第3章-离散傅里叶变换(DFT)
数字信号第三章 离散傅里叶变换
第三章离散傅里叶变换DFT: Discrete Fourier Transform第三章学习目标z理解傅里叶变换的几种形式z掌握离散傅里叶变换(DFT)及性质,圆周移位、共轭对称性,掌握圆周卷积、线性卷积及两者之间的关系z掌握频域抽样理论z掌握DFT的应用引言DFT要解决两个问题:一是频谱的离散化;二是算法的快速计算(FFT)。
这两个问题都是为了使计算机能够实时处理信号。
Fourier变换的几种可能形式时间函数频率函数连续时间、连续频率—傅里叶变换连续时间、离散频率—傅里叶级数离散时间、连续频率—序列的傅里叶变换可以得出一般的规律:一个域的离散对应另一个域的周期延拓;一个域的连续必定对应另一个域的非周期。
−jwndw e jwn 时域离散、非周期频域连续、周期z 时域周期化→频域离散化z 时域离散化→频域周期化离散连续周期性非周期性引言Fourier变换的几种可能形式时间函数频率函数连续时间、连续频率—傅里叶变换连续时间、离散频率—傅里叶级数离散时间、连续频率—序列的傅里叶变换离散时间、离散频率—周期序列的傅里叶级数由DTFT到DFS离散时间、离散频率的傅立叶级数(DFS)由上述分析可知,对DTFT,要想在频域上离散化,那么在时域上必须作周期延拓。
对长度为M的有限长序列x(n),以N为周期延拓(N≥M)。
注意:周期序列的离散傅里叶级数(DFS)只对有限长序列作周期延拓或周期序列成立。
……四种傅里叶变换形式的归纳时间函数频率函数连续和非周期非周期和连续连续和周期(T0)非周期和离散(Ω=2π/T)离散(T)和非周期周期(Ωs=2π/T)和连续离散(T)和周期(T0)周期(Ωs=2π/T)和离散(Ω=2π/T)在进行DFS 分析时,时域、频域序列都是无限长的周期序列周期序列实际上只有有限个序列值有意义长度为N 的有限长序列可以看成周期为N 的周期序列的一个周期(主值序列)借助DFS 变换对,取时域、频域的主值序列可以得到一个新的变换—DFT ,即有限长序列的离散傅里叶变换3.1 离散傅里叶变换(DFT )的定义及物理意义——有限长序列的离散频域表示x(n)的N 点DFT 是¾x(n)的z 变换在单位圆上的N 点等间隔抽样;¾x(n)的DTFT 在区间[0,2π)上的N 点等间隔抽样。
离散傅里叶变换(DFT)
~
将 x(n)以N为周期进行周期延拓得到 x(n) = x(( n)) N 将
~
x(n) = x((n)) N 左移m位得到 x(n + m)
(3.2.4)
例: ( n) = 3e n , o ≤ n ≤ 15 ,求 f ( n) = x(( n + 5))15 R15 (n) x
的16点离散傅立叶变换DFT。
N=16; n=0:N-1; xn=3*exp(n); m=5; fn=xn(mod((n+m),N)+1); XK=fft(xn, N); subplot(2, 2, 1); stem(n,xn); subplot(2, 2, 2); stem(n,abs(XK)); FK=fft(fn,N); subplot(2, 2, 3); stem(n,fn); subplot(2, 2, 4); stem(n,abs(FK));
x(n)为长度为N的有限长序列
x(n) 是长度为N的有限长序列x(n)的周期延拓序列
x (n ) =
~
~
m =∞
∑
∞
x ( n + mN )
(3.1.5) (3.1.6)
x (n ) = x ( n ) RN (n )
~
~
主值区间:周期序列 x( n) 从n=0到N-1的第一个周期。
~
主值序列:而主值区间上的序列称为 x( n) 的主值序列。
m
~2 m )) N) R x 2 (( (( m )) N ( n ) x (m x
2
离散傅里叶变换(DFT)
第3章 离散傅里叶变换(DFT)
3.2 离散傅里叶变换的基本性质
一. 基本概念
1. 序列的圆周移位 序列x(n),长度为N,则x(n)的圆周移位定义为:
y(n) x((n m))N RN (n) circshift(a,[0,-1])
循环移位过程:
x(n) 周期延拓 x(n) x((n))N 左移m位
x(n), n 0,1, , N 1
N 1
X (z) ZT [x(n)] x(n)zn
n0 N 1
, X (k) DFT[x(n)] x(n)WNkn
n0
比较上面二式可得关系式:
0 k N-1
X (k ) X ( z) , j2 k ze N
0 k N-1
(3.1.3)
序列x(n)的N点DFT是 x(n)的Z变换在单位圆上的N点等间隔采样
(4) 周期为N 的离散周期信号
DFS
N 1
j 2 nk
X (k) x(n)e N
n0
x(n)
1
N 1
j 2 nk
X (k)e N
N k0
k ~ n ~
时域离散周期频域周期离散。频谱特点:周期为N的离散谱
第3章 离散傅里叶变换(DFT)
四种傅立叶变换:
1. 连续非周期 2. 连续周期 3. 离散非周期 4. 离散周期
m0
yc (n) y(n qN )RN (n)
q
序列的N点圆周卷积是序列线性卷积(以N为周期)周
期延拓序列的主值序列。故,当N≥[N1+N2-1]时,线性 卷积与圆周卷积相同。
圆周卷积 是针对DFT引出的一种表示方法
两序列长度必须等,不等时按要求补零
第三章离散傅里叶变换及其快速计算方法(DFT、FFT)
X (e jw )
(2)Z 变换 -- 提供任意序列的 z 域表示。
n
x( n)e jnw
X (z)
n
x ( n) z n
这两种变换有两个共同特征:
(1)变换适合于无限长序列 (2)它们是连续变量 ω 或 z 的函数
华北电力大学自动化系
3
3.1 问题的提出:可计算性
X (z)
而对于
n
x ( n) z n
n
x ( n) z n
找不到衰减因子使它绝对可和(收敛)。为此,定义新函 数,其 Z 变换:
华北电力大学自动化系
15
DFS 定义:正变换
X ( z)
n
x ( n) z n ~ ( n ) z n x
华北电力大学自动化系
6
3.1 问题的提出:傅里叶变换的四种形式 (3)
2. 周期连续时间信号:傅里叶级数 FS
~ (t ) x X (n 0 )
t T
时域周期频域离散
0
2 T
x(t)
~
n -
X(n 0 )e jn0t
时域连续函数造成频域是非周期的谱。 频域的离散对应时域是周期函数。
X (e jT )
T T
X (e jT )e jnT d
取样定理
n
x(nT )e jnT
1 X ( 0 ) T n
时域的离散化造成频域的周期延拓 时域的非周期对应于频域的连续
华北电力大学自动化系
8
《离散傅里叶变换-第三章》
n0 0 = kn 8 7
3
3
2π − j kn 8
3 − j kπ 8
(2) 设变换区间N=16, 则
X(k) = ∑ x(n)W
n= 0
3π k −j 16
π
N= 0 = n0 0
2 = ∑ e, k = 0,1, ⋅ ⋅ ⋅, 7 π N =0 sin( k ) 8
2. 时域循环移位定理 设x(n)是长度为N的有限长序列,y(n)为x(n)的循环移位,即: y(n)=x((n+m))NRN(n) 则: Y(k)=DFT[y(n)]=W-kmNX(k) 其中:X(k)=DFT[x(n)], 0≤k≤N-1
kn 证明: Y ( k ) = DFT [ y (n )] = x (( n + m )) N RN (n )WN ∑ N− 令n+m=n′,则有1 n =0 N −1
~
~ ∞
x (n ) =
m =−∞
∑
x ( n + mN )
(3.1.5)
(3.1.6) ••
~
x (n ) ••
0
••
N-1
•
n
x (n ) = x ( n ) ⋅ RN (n )
~
~
••
••
~(n ) x
•• •
0
••
•
••
•• •
~
••
N-1
•
n
一般定义周期序列 x(n) 中从n=0到N-1的第一个周期为 x(n)的主 n) x(n) (3.1.7) x( 值区间,而主值区间上的序列称为x(n) 的主值序列。(3.1.7) x(n)
第3章-DFT变换
3.1 离散傅里叶变换的定义
3.2 离散傅里叶变换的基本性质
3.3 频率域采样
3.4 DFT的应用举例
3.1 离散傅里叶变换的定义
3.1.1 DFT的定义 设x(n)是一个长度为M的有限长序列, 则定义x(n)的N 点离散傅里叶变换为
kn X (k ) DFT[ x(n)] x(n)WN , k 0,1,, N 1 1.1) (3. k 0 N 1
所以, 在变换区间上满足下式:
IDFT[X(k)]=x(n), 0≤n≤N-1
由此可见, (3.1.2)式定义的离散傅里叶变换是唯一的。 例 3.1.1 x(n)=R4(n) ,求x(n)的8点和16点DFT 设变换区间N=8, 则
X (k ) x (n )W8kn e
n 0 N 0
Y (k ) DFT [ y ( n )]
kn x (( n m)) N RN ( n )WN n 0 kn x (( n m)) N WN n 0 N 1 N 1
令n+m=n’, 则有
Y (k )
N 1 m n m
k x((n)) NWN ( nm ) N 1 m n m
N 1
0 k N-1
比较上面二式可得关系式
X (k ) X ( z )
z e
j
2 k N
, ,
Hale Waihona Puke 0 k N-1 0 k N-1
(3.1.3) (3.1.4)
X ( k ) X ( z j )
2 k N
图 3.1.1 X(k)与X(e jω)的关系
3.1.3 DFT的隐含周期性
数字信号处理程佩青第三版课件_第三章_离散傅里叶变换
• 证明:
– 已知
~ ~ ( n )e X (k ) x
n 0
N 1
jn
2 k N
k 0,1,2 N 1
• 两边同乘以
e
j
2 kr N
,并对一个周期求和
DFS的反变换-续
k 0 N 1
~ X ( k )e
j
2 kr N
( ~ ( n )e x
n 0 k 0
三、本章主要讨论
• 离散傅里叶变换的推导
• 离散傅里叶变换的有关性质
• 离散傅里叶变换逼近连续时间信号的问题
第二节 傅里叶变换的几种形式
• 傅里叶变换: 建立以时间t为自变量的“信号” 与 以 频 率 f 为 自 变 量 的 “ 频 率 函 数 ”(频 谱) 之 间 的 某 种 变 换 关 系 .
0 r n
n 0,1,2 N 1
rn
回顾DFS
• 设 x(n)为周 期 为 N 的 周 期 序 列 , 则 其 离 散 傅 里 叶 级 数 (DFS) 变 换 对 为 : • 正变换 2
N 1 N 1 j nk ~ nk X (k ) DFS [ ~(n)] ~(n)e N ~(n)WN x x x n 0 n 0
二、DFT定义
• 正变换
X (k ) DFT [ x(n)] x(n)e
n 0
N 1
j
2 nk N
x(n)W
n 0
N 1
nk N
• 反变换
1 x(n) IDFT [ X (k )] X (k )e N k 0
N 1
j
2 nk N
x(k )W
第3章--离散傅里叶变换(DFT)(用此参考课件上课)
x(n)
三. DFT的隐含周期性
DFT变换对中,x(n)与X(k)均为有限长序列,但由于 WNkn的周期性,使x(n) 和X(k)均具有隐含周期性,且周期
均为N。 对任意整数m,总有
1 使DFT具有特殊性质(如循环移位、循环卷积等)的根 本原因,也是学习DFT需要着重理解的性质! 2 不论原始有限长度序列的性质如何,只要对它做DFT 运算,即将它看做是周期为N的周期序列
xn
W kn 2N
n0
nN
N 1
N 1
x
n
W kn 2N
x n N W2kNnN
n0
n0
N1
k n N 1
kn kN
x n WN2 x n N WN2 WN 2
n0
n0
N 1
x
kn
n WN2
1 e jk
n0
2
X
k 2
,
0,
k 偶数 k 奇数
0 k 2N -1
证:利用周期序列的移位性质加以证明
DFS [x((n m)) N ] DFS [~x (n m)] WNmk X~(k)
可直接按IDFT{Y(k)}证明
再利用DFS和DFT关系
DFT[x((n m))N RN (n)] DFT[~x (n m)RN (n)] WNmk X~(k )RN (k ) WNmk X (k )
例题:
已知x(n)是长度为N的有限长度序列,X(k)=DFT[x(n)],
令 y n x n N R2N n ,试求Y(k)=DFT[y(n)]与X(k)之间的关系。
解:
2 N 1
2 N 1
Y k
y
n
第3章--离散傅里叶变换(DFT)
设x(n)是一种长度为M旳有限长序列, 则定义x(n)旳N点
离散傅里叶正变换为
N 1
j 2 nk
X (k ) DFT[x(n)] x(n)e N
N 1
x(n)WNnk
n0
n0
离散傅里叶逆变换为
离散傅里叶变换对
x(n)
IDFT[ X (k )]
1 N
N 1
j 2 nk
X (k )e N
3.2 离散傅里叶变换旳基本性质
1 线性性质 假如x1(n)和x2(n)是两个有限长序列,长度分别为N1和N2。 y(n)=ax1(n)+bx2(n) 式中a、 b为常数, 即N=max[N1, N2],
则y(n)旳N点DFT为 Y(k)=DFT[y(n)]=aX1(k)+bX2[k], 0≤k≤N-1(3.2.1) 其中X1(k)和X2(k)分别为x1(n)和x2(n)旳N点DFT。 若N1<N2,则N=N2,那么需将x1(n)补上N2-N1个零值点后变
k 2 k f f s k
N
N
以上所讨论旳三种频率变量之间旳关系,在对模 拟信号进行数字处理以及利用模拟滤波器设计数 字滤波器乃至整个数字信号处理中十分主要,望 同学们高度注重。
第三章 离散傅里叶变换DFT
3.1.2 DFT旳隐含周期性------ DFT与 DFS旳关系
DFT变换对中,x(n)与X(k)均为有限长序列,但因为WknN旳周
第三章 离散傅里叶变换DFT
例2 : x(n) R8 (n),分别计算x(n)旳8点、16点DFT。
解: x(n)旳8点DFT为
X (k)
7 n0
R8 (n)W8k n
7 j2k n
(整理)离散傅里叶变换
第三章离散傅立叶变换(DFT)3.1 引言有限长序列在数字信号处理是很重要的一种序列,当然可以用Z变换和傅里叶变换来研究它,但是,可以导出反映它的"有限长"特点的一种有用工具是离散傅里叶变换(DFT)。
离散傅里叶变换除了作为有限长序列的一种傅里叶表示法在理论上相当重要之外,而且由于存在着计算离散傅里叶变换的有效快速算法,因而离散傅里叶变换在各种数字信号处理的算法中起着核心的作用。
有限长序列的离散傅里叶变换(DFT)和周期序列的离散傅里叶级数(DFS)本质上是一样的。
为了更好地理解DFT,需要先讨论周期序列的离散傅里叶级数DFS。
而为了讨论离散傅里叶级数及离散傅里叶变换,我们首先来回顾并讨论傅里叶变换的几种可能形式。
(连续时间信号:如果在讨论的时间间隔内,除若干不连续点之外,对于任意时间值都可给出确定的函数值,此信号就称为连续时间信号。
)一、连续时间、连续频率——连续傅立叶变换(FT)设x(t)为连续时间非周期信号,傅里叶变换关系如下图所示:可以看出时域连续函数造成频域是非周期的谱,而时域的非周期造成频域是连续的谱。
二、连续时间,离散频率------傅 里 叶 级 数设f(t)代表一个周期为T 1的周期性连续时间函数,f(t)可展成傅里叶级数,其傅里叶级数的系数为n F ,f(t)和n F 组成变换对,表示为:tjn n n e F t f 1)(Ω∞-∞=∑=(112Ω=πT )dte tf T F TT t jn n ⎰-Ω-=221111)(1注意符号:如果是周期性的采样脉冲信号p(t),周期用T 表示(采样间隔)。
采样脉冲信号的频率为Ts π2=Ω可以看出时域连续函数造成频域是非周期的谱,而时域的周期造成频域是离散的谱三、离散时间,连续频率------序列的傅里叶变换正变换:DTFT[x(n)]=()()j nj n X e x n eωω∞-=-∞=∑反变换:DTFT-11[()]()()2j n j j X e x n X e e d πωωωπωπ-==⎰)(ωj e X 级数收敛条件为|()j nn x n eω∞-=-∞∑|=∞<∑∞-∞=n n x )(可以看出时域离散函数造成频域是周期的谱,而时域的非周期造成频域是连续的谱四、离散时间,离散频率------离散傅里叶变换上面讨论的三种傅里叶变换对,都不适用在计算机上运算,因为至少在一个域(时域或频域)中,函数是连续的。
数字信号处理第三章习题解答
(4)在频带宽度不变的情况下,将频率分辨率提高一倍的N值。
解:
(1)已知
(2)
(3)
(4)频带宽度不变就意味着采样间隔T不变,应该使记录时间扩大一倍为0.04s实现频率分辨率提高一倍(F变为原来的1/2)
18.我们希望利用 长度为N=50的FIR滤波器对一段很长的数据序列进行滤波处理,要求采用重叠保留法通过DFT来实现。所谓重叠保留法,就是对输入序列进行分段(本题设每段长度为M=100个采样点),但相邻两段必须重叠V个点,然后计算各段与 的L点(本题取L=128)循环卷积,得到输出序列 ,m表示第m段计算输出。最后,从 中取出B个,使每段取出的B个采样点连接得到滤波输出 。
————第三章————
离散傅里叶变换DFT
3.1 学习要点
3.1.1DFT的定义、DFT与Z变换(ZT)、傅里叶变换(FT)的关系及DFT的物理意义
1.DFT的定义
设序列 为有限长序列,长度为 ,则定义 的 点离散傅立叶变换为
(3.1)
的 点离散傅立叶逆变换为
(3.2)
其中, , 成为DFT变换区间长度。
学习DFT的性质时,应与傅里叶变换的性质对照学习,要搞清两者的主要区别。我们知道,傅里叶变换将整个时域作为变换区间,所以在其性质中,对称性以原点为对称点,序列的移动范围无任何限制。
然而,DFT是对有限长序列定义的一种变换,也就是说,DFT变换区间为 。这一点与傅立叶变换截然不同,由于 及 区间在DFT变换区间以外,所以讨论对称性时,不能再以原点作为对称点,而是以 点作为对称点。为了区别于无限长共轭对称序列,用 和 分别表示有限长(或圆周)共轭对称序列和共轭反对称序列。其定义为
即 隐含周期性,周期为 。
第三章 离散傅里叶变换(DFT)
− N
n
)*
W
n N
=
W
n N
+iN
3. 可约性 4. 正交性
W i⋅n N
= WNn / i
∑ ∑ 1
N
N −1
W
nk N
(WNmk
)
*
k =0
=
1 N
N −1
W (n−m)k N
k =0
=
⎧1, ⎩⎨0,
n − m = iN n − m ≠ iN
3.3 周期序列的离散傅里叶级数
z 可以看出,当0≤k≤N-1 时,X~(k) 是对X(z)在Z平面单 位圆上的N点等间隔采样,在此区间之外随着k的变 化,X~ (k ) 的值呈周期变化。
了。所以这种无穷长序列实际上只有N个序列值的信息是 有用的,因此周期序列与有限长序列有着本质的联系。
3.3 周期序列的离散傅里叶级数
z X~(k) ↔ ~x (n) 是一个周期序列的离散傅里叶 级数(DFS)变换对,这种对称关系可表示为:
∑ X
(k )
=
D F S [ x (n)]
=
N −1
x
10
X (k) =
|X(ejω)|
X (e jω ) ω= 2π k 10
=
− j 4π k
e 10
sin(π k / 2) sin(π k /10)
5
…
o
π
…
2π
3π
4π
ω
3.3 周期序列的离散傅里叶级数
例2 已知周期序列x (n),求X (k )。并讨论 X~ (k)与 X (e jω ) 的关系
将n和k互换,有 ∑ Nx (-k ) = N-1 X (n)WNkn n=0
第3章 离散傅立叶变换 DFSDFS的性质DFTDFT的性质循环卷积利用DFT计算线性卷积频率域抽样FFT
~x(n)
1 N
N
1
X~
(k
)W
N
kn
k 0
IDFS
X~ (k )
DFS[·] ——离散傅里叶级数正变换 IDFS[·]——离散傅里叶级数反变换
离散傅里叶变换(DFT)
我们知道周期序列实际上只有有限个序列值有意义,因此 它的许多特性可推广到有限长序列上。
一个有限长序列 x(n),长为N,
x(n)
图4.2.8 倒序规律
3.5.4 频域抽取法FFT(DIF―FFT)
在基2快速算法中,频域抽取法FFT也是一种常用 的快速算法,简称DIF―FFT。
设序列x(n)长度为N=2M,首先将x(n)前后对半分
开,得到两个子序列,其DFT可表示为如下形式:
N 1
X (k) DFT[x(n)] x(n)WNk
T0
频谱特点: 离散非周期谱
2. 连续时间非周期信号
x(t) 1 X ( j) ej td
2
X ( j) x(t) e j tdt
频谱特点: 连续非周期谱
3. 离散非周期信号
x(n) FT-1[ X (ej )] 1 X (ej ) ejnd
2
X (ej ) FT[x(n)] x(n) e-jn n
~x (n) IDFS [ X~ (k )] 1 N 1 X~ (k )e j2 / N nk
N n0
X~ (k ) DFS [~x (n)] N 1 ~x (n)e j2 / N kn n0
习惯上:记 WN e j2 / N ,叫旋转因子.
则DFS变换对可写为
X~(k) N 1 ~x (n)WNkn DFS~x (n) n0
第三章 离散傅里叶变换(DFT)
~ X ( k ) N k ( r pn)
k 0
N 1
~ NX ( r pN ) ~ NX ( r )
j 2 nr N
1 ~ 因此, X (r ) N
~ ( n )e x
n 0
N 1
将r换成k则有 1 ~ X (k ) N
n 0
则有
~ ~ ~ (n) b~ (n) aX (k ) bX (k ) DFSax1 x2 1 2
其中,a,b为任意常数。
二.序列的移位
~ ~(n) X (k ) 如果 DFSx
则有:
~ ~(n m) W mk X (k ) DFSx N e
2 j mk N
即:
N 1 n 0 j 2 kn N
~ ~( n )e X (k ) x ~( n ) 1 x N
N 1 k 0
~ X ( k )e
2 j kn N
~ X (k ) 的周期性 2 N 1 j ( k mN ) n ~ 周期性: ( k m N) ~( n )e N X x
) X (k )
0
0 20
N 0 N
k
四.离散时间、离散频率的傅氏变换--DFT
x(nT)=x(n)
1 2 T0 F0 0
T0 NT
0
x (e
j k 0T
T 2T
1 2
( N 1) ( N 1)
NT N
0
)
2 T s 1 T 2
x(k )
n 0 N 1 j 2 nk N
~ ( n )W nk x N
N 1 n 0
离散傅里叶变换(DFT)
k=floor((-Nw/2+0.5):(Nw/2+0.5)); %建立关于纵轴对称的频率相量
for r=0:3;
K=3*r+1;
% 1,4,7,10
nx=0:(K*Nx-1); x=xn(mod(nx,Nx)+1);
%周期延拓后的时间向量 %周期延拓后的时间信号x
Xk=x*(exp(-j*dw*nx'*k))/K; %DFS
0
DFT的提出:
离散傅里叶变换不仅具有明确的物理意义,相对于DTFT, 它更便于用计算机处理。但是,直至上个世纪六十年代,由 于数字计算机的处理速度较低以及离散傅里叶变换的计算量 较大,离散傅里叶变换长期得不到真正的应用,快速离散傅 里叶变换算法的提出,才得以显现出离散傅里叶变换的强大 功能,并被广泛地应用于各种数字信号处理系统中。近年来, 计算机的处理速率有了惊人的发展,同时在数字信号处理领 域出现了许多新的方法,但在许多应用中始终无法替代离散 傅里叶变换及其快速算法。
X (e j ) x(n)e jn n
x(n) 1 X (e j )e jnd
2
其中ω为数字角频率,单位为弧度。 注意:非周期序列,包含了各种频率的信号。
局限性:离散时间傅里叶变换(DTFT)是特殊的Z变换,在数学和信号分 析中具有重要的理论意义。但在用计算机实现运算方面比较困难。这是因为, 在DTFT的变换对中,离散时间序列在时间n上是离散的,但其频谱在数字角
§1、傅里叶级数
周期为N的序列 ~x(n) ~x(n rN), (r为整数)
j( 2 )n
基频序列为 e1(n) e N
k次谐波序列为
ek (n)
j( 2 )nk
e N
第3章 离散傅里叶变换(DFT)
时域循环移位定理表明:有限长序列的循环移位,在离散 频域中相当于引入一个和频率成正比的线性相移WN-mk 频域循环移位定理表明:时域序列的调制(相移)等效于频域 的循环移位
(3.1.7)
注:若x(n)实际长度为M,延拓周期为N,则当N<M时,(3.1.5) 式仍表示以N为周期的周期序列,但(3.1.6)和 (3.1.7)式仅对 N≥M时成立。
第3章 离散傅里叶变换(DFT)
图3.1.2(a)中x(n)实际长度M=6,
x (n) 如图 当延拓周期N=8时,~
3.1.2(b)所示。
DTFT:X(e )= x( n)e
M 1 n0
N (n) RN (n) xN ( n) x
(k ) x N (n)WNkn DFS : X
DFT与ZT关系:
k
z e
j k N
X (k ) X ( z )
k ,, ,..., N k ,, ,..., N
第3章 离散傅里叶变换(DFT)
(2)时/频域循)] X (k )
k 0,1,..., N 1
则
且
mk DFT [ x(( n m)) N RN (n)] WN X (k )
nl IDFT [ X (( k l )) N RN (k )] WN x ( n)
n 0 N 1
WN e
j
2 N
k 0,1,..., N 1 n 0,1,..., N 1
1 N 1 IDFT [ X (k )] x(n) X (k )WN kn N k 0
1 IDFT[ X (k )]N N
N 1
mk kn [ x ( m ) W ] W N N k 0 m 0 k ( mn ) W N k 0 N 1
数字信号处理第三章离散傅里叶变换(DFT)及其快速算法(FFT)
周期
2
s、fs N
分辨率
2
N
fs N
返回
回到本节
DFT和DFS之间的关系:
周期延拓
取主值
有限长序列
周期序列
主值区序列
有限长序列 x(n) n 0,1, 2, M 1
周期序列 xN (n) x(n mN ) x((n))N m 0 n0 N 1 n mN n0 ((n))N n0
四种傅立叶变换
离散傅立叶变换(DFT)实现了信号首次在频域 表示的离散化,使得频域也能够用计算机进行处理。 并且这种DFT变换可以有多种实用的快速算法。使信 号处理在时、频域的处理和转换均可离散化和快速 化。因而具有重要的理论意义和应用价值,是本课程 学习的一大重点。
本节主要介绍
3.1.1 DFT定义 3.1.2 DFT与ZT、FT、DFS的关系 3.1.3 DFT的矩阵表示
• X(k)为x(n)的傅立叶变换 X (e j ) 在区间 [0, 2 ]上的N
点等间隔采样。这就是DFT的物理意义。
j ImZ
2பைடு நூலகம்3
4
5 6
1 2
N
k=0 ReZ
7 (N-1)
DFT与z变换
X(ejω)
X(k)
0
o
2
0
N 1 k
DFT与DTFT变换
回到本节
变量
、f k
之间的某种变换关系.
• 所以“时间”或“频率”取连续还是离 散值,就形成各种不同形式的傅里叶变换 对。
3.1 离散傅里叶变换的定义及物理意义
时间域
t:连续
模拟域
第3章 离散傅里叶变换(DFT)
M为整数 M为整数
x (n ) =
m = −∞
∑
∞
x ( n + mN )
(3.1.5) (3.1.6)
x (n ) = x (n ) ⋅ RN (n )
~
~
x(n)=x((n))N,
% X (k ) =
m =− ∞
∑ X (k + mN )
∞
% X (k ) = X (k ) RN (k )
回到本节
N k=0
k =0 N
为DFT变换 长度N≥M, , N 为DFT变换 长度N≥M, WN = e DFT 有限长 离散序列 有限长 离散序列
−j
2π N
第三章 离散傅里叶变换DFT
例1
解:
已知 x(n) = R4 (n),分别求N = 8和N =16 时的X (k)。
N = 8时
N−1 n=0 nk N
第三章 离散傅里叶变换DFT
式中x((n))N表示x(n)以N为周期的周期延拓序列, ((n))N 表示n对N求余, 即如果 n=MN+n1, 0≤n1≤N-1, 则 ((n))N=n1 例如 N = 5, x N (n) = x((n))5 则有
~
M为整数,
x (5) = x ((5))5 = x (0) x (6) = x ((6))5 = x (1)
∑e
n=0
k =0 8, = 0, k = 1, 2, 3, 4, 5, 6, 7
x(n)的16点DFT为
k 1 − W168 1 − e k X (k ) = W16 n = = k 2π −j k 1 − W16 n=0 1 − e 16 π 7π sin k −j k 2 = e 16 , k = 0,1, 2,L ,15 π sin k 16
第3章 3.1-3.2离散傅里叶变换(DFT)
n0
WNkm X (k)
第3章 离散傅立叶变换(DFT)
对比记忆:
循环时移:
x((n
m))
N
RN
(n)
W mkm N
X(k
)
线性时移:
x(n n0 ) e jn0 X(e j )
29
时域移位,频域相移
2020/4/5
第3章 离散傅立叶变换(DFT)
3. 频域循环移位定理 如果: X (k) DFT[x(n)], 0 k N 1 则 : Y (k) X ((k l))N RN (k)
e8
n0
n0
j 3k
e8
sin(
2
sin(
k) k)
,k
0,1,, 7
8
17 2020/4/5
第3章 离散傅立叶变换(DFT)
提高谱密度
18
图3.1.1 R4(n)的FT和DFT的幅度特性关系
2020/4/5
第3章 离散傅立叶变换(DFT)
3.3.2 DFT和DTFT、ZT的关系
设序列x(n)的长度为N, 其ZT、DTFT和
对任意整数m, 总有:
WNk WN(kmN) , k, m, N均为整数
所以(3.3.6)式中, X(k)满足:
N 1
X (k mN ) x(n)WN(kmN )n
n0
N 1
x(n)WNkn X (k)
n0
同理可证明(3.3.7)式中:
14 2020/4/5
x(n mN) x(n)
1.
设序列h(n)和x(n)的长度分别为N和M。h(n)与x(n)的
L点循环卷积定义为:L1
kn
e4
n0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 IDFT [ X (k )] N
m 0 N 1
k 0
N 1
mk [ x(m)WN ]WN kn m 0
N 1
1 x ( m) N
1
k 0
N 1
k WN ( mn )
1 N
W
k 0
N 1
k ( m n ) N
{0
m n MN , M 为整数 m n MN , M为整数
证明: 根据DFT的唯一性, 只要证明(3.2.7)式右
边等于左边即可。
( X ( N k ) [ x ( n )WN N k )n ] n 0 x (n )WN ( N k )n n 0 kn x (n )WN n 0 N 1 N 1 N 1
sin k 4 , k 0,1, ,15 sin k 16
3.1.2 DFT和Z变换的关系
设序列x(n)的长度为N, 其Z变换和DFT分别为:
X ( z ) ZT [ x(n)] x( n) z n
n 0 kn X (k ) DFT [ x(n)] x( n)WN n 0 N 1
N 1
0 k N-1
比较上面二式可得关系式
X (k ) X ( z )
z e
j
2 k N
, ,
0 k N-1 0 k N-1
(3.1.3) (3.1.4)
X ( k ) X ( z j )
2 k N
图 3.1.1 X(k)与X(e jω)的关系
3.1.3 DFT的隐含周期性
X (k ) x1 (m)
m 0 N 1
N 1
N 1 m n m km N
k x2 ((n)) N WN ( nm )
x1 (m)W
m 0
N 1 m n m
kn x2 ((n)) N WN
Байду номын сангаас
k 因为上式中x2((n’))N WNn, 以N为周期, 所以对其
X(k)的离散傅里叶逆变换为
1 N 1 kn x(n) IDFT[ X (k )] (3. X (k )WN , k 0,1, , N 1 1.2) N k 0
W 式中, N e
j
2 N
,N称为DFT变换区间长度,N≥M, 通
常称(3.1.1)式和(3.1.2)式为离散傅里叶变换对。 下面证明 IDFT[X(k)]的唯一性。 把(3.1.1)式代入(3.1.2)式有
((n))N表示n对N求余, 即如果 n=MN+n1, 0≤n1≤N-1,M为整数, 则((n))N=n1 例如, N 5, ~(n) x((n))5 x 则有
x (5) x ((5))5 x(0) x (6) x ((6))5 x (1)
所得结果附合图3.1.2所示的周期延拓规律。
Y (k ) W
km N
kn
n
N 1
kn x ((n)) N WN
W
km N
n 0
N 1
kn x (n)WN
WN km X (k )
3. 频域循环移位定理
如果X(k)=DFT[x(n)], 0≤k≤N-1
Y(k)=X((k+l))NRN(k)
nl 则 y(n)=IDFT[Y(k)]= WN x(n)
前面定义的DFT变换对中, x(n)与X(k)均为有限长序列, kn WN 的周期性, 使(3.1.1)式和(3.1.2)式中的X(k)隐含 但由于 周期性, 且周期均为N。 对任意整数m, 总有
k ( WN WNk mN ) , k , m, N 均为整数
所以(3.1.1)式中, X(k)满足
X (k ) DFT [ x (n )]
kn [ x1 (m) x2 (( n m)) N RN (n )]WN n 0 m 0 kn x1 (m) x2 ((n m)) N WN n 0 m 0 N 1 N 1 N 1 N 1
令n-m=n’, 则有
m
0 1 2 3 4 5 6 7 x2 ((2 -m))NRN(m) 1
m
0 1 2 3 4 5 6 7 x(n) 4 3 2 1 0 1 2 3 4 5 6 7
m
n
图3.2.2 循环卷积过程示意图
3.2.5 DFT的共轭对称性
1. 有限长共轭对称序列和共轭反对称序列 为了区别于傅里叶变换中所定义的共轭对称(或共 轭反对称)序列, 下面用xep(n)和xop(n)分别表示有限长 共轭对称序列和共轭反对称序列, 则二者满足如下定 义式: xep(n)=x*ep(N-n), xop(n)=-x*op(N-n), 0≤n≤N-1 0≤n≤N-1 (3.2.9) (3.2.10)
DFT [ x (n )]
又由X(k)的隐含周期性有X(N)=X(0) 用同样的方法可以证明 DFT[x*(N-n)]=X*(k) (3.2.8)
1
0 1 2 3 4 5 6 7 x2 (n) 1
n,m
0 1 2 3 4 5 6 7 x2 ((- m))NRN(m) 1
n
0 1 2 3 4 5 6 7 x2 ((1 -m))NRN(m) 1
所以, 在变换区间上满足下式:
IDFT[X(k)]=x(n), 0≤n≤N-1
由此可见, (3.1.2)式定义的离散傅里叶变换是唯一的。 例 3.1.1 x(n)=R4(n) ,求x(n)的8点和16点DFT 设变换区间N=8, 则
2 kn 8
X (k ) x (n )W8kn e
(3.2.6)
X1(k)=DFT[x1(n)] X2(k)=DFT[x2(n)]
0≤k≤N-1
3.2.4 复共轭序列的DFT
设x*(n)是x(n)的复共轭序列, 长度为N X(k)=DFT[x(n)] 则 DFT[x*(n)]=X*(N-k), 0≤k≤N-1 (3.2.7)
且
X(N)=X(0)
N2。 y(n)=ax1(n)+bx2(n) 式中a、 b为常数, 即N=max[N1, N2], 则y(n)的N点 DFT为
Y(k)=DFT[y(n)]=aX1(k)+bX2(k), 0≤k≤N-1 (3.2.1)
其中X1(k)和X2(k)分别为x1(n)和x2(n)的N点DFT。
3.2.2 循环移位性质
即循环卷积亦满足交换律。 周期卷积示例
循环卷积示例1 循环卷积示例2
作为习题请证明频域循环卷积定理:
如果 则 x(n)=x1(n)x2(n)
1 X (k ) DFT [ x ( n )] X 1 ( k ) X 2 ( k ) N 1 N 1 X 1 (l ) X 2 (( k l )) N RN (k ) N l 0 1 X (k ) X 2 (k ) X 1 (k ) N 1 N 1 X 2 (l ) X 1 (( k l )) N RN (k ) N l 0
1. 序列的循环移位 设x(n)为有限长序列, 长度为N, 则x(n)的循环移 位定义为 y(n)=x((n+m))NRN(N) 移位演示 (3.2.2)
图 3.2.1
循环移位过程示意图
2. 时域循环移位定理
设x(n) 是长度为N的有限长序列, y(n)为x(n)的循 环移位, 即 y(n)=x((n+m))NRN(n) 则
令n+m=n’, 则有
Y (k )
N 1 m n m
k x((n)) NWN ( nm ) N 1 m n m
WN kn
kn x((n)) NWN
由于上式中求和项x((n’))N WN 以N为周期, 所以
对其在任一周期上的求和结果相同。 将上式的求和区 间改在主值区则得
(3.2.4)
3.2.3 循环卷积定理
有限长序列x1(n)和x2(n), 长度分别为N1 和N2 , N=max[ N1, N2 ]。 x1(n)和x2(n)的N点DFT分别为: X1(k)=DFT[x1(n)] X2(k)=DFT[x2(b)]
如果
X(k)=X1(k)·X2(k) 则
x(n) IDFT[ X (k )] x1 (m) x2 ((n m)) N RN (n) (3.2.5)
1 ~ 1 x(n) X (k )WN kn N N
n 0
N 1
X (k )WN kn
(3.1.9)
式中
X (k ) x(k ) RN (k )
~
(3.1.10)
3.2 离散傅里叶变换的基本性质
3.2.1 线性性质
如果x1(n)和x2(n)是两个有限长序列, 长度分别为N1和
x(n)
~
m
x(n mN )
(3.1.5) (3.1.6)
x(n ) x(n ) RN (n )
~
为了以后叙述方便, 将(3.1.5)式用如下形式表示:
x(n) x( n) N
~
(3.1.7)
图 3.1.2 有限长序列及其周期延拓
式中x((n))N表示x(n)以N为周期的周期延拓序列,
Y(k)=DFT[y(n)]
= WN kmX(k)
(3.2.3)
其中X(k)=DFT[x(n)], 0≤k≤N-1。
证明:
Y (k ) DFT [ y ( n )]
kn x (( n m)) N RN ( n )WN n 0 kn x (( n m)) N WN n 0 N 1 N 1
n 0 N 0