋转后,得到图形为A。
B.C。
D。
3. 某人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁),,,,,.这组数据的众数,平均数分别为A。
,B。
, C. ,D。
, 4。
下列运算正确的是A。
B.C。
D。
()5. 关于的一元二次方程有两个不相等的实数根,则的取值范围是A. B。
C. D.6. 如图,是的内切圆,则点是的A. 三条边的垂直平分线的交点B。
三条角平分线的交点C. 三条中线的交点D. 三条高的交点7。
计算,结果是A。
B。
C。
D.8. 如图,,分别是平行四边形的边,上的点,,,将四边形沿翻折,得到,交于点,则的周长为A。
B。
C。
D。
9。
如图,在中,是直径,是弦,,垂足为,连接,,,则下列说法中正确的是A。
B.C。
D.10. ,函数与在同一直角坐标系中的大致图象可能是A. B.C。
D.二、填空题(共6小题;共30分)11. 如图,四边形中,,,则.12. 分解因式:.13. 当时,二次函数有最小值.14. 如图,中,,,,则.15。
2017年广州市中考数学试卷(附答案)(2021年整理精品文档)
(完整版)2017年广州市中考数学试卷(附答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)2017年广州市中考数学试卷(附答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)2017年广州市中考数学试卷(附答案)的全部内容。
2017年广州市中考数学试卷一、选择题(共10小题;共50分)1。
如图,数轴上两点,表示的数互为相反数,则点表示的数是A. B. C。
D。
无法确定2. 如图,将正方形中的阴影三角形绕点顺时针旋转后,得到图形为A. B。
C. D。
3. 某人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁),,,,,.这组数据的众数,平均数分别为A。
,B。
, C. ,D。
, 4。
下列运算正确的是A。
B.C. D。
()(完整版)2017年广州市中考数学试卷(附答案)5。
关于的一元二次方程有两个不相等的实数根,则的取值范围是A。
B。
C。
D.6。
如图,是的内切圆,则点是的A. 三条边的垂直平分线的交点B. 三条角平分线的交点C。
三条中线的交点D。
三条高的交点7。
计算,结果是A。
B. C. D。
8. 如图,,分别是平行四边形的边,上的点,,,将四边形沿翻折,得到,交于点,则的周长为A. B. C. D.9。
如图,在中,是直径,是弦,,垂足为,连接,,,则下列说法中正确的是A. B.C。
D。
10. ,函数与在同一直角坐标系中的大致图象可能是A. B。
C. D.二、填空题(共6小题;共30分)11。
如图,四边形中,,,则.12。
分解因式:.13. 当时,二次函数有最小值.14。
如图,中,,,,则.15。
广东省广州市2017年中考数学真题试题(含解析)
广东省广州市2017年中考数学真题试题第一部分选择题(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图1,数轴上两点,A B表示的数互为相反数,则点B表示的()A. -6 B.6 C. 0 D.无法确定【答案】B【解析】试题分析:-6的相反数是6,A点表示-6,所以,B点表示6.故选答案B.考点:相反数的定义2.如图2,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到图形为()【答案】A考点:旋转的特征3. 某6人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁)12,13,14,15,15,15.这组数据中的众数,平均数分别为( )A .12,14B . 12,15C .15,14D . 15,13 【答案】C 【解析】试题分析:15出现次数最多,有3次,所以,众数为15, 11213141515156+++++()=14.故选C.考点: 众数,中位数的求法 4. 下列运算正确的是( ) A .362a b a b ++= B .2233a b a b ++⨯= C. 2a a = D .()0a a a =≥ 【答案】D考点:代数式的运算5.关于x 的一元二次方程280x x q ++=有两个不相等的实数根,则q 的取值范围是( ) A .16q < B .16q > C. 4q ≤ D .4q ≥ 【答案】A 【解析】试题分析:根的判别式为△=6440q ->,解得:16q <.故选答案A. 考点:一元二次方程根的判别式的性质 6. 如图3,O 是ABC ∆的内切圆,则点O 是ABC ∆的( )图3A . 三条边的垂直平分线的交点B .三角形平分线的交点 C. 三条中线的交点 D .三条高的交点 【答案】B 【解析】试题分析:内心到三角形三边距离相等,到角的两边距离相等的点在这个角的角平分线上,故选B 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算题强化(一)
班级: 姓名:
1、先化简,再求值:2422
x x x ---,其中1x =-
2、先化简再求值:
2132446222--+-∙+-+a a a a a a a ,其中31-=a
4、已知122=-x x ,求代数式2)1()13)(1(+-+-x x x 的值。
5、(1)计算1020103)5(97)1(-∙-∙+---π. (2)解方程:
111=+-x
x x .
2017年中考计算题强化(二)
班级: 姓名:
1、解方程:
1262=++-x x x 2、解方程组:⎩⎨⎧==+1-25y x y x
3、解不等式
53
23>-x 4、解不等式:7)1(6)2(5+-<-x x
7、 解不等式组:312(1)312
x x x ->+⎧⎪⎨-≤⎪⎩,并在数轴上表示出其解集.
(2)若(1)中的不等式的最小整数解是关于x 的方程32=-ax x 的解,求a
中考计算题强化(三)
班级: 姓名: 1、解方程:
=3 2、 解方程:3221+=x x
3、解方程:
6
32123-=+-x x .
4、已知0132
=-+x x ,求代数式21144212+--++-∙-x x x x x x 的值.
5、先化简,再求值:2
(1)(1)x x x ++-,其中x =.
2017年中考计算题强化(四)
班级: 姓名:
1、解方程046x 2=--x
2、先化简,再求值:232(
)224x x x x x x -÷-+-,其中4x =
3、计算:0003201160sin 8-33)568(cos )21()
1(+++---π
4、若m 满足式子322m m +>,试判断关于x 的一元二次方240x x m -+=的根的情况.
2017中考计算题强化(五)
班级: 姓名:
1、已知2220a ab b ++=,求代数式(4)(2)(2)a a b a b a b +-+-的值。
2、 化简:2
211x x x x -÷+
3、先化简式子
231111x x x x x -÷--+-,然后从22x -<≤中选择一个合适的整数x 代入求值.
4、先化简,再求值:2)2())((a a b b b a b a --+-+,其中22a b =-=.
5、先化简,再求值:12+-x x x ÷211
x x -+,其中34x x +=。