函数的概念及其三要素(定义域、值域和解析式)

合集下载

04 函数的概念、定义域及解析式(考点+解析)

04 函数的概念、定义域及解析式(考点+解析)

1.函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数。

记作:y =f (x ),x ∈A 。

注意:(1)“y =f (x )”是函数符号,可以用任意的字母表示,如“y =g(x )”;(2)函数符号“y =f (x )”中的f (x )表示与x 对应的函数值,一个数,而不是f 乘x 。

2.构成函数的三要素:定义域、对应关系和值域3.两个函数的相等:定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数。

4.区间 (1)区间的分类:开区间、闭区间、半开半闭区间; (2)无穷区间;(3)区间的数轴表示5.映射的概念一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射。

记作“f :A →B ”。

6.常用的函数表示法(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式;(2)列表法:就是列出表格来表示两个变量的函数关系;(3)图象法:就是用函数图象表示两个变量之间的关系) A .f (x )=ln x 2,g (x )=2ln x B .f (x )=x ,g (x )=x 2C .f (x )=1-x 2,g (x )=1-|x |,x ∈【-1,1】D .f (x )=log a a x (a >0且a ≠1),g (x )=3x 3【分析】 对于两个函数y =f (x )和y =g (x ),当且仅当它们的定义域、值域、对应法则都相同时,y =f (x )和y =g (x )才表示同一函数.若两个函数表示同一函数,则它们的图象完全相同,反之亦然.【解析】 A 定义域不同,B 值域不同,C 对应法则不同,故选D.【拓展练习】1.下列各组函数是同一函数的是( )①32)(x x f -=与x x x g 2)(-=, ②x x f =)(与2)(x x g =,③0)(x x f =与1)(=x g ,④12)(2--=x x x f 与12)(2--=t t t g A.①② B.①③ C.②④ D.①④ 【解析】:①定义域不同 ③定义域不同0)(x x f = k 中0≠x ②④中两个函数定义域,解析式,值域相同,是相同函数 答案:C【例2】(RJA1第22页题改编)以下给出的对应是不是从集合A 到集合B 的映射?(1)A =R ,B =R ,f :x →y =11+x ;(2)A ={x |x ≥0},B =R ,f :x →y 2=x ; (3)A ={α|0°≤α≤180°},B ={x |0≤x ≤1}.f :求余弦;(4)A ={平面α内的矩形},B ={平面α内的圆},f :作矩形的外接圆.【分析】 应该这样思考,什么是映射?映射这个概念应满足什么要求?然后作出判断.【解析】 (1)当x =-1时,y 值不存在,所以不是映射.(2)不是映射,如A 中元素x =1时,在f 作用下,B 中有两个元素±1,不具备惟一性.(3)不是映射,例如当α=180°时,在B 中没有元素与之对应.(4)由于平面内每一个矩形只有一个外接要点 梳 理 考点剖析相同函数判断问题 判断是否是映射问题 第4讲函数的概念、定义域及解析式圆与之对应,所以这个对应是从集合A 到B 的一个映射. 【点评】 欲判断对应f :A →B 是否是从A 到B 的映射,必须做两点工作: ①明确A 、B 中的元素.②根据对应判断A 中的每个元素是否在B 中能找到惟一确定的对应元素. 【拓展练习】2.已知A ={1,-1},映射f :A →A ,则对于x ∈A ,下列关系中一定错误的是( )A .f (x )=xB .f (x )=-1C .f (x )=x 2D .f (x )=x +2【解析】 对于对应法则:f (x )=x +2,当x =1时,x +2=3∉A ={1,-1};而对应法则f (x )=x ,f (x )=-1,f (x )=x 2能使“若x ∈A ,则f (x )∈A ”成立,故选D.【例3】(2015全国1文12)设函数()y f x =的图像与2x a y +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =( )(A ) 1- (B )1 (C )2 (D )4【解析】设(,)x y 是函数()y f x =的图像上任意一点,它关于直线y x =-对称为(,y x --),由已知知(,y x --)在函数2x a y +=的图像上,∴2y a x -+-=,解得2log ()y x a =--+,即2()log ()f x x a=--+,∴22(2)(4)log 2log 41f f a a -+-=-+-+=,解得2a =,故选C.【考点】函数对称;对数的定义与运算【名师点睛】对已知两个函数的关系及其中一个函数关系式解另一个函数问题,常用相关点转移法求解,即再所求函数上任取一点,根据题中条件找出该点的相关点,代入已知函数解析式,即可得出所求函数的解析式.【拓展练习】3.(2015全国1文10)已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩ ,且()3f a =-,则(6)f a -=( )(A )74- (B )54- (C )34- (D )14-【解析】∵()3f a =-,∴当1a ≤时,1()223a f a -=-=-,则121a -=-,此等式显然不成立,当1a >时,2log (1)3a -+=-,解得7a =,∴(6)f a -=(1)f -=117224---=-,故选A.【名师点睛】对分段函数求值问题,先根据题中条件确定自变量的范围,确定代入得函数解析式,再代入求解,若不能确定,则需要分类讨论;若是已知函数值求自变量,先根据函数值确定自变量所在的区间,若不能确定,则分类讨论,化为混合组求解. 4.(2016·山东文9)已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x ),当x >12时,f 12x ⎛⎫+ ⎪⎝⎭=f 12x ⎛⎫- ⎪⎝⎭.则f (6)=( )A.-2B.-1C.0D.2【解析】 当x >12时,f 12x ⎛⎫+ ⎪⎝⎭=f 12x ⎛⎫- ⎪⎝⎭.,即f (x )=f (x +1),∴T =1,∴f (6)=f (1).当x <0时,f (x )=x 3-1且-1≤x ≤1,f (-x )=-f (x ),∴f (6)=f (1)=-f (-1)-[(-1)3-1]=2,故选D.【例4】(2015湖北文6)函数256()4||lg3x x f x x x -+--的定义域为( )A .(2,3)B .(2,4]C .(2,3)(3,4]D .(1,3)(3,6]- 【解析】由函数()y f x =的表达式可知,函数()f x 的定义域应满足条件:2564||0,03x x x x -+-≥>-,解之得44≤≤-x ,2>x 且3≠x ,即函数()f x 的定义域为(2,3)(3,4],故应选C .【考点定位】本题考查函数的定义域,涉及根式、绝对值、对数和分式、交集等内容.【名师点睛】本题看似是求函数的定义域,实质上是将根式、绝对值、对数和分式、交集等知识联系在一起,重点考查学生思维能力的全面性和缜密性,凸显了知识之间的联系性、综合性,能较好的考查学生的计算能力和思维的全面性. 【拓展练习】 5.(2014·山东文3) 函数f (x )=1log 2x -1的定义域为( )A .(0,2)B .(0,2]C .(2,+∞)D .[2,+∞)【解析】 若函数f (x )有意义,则log 2x -1>0,∴log 2x >1,∴x >2. C求函数解析式 函数的定义域6.(2014山东理)函数f (x )=1log 122-)(x 的定义域为( )A.⎪⎭⎫⎝⎛210, B .(2,+∞) C.⎪⎭⎫ ⎝⎛210,∪(2,+∞) D.⎥⎦⎤⎝⎛210,∪[2,+∞)【解析】 (log 2x )2-1>0,即log 2x >1或log 2x <-1,解得x >2或0<x <12,故所求的定义域是⎪⎭⎫⎝⎛210,∪(2,+∞). 7.(2016全国2文10). 下列函数中,其定义域和值域分别与函数y=10lg x 的定义域和值域相同的是(A )y =x (B )y =lg x (C )y =2x (D)y =【解析】lg 10x y x ==,定义域与值域均为()0,+∞,只有D 满足,故选D .8.(2014江西理) 函数f (x )=ln(x 2-x )的定义域为( )A .(0,1)B .[0,1]C .(-∞,0)∪(1,+∞)D .(-∞,0]∪[1,+∞)【解析】由题意可得x 2-x >0,解得x >1或x <0,所以所求函数的定义域为(-∞,0)∪(1,+∞). 9.(2015重庆文3)函数22(x)log (x 2x 3)f 的定义域是( )(A) [3,1] (B) (3,1)(C)(,3][1,)-∞-+∞(D) (,3)(1,)-∞-+∞ 【解析】由0)1)(3(0322>-+⇒>-+x x x x 解得3-<x 或1>x ,故选D.【考点定位】函数的定义域与二次不等式. 【名师点睛】本题考查对数函数的定义域与一元二次不等式式的解法,由对数的真数大于零得不等式求解.本题属于基础题,注意不等式只能是大于零不能等于零..【例】已知221)1(xx x x f +=+ ,求)1(-x f .【错解】 由已知得 2)1()1(2-+=+xx x x f , ∴2)(2-=x x f∴122)1()1(22--=--=-x x x x f . 【错解分析】 在使用直接配凑法或换元法求函数解析式时,没有考虑定义域的变化而致错.也就是说在采用换元法求函数解析式时一定要保持等价变换【正解】 由已知得2)1()1(2-+=+x x x x f ,但xx 1+≥2,则2)(2-=x x f (|x |≥2),从而122)1()1(22--=--=-x x x x f (x ≥3或x ≤-1).1.(2013·安徽文14)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.【解析】当-1≤x ≤0时,0≤x +1≤1,由已知f (x )=12f (x +1)=-12x (x +1).【点评】本题主要考查函数解析式的求法,意在考查考生对函数解析式的理解,以及对抽象函数的化归与转化能力.2.a 、b 为实数,集合M ={ba ,1},N ={a,0},f 是M 到N 的映射,f (x )=x ,则a +b 的值为( )A .-1B .0C .1D .±1【解析】 ∵f (x )=x ,∴f (1)=1=a ,若f (ba )=1,则有ba =1,与集合元素的互异性矛盾,∴f (ba )=0,∴b =0,∴a +b =1.3.(2013·安徽文11) 函数y =1ln(1+)x+________.【解析】 实数x 满足11+x>0且21x -≥0.不等式11+x >0,即1x x+>0,解得x >0或x <-1;不等式21x -≥0的解为-1≤x ≤1.故所求函数的定义域是(0,1].4.函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =___; 【解析】:由()()12f x f x +=得()()14()2f x f x f x +==+,所以(5)(1)5f f ==-,则()()5(5)11(1)(12)5f f f f f =-=-==--+。

函数的概念及定义域、值域基本知识点总结.doc

函数的概念及定义域、值域基本知识点总结.doc

函数的概念及定义域.值域基本知识点总结函数概念1.映射的概念设A、B是两个集合,如果按照某种对应法则/ ,对于集合4小的任意元素,在集合B 中都冇唯一确宦的元索与Z对应,那么这样的单值对应叫做从A到B的映射,通常记为f :A^ B , f 表示对应法则注意:(1)A中元素必须都有彖J1唯一;(2)B中元素不一定都有原彖,但原彖不一定唯一。

2.函数的概念(1)函数的定义:设A、B是两个非空的数集,如果按照某种对应法则/,对于集合4屮的每个数兀, 在集合B中都冇唯一确怎的数和它对应,那么这样的对应叫做从A到B的一个函数,通常⑵函数的定义域、值域在函数y = f(x\xeA中,x叫做自变量,x的取值范围A叫做y = f(x)的定义域;与x的值相对应的y值叫做两数值,函数值的集合{/⑴卜e △}称为函数y = /(%)的值域。

(3)函数的三要素:定义域、值域和对丿应法则3.函数的三种表示法:图象法、列表法、解析法(1).图象法:就是用函数图象表示两个变量之间的关系;(2).列表法:就是列出表格来表示两个变量的函数关系;(3).解析法:就是把两个变量的函数关系,用等式來表示。

4.分段函数在H变量的不同变化范围屮,对应法则用不同式子來表示的函数称为分段函数。

(-)考点分析考点1:映射的概念例1. (1) A = R , B = {yly〉O}, f :x —> y =1 xI ;(2) A = {x\ x>2,x e N^}, B = {y\ y>O,y e N], / : x y = x2 - 2x + 2 ;(3) A = {xI x > 0}, = {>' I y e R}, / : x —> y = ±\[x .上述三个对应是A到B的映射.例2.若A = {1,2,3,4}, B = {aM,a,b,cwR,则A到B的映射有个,B到A的映射有个,A到B 的函数有个例3.设集合M ={-1,0,1}, 7V = {-2,-1,0,1,2},如果从M到N的映射/满足条件:对(4)8 个(3)12 个(C)16 个(0)18 个M中的每个元素兀与它在N中的象/(兀)的和都为奇数,则映射/的个数是()考点2:判断两函数是否为同一个函数例1.试判断以下各组函数是否表示同一函数?(1) /(X )= , g(x) = V?":⑶ /(x) = 2n ^X^ , g(X )= (2“V7)2"T (/7GN 4);(4) /(x) = Vx Jx + 1 , g(x) = Jx ,十 x ;(5) /(x) = x 2 -2x -1, g(t) = t 2 -2r -1 考点3:求函数解析式方法总结:(1)若已知函数的类型(如一次函数、二次函数),则用待定系数法;(2) 若已知复合函数f[g(x)]的解析式,则可用换元法或配凑法;(3) 若已知抽象函数的表达式,则常用解方程组消参的方法求出/(%)题型1:由复合函数的解析式求原来函数的解析式例1.已知二次函数/(X )满足/(2X + 1) = 4X 2-6X + 5,求/U)(三种方法)| + V* | _ Y 2例2. (09湖北改编)已知/(-—)=—v ,则/(X )的解析式可取为 l-x 1 + JC题型2:求抽象函数解析式例1.已知函数/⑴满足/U) + 2/(-) = 3x,求/⑴函数的定义域题型1:求有解析式的函数的定义域(1) 方法总结:如没有标明定义域,则认为定义域为使得函数解析式有意义的X 的取值范 围,实际操作时要注意:酚母不能为0;②对数的真数必须为正;酬次根式中被开方数应 为非负数;歿指数幕中,底数不等于0;矽分数指数幕中,底数应人于0;魁解析式由 儿个部分组成,则定义域为各个部分相应集合的交集;⑦n 果涉及实际问题,还应使得实际 问题有意义,而11注意:研究函数的有关问题一定要注意定义域优先原则,实际问题的定义 域不耍漏写。

1.第一讲:函数的概念、解析式、定义域和值域

1.第一讲:函数的概念、解析式、定义域和值域

1.第一讲:函数的概念、解析式、定义域和值域D第一讲函数的概念、解析式、定义域和值域一、引言1.本节的地位:函数是整个高中数学的重点,而函数的概念、解析式、定义域和值域又是研究函数的基本出发点,对于研究函数的性质和图象有着极其重要的作用,也是每年高考试卷必考的内容之一,因此本讲内容在高考中占据十分重要的地位.2.考纲要求:了解构成函数的要素,会求一些简单函数的定义域和值域;能根据不同需要选择恰当的方法表示函数;能运用求值域的常用方法解决实际问题和最优问题.3.考情分析:涉及本讲内容的问题仍将出现在2010年高考试题中,函数的概念要求较低,以函数解析式、定义域的考查为主,题型以选择题和填空题为主.二、考点梳理1.函数的概念:设A,B是非空的数集,如果按某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数()f x和它对应,那么就称据函数的定义:“集合M中的任一元素,在对应法则f作用下,在集合N中都有唯一元素与之对应.”由此逐一进行判断即可.解:对于图A:M中属于(]1,2的元素,在N中没有象,不符合定义;对于图B:符合M到N的函数关系;对于图C:M中有一部分的元素的象不属于集合N,因此它不表示M到N的函数关系;对于图D:其象不唯一,因此也不表示M到N 的函数关系.由上分析可知,应选B.归纳小结:(1)该题考查了函数概念,函数概念的本质是两个集合之间的对应关系,因此在求解该题时要从定义出发,注意集合M中元素的任意性和集合N中元素的唯一性,将这种对应关系与图象结合起来.(2)在问题的解决过程中,将图形语言与代数语言有效地结合并合理转化,因此要注意培养数形结合的数学思想,提高数学转化能力和抽象思维能力.例2 已知下列几组函数,其中表示同一函数的有()A .0个B .1个C .2个D .3个①()()2,f x x g x x ==②()()33,f x x g x x == ③()()21,11x f x g x x x -==-+; ④()()211,1f x x x g x x =-+=-⑤()221f x x x =--,()221g t t t =--.分析:根据函数的定义可以判定,两个函数相同,则它们的对应法则、定义域、值域都相同,因此要从函数的三要素角度进行观察、对比.解:①中()g x x =,两个函数的解析式不同;②中()g x x =,所以与()f x 表示同一函数;③中()f x 定义域为{}1x x ≠-,而()g x 的定义域为R ;④中()f x 定义域为{}1x x ≥,而()g x 的定义域为{}11x x x ≥≤-或;⑤两个函数的解析式、定义域相同,所以表示同一函数.所以选择C .归纳小结:(1)实际上判断两个函数是否为同一函数,只需看函数的两个要素:定义域和对应法则.只有当两个函数的定义域与对应法则都分别相同时,这两个函数才是同一函数.(2)该题仍涉及的考点是函数概念.在解决问题的过程中注意对概念和定义的灵活运用,不断提高数学知识的应用和转化能力.(3)第⑤小题易错判断成它们是不同的函数,原因是对函数的概念理解不透.在函数的定义域及对应法则f 不变的条件下,自变量变换字母,以至变换成其他字母的表达式,这对于函数本身并无影响,比如()21f x x=+,()21f t t =+,()()2111f u u +=++,都可视为同一函数. 例 3 ①已知两个函数()()()2,0,0x x f x x x ⎧≥⎪=⎨-<⎪⎩,()()()21,0,0x xg x x x ⎧>⎪=⎨⎪<⎩当0x <时,求()f g x ⎡⎤⎣⎦及()g f x ⎡⎤⎣⎦的解析式;分析:由于函数()f g x ⎡⎤⎣⎦和()g f x ⎡⎤⎣⎦中的变元成为()g x 和()f x ,所以只需要进行代换即可.解:∵0x <,∴()()()2224f g x f x x x ===⎡⎤⎣⎦,()()1g f x g x x=-=-⎡⎤⎣⎦. ②已知45)1(2+-=+x x x f ,求()f x 的解析式;分析:f 的作用下变元是1x +,因此只需把1x +看成是整体,通过配凑的方式把解析式中的变元转化为1x +的形式,或仍将x 视为变元,通过换元得到关于x 的解析式.解法一:∵()()22(1)5417110f x x x x x +=-+=+-++,∴()2710f x x x =-+.解法二:令1x t +=,则1x t =-,∴()()()221514710f t t t t t =---+=-+.∴()2710f x x x =-+.③已知()1210x f x f x ⎛⎫+= ⎪⎝⎭,求()f x 的解析式. 解:由()1210xf x f x ⎛⎫+= ⎪⎝⎭. ① 可得()11210xf f x x ⎛⎫+= ⎪⎝⎭. ②由①②解得()121101033x xf x =⋅-⋅. 归纳小结:(1)该题主要考查了函数的解析式的求解方法,能灵活地根据题目条件选择恰当地方法得到函数的解析式,其中涉及多种数学思想,如函数与方程的思想、分类讨论思想等,注重对分析问题和解决问题能力的考查.(2)根据已知条件求函数的解析式常用待定系数法、换元法、配方法、赋值法、解方程组法等.①当所求函数的解析式的形式已知(如二次函数、指数函数等)常用待定系数法.②已知()f g x ⎡⎤⎣⎦的表达式,求()f x 的表达式,常用配方法或换元法.③由简单的函数方程求函数的表达式,常用赋值法及解方程组法.例4(2007年安徽卷)如图所示中的图象所表示的函数的解析式为( )A .()3|1|022y x x =-≤≤B .()33|1|0222y x x =--≤≤ C .()3|1|022y x x =--≤≤ D .()1|1|02y x x =--≤≤分析:本题是由图形判断函数的解析式,由于图象在定义域[][]0,1,1,2都是线段,因此其解析式都是一次函数型,利用待定系数法,分别求出各定义域上的解析式即可.另外在图象上给出了三个特殊点()()30,0,1,,2,02⎛⎫ ⎪⎝⎭,所以还可以考虑特殊值法. 解:由图象可知,当01x ≤≤时,32y x =;当12x ≤≤时,332y x =-; ∴331,0222y x x =--≤≤.∴应选B.另解:(特殊值法)分别代入0,1x x==进行验证,只有选项B符合条件.归纳小结:(1)本题考查了函数解析式与图象之间的关系,和分段函数解析式的表达形式,考查了数形结合思想和灵活解题能力.(2)根据图象求函数解析式或判断函数性质,要注意在不同的函数自变量的取值范围内采用恰当的方法求出函数解析式.如果所求结果能用一个解析式综合,则应写成一个解析式的形式,否则应采用分段函数形式.(3)特殊值法的使用可以简化计算过程,降低难度,因此要注意使用.例5(2008湖北卷)已知函数2()962f bx x x=-+,其中x R∈,,a b为常数,则=++,2()2f x x x a方程()0f ax b+=的解集为.分析:利用待定系数法确定a,b的值,确定方程()0f ax b +=形式,从而求解.解:∵2()2f x xx a =++, ∴22()2f bx b x bx a =++.∵2()962f bx x x =-+,∴2,3a b ==-. ∴()()()22()232322324850f ax b f x x x x x +=-=-+-+=-+=. ∵644200∆=-⨯<,∴方程()0f ax b +=的解集为∅.归纳小结:(1)本题考查了函数的待定系数法求函数的解析式、二次方程的解法的知识点,考查计算和推理能力.(2)运用待定系数法求含参数解析式中,要注意恒等代数式两边对应系数相等,从而确定参数.例6(2008湖北卷)函数221()ln(3234)f x x x x x x =-+--+的定义域为( )A .(,4][2,)-∞-+∞ B .(4,0)(0.1)- C .[4,0)(0,1]- D .[4,0)(0,1)-分析:由于函数的解析式已经明确,并且没有特殊标明定义域,所以定义域为使函数解析式有意义的自变量的取值范围.解:2222320340323400x x x x x x x x x ⎧-+≥⎪--+≥⎪⎨-+--+>⎪≠⎩,可解得函数定义域为[4,0)(0,1)-.归纳小结:(1)本题考查了函数定义域的意义和基本解法,考查了分析问题和解决问题的能力.2232340x x x x -+--+>对特殊点1x =的验证,考查了思维的全面性.(2)若已知函数解析式,且没有特别要求定义域,则函数的定义域是使函数解析式有意义的自变量的取值范围.当()f x 是整式时,定义域是全体实数;当()f x 是分式函数时,定义域是使分母不为零的一切实数;当()f x 是偶次根式时,定义域是使被开方式为非负实数的集合;当()f x 是对数函数时,满足真数大于零;当对数或指数函数的底数中含参数时,底数须大于零且不等于1;在tan y x =中()2x k k Z ππ≠+∈;在cot y x =中()x k k Z π≠∈; 零指数幂的底数不能为零.注意:在实际问题中,函数的定义域要受到实际意义的限制.例7 设函数()y f x =的定义域为[]0,1,求函数()()()()0F x f x a f x a a =++->的定义域.分析:该题已知函数()y f x =的定义域,求含有参数的解析式的定义域,显然要对a 进行分类讨论.由于函数()f x 是抽象函数,所以在求函数()f x a +和()f x a -的定义域时,把握在f 的作用下,括号里的变元范围相同.在分别求出()f x a +和()f x a -定义域的基础上,求()F x 的定义域是根据a 的范围求出的交集.解:由01,01,x a x a ≤+≤⎧⎨≤-≤⎩ 得1,1.a x a a x a -≤≤-⎧⎨≤≤+⎩∵0a >,∴,11a a a a -<-<+.(1)当1a a -=,即12a =时,12x =; (2)当1a a ->,即12a <时,1a x a ≤≤-. ∴当102a <≤时,()F x 的定义域为[],1a a -. 归纳小结:(1)该题考查了抽象函数定义域,体现了对分类讨论思想和逆向思维能力的考查.(2)求复合函数的定义域:若已知()f g x ⎡⎤⎣⎦的定义域为(),x a b ∈,求()f x 的定义域只需利用a x b <<,求出()g x 的范围,而()g x 的范围就是()f x 的定义域;若已知()f x 的定义域为(),x a b ∈,求()f g x ⎡⎤⎣⎦的定义域,只需由()a g x b <<,求出x 的范围,即为()f g x ⎡⎤⎣⎦的定义域.在某些情况下,也可以先求出函数的解析式,由解析式求出()f g x ⎡⎤⎣⎦的定义域.求运算型解析式的定义域:当()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.例8(2007年北京卷)已知函数()()x g x f ,分别由下表给出:则()[]1g f 的值 ;满足()[]()[]x f g x g f >的x 的值 .分析:本题中的函数()()x g x f ,由列表法进行表示,只需将x 进行逐个验证即可.解:∵()13g =,∴()()131f g f ==⎡⎤⎣⎦;当1x =时,()()131f g f ==⎡⎤⎣⎦,()()113g f g ==⎡⎤⎣⎦;当2x =时,()()223f g f ==⎡⎤⎣⎦,()()231g f g ==⎡⎤⎣⎦;当3x =时,()()311f g f ==⎡⎤⎣⎦,()()313g f g ==⎡⎤⎣⎦.所以2x =.归纳小结:(1)本题考查了函数概念、表达形式、函数值等知识,考查了转化、化归思想和分析问题和解决问题的能力.(2)函数表达形式有解析式法、图象法和列表法.其中列表法就是列出表格来表示两个变量的函数关系.其优点是不需要计算就可以直接看出与自变量的值相对应的函数值.因此在解决本题时只需把x 的值逐个代入验证即可.例9(2008江西卷)若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是( ) A .1[,3]2 B .10[2,]3 C .510[,]23D .10[3,]3解:∵()0f x >, ∴1()()2()F x f x f x =+≥.当且仅当()2f x =号.当()12f x =时,5()2F x =; 当()3f x =时,()103F x =.所以()F x 的值域为10[2,]3,选B . 归纳小结:(1)本题考查了函数的值域、均值不等式等基本知识,还考查了函数与不等式的转化与整合的数学思想和计算、推理能力.(2)求函数值域的方法比较多,常见的主要有:①直接法;②反函数法;③配方法;④分离常数法;⑤不等式法;⑥换元法;⑦判别式法;⑧数形结合法;⑨导数法等.本题从函数形式及()f x 的值域可以判断出使用不等式法确定()F x 的最小值,再比较连续函数()F x 在闭区间上的端点值中的较大值,从而判断出所求值域. 例10(2007浙江卷)设()⎩⎨⎧<≥=1,1,2x x x x x f ,()x g 是二次函数,若()[]x g f 的值域是[)+∞,0,则()x g 的值域是( )A .(][)+∞-∞-,11, B .(][)+∞-∞-,01, C .[)+∞,0 D .[)+∞,1解:由函数()f x 解析式可知当(][),10,x ∈-∞-+∞时,()0f x ≥,所以()[]x g f 的值域是[)+∞,0时,()(][),10,g x ∈-∞-+∞.因为()g x 是二次函数,结合选项,判断选C .归纳小结:(1)本题考查了复合函数的值域与分段函数、二次函数的知识,考查了二次函数的图象与值域的判断方法,考查了数形结合思想.(2)本题在求解过程中要注意结合选项合理地进行取舍.(3)求函数值域没有固定的方法和解题模式,要熟悉几种常见的求值域的方法,在问题解决过程中选择最优解法.例11(2009年海南卷)用{}min ,,a b c 表示,,a b c 三个数中的最小值.设(){}()min 2,2,100xf x x x x =+-≥,则()f x 的最大值为( )A .4B .5C .6D .7分析:利用作差法比较难以解决本题,因此可以结合图象解决问题.解:画出2xy =,2y x =+,10y x =-的图象,如右图,观察图象可知,当02x ≤≤时,()2xf x =,当23x ≤≤时,()2f x x =+,当4x >时,()10f x x =-.所以()f x 的最大值在4x =时取得为6,故选C .归纳小结:(1)本题主要考查了初等函数的图象与函数值的大小比较,考查数形结合思想和转化思想,考查了识图和用图的能力和知识迁移能力.(2)利用图象解决函数的最大值和最小值是一种常见的考题形式,要熟记几种基本函数的图象与性质.(3)本题是有一定创新意义的问题,抓住问题的定义,转化为绘制()f x 的图象成为解题关键.例12 定义在*N 上的函数()f x 满足()11f =,且()()()1,21,f n n f n f n n ⎧⎪+=⎨⎪⎩为偶数,为奇数,则()22______f =. 分析:本题考查了抽象分段函数求函数值的问题.如果直接求解,则未知条件较多,因此从题目条件入手,对n 分类讨论,找到()f n 与()1f n +的关系成为解题关键.解:由()()()1,21,f n n f n f n n ⎧⎪+=⎨⎪⎩为偶数,为奇数,得: 当n 为偶数时,()()112f n f n +=;当n 为奇数时,()()1f n f n +=.所以()()()()()()()()()()()21203222211201921f f f f f f f f f f f ==⋅⋅⋅⋅⋅⋅ ()()()()()()1021193112018221024f f f f f f ⎛⎫=⋅⋅⋅⋅== ⎪⎝⎭.归纳小结:(1)本题考查了求分段函数和抽象函数的函数的知识和方法,考查了数形结合思想,以及根据条件分析问题、灵活解题的能力.(2)对于抽象函数的问题的解决,要根据问题和条件灵活地进行变形,合理地推理分析是关键.四、本专题总结1.要深化对函数概念的理解,从函数三要素(定义域、值域与对应法则)整体上去把握函数概念.在函数三要素中,定义域是灵魂,对应法则是函数的核心,因值域可由定义域和对应法则确定,所以两个函数当且仅当二者均相同时才表示同一个函数,而值域相同是两函数为同一函数的必要非充分条件.2.求函数解析式的方法主要有:待定系数法、换元法、配方法、函数方程法、赋值法等.已知函数为某类基本初等函数时用待定系数法,已知复合函数的问题时用换元法或配方法,抽象型函数问题一般用赋值法或函数方程法.3.求函数定义域的常见题型及求法:(1)已知函数的解析式求其定义域,只要使解析式有意义即可.(2)已知()f g x⎡⎤⎣⎦的定义域为A,求()f x的定义域,实质上求()g x在A上的值域;已知函数()f x的定义域为A,求函数()f g x⎡⎤⎣⎦的定义域,实质上使()g x A∈,解不等式即可.(3)涉及实际问题的定义域问题必须考虑问题的实际意义.(4)当解析式中含有参数时,需对参数进行讨论.4.定义域问题经常作为基本条件出现在试题中,具有一定的隐蔽性.所以在解决函数问题时,必须树立起“定义域优先”的观点.。

高中数学函数知识点(详细)

高中数学函数知识点(详细)

第二章 函数一.函数1、函数的概念:(1)定义:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作:y =)(x f ,x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{)(x f | x ∈A }叫做函数的值域. (2)函数的三要素:定义域、值域、对应法则(3)相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)2、定义域:(1)定义域定义:函数)(x f 的自变量x 的取值范围。

(2)确定函数定义域的原则:使这个函数有意义的实数的全体构成的集合。

(3)确定函数定义域的常见方法:①若)(x f 是整式,则定义域为全体实数②若)(x f 是分式,则定义域为使分母不为零的全体实数 例:求函数xy 111+=的定义域。

③若)(x f 是偶次根式,则定义域为使被开方数不小于零的全体实数例1. 求函数 ()2143432-+--=x x xy 的定义域。

例2. 求函数()02112++-=x x y 的定义域。

④对数函数的真数必须大于零⑤指数、对数式的底必须大于零且不等于1⑥若)(x f 为复合函数,则定义域由其中各基本函数的定义域组成的不等式组来确定⑦指数为零底不可以等于零,如)0(10≠=x x⑧实际问题中的函数的定义域还要保证实际问题有意义. (4)求抽象函数(复合函数)的定义域已知函数)(x f 的定义域为[0,1]求)(2x f 的定义域 已知函数)12(-x f 的定义域为[0,1)求)31(x f -的定义域3、值域 :(1)值域的定义:与x 相对应的y 值叫做函数值,函数值的集合叫做函数的值域。

(2)确定值域的原则:先求定义域 (3)常见基本初等函数值域:一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数(正余弦、正切)(4)确定函数值域的常见方法:①直接法:从自变量x 的范围出发,推出()y f x =的取值范围。

(完整版)高考函数知识点总结(全面)

(完整版)高考函数知识点总结(全面)

高考函数总结一、函数的概念与表示 1、函数 (1)函数的定义①原始定义:设在某变化过程中有两个变量x 、y ,如果对于x 在某一范围内的每一个确定的值,y 都有唯一确定的值与它对应,那么就称y 是x 的函数,x 叫作自变量。

②近代定义:设A 、B 都是非空的数的集合,f :x →y 是从A 到B 的一个对应法则,那么从A 到B 的映射f :A →B 就叫做函数,记作y=f(x),其中B y A x ∈∈,,原象集合A 叫做函数的定义域,象集合C 叫做函数的值域。

B C ⊆(2)构成函数概念的三要素 ①定义域 ②对应法则 ③值域 3、函数的表示方法 ①解析法 ②列表法 ③图象法 注意:强调分段函数与复合函数的表示形式。

二、函数的解析式与定义域1、函数解析式:函数的解析式就是用数学运算符号和括号把数和表示数的字母连结而成的式子叫解析式, 求函数解析式的方法:(1) 定义法 (2)变量代换法 (3)待定系数法(4)函数方程法 (5)参数法 (6)实际问题2、函数的定义域:要使函数有意义的自变量x 的取值的集合。

求函数定义域的主要依据: (1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义; (3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;如果函数是由一些基本函数通过四则运算而得到的,那么它的定义域是由各基本函数定义域的交集。

3。

复合函数定义域:已知f (x )的定义域为[]b a x ,∈,其复合函数[])(x g f 的定义域应由不等式b x g a ≤≤)(解出。

三、函数的值域 1.函数的值域的定义在函数y=f (x )中,与自变量x 的值对应的y 的值叫做函数值,函数值的集合叫做函数的值域。

2.确定函数的值域的原则①当函数y=f (x )用表格给出时,函数的值域是指表格中实数y 的集合;②当函数y=f (x )用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合; ③当函数y=f(x )用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; ④当函数y=f (x )由实际问题给出时,函数的值域由问题的实际意义确定。

函数的概念、定义域及解析式

函数的概念、定义域及解析式

函数的概念、定义域及解析式函数的概念、定义域及解析式一.课题:函数的概念及解析式二.教学目标:了解映射的概念,在此基础上加深对函数概念的理解;能根据函数的三要素判断两个函数是否为同一函数;理解分段函数的意义.三.教学重点:函数是一种特殊的映射,而映射是一种特殊的对应;函数的三要素中对应法则是核心,定义域是灵魂.四.教学过程:(一)主要知识:1.对应、映射、像和原像、一一映射的定义;映射----设A、B是两个非空集合,如果按照某种对应法则f,对于集合A 中的任意一个元素X,在集合B中都有唯一确定的元素Y与之对应,那么这样的对应关系叫做从集合A到集合B的映射。

记作f:A→B.其中X叫做Y的原象,Y叫做X的象。

映射是特殊的对应,只能一对一或多对一,不能一对多。

一一映射-----在集合A到集合B的映射中,若集合B中的任意一个元素在集合A中都有唯一的元素与之对应,那么就说这样的映射叫做从集合A到集合B的一一映射。

2.函数的概念函数的传统定义和近代定义;传统定义-------如果在某变化过程中有两个变量X、Y,对于X在某个范围内的每一个确定的值,按照某个对应法则f,Y都江堰市有唯一的值和它对应,那么Y就是X的函数。

记为Y=f(X)近代定义-----函数是由一个非空数集另一个非空数集的映射。

(或如果A、B 都是非空的数集,那么从A到B的映射f:A→B叫做A到B的函数。

原象的集合A叫做函数的定义域,象的集合C叫做函数的值域)。

函数是特殊的映射,只能是从非空数集到非空数集的映射。

3.函数的三要素及表示法.函数的三要素-----定义域、值域、对应法则。

(是判断两个是否为同一函数的依据)由于值域可由定义域和对应法则唯一确定,故也可说函数只有两要素,即判两个函数是否为同一函数可用定义域和对应法则来判断。

函数的表示法通常有:解析法、列表法、图象法。

4,函数的解析式:函数的解析式是指用运算符号和等号把数和表示数的字母连结而成的式子。

函数的概念及其表示方法

函数的概念及其表示方法

教学内容知识梳理知识点一、函数的概念1.函数的定义设A 、B 是非空的数集,如果按照某个确定的是非空的数集,如果按照某个确定的对应关系对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B 为从集合A 到集合B 的一个函数. 记作:y=f(x),x A .其中,x 叫做叫做自变量自变量,x 的取值范围A 叫做函数的叫做函数的定义域定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)|x A}叫做函数的值域. 2.构成函数的三要素:定义域、对应关系和值域①构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全—致,即称这两个函数相等(或为同一函数);②两个函数相等当且仅当它们的定义域和对应关系完全—致,而与表示自变量和函数值的致,而与表示自变量和函数值的字母字母无关. 3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;无穷区间;(3)区间的数轴表示.区间的数轴表示. 区间表示:区间表示:{x|a≤x≤b}=[a ,b];; ;. 知识点二、函数的表示法1.函数的三种表示方法:解析法:用数学解析法:用数学表达式表达式表示两个变量之间的对应关系.表示两个变量之间的对应关系. 优点:简明,给自变量求函数值. 图象法:用图象表示两个变量之间的对应关系.图象法:用图象表示两个变量之间的对应关系. 优点:直观形象,反应变化趋势. 列表法:列出列表法:列出表格表格来表示两个变量之间的对应关系.来表示两个变量之间的对应关系. 优点:不需计算就可看出函数值. 2.分段函数:分段函数的解析式不能写成几个不同的分段函数的解析式不能写成几个不同的方程方程,而应写函数几种不同的表达式并用个左大括号括起来,并分别注明各部分的自变量的取值情况.各部分的自变量的取值情况.知识点三、映射与函数1.映射定义:设A 、B 是两个非是两个非空集空集合,如果按照某个对应法则f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,这样的对应叫做从A 到B 的映射;记为f :A→B.象与原象:象与原象:如果给定一个从集合如果给定一个从集合A 到集合B 的映射,的映射,那么那么A 中的元素a 对应的B 中的元素b 叫做a 的象,a 叫做b 的原象. 注意:(1)A 中的每一个元素都有象,且唯一;中的每一个元素都有象,且唯一;(2)B 中的元素未必有原象,即使有,也未必唯一;中的元素未必有原象,即使有,也未必唯一;(3)a 的象记为f(a). 2.函数:设A 、B 是两个非空数集,若f :A→B 是从集合A 到集合B 的映射,这个映射叫做从集合A 到集合B 的函数,记为y=f(x). 注意:注意:(1)函数一定是映射,映射不一定是函数;函数一定是映射,映射不一定是函数;(2)函数三要素:定义域、值域、对应法则;函数三要素:定义域、值域、对应法则(3)B中的元素未必有原象,即使有原象,也未必唯一;中的元素未必有原象,即使有原象,也未必唯一;(4)原象集合=定义域,值域=象集合. 原象集合例题讲解类型一、函数概念1.下列各组函数是否表示同一个函数?下列各组函数是否表示同一个函数?(1)(2)(3)(4)】判断下列命题的真假真假【变式1】判断下列命题的(1)y=x-1与是同一函数;是同一函数;(2)与y=|x|是同一函数;是同一函数;(3)是同一函数;是同一函数;(4)与g(x)=x2-|x|是同一函数. 2.求下列函数的定义域(用区间表示). 求下列函数的定义(1);(2);(3). 】求下列函数的定义域:【变式1】求下列函数的定义域:(1);(2);(3). 3.已知函数f(x)=3x2+5x-2,求f(3),,f(a),f(a+1). 【变式1】已知函数.(1)求函数的定义域;域;(2)求f(-3),的值;的值;f(a-1)的值. (3)(3)当a>0时,求f(a)×f(a)×f(a-1)【变式2】已知f(x)=2x2-3x-25,g(x)=2x-5,求:,求: (1)f(2),g(2);(2)f(g(2)),g(f(2));(3)f(g(x)),g(f(x)) 4. 求值域(用区间表示):(1)y=x 2-2x+4;. 类型二、映射与函数5. 下列下列对应关系对应关系中,哪些是从A 到B 的映射,哪些不是?如果不是映射,如何修改可以使其成为映射? (1)A=R ,B=R ,对应法则f :取倒数;:取倒数;(2)A={平面内的平面内的三角形三角形},B={平面内的圆},对应法则f :作三角形的:作三角形的外接圆外接圆;(3)A={平面内的圆},B={平面内的三角形},对应法则f :作圆的:作圆的内接内接三角形.三角形.【变式1】判断下列两个对应是否是】判断下列两个对应是否是集合集合A 到集合B 的映射?的映射?①A={1,2,3,4},B={3,4,5,6,7,8,9},对应法则②A=N *,B={0,1},对应法则f:x→x 除以2得的得的余数余数; ③A=N ,B={0,1,2},f :x→x 被3除所得的余数;除所得的余数;④设X={0,1,2,3,4},【变式2】已知映射f :A→B ,在f 的作用下,判断下列说法是否正确?的作用下,判断下列说法是否正确?(1)任取x ∈A ,都有唯一的y ∈B 与x 对应;对应;(2)A 中的某个元素在B 中可以没有象;中可以没有象;(3)A 中的某个元素在B 中可以有两个以上的象;中可以有两个以上的象;(4)A 中的不同的元素在B 中有不同的象;中有不同的象;(5)B 中的元素在A 中都有原象;中都有原象; (6)B 中的元素在A 中可以有两个或两个以上的原象. 【变式3】下列对应哪些是从A 到B 的映射?是从A 到B 的一一映射吗?是从A 到B 的函数吗?的函数吗?(1)A=N ,B={1,-1},f :x→y=(x→y=(-1)-1)x ; (2)A=N ,B=N +,f :x→y=|x x→y=|x-3|-3|;(3)A=R ,B=R ,(4)A=Z ,B=N ,f :x→y=|x|;(5)A=N ,B=Z ,f :x→y=|x|;(6)A=N ,B=N ,f :x→y=|x→y=|x|. x|. 6. 已知A=R,B={(x,y)|x,y R},f:A→B是从集合A到集合B的映射,f:x→(x+1,x2+1),求A中的元素是从集合的象,B中元素的原象. 的映射,其中【变式1】设f:A→B是集合A到集合B的映射,其中(1)A={x|x>0},B=R,f:x→x2-2x-1,则A中元素的象及B中元素-1的原象分别为什么?的原象分别为什么?y)→(x-y-y,x+y),则A中元素(1,3)的象及B中元素(1,3)的原象分别为什(2)A=B={(x,y)|x∈R,y∈R},f:(x,y)→(x么?么?类型三、函数的表示方法7. 求函数的求函数的解析式解析式(1)若f(2x-1)=x2,求f(x);(2)若f(x+1)=2x2+1,求f(x). 【变式1】(1) 已知f(x+1)=x2+4x+2,求f(x);(2)已知:,求f[f(-1)]. 8.作出下列函数的作出下列函数的图象图象. (1);(2);类型四、分段函数9. 已知,求f(0),f[f(-1)]的值. 【变式1】已知,作出f(x)的图象,求f(1),f(-1),f(0),f{f[f(-1)+1]}的值. 10. 某市郊空调公共汽车的票价按下列规则制定:某市郊空调公共汽车的票价按下列规则制定:(1)乘坐汽车5公里以内,票价2元;元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算),已知两个相邻的公共汽车站间相距约解析式,并画出个汽车站,请根据题意,写出票价与里程之间的函数解析式为1公里,如果沿途(包括起点站和终点站)设20个汽车站,请根据题意,写出票价与里程之间的函数函数的图象. 【变式1】移动公司开展了两种通讯业务:“全球通”,月租50元,每通话1分钟,付费0.4元;“神州行”不缴月租,每通话1分钟,付费0.6元,若一个月内通话x分钟,两种通讯方式的费用分别为y1,y2(元),之间的函数关系式?Ⅰ. 写出y1,y2与x之间的函数关系式?一个月内通话多少分钟,两种通讯方式的费用相同?Ⅱ. 一个月内通话多少分钟,两种通讯方式的费用相同?元,应选择哪种通讯方式?话费200元,应选择哪种通讯方式?若某人预计一个月内使用话费Ⅲ. 若某人预计一个月内使用一、选择题1.判断下列各组中的两个函数是同一函数的为( ) ⑴,;⑵,;⑶,;⑷,;⑸,.A.⑴、⑵.⑴、⑵ B.⑵、⑶.⑶、⑸.⑷ D.⑶、⑸.⑵、⑶ C.⑷2.函数y=的定义域是() 0≤x≤1 1 D.{-1,1} x≤-1-1或x≥1 C.0≤x≤A.-1≤x≤1B.x≤3.函数的值域是( ) A.(-(-∞∞,)∪(,+∞)B.(-(-∞∞,)∪(,+∞)C.R D.(-(-∞∞,)∪(,+∞) 4.下列从.下列从集合的对应中:集合A到集合B的对应中:①A=R,B=(0,+∞),f:x→y=x2;②③④A=[-2,1],B=[2,5],f:x→y=x 2+1;⑤A=[-3,3],B=[1,3],f:x→y=|x|其中,不是从其中,不是从集合集合A 到集合B 的映射的个数是( ) A . 1 B . 2 C . 3 D . 4 5.已知映射f:A→B ,在f 的作用下,下列说法中不正确的是( ) A . A 中每个元素必有象,但B 中元素不一定有原象中元素不一定有原象 B . B 中元素可以有两个原象中元素可以有两个原象 C . A 中的任何元素有且只能有唯一的象中的任何元素有且只能有唯一的象 D . A 与B 必须是非空的必须是非空的数集数集 6.点(x ,y)在映射f 下的象是(2x-y ,2x+y),求点(4,6)在f 下的原象( ) A .(,1)B .(1,3) C .(2,6)D .(-1,-3) 7.已知集合P={x|0≤x≤4}, Q={y|0≤y≤2},下列各,下列各表达式表达式中不表示从P 到Q 的映射的是( ) A .y=B .y=C .y=x D .y=x 28.下列.下列图象图象能够成为某个函数图象的是( ) 9.函数的图象与的图象与直线直线的公共点数目是( ) A .B .C .或D .或10.已知集合,且,使中元素和中的元素对应,则的值分别为( ) A . B .C .D . 11.已知,若,则的值是( ) A .B .或C .,或D .12.为了得到函数的图象,可以把函数的图象适当平移,这个平移是( ) 的图象适当平移A.沿轴向右平移个单位个单位 B.沿轴向右平移个单位个单位C.沿轴向左平移个单位个单位个单位 D.沿轴向左平移个单位二、填空题1.设函数则实数的取值范围是_______________.2.函数的定义域_______________.3.函数f(x)=3x-5在区间上的值域是_________.上的值域4.若最大值为,则这个二次函数的表,且函数的最大值.若二次函数二次函数的图象与x轴交于,且函数的达式是_______________.5.函数的定义域是_____________________.6.函数的最小值是_________________.三、解答题1.求函数的定义域.的定义域.2.求函数的值域.的值域.3.根据下列条件,求函数的解析式:.根据下列条件,求函数的解析式(1)已知f(x)是一次函数,且f(f(x))=4x-1,求f(x);(2)已知f(x)是二次函数,且f(2)=-3,f(-2)=-7,f(0)=-3,求f(x);(3)已知f(x-3)=x 2+2x+1,求f(x+3);(4)已知; (5)已知f(x)的定义域为R ,且2f(x)+f(-x)=3x+1,求f(x). 课后作业一.选择题一.选择题1.下列四种说法正确的一个是.下列四种说法正确的一个是( ) A .)(x f 表示的是含有x 的代数式 B .函数的值域也就是其定义中的.函数的值域也就是其定义中的数集数集B C .函数是一种特殊的映射.函数是一种特殊的映射D .映射是一种特殊的函数2.已知f 满足f (ab )=f (a )+ f (b),且f (2)=p ,q f =)3(那么)72(f 等于等于 ( ) A .q p +B .q p 23+C .q p 32+D .23q p + 3.下列各组函数中,表示同一函数的是.下列各组函数中,表示同一函数的是( ) A .xx y y ==,1 B .1,112-=+´-=x y x x y C .33,x y x y == D . 2)(|,|x y x y == 4.已知函数23212---=x x x y 的定义域为的定义域为( ) A .]1,(-¥ B .]2,(-¥C .]1,21()21,(-Ç--¥D . ]1,21()21,(-È--¥ 5.设ïîïíì<=>+=)0(,0)0(,)0(,1)(x x x x x f p ,则=-)]}1([{f f f ( )A .1+pB .0 C .pD .1- 6.设函数x x x f =+-)11(,则)(x f 的表达式为( ) A .x x -+11 B . 11-+x x C .xx +-11 D .12+x x 7.已知)(x f 的定义域为)2,1[-,则|)(|x f 的定义域为的定义域为( ) A .)2,1[- B .]1,1[- C .)2,2(- D .)2,2[-8.设îíì<+³-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为(的值为( ) A .10 B .11 C .12 D .13二、填空题9.已知x x x f 2)12(2-=+,则)3(f = . 10.若记号“*”表示的是2*b a b a +=,则用两边含有“*”和“+”的运算对于任意三个”的运算对于任意三个实数实数“a ,b ,c ”成立一个恒等式 . 11.集合A 中含有2个元素,集合A 到集合A 可构成可构成 个不同的映射. 12.设函数.)().0(1),0(121)(a a f x x x x x f >ïïîïïíì<³-=若则实数a 的取值范围是的取值范围是 。

3.1函数的定义及三要素

3.1函数的定义及三要素
例5 若函数 的定义域是R,求实数 的取值范围
解:∵定义域是R,∴

例6 若函数 的定义域为[1,1],求函数 的定义域
解:要使函数有意义,必须:
∴函数 的定义域为:
例7 已知 的定义域为[-1,1],求 的定义域。
分析:法则f要求自变量在[-1,1]内取值,则法则作用在2x-1上必也要求2x-1在[-1,1]内取值,即-1≤2x-1≤1,解出x的取值范围就是复合函数的定义域;或者从位置上思考f(2x-1)中2x-1与f(x)中的x位置相同,范围也应一样,∴-1≤2x-1≤1,解出x的取值范围就是复合函数的定义域。
另解:要使函数有意义,必须:
例4 求下列函数的定义域:
① ②
③ ④ ⑤
解:①要使函数有意义,必须: 即:
∴函数 的定义域为:[ ]
②要使函数有意义,必须:
∴定义域为:{ x| }
③要使函数有意义,必须:
∴函数的定义域为:
④要使函数有意义,必须:
∴定义域为:
⑤要使函数有意义,必须:
即x< 或x> ∴定义域为:
(4)对于集合A中任意一个实数x,按照对应关系f:x→y=0,在集合B中都有唯一一个确定的数0与它对应,故是集合A到集合B的函数.
点评:判断所给对应是否是函数,首先观察两个集合A,B是否是非空集合(数集),其次验证对应关系下,集合A中数x的任意性,集合B中数y的唯一性.
巩固 若集合A={x|0≤x≤2},B={y|0≤y≤3},则下列图形给出的对应中能构成从A到B的函数f:A→B的是()
当a=b时,{x|a≤x≤b}={a}是单元素集:当a>b时,{x|a≤x≤b}=∅,这两种情况均不能用区间[a,b]表示.
题型一 函数概念的理解

函数的基本概念—函数定义、解析式(教师版)

函数的基本概念—函数定义、解析式(教师版)

函数(1)——函数的基本概念一、基础知识 (一)、函数的有关概念 (1)函数的定义:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一的元素y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y =f (x ),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )| x ∈A }叫做函数的值域.(强调:①任意性;②唯一性)。

(2)函数的定义域、值域在函数y =f(x),x ∈A 中,x 叫做自变量, A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值, 叫做函数的值域.(3)函数的三要素: 、 和 。

(4).函数的表示方法表示函数的常用方法有: 、 和 (二).相等函数如果两个函数的 相同,并且 完全一致,则这两个函数为相等函数. 三、分段函数若函数在其定义域的不同子集上,因 不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的 ,其值域等于各段函数的值域的 ,分段函数虽由几个部分组成,但它表示的是一个函数.二、 例题分析 (一) 函数的概念:例题1、以下各组函数表示同一函数的是( C )A . f (x )=x ·x +1,g (x )=x (x +1); B. f (x )=x 2-4x -2,g (x )=x +2;C. f (x )=x 2-2x -1,g (t )=t 2-2t -1;D. f (n )=2n -1(n ∈Z ),g (n )=2n +1(n ∈Z ). 例题2、下各组函数表示同一函数的是( D )A .f (x )=x 与g (x )=(x )2B .f (x )=|x |与g (x )=3x 3C .f (x )=x |x |与g (x )=⎩⎪⎨⎪⎧x 2 (x >0)-x 2 (x <0) D .f (x )=x 2-1x -1与g (t )=t +1(t ≠1)例题3.下列说法中正确的为( A )A .y =f (x )与y =f (t )表示同一个函数B .y =f (x )与y =f (x +1)不可能是同一函数C .f (x )=1与f (x )=x 0表示同一函数D .定义域和值域都相同的两个函数是同一个函数例题4.图中(1)(2)(3)(4)四个图象各表示两个变量x ,y 的对应关系,其中表示y 是x 的函数关系的有_(1)(3)___.例题5.下列各图中,不能是函数f (x )图象的是( C )(二)求函数的解析式例题1.根据下列条件,求函数()f x 的解析式:⑴已知)12fx x x =+()f x ;⑵已知()f x 是一次函数,且()98f f x x =+⎡⎤⎣⎦,求()f x ;⑶已知()()3225f x f x x +-=+,求()f x .解:⑴设1t x 1x t =-,∴()()()221211f t t t t =-+-=-, ∵11t x ,∴()()2 1 1f x x x=-.⑵设()() 0f x ax b a =+≠,则()()()2f f x af x b a ax b b a x ab b =+=++=++⎡⎤⎣⎦,由 298a x ab b x ++=+ 得2339248a a a b b ab b ==-⎧=⎧⎧⇒⎨⎨⎨==-+=⎩⎩⎩或.∴()()3234f x x f x x =+=--或.⑶在()()3225f x f x x +-=+ ①中,以x -换x 得()()3225f x f x x -+=-+ ② 由①,②消去()f x -得()21f x x =+.例题2.已知函数 ()f x 满足2211f x x x x ⎛⎫+=+ ⎪⎝⎭.(1)()f x 的解析式;⑵求()f x 的定义域、值域.解析(1)本题若采用换元法,令1t x x=+,则难以用t 来表示出x ,注意到2112f x x x x ⎛⎫⎛⎫+=+- ⎪ ⎪⎝⎭⎝⎭,从而()22f x x =-.(2)为确定函数的定义域,必须求出1t x x=+的值域,可考虑用判别式法:由1t x x=+,得:210x tx -+=.由240t ∆=-,得22t t -或, ∴()f x 的定义域是(][),22,-∞-+∞,又24x ,∴()222f x x =-,即值域为[)2,+∞.例题3.设f(x)是R 上的函数,且满足f(0)=1,并且对任意实数x,y 有f(x-y)=f(x)-y(2x-y+1), 求f(x)的表达式。

函数的概念、定义域、解析式

函数的概念、定义域、解析式

函数的概念、定义域、函数相等、解析式求法一、函数概念1.设A 、B 是非空集合,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一的数)(x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作A x x f y ∈=),(。

其中x 叫作自变量,自变量的取值范围(数集A )叫作定义域。

与x 对应的y 叫作因变量,}|)({A x x f y ∈=叫作函数的值域。

2.一个函数的构成要素为:定义域、对应关系、值域。

如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等。

3.函数三种表示方法:解析法、图像法、列表法。

具体函数定义域的求法:(1)分母不能为零。

(2)偶次方根的被开方数不小于零。

(3)零次方时底数不能为零。

(4)对数函数真数大于零。

4.抽象函数定义域的求法:(1)定义域指的是x 的取值范围。

(2)括号内的范围相同。

①已知)(x f 的定义域,求复合函数)]([x g f 的定义域。

若)(x f 的定义域为),(b a x ∈,求出)]([x g f 中b x g a <<)(的x 的范围,即为)]([x g f 的定义域。

②已知复合函数)]([x g f 的定义域,求)(x f 的定义域。

若)]([x g f 的定义域为),(b a x ∈,则由b x a <<确定)(x g 的值域,即为)(x f 的定义域。

③已知复合函数)]([x g f 的定义域,求)]([x h f 的定义域。

可由)]([x g f 的定义域(x 所对应的范围)求得)(x g 的值域,再由)(x g 的值域就是)(x h 的值域,从而求得)(x h 中x 所对应的范围,即为)]([x h f 的定义域。

5.函数解析式的求法(1)直接代入法 (2)换元法(配凑法)(3)待定系数法 (4)方程组法题型一 求具体函数的定义域例题1 求下列函数的定义域,并用区间表示。

函数的概念及其三要素

函数的概念及其三要素

函数的概念及其三要素
一、什么是函数
函数是指一种映射关系,它把一个或多个输入值映射成输出值,当用
相同的输入值时,可以产生相同的输出值,这种一一映射的关系就是函数。

数学上的函数可以分为普通函数和复合函数,普通函数主要用作表达其中
一种性质随变量而变化的定量关系,复合函数是通过一个函数定义另一个
函数,而满足其中一种定义域和值域的关系,是构成数学理论的基础。

二、函数的三要素
1、定义域
定义域也叫做函数的域,它表示函数的取值范围,即允许函数的输入
取值的范围,它可以是实数的整数、分数、有理数,也可以是复数。

一般
情况下,为了更好地研究函数的特性,会将定义域划分为有限多个区间,
即定义域可以表示为一个有限的集合。

2、值域
值域表示函数的输出取值可以取到的范围,也就是函数的输出值可以
取的范围。

值域可以是实数集、自然数集等,有时也会将值域分为有限多
个区间,以方便函数特性的研究。

3、解析式
解析式是一种表示函数关系的方式,它用数学符号把函数所表示的变
化关系表示出来,如一元函数的解析式一般可以写成y=f(x),其中f(x)
就是函数的解析式,这里的x表示函数的自变量,y表示函数的因变量,
f(x)称为函数式。

1、函数的定义、表示及三要素(最新 )

1、函数的定义、表示及三要素(最新 )

1. 函数的定义设A 、B 是两个非空数集,如果按照某种确定的对应关系f ,使得对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()x f 与之对应,那么就称B A f →:为从集合A 到集合B 的一个函数.记作:()x f y =,A x ∈.其中x 叫自变量,它的取值范围叫做函数的定义域;如果自变量取值a ,则由法则f 确定的值y 称为函数在a 处的函数值,记作()a f y =或a x y =,所有函数值构成的集合{}|(),y y f x x A =∈叫做这个函数的值域.☆ 函数的三要素:定义域、对应关系和值域;其中对应关系是核心,定义域是根本,当定义域和对应关系一确定,则值域也就确定了.2. 映射 设A ,B 是两个非空集合,如果按照某种对应法则f ,对A 中的任意一个元素x ,在B 中有且仅有一个元素y 与x 对应,则称f 是集合A 到集合B 的映射.这时,称y 是x 在映射f 的作用下的象,记作()x f ,于是y =()x f ,x 称作y 的原象.映射f 也可以记为B A f →:,→x ()x f ,其中A 叫做映射f 的定义域(函数定义域的推广),由所有象()x f 构成的集合叫做映射f 的值域,通常记作()A f .3.一一映射:如果映射f 是集合A 到集合B 的映射,并且对于集合B 中的任意一个元素,在集合A 中都有且只有一个原象,这时我们说这两个集合的元素之间存在一一对应关系,并把这个映射叫做从集合A 到集合B 的一一映射.4.函数与映射:对定义域内每个自变量的值,根据确定的法则对应唯一的函数值,函数值也在一个数集内变化.于是函数也就是数集到数集的映射.映射是函数概念的推广,函数是一种特殊的映射.这里要注意:在映射中,要求元素的对应形式是“多对一”或“一对一”,一一映射中元素的对应形式必须是“一一对应关系”.5.函数的表示方法:表示函数常用的方法有列表法、解析法和图象法三种.列表法:通过列出自变量与对应函数值的表来表示函数关系的方法叫做列表法. 图象法:对于函数()x f y =(A x ∈)定义域内的每一个x 值,都有唯一的y 值与它对应.把这两个对应的数构成有序实数对()y x ,作为点P 的坐标,即P ()y x ,,则所有这些点的集合F 叫做函数()x f y =的图象,即{}(,)|(),F P x y y f x x A ==∈.这就是说,如果F 是函数()x f y =的图像,则图像上的任一点的坐标()y x ,都满足函数关系()x f y =;反之,满足函数关系()x f y =的点()y x ,都在图象F 上.这种用“图形”表示函数的方法叫做图象法.解析法:如果在函数()x f y =, A x ∈中,()x f 是用代数式(或解析式)来表达的,则这种表示函数的方法叫做解析法(也称为公式法).6.分段函数:在函数的定义域内,对于自变量x 的不同取值区间,有着不同的对应法则,这样的函数通常叫做分段函数,如⎩⎨⎧≤+>-=0,230,12x x x x y 、423-+=x y 等.7.求函数定义域:在中学阶段,所研究的函数大都是能用解析式表示的,如果未加特殊说明,函数的定义域就是指能使函数解析式有意义的所有实数x 的集合,在实际问题中,还必须考虑自变量x 所代表的具体量的允许范围.①分母不为零;②偶次方根下非负;③对数函数真数大于零;④0x y =,0≠x . 研究函数时常会用到区间的概念:定义名称 符号数轴表示{}b x a x ≤≤ 闭区间 []b a ,{}b x a x << 开区间 ()b a ,{}b x a x <≤ 半开半闭区间 )[b a ,{}b x a x ≤<半开半闭区间](b a ,例题1:求下列函数的定义域(1)()43-=x xx f (2)()2x x f =(3)()2362+-=x x x f (4)()14--=x x x f☆ 如何判断两个函数是否为同一个函数:①看定义域是否相同,如果相同再看对应关系(解析式)是否一样.例题2:下列哪一组中的函数()x f 与()x g 相等?(1)()1-=x x f , ()12-=xx x g (2)()2x x f =, ()()4x x g =(3)()2x x f = , ()36x x g =例题3:画出下列函数的图象,并写出函数的定义域和值域.(1)x y 3= (2)xy 8=(3)54+-=x y (4)762+-=x x y例题4:已知函数()62-+=x x x f . (1)点(3,14)在()x f 的图象上吗? (2)当4=x 时,求()x f 的值; (3)当()2=x f 时,求x 的值.例题5:已知()12+=x x f ,则()()1-f f 的值等于( ) A.2 B.3 C.4 D.5例题6:已知函数()x f 的定义域为()0,1-,则函数()12+x f 的定义域为( )A.()1,1-B.⎪⎭⎫ ⎝⎛--21,1 C.()0,1- D.⎪⎭⎫⎝⎛1,21例题7:用区间表示下列数集: (1){}=≥1x x (2){}=≤<42x x (3){}=≠->21x x x 且 例题8:求下列函数的值域.(1)()1123≤≤-+=x x y ; (2)()x x f -+=42(3)x x y 422+--=例题9:已知函数()2211x x x f -+=.(1)求()x f 的定义域; (2)若()2=a f ,求a 的值;(3)求证:()x f x f -=⎪⎭⎫⎝⎛1求函数解析式(1) 配凑法求函数解析式:形如()[]x g f y =的函数解析式,一般也可以用换元法;例题1:已知函数()x x x f 21+=+,求()x f ;例题2:已知函数2211xx x x f +=⎪⎭⎫ ⎝⎛+,求()x f ;(2) 换元法求函数解析式:形如()[]x g f y =的函数解析式;例题3:已知()x x f 2sin cos 1=-,求()x f 的解析式.(3) 待定系数法求函数解析式:已知所求函数类型;例题4:已知()x f 是一次函数,且满足()()1721213+=--+x x f x f ,求()x f .(4) 方程组法求函数解析式:已知()x f 和⎪⎭⎫⎝⎛x f 1的关系式或者()x f 和()x f -的关系式.例题5:已知函数()x f 的定义域为()∞+,0,且()112-⎪⎭⎫⎝⎛=x x f x f ,求()x f ;函数的单调性与最值1、函数单调性定义:设函数()x f 在区间I 上有定义,如果对于这个区间上任意两个点和 ,当21x x <时,恒有()()21x f x f <,则称函数()x f 在区间I 上单调递增;如果对于这个区间上任意两个点和 ,当21x x <时,恒有()()21x f x f >,则称函数()x f 在区间I 上单调递减;单调递增函数和单调递减函数统称为单调函数.如果函数()x f y =在区间D 上是增函数或减函数,那么就说函数()x f y =在这一区间具有(严格的)单调性,区间D 叫做()x f y =的单调区间.2、最值:对于任意的I x ∈,都有()M x f ≤或者()N x f ≥,这个N M 和便是函数()x f 在区间I 上的最大值和最小值. 用定义法判断函数的单调性 例题1:已知函数()12-=x x f []()6,2∈x ,求函数的最大值和最小值.例题2:用定义法判断函数()12++=x x x f 在区间)(∞+-,1上的单调性.函数单调性的等价定义对于定义在D 上的函数()x f ,设1x ,D x ∈2,21x x <,则有: (1)()()()x f x x x f x f ⇔>--02121是D 上的单调递增函数; (2)()()[]()()x f x x x f x f ⇔>-⋅-02121是D 上的单调递增函数; (3)()()()x f x x x f x f ⇔<--02121是D 上的单调递减函数; (4)()()[]()()x f x x x f x f ⇔<-⋅-02121是D 上的单调递减函数.2x 1x 1x 2x函数的奇偶性一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么函数()x f 就叫做偶函数.(偶函数的图象一定是关于 对称)一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么函数()x f 就叫做奇函数.(奇函数的图象一定是关于 对称) 判断函数的奇偶性方法:1.不对称:函数()x f 为非奇非偶函数;2.对称例题8:判断下列函数的奇偶性.(1)()4x x f = (2)()5x x f = (3)()xx x f 1+= (4)()21xx f = (5)()1122-+-=x x x f (6)()2433xx x f -+-=()x f y =求出定义域判断定义域是否关于原点对称 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧①()()x f x f =-,则()x f 为偶函数 ②()()x f x f -=-,则()x f 为奇函数③若以上两个式子都不满足,则()x f 为非奇非偶函数④若以上两个式子都满足,则()x f 既是奇函数又是偶函数函数。

函数的三要素(定义域、值域、对应法则)

函数的三要素(定义域、值域、对应法则)

函数的三要素函数的三要素是指定义域、值域、对应法则,每个要素里掌握的方向不一样。

定义域从具体函数和抽象函数两个方向去把握,值域掌握求值域的方法有哪些,对应法则也掌握的是方法有哪些。

下面一一介绍。

一、定义域1、具体函数定义域:主要从以下几个方面去掌握:(1)整式函数的定义域是全体实数。

(2)分式函数的定义域是使得分母不为0的自变量的取值。

(3)含有偶次根式是被开放数大于等于0(4)对数函数是真数大于0(5)若f (x )是由几个式子构成的,则函数的定义域要使各个式子都有意义;2、抽象函数的定义域:此部分只需记住2句话即可:(1)、凡是出现定义域三个字,统统是指的取值范围。

(2)、相同准则条件下,相同位置取值范围一样。

通俗一句话就是括号里的取值范围一样。

3、实际问题:既要使构建的函数解析式有意义,又要考虑实际问题的要求.命题点1 求具体函数的定义域例1 求下列函数的定义域.(1)y =3-12x ; (2)y =2x -1-7x ;(3)y =(x +1)0x +2; (4)y =2x +3-12-x +1x. 考点 函数的定义域题点 求具体函数的定义域解 (1)函数y =3-12x 的定义域为R . (2)由⎩⎪⎨⎪⎧x ≥0,1-7x ≥0,得0≤x ≤17, 所以函数y =2x -1-7x 的定义域为⎣⎡⎦⎤0,17. (3)由于0的零次幂无意义,故x +1≠0,即x ≠-1.又x +2>0,即x >-2,所以x >-2且x ≠-1.所以函数y =(x +1)0x +2的定义域为{}x | x >-2且x ≠-1.(4)要使函数有意义,需⎩⎪⎨⎪⎧2x +3≥0,2-x >0,x ≠0, 解得-32≤x <2,且x ≠0, 所以函数y =2x +3-12-x +1x 的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪ -32≤x <2,且x ≠0.例2 (1)、(2018·江苏)函数f (x )=log 2x -1的定义域为________.答案 {x |x ≥2}解析 由log 2x -1≥0,即log 2x ≥log 22,解得x ≥2,满足x >0,所以函数f (x )=log 2x -1的定义域为{x |x ≥2}.(2)、函数f (x )=1xln x 2-3x +2+-x 2-3x +4的定义域为________________. 答案 [-4,0)∪(0,1)解析 由⎩⎪⎨⎪⎧ x ≠0,x 2-3x +2>0,-x 2-3x +4≥0,解得-4≤x <0或0<x <1,故函数f (x )的定义域为[-4,0)∪(0,1). (3)、函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 答案 (0,1]解析 函数的定义域满足⎩⎪⎨⎪⎧ x ≠0,1+1x >0,1-x 2≥0,解得⎩⎪⎨⎪⎧x >0或x <-1,-1≤x ≤1,∴0<x ≤1.命题点2 求抽象函数的定义域1、设f (x )的定义域为[0,1],要使函数f (x -a )+f (x +a )有定义,则a 的取值范围为____________.答案 ⎣⎡⎦⎤-12,12 解析 函数f (x -a )+f (x +a )的定义域为[a,1+a ]∩[-a,1-a ],当a ≥0时,应有a ≤1-a ,即0≤a ≤12;当a <0时,应有-a ≤1+a ,即-12≤a <0.所以a 的取值范围是⎣⎡⎦⎤-12,12.思维升华 (1)求给定函数的定义域往往转化为解不等式(组)的问题,可借助于数轴,注意端点值的取舍.(2)求抽象函数的定义域①若y =f (x )的定义域为(a ,b ),则解不等式a <g (x )<b 即可求出y =f (g (x ))的定义域; ②若y =f (g (x ))的定义域为(a ,b ),则求出g (x )在(a ,b )上的值域即得f (x )的定义域.(3)已知函数定义域求参数的值或范围,可将问题转化成含参数的不等式,然后求解.2、若函数y =f (x )的定义域为[0,2],则函数g (x )=f (2x )x -1的定义域是( ) A .[0,1)B .[0,1]C .[0,1)∪(1,4]D .(0,1) 答案 A解析 函数y =f (x )的定义域是[0,2],要使函数g (x )有意义,可得⎩⎪⎨⎪⎧0≤2x ≤2,x -1≠0,解得0≤x <1,故选A.命题点3 已知定义域求参数的值或范围例2 (1)若函数f (x )=ax 2+abx +b 的定义域为{x |1≤x ≤2},则a +b 的值为________.答案 -92解析 函数f (x )的定义域是不等式ax 2+abx +b ≥0的解集.不等式ax 2+abx +b ≥0的解集为{x |1≤x ≤2},所以⎩⎪⎨⎪⎧ a <0,1+2=-b ,1×2=b a ,解得⎩⎪⎨⎪⎧a =-32,b =-3, 所以a +b =-32-3=-92. (2)设f (x )的定义域为[0,1],要使函数f (x -a )+f (x +a )有定义,则a 的取值范围为____________.答案 ⎣⎡⎦⎤-12,12 解析 函数f (x -a )+f (x +a )的定义域为[a,1+a ]∩[-a,1-a ],当a ≥0时,应有a ≤1-a ,即0≤a ≤12;当a <0时,应有-a ≤1+a ,即-12≤a <0.所以a 的取值范围是⎣⎡⎦⎤-12,12. (4)若函数f (x )=mx 2+mx +1的定义域为一切实数,则实数m 的取值范围是________. 答案 [0,4]解析 由题意知,mx 2+mx +1≥0对x ∈R 恒成立.当m =0时,f (x )的定义域为一切实数;当m ≠0时,由⎩⎪⎨⎪⎧m >0,m 2-4m ≤0,得0<m ≤4, 综上,m 的取值范围是[0,4].二、对应法则函数解析式的求法(1)待定系数法:若已知函数的类型,可用待定系数法(例如一次函数、二次函数);(2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围;(3)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式;(4)消去法(构造方程组法):已知f (x )与f ⎝⎛⎭⎫1x 或f (-x )之间的关系式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).命题角度1 待定系数法求函数解析式例1 已知f (x )为一次函数,且f (f (x ))=2x -1,求f (x )的解析式.解 由题意,设f (x )=ax +b (a ≠0),则f (f (x ))=af (x )+b =a (ax +b )+b=a 2x +ab +b =2x -1,由恒等式性质,得⎩⎪⎨⎪⎧a 2=2,ab +b =-1, ∴⎩⎨⎧ a =2,b =1-2或⎩⎨⎧a =-2,b =1+ 2.∴所求函数解析式为f (x )=2x +1-2或f (x )=-2x +1+ 2.反思感悟 适合用待定系数法求解析式的函数类型,通常为已知的函数类型,如一次函数,二次函数等.跟踪训练 f (x )是一次函数,且满足3f (x +1)-f (x )=2x +9,求f (x )的解析式.考点 求函数的解析式题点 待定系数法求函数解析式解 由题意,设f (x )=ax +b (a ≠0),∵3f (x +1)-f (x )=2x +9,∴3a (x +1)+3b -ax -b =2x +9,即2ax +3a +2b =2x +9,由恒等式性质,得⎩⎪⎨⎪⎧2a =2,3a +2b =9, ∴a =1,b =3.∴所求函数解析式为f (x )=x +3.命题角度2 换元法(或配凑法)求函数解析式例2 (1)设函数f ⎝⎛⎭⎪⎫1-x 1+x =x ,则f (x )的表达式为( ) A.1+x 1-x(x ≠1) B.1+x x -1(x ≠1) C.1-x 1+x(x ≠-1) D.2x x +1(x ≠-1) 答案 C解析 令t =1-x 1+x ,则x =1-t 1+t(t ≠-1), ∴f (t )=1-t 1+t (t ≠-1), 即f (x )=1-x 1+x(x ≠-1). (2)若f (2x +1)=6x +5,求f (x )的表达式.考点 求函数的解析式题点 换元法求函数解析式解 方法一 设2x +1=t ,则x =t -12, ∴f (t )=6·t -12+5=3t +2. ∴f (x )=3x +2.方法二 f (2x +1)=6x +5=3(2x +1)+2,∴f (x )=3x +2.反思感悟 对于形如y =f (g (x ))的函数,求y =f (x )的解析式,通常用换元法,令t =g (x ),从中求出(x =φ(t )),然后代入表达式,求出f (t )即得f (x )的表达式.特别注意:换元法要注意新元的范围.跟踪训练 (1)若g (x )=1-2x ,f (g (x ))=1-x 2x 2,则f (x )等于( ) A.4(1-x )2+1(x ≠1) B.4(1-x )2-1(x ≠1) C.4(1-x )2(x ≠1) D.2(1-x )2-1(x ≠1)答案 B解析 令g (x )=1-2x =t ,则x =1-t 2(t ≠1),代入得f (t )=4(1-t )2-1(t ≠1), ∴f (x )=4(1-x )2-1(x ≠1). (2)若f (x +1)=x 2+4x +1,求f (x )的表达式.考点 求函数的解析式题点 换元法求函数解析式解 方法一 设x +1=t ,则x =t -1,f (t )=(t -1)2+4(t -1)+1,即f (t )=t 2+2t -2.∴所求函数解析式为f (x )=x 2+2x -2.方法二 f (x +1)=(x +1-1)2+4(x +1-1)+1=(x +1)2+2(x +1)-2,∴f (x )=x 2+2x -2.命题角度3 构造方程组求函数解析式例3 若f (x )+2f (-x )=x 2+2x ,求f (x )的表达式.考点 求函数的解析式题点 方程组法求函数解析式解 ∵f (x )+2f (-x )=x 2+2x ,将x 换成-x ,得f (-x )+2f (x )=x 2-2x ,∴联立以上两式消去f (-x ),得3f (x )=x 2-6x ,∴f (x )=13x 2-2x . 反思感悟 已知关于f (x )与f (-x )的表达式或f (x )与f ⎝⎛⎭⎫1x 的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).跟踪训练 已知2f ⎝⎛⎭⎫1x +f (x )=x (x ≠0),求f (x )的表达式.考点 求函数的解析式题点 方程组法求函数解析式解 ∵f (x )+2f ⎝⎛⎭⎫1x =x ,将原式中的x 与1x互换, 得f ⎝⎛⎭⎫1x +2f (x )=1x.于是得关于f (x )的方程组⎩⎨⎧f (x )+2f ⎝⎛⎭⎫1x =x ,f ⎝⎛⎭⎫1x +2f (x )=1x,解得f (x )=23x -x 3(x ≠0). 三、求值域:求值域的方法:(1)分离常数法:适合分子分母都是一次函数(2)反解法(3)配方法(4)不等式法(5)单调性法(6)换元法(7)数形结合法(8)导数法例 求下列函数的值域:(1)y =3x 2-x +2,x ∈[1,3];(2)y =3x +1x -2;(3)y =x +41-x ;(4)y =2x 2-x +12x -1⎝⎛⎭⎫x >12.解 (1)(配方法)因为y =3x 2-x +2=3⎝⎛⎭⎫x -162+2312,所以函数y =3x 2-x +2在[1,3]上单调递增.当x =1时,原函数取得最小值4;当x =3时,原函数取得最大值26.所以函数y =3x 2-x +2(x ∈[1,3])的值域为[4,26].(2)(分离常数法)y =3x +1x -2=3(x -2)+7x -2=3+7x -2,因为7x -2≠0,所以3+7x -2≠3,所以函数y =3x +1x -2的值域为{y |y ≠3}.(3)(换元法)设t =1-x ,t ≥0,则x =1-t 2,所以原函数可化为y =1-t 2+4t =-(t -2)2+5(t ≥0),所以y ≤5,所以原函数的值域为(-∞,5].(4)(均值不等式法)y =2x 2-x +12x -1=x (2x -1)+12x -1=x +12x -1=x -12+12x -12+12, 因为x >12,所以x -12>0, 所以x -12+12x -12≥2⎝⎛⎭⎫x -12·12⎝⎛⎭⎫x -12=2, 当且仅当x -12=12x -12,即x =1+22时取等号. 所以y ≥2+12,即原函数的值域为⎣⎡⎭⎫2+12,+∞.思维升华 配方法、分离常数法和换元法是求函数值域的有效方法,但要注意各种方法所适用的函数形式,还要注意函数定义域的限制.换元法多用于无理函数,换元的目的是进行化归,把无理式转化为有理式来解.二次分式型函数求值域,多采用分离出整式再利用基本不等式求解.。

高三数学函数三要素知识点

高三数学函数三要素知识点

高三数学函数三要素知识点函数是数学中的一种重要概念,广泛应用于各个领域,尤其在高三数学中扮演着重要的角色。

理解和掌握函数的三要素是高中数学学习的基础,也是考试中常见的考点。

本文将详细介绍函数的三要素,包括定义域与值域、图像与性质以及解析式与关系式。

一、定义域与值域函数的定义域是指函数中自变量取值范围的集合,可以是实数集、整数集或其他特定集合,记作D(f)。

而值域则是函数通过自变量变化所能取得的函数值的集合,记作R(f)。

在探究函数的定义域和值域时,可以借助图像来进行分析和判断。

例如,对于一元函数y=f(x),如果函数的解析式为y=x^2+1,我们可以通过观察解析式中的幂函数性质得知,这个函数的定义域是实数集R,因为幂函数的定义域是整个实数集。

而对于函数的值域,我们可以通过画出函数的图像来观察。

通过分析得知,y=f(x)的图像为抛物线,开口向上,顶点在(0,1)处,因此值域为{y∈R | y≥1}。

二、图像与性质函数的图像可以直观地展示函数的性质,包括函数的单调性、奇偶性、最值等。

我们可以通过图像的形状和关键点来确定函数的性质。

以一元函数y=f(x)为例,通过观察函数的图像,我们可以判断函数的单调性。

如果函数在定义域内任意两点的连线均不与函数图像相交,那么这个函数是严格单调递增或递减的。

如果函数在某一区间内是单调递增或递减的,并且在该区间内等号成立,那么这个函数是递增或递减的。

此外,通过观察图像的对称性,我们可以判断函数的奇偶性。

如果函数满足f(-x)=f(x),那么这个函数是偶函数;如果函数满足f(-x)=-f(x),那么这个函数是奇函数。

另外,通过直观观察函数图像的开口方向和顶点位置,还可以判断函数的最值。

对于抛物线函数来说,开口向上的抛物线的最小值在顶点处,最大值不存在;开口向下的抛物线的最大值在顶点处,最小值不存在。

对于其他类型的函数,可以通过函数图像的分析来得到相应的最值性质。

三、解析式与关系式函数的解析式是函数的一种表示形式,通常使用代数式来表示。

函数的概念(定义域,值域,解析式)

函数的概念(定义域,值域,解析式)

讲解新课:一.函数定义及函数三要素1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。

记作:y=f(x),x∈A。

其中,x 叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域。

注意:(1)“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;(2)函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x2.构成函数的三要素:定义域、对应关系和值域(1)解决一切函数问题必须认真确定该函数的定义域,函数的定义域包含三种形式:①自然型:指函数的解析式有意义的自变量x的取值范围(如:分式函数的分母不为零,偶次根式函数的被开方数为非负数,对数函数的真数为正数,等等);②限制型:指命题的条件或人为对自变量x的限制,这是函数学习中重点,往往也是难点,因为有时这种限制比较隐蔽,容易犯错误;③实际型:解决函数的综合问题与应用问题时,应认真考察自变量x的实际意义。

(2)求函数的值域是比较困难的数学问题,中学数学要求能用初等方法求一些简单函数的值域问题①配方法(将函数转化为二次函数);②判别式法(将函数转化为二次方程);③不等式法(运用不等式的各种性质);④函数法(运用基本函数性质,或抓住函数的单调性、函数图象等)。

3.两个函数的相等:函数的定义含有三个要素,即定义域A、值域C和对应法则f。

当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定。

因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数。

4.区间(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示5.映射的概念一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

函数的概念,三要素的求法(整理版)

函数的概念,三要素的求法(整理版)

"Pocket" members 1037, find there ar e 640 "lost" party members are not conta cted 148 "Pocket" party members a nd impl ementati on of orga nizati onal rel ationshi ps. E ducational manageme nt of party member s into t he Orga nizati on, t here is a l ot of work to do. Weak a nd lax party continued re organization as a n importa nt task, finish perfe ct organization, with a g ood team, Good system. Spe cial highlight s of grass -roots party organizations, to be dealt wit h first in pl ace, furt her educati on, r eorganization, transformation and educati onal i nteracti on. In short, thr oug h soli d and effective w ork initiatives函数的概念,三要素的求法一、函数的概念:1. 函数的概念:函数概念:设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数 记作:y = f (x ),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x ) | x ∈A }叫做函数的值域. 显然,值域是集合B 的子集.(2)函数的表示方法1.解析式:把常量和表示自变量的字母用一系列运算符号连接起来,得到的式子叫做解析式. 2.列表法:列出表格来表示两个变量之间的对应关系.3.图象法:用图象表示两个变量之间的对应关系.(3)典型例题:1. 函数y = f (x )表示( ) A .y 等于f 与x 的乘积 B .f (x )一定是解析式 C .y 是x 的函数 D .对于不同的x ,y 值也不同2.下列各图中,可表示函数y =f (x )的图象的只可能是A B C D3. 下列四种说法中,不正确的是( )A .函数值域中每一个数都有定义域中的一个数与之对应B .函数的定义域和值域一定是无限集合C .定义域和对应关系确定后,函数的值域也就确定了D .若函数的定义域只含有一个元素,则值域也只含有一个元素4. 已知f (x ) = x 2 + 4x + 5,则f (2) = __ ,f (–1) = __ .5. 已知f (x ) = x 2 (x ∈R ),表明的“对应关系”是______,它是____→_____的函数.x y o x y o x y o xy o"Pocket" members 1037, find there ar e 640 "lost" party members are not conta cted 148 "Pocket" party members a nd impl ementati on of orga nizati onal rel ationshi ps. E ducational manageme nt of party member s into t he Orga nizati on, t here is a l ot of work to do. Weak a nd lax party continued re organization as a n importa nt task, finish perfe ct organization, with a g ood team, Good system. Spe cial highlight s of grass-roots party organizations, to be dealt wit h first in pl ace, furt her educati on, r eorganization, transformation and educati onal i nteracti on. In short, thr oug h soli d and effective w ork initiatives2.映射映射的定义:设A,B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有惟一确定的元素y与之对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B.其中与A中的元素a对应的B中的元素b叫做a的象,a叫做b的原象.看下面的例子:设A,B分别是两个集合,为简明起见,设A,B分别是两个有限集说明:(2)(3)(4)这三个对应的共同特点是:对于左边集合A中的任何一个元素,在右边集合B中都有唯一的元素和它对应①“A到B”:映射是有方向的,A到B的映射与B到A的映射往往不是同一个映射,A到B是求平方,B到A则是开平方,因此映射是有序的;②“任一”:就是说对集合A中任何一个元素,集合B中都有元素和它对应,这是映射的存在性;③“唯一”:对于集合A中的任何一个元素,集合B中都是唯一的元素和它对应,这是映射的唯一性;④“在集合B中”:也就是说A中元素的象必在集合B中,这是映射的封闭性.指出:根据定义,(2)(3)(4)这三个对应都是集合A到集合B的映射;注意到其中(2)(4)是一对一,(3)是多对一一对一,多对一是映射但一对多显然不是映射辨析:①任意性:映射中的两个集合A,B可以是数集、点集或由图形组成的集合等;②有序性:映射是有方向的,A到B的映射与B到A的映射往往不是同一个映射;③存在性:映射中集合A的每一个元素在集合B中都有它的象;"Pocket" members 1037, find there ar e 640 "lost" party members are not conta cted 148 "Pocket" party members a nd impl ementati on of orga nizati onal rel ationshi ps. E ducational manageme nt of party member s into t he Orga nizati on, t here is a l ot of work to do. Weak a nd lax party co ntinued re organization as a n importa nt task, finish perfe ct organization, with a g ood team, Good system. Spe cial highlight s of grass-roots party organizations, to be dealt wit h first in pl ace, furt her educati on, r eorganization, transformation and educati onal i nteracti on. In short, thr oug h soli d and effective w ork initiatives④唯一性:映射中集合A的任一元素在集合B中的象是唯一的;⑤封闭性:映射中集合A的任一元素的象都必须是B中的元素,不要求B中的每一个元素都有原象,即A中元素的象集是B的子集.映射三要素:集合A、B以及对应法则f,缺一不可;映射观点下的函数概念如果A,B都是非空的数集,那么A到B的映射f:A→B就叫做A到B的函数,记作y=f(x),其中x∈A,y ∈B.原象的集合A叫做函数y=f(x)的定义域,象的集合C(C B)叫做函数y=f(x)的值域.函数符号y=f(x)表示“y是x的函数”,有时简记作函数f(x).例以下给出的对应是不是从集合A到B的映射?(1)集合A = {P | P是数轴上的点},集合B = R,对应关系f:数轴上的点与它所代表的实数对应;(2)集合A = {P | P是平面直角坐标系中的点,集合B = {(x | y) | x∈R,y∈R},对应关系f:平面直角坐标系中的点与它的坐标对应;(3)集合A = {x | x是三角形},集合B = {x | x是圆},对应关系f:每一个三角形都对应它的内切圆;(4)集合A = {x | x是新华中学的班级},集合B = {x | x是新华中学的学生},对应关系f:每一个班级都对应班里的学生.(1)按照建立数轴的方法可知,数轴上的任意一个点,都有惟一的实数与之对应,所以这个对应f:A→B是从集合A到B的一个映射.(2)按照建立平面直角坐标系的方法可知,平面直角坐标系中的任意一个点,都有惟一的一个实数对与之对应,所以这个对应f:A→B是从集合A到B的一个映射.(3)由于每一个三角形只有一个内切圆与之对应,所以这个对应f:A→B是从集合A到B的一个映射.(4)新华中学的每一个班级里的学生都不止一个,即与一个班级对应的学生不止一个,所以这个对应f:A→B 不是从集合A到B的一上映射.1.图1-2-2-21(1),(2),(3),(4)用箭头所标明的A中元素与B中元素的对应法则,是不是映射?图1-2-2-21“一对一”或“多对一”的对应,即集合A中的任意一个元素,在集合B中都有唯一确定的元素与之对应."Pocket" members 1037, find there ar e 640 "lost" party members are not conta cted 148 "Pocket" party members a nd impl ementati on of orga nizati onal rel ationshi ps. E ducational manageme nt of party member s into t he Orga nizati on, t here is a l ot of work to do. Weak a nd lax party continued re organization as a n importa nt task, finish perfe ct organization, with a g ood team, Good system. Spe cial highlight s of grass-roots party organizations, to be dealt wit h first in pl ace, furt her educati on, r eorganization, transformation and educati onal i nteracti on. In short, thr oug h soli d and effective w ork initiatives例1,已知下列集合A 到B 的对应,请判断哪些是A 到B 的映射?并说明理由:⑴ A=N ,B=Z ,对应法则:“取相反数”;⑵A={-1,0,2},B={-1,0,1/2},对应法则:“取倒数”; ⑶A={1,2,3,4,5},B=R ,对应法则:“求平方根”; ⑷A={α|00≤α≤900},B={x|0≤x ≤1},对应法则:“取正弦”.二、函数的三要素——定义域、值域、对应法则(a )函数定义的理解.由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域. 由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等.(b) 区间的概念(1)不等式a ≤x ≤b ,用闭区间[a ,b ]表示;(2)不等式a <x <b ,用开区间(a , b )表示;(3)不等式a ≤x <b (或a <x ≤b )用半开半闭区间[a ,b ](或(a ,b ])表示;(4)x ≥a ,x >a ,x ≤b ,x <b 分别表示为[a ,+∞),(a , +∞),(–∞, b ],(–∞, b ).1.定义域的求法:例1:列函数中哪个与函数y = x 相等?(1)1()2f x x =-;(2)()32f x x =+;(3)1()12f x x x=++-.(4)3212+=x y(5)1||142-+-=x x y(6)||13x x x y +-=求函数的定义域的类型: 一、 含分式的函数在求含分式的函数的定义域时,要注意两点:(1)分式的分母一定不能为0;(2)绝对不能先化简后求函数定义域。

函数的概念与表示

函数的概念与表示

函数的概念与表示
(一)函数的概念:在一个变化的过程中有两个变量x和y,如果给定了一个x值,
相应的就确定唯一的一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

说明:1.符号y=f(x)的意义:x是自变量,f表示对应法则,y是x的函数;遂于定义域
内的每一个x的值,在对应法则f的作用下,都有唯一确定的y的值和它对应,和x值对应的y的值用f(x)表示
2.f(x)与f(a)的区别:f(x)表示自变量x的函数,f(a)表示当x=a是对应的函数值。

(二)函数的三要素:1)定义域 2)值域 3)对应法则
其中值域被定义域与对应法则唯一确定,因此我们常说函数有两要素,即定义域和对应法则,对应法则是函数的核心,定义域是函数的灵魂。

(三)两个函数相等的条件:1)定义域想同 2)对应法则相同;即对应定义域内的每一个x,他们都有相同的函数值。

(四)区间的概念
设a,b属于R,且a<b
(五)函数的表示方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学过程
一、预习导入
函数及其三要素的知识网络图:
二、复习预习
初中函数的定义:
一般地,在某个变化过程中,有两个变量 x 和 y ,如果给定了一个 x 值,相应地就确定了一个 y 值,那么称 y 是 x 的函数.其中 x 是自变量, y 是因变量。

初中学过哪些函数?
一次函数 y=kx+b (k 0);
反比例函数 y=k/x (k 0);
二次函数 y=ax2+b x+c (a
三、知识讲解
考点 1 函数的定义
设A、B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯
一确定的数f (x )和它对应,那么就称f: : A - B为从集合A到集合B的一个函数,记作y=f (x), x € A。

其中, x 叫做自变量 .x 的取值范围 A 叫做函数的定义域;与 x 的值相对应的 y 的值叫做函数值,函数值的集合 {f (x) |x € A}叫做函数的值域,值域是B的子集。

(9 “y=f(x) ”是函数符号,可以用任意的字母表示,如“y=g(x)”;
◎函数符号“ y=f(x) ”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.
考点 2 函数的三要素
(1)函数的三要素:定义域、对应关系和值域
(2 )三要素的运用之判断两个函数的相等:当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域
也就随之确定 .当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数. 考点3区间的概念
(1) 区间的分类:开区间、闭区间、半开半闭区间;
(2) 无穷区间;
(3) 区间的数轴表示.
(即求各部分定义域的
考点 4 函数的定义域
⑴如果f(x)是整式,那么函数的定义域是实数集R.
(2) 如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合 .
(3) 如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合
(4) 如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合 交集).
(5) 对于由实际问题的背景确定的函数 ,其定义域还要受实际问题的制约 .
考点5 求值域的方法
(1) 配方法,
(2) 换元法,
(3) 分离常数法
考点6 求函数解析式的题型有:
(1)已知函数类型,求函数的解析式。

例如:一次函数、二次函数、反比例函数。

一一待定系数法;
(2)已知f(x)求f[g(x)]或已知f[g(x)]求f(x)――复合函数换元法
f (-)
(3)f(x)满足某个等式,这个等式除f(x)外还有其他未知量,例如:f(X)或者x。

此时需构造另个等式一一解方程组法。

相关文档
最新文档