锐角三角函数综合能力测试题

合集下载

锐角三角函数练习卷(含答案)

锐角三角函数练习卷(含答案)

锐角三角函数练习卷(含答案)
一、选择题
1. 设角A为锐角,且sin(A) = 0.6,那么A的近似值是多少?- A)36.87°
- B)45°
- C)53.13°
- D)64.04°
答案:C)53.13°
2. 三角函数tan(A)的值是斜边长与________的比值。

- A)对边长
- B)邻边长
- C)斜边长
- D)角A的弧度
答案:B)邻边长
3. 三角函数cot(A)的值是邻边长与________的比值。

- A)对边长
- B)斜边长
- C)角A的弧度
- D)斜边长的倒数
答案:A)对边长
二、填空题
4. 已知角B是锐角,且cos(B) = 0.8,那么角B的近似值是________度。

答案:37°
5. 已知角C是锐角,且tan(C) = 0.5,那么角C的近似值是________度。

答案:26.57°
三、计算题
6. 已知三角形的两边分别为5和12,夹角为60°,求第三边的长度。

答案:13
7. 已知一个角的弧度为π/3,求sin和cos的值。

答案:sin(π/3) = (√3) / 2, cos(π/3) = 1 / 2
四、证明题
请证明:sin^2(A) + cos^2(A) = 1,其中A是任意角。

证明:
由三角恒等式sin^2(A) + cos^2(A) = 1可得:
sin^2(A) + cos^2(A) = (1 - cos^2(A)) + cos^2(A) = 1
证毕。

锐角三角函数专项练习题

锐角三角函数专项练习题

锐角三角函数专项练习题一. 选择题1. 在锐角三角形ABC中,已知∠A=30°,∠B=60°,则∠C 等于:a) 30°b) 60°c) 90°d) 120°2. 在锐角三角形ABC中,已知a=3,b=4,则∠C等于:a) 30°b) 45°c) 60°d) 90°3. 已知在锐角三角形ABC中,a=5,c=13,则∠C等于:a) 30°b) 45°c) 60°d) 90°4. 在锐角三角形ABC中,已知a=8,b=15,则sinC等于:a) 8/17b) 15/17c) 17/8d) 17/155. 在锐角三角形ABC中,已知a=7,b=24,则cosC等于:a) 7/24b) 24/7c) 7/25d) 24/25二. 填空题1. 在锐角三角形ABC中,已知a=4,b=5,则c=____。

2. 在锐角三角形ABC中,已知a=7,c=10,则b=____。

3. 在锐角三角形ABC中,已知b=9,c=15,则a=____。

4. 已知sinA=3/5,∠A为锐角,则cosA=____。

5. 已知cosA=4/5,∠A为锐角,则sinA=____。

三. 计算题1. 在锐角三角形ABC中,已知a=6,b=8,求c。

解:利用勾股定理,c=sqrt(a^2+b^2)c=sqrt(6^2+8^2)=sqrt(36+64)=sqrt(100)=102. 在锐角三角形ABC中,已知a=5,c=13,求∠A。

解:利用余弦定理,cosA=(b^2+c^2-a^2)/(2bc)cosA=(5^2+13^2-5^2)/(2*5*13)= (25+169-25)/(130)=169/130然后,∠A=arccos(169/130)=22.62°3. 在锐角三角形ABC中,已知b=7,c=10,求∠B。

陕西汉中市九年级数学下册第二十八章《锐角三角函数》综合测试卷(含答案解析)

陕西汉中市九年级数学下册第二十八章《锐角三角函数》综合测试卷(含答案解析)

学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8m ,坡面上的影长为4m .已知斜坡的坡角为30,同一时刻,一根长为2m 且垂直于地面放置的标杆在地面上的影长为4m ,则树的高度为( )A .10mB .12mC .()63m +D .()423m - 2.下表是小红填写的实践活动报告的部分内容,设铁塔顶端到地面的高度FE 为xm ,根据以上条件,可以列出的方程为 ( ) 题目 测量铁塔顶端到地面的高度测量目标示意图 相关数据 10,45,50CD m αβ==︒=︒A .()10tan50x x =-︒B .()10cos50x x =-︒C .10tan50x x -=︒D .()10sin50x x =+︒ 3.小明在学完《解直角三角形》一章后,利用测角仪和校园旗杆的拉绳测量校园旗杆的高度,如图,旗杆PA 的高度与拉绳PB 的长度相等,小明先将PB 拉到'PB 的位置,测得(''PB C a B C ∠=为水平线),测角仪/B D 的高度为1米,则旗杆PA 的高度为( )A .11sin a +米B .11cos a-米 C .11sin a -米 D .11cos a +米 4.下列计算中错误的是( ) A .sin60sin30sin30︒-︒=︒B .22sin 45 cos 451︒+︒=C .sin 60tan 60sin 30︒︒=︒D .cos30tan 60cos60︒︒=︒5.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( )A .2B .255C .55D .12 6.如图,O 是ABC 的外接圆,60BAC ∠=︒,若O 的半径OC 为1,则弦BC 的长为( )A .12B 3C .1D 37.2ABCD 的对角线AC 在x 轴上,点A 的坐标是()1,0,把正方形ABCD 绕原点O 旋转180︒,则点B 的对应点B '的坐标是( )A .(-1,-1)B .()2,1C .()2,1--D .()2,1-- 8.如图,一块矩形木板ABCD 斜靠在墙边,( OC ⊥OB ,点A 、B 、C 、D 、O 在同一平面内),已知AB a ,AD b ,∠BCO =α.则点A 到OC 的距离等于( )A .asinα+bsinαB .acosα+bcosαC .asinα+bcosαD .acosα+bsinα 9.如图,在平面直角坐标系xOy 中,矩形ABCD 的顶点A 在x 轴的正半轴上,矩形的另一个顶点D 在y 轴的正半轴上,矩形的边,,AB a BC b DAO x ==∠=.则点C 到x 轴的距离等于( )A .cos sin a x b xB .cos cos a x b xC .sin cos a x b xD .sin sin a x b x 10.如图,在Rt ABC ∆中,BC=4,AC=3,90C ∠=︒,则sinB 的值为( )A .45B .34C .35D .4311.如图,在△ABC 中,∠ABC =90°,D 为BC 的中点,点E 在AB 上,AD ,CE 交于点F ,AE =EF =4,FC =9,则cos ∠ACB 的值为( )A .35B .59C .512D .4512.如图,平行四边形ABCD 中,AB ⊥AC ,AB =3,BC =7,对角线AC ,BD 相交于点O ,将直线AC 绕点O 顺时针旋转,分别交B C ,AD 于点E ,F ,下列说法:①在旋转过程中,AF =CE . ②OB =AC ,③在旋转过程中,四边形ABEF 的面积为212,④当直线AC 绕点O 顺时针旋转30°时,连接BF ,DE 则四边形BEDF 是菱形,其中正确的是( )A .①②④B .① ②C .①②③④D .② ③ ④ 13.如图,等边ABC 边长为a ,点O 是ABC 的内心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①ODE 形状不变;②ODE 的面积最小不会小于四边形ODBE 的面积的四分之一;③四边形ODBE 的面积始终不变;④BDE 周长的最小值为1.5a .上述结论中正确的个数是( )A .4B .3C .2D .114.在课外实践中,小明为了测量江中信号塔A 离河边的距离AB ,采取了如下措施:如图在江边D 处,测得信号塔A 的俯角为40︒,若55DE =米,DE CE ⊥,36CE =米,CE 平行于AB ,BC 的坡度为1:0.75i =,坡长140BC =米,则AB 的长为( )(精确到0.1米,参考数据:sin 400.64︒≈,cos400.77︒≈,tan 400.84︒≈)A .78.6米B .78.7米C .78.8米D .78.9米二、填空题15.点A 、B 、C 都在半径为6的O 上,且120AOC ∠=︒,点M 是弦AB 的中点,则CM 的长度的最大值为______.16.已知在Rt △ABC 中,∠C =90°,∠A =α,AB =m ,那么边AB 上的高为___. 17.某人沿坡度是1:2的斜坡走了100米,则他上升的高度是_____米.18.如图,正方形ABCD 绕点B 逆时针旋转30°后得到正方形BEFG ,EF 与AD 相交于点H ,延长DA 交GF 于点K .若正方形ABCD 边长为3,则AH=__.19.如图所示,菱形ABCD 的边长为8,且AE ⊥BC 于E ,AF ⊥CD 于F ,∠B=60°,则菱形的面积为____.20.在矩形纸片ABCD 中,AB =6,BC =8.将矩形纸片折叠,使点C 与点A 重合,则折痕的长是______.21.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,F 为DA 上一点,连接BF ,E 为BF 中点,CD=6,sin ∠ADB=1010,若△AEF 的周长为18,则S △BOE =_____.22.如图,已知直线l :y =33x ,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为_____.23.如图,ABCD 中,∠DAB =30°,AB =8,BC =3,P 为边CD 上的一动点,则PB +12PD 的最小值等于__________.24.乐乐同学的身高为166cm ,测得他站立在阳光下的影长为83cm ,紧接着他把手臂竖直举起,测得影长为103cm ,那么乐乐竖直举起的手臂超出头顶的长度约为___________cm .25.如图,在ABC ∆中,3AB AC cm ==,120A ∠=︒,AB 的垂直平分线分别交,AB BC 于,D E ,则EC 的长为_________.26.如图,在ABC ∆中,90A ∠=︒,10BC =,3sin 5B ∠=,D 是BC 边上的一个动点(异于B 、C 两点),过点D 分别作AB 、AC 边的垂线,垂足分别为E 、F ,则EF 的最小值是________.三、解答题27.黄河,既是一条源远流长、波澜壮阔的自然河,又是一条孕育中华民族灿烂文明的母亲河,数学课外实践活动中,小林和同学们在黄河南岸小路上的A ,B 两点处,用测角仪分别对北岸的观景亭D 进行测量.如图,测得∠DAC =45°,∠DBC =65°.若AB =200米,求观景亭D 到小路AC 的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)28.“筒车”是一种以水流作动力,取水灌田的工具.据史料记载,它发明于隋而盛于唐,距今已有1000多年的历史,是我国古代劳动人民的一项伟大创造. 明朝科学家徐光启在《农政全书》中用图画描绘“筒车”的工作原理. 如图,“筒车”盛水筒的运行轨迹是以轴心 O 为圆心的圆,已知圆心 O 在水面上方,且当圆被水面截得的弦 AB 为6米时,水面下盛水筒的最大深度为1米(即水面下方部分圆上一点距离水面的最大距离).(1)求该圆的半径;(2)若水面上涨导致圆被水面截得的弦 AB 从原来的6米变为8米时,则水面上涨的高度为多少米?29.已知ABC 为等边三角形,6,AB P =是AB 上的一个动点,(与A B 、不重合),过点P 作AB 的垂线与BC 相交于点D ,以点D 为正方形的一个顶点,在ABC 内作正方形DEFG ,其中D E 、在BC 上,F 在AC 上,(1)设BP 的长为x ,正方形DEFG 的边长为y ,写出y 关于x 的函数解析式及定义域;(2)当2BP =时,求CF 的长;(3)GDP △是否可能成为直角三角形?若能,求出BP 的长;若不能,请说明理由.30.热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30,看这栋高楼底部的俯角为60︒,热气球与高楼的水平距离为66m ,这栋高楼有多高?(结果精确到0.1m ,参考3 1.73≈)【参考答案】一、选择题1.C2.A3.C4.A5.D6.D7.D8.D9.A10.C11.D12.A13.A14.C二、填空题15.【分析】如图取AO的中点J连接JMJC过点J作JH⊥OC交CO的延长线于H求出MJCJ根据CM≤MJ+CJ即可解决问题【详解】解:如图取的中点连接过点作交的延长线于的最大值为故答案为:【点睛】本题考16.msinαcosα【分析】利用直角三角形中的余弦三角函数的定义求得AC的长度然后利用三角形的面积公式求得AB边上的高的长度【详解】如图所示:根据题意可得:AC=mcosαBC=msinα∴AC•BC17.【分析】先画出图形再根据坡度的可得然后设米从而可得米最后利用勾股定理求出x 的值由此即可得出答案【详解】如图由题意得:米设米则米由勾股定理得:即解得(米)则米即他上升的高度是米故答案为:【点睛】本题考18.1【分析】连接BH证明Rt△ABH≌△Rt△EBH(HL)得出∠ABH=30°在Rt△ABH中解直角三角形即可【详解】解:连接BH如图所示:∵四边形ABCD和四边形BEFG是正方形∴∠BAH=∠AB19.【分析】根据已知条件解直角三角形ABE可求出AE的长再由菱形的面积等于底×高计算即可【详解】∵菱形ABCD的边长为8∴AB=BC=8∵AE⊥BC于E∠B=60°∴sinB=即∴AE∴菱形的面积故答案20.【分析】先利用勾股定理得出AC根据翻折变换的性质可得AC⊥EFOC=AC然后利用∠ACB的正切列式求出OF再求出△AOE和△COF全等根据全等三角形对应边相等可得OE=OF从而求出折痕的长【详解】解21.【分析】根据题意求出AD=18设AF=则BF=在Rt△ABF中利用勾股定理可求得求出DF=10可求出S△BDF由三角形中位线定理可求出答案【详解】∵四边形ABCD是矩形∴AB=CD=6∠BAD=9022.(0256)【分析】利用锐角三角函数分别计算得到的坐标利用规律直接得到答案【详解】解:∵l:y=x∴l与x轴的夹角为30°∵AB∥x轴∴∠ABO=30°∵OA=1∴AB=∵A1B⊥l∴∠ABA1=623.4【分析】过点P作PE⊥AD交AD的延长线于点E由锐角三角函数可得EP=即PB+=PB+PE则当点B点P点E三点共线且BE⊥AD时PB+PE有最小值即最小值为BE【详解】解:如图过点P作PE⊥AD交24.40【分析】如下图利用∠BCA=∠E可得对应的正切值相等转化为线段比可得BD长【详解】如下图AB为乐乐身高BD是乐乐手臂超出头顶部分AC是乐乐站立在阳光下的影长AE是乐乐举起手臂后的影长根据题意AC25.【分析】根据等腰三角形的性质可求出两底角的度数连接AE可得出AE=BE推出解直角三角形即可得出答案【详解】解:∵∴连接AE∵ED垂直平分AB∴AE=BE∵∴∴故答案为:【点睛】本题考查的知识点是等腰26.【分析】先利用求得AC的长再证明四边形AEDF是矩形推出EF=AD根据垂线段最短即可解决问题;【详解】解:如图连接AD在△ABC中∵∠BAC=90°∴∴AC=6∴AB==10∵DF⊥ACDE⊥BC∴三、解答题27.28.29.30.【参考解析】一、选择题1.C解析:C【分析】延长AC交BF延长线于D点,则BD即为AB的影长,然后根据物长和影长的比值计算即可.【详解】延长AC交BF延长线于D点,作CE⊥BD于E,则∠CFE=30°,在Rt△CFE中,∠CFE=30°,CF=4m,∴CE=2(m),EF=4cos30°3m),在Rt△CED中,∵同一时刻,一根长为2m、垂直于地面放置的标杆在地面上的影长为4m,CE=2(m),则CE:DE=2:4=1:2,AB:BD=1:2,∴DE=4(m),∴3m),在Rt△ABD中,AB=12BD=1233m),故选:C.【点睛】本题考查了解直角三角形的应用以及相似三角形的性质.解决本题的关键是作出辅助线得到AB的影长.2.A解析:A【分析】过D作DH⊥EF于H,则四边形DCEH是矩形,根据矩形的性质得到HE=CD=10,CE=DH,求得FH=x−10,得到CE=x−10,根据三角函数的定义列方程即可得到结论.【详解】过D作DH⊥EF于H,则四边形DCEH是矩形,∴HE=CD=10,CE=DH,∴FH=x−10,∵∠FDH=α=45°,∴DH=FH=x−10,∴CE=x−10,∵tanβ=tan50°=EFCE =-10xx,∴x=(x−10)tan 50°,故选:A.本题考查了解直角三角形的应用,由实际问题抽象出边角关系的等式,正确的识别图形是解题的关键.3.C解析:C【分析】设PA=PB=PB′=x ,在RT △PCB′中,根据sin αPC PB =',列出方程即可解决问题. 【详解】解:设PA=PB=PB′=x ,在RT △PCB′中,sin αPC PB ='∴1sin αx x-=∴x 1xsin α-=, ∴(1-sin α)x=1,∴x=11sin α-. 故选C .【点睛】 本题考查解直角三角形、三角函数等知识,解题的关键是设未知数列方程,属于中考常考题型.4.A解析:A【分析】根据特殊角的三角函数值、二次根式的运算即可得.【详解】A、11sin 60sin 303022︒-︒==︒=,此项错误; B、222211sin 45 cos 4512222⎛⎫⎛︒+︒=+=+= ⎪ ⎪ ⎝⎭⎝⎭,此项正确; C、sin 602tan 601sin 302︒︒===︒sin 60tan 60sin 30︒︒=︒,此项正确; D、cos302tan 601cos 602︒︒===︒cos30tan 60cos60︒︒=︒,此项正确;【点睛】本题考查了特殊角的三角函数值、二次根式的运算,熟记特殊角的三角函数值是解题关键.5.D解析:D【分析】连接AC ,根据网格图不难得出=90CAB ∠︒,求出AC 、BC 的长度即可求出ABC ∠的正切值.【详解】连接AC ,由网格图可得:=90CAB ∠︒,由勾股定理可得:AC 2AB =2∴tan ABC ∠=21222AC AB ==. 故选:D .【点睛】本题主要考查网格图中锐角三角函数值的求解,根据网格图构造直角三角形是解题关键. 6.D解析:D【分析】先作OD ⊥BC 于D ,由于∠BAC =60°,根据圆周角定理可求∠BOC =120°,又OD ⊥BC ,根据垂径定理可知∠BOD =60°,BD =12BC ,在Rt △BOD 中,利用特殊三角函数值易求BD ,进而可求BC .【详解】解:如右图所示,作OD ⊥BC 于D ,∵∠BAC =60°,∴∠BOC =120°,又∵OD ⊥BC ,∴∠BOD =60°,BD =12BC , ∴BD =sin60°×OB 3∴BC=2BD=23,故答案是23.【点睛】本题考查了圆周角定理、垂径定理、特殊三角函数计算,解题的关键是作辅助线OD⊥BC,并求出BD.7.D解析:D【分析】根据题意,画出图形,连接BD,交x轴于E,根据正方形的性质可得AB=2,BD⊥x 轴,AE=BE,∠BAE=45°,利用锐角三角函数即可求出AE和BE,从而求出OE,即可求出点B的坐标,然后根据关于原点对称的两点坐标关系即可求出结论.【详解】解:把正方形ABCD绕原点O旋转180︒,如图所示,连接BD,交x轴于E∵四边形ABCD2∴2,BD⊥x轴,AE=BE,∠BAE=45°∴AE=BE=AB·sin∠BAE=1∴OE=OA+AE=2∴点B的坐标为(2,1)∴点B绕点O旋转180°的对应点B'的坐标(-2,-1)故选D.【点睛】此题考查的是正方形的性质,锐角三角函数和关于原点对称的两点坐标关系,掌握正方形的性质,锐角三角函数和关于原点对称的两点坐标关系是解题关键.8.D解析:D【分析】根据题意,做出合适的辅助线,然后利用锐角三角函数即可表示出点A到OC的距离即可求解.【详解】解:作AE ⊥OC 于点E ,作AF ⊥OB 于点F ,∵四边形ABCD 是矩形,∴∠ABC=90°,∵∠ABC=∠AEC ,∠BCO=α,∴∠EAB=α,∴∠FBA=α,∵AB=a ,AD=b ,∴FO=FB+BO=a•cosα+b•sinα,故选:D .【点睛】本题考查解直角三角形、三角函数的定义、矩形的性质,解答本题的关键是明确题意,正确做出辅助线,利用数形结合的思想解答.9.A解析:A【分析】作CE ⊥y 轴于E .解直角三角形求出OD ,DE 即可解决问题.【详解】作CE ⊥y 轴于E .在Rt △OAD 中,∵∠AOD=90°,AD=BC=b ,∠OAD=x ,∴OD=sin OAD sin AD b x ∠=,∵四边形ABCD 是矩形,∴∠ADC=90°,∴∠CDE+∠ADO=90°,又∵∠OAD+∠ADO=90°,∴∠CDE=∠OAD=x , ∴在Rt △CDE 中,∵CD=AB=a ,∠CDE=x , ∴DE= cos CDE cos CD a x ∠=,∴点C 到x 轴的距离=EO=DE+OD=cos sin a x b x ,故选:A .【点睛】本题考查了解直角三角形的应用,矩形的性质,正确作出辅助线是解题的关键. 10.C解析:C【分析】由勾股定理求出AB 的长度,即可求出sinB 的值.【详解】解:在Rt ABC ∆中,BC=4,AC=3,90C ∠=︒, ∴22345AB =+=,∴35AC sinB AB ==, 故选:C .【点睛】 本题考查了求角的正弦值,以及勾股定理,解题的关键是正确求出AB 的值.11.D解析:D【分析】如图,延长AD 到M ,使得DM=DF ,连接BM .利用全等三角形的性质证明BM=CF=9,AB=BM ,利用勾股定理求出BC ,AC 即可解决问题.【详解】解:如图,延长AD 到M ,使得DM=DF ,连接BM .∵BD=DC ,∠BDM=∠CDF ,DM=DF ,∴△BDM ≌△CDF (SAS ),∴CF=BM=9,∠M=∠CFD ,∵CE ∥BM ,∴∠AFE=∠M ,∵EA=EF ,∴∠EAF=∠EFA ,∴∠BAM=∠M ,∴AB=BM=9,∵AE=4,∴BE=5,∵∠EBC=90°,∴=,∴,∴cos ∠ACB=124155BC AC == , 故选:D .【点睛】此题考查解直角三角形,全等三角形的判定和性质,等腰三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题. 12.A解析:A【分析】①通过证明AOF COE ≅△△即可判断;②分别利用勾股定理求出OB,AC 的长度即可得出答案;③先利用ABC 的面积求出AG 的长度,然后利用梯形的面积公式求解即可; ④易证四边形BEDF 是平行四边形,然后通过角度得出90DOF ∠=︒,然后证明DOF DOE ≅,则有DF DE =,则可证明结论.【详解】∵四边形ABCD 是平行四边形,,//,AO CO AD BC AD BC ∴== ,AFO CEO ∴∠=∠ .在AOF 和COE 中,AFO CEO AOF COE AO CO ∠=∠⎧⎪∠=∠⎨⎪=⎩()AOF COE AAS ∴≅,AF CE OF OE ∴==,故①正确;∵AB ⊥AC ,90BAC ∴∠=︒ .∵ABBC222AC BC AB ∴=-= , 112AO AC ∴== , 222OB AO AB ∴=+=,OB AC ∴=,故②正确;过点A 作AG BC ⊥交BC 于点G ,1122ABC S AB AC BC AG =⋅=⋅ , 3222177AB AC AG BC ⋅⨯∴=== , 11221()73227ABEF S AF BE AG ∴=+⋅=⨯⨯=四边形 ,故③错误; 连接DE,BF ,,AF CE AD BC ==,DF BE ∴= .∵//DF BE ,∴四边形BEDF 是平行四边形.3sin 2AB AOB OB ∠== ,60AOB ∴∠=︒ .30AOF ∠=︒,180603090DOF ∴∠=︒-︒-︒=︒,90DOE ∴∠=︒.在DOF △和DOE △中,FO OE DOF DOE DO DO =⎧⎪∠=∠⎨⎪=⎩()DOF DOE SAS ∴≅,DF DE ∴=,∴四边形BEDF 是菱形,故④正确;所以正确的有:①②④,故选:A .【点睛】本题主要考查平行四边形的性质,全等三角形的判定及性质,勾股定理和锐角三角函数,掌握平行四边形的性质,全等三角形的判定及性质,勾股定理和锐角三角函数是解题的关键.13.A解析:A【分析】连接OB 、OC ,利用SAS 证出△ODB ≌△OEC ,从而得出△ODE 是顶角为120°的等腰三角形,即可判断①;过点O 作OH ⊥DE ,则DH=EH ,利用锐角三角函数可得OH=12OE 和OE ,然后三角形的面积公式可得S △ODE=4OE 2,从而得出OE 最小时,S △ODE 最小,根据垂线段最短即可求出S △ODE 的最小值,然后证出S 四边形ODBE =S △OBC=212a 即可判断②和③;求出BDE 的周长=a +DE ,求出DE 的最小值即可判断④.【详解】解:连接OB 、OC∵ABC 是等边三角形,点O 是ABC 的内心,∴∠ABC=∠ACB=60°,BO=CO ,BO 、CO 平分∠ABC 和∠ACB ∴∠OBA=∠OBC=12∠ABC=30°,∠OCA=∠OCB=12∠ACB=30° ∴∠OBA=∠OCB ,∠BOC=180°-∠OBC -∠OCB=120°∵120FOG ∠=︒∴∠=FOG ∠BOC∴∠FOG -∠BOE=∠BOC -∠BOE∴∠BOD=∠COE在△ODB 和△OEC 中BOD COE BO COOBD OCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ODB ≌△OEC∴OD=OE∴△ODE 是顶角为120°的等腰三角形,∴ODE 形状不变,故①正确;过点O 作OH ⊥DE ,则DH=EH ∵△ODE 是顶角为120°的等腰三角形∴∠ODE=∠OED=12(180°-120°)=30° ∴OH=OE·sin ∠OED=12OE ,EH= OE·cos ∠OED=32OE ∴DE=2EH=3OE∴S △ODE =12DE·OH=34OE 2 ∴OE 最小时,S △ODE 最小, 过点O 作OE′⊥BC 于E′,根据垂线段最短,OE′即为OE 的最小值∴BE′=12BC=12a 在Rt △OBE′中 OE′=BE′·tan ∠OBE′=12a ×33=36a ∴S △ODE 3223 ∵△ODB ≌△OEC ∴S 四边形ODBE =S △ODB +S △OBE = S △OEC +S △OBE =S △OBC =12BC·OE′=2312a ∵2348=14×2312a∴S △ODE ≤14S 四边形ODBE 即ODE 的面积最小不会小于四边形ODBE 的面积的四分之一,故②正确; ∵S 四边形ODBE =2312a ∴四边形ODBE 的面积始终不变,故③正确;∵△ODB ≌△OEC∴DB=EC∴BDE 的周长=DB +BE +DE= EC +BE +DE=BC +DE=a +DE∴DE 最小时BDE 的周长最小 ∵DE=3OE∴OE 最小时,DE 最小而OE 的最小值为OE′=36a ∴DE 的最小值为3×36a =12a ∴BDE 的周长的最小值为a +12a =1.5a ,故④正确; 综上:4个结论都正确,故选A .【点睛】此题考查的是等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短的应用,掌握等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短是解决此题的关键.14.C解析:C【分析】如下图,先在Rt △CBF 中求得BF 、CF 的长,再利用Rt △ADG 求AG 的长,进而得到AB 的长度【详解】如下图,过点C 作AB 的垂线,交AB 延长线于点F ,延长DE 交AB 延长线于点G∵BC 的坡度为1:0.75∴设CF为xm,则BF为0.75xm∵BC=140m∴在Rt△BCF中,()2220.75140x x+=,解得:x=112∴CF=112m,BF=84m∵DE⊥CE,CE∥AB,∴DG⊥AB,∴△ADG是直角三角形∵DE=55m,CE=FG=36m∴DG=167m,BG=120m设AB=ym∵∠DAB=40°∴tan40°=1670.84120DGAG y==+解得:y=78.8故选:C【点睛】本题是三角函数的考查,注意题干中的坡度指的是斜边与水平面夹角的正弦值.二、填空题15.【分析】如图取AO的中点J连接JMJC过点J作JH⊥OC交CO的延长线于H求出MJCJ根据CM≤MJ+CJ即可解决问题【详解】解:如图取的中点连接过点作交的延长线于的最大值为故答案为:【点睛】本题考解析:337+【分析】如图,取AO的中点J,连接JM,JC,过点J作JH⊥OC,交CO的延长线于H.求出MJ,CJ,根据CM≤MJ+CJ即可解决问题.【详解】解:如图,取AO的中点J,连接JM,JC,过点J作JH OC⊥,交CO的延长线于H.120AOC∠=︒,60JOH∴∠=︒,JH OH⊥,90JHO ∴∠=︒, 132AJ JO OA ===, 3cos602OH OJ ∴=︒=,33sin 602JH OJ =︒=, 315622CH OH OC ∴=+=+=, 22223315()()3722CJ JH CH ∴=+=+=, AM MB =,AJ JO =,132MJ OB ∴==, CM MJ JC +,337CM ∴+,CM ∴的最大值为337+,故答案为:337+.【点睛】本题考查轨迹,三角形中位线定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题,属于中考常考题型.16.msinαcosα【分析】利用直角三角形中的余弦三角函数的定义求得AC 的长度然后利用三角形的面积公式求得AB 边上的高的长度【详解】如图所示:根据题意可得:AC =mcosαBC =msinα∴AC•BC解析:m sinαcosα【分析】利用直角三角形中的余弦三角函数的定义求得AC 的长度,然后利用三角形的面积公式求得AB 边上的高的长度.【详解】如图所示:根据题意可得:AC =m cosα,BC =m sinα,∴12AC •BC =12mh ,即h =m sinαcosα, 故答案是:m sinαcosα.【点睛】考查了解直角三角形.解题关键利用了三角函数的定义求得直角三角形两条直角边的长.17.【分析】先画出图形再根据坡度的可得然后设米从而可得米最后利用勾股定理求出x 的值由此即可得出答案【详解】如图由题意得:米设米则米由勾股定理得:即解得(米)则米即他上升的高度是米故答案为:【点睛】本题考 解析:205 【分析】 先画出图形,再根据坡度的可得12AC BC =,然后设AC x =米,从而可得2BC x =米,最后利用勾股定理求出x 的值,由此即可得出答案.【详解】 如图,由题意得:90C ∠=︒,100AB =米,1tan 2AC B BC ==, 设AC x =米,则2BC x =米,由勾股定理得:22AB AC BC =+,即()222100x x +=, 解得205x =(米),则205AC =米,即他上升的高度是205米,故答案为:205.【点睛】本题考查了勾股定理、解直角三角形的应用:坡度问题,掌握理解坡度的概念是解题关键.18.1【分析】连接BH 证明Rt △ABH ≌△Rt △EBH (HL )得出∠ABH=30°在Rt △ABH 中解直角三角形即可【详解】解:连接BH 如图所示:∵四边形ABCD 和四边形BEFG 是正方形∴∠BAH=∠AB解析:1【分析】连接BH ,证明Rt △ABH ≌△Rt △EBH (HL ),得出∠ABH =30°,在Rt △ABH 中解直角三角形即可.【详解】解:连接BH ,如图所示:∵四边形ABCD和四边形BEFG是正方形,∴∠BAH=∠ABC=∠BEH=∠F=90°,由旋转的性质得:AB=EB,∠CBE=30°,∴∠ABE=60°,在Rt△ABH和Rt△EBH中,∵BH=BH,AB=EB,∴Rt△ABH≌△Rt△EBH(HL),∴∠ABH=∠EBH=12∠ABE=30°,∴AH=AB•tan∠33,故答案为:1.【点睛】本题考查了旋转的性质、正方形的性质、全等三角形的判定与性质、解直角三角形.能正确作出辅助线得出Rt△ABH≌△Rt△EBH,从而求得∠ABH =30°是解题关键.19.【分析】根据已知条件解直角三角形ABE可求出AE的长再由菱形的面积等于底×高计算即可【详解】∵菱形ABCD的边长为8∴AB=BC=8∵AE⊥BC于E∠B=60°∴sinB=即∴AE∴菱形的面积故答案解析:323【分析】根据已知条件解直角三角形ABE可求出AE的长,再由菱形的面积等于底×高计算即可.【详解】∵菱形ABCD的边长为8,∴AB=BC=8,∵AE⊥BC于E,∠B=60°,∴sinB=AEAB ,即328AE=,∴AE43=,∴菱形的面积843323=⨯=故答案为:323【点睛】本题考查了菱形的性质以及特殊角的三角函数值,菱形面积公式的运用.关键是掌握菱形的性质.20.【分析】先利用勾股定理得出AC 根据翻折变换的性质可得AC ⊥EFOC=AC 然后利用∠ACB 的正切列式求出OF 再求出△AOE 和△COF 全等根据全等三角形对应边相等可得OE=OF 从而求出折痕的长【详解】解 解析:152【分析】 先利用勾股定理得出AC ,根据翻折变换的性质可得AC ⊥EF ,OC=12AC ,然后利用∠ACB 的正切列式求出OF ,再求出△AOE 和△COF 全等,根据全等三角形对应边相等可得OE=OF ,从而求出折痕的长.【详解】解:如图∵AB=6,BC=8,∴AC==10,∵折叠后点C 与点A 重合,∴AC ⊥EF ,OC=12AC=12×10=5, ∵tan ∠ACB=OF CO =AB CB , ∴OF 5=68, 解得OF=154, ∵矩形对边AD ∥BC ,∴∠OAE=∠OCF ,在△AOE 和△COF 中OAE OCF OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOE ≌△COF (ASA ),∴OE=OF=154,∴EF=152故答案为152【点睛】 本题考查了翻折变换的性质,矩形的性质,勾股定理,锐角三角函数的定义,全等三角形的判定与性质,熟练掌握相关知识是解题的关键.21.【分析】根据题意求出AD=18设AF=则BF=在Rt △ABF 中利用勾股定理可求得求出DF=10可求出S △BDF 由三角形中位线定理可求出答案【详解】∵四边形ABCD 是矩形∴AB=CD=6∠BAD=90 解析:152【分析】根据题意求出AD=18,设AF=a ,则BF=18a -,在Rt △ABF 中,利用勾股定理可求得8a =,求出DF=10,可求出S △BDF ,由三角形中位线定理可求出答案.【详解】∵四边形ABCD 是矩形,∴AB=CD=6,∠BAD=90°,OB=OD ,∵sin ∠,∴610AB BD BD ==, ∴BD=∴18DA ===,∵E 为BF 中点,∴AE=BE=EF ,∵△AEF 的周长为18,∴AE+EF+AF=BE+EF+AF=BF+AF=18,设AF=a ,则BF=18a -,在Rt △ABF 中,AB 2+AF 2=BF 2,∴62+a 2=(18a -)2,解得:8a =,∴DF=18-8=10.∵E 为BF 中点,O 为BD 的中点, ∴OE ∥DF ,OE=12DF , ∴△BOE ∽△BDF ,∴BOE BDF 14SS =, ∵BDF 12S =DF•AB=12×6×10=30, ∴S △BOE =BDF 111530442S =⨯=. 故答案为:152. 【点睛】 本题考查了矩形的性质,勾股定理,锐角三角函数,相似三角形的判定与性质,中位线定理,三角形的面积等知识,熟练掌握几何基本图形的性质是解题的关键.22.(0256)【分析】利用锐角三角函数分别计算得到的坐标利用规律直接得到答案【详解】解:∵l :y =x ∴l 与x 轴的夹角为30°∵AB ∥x 轴∴∠ABO =30°∵OA =1∴AB =∵A1B ⊥l ∴∠ABA1=6解析:(0,256)【分析】利用锐角三角函数分别计算得到12,A A 的坐标,利用规律直接得到答案.【详解】解:∵l :y =3x ∴l 与x 轴的夹角为30°∵AB ∥x 轴∴∠ABO =30°∵OA =1∴AB∵A 1B ⊥l∴∠ABA 1=60°∴AA 1=3∴A 1(0,4)同理可得A 2(0,16)…∴A 4纵坐标为44=256∴A 4(0,256)故答案为:(0,256).【点睛】本题考查的是一次函数综合题,先根据所给一次函数判断出一次函数与x 轴夹角是解决本题的突破点;根据含30°的直角三角形的特点依次得到123,,A A A …的点的坐标是解决本题的关键.23.4【分析】过点P 作PE ⊥AD 交AD 的延长线于点E 由锐角三角函数可得EP =即PB+=PB+PE 则当点B 点P 点E 三点共线且BE ⊥AD 时PB+PE 有最小值即最小值为BE 【详解】解:如图过点P 作PE ⊥AD 交解析:4【分析】过点P 作PE ⊥AD ,交AD 的延长线于点E ,由锐角三角函数可得EP =12PD ,即PB+12PD =PB+PE ,则当点B,点P ,点E 三点共线且BE ⊥AD 时,PB+PE 有最小值,即最小值为BE .【详解】解:如图,过点P 作PE ⊥AD ,交AD 的延长线于点E ,∵AB ∥CD∴∠EDP =∠DAB =30°,∴sin ∠EDP =12EP DP = ∴EP =12PD ∴PB +12PD =PB +PE ∴当点B ,点P ,点E 三点共线且BE ⊥AD 时,PB +PE 有最小值,即最小值为BE , ∵sin ∠DAB =12BE AB = ∴BE =12AB =4 故答案为:4【点睛】本题考查了平行四边形的性质,垂线段最短,锐角三角函数的性质,作出适当的辅助线是解题的关键.24.40【分析】如下图利用∠BCA=∠E 可得对应的正切值相等转化为线段比可得BD 长【详解】如下图AB 为乐乐身高BD 是乐乐手臂超出头顶部分AC 是乐乐站立在阳光下的影长AE 是乐乐举起手臂后的影长根据题意AC解析:40【分析】如下图,利用∠BCA=∠E ,可得对应的正切值相等,转化为线段比可得BD 长.【详解】如下图,AB 为乐乐身高,BD 是乐乐手臂超出头顶部分,AC 是乐乐站立在阳光下的影长,AE 是乐乐举起手臂后的影长根据题意,AC=83cm ,AB=166cm ,AE=103cm∵是阳光照射的影长,∴CB ∥ED∴∠BCA=∠E∴tan ∠BCA=tan ∠E ,即:166********BD += 解得:BD=40故答案为:40【点睛】本题考查三角函数的运用,解题关键是将题干抽象成数学模型,然后再利用三角函数的特点求解. 25.【分析】根据等腰三角形的性质可求出两底角的度数连接AE 可得出AE=BE 推出解直角三角形即可得出答案【详解】解:∵∴连接AE ∵ED 垂直平分AB ∴AE=BE ∵∴∴故答案为:【点睛】本题考查的知识点是等腰 解析:3【分析】根据等腰三角形的性质可求出两底角的度数,连接AE ,可得出AE=BE ,30EAD =∠°,推出90EAC ∠=︒,解直角三角形即可得出答案.【详解】解:∵3AB AC cm ==,120A ∠=︒, ∴1(180120)302B C ,连接AE ,∵ED 垂直平分AB ,∴AE=BE ,30EAD =∠°,∵120A ∠=︒,∴90EAC ∠=︒, ∴323cos3032AC CE ===︒ 故答案为:23.【点睛】 本题考查的知识点是等腰三角形的性质、解直角三角形、垂直平分线的性质,综合性较强,但难度不大.26.【分析】先利用求得AC 的长再证明四边形AEDF 是矩形推出EF =AD 根据垂线段最短即可解决问题;【详解】解:如图连接AD 在△ABC 中∵∠BAC =90°∴∴AC =6∴AB ==10∵DF ⊥ACDE ⊥BC ∴解析:245【分析】先利用10BC =,3sin 5B ∠=求得AC 的长,再证明四边形AEDF 是矩形,推出EF =AD ,根据垂线段最短即可解决问题;【详解】解:如图,连接AD .在△ABC 中,∵∠BAC =90°,10BC =,3sin 5B ∠=, ∴3105AC =, ∴AC =6,∴AB =2268+=10,∵DF ⊥AC ,DE ⊥BC ,∴∠DFA =∠DEA =∠BAC =90°,∴四边形AEDF 是矩形,∴EF =AD ,∴当AD ⊥BC 时,AD 的值最小,此时EF 最小值=AD =245AC AB BC =, 故答案为:245. 【点睛】本题考查矩形的判定和性质、垂线段最短、勾股定理等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.三、解答题27.约为375米【分析】过点 D 作DE ⊥AC ,垂足为E ,设 BE = x ,根据 AE = DE ,列出方程即可解决问题.【详解】解:如图,过点D 作DE ⊥AC ,垂足为E ,设BE =x ,在Rt △DEB 中,tan ∠DBE =DE BE.∵∠DBC =65°,∴DE =xtan65°,又∵∠DAC =45°,∴AE =DE .∴200+x =xtan65°,解得x≈175.4,∴DE =200+x≈375(米)∴观景亭D 到小路AC 的距离约为375米.【点睛】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是灵活运用所学知识解決问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题.。

九年级下学期第28章《锐角三角函数》达标检测卷含答案

九年级下学期第28章《锐角三角函数》达标检测卷含答案

九年级下学期第28章《锐角三角函数》达标检测卷时间:100分钟 满分:120分 一、选择题(每题3分,共30分) 1.cos 45°的值为( ) A.12 B.22 C.32 D .12.如图,CD 是Rt △ABC 斜边上的高.若AB =5,AC =3,则tan ∠BCD 为( )A.43B.34C.45D.35(第2题) (第4题) (第5题) (第6题) 3.在△ABC 中,若⎪⎪⎪⎪⎪⎪cos A -12+(1-tan B )2=0,则∠C 的度数是( )A .45°B .60°C .75°D .105°4.如图,A ,B ,C 三点在正方形网格线的交点处,若将△ACB 绕着点A 逆时针旋转得到△AC ′B ′,则tan B ′的值为( ) A.12B.13C.14D.245.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB 在地面上的影长BC 为24 m ,那么旗杆AB 的高度是( ) A .12 mB .8 3 mC .24 mD .24 3 m6.如图,一河坝的横断面为等腰梯形ABCD ,坝顶宽10 m ,坝高12 m ,斜坡AB 的坡度i =1∶1.5,则坝底AD 的长度为( ) A .26 mB .28 mC .30 mD .46 m7.如图,长4 m 的楼梯AB 的倾斜角∠ABD 为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD 为45°,则调整后的楼梯AC 的长为( ) A .2 3 mB .2 6 mC .(23-2)mD .(26-2)m(第7题)(第8题)8.如图,过点C(-2,5)的直线AB分别交坐标轴于A(0,2),B两点,则tan ∠OAB等于()A.25 B.23 C.52 D.329.如图,菱形ABCD的周长为20 cm,DE⊥AB,垂足为E,sin A=35,则下列结论中正确的有()①DE=3 cm;②BE=1 cm;③菱形的面积为15 cm2;④BD=210 cm.A.1个B.2个C.3个D.4个(第9题)(第10题) (第12题)10.如图,在Rt△ABC中,∠B=90°,∠BAC=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A,D为圆心,AB的长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是()A.312 B.36 C.33 D.32二、填空题(每题3分,共24分)11.已知α为锐角,sin(α-20°)=32,则α=________.12.如图,若点A的坐标为(1,3),则∠1=________.13.已知锐角A的正弦sin A是一元二次方程2x2-7x+3=0的根,则sin A=________.(第14题) (第15题) (第16题) (第18题)14.如图,在Rt △ABC 中,∠C =90°,AM 是BC 边上的中线,若sin ∠CAM =35,则tan B =________.15.如图,航拍无人机从A 处测得一幢建筑物顶部B 的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD 为90 m ,那么该建筑物的高度BC 约为________m(精确到1 m ,参考数据:3≈1.73). 16.如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD ,若AC =2,则tan D =________.17.△ABC 中,若AB =6,BC =8,∠B =120°,则△ABC 的面积为________. 18.在综合实践课上,小聪所在小组要测量一条河的宽度,如图,河岸EF ∥MN ,小聪在河岸MN 上点A 处用测角仪测得河对岸小树C 位于东北方向,然后沿河岸走了30 m ,到达B 处,测得河对岸电线杆D 位于北偏东30°方向,此时,其他同学测得CD =10 m .请根据这些数据求出河的宽度为______________m. 三、解答题(19,21,24题每题12分,其余每题10分,共66分) 19.计算:(1)(-2)3+16-2sin 30°+(2 019-π)0;(2)sin 2 45°-cos 60°-cos 30°tan 45°+2sin 2 60°·tan 60°.20.在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c.已知2a =3b,求∠B的正弦、余弦和正切值.21.如图,已知四边形ABCD中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC的延长线与AD的延长线交于点E.(1)若∠A=60°,求BC的长;(2)若sin A=45,求AD的长.(第21题)22.数学拓展课程《玩转学具》课堂中,小陆同学发现,一副三角尺中,含45°角的三角尺的斜边与含30°角的三角尺的长直角边相等,于是,小陆同学提出一个问题:如图,将一副三角尺直角顶点重合拼放在一起,点B,C,E在同一直线上,若BC=2,求AF的长.请你运用所学的数学知识解决这个问题.(第22题)23.如图,天星山山脚下西端A处与东端B处相距800(1+3)m,小军和小明同时分别从A处和B处向山顶C匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小军的行走速度为22m/s.若小明与小军同时到达山顶C处,则小明的行走速度是多少?(第23题)24.如图,小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M 处出发,向前走3 m到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端E的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°.已知A点离地面的高度AB=2 m,∠BCA=30°,且B,C,D三点在同一直线上.求:(1)树DE的高度;(2)食堂MN的高度.(第24题)答案一、1. B 2. A 3. C 4. B 5. B 6. D7.B 8. B 9. C10.B 点拨:如图,设BC =x .在Rt △ABC 中,∠B =90°,∠BAC =30°,∴AC =2BC =2x ,AB =3BC =3x .根据题意,得AD =BC =x ,AE =DE =AB =3x ,过点E 作EM ⊥AD 于点M ,则AM =12AD =12x .在Rt △AEM 中,cos ∠EAD =AM AE =12x3x=36.(第10题)二、11. 80° 12. 60° 13. 12 14. 23 15. 20816.22 点拨:如图,连接BC ,易知∠D =∠A .∵AB 是⊙O 的直径,∴∠ACB =90°.∵AB =3×2=6,AC =2,∴BC 2=62-22=32, ∴BC =4 2.∴tan D =tan A =BC AC =422=2 2.(第16题)17.123 点拨:如图,过A 点作AD ⊥CB ,交CB 的延长线于点D ,则∠ABD =180°-120°=60°.在Rt △ABD 中,AD =AB ·sin ∠ABD =6×32=33,∴S △ABC =12AD ·BC =12×33×8=12 3.(第17题)18.(30+103)三、19.解:(1)原式=-8+4-2×12+1=-8+4-1+1=-4;(2)原式=(22)2-12-32+2×(32)2×3= 3.20.解:由2a =3b ,可得a b =32.设a =3k (k >0),则b =2k ,由勾股定理,得c =a 2+b 2=9k 2+4k 2=13k ,∴sin B =b c =2k 13k =21313,cos B =a c =3k 13k =31313,tan B =b a =2k 3k =23.21.解:(1)在Rt △ABE 中,∵∠A =60°,∠ABE =90°,AB =6,tan A =BEAB ,∴∠E =30°,BE =AB ·tan A =6×tan 60°=6 3.在Rt △CDE 中,∵∠CDE =90°,CD =4,sin E =CDCE ,∠E =30°, ∴CE =CD sin E =412=8.∴BC =BE -CE =63-8.(2)∵∠ABE =90°,AB =6,sin A =45=BEAE ,∴可设BE =4x (x >0),则AE =5x ,由勾股定理可得AB =3x , ∴3x =6,解得x =2. ∴BE =8,AE =10.∴tan E =AB BE =68=CD DE =4DE , 解得DE =163.∴AD=AE-DE =10-163=143.22.解:在Rt△ABC中,BC=2,∠A=30°,∴AC=BCtan A=2 3.∴EF=AC=2 3.∵∠E=45°,∴FC=EF·sin E= 6.∴AF=AC-FC=23- 6.23.解:如图,过点C作CD⊥AB于点D,设AD=x,小明的行走速度是a.(第23题)∵∠A=45°,CD⊥AB,∴CD=AD=x,∴AC=2x.在Rt△BCD中,∵∠B=30°,∴BC=CDsin 30°=x12=2x.∵小军的行走速度为22m/s,小明与小军同时到达山顶C处,∴2x22=2xa,解得a=1(m/s).答:小明的行走速度是1 m/s. 24.解:(1)设DE=x.∵AB=DF=2,∴EF=DE-DF=x-2.∵∠EAF=30°,∴AF=EFtan∠EAF=x-233=3(x-2).又∵CD=DEtan ∠DCE =x3=33x,BC=ABtan ∠ACB=233=23,∴BD=BC+CD=23+3 3x.由AF=BD可得3(x-2)=23+33x,解得x=6(m).答:树DE的高度为6 m.(2)如图,延长N M交DB的延长线于点P,则AM=B P=3.(第24题)由(1)知CD=33x=33×6=23,BC=23,∴PD=BP+BC+CD=3+23+23=3+4 3. ∵∠NDP=45°,∴NP=PD=3+4 3.∵MP=AB=2,∴NM=NP-MP=3+43-2=1+43(m).答:食堂M N的高度为(1+43)m.。

人教版九年级下册数学:第二十八章《能力测试题含答案不全

人教版九年级下册数学:第二十八章《能力测试题含答案不全

人教版九年级下册数学:第二十八章《能力测试题《28.1 锐角三角函数》一、基础题1.如图,已知,在Rt △ABC 中,∠C =90°,AB =5,BC =3,则cosB 的值是( ) A.45 B.34 C.35 D.432.如图,△ABC 的顶点都在正方形网格的格点上,则cosC 的值为( ) A.12 B.32 C.55 D.2553.已知在Rt △ABC 中,∠C =90°,sinA =35,则cosB 的值为( )A.74 B.35 C.34 D.454.如图,在Rt △ABC 中,∠C =90°,若AB =5,AC =4,则sinB =( )A.35B.45C.34D.43 5.在Rt △ABC 中,∠C =90°,各边都扩大2倍,则锐角A 的正弦值( ) A .扩大2倍 B .缩小12C .不变D .无法确定6.在△ABC 中,若三边BC ,CA ,AB 满足BC ∶CA ∶AB =5∶12∶13,则sinA 的值是( )A.512B.125C.513D.12137.在Rt △ABC 中,∠C =90°,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,若2a =3c ,则∠A 的正弦值等于 .8.如图所示,在Rt △ABC 中,∠C =90°,a ∶c =2∶3,求sinA 和sinB 的值.9.如图,在△ABC 中,∠C =90°,sinA =1213,AB =26,求△ABC 的周长.二、提升题10.如图,△ABC 的顶点是正方形网格的格点,则sinA 的值为( )A.12B.55C.1010D.255 11.如图,在矩形ABCD 中,AB =8,BC =12,点E 是BC 的中点,连接AE ,将△ABE 沿AE 折叠,点B 落在点F 处,连接FC ,则sin ∠ECF =( )A.34B.43C.35D.4512.在Rt △ABC 中,∠C =90°,sinA =45,AC =6 cm ,求BC 的长度.13.如图,菱形ABCD 的边长为10 cm ,DE ⊥AB ,sinA =35,求DE 的长和菱形ABCD的面积.14.如图,已知⊙O 的半径为5 cm ,弦AB 的长为8 cm ,P 是AB 延长线上一点,BP =2 cm ,求cosP 的值.28.2 解直角三角形及其应用(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 在中,,,,则边长为()A. B. C.或 D.或2. 如图,,,,,则A. B. C. D.3. 如图,一艘海轮位于灯塔的北偏东方向,距离灯塔海里的处,它沿正南方向航行一段时间后,到达位于灯塔的南偏东方向上的处,这时,海轮所在的处与灯塔的距离为()A.海里B.海里C.海里D.海里4. 如图,在高为,坡角为的楼梯表面铺地毯,地毯的长度至少需要()A. B. C. D.5. 在离电视塔的处,测得塔顶仰角为,若测角仪高度为,则电视塔高为()A. B. C. D.6. 如图,沿方向开山修路,为加快施工进度,要在小山的另一边同时施工.现在上取一点,使,,,要使,,成一直线,那么开挖点离点的距离为()A. B. C. D.7. 如图,在中,,,,则A. B. C. D.8. 如图是一长为米的游泳池的纵切面,该游泳池的最浅处为米,最深处为米,底面为斜坡,则底面的坡度为()A. B. C. D.9. 在一次夏令营活动中,小亮从位于点的营地出发,沿北偏东方向走了到达地,然后再沿北偏西方向走了若干千米到达地,测得地在地南偏西方向,则,两地的距离为A. B. C. D.10. 如图,等腰的底角为,底边上的高,则腰、的值为()A. B. C. D.二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 在中,,,,那么________度.12. 小明同学从地出发沿北偏东的方向到地,再由地沿南偏西的方向到地,则________.13.在中,,,若,则的长度为________.14. 如图,岛在岛的北偏东,岛在岛的北偏西方向,且为海里,为海里,则________.15. 在中,,为边上的高,,则线段的长为________.16. 如图,一个小球由地面沿着坡度的坡面向上前进了,此时小球距离出发点的水平距离为________.17. 如图,,之间是一座山,一条高速公路要通过,两点,在地测得公路走向是北偏西.如果,两地同时开工,那么在地按________方向施工,才能使公路在山腹中准确接通.18. 如图,设,,为射线上一点,于,于,则等于________ (用、的三角函数表示)19. 如图,在点处测得塔顶的仰角为,点到塔底的水平距离是,那么塔的高度为________(结果保留根号).20. 如图,一幢大楼的顶部竖有一块写有“校训”的宣传牌.小明在山坡的底部处测得宣传牌底部的仰角为,沿山坡向上走到处测得宣传牌顶部的仰角为.已知山坡垂直于视线,米,米,则这块宣传牌的高度为________.(测角器的高度忽略不计,结果精确到米.参考数据:,).三、解答题(本题共计6 小题,共计60分,)21. 已知一艘轮船从港口出发以∕的速度向正东方向航行,后到港口,又从港口以同样的速度后航行到港口,此时在处测得港口位于港口的南偏西方向上,求该艘轮船以∕的速度返回到港口所需的时间.(精确到,参考数据:,,,,,)22. 如图所示,我市某中学课外活动小组的同学利用所学知识去测量釜溪河沙湾段的宽度.小宇同学在处观测对岸点,测得=,小英同学在距处米远的处测得=,请你根据这些数据算出河宽.(精确到米,参考数据,)23. 如图,一幢居民楼临近山坡,山坡的坡度为,小亮在距山坡坡脚处测得楼顶的仰角为,当从处沿坡面行走米到达处时,测得楼顶的仰角刚好为,点,,在同一直线上,求该居民楼的高度.(结果保留整数,)24. 教育部布的《基础教育课程改革纲要》要求每位学生每学年都要参加社会实践活动,某学校组织了一次测量探究活动,如图,某大楼的顶部竖有一块广告牌,小明与同学们在山坡的坡脚处测得广告牌底部的仰角为,沿坡面向上走到处测得广告牌顶部的仰角为,已知山坡的坡度,=米,=米,求广告牌的高度.(测角器的高度忽略不计,结果精确到米,参考数据:,,,)25. 某课桌生产厂家研究发现,倾斜为的桌面有利于学生保持躯体自然姿势.根据这一研究,厂家决定将水平桌面做成可调节角度的桌面.新桌面的设计图如图所示,可绕点旋转,在点处安装一根长度一定且处固定,可旋转的支撑臂,.(1)如图中,当于时,测得,求此时支撑臂的长.(2)在图中,当不垂直时,测得,求此时的长(结果保留根号).参考答案与试题解析一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】D【解答】解:∵,∴,当为钝角三角形时,如图,∵,,∴,∵,∴由勾股定理得,∴;当为锐角三角形时,如图,,故选.2.【答案】A【解答】解:由勾股定理知,,∴.∵,∴是直角三角形.∴.故选.3.【答案】A【解答】解:过点作于点.在中,∵海里,,∴海里.在中,∵海里,,∴海里.即海轮所在的处与灯塔的距离为海里.故选:.4.【答案】A【解答】解:由题意得:地毯的竖直的线段加起来等于,水平的线段相加正好等于,即地毯的总长度至少为,在中,,,.∵,∴.∴.故选.5.【答案】A【解答】解:根据题意画出相应的图形,如图所示:在中,,,则,即,又因为,则.故选.6.【答案】B【解答】解:由题意可得,,,∴要使,,成一直线,则,∴,故选.7.【答案】B【解答】解:作于点.由题意知,∵,∴,∵,∴.∵,∴.∴.故选.8.【答案】B解:因为水平距离为米,则底面的坡度为.故选.9.【答案】A【解答】解:如图.由题意可知,,,,.∵,∴又∵,∴.∴是直角三角形.又∵,∴.∴.∴.故选.10.C【解答】解:∵等腰的底角为,底边上的高,∴.故选.二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】【解答】解:在中,∵,,,∴,∴,∴(直角三角形的两个锐角互为余角).故答案是:.12.【答案】【解答】解:如图:由题意知,,,∴.故答案为: .13.【答案】【解答】解:∵,∴,∵,∴;故答案为:.14.【答案】【解答】解:过点作,∵岛在岛的北偏东,岛在岛的北偏西方向,,,∴,,∴,∴,∵为海里,为海里,∴海里,∴.故答案为:.15.【答案】或【解答】解:①如图,是锐角三角形时,∵,,∴是等边三角形,∴,②是钝角三角形时,∵,∴,∵,∴,∴,综上所述,线段的长为或.故答案为:或.16.【答案】【解答】解:∵米,.∴设,,由勾股定理得,,即,解得,∴,米.故答案为.17.【答案】北偏东【解答】解:在地按北偏东施工,就能使公路在山腹中准确接通.∵指北方向相互平行,、两地公路走向形成一条直线,∴这样就构成了一对同旁内角,∴,(两直线平行,同旁内角互补),∴可得在地按北偏东施工.故答案为:北偏东.18.【答案】【解答】解:∵于,于,∴,∴,,∴.故答案为:.19.【答案】【解答】∵在点处测得塔顶的仰角为,∴,∵,∴,20.【答案】米【解答】解:过作,交的延长线于,作于.中,∵,,∴,,∴.在中,∵,,∴.中,∵,,,∴,∴.答:宣传牌高约米.故答案为米.三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】解:∵,.根据勾股定理可以得出:,,在以上式子中,设为,那么,设为,又因为,所以,根据以上设定可列出如下方程组:,∴.以轮船的速度从返回,所需的时间为:小时.【解答】解:∵,.根据勾股定理可以得出:,,在以上式子中,设为,那么,设为,又因为,所以,根据以上设定可列出如下方程组:,∴.以轮船的速度从返回,所需的时间为:小时.22.【答案】河宽为米.【解答】过作于,设=米,在中:=,==在中:=,,∴=解之得:=.23.【答案】解:如图,过点作于点,于点,∵山坡的坡度为,,∴可设,则.在中,,解得或(舍去),∴,则.∵,∴.设米,则米,米.在中,,即,解得,∴(米).【解答】解:如图,过点作于点,于点,∵山坡的坡度为,,∴可设,则.在中,,解得或(舍去),∴,则.∵,∴.设米,则米,米.在中,,即,解得,∴(米).24【答案】宣传牌高约米.【解答】过作于,,由(1)得:=,=,∴==,中,=,∴==.中,=,=,∴=.∴==.答:宣传牌高约米.25.【答案】解:(1)在中,∵,,∴,∴;∴此时支撑臂的长为;(2)如图,过点作于点,当时,∴,∴,∵,∴,∴,∴的长为或.【解答】解:(1)在中,∵,,∴,∴;∴此时支撑臂的长为;(2)如图,过点作于点,当时,∴,∴,∵,∴,∴,∴的长为或.。

锐角三角函数的综合常考50题

锐角三角函数的综合常考50题

《各章节核心资料“锐角三角函数”50道常考题型》【韩春成内部核心资料(33)】知识构架一、 三角函数基础二、 锐角三角函数与代数综合 三、 化简求值 四、 比较大小五、 三角函数与几何综合典题精练三角函数基础1. 【易】︒的值是____________.2. 【易】(江西南昌十五校联考)计算:tan60︒=_______.3. 【易】(沈阳)在Rt ABC △中,C ∠为直角,sin A cos B 的值是( ) A .12 B C .1 D .4. 【易】(河南省实验中学内部中考数学第一轮复习资料4)在ABC △中,90C =︒∠,1tan 3A =,则sinB =( )A B .23 C .34D 5. 【易】(河南省实验中学内部中考数学第一轮复习资料4)若3cos 4A =,则下列结论正确的为( ) A .030A ︒<<︒∠ B .3045A ︒<<︒∠ C .4560A ︒<<︒∠ D .6090A ︒<<︒∠ 6. 【易】(2013年广东省佛山市高中阶段招生考试数学试题)如图,若60A ∠=︒,20m AC =,则BC 大约是(结果精确到0.1m )( )A .34.64mB .34.6mC .28.3mD .17.3mA CB7. 【易】(浙江省初中毕业生学业考试(湖州市))如图,已知在Rt ABC △中,90C ∠=︒,13AB =,12AC =,则cos B 的值为________8. 【易】如图,ABC △中,90C ∠=︒,12AC =,5BC =.⑴ 求AB 的长;⑵ 求sin A 、cos A 的值; ⑶ 求22sin cos A A +的值; ⑷ 比较sin A 与cos B 的大小.9. 【易】(石家庄市42中二模)在Rt ABC △中,90C ∠︒=,1BC =,2AC =,则tan A 的值为( )A .2B .12CD10. 【易】(莆田市初中毕业、升学考试试卷)已知在Rt ABC △中,90C ∠=︒,5sin 13A =,则tan B 的值为____________. 11. 【易】已知α为锐角,且5sin 13α=,求cos α的值;12. 【易】(贵阳市初中毕业生学业数学考试试题卷)如图,P 是α∠的边OA 上一点,点P的坐标为(12,5),则tan α等于( )A .513B .1213C .512D .125BCACBA13. 【难】用几何方法求15︒角的三角函数值.14. 【中】(杭州市各类高中招生文化考试)在Rt ABC △中,90C ∠=︒,2AB BC =,现给出下列结论:①sin A ;②1cos 2B =;③tan A ;④tan B 结论是__________(只需填上正确结论的序号)锐角三角函数与代数综合15. 【易】(淮南市洞山中学第四次质量检测)在ABC △中,若()2sin 1tan 0A B -=,则C ∠的度数是( )A .45︒B .60︒C .75︒D .105︒16. 【易】(海南省中考数学科模拟)在ABC △中,()2tan 12cos 0C B -=,则A ∠=______. 17. 【易】(安徽省芜湖市中考)已知锐角A 满足关系式22sin 7sin 30A A -+=,则sin A 的值为( )A .12B .3C .12或3D .418. 【易】求适合下列条件的锐角α:2cos(10)α+︒19. 【中】若方程222210x ax a -+-=的一个根是sin α,则它的另一个根必是cos α或cos α-.20. 【中】已知ABC △中,A ∠,B ∠,C ∠的对边分别是,,,a b c 若,a b 是关于x 的一元二次方程2(4)480x c x c -+++=的两个根,且925sin .c a A =⑴求证:ABC △是直角三角形; ⑵求ABC △的三边长.化简求值21. 【易】(北大附中初二第二学期期末考试)计算:tan60tan 45cos30︒-︒︒的值是___________.22. 【易】(延庆县2011-2012学年第一学期期末试卷)tan452cos30sin60-+23. 【易】(深圳初三月考)计算:2cos30cos45tan45-+°°°°24. 【易】(深圳初三月考)已知tan 2A =,求3sin cos sin cos A AA A-+的值25. 【易】(初三深圳实验第一次月考)()114cos0π 3.14tan 453-⎛⎫︒--+︒+ ⎪⎝⎭的值.26. 【易】(初三期末)sin30tan60+°°°的值为__________. 27. 【易】(河南省实验中学内部中考数学第一轮复习资料4)计算sin60tan 45cos30-的值是____________.已知3tan 0 A A ∠=则______.28. 【易】21220103tan303-⎛⎫-+-+︒ ⎪⎝⎭29. 【易】(滨州市初级中学学业水平考试)计算:()12112|52009π2-⎛⎫-++-⨯- ⎪⎝⎭.30. 【易】(怀化市初中毕业学业考试试卷)先化简,再求值:()20tan60a ab a b b a b-⨯--⋅︒-,其中1a b =,三角函数与几何综合31. 【易】(江苏沭阳银河学校质检题)在ABC △中,若tan 1A =,sin B ABC △是______三角形. 32. 【易】(江苏沭阳银河学校质检题)一等腰三角形的两边长分别为4cm 和6cm ,则其底角的余弦值为_____. 33. 【易】(兴仁中学一模)如图,在Rt ABC △中,90ACB ∠=︒,CD 是AB 边上的中线,若6BC =,8AC =,则tan ACD ∠的值为( )A .35B .45C .43D .3434. 【易】(温州市泰顺九校模拟、第一学期期末考试九年级数学试卷)直线2y x =与x 轴正半轴的夹角为α,那么下列结论正确的是( )A .tan 2α=B .1tan 2α=C .sin 2α=D .cos 2α=35. 【易】(河南省实验中学内部中考数学第一轮复习资料4)等腰ABC △中,5AB AC ==,8BC =,求底角B ∠的四个三角函数值.36. 【易】(南汇区九年级数学期末质量抽查试卷)在ABC △中,::2a b c =,那么cos A 的值为( ). ABC .12DDCBA37. 【易】(北京二中分校第一学期初三期中)已知:如图,ABC △中,135A ∠=︒,2tan 3B =,8AB =,求AC .38. 【易】(宝山区二模、北大附中2010-2011学年度初二第二学期期末考试)如图,ABC△中,AB AC =,4cos 5ABC ∠=,点D 在边BC 上,6BD =,CD AB =. ⑴求AB 的长;⑵求ADC ∠的正切值.39. 【易】(福建厦门)已知:如图,在ABC △中,90C ∠=︒DE BC ∥,3DE =,9BC =.⑴求ADAB的值; ⑵若10BD =,求sin A ∠的值.ABCCDABEDCBA40. 【易】(浦东新区中考预测)如果等腰三角形的腰长为13厘米,底边长为10厘米,那么底角的余切值等于( )A .513B .1213C .512D .12541. 【易】(罗湖初三第一次月考)如果ABC △中,sin cos A B ==,则下列最确切的结论是( )A .ABC △是直角三角形B .ABC △是等腰三角形 C .ABC △是等腰直角三角形D .ABC △是锐角三角形42. 【易】(延庆县第一学期期末试卷)在直角坐标平面内,O 为原点,点A 的坐标为(100),,点B 在第一象限内,5BO =,3sin 5BOA =∠.求:⑴点B 的坐标;⑵cos BAO ∠的值.43. 【易】(遂宁市初中毕业生学业考试)如图,已知O ⊙的两条弦AC ,BD 相交于点E ,70A =︒∠,50C =︒∠,那么sin AEB ∠的值为( )A .12BCD44. 【易】(九年级第一模拟试题)如图,在菱形ABCD 中,DE AB ⊥,4sin 5A =,2BE =,则tan BDE ∠的值是( )A .12BC .2 DABCDE45. 【易】(河南省实验中学内部中考数学第一轮复习资料4)(2012年初三期末)如图,在等腰梯形ABCD 中,AD BC ∥,2AB CD ==,AC AB ⊥,4AC =,则sin DAC ∠=( )A .12 BCD .2 46. 【易】(福建福州中考)如图,从热气球C 处测得地面A 、B 两点的俯角分别为30︒、45︒,如果此时热气球C 处的高度CD 为100米,点A 、D 、B 在同一条直线上,则A 、B 两点的距离是( )A .200米 B. C.D.)1001米47. 【易】(东城二模)如图,将三角板的直角顶点放置在直线AB 上的点O 处.使斜边CD AB ∥,则α∠的余弦值为__________.锐角三角函数48. 【易】(江苏省竞赛题)如图,等腰Rt ABC ∆中,︒=∠90C ,D 为BC 中点,将ABC ∆折叠,使A 点与D 点重合,若EF 为折痕,则BED ∠sin 的值为_______.DCBA45°30°DC BAACB DOα30°D EFABC49. 【易】(南充市中考题)如图,点E 是矩形ABCD 中CD 边上一点,BCE ∆沿BE 折叠为BFE ∆,点F 落在AD 上, ⑴ 求证:ABF ∆∽DFE ∆;⑵ 若31sin =∠DFE ,求EBC ∠tan 的值.50. 【易】(济南市中考题)如图,AOB ∠是放置在正方形网格中的一个角,则AOB ∠cos 的值是( )E《各章节核心资料“锐角三角函数”50道常考题型》答案【韩春成内部核心资料(33)】三角函数基础1.2.3. 【答案】D4. 【答案】D5. 【答案】B6.【答案】A7. 【答案】5138. 【答案】⑴∵90C ∠=︒,12AC =,5BC =,∴13AB ==. ⑵5sin 13BC A AB ==,12cos 13AC A AB ==. ⑶∵22525sin ()13169A ==,2212144cos ()13169A ==,∴2225144sin cos 1169169A A +=+= ⑷∵5cos 13BC B AB ==, ∴sin cos A B =.9. 【答案】B 10. 【答案】125 11. 【答案】121312. 【答案】C13. 【答案】如图所示,画Rt ABC ∆,使90ACB ∠=︒,D15︒30︒CBA1AC =,2AB =,30ABC ∠=︒,BC延长CB 到D ,使2BD BA ==,连接AD ,则15ADC ∠=︒.在Rt ACD ∆中,15ADC ∠=︒,1AC =,2DC =∵222AD DC AC =+2(21=+86432=+=++2262(2)=++2=∴AD =依定义得:sin15︒==;cos15︒==; tan152︒==- cot152︒=14. 【答案】②③④根据题意,因为90C =︒∠,2AB BC =,则该直角三角形是含30︒角的直角三角形,则12BC AB AC =∶∶1BC =,2AB =,AC 1sin 2BC A AB ==,②1cos 2BC B AB ==,③tan BC A AC ==④tan AC B BC ==,则答案为②③④. 锐角三角函数与代数综合15.【答案】C 16.【答案】105︒ 17.【答案】A18. 【答案】20α=︒【解析】∵2cos(10)α+︒=cos(10)α+︒=. ∵cos30︒=1030α+︒=︒,∴20α=︒. 19. 【答案】不妨设方程的另一根为m ,由一元二次方程的根系关系可知sin m a α+=,21sin 2a m α-=, 故2(sin )1sin 2m m αα+-=,整理可得22sin (sin )1m m αα=+-,即22sin 1m α+=,又22sin cos 1αα+=,故cos m α=±.20. 【答案】⑴∵,a b 是方程2(4)480x c x c -+++=的两个根,∴4,48a b c ab c +=+=+.∴222222()2(4)2(48)816816a b a b ab c c c c c c +=+-=+-+=++--=∴ABC ∆是直角三角形()90C ∠=︒.⑵在Rt ABC ∆中,sin a A c=,并代入925sin c a A =得22925.c a = ∴34,.55a cbc == 由344455a b c c c c +=++=+,. ∴10c =,且此时0∆>,从而68a b ==,化简求值21. 【答案】122. 【答案】tan452cos30sin60-+=12-+=1=1). 23. 【答案】124. 【答案】5325. 【答案】126. 27. 【答案】0,30︒28. 【答案】1029. 【答案】2-30. 【答案】()20tan60a ab a b b a b-⨯--⋅︒- ()1a a b b a b-=⨯--a b =-1a b =,∴原式12=-三角函数与几何综合31. 【答案】等腰直角.32. 【答案】34或13. 33. 【答案】D34. 【答案】A35. 【答案】3sin 5B =,4cos 5B =,3tan 4B =,4cot 3B =. 36. 【答案】B37.【答案】38. 【答案】⑴过点A 作AH BC ⊥,垂足为H∵AC AB =∴BC HC BH 21== 设x CD AC AB ===∵6=BD∴6+=x BC ,26+=x BH 在Rt △AHB 中,,又54cos =∠ABC ∴5426=+x x解得:10=x ,所以10=AB ⑵821===BC HC BH 2810=-=-=CH CD DH在Rt △AHB 中,222AB BH AH =+,又10=AB ,∴6=AH 在Rt △AHD 中,326tan ===∠DH AH ADC ∴ADC ∠的正切值是339. 【答案】⑴∵DE BC ∥,∴ADE ABC △∽△. ∴AD AB =13DE BC =. ⑵过点D 作DG BC ⊥,垂足为G .∴DG AC ∥.∴A BDG =∠∠.又∵DE BC ∥,∴四边形ECGD 是平行四边形.∴DE CG =.∴6BG =.在Rt DGB △中,GOB A ∠=∠∴sin A =∠35.AB BH ABC =∠cos40. 【答案】C41. 【答案】C42. 【答案】⑴如图,作BH OA ⊥,垂足为H在Rt OHB △中,5BO =,3sin 5BOA ∠=, 3BH ∴=.4OH ∴=.∴点B 的坐标为(43),.⑵10OA =,4OH =,6AH ∴=.在Rt AHB △中,3BH =,AB ∴=.cos AH BAO AB ∴∠==. 43.【答案】D 44.【答案】A 45.【答案】B 46. 【答案】D47. 【答案】12 锐角三角函数48. 【答案】35△AFE ≌△DFE ,45A FDE ∠=∠=︒,∵135135CDF EDB DEB EDB ∠+∠=︒∠+∠=︒,, ∴ 2DEB CDF AC CF x ∠=∠==,设,,则21DF AF x CD ==-=,,由2(2)x -= 22351 44x x DF +==,得,,3sin sin 5CF BED CDF DF ∠=∠== 49. 【答案】⑴略⑵由△ABF ∽△DFE,得EF DF BF AB ===,故tan tan EF EBC EBF BF ∠=∠=.50.△AOB 为直角三角形.。

九年级数学锐角三角函数综合测试题

九年级数学锐角三角函数综合测试题

锐角三角函数综合测试题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.把Rt △ABC 各边的长度都扩大3倍得Rt △A′B′C′,那么锐角A 、A′的余弦值的关系为( )A .cosA=3cosA′ B3cosA=cosA′. C .cosA=cosA′ D .不能确定2.已知α为等边三角形的一个内角,则cos α等于( )A .12BC D3.△ABC 中,,,则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .等边三角形 D .等腰三角形4.(α+20°)=1,则锐角α的度数应是( )A .40°B .30°C .20°D .10°5.如图1,梯子(长度不变)跟地面所成的锐角为∠A ,关于∠A 的三角函数值与梯子的倾斜程度之间,叙述正确的是( )A .sinA 的值越大,梯子越陡B .cosA 的值越大,梯子越陡C .tanA 的值越小,梯子越陡D .陡缓程度与∠A 的函数值无关6.在正方形网格中,∠AOB 如图2放置,则cos ∠AOB 的值为( )A B C .12 D.27.如图3,∠ C=90°,∠ABC=30°,延长CB 至点D ,使AB=BD ,利用此图可求得tan75°等于( )A .B .C D8.如图4,在固定电线杆时,要求拉线AC 与地面成75°角,已知拉线AC 的长为8米,则电线杆上固定点C 距地面( )A .8•sin75°米B .8sin75米C .8•tan75°米D .8tan 75米9.如图5,在一次台球比赛中,某运动员必须推动桌面上位于E 点的白球,撞向桌边上的F 点,反弹后撞中对边G 点的红球,已知AD=350cm ,AF=250cm ,∠AFE=20°,则DG 等于( )A .100sin20°B .100cos20°C .100tan70°D .100tan20°★10.如图6,学校的保管室里,有一架5m 长的梯子斜靠在墙上,此时梯子与地面所成角为45°,如果梯子底端O 固定不动,顶端靠到对面墙上,此时梯子与地面所成的角为60°,则此保管室的宽度AB 为( )A .B .52C .52D .52附备用试题2个 直接给出答案在Rt △ABC 中,∠C=90°,cosA=15,则tanA 等于( )答案:AA .BCD .24 在Rt △ABC 中,∠C=90°,tanA=125,周长为45,CD 是斜边AB 上的高,则CD 的长是( ) A .5613 B .12613 C .7613 D .1712答案:B二、填空题(每小题3分,共24分)11.如图7,将三角板的直角顶点放置在直线AB 上的点O 处,使斜边CD ∥AB ,则∠ 的余弦值为______.12.已知Rt △ABC 的两直角边长分别为3和4,则较小锐角的正切值是______. 13.某人沿坡度为0.75的斜坡前进50m ,则他所在的位置比原来的位置升高______m.14.如图8,沿倾斜角为30°的山坡植树,要求相邻两棵树间的水平距离AC 为2m ,那么相邻两棵树的斜坡距离AB 约为______m (结果精确到0.1m ,).15.如图9,乐乐在学校某建筑物的C点处测得旗杆顶部A点的仰角为30°,旗杆底部B点的俯角为45°.若旗杆底部B点到建筑物的水平距离BE=9米,旗杆台阶高1米,则旗杆顶点A离地面的高度为米(结果保留根号).16.等腰三角形的周长为1,则底角等于______度.17.如图10,机器人从A点沿西南方向行了B点,观察到原点O在它的南偏东60°的方向上,则点A的坐标为______.★18.某市在“旧城改造”中,计划在市内一块如图11所示的三角形空地上种植某种草皮以美化环境,已知这种草皮售价为a元/平方米,则购买这种草皮至少需要______元.附备用试题2个直接给出答案如图,小明从A地沿北偏东30°方向走到B地,再从B地向正南方向走200m到C地,此时小明离A地m.(答案:100)某中学修建一座图书楼,为改善安全性能,把楼梯的倾斜角由原来设计的45°改为30°,已知原来设计的楼梯长为4.5m,在楼梯高度不变的情况下,调整后的楼梯多占地面______m.(答案:三、解答题(共66分)19.(6-cos45°20.(7分)如图12,矩形ABCD是供一辆机动车停放的车位示意图.请你参考图中数据,计算车位所占街道的宽度EF.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,结果精确到0.1m)21.(9分)如图13,四边形ABCD为正方形,E为BC上一点,将正方形折叠,使点A与点E重合,折痕为MN,若tan∠AEN=13,DC+CE=10.(1)求△ANE的面积;(2)求sin∠ENB的值.22.(8分) 一艘渔船在A处观测到东北方向有一小岛C,已知小岛C周围4.8海里范围内是水产养殖场.渔船沿北偏东30°方向航行10海里到达B处,在B处测得小岛C在北偏东60°方向,如图14所示.这时渔船改变航线向正东(即BD)方向航行,这艘渔船是否有进入养殖场的危险?23.(8分)如图15,在Rt△ABC中,∠C=90°,BC、AC、AB三边的长分别为a、b、c,则sinA=ac,cosA=bc,tanA=ab.试探求sinA、cosA、tanA之间存在的一般关系,并说明理由.24.(9分) 如图16,由山脚下的一点A测得山顶D的仰角是45°,从A沿倾斜角为30°的山坡前进1500米到B,再次测得山顶D的仰角为60°,求山高CD.25. (9分)如图17,某数学兴趣小组在活动课上测量学校旗杆高度.已知小明的眼睛与地面的距离(AB)是1.7m,看旗杆顶部M的仰角为45°;小红的眼睛与地面的距离(CD)是1.5m,看旗杆顶部M的仰角为30°.两人相距28米且位于旗杆两侧(点B,N,D在同一条直线上).请求出旗杆MN的高度. 1.4 1.7,结果保留整数)★26. (10分) 如图18,某一时刻太阳光从教室窗户射入室内,与地面的夹角∠BPC为30°,窗户的一部分在教室地面所形成的影长PE为3.5米,窗户的高度AF为2.5米.求窗外遮阳蓬外端一点D到窗户上椽的距离AD.(结果精确到0.1米)附备用试题2个 直接给出答案如图,一次函数的图象经过M 点,与x 轴交于A 点,与y 轴交于B 点,根据图中信息求:(1)这个函数的解析式;(2)tan ∠BAO .解:(1)设一次函数的解析式为y=kx+b(k≠0),将点B(0,6),M(-1,4)代入,得604(1)k b k b =+=-+⎧⎨⎩, 解之,得k=2,b=6∴这个函数的解析式为y=2x+6.(2)令y=0,代入y=2x+6,得x= -3∴点A 的坐标(-3,0).∴tan ∠BAO=OB OA =63=2. 某大草原上有一条笔直的公路,在紧靠公路相距40千米的A 、B 两地,分别有甲、乙两个医疗站,如图,在A 地北偏东45°、B 地北偏西60°方向上有一牧民区C .一天,甲医疗队接到牧民区的求救电话,立刻设计了两种救助方案,方案I :从A 地开车沿公路到离牧民区C 最近的D 处,再开车穿越草地沿DC 方向到牧民区C .方案II :从A 地开车穿越草地沿AC 方向到牧民区C . 已知汽车在公路上行驶的速度是在草地上行驶速度的3倍.(1)求牧民区到公路的最短距离CD .(2)你认为甲医疗队设计的两种救助方案,哪一种方案比较合理?并说明理由.(结果精确到0.1 1.73 1.41)解:(1)设CD 为x 千米,由题意得,∠CBD=30°,∠CAD=45°∴AD=CD=x.在Rt △BCD 中,tan30°=x BD,∴∵AD+DB=AB=40,∴,解得x≈14. 7∴ 牧民区到公路的最短距离CD 为14.7千米.(2)设汽车在草地上行驶的速度为v ,则在公路上行驶的速度为3v ,在Rt △ADC 中,∠CAD=45°,∴方案I 用的时间134333AD CD AD CD CD t v v v v+=+==方案II 用的时间2AC t v ==∴ 2143CD t t v v -=-=4)3CD v∵ 4>0 ,∴ 21t t ->0,∴方案I 用的时间少,方案I 比较合理.供老师选配的题目:1.已知锐角A 满足关系式2sin 2A-7sinA+3=0,则sinA 的值为( )A .12B .3C .12或3D .42.如图1,已知⊙O 的半径为1,锐角△ABC 内接于⊙O ,BD ⊥AC 于点D ,OM ⊥AB 于点M ,则sin ∠CBD 的值等于( )A .CD 的长B .2CD 的长C .OM 的长D .2OM 的长3.如图2,在高2m ,坡角30°的楼梯表面铺地毯,地毯的长度至少需______m.(精确到0.1m )4.如图3,边长为1的菱形ABCD 中,∠DAB=60°.连结对角线AC ,以AC 为边作第二个菱形ACC 1D 1,使∠D 1AC=60°;连结AC 1,再以AC 1为边作第三个菱形AC 1C 2D 2,使∠D 2AC 1=60°;……,按此规律所作的第n 个菱形的边长为______.5.如图4(1),由直角三角形边角关系,可将三角形面积公式变形,得 ABC S △=12bc·sin ∠A . ① 即三角形的面积等于两边之长与夹角正弦之积的一半.如图4(2),在△ABC 中,CD ⊥AB 于D ,∠ACD=α, ∠DCB=β.∵ ABC ADC BDC S S S =+△△△, 由公式①,得12AC·BC·sin(α+β)= 12AC·CD·sinα+12BC·CD·sinβ, 即 AC·BC·sin(α+β)= AC·CD·sinα+BC·CD·sinβ. ②你能利用直角三角形边角关系,消去②中的AC 、BC 、CD 吗?不能,说明理由;能,写出解决过程.(标★题为拔高题)(参考答案见第××版)锐角三角函数综合测试题参考答案一、选择题1.C2. A3.D4.D5.A6.A7.B 8.A 9.D10.C. 提示:如图1,在Rt △AOC 中,,在Rt △BOC中,BO=OD•cos60°=52,所以AB=AO+BO=52二、填空题11.12 12.3413.30 14.2.3 15. 10+ 16.30 17.(0) 18.150a. 提示:如图2,过点C 作CD ⊥BA 交BA 的延长线于D ,则在Rt △ADC 中,CD=AC•sin30°=15(米),所以△ABC 的面积为12AB•CD=12×20×15=150(米2),故购买这种草皮至少需要150a元.三、解答题19.-cos45°+2=32-1+2=52.20.解:在Rt△∠CDF中,CD=5.4,∠DCF=40°,∴DF=CD•sin40°≈5.4×0.64≈3.46.在Rt△∠ADE中,AD=2.2,∠ADE=∠DCF=40°,∴DE=AD•cos40°≈2.2×0.77≈1.69.∴EF=DF+DE≈5.15≈5.2.即车位所占街道的宽度为5.2m.21.解:(1)由折叠知NA=NE,∴∠AEN=∠EAN,∴tan∠EAB=tan∠AEN=13,∴BEAB=13.设BE=k,则AB=BC=CD=3k,∴CE=BC-BE=2k.∵DC+CE=10,∴3k+2k=10,解得k=2,∴AB=6,BE=2.在Rt△BNE中,∵NE2+BE2=NB2,∴AN2+BE2=NB2,即AN2+22=(6-AN)2,解得AN=83,∴S△ANE=12AN•BE=12×83×2=83.(2)∵NE=AN=83,∴sin∠ENB=BENE=283=34.22.解:如图3,过点C作CE⊥BD,垂足为E,∴CE∥GB∥FA.∴∠BCE=∠GBC=60°,∠ACE=∠FAC=45°.∴∠BCA=∠BCE-∠ACE=60°-45°=15°.又∠BAC=∠FAC-∠FAB=45°-30°=15°,∴∠BCA=∠BAC,∴BC=AB=10.在Rt△BCE中,CE=BC·cos∠BCE=BC·cos60°=10×12=5(海里).∵5海里>4.8海里,∴渔船没有进入养殖场的危险.答:这艘渔船没有进入养殖场的危险.23.解:存在的一般关系有:(1)sin2A+cos2A=1;(2)tanA=sincosAA.证明如下:(1)∵ sinA=ac, cosA=bc, a2+b2=c2,∴ sin2A+cos2A=222222222a b a b cc c c c++===1.(2)∵ sinA=ac, cosA=bc,∴ tanA=ab=acbc=sincosAA.24.解:如图4,过点B作CD、AC的垂线,垂足分别为E、F.∵∠BAC=30°,AB=1500米,∴BF=EC=750米,.设FC=x米∵∠DBE=60°,∴米.又∵∠DAC=45°,∴AC=CD.即,解得x=750.∴CD=(.答:山高CD为(.25. 解:如图5,过点A 作AE ⊥MN 于E ,过点C 作CF ⊥MN 于F , 则EF=AB-CD=1.7-1.5=0.2.在Rt △AEM 中,∠AEM=90°,∠MAE=45°∴AE=ME ,设AE=x ,则MF=x+0.2.在Rt △MFC 中,∠MFC=90°,∠MCF=30°,∴∵BN+ND=BD ,∴,解得x≈10.2.∴MN≈12答:旗杆高约为12米.26.解:如图6,过E 作EG ∥AC 交BP 于G ,∵EF ∥DP ,∴四边形BFEG 是平行四边形.在Rt △PEG 中,PE=3.5,∠P=30°,tan ∠EPG=EG EP , ∴EG=EP•tan ∠EPG=3.5×tan30°≈2.02.又∵四边形BFEG 是平行四边形,∴BF=EG=2.02,∴AB=AF-BF=2.5-2.02=0.48.又∵AD ∥PE ,∴∠BDA=∠P=30°.在Rt △BAD 中,tan30°=AB AD , ∴AD=tan30AB =0.48×(米). ∴所求的距离AD 约为0.8米.供老师选配的题目:1.A2.C3.5.54.1n5. 解:能消去AC 、BC 、CD ,得到si n(α+β)= sinα·cosβ+cosα·sinβ.理由如下:在AC·BC·sin(α+β)= AC·CD·sinα+BC·CD·sinβ两边同除以AC·BC,得sin(α+β)= CDBC·sinα+CDAC·sinβ.∵CDBC=cosβ,CDAC=cosα,∴ sin(α+β)= sinα·cosβ+cosα·sinβ.。

锐角三角函数检测卷及答案

锐角三角函数检测卷及答案

锐角三角函数单元检测时间:100分钟班级: 姓名: 分数:一、单选题1.已知△ABC 中, ∠C =90°,tan A =12,D 是 AC 上一点, ∠CBD =∠A , 则 cos∠CDB 的值为( )A .12B C D .22.如图,正方形ABCD 中,点E 在边CD 上,且3CD DE =,将ADE 沿AE 对折至AFE △.延长EF 交边BC 于点G ,连接AG 、CF .下列结论:∠ABG AFG △△≌;∠45GAE ∠=︒;∠BG GC =;∠AG CF ∥;∠GCF 是等边三角形,其中正确结论有( )个.A .2B .3C .4D .53.如图,将边长6cm 的正方形纸片沿虚线剪开,剪成两个全等梯形.已知裁剪线与正方形的一边夹角为60°,则梯形纸片中较短的底边长为( )A .(3cm B .(3﹣cm C .(6cm D .(6﹣cm4.三角函数sin40cos16tan50︒︒︒、、之间的大小关系是( ) A .tan50cos16sin40︒>︒>︒ B .cos16sin40tan50︒>︒>︒ C .cos16tan50sin40︒>︒>︒D .tan50sin40cos16︒>︒>︒5.如图,在网格中,小正方形的边长为1,点A 、B 、C 都在格点上,则sin A 的值为( )A B .35C .45D 6.如图,已知窗户高AB m =米,窗户外面上方0.2米的点C 处安装水平遮阳板CD n =米,当太阳光线与水平线成α角时,光线刚好不能直接射入室内,则m n ,的关系式是( )A .n =m tan α-0.2B .n =m tan α+0.2C .m =n tan α-0.2D .m =n tan α+0.27.如图,已知楼高AB 为50m ,铁塔基与楼房房基间的水平距离BD 为50m ,塔高DC ,下列结论中,正确的是( )A .由楼顶望塔顶仰角为60°B .由楼顶望塔基俯角为60°C .由楼顶望塔顶仰角为30°D .由楼顶望塔基俯角为30°8.先化简,再求代数式的值:222111a a a a a +⎛⎫+÷ ⎪+--⎝⎭=( ),其中tan602sin30a =︒-︒.ABCD 9.数学活动小组到某广场测量标志性建筑AB 的高度.如图,他们在地面上C 点测得最高点A 的仰角为22°,再向前70m 至D 点,又测得最高点A 的仰角为58°,点C ,D ,B 在同一直线上,则该建筑物AB 的高度约为( )(精确到1m .参考数据:sin 220.37︒≈,tan220.40︒≈,sin580.85︒≈,tan58 1.60︒≈)A .28mB .34mC .37mD .46m10.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆底端D 到大楼前梯坎底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i =1AB 的高度为( )(精确到0.1)A .30.4B .36.4C .39.4D .45.411.如图所示一座楼梯的示意图,BC 是铅垂线,CA 是水平线,BA 与CA 的夹角为θ.现要在楼梯上铺一条地毯,已知CA =6米,楼梯宽度4米,则地毯的面积至少需要( )A .24sin θ米2 B .24cos θ米2 C .2424tan θ⎛⎫+⎪⎝⎭米2D .()2424tan θ+米212.如图,在长方形ABCD 中,5AB =,3AD =,点E 在AB 上,点F 在BC 上.若2AE =,1CF =,则()sin 12∠+∠=( )A .12B C D 13.如图,在由小正方形组成的网格中,小正方形的边长均为1,点A ,B ,O 都在小正方形的顶点上,则∠AOB 的正弦值是( )A B C .13D .1214.式子2cos30tan 45︒-︒ )A .0B .C .2D .2-15.如图,网格中的每个小正方形的顶点称为格点,边长均为1,ABC 的顶点均在格点上,则∠ABC 的正弦值为( )A .12B C .35D 16.如图,在正方形方格纸中,每个小方格边长为1,A ,B ,C ,D 都在格点处,AB 与CD 相交于点O ,B ,则cos BOD ∠的值等于( )A .14B .13C D 17.如图,在44⨯网格正方形中,每个小正方形的边长为1,顶点为格点,若ABC 的顶点均是格点,则cos BAC ∠的值是( )A B C D .4518.如图,在Rt ABC 中,90C ∠=︒,BC =D 是AC 上一点,连接BD .若1tan 2A ∠=,1tan 3ABD ∠=,则CD 的长为( )A .B .3CD .219.在直角三角形ABC 中,90,4,C AB BC =∠=︒=3tan 2A的值是( )AB .C .D .320.如图,折叠矩形ABCD 的一边AD ,使点D 落在BC 边的点F 处,若4CF =,3tan 4EFC ∠=,则折痕AE =( )A .B .C .8D .1021.已知:如图,在平面直角坐标系中,有菱形OABC ,点A 的坐标为(10,0),对角线OB 、AC 相交于点D ,双曲线y=kx(x >0)经过点D ,交BC 的延长线于点E ,且OB •AC =160,有下列四个结论:∠双曲线的解析式为y =40x (x >0);∠点E 的坐标是(4,8);∠sin∠COA =45;∠AC +OB 其中正确的结论有( ) A .1个B .2个C .3个D .4个22.如图,在矩形纸片ABCD 中,5AB =,3BC =,将BCD △沿BD 折叠到BED 位置,DE 交AB 于点F ,则cos ADF ∠的值为( )A .817B .715C .1517D .81523.如图,一棵大树被台风拦腰刮断,树根A 到刮断点P 的距离是4米,折断部分PB 与地面成40︒的夹角,那么原来这棵树的高度是( )A .44cos 40+︒⎛⎫ ⎪⎝⎭米B .44sin 40+︒⎛⎫ ⎪⎝⎭米C .()44sin 40+︒米D .()44tan 40+︒米24.中国古代数学家赵爽在为《周髀算经》作注解时,用4个全等的直角三角形拼成正方形(如图),并用它证明了勾股定理,这个图被称为“弦图”.若“弦图”中小正方形面积与每个直角三角形面积均为1,α为直角三角形中的一个锐角,则tan α=( )A .2B .32C .12D 25.如图,在正方形方格纸中,每个小正方形的边长都相等,A 、B 、C 、D 都在格点处,AB 与CD 相交于点P ,则cos∠APC 的值为( )A B C .25D 26.如图,已知菱形ABCD 的边长为4,E 是BC 的中点,AF 平分EAD ∠交CD 于点F , FG AD ∥ 交AE 于点G ,若1cos 4B =,则FG 的长是( )A .3B .83C D .52第II 卷(非选择题)二、解答题27.如图,山坡上有一棵与水平面垂直的大树AB ,且90BHE ∠=︒,一场台风过后,大树被刮倾斜后折断()A C D --倒在山坡上,树的顶部恰好接触到坡面().AB AC CD =+已知山坡的坡角30AEF ∠=︒,量得树干倾斜角45BAC ∠=︒,大树被折断部分CD 和坡面所成的角60ADC ∠=︒,4AD =米.(1)求CAD ∠的度数;(2)求这棵大树折断前AB 的高度.(结果保留根号)28.小明学了《解直角三角形》内容后,对一条东西走向的隧道AB 进行实地测量.如图所示,他在地面上点C 处测得隧道一端点A 在他的北偏东15︒方向上,他沿西北方向前进D ,此时测得点A 在他的东北方向上,端点B 在他的北偏西60︒方向上,(点A 、B 、C 、D 在同一平面内)(1)求点D 与点A 的距离;(2)求隧道AB 的长度.(结果保留根号) 29.(1)已知:对于锐角α满足sin 1cos tan21cos sin ααααα-==+,求tan15°的值;(2)如图,△ABC 中,∠C =90°,∠BAC =30°,延长CA 到D ,使AD =AB ,连接BD ,请利用这个图形求tan15°的值.30.某市政府为了方便市民绿色出行,推出了共享单车服务.图∠是某品牌共享单车放在水平地面上的实物图,图∠是其示意图,其中AB 、CD 都与地面l 平行,车轮半径为32cm ,∠BCD =64°,BC =60cm ,坐垫E 与点B 的距离BE 为15cm .(1)求坐垫E 到地面的距离;(2)根据经验,当坐垫E 到CD 的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为80cm ,现将坐垫E 调整至坐骑舒适高度位置E ',求E E '的长.(结果精确到0.1cm ,参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05) 31.计算:1202203(1)|2cos308|(3)π--︒--- 32.在遵义市科技馆楼前,在A 点观测楼顶K 的仰角为30°,然后将观测点沿石梯向楼的水平方向移动了28m ,上升4m ,到达最上一层平台,用高为1.4m 的测角仪,在C 点观测楼顶K 的仰角为45°.(1)求:A ,C 间的距离;(结果保留根号)(2)求:科技馆的楼高KF 的值.1.7)33.计算:212)4cos30|32-⎛⎫--+- ⎪⎝⎭.34.如图,是学生小金家附近的一块三角形绿化区的示意图;为增强体质,他每天早晨都沿着绿化区周边小路AB ,BC ,CA 跑步(小路的宽度不计),观测得点B 在点A 的南偏东30°方向上,点C 在点A 的南偏东60°的方向上,点B 在点C 的北偏西75°方向上,AC 间距离为400米.小金沿三角形绿化区的周边小路跑一圈共跑了多少米?(结果精确到1 1.4≈ 1.7≈)35.图1是笔记本电脑放在散热支架上的实物图,实物图的侧面可抽象成图2,结点B ,C ,D 处可转动,支撑架AB =BC =CD =28cm ,面板DE =28cm ,若DE 始终与AB 平行.(1)直接写出∠ABC ,∠BCD ,∠CDE 之间的数量关系;(2)若ABC BCD CDE ∠=∠=∠,电脑显示屏宽EF =26cm .且105DEF ∠=︒,求笔记本电脑显示屏的端点F 到AB 的距离.(结果精确到0.1cm .参考数据sin750.97︒≈,cos750.26︒≈ 1.73≈)36.有一只拉杆式旅行箱(图1),其侧面示意图如图2所示,已知箱体长AB =50cm ,拉杆BC 的伸长距离最大时可达35cm ,点A 、B 、C 在同一条直线上,在箱体底端装有圆形的滚筒∠A ,∠A 与水平地面切于点D ,在拉杆伸长至最大的情况下,当点B 距离水平地面38cm 时,点C 到水平面的距离CE 为59cm .设AF ∥MN .(1)求∠A 的半径长;(2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,某人将手自然下垂在C 端拉旅行箱时,CE 为80cm ,∠CAF =60°.求此时拉杆BC 的伸长距离.37.2022年6月5日,“神舟十四号”载人航天飞船搭载“明星”机械臂成功发射.如图是处于工作状态的某型号手臂机器人示意图,OA 是垂直于工作台的移动基座,AB 、BC 为机械臂,1OA =m ,5AB =m ,2BC =m ,143ABC ∠=︒.机械臂端点C 到工作台的距离6CD =m .(1)求A 、C 两点之间的距离; (2)求OD 长.(结果精确到0.1m ,参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈ 2.24≈)38.深圳是沿海城市,每年都会受到几次台风侵袭,台风是一种自然灾害,它以台风中心为圆心在数十千米范围内形成气旋风景,有极强的破坏力.某次,据气象观察,距深圳正南200千米的处有一台风中心,中心最大风力为12级,每远离台风中心30千米,风力就会减弱一级,该台风中心正以20千米/时的速度沿北偏东43°方向向移动,且台风中心风力不变,若城市受到风力达到或超过六级,则称受台风影响. (1)此次台风会不会影响深圳?为什么?(2)若受到影响,那么受到台风影响的最大风力为几级?(3)若受到影响,那么此次台风影响深圳共持续多长时间?(结果可带根号表示)(sin43°≈34,cos42°≈2940,tan42°≈910)39.如图,港口B 位于港口A 的南偏西45︒方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向港口B 的南偏东45︒方向的D 处,它沿正北方向航行21km 到达E 处,此时测得灯塔C 在E 的南偏西70︒方向上,E 处距离港口A 有多远?(结果用含非特殊角的三角函数及根式表示即可)40.因东坡文化远近闻名的遗爱湖公园,“国庆黄金周”期间,游人络绎不绝,现有一艘游船载着游客在遗爱湖中游览,当船在A 处时,船上游客发现岸上P 1处的临皋亭和P 2处的遗爱亭都在东北方向;当游船向正东方向行驶600m 到达B 处时,游客发现遗爱亭在北偏西15°方向;当游船继续向正东方向行驶400m 到达C 处时,游客发现临皋亭在北偏西60°方向.则临皋亭P 1处与遗爱亭P 2处之间的距离为 _____.(计算结果保留根号)41.如图,线段EF 与MN 表示某一段河的两岸,EF 平行MN .综合实践课上,同学们需要在河岸MN 上测量这段河的宽度(EF 与MN 之间的距离),已知河对岸EF 上有建筑物C 、D ,且CD =30米,同学们首先在河岸MN 上选取点A 处,用测角仪测得C 建筑物位于A 北偏东45°方向,再沿河岸走10米到达B 处,测得D 建筑物位于B 北偏东55°方向,请你根据所测数据求出该段河的宽度,(用非特殊角的三角函数或根式表示即可)42.图1是某小型汽车的示意图,图2是其后备厢的箱盖打开过程侧面简化示意图,五边形ABCDE 表示该车的后备厢的厢体侧面,在打开后备厢的过程中,箱盖AED 可以绕点A 逆时针方向旋转,当旋转角为60°时,箱盖AED 落在AE D ''的位置.若90EAB ABC BCD ∠=∠=∠=︒,150AED ∠=︒,AE =80厘米,ED =40厘米,DC =25厘米,且后备厢底部BC 离地面的高CN =25厘米.(1)求点D 到地面MN 的距离(结果保留根号);(2)求箱盖打开60°时的宽D ,D 1.73≈ 2.91116.3,结果取整数).43.如图是一种手机三脚架,它通过改变锁扣C 在主轴AB 上的位置调节三脚架的高度,其它支架长度固定不变,已知支脚DE =AB .底座CD ∠AB ,BG ∠AB ,且CD =BG ,F 是DE 上的固定点,且EF :DF =2:3.(1)当点B ,G ,E 三点在同一直线上(如图1所示)时,测得tan∠BED =2.设BC =5a ,则FG =__(用含a 的代数式表示);(2)在(1)的条件下,若将点C 向下移动24cm ,则点B ,G ,F 三点在同一直线上(如图2),此时点A 离地面的高度是__cm .44.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC =OD =10分米,展开角∠COD =60°,晾衣臂OA =OB =10分米,晾衣臂支架HG =FE =6分米,且HO =FO =4分米.(参考数据:)(1)当90AOC ∠=︒时,求点A 离地面的距离AM 约为多少分米;(结果精确到0.1)(2)当OB 从水平状态旋转到OB '(在CO 延长线上)时,点E 绕点F 随之旋转至OB '上的点E '处,求B E BE ''-为多少分米.45.海绵拖把一般由长杆、U 型挤压器、海绵及连杆(含拉杆)装置组成(如图),拉动拉杆可带动海绵进入挤压器的两压杆间,起到挤水的作用.图1,图2,图3是其挤水原理示意图,A 、B 是拖把上的两个固定点,拉杆AP 一端固定在点A ,点P 与点B 重合(如图1),拉动点P 可使拉杆绕着点A 转动,此时点C 沿着AB 所在直线上下移动(如图2).已知AB =10cm ,连杆PC 为40cm ,FG =4cm ,MN =8cm .当P 点转动到射线BA 上时(如图3),FG 落在MN 上,此时点D 与点E 重合,点I 与点H 重合.(1)求ME 的长;(2)转动AP ,当∠P AC =53°时,∠求点C 的上升高度;∠求点D 与点I 之间的距离(结果精确到0.1).(sin53°≈45,cos53°≈35≈2.45) 参考答案:1.B【分析】由已知条件CBD A ∠=∠,可得1tan tan 2CBD A ∠==,设CD a =,由题意可得1tan 2CD CBD BC ∠==,即可算出2BC a =,在t ΔR CBD 中,根据勾股定理可得BD 答案.【详解】解:CBD A ,1tan tan 2CBD A ∴∠==, 设CD a =,1tan 2CD CBD BC ∴∠==, 2BC a ∴=, 在Rt ΔCBD 中,BD ,cosCD CDB BD ∴∠===. 故选:B 【点睛】本题主要考查了解直角三角形,熟练掌握解直角三角形的方法进行求解是解决本题的关键.2.C【分析】根据翻折变换的性质和正方形的性质可证ABG AFG △△≌;在直角ECG 中,根据勾股定理可证BG GC =;通过证明===∠∠∠∠AGB AGF GFC GCF ,由平行线的判定可得AG CF ∥;由于BG CG =,得到tan 2AGB ∠=,求得60AGB ∠≠︒,根据平行线的性质得到60FCG AGB ∠=∠≠︒,求得GCF 不是等边三角形.【详解】解:由翻折变换可知,AD AF =,DAE FAE ∠=∠,DE FE =,D AFE ∠=∠,∠18090AFG AFE B ∠=︒-∠=︒=∠,在Rt ABG 和Rt AFG 中,AF AB AG AG =⎧⎨=⎩, ∠()≌Rt ABG Rt AFG HL ,因此∠正确;∠BAG FAG ∠=∠,又∠90BAG FAG DAE FAE ∠+∠+∠+∠=︒, ∠190452GAE FAG FAE ∠=∠+=︒∠⨯=︒,因此∠正确; 由翻折变换可知,DE EF =,由全等三角形可知BG GF =,设正方形的边长为a ,BG x =,13DE EF a ==,则CG a x =-,13GE x a =+,1233EC a a a =-=, 在Rt ECG 中,由勾股定理得,222EC GC EG +=, 即()22221=33a a x x a ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭,解得12x a =, 即1122BG a BC ==, ∠BG CG =,因此∠正确;∠BG CG FG ==,∠GCF GFC ∠=∠,由三角形全等可得,AGB AGF ∠=∠,又∠180AGB AGF FGC FGC GCF GFC ∠+∠+∠=︒=∠+∠+∠,∠ABG FCG ∠=∠,∠AG FC ∥,因此∠正确,∠BG CG =, ∠12BG AB =, ∠tan 2AGB ∠=,∠60AGB ∠≠︒,∠AG FC ∥,∠60FCG AGB ∠=∠≠︒,∠GCF 不是等边三角形,因此∠不正确;故选:C .【点睛】本题考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,求一个角的正切值,此题综合性较强,难度较大,解题的关键是注意数形结合思想应用.3.A【分析】过M 点作ME ∠AD 于E 点,根据四边形ABCD 是正方形,有AD =CD =6,∠C =∠D =90°,由裁剪的两个梯形全等,可得AN =MC ;再证明四边形MCDE 是矩形,即有MC =ED ,ME =CD =6,进而有AN =ED ,在Rt ∠MNE 中,解直角三角形可得NE =3AN =【详解】如图,过M 点作ME ∠AD 于E 点,∠四边形ABCD 是正方形,边长为6,∠AD =CD =6,∠C =∠D =90°,∠裁剪的两个梯形全等,∠AN =MC ,∠ME ∠AD ,∠四边形MCDE 是矩形,∠MC =ED ,ME =CD =6,∠AN =ED ,根据题意有∠MNE =60°,∠在Rt ∠MNE 中,62tan tan 60ME NE MNE ===∠∠∠6AN ED AD NE +=-=-∠3AN =即梯形中较短的底为3cm ),故选:A .【点睛】本题主要考查了正方形的、矩形的判定与性质、解直角三角形的应用等知识,根据梯形全等得出AN =MC 是解答本题的关键.4.A【分析】首先把sin 40cos16︒︒、转换成相同的锐角三角函数;再根据正弦值是随着角的增大而增大,进行分析,可以知道1sin74sin 40︒︒>>,又根据正切值随着角度增大而增大,因此tan50tan 451︒︒=>,即可得出正确选项.【详解】解:∠()sin cos 90αα=︒-(090α≤≤︒),∠()cos16sin 9016sin74︒=︒-︒=︒,sin901︒=∠1sin74sin 40︒︒>>,∠tan50tan 451︒︒=>,∠tan50sin74sin 40︒>︒>︒,∠tan50cos16sin40︒>︒>︒,故选:A .【点睛】本题考查三角函数值的大小比较,掌握正余弦的转换方法:一个角的正弦值等于它的余角的余弦值;以及正余弦值、正切值的变化规律是本题的关键.5.C【分析】过点B 作BD AC ⊥于点D ,连接BC ,利用面积法求出BD 的长,然后由sin BD A AB=即可获得答案. 【详解】解:过点B 作BD AC ⊥于点D ,连接BC ,如下图,∠小正方形的边长为1,∠AB AC == ∠111333*********ABC S=⨯-⨯⨯-⨯⨯-⨯⨯=,∠11422ABC S AC BD BD =⋅==,∠BD =∠4sin5BD A AB ===. 故选:C .【点睛】本题主要考查了利用三角函数解直角三角形、勾股定理的应用等知识,解题关键是正确作出直角三角形并熟记正弦函数的定义.6.C【分析】根据CB =CA +AB 求出CB 的长,再利用三角函数求出m 的值即可.【详解】解:∠窗子高AB =m 米,窗子外面上方0.2米的点C 处安装水平遮阳板CD =n 米,∠CB =CA +AB =(m +0.2)米,∠光线与水平线成α角,∠∠BDC =α,∠tan∠BDC =CB CD, ∠CB =n •tan α,∠m =n tan α-0.2,故选:C .【点睛】本题主要考查三角函数的应用,熟练利用三角函数解直角三角形是解题的关键.7.C【分析】求CE ,进而求得∠CAE 的正切值即可求得∠CAE 的度数;同理可求得∠EAD 的正切值,得到∠EAD 的度数.【详解】解:过点A 作水平线AE ,则∠EAD 为楼顶望塔基俯角,∠CAE 为由楼顶望塔顶仰角.∠AB =50m∠DE =50m∠CE =CD 50(m)∠tan∠CAE =CE :AE =CE :BD ∠∠CAE =30°.故C 正确,D 错误;∠tan∠EAD =DE :AE =50:BD =1,∠∠EAD =45°.故A 、B 错误;故选:C .【点睛】本题考查解直角三角形的应用,熟练掌握正切的定义,特殊角的三角函数值是解题的关键.8.A【分析】先将题目中的式子化简,再根据锐角三角函数求得a 的值,代入化简后的式子即可解答本题. 【详解】解:222111a a a a a +⎛⎫+÷ ⎪+--⎝⎭ ()()()212111a a a a a a-++-=⨯+-()()3111a a a a a -=⨯+- 31a =+, 当tan602sin30a =︒-︒1212=⨯=时,原式= 故选:A .【点睛】本题考查分式的化简求值、特殊角的三角函数值,解题的关键是明确它们各自的计算方法.9.C【分析】在Rt △ABD 中,解直角三角形求出58DB AB =,在Rt △ABC 中,解直角三角形可求出AB . 【详解】解:在Rt △ABD 中,tan∠ADB =AB DB , ∠5tan 58 1.68AB AB DB AB =≈=︒, 在Rt △ABC 中,tan∠ACB =AB CB , ∠tan 220.45708AB AB ︒=≈+, 解得:112373AB =≈m , 故选:C .【点睛】本题考查了解直角三角形的应用,熟练掌握正切函数的定义是解题的关键.10.C【分析】延长AB 交DC 于H ,作EG ∠AB 于G ,则GH =DE =15米,EG =DH ,设BH =x 米,则CH米,在Rt ∠BCH中,BC =12米,由勾股定理得出方程,解方程求出BH =6米,CHBG 、EG 的长度,证明∠AEG 是等腰直角三角形,得出AG =EG =()(米),即可得出大楼AB 的高度.【详解】解:如图,延长AB 交DC 于H ,作EG ∠AB 于G ,则GH =DE =15米,EG =DH ,∠梯坎坡度i =1∠BH :CH =1设BH =x 米,则CH米,)2=122,由勾股定理得:x2+解得:x=6,∠BH=6米,CH=∠BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=()(米),∠∠α=45°,∠∠EAG=90°﹣45°=45°,∠∠AEG是等腰直角三角形,∠AG=EG=()(米),∠AB=AG+BG=(米);故选:C.【点睛】本题考查了解直角三角形的应用-坡度、俯角问题;通过作辅助线运用勾股定理求出BH,得出EG是解决问题的关键.11.D【分析】在Rt△ABC中,利用锐角三角函数求出BC,然后根据平移的性质可得在楼梯上铺的地毯长,从而求出地毯的面积.【详解】解:在Rt△ABC中,AC=6,∠BAC=θ,∠tanθ=BC,AC∠BC=AC tanθ=6tanθ(米),∠在楼梯上铺的地毯长=BC+AC=(6+6tanθ)米,∠地毯的面积=4(6+6tanθ)=(24+24tanθ)平方米,故选:D.【点睛】本题考查了解直角三角形的应用,熟练掌握锐角三角函数的计算是解题的关键.12.B【分析】连接EF,求证∠DEF是等腰直角三角形,得∠EDF=45°,所以1+245∠∠=,即可求解.【详解】解:连接EF,∠四边形ABCD是长方形,∠∠A=∠B=∠C=∠ADC=90°,BC=AD=3,CD=AB=5,∠22222=+=+=,DE AD AE3213∠AB=5,∠BE=AB-AE=3,∠CF=1,∠BF=BC-CF=2,在在Rt∠EBF中,∠22222=+=+=,EF BE BF3213∠EF=DE在Rt∠CDF中,∠22222=+=+=,DF DC CF5126∠26=13+13,即:222=+,DF DE EF∠∠DEF=90°,∠∠EDF=∠DFE=45°,∠1+2=45∠∠∠-∠=,ADC EDF∠()2∠+∠=sin12sin45=2故选B.【点睛】本题考查长方形的性质、勾股定理及其逆定理、正弦函数,根据勾股定理的逆定理证明出∠DEF是等腰直角三角形是解题的关键.13.B【分析】过点B作BC∠OA于点C.先利用勾股定理求出BO、AO的长,再利用∠AOB的面积求出BC的长,最后在直角∠BCO中求出∠AOB的正弦值.【详解】解:过点B作BC∠OA于点C.BO=,AO==,∠S △AOB 12=×2×2=2, ∠12AO •BC =2,∠BC==sinBC AOB BO ∴∠=== 故选:B .【点睛】本题考查了解直角三角形,构造直角三角形,利用∠的面积求出OA 边上的高是解决本题的关键. 14.A【分析】根据特殊角的三角函数值计算即可.【详解】解:原式21=-11)=-11==0故选:A .【点睛】本题考查特殊角的三角函数值及二次根式的混合运算,解题关键是熟练掌握特殊角的三角函数值. 15.D【分析】根据勾股定理计算得出AB AC BC CE BE =====可得出AE BC ⊥,由勾股定理得AE =从而可得出sin ABC ∠= 【详解】解:如图,连接AE ,由勾股定理得,AB AC ∠AB AC =又BC CE BE ===∠点E 为BC 的中点,∠AE BC ⊥,∠AE ==∠sin AE ABC AB ∠== 故选:D【点睛】本题考查了解直角三角形、勾股定理,利用勾股定理求出AE 的长度是解题的关键.16.D【分析】根据网格的特点找到格点E ,使得AE CD ∥,则BOD A ∠=∠,构造Rt AEF ,即可求解.【详解】如图,5DG CG ==,90G ∠=︒,45CDG ∴∠=︒,1AG GE ==,45AEG ∴∠=︒,∴AE CD ∥,∴BOD A ∠=∠,2,AE AF EF ===22218220,20AE EF AF +=+==, 222AE EF AF ∴+=, ∠∠AEF 是直角三角形,∠AEF =90°,cos cosAE BOD A AF ∴∠=== 故选D 【点睛】本题考查了勾股定理与网格,勾股定理的逆定理,求余弦,构造直角三角形是解题的关键.17.C【分析】过点C 作AB 的垂线,构造直角三角形,利用勾股定理求解即可.【详解】解:过点C 作AB 的垂线交AB 于一点D ,如图所示,∠每个小正方形的边长为1,∠5AC BC AB ===,设AD x =,则5BD x =-,在Rt ACD △中,222DC AC AD =-,在Rt BCD 中,222DC BC BD =-,∠2210(5)5x x --=-,解得2x =,∠cosAD BAC AC ∠== 故选:C .【点睛】本题考查了解直角三角形,勾股定理等知识,解题的关键是能构造出直角三角形.18.C 【分析】先根据锐角三角函数值求出AC =5,AB =过点D 作DE AB ⊥于点E ,依据三角函数值可得11,,23DE AE DE BE ==从而得32BE AE =,再由5AE BE +=得AE =2,DE =1,由勾股定理得AD 可求出CD .【详解】解:在Rt ABC 中,90C ∠=︒,BC = ∠1tan 2BC A AC ∠==∠2AC BC ==由勾股定理得,5AB ==过点D 作DE AB ⊥于点E ,如图,∠1tan 2A ∠=,1tan 3ABD ∠=, ∠11,,23DE DE AE BE ==∠11,,23DE AE DE BE == ∠1123AE BE = ∠32BE AE =∠5,AE BE += ∠352AE AE += ∠2,AE =∠1DE =,在Rt ADE ∆中,222AD AE DE =+ ∠AD∠AD CD AC +==∠CD AC AD =-==故选:C【点睛】本题主要考查了勾股定理,由锐角正切值求边长,正确作辅助线求出DE 的长是解答本题的关键. 19.A【分析】由勾股定理求出AB =2,再由三角函数的意义求出60,A ∠=︒进一步可得出结论.【详解】解:如图,∠90,4,C AB BC =∠=︒=∠2AC ===又tan BC A AC ∠=== ∠60A ∠=︒ ∠302A ∠=︒∠3tan3tan 3032A =︒== 故选:A【点睛】本题主要考查了正切函数的定义,正确求得AC 的长是解题关键.20.B【分析】首先根据折叠及3tan 4EFC ∠=求得EF 的值,进一步知道DC 的长度,后根据BAF EFC ∠=∠,其正切值相同解三角形ABF 得BF 的长度,从而知道AD 的长度,后根据勾股定理求得AE 的长度.【详解】解:由题意4CF =,∠C =90°,3tan 4EC EFC FC ∠== ∠CE =3∠Rt EFC 中,∠C =90°,∠5EF =∠AEF 是ADE 折叠而来∠5ED EF ==,538DC AB ==+=∠矩形ABCD∠90C B AFE ∠=∠=∠=︒∠90BAF AFB ∠+∠=︒,90AFB EFC ∠+∠=︒∠BAF EFC ∠=∠ ∠tan∠BAF =tan∠EFC =34, 即34BF AB =, ∠364BF AB == ∠6410AD BC ==+=∠AE 故选:B【点睛】本题考查了锐角三角函数解直角三角形,勾股定理,矩形的性质,翻折的性质,根据等量变换得到BAF EFC ∠=∠并运用其锐角三角函数相等,求线段长是解决本题的关键.21.C【分析】过点B 作BF x ⊥轴于点F ,先根据菱形的性质可得10AB OA ==,1802OA BF OB AC ⋅=⋅=,OD BD =,从而可得8BF =,再在Rt ABF 中,利用勾股定理可得6AF =,从而可得点B 的坐标,然后根据中点的坐标公式可得点D 的坐标,最后利用待定系数法可得双曲线的解析式,由此可判断∠;根据点E 的纵坐标为8,代入反比例函数即可判断∠;先根据平行线的性质可得COA BAF ∠=∠,再根据正弦的定义即可判断∠;先在Rt OBF △中,利用勾股定理可得OB =160OB AC ⋅=可得AC =AC OB +的值,由此即可判断∠.【详解】解:如图,过点B 作BF x ⊥轴于点F ,点A 的坐标为(10,0),10OA ∴=,四边形OABC 是菱形,且160OB AC ⋅=,10AB OA ∴==,1802OA BF OB AC ⋅=⋅=,OD BD =,AD CD =, 解得8BF =,在Rt ABF 中,6AF ==,16OF OA AF ∴=+=,(16,8)B ∴,又OD BD =,即点D 是OB 的中点,01608(,)22D ++∴,即(8,4)D , 将点(8,4)D 代入反比例函数k y x =得:8432k =⨯=, 则该双曲线解析式为32y x=,结论∠错误; 四边形OABC 是菱形,BC OA ∴,OC AB ∥,∴点E 的纵坐标与点B 的纵坐标相同,即为8,当8y =时,3248x ==, 则点E 的坐标是(4,8),结论∠正确;OC AB ,COA BAF ∴∠=∠,84sin sin 105BF COA BAF AB ∴∠=∠===,结论∠正确;在Rt OBF △中,OB =160OB AC ⋅=,160AC OB∴==,AC OB ∴+==,结论∠正确;综上,正确的结论有3个,故选:C .【点睛】本题考查了菱形的性质、勾股定理、反比例函数、正弦等知识点,熟练掌握菱形的性质是解题关键. 22.C【分析】先根据矩形的性质和折叠的性质,利用“AAS”证明AFD EFB ∆∆≌,得出AF EF =,DF BF =,设AF EF x ==,则5BF x =-,根据勾股定理列出关于x 的方程,解方程得出x 的值,最后根据余弦函数的定义求出结果即可.【详解】解:∠四边形ABCD 为矩形,∠CD =AB =5,AB =BC =3,90A C ∠=∠=︒,根据折叠可知,3BE BC ==,5DE DE ==,90∠=∠=︒E C ,∠在∠AFD 和∠EFB 中903A E AFD EFB AD BE ∠=∠=︒⎧⎪∠=∠⎨⎪==⎩,∠AFD EFB ∆∆≌(AAS ),∠AF EF =,DF BF =,设AF EF x ==,则5BF x =-,在Rt BEF ∆中,222BF EF BE =+,即()22253x x -=+, 解得:85x =,则817555DF BF ==-=, ∠315cos 17175AD ADF DF ∠===,故C 正确.故选:C .【点睛】本题主要考查了矩形的折叠问题,三角形全等的判定和性质,勾股定理,三角函数的定义,根据题意证明AFD EFB ∆∆≌,是解题的关键.23.B【分析】通过解直角三角形即可求得.【详解】解:在Rt ABP △中,4==sin sin 40AP BP ABP ∠︒, 故原来这棵树的高度为:4=4sin 40AP BP ⎛⎫++ ⎪︒⎝⎭(米), 故选:B .【点睛】本题考查了解直角三角形的应用,熟练掌握和运用解直角三角形的方法是解决本题的关键.24.A【分析】首先根据两个正方形的面积分别求出两个正方形的边长,然后结合题意进一步设直角三角形短的直角边为a ,则较长的直角边为a +1,再接着利用勾股定理得到关于a 的方程,据此进一步求出直角三角形各个直角边的边长,最后求出tan α的值即可.【详解】∠小正方形与每个直角三角形面积均为1,∠大正方形的面积为5,∠小正方形的边长为1设直角三角形短的直角边为a ,则较长的直角边为a +1,其中a >0,∠a 2+(a +1)2=5,其中a >0,解得:a 1=1,a 2=-2(不符合题意,舍去),tan α=1a a +=111+=2, 故选:A .【点睛】本题主要考查了勾股定理与一元二次方程及三角函数的综合运用,熟练掌握相关概念是解题关键. 25.B【分析】把AB 向上平移一个单位到DE ,连接CE ,则DE ∠AB ,由勾股定理逆定理可以证明△DCE 为直角三角形,所以cos∠APC =cos∠EDC 即可得答案.【详解】解:把AB 向上平移一个单位到DE ,连接CE ,如图.则DE ∠AB ,∠∠APC =∠EDC .在△DCE 中,有EC DC =5DE =,∠22252025EC DC DE +=+==,∠DCE ∆是直角三角形,且90DCE ∠=︒,∠cos∠APC =cos∠EDC =DC DE = 故选:B .【点睛】本题考查了解直角三角形、平行线的性质,勾股定理,作出合适辅助线是解题关键.26.B【分析】过点A 作AH 垂直BC 于点H ,延长FG 交AB 于点P ,由题干所给条件可知,AG =FG ,EG =GP ,利用∠AGP =∠B 可得到cos∠AGP =14,即可得到FG 的长; 【详解】过点A 作AH 垂直BC 于点H ,延长FG 交AB 于点P ,由题意可知,AB =BC =4,E 是BC 的中点,∠BE =2,又∠1cos 4B =, ∠BH =1,即H 是BE 的中点,∠AB =AE =4,又∠AF 是∠DAE 的角平分线,FG AD ∥,∠∠F AG =∠AFG ,即AG =FG ,又∠PF AD ∥,AP DF ∥,∠PF =AD =4,设FG =x ,则AG =x ,EG =PG =4-x ,∠PF BC ∥,∠∠AGP =∠AEB =∠B ,∠cos∠AGP =12PG AG =22x x-=14, 解得x =83; 故选B .【点睛】本题考查菱形的性质、角平分线的性质、平行线的性质和解直角三角形,熟练掌握角平分线的性质和解直角三角形的方法是解决本题的关键.27.(1)75︒(2)()2米【分析】(1)根据直角三角形的性质求出EAH ∠,根据平角的定义计算,求出CAD ∠;(2)过点A 作AM CD ⊥,垂足为M ,根据正弦的定义求出AM 、根据余弦的定义求出DM ,根据直角三角形的性质求出CM ,根据正弦的定义求出AC ,结合图形计算,得到答案.(1)解:在Rt AHE 中,30AEH ∠=︒, 60EAH ∴∠=︒,45BAC ∠=︒,180604575CAD ∴∠=︒-︒-︒=︒;(2)过点A 作AM CD ⊥,垂足为M ,在Rt ADM △中,60ADC ∠=︒,4AD =米,cos 4cos602DM AD ADC ∠∴=⋅=︒=(米),sin 4sin 60AM AD ADC ∠=⋅=︒=,在Rt ACM △中,180756045C ∠=︒-︒-︒=︒,CM AM ∴==,sin AM AC C==, ()2AB AC CD ∴=+=米,答:这棵大树折断前高为()2米.【点睛】本题考查的是解直角三角形的应用——坡度坡角问题,掌握坡度坡角的概念、熟记锐角三角函数的定义是解答此题的关键.28.(1)点D 与点A 的距离为300米(2)隧道AB 的长为米【分析】(1)根据方位角图,易知60ACD ∠=︒,90ADC ∠=︒,解Rt ADC 即可求解;(2)过点D 作DE AB ⊥于点E .分别解Rt ADE △,Rt BDE 求出AE 和BE ,即可求出隧道AB 的长(1)由题意可知:154560ACD ∠=︒+︒=︒,180454590ADC ∠=︒-︒-︒=︒在Rt ADC 中,∠tan tan 60300AD DC ACD =⨯∠=︒=(米)答:点D 与点A 的距离为300米.(2)过点D 作DE AB ⊥于点E .。

初三数学锐角三角函数测试题及答案

初三数学锐角三角函数测试题及答案

ACOP D B图3锐角三角函数(一)测试题一、 选择题(每小题3分,共30分)1、在Rt △ABC 中,∠C=90°,CD ⊥AB 于点D ,已知AC=5,BC=2,那么sin ∠ACD=( )A 、35B 、32C 、552D 、252、如图1,某飞机于空中A 处探测到地平面目标B ,此时从飞机上看目标B 的俯角α=30°,飞行高度AC=1200米,则飞机到目标B 的距离AB 为( ) A 、1200m B 、2400m C 、4003m D 、12003m3、(08)在正方形网格中,△ABC 的位置如图所示,则cos ∠B 的值为( )A .12B .22C .32D .334、在Rt △ABC 中,∠C=90°,若tanA=43,则sinA=( )A 、34B 、43C 、35D 、535、如图2,CD 是平面镜,光线从A 点射出,经CD 上点E 反射后照射到B 点,若入射角为α(入射角等于反射角),AC ⊥CD ,BD ⊥CD ,垂足分别为C 、D ,且AC=3,BD=6,CD=11,则tan α的值为( )A 、311B 、113C 、119D 、9116、在△ABC 中,∠A 、∠B 都是锐角,且sinA=21,cosB=22ABC 三个角的大小关系是( )A 、∠C >∠A >∠B B 、∠B >∠C >∠A C 、∠A >∠B >∠CD 、∠C >∠B >∠A7、若关于x 的方程x 2-2x+cos α=0有两个相等的实数根,则锐角α为( )A 、30°B 、45°C 、60°D 、0°8、如图3,∠AOB=30°,OP 平分∠AOB ,PC ∥OB ,PD ⊥DB , 如果PC=6,那么PD 等于( ) A 、4 B 、3 C 、2 D 、19、已知∠A 为锐角,且cosA ≤21,则( )A 、 0°≤A ≤60°B 、60°≤A <90°C 、0°<A ≤30°D 、30°≤A ≤90°10、如图4,在矩形ABCD 中,CE ⊥BD 于点E ,BE=2,DE=8,设∠ACE=α,则 tan α的值为( )ABC( α 图1CEDAB图2(αA 、21B 、34C 、43D 、2二、 填空题(每小题3分,共30分)11、直线y=kx-4与y 轴相交所成的锐角的正切值为21,则k 的值为。

中考数学《锐角三角函数的综合》专项训练含详细答案

中考数学《锐角三角函数的综合》专项训练含详细答案

中考数学《锐角三角函数的综合》专项训练含详细答案一、锐角三角函数1.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BPQ的度数;(2)求该电线杆PQ的高度(结果精确到1m).备用数据:,【答案】(1)∠BPQ=30°;(2)该电线杆PQ的高度约为9m.【解析】试题分析:(1)延长PQ交直线AB于点E,根据直角三角形两锐角互余求得即可;(2)设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.试题解析:延长PQ交直线AB于点E,(1)∠BPQ=90°-60°=30°;(2)设PE=x米.在直角△APE中,∠A=45°,则AE=PE=x米;∵∠PBE=60°∴∠BPE=30°在直角△BPE中,33米,∵AB=AE-BE=6米,则3,解得:3则BE=(33+3)米.在直角△BEQ中,QE=33BE=33(33+3)=(3+3)米.∴PQ=PE-QE=9+33-(3+3)=6+23≈9(米).答:电线杆PQ的高度约9米.考点:解直角三角形的应用-仰角俯角问题.2.(6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).【答案】.【解析】试题分析:作AD⊥BC于D,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据正切的定义求出CD的长,得到答案.试题解析:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=60,∴AD=BD=,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,∴∠C=60°,在Rt△ACD中,∠C=60°,AD=,则tanC=,∴CD==,∴BC=.故该船与B港口之间的距离CB的长为海里.考点:解直角三角形的应用-方向角问题.3.在矩形ABCD中,AD>AB,点P是CD边上的任意一点(不含C,D两端点),过点P 作PF∥BC,交对角线BD于点F.(1)如图1,将△PDF沿对角线BD翻折得到△QDF,QF交AD于点E.求证:△DEF是等腰三角形;(2)如图2,将△PDF绕点D逆时针方向旋转得到△P'DF',连接P'C,F'B.设旋转角为α(0°<α<180°).①若0°<α<∠BDC,即DF'在∠BDC的内部时,求证:△DP'C∽△DF'B.②如图3,若点P是CD的中点,△DF'B能否为直角三角形?如果能,试求出此时tan∠DBF'的值,如果不能,请说明理由.【答案】(1)证明见解析;(2)①证明见解析;②12或33.【解析】【分析】(1)根据翻折的性质以及平行线的性质可知∠DFQ=∠ADF,所以△DEF是等腰三角形;(2)①由于PF∥BC,所以△DPF∽△DCB,从而易证△DP′F′∽△DCB;②由于△DF'B是直角三角形,但不知道哪个的角是直角,故需要对该三角形的内角进行分类讨论.【详解】(1)由翻折可知:∠DFP=∠DFQ,∵PF∥BC,∴∠DFP=∠ADF,∴∠DFQ=∠ADF,∴△DEF是等腰三角形;(2)①若0°<α<∠BDC,即DF'在∠BDC的内部时,∵∠P′DF′=∠PDF,∴∠P′DF′﹣∠F′DC=∠PDF﹣∠F′DC,∴∠P′DC=∠F′DB,由旋转的性质可知:△DP′F′≌△DPF,∵PF∥BC,∴△DPF∽△DCB,∴△DP′F′∽△DCB∴''DC DP DB DF = , ∴△DP'C ∽△DF'B ;②当∠F′DB=90°时,如图所示,∵DF′=DF=12BD , ∴'12DF BD =, ∴tan ∠DBF′='12DF BD =;当∠DBF′=90°,此时DF′是斜边,即DF′>DB ,不符合题意;当∠DF′B=90°时,如图所示,∵DF′=DF=12BD , ∴∠DBF′=30°, ∴tan ∠DBF′=33.【点睛】本题考查了相似三角形的综合问题,涉及旋转的性质,锐角三角函数的定义,相似三角形的性质以及判定等知识,综合性较强,有一定的难度,熟练掌握相关的性质与定理、运用分类思想进行讨论是解题的关键.4.如图,矩形OABC 中,A(6,0)、C(0,3、D(0,3),射线l 过点D 且与x 轴平行,点P 、Q 分别是l 和x 轴的正半轴上的动点,满足∠PQO =60º.(1)点B的坐标是,∠CAO= º,当点Q与点A重合时,点P的坐标为;(2)设点P的横坐标为x,△OPQ与矩形OABC重叠部分的面积为S,试求S与x的函数关系式和相应的自变量x的取值范围.【答案】(1)(6,23). 30.(3,33)(2)()()()()243x430x3331333x x3x5S{23x1235x93543x9+≤≤-+-<≤=-+<≤>【解析】解:(1)(6,23). 30.(3,33).(2)当0≤x≤3时,如图1,OI=x,IQ=PI•tan60°=3,OQ=OI+IQ=3+x;由题意可知直线l∥BC∥OA,可得EF PE DC31==OQ PO DO333==,∴EF=13(3+x),此时重叠部分是梯形,其面积为:EFQO14343S S EF OQ OC 3x x 43233==+⋅=+=+梯形()() 当3<x≤5时,如图2,()HAQ EFQO EFQO 221S S S S AH AQ 243331333 x 43x 3=x x 32232∆=-=-⋅⋅=+---+-梯形梯形。

湘教版九年级上册第4章《锐角三角函数》检测卷 含答案

湘教版九年级上册第4章《锐角三角函数》检测卷   含答案

湘教版2020年九年级上册第4章《锐角三角函数》检测卷满分120分姓名:___________班级:___________学号:___________题号一二三总分得分一.选择题(共12小题,满分36分,每小题3分)1.在Rt△ABC中,∠C=90°,BC=5,AC=12,则sin B的值是()A.B.C.D.2.已知sin A=0.9816,运用科学计算器求锐角A时(在开机状态下),按下的第一个键是()A.B.C.D.3.如图,在△ABC中,∠ACB=90°,D是AB的中点,若CD=5,AC=8,则tan A=()A.B.C.D.4.如图,有一斜坡AB的长AB=10米,坡角∠B=36°,则斜坡AB的铅垂高度AC为()A.10tan36°B.10cos36°C.10sin36°D.5.已知cosα=,则锐角α的取值范围是()A.0°<α<30°B.30°<α<45°C.45°<α<60°D.60°<α<90°6.在Rt△ABC中,∠C=90°,BC:AB=5:13,则下列等式正确的是()A.tan A=B.sin A=C.cos A=D.tan A=7.sin58°、cos58°、cos28°的大小关系是()A.cos28°<cos58°<sin58°B.sin58°<cos28°<cos58°C.cos58°<sin58°<cos28°D.sin58°<cos58°<cos28°8.如图,△ABC的三个顶点均在格点上,则tan A的值为()A.B.C.2 D.9.在Rt△ABC中,∠C=90°,则下列式子定成立的是()A.sin A=sin B B.cos A=cos B C.tan A=tan B D.sin A=cos B 10.如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=x,则点D到OB的距离等于()A.a sin x+b sin x B.a cos x+b cos xC.a sin x+b cos x D.a cos x+b sin x11.若角α,β都是锐角,以下结论:①若α<β,则sinα<sinβ;②若α<β,则cosα<cosβ;③若α<β,则tanα<tanβ;④若α+β=90°,则sinα=cosβ.其中正确的是()A.①②B.①②③C.①③④D.①②③④12.我国北斗导航装备的不断更新,极大方便人们的出行.某中学组织学生利用导航到C 地进行社会实践活动,到达A地时,发现C地恰好在A地正北方向,导航显示路线应沿北偏东60°方向走到B地,再沿北偏西37°方向走才能到达C地.如图所示,已知A,B两地相距6千米,则A,C两地的距离为()(参考数据sin53°≈0.80,cos53°≈0.60,tan53°≈1.32)A.12千米B.(3+4)千米C.(3+5)千米D.(12﹣4)千米二.填空题(共6小题,满分24分,每小题4分)13.已知tan(α+15°)=,则锐角α的度数为°.14.比较大小:sin81°tan47°(填“<”、“=”或“>”).15.如图,在△ABC中,∠C=90°,AC=6,若cos A=,则BC的长为.16.如图所示,∠AOB是放置在正方形网格中的一个角,则sin∠AOB的值是.17.小致为了测量楼房AB的高度,他从楼底的B处沿着斜坡行走20m,达到坡顶D处.已知斜坡的坡角为15°,小致的身高ED是1.6m,他站在坡顶看楼顶A处的仰角为45°,则楼房AB的高度为m.(计算结果精确到1m,参考数据:sin15°=,cos15°=,tan15°=.)18.如图,BE是△ABC的角平分线,F是AB上一点,∠ACF=∠EBC,BE、CF相交于点G.若sin∠AEB=,BG=4,EG=5,则S△ABE=.三.解答题(共7小题,满分60分)19.(12分)计算:(1)2sin30°+3cos60°﹣4tan45°(2)+tan260°20.(6分)如图,锐角△ABC中,AB=10cm,BC=9cm,△ABC的面积为27cm2.求tan B 的值.21.(6分)在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.若a=2,sin,求b和c.22.(8分)2019年4月18日,台湾省花莲县发生里氏6.7级地震,救援队救援时,利用生命探测仪在某建筑物废墟下方探测到点C处有生命迹象,已知废墟一侧地面上两探测点A、B相距6米,探测线与地面的夹角分别为30°和60°,如图所示,试确定生命所在点C的深度.(结果精确到0.1米,参考数据≈1.41,≈1.73)23.(9分)嘉琪在某次作业中得到如下结果:sin27°+sin283°≈0.122+0.992=0.9945,sin222°+sin268°≈0.372+0.932=1.0018,sin229°+sin261°≈0.482+0.872=0.9873,sin237°+sin253°≈0.602+0.802=1.0000,sin245°+sin245°=()2+()2=1.据此,嘉琪猜想:在Rt△ABC中,∠C=90°,设∠A=α,有sin2α+sin2(90°﹣α)=1.(1)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立.(2)请你对嘉琪的猜想进行证明.24.(9分)如图,小明利用学到的数学知识测量大桥主架在水面以上的高度AB,在观测点C处测得大桥主架顶端A的仰角为30°,测得大桥主架与水面交汇点B的俯角为14°,观测点与大桥主架的水平距离CM为60米,且AB垂直于桥面.(点A,B,C,M在同一平面内)(1)求大桥主架在桥面以上的高度AM;(结果保留根号)(2)求大桥主架在水面以上的高度AB.(结果精确到1米)(参考数据sin14°≈0.24,cos14°≈0.97,tan14°≈0.25,≈1.73)25.(10分)已知△ABC,AB=AC,∠BAC=90°,D是AB边上一点,连接CD,E是CD 上一点,且∠AED=45°.(1)如图1,若AE=DE,①求证:CD平分∠ACB;②求的值;(2)如图2,连接BE,若AE⊥BE,求tan∠ABE的值.参考答案一.选择题(共12小题,满分36分,每小题3分)1.解:如图所示:∵∠C=90°,BC=5,AC=12,∴AB==13,∴sin B==.故选:D.2.解:∵已知sin A=0.9816,运用科学计算器求锐角A时(在开机状态下)的按键顺序是:2ndF,sin,0,∴按下的第一个键是2ndF.故选:D.3.解:∵∠ACB=90°,D是AB的中点,CD=5,∴AB=2CD=10,∵AC=8,AB=10,∴BC==6,∴tan A===.故选:C.4.解:在Rt△ABC中,sin B=,∴AC=AB•sin B=10sin36°,故选:C.5.解:∵cos30°=,cos45°=,∵<<,∴30°<α<45°,6.解:设BC=5x,则AB=13x,由勾股定理得,AC==12x,则tan A==,A、D错误;sin A==,B错误;cos A==,C正确;故选:C.7.解:sin58°=cos32°.∵58°>32°>28°,∴cos58°<cos32°<cos28°,∴cos58°<sin58°<cos28°.故选:C.8.解:如图所示:连接BD,BD==,AD==2,AB==,∵BD2+AD2=2+8=10=AB2,∴△ADB为直角三角形,∴∠ADB=90°,则tan A===.故选:A.9.解:∵∠C=90°,∴∠A+∠B=90°,∴sin A=cos B.10.解:如图,过点D作DE⊥OC于点E,则点D到OB的距离等于OE的长.∵四边形ABCD是矩形,∴∠BCD=90°,CD=AB=a,AD=BC=b,∴∠CDE=∠BCO=x,∴OC=BC•cos x=b cos x,CE=CD•sin x=a sin x,∴OE=OC+CE=b cos x+a sin x.则点D到OB的距离等于b cos x+a sin x.故选:C.11.解:①∵sinα随α的增大而增大,∴若α<β,则sinα<sinβ,此结论正确;②∵cosα随α的增大而减小,∴若α<β,则cosα>cosβ,此结论错误;③∵tanα随α的增大而增大,∴若α<β,则tanα<tanβ,此结论正确;④若α+β=90°,则sinα=cosβ,此结论正确;综上,正确的结论为①③④,故选:C.12.解:如图,作BD⊥AC于点D,根据题意可知:在Rt△ADB中,∠A=60°,AB=6,∴AD=3,BD=3,在Rt△CDB中,∠CBD=53°,∴CD=BD•tan53°≈3×1.32≈3×≈4,∴AC=AD+CD=3+4.则A,C两地的距离为(3+4)千米.故选:B.二.填空题(共6小题,满分24分,每小题4分)13.解:∵tan30°=,∴α+15°=30°,∴α=15°,故答案为:15.14.解:∵sin81°<sin90°=1,tan47°>tan45°=1,∴sin81°<1<tan47°,∴sin81°<tan47°.故答案为<.15.解:∵在△ABC中,∠C=90°,AC=6,cos A=,∴cos A===,∴AB=10,∴BC====8.故答案为:8.16.解:如图,连接AB.∵OA=AB=,OB=2,∴OB2=OA2+AB2,∴∠OAB=90°,∴△AOB是等腰直角三角形,∴∠AOB=45°,∴sin∠AOB=,故答案为:.17.解:作DH⊥AB于H,∵∠DBC=15°,BD=20m,∴BC=BD•cos∠DBC=20×=19.2(m),CD=BD•sin∠DBC=20×=5(m),由题意得,四边形ECBF和四边形CDHB是矩形,∴EF=BC=19.2m,BH=CD=5m,∵∠AEF=45°,∴AF=EF=19.2m,∴AB=AF+FH+HB=19.2+1.6+5=25.8≈26(m),答:楼房AB的高度约为26m.故答案是:26.18.解:如图,过点B作BT⊥AC于T,连接EF.∵BE平分∠ABC,∴∠ABE=∠CBE,∵∠ECG=∠ABE,∴∠ECG=∠CBE,∵∠CEG=∠CEB,∴△ECG∽△EBC,∴==,∴EC2=EG•EB=5×(5+4)=45,∵EC>0,∴EC=3,在Rt△BET中,∵sin∠AEB==,BE=9,∴BT=,∴ET===,∴CT=ET+CE=,∴BC===6,∴CG==10,∵∠ECG=∠FBG,∴E,F,B,C四点共圆,∴∠EFG=∠CBG,∵∠FGE=∠BGC,∴△EGF∽△CGB,∴=,∴=,∴EF=3,∵∠AFE=∠ACB,∠EAF=∠BAC,∴△EAF∽△BAC,∴===,设AE=x,则AB=2x,∵∠FBG=∠ECG,∠BGF=∠CGE,∴△BGF∽△CGE,∴=,∴=,∴BF=,∵AE•AC=AF•AB,∴x(x+3)=(2x﹣)•2x,解得x=,∴AE=ET=,∴点A与点T重合,∴AB=2AE=,∴S△ABE=×AB×AE=××=.故答案为.三.解答题(共7小题,满分60分)19.解:(1)原式===;(2)原式==+3=.20.解:过点A作AH⊥BC于H,∵S△ABC=27,∴,∴AH=6,∵AB=10,∴BH===8,∴tan B===.21.解:如图,∵a=2,sin,∴c===6,则b===4.22.解:过点C作CD⊥AB,交AB的延长线于D,在Rt△ACD中,∠CAD=30°,tan∠CAD=,∴AD==CD,在Rt△ACD中,∠CBD=60°,tan∠CBD=,∴BD==CD,由题意得,AD﹣BD=AB=6,∴CD﹣CD=6,解得,CD=3≈5.2(米),答:生命所在点C的深度约为5.2米.23.解:(1)当α=30°时,sin2α+sin2(90°﹣α)=sin230°+sin260°=()2+()2=+=1;(2)嘉琪的猜想成立,证明如下:如图,在△ABC中,∠C=90°,设∠A=α,则∠B=90°﹣α,∴sin2α+sin2(90°﹣α)=()2+()2===1.24.解:(1)∵AB垂直于桥面,∴∠AMC=∠BMC=90°,在Rt△AMC中,CM=60,∠ACM=30°,tan∠ACM=,∴AM=CM•tan∠ACM=60×=20(米),答:大桥主架在桥面以上的高度AM为20米;(2)在Rt△BMC中,CM=60,∠BCM=14°,tan∠BCM=,∴MB=CM•tan∠BCM≈60×0.25=15,∴AB=AM+MB=15+20≈50(米)答:大桥主架在水面以上的高度AB约为50米.25.(1)①证明:∵AE=DE,∴∠ADE=∠DAE,∵∠CAD=90°,∴∠ADC+∠ACD=90°,∠DAE+∠CAE=90°,∴∠CAE=∠ACD,∴EA=EC,∵∠AED=45°=∠CAE+∠ACD,∴∠ACD=22.5°,∵AB=AC,∠BAC=90°,∴∠ACB=45°,∴∠BCD=∠ACD=22.5°,∴CD平分∠ACB.②解:如图1中,过点D作DT⊥BC于T.∵CD平分∠ACB,DT⊥CB,DA⊥CA,∴DA=DT,∵AB=AC,∠BAC=90°,∴∠B=45°,∴BD=DT=AD,∴=.(2)解:如图2中,连接BE,过点C作CT⊥AT交AE的延长线于T.∵AE⊥BE,CT⊥AT,∴∠AEB=∠T=∠BAC=90°,∴∠BAE+∠ABE=90°,∠BAE+∠CAE=90°,∴∠ABE=∠CAT,∵AB=AC,∴△ABE≌△CAT(AAS),∴AE=CT,BE=AT,∵∠AED=∠CET=45°,∠T=90°,∴ET=CT=AE,∴BE=2AE,∴tan∠ABE==。

锐角三角函数综合性试卷(培优)

锐角三角函数综合性试卷(培优)

锐角三角函数综合性试卷(培优)1.绵山是中国清明节(寒食节)的发源地,相传春秋时期晋国介子推携母隐居被焚在山上.绵山入口处有一座雄伟高大的介子推铜像,当地某校的综合与实践小组的同学们想要测出这座铜像有多高.他们先制订了测量方案,随后又进行了实地测量.如图,铜像MN建在坡比为1:2.4的楼梯BM顶端,同学们在A处测得铜像顶点N的仰角为30°,然后沿着AC方向走了12m到达B处,此时在B处测得铜像顶点N的仰角为63.4°,其中点A,B,C,D,M,N均在同一平面内.请根据以上数据求出铜像MN的高度.(结果精确到0.1m,参考数据√3≈1.73,sin 63.4°≈0.89,cos63.4°≈0.45,tan 63.4°≈2.00)2.如图是人民英雄纪念碑,它位于北京天安门广场中心,是为了纪念在人民解放战争和人民革命中牺牲的人民英雄,碑体正面是毛泽东亲笔题词“人民英雄永垂不朽”八个鎏金大字.右图是纪念碑的示意图,小丽在A处测得碑顶D的仰角为30°,沿纪念碑方向前进37.1m后,在B处测得碑顶D的仰角为53°(点A,B,D,E,F在同一平面内,且点A,B,E,F在同一水平线上)求纪念碑的高度.(结果精确到0.1m.参考数据:√3≈1.73,sin53°≈45;cos53°≈35,tan53°≈43)3.2022年6月28日,美国“本福德”号导弹驱逐舰穿航台湾海峡并公开炒作,为了维护国家安全和祖国统一,我中国人民解放军东部战区组织海空兵力对美舰进行全程跟监警戒,一架飞机沿水平直线飞行,在点C处测得正前方水平地面上某建筑物AB的顶端A 的俯角为30°,飞机面向AB方向继续飞行5米至点D处,测得该建筑物底端B的俯角为45°,已知建筑物AB的高为3米,求飞机飞行的高度.(结果精确到1米,参考数据:√2≈1.414,√3≈1.732)4.通过学习《解直角三角形》这一章,王凯同学勤学好问,在课外学习活动中,探究发现,三角形的面积、边、角之间存在一定的数量关系,下面是他的学习笔记.请仔细阅读下列材料并完成相应的任务.在△ABC(图1)中,∠A,∠B,∠C的对边分别为a、b、c,△ABC的面积为S△ABC,过点A作AD⊥BC,垂足为D,则在Rt△ABD中,∵sin B=AD AB,∴AD=AB•sin B.∴S△ABC=12BC⋅AD=12BC⋅AB⋅sinB=12ac sin B.同理可得,S △ABC =12bc sin A ,S ABC =12ba sin C .即S △ABC =12bcsinA =12acsinB =12ba sin C ……………①由以上推理得结论:三角形的面积等于两边及其夹角正弦积的一半. 又∵abc ≠0, ∴将等式12bcsinA =12acsinB =12ba sin C 两边同除以12abc ,得,sinA a=sinB b=sinC c.∴asinA=b sinB=c sinC⋯⋯⋯⋯⋯⋯⋯②由以上推理得结论:在一个三角形中,各边和它所对角的正弦的比值相等.理解应用:如图2,甲船以30√2海里/时的速度向正北方向航行,当甲船位于A 处时,乙船位于甲船的南偏西75°方向的B 处,且乙船从B 处沿北偏东15°方向匀速直线航行,当甲船航行20分钟到达D 处时,乙船航行到甲船的南偏西60°方向的C 处,此时两船相距10√2海里.(1)求:△ADC 的面积.(2)求:乙船航行的速度(结果保留根号).5.在交城县城西北方向的卦山群峰中,位于中央的小山峰上屹立着一座白塔,它在卦山诸多名胜中最引人注目(如图1).某数学小组为测量白塔的高度,在A 处(如图2)测得塔顶C 的仰角为45°,然后沿着斜坡AB 前进13米到达B 处,在B 处测得到塔脚的距离BD =15米,已知tan ∠BAF =512,∠E =90°,求白塔的高度CD .6.延安宝塔,是革命圣地延安的标志和象征,融历史文物和革命遗址为一脉,集人文景观和自然景观为一体,某数学兴趣小组在确保无安全隐患的情况下,开展了测量延安宝塔的高度的实践活动,具体过程如下:如图,CN是坡度i=3:4的斜坡,CN的长为15米,BC=32米,MN是测角仪,长为2米,从点M测得该塔顶部A处的仰角为37°,已知MN⊥BC,AB⊥BC,求该塔AB的高度.(参考数据:sin37°≈3 4)7.图1是一盏可调节台灯,图2为其平面示意图,固定底座OA与水平面OE垂直,AB为固定支撑杆,BC为可绕着点B旋转的调节杆,灯体CD始终保持垂直BC,MN为台灯照射在桌面的区域,如图2,旋转调节杆使BC与水平面OE平行,此时△DMN是以D为顶点的等腰三角形,AB=5dm,OM=2dm,BC=6dm,tanB=43,求台灯照射桌面区域MN的长度.8.如图,梯形ABCD是某水坝的横截面示意图,其中AB=CD,坝顶BC=2m,坝高CH=5m,迎水坡AB的坡度i=1:1.(1)求坝底AD的长;(2)为了提高堤坝防洪抗洪能力,防汛指挥部决定在背水坡加固该堤坝,要求坝顶加宽0.5m,背水坡坡角改为α=30°,求加固总长5千米的堤坝共需多少土方?(参考数据:π≈3.14,√2≈1.41,√3≈1.73;结果精确到0.1m3)9.无人机是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞机,在跟踪、定位、遥测、数据传输等方面发挥着重要作用,在如图所示的某次测量中,无人机从点A的正上方点C,沿正东方向以5m/s的速度飞行18s到达点D,测得A的俯角为60°,然后以同样的速度沿正东方向又飞行72s到达点E,测得点B的俯角为37°.求AB的长度(结果精确到1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,√3≈1.73).10.如图1,中苏友谊纪念塔在大连市旅顺博物馆前的广场中心,是大连著名的地标建筑之一.如图2,一个人(AR)站在纪念塔前的石阶底部,测得点R关于点N的仰角α=60°.已知人高1.5m,ED=3m,BC=1.2m,BM=3m.若将塔前的楼梯看作斜坡,坡角θ的度数为33.69°(sin33.69°≈0.55,cos33.69°≈0.83,tan33.69°≈0.67,√3≈1.73).(1)求斜面AB的长度;(2)求塔高PQ(结果保留整数).11.华山是陕西著名的景点之一,西峰是华山最秀丽险峻的山峰,峰顶翠云宫前有巨石状如莲花,故又名莲花峰.游客可以从山底乘坐索道车到达西峰,小明要测量峰顶翠云宫的高度,他在索道A处测得翠云宫底部B的仰角约为30°,测得翠云宫顶部C的仰角约为37°,索道车从A处运行到B处的距离约为300米.请你利用小明测量的数据,求翠云宫BC的高度.(结果保留整数.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,√3≈1.73)12.如图,光从空气斜射入水中,入射光线AB射到水池的水面B点后折射光线BD射到池底点D处,入射角∠ABM=30°,折射角∠DBN=22°;入射光线AC射到水池的水面C点后折射光线CE射到池底点E处,入射角∠ACM′=60°,折射角∠ECN′=40.5°.DE∥BC,MN、M′N′为法线.入射光线AB、AC和折射光线BD、CE及法线MN、M′N′都在同一平面内,点A到直线BC的距离为6米.(1)求BC的长;(结果保留根号)(2)如果DE=8.72米,求水池的深.(参考数据:√2取1.41,√3取1.73,sin22°取0.37,cos22°取0.93,tan22°取0.4,sin40.5°取0.65,cos40.5°取0.76,tan40.5°取0.85)13.如图,是某市在城区河道上新建成的一座大桥,学校数学兴趣小组在一次数学实践活动中对桥墩的高度进行了测量,测得斜坡BC长为50米,∠CBE=30°,在斜坡顶端C处水平地面上以3.6km/h的速度行走半分钟到达点D,在点D处测得桥墩最高点A的仰角为34°.(1)水平地面CD长为米;(2)求桥墩AB的高(结果保留1位小数).(参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.68,√3≈1.73)14.小明在①号楼的C处测得建筑物AB的顶端A的仰角是35°,在地面D处测得A的仰角是55°.E为①号楼底端一点,已知CE=DE=9米,且A,B,C,D,E在同一平面上,求建筑物AB的高度.(参考数据:sin55°≈0.8,tan55°≈1.4,sin35°≈0.6,tan35°≈0.7)15.如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等.(1)求证:△ABC≌△DEF;(2)若滑梯的长度BC=10米,DE=8米,分别求出滑梯BC与EF的坡度;(3)在(2)的条件下,由于EF太陡,在保持EF长不变的情况下,现在将点E向下移动,点F随之向右移动.①若点E向下移动的距离为1米,求滑梯EF底端F向右移动的距离;②在移动的过程中,直接写出△DEF面积的最大值.。

精品解析2022年人教版九年级数学下册第二十八章-锐角三角函数综合测评试题(含详细解析)

精品解析2022年人教版九年级数学下册第二十八章-锐角三角函数综合测评试题(含详细解析)

人教版九年级数学下册第二十八章-锐角三角函数综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在Rt△ABC中,∠C=90°,AC=4,BC=3,则下列选项正确的是()A.sin A=34B.cos A=45C.cos B=34D.tan B=352、在Rt△ABC中,∠C=90°,BC=3,AC=4,那么cos B的值等于()A.34B.43C.45D.353、如图,用一块直径为4的圆桌布平铺在对角线长为4的正方形桌面上,若四周下垂的最大长度相等,则桌布下垂的最大长度x为()A1B.2C.1D14、在科学小实验中,一个边长为30cm正方体小木块沿着一个斜面下滑,其轴截面如图所示.初始状态,正方形的一个顶点与斜坡上的点P重合,点P的高度PF=40cm,离斜坡底端的水平距离EF=80cm.正方形下滑后,点B的对应点B'与初始状态的顶点A的高度相同,则正方形下滑的距离(即AA'的长度)是()cmA .40B .60C .305D .4055、如图①,5AB =,射线AM BN ∥,点C 在射线BN 上,将△ABC 沿AC 所在直线翻折,点B 的对应点D 落在射线BN 上,点P ,Q 分别在射线AM 、BN 上,PQ AB ∥.设AP x =,QD y =.若y 关于x 的函数图象(如图②)经过点()9,2E ,则cos B 的值等于( )A .25B .12C .35D .7106、将矩形纸片ABCD 按如图所示的方式折起,使顶点C 落在C ′处,若AB = 4,DE = 8,则sin∠C ′ED 为( )A .2B .12C D7、如图,为测量一幢大楼的高度,在地面上与楼底点O 相距30米的点A 处,测得楼顶B 点的仰角65OAB ︒∠=,则这幢大楼的高度为( )A .30sin 65︒⋅米B .30cos 65︒米 C .30tan 65︒⋅米 D .30tan 65︒米 8、如图,在ABC 中,135ABC ∠=︒,点P 为AC 上一点,且90PBA ∠=︒,12CP PA =,则tan APB ∠的值为( )A .3B .2C .13D 9、在Rt △ABC 中,∠C =90°,AC =5,BC =3,则sin A 的值是( )A B .35C .34D10、如图,过点O 、A (1,0)、B (0作⊙M ,D 为⊙M 上不同于点O 、A 的点,则∠ODA 的度数为( )A .60°B .60°或120°C .30°D .30°或150°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =,则tan EFC ∠的值为_____.2、助推轮椅可以轻松解决起身困难问题.如图1是简易结构图,该轮椅前⊙O 1和后轮⊙O 2的半径分别为0.6dm 和3dm ,竖直连接处CO 1=1dm ,水平连接处BD 与拉伸装置DE 共线,BD =2dm ,座面GF 平行于地面且GF =DE =4.8dm ,HF 是轮椅靠背,∠ADE 始终保持角度不变.初始状态时,拉伸杆AD 的端点A 在点B 正上方且距地面2.2dm ,则tan∠ADB 的值为 _____.如图2,踩压拉伸杆AD ,装置随之运动,当AD 踩至与BD 重合时,点E ,F ,H 分别运动到点E ',F ',H ',此时座面GF '和靠背F 'H '连成一直线,点H 运动到最高点H ',且H ',F ,O 2三点正好共线,则H 'O 2的长为 _____dm .3、如图所示,草坪边上有互相垂直的小路m,n,垂足为E,草坪内有一个圆形花坛,花坛边缘有A,B,C三棵小树.在不踩踏草坪的前提下测圆形花坛的半径,某同学设计如下方案:若在小路上P,Q,K三点观测,发现均有两树与观测点在同一直线上,从E点沿着小路n往右走,测得∠1=∠2=∠3,EQ=16米,QK=24米;从E点沿着小路m往上走,测得EP=15米,BP⊥m,则该圆的半径长为_______米.4、如图,正六边形ABCDEF的边长为2,以A为圆心,AC的长为半径画弧,得EC,连接AC,AE,则图中阴影部分的面积为________.5、如图所示,河堤的横断面是四边形ABCD,AD∥BC,2AD m,点A到BC的距离为4m,斜坡AB的坡度为1:3,斜坡CD的坡角为45°,则四边形ABCD的面积为__________.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,点A在x轴的正半轴上,点B在x轴的负半轴上,点C在y轴的正半轴上,直线BC的解析式为y=kx+12(k≠0),AC⊥BC,线段OA的长是方程x2﹣15x﹣16=0的根.请解答下列问题:(1)求点A、点B的坐标.(2)若直线l经过点A与线段BC交于点D,且tan∠CAD=14,双曲线y=mx(m≠0)的一个分支经过点D,求m的值.(3)在第一象限内,直线CB下方是否存在点P,使以C、A、P为顶点的三角形与△ABC相似.若存在,请直接写出所有满足条件的点P的坐标;若不存在,请说明理由.2、如图,四边形ABCD内接于⊙O,AB为直径,连结AC,BD交于点E,弦CF⊥BD于点G,连结AG,且满足∠1=∠2.(1)求证:四边形AGCD为平行四边形.(2)设tan F=x,tan∠3=y,①求y关于x的函数表达式.②已知⊙O的直径为y=34,点H是边CF上一动点,若AF恰好与△DHE的某一边平行时,求CH的长.③连结OG,若OG平分∠DGF,则x的值为.3、如图,建筑物BC上有一高为8m的旗杆AB,从D处观测旗杆顶部A的仰角为53︒,观测旗杆底部B 的仰角为45︒,则建筑物BC的高约为多少米?(结果保留小数点后一位).(参考数据sin530.80︒≈,︒≈)cos530.60︒≈,tan53 1.334、如图,O的弦AB与直径CD交于点G,点C是优弧ACB的中点.(1)AG BG=(2)当AB也为O直径时,连接BC,点K是O内AB上方一点,过点K作KR BC⊥于点R,交OC于点M,连接KA,KC,2∠=∠求证:AKC KAB ABC∠-∠=∠KCB KAB(3)在(2)的条件下,过点B作BN AK∥交KR于点N,连接BK并延长交O于点E,2EK=,BR KN=,求O的半径.:10:135、如图,抛物线()()41y a x x =+-的图像与x 轴的交分别为点A 、点B ,与y 轴交于点C ,且tan 2CBA ∠=.(1)求抛物线解析式(2)点D 是对称轴左侧抛物线上一点,过点D 作DE AO ⊥于点E ,交AC 于点P ,32DP =,求点D 的坐标.(3)在(2)的条件下,连接AD 并延长交y 轴于点F ,点G 在AC 的延长线上,点C 关于x 轴的对称点为点H ,连接AH ,GF 、GH ,点K 在AH 上,GH AK AH =+,12KCH CAO ∠=∠,:3:4GF GH =,过点C 作CR GH ⊥,垂足为点R ,延长RC 交抛物线于点Q ,求点Q 坐标.---------参考答案----------- 一、单选题 1、B【分析】根据勾股定理求出AB,再根据锐角三角函数的定义求出sin A,cos A,cos B和tan B即可.【详解】解:由勾股定理得:5AB,所以3sin5BCAAB==,4cos5ACAAB==,cos35BCBAB==,4tan3ACBBC==,即只有选项B正确,选项A、选项C、选项D都错误.故选:B.【点睛】本题主要是考查了锐角三角函数的定义以及勾股定理,熟练掌握每个锐角三角函数的定义,是求解该类问题的关键.2、D【分析】根据题意画出图形,求出AB的值,进而利用锐角三角函数关系求出即可.【详解】解:如图,∵在Rt△ABC中,∠C=90°,BC=3,AC=4,∴AB,∴cos B=BCAB=35.故选:D.【点睛】本题考查了三角函数的定义,熟知余弦函数的定义是解题关键.3、B【分析】作出图象,把实际问题转化成数学问题,求出弦心距,再用半径减弦心距即可.【详解】如图,正方形ABCD是圆内接正方形,4BD=,点O是圆心,也是正方形的对角线的交点,作OF BC⊥,垂足为F,∵直径4BD=,∴2OB=,又∵BOC是等腰直角三角形,由垂径定理知点F是BC的中点,∴BOF是等腰直角三角形,∴sin45OF OB=°∴2x EF OE OF==-=故选:B.【点睛】此题考查了垂径定理的应用,等腰直角三角形的判定和性质,正方形的性质,特殊角的三角函数值,解题的关键是根据题意作出图像,把实际问题转化成数学问题.4、B【分析】根据题意可得:A 与B '高度相同,连接AB ',可得AB EF '∥,利用平行线的性质可得:B AA PEF ''∠=∠,根据正切函数的性质计算即可得.【详解】解:根据题意可得:A 与B '高度相同,如图所示,连接AB ',∴AB EF '∥,∴B AA PEF ''∠=∠, ∴1tan tan 2PF B AA PEF EF ''∠=∠==, ∴301tan 2A B B AA AA AA ''''∠==='', ∴60AA '=,故选:B .【点睛】题目主要考查平行线的性质及锐角三角函数解三角形,熟练掌握锐角三角函数的性质是解题关键.5、D【分析】由题意可得四边形ABQP是平行四边形,可得AP=BQ=x,由图象②可得当x=9时,y=2,此时点Q在点D下方,且BQ=x=9时,y=2,如图①所示,可求BD=7,由折叠的性质可求BC的长,由锐角三角函数可求解.【详解】解:∵AM∥BN,PQ∥AB,∴四边形ABQP是平行四边形,∴AP=BQ=x,由图②可得当x=9时,y=2,此时点Q在点D下方,且BQ=x=9时,QD=y=2,如图①所示,∴BD=BQ﹣QD=x﹣y=7,∵将△ABC沿AC所在直线翻折,点B的对应点D落在射线BN上,∴AC⊥BN,∴BC=CD=12BD=72,∴cos B=BCAB=725=710,故选:D.【点睛】本题考查了平行四边形的判定与性质,折叠的性质,锐角三角函数等知识.理解函数图象上的点的具体含义是解题的关键.6、B【分析】由折叠可知,C′D=CD=4,再根据正弦的定义即可得出答案.【详解】解:∵纸片ABCD是矩形,∴CD=AB,∠C=90°,由翻折变换的性质得,C′D=CD=4,∠C′=∠C=90°,∴41 sin82C DC EDED''∠===.故选:B.【点睛】本题可以考查锐角三角函数的运用:在直角三角形中,锐角的正弦为对边比斜边.7、C【分析】利用在Rt△ABO中,tan∠BAO=OBAO即可解决.【详解】:解:如图,在Rt△ABO中,∵∠AOB =90°,∠A =65°,AO =30m ,∴tan 65°=OB AO, ∴BO =30•tan 65°米.故选:C .【点睛】本题考查解直角三角形的应用,解题的关键是熟知正切函数为对边比邻边.8、A【分析】过点P 作PD∥AB 交BC 于点D ,因为135ABC ∠=︒,且90PBA ∠=︒,则tan∠PBD =tan45°=1,得出PB =PD ,再有12CP PA =,进而得出tan∠APB 的值. 【详解】 解:如图,过点P 作PD AB ∥交BC 于点D ,∴CPD CAB △∽△, ∴AC AB PC PD=,∵135ABC ∠=︒,且90PBA ∠=︒,∴∠PBD =45°,∴tan tan 451PBD ∠=︒=,∴PB PD =,又∵12CP PA =, ∴3AC PC=, ∴tan 3AB AB AC APB PB PD PC∠====. 故选A .【点睛】 本题主要考查了相似三角形的性质与判定,解直角三角形,解题的关键在于能够正确作出辅助线进行求解.9、A【分析】先根据银河股定理求出AB ,根据正弦函数是对边比斜边,可得答案.【详解】解:如图,∵∠C =90°,AC =5,BC =3,∴AB ==∴sinBC A AB == 故选:A .【点睛】本题考查了锐角三角函数,利用正弦函数是对边比斜边是解题关键.10、D【分析】连接AB ,先利用正切三角函数可得30OBA ∠=︒,再分点D 在x 轴上方的圆弧上和点D 在x 轴下方的圆弧上两种情况,分别利用圆周角定理、圆内接四边形的性质求解即可得.【详解】解:如图,连接AB ,(1,0),A B ,1,OA OB ∴==90AOB ∠=︒,∴在Rt AOB 中,tanOA OBA OB ∠== 30OBA ∴∠=︒,由题意,分以下两种情况:(1)如图,当点D 在x 轴上方的圆弧上时,由圆周角定理得:30OBAODA∠∠==︒;(2)如图,当点D在x轴下方的圆弧上时,由圆内接四边形的性质得:180150OD BAA O∠=︒-∠=︒;综上,ODA∠的度数为30或150︒,故选:D.【点睛】本题考查了正切、圆周角定理、圆内接四边形的性质等知识点,正确分两种情况讨论是解题关键.二、填空题1、34.【解析】【分析】根据折叠的性质和锐角三角函数的概念来解答即可.【详解】解:根据题意可得:在Rt ABF ∆中,有8AB =,10AF AD ==则在ABF ∆中,6BF =,90AFE D ∠=∠=︒,BAF EFC ∴∠=∠,B C ∠=∠,∴Rt ABF Rt EFC ,EFC BAF ∴∠=∠, 故63tan tan 84EFC BAF ∠=∠==. 故答案是:34.【点睛】本题考查了翻折变换,矩形的性质,锐角三角函数等知识,灵活运用这些性质解决问题是本题的关键.2、 310; 7; 【解析】【分析】根据题意求得A 到BD 的距离h ,进而根据正切的定义可得tan h h ADB BD AD∠==;如图2,过点H '作H K GF '⊥交GF 的延长线于点K ,解直角三角形GKH '即可解决问题 【详解】解:拉伸杆AD 的端点A 在点B 正上方且距地面2.2dm ,BD =2dm ,⊙O 1半径分别为0.6dm ,竖直连接处CO 1=1dm ,设A 到BD 的距离为h ,则()2.20.610.6h =-+=dmtan h h ADB BD AD ∠==0.63210== 如图1,连接2O F ,过点2O 作2O M GF ⊥,24.8,3FG O F ==1 2.42FM FG ∴==2Rt MFO 中2 1.8O M == 2 1.83tan 2.44MFO ∴∠== ∠ADE 始终保持角度不变. ∴ADB E DE '∠=∠GF =DE ,//GF DE∴四边形GFED 是平行四边形 装置运动后,//GF DE ''E DEF GE ''∴∠=∠如图2,过点H '作H K GF '⊥交GF 的延长线于点K ,则23tan tan 4H FK MFO '∠=∠= 设3H K x '=,则4FK x =,5FH x '=, 3tan tan tan 10H GK E DE ADB ''∴∠=∠=∠= 334 4.810x x =+ 解得0.8x =3 2.4,4 3.2KH x FK x '∴==== 54FH x '∴==2347O H OF FH ''∴=+=+= 故答案为:310,7【点睛】本题考查了垂径定理,解直角三角形的应用,两图中有一个角是相等的,找到这个角的并求得它的正切值为310是解题的关键. 3、253##183【解析】【分析】设圆心为O ,过点C 作CF n ⊥,连接OC 交AB 于点D ,//,//BE QA PA n ,根据题意可证明四边形PEFD 是矩形,进而求得PB ,证明ABC QKC ∽,根据tan 2tan 1tan PBE ∠=∠=∠求得DC ,设O 的半径为r ,在Rt OAD 中,222OD DA AO +=,勾股定理即可求解【详解】如图,设圆心为O ,过点C 作CF n ⊥,连接OC 交AB 于点D ,根据题意,m n PB M ⊥⊥//PB n ∴在小路上P ,Q ,K 三点观测,发现均有两树与观测点在同一直线上,且∠1=∠2,//,//BE QA PA n ∴16AB EQ ∴==∠2=∠3,//BA QKA CBA ∴∠=∠CB CA ∴=OC AB ∴⊥182BD AD AB ∴=== ,,O C F ∴三点共线∴四边形PEFD 是矩形2=3,CF QK ∠∠⊥1122QF QK ∴== 161228EF EQ QF ∴=+=+=28820PB PD BD EF BD ∴=-=-=-=//AB QKABC QKC ∴∽AB DC QK CF ∴=162243== 23CF DC ∴= //PB n1=PBE ∴∠∠153tan 2tan 1tan 204PBE ∴∠=∠=∠== 3tan 24CF QF ∴∠== 12QF =9CF ∴=2963DC ∴=⨯= 设O 的半径为r ,在Rt OAD 中,222OD DA AO +=则()22268r r -+= 解得253r =故答案为:253【点睛】本题考查了两点确定一条直线,三角函数,垂径定理,勾股定理,相似三角形的性质与判定,矩形的性质,等边对等角,理清各线段长,并添加辅助线是解题的关键.4、2π【解析】【分析】由正六边形ABCDEF 的边长为2,可得AB =BC =2,∠ABC =∠BAF =120°,进而求出∠BAC =30°,∠CAE =60°,过B 作BH ⊥AC 于H ,由等腰三角形的性质和含30°直角三角形的性质得到AH =CH ,BH =1,在Rt △ABH 中,由勾股定理求得AH AC 的面积【详解】解:∵正六边形ABCDEF 的边长为2,()6218021206AB BC ABC BAF -⨯︒∴==∠=∠==︒, =120°,∵∠ABC +∠BAC +∠BCA =180°,∴∠BAC =12(180°-∠ABC )=12×(180°-120°)=30°,过B 作BH ⊥AC 于H ,∴AH =CH ,BH =12AB=12×2=1,在Rt △ABH 中,AH =∴AC ,同理可证,∠EAF =30°,∴∠CAE =∠BAF -∠BAC -∠EAF =120°-30°-30°=60°,∴(260?2360CAE S ππ==扇形∴图中阴影部分的面积为2π,故答案为:2π.【点睛】本题考查的是正六边形的性质和扇形面积的计算、等腰三角形的性质、勾股定理,掌握扇形面积公式是解题的关键.5、40 m 2【解析】【分析】过A 作AE ⊥BC 于E ,DF ⊥BC 与F ,先证四边形AEFD 为矩形,得出AE =DF =4m ,AD =EF =2m ,根据斜坡AB的坡度为1:3,求出BE =3AE =3×4=12m,根据斜坡CD 的坡角为45°,求出CF =DF =4m ,再求BC =BE +EF +FC =18m ,然后利用梯形面积公式计算即可.【详解】解:过A 作AE ⊥BC 于E ,DF ⊥BC 与F ,∴∠AEF =∠DFE =90°,∵AD ∥BC ,∴∠ADF +∠DFE =180°,∴∠ADF =180°-∠DFE =180°-90°=90°,∴∠AEF =∠DFE =∠ADF =90°,∴四边形AEFD 为矩形,∴AE =DF =4m ,AD =EF =2m ,∵斜坡AB 的坡度为1:3,∴tan∠ABE =13AEBE , ∴BE =3AE =3×4=12m,∵斜坡CD 的坡角为45°,∴tan∠C =1DF CF=, ∴CF =DF =4m ,∴BC =BE +EF +FC =12+2+4=18m ,∴四边形ABCD 的面积为()()211421840m 22AE AD BC +=⨯⨯+=. 故答案为40 m 2.【点睛】本题考查解直角三角形的应用,坡度,坡角,斜坡,锐角正切函数,矩形判定与性质,梯形面积公式,掌握解直角三角形的应用,坡度,坡角,斜坡,锐角正切函数,矩形判定与性质,梯形面积公式,关键是利用辅助线把梯形问题转化为直角三角形和矩形来解.三、解答题1、(1)A(16,0),B(-9,0);(2)-24;(3)存在,(16,12)或(25,12)或(32,643)或(288384,2525)【解析】【分析】(1)解一元二次方程x2﹣15x﹣16=0,对称点A(16,0),根据直线BC的解析式为y=kx+12,求出与y轴交点C为(0,12),利用三角函数求出tan∠BCO= tan∠OAC=3=4OBOC,求出OB=3312944OC=⨯=即可;(2)过点D作DE⊥y轴于E,DF⊥x轴于F,利用勾股定理求出AC20 =,BC=,根据三角函数求出tan∠CAD=1204CD CDAC==,求出12054CD=⨯=,利用三角函数求出DE= CD sin∠BCO=3535⨯=,再利用勾股定理求出点D(-3,8)即可;(3)过点A作AP1与过点C与x轴平行的直线交于P1,先证四边形COAP1为矩形,求出点P1(16,12),再证△P1CA∽△CAB,作P2A⊥AC交CP1延长线于P2,可得∠CAP2=∠BCA=90°,∠P2CA=∠CAB,可证△CAP2∽△ACB,先求三角函数值cos∠CAO=164205COAC==,再利用三角函数值cos∠P2CA= cos∠CAO= 222045ACCP CP==,求出225CP=,得出点P2(25,12)作∠P3CA=∠OCA,在射线CP3截取CP3=CO=12,连结AP3,先证△CP3A≌△COA(SAS)再证△P3CA∽△CAB,设P3(x,y)利用勾股定理列方程()()22222216161212x y y x ⎧-+=⎪⎨-+=⎪⎩,解方程得出点P 3(2883842525,),延长CP 3与延长线交P 4,过P 4作PH ⊥x 轴于H ,先证△CAP 4∽△ACB ,再证△P 4P 3A ≌△P 4HA (ASA ),利用cos∠P 3CA =34123205PC CACA CP ===,求得4510033CA CP ==即可.【详解】解:(1)x 2﹣15x ﹣16=0,因式分解得()()1610x x -+=, 解得12161x x ==-,,点A 在x 轴的正半轴上,OA =16,∴点A (16,0),∵直线BC 的解析式为y =kx +12,与y 轴交点C 为(0,12),∴tan∠OAC =123=164,∠OCA +∠OAC =90°, ∵AC ⊥BC ,∴∠BCO +∠OCA =90°,∴∠BCO =∠OAC ,∴tan∠BCO = tan∠OAC =3=4OB OC , ∴OB =3312944OC =⨯=,∴点B (-9,0);(2)过点D 作DE ⊥y 轴于E ,DF ⊥x 轴于F ,在Rt △AOC 中,AC20==,在Rt △BOC 中,∵tan∠CAD =1204CD CD AC ==, ∴12054CD =⨯=,∵sin∠BCO =93155OB BC ==, ∴DE = CD sin∠BCO =3535⨯=,∴CE 4=,OE =OC -EC =12-4=8, ∴点D (-3,8),∵双曲线y =m x(m ≠0)的一个分支经过点D , ∴3824m xy ==-⨯=-;(3)过点A 作AP 1与过点C 与x 轴平行的直线交于P 1, 则∠CP 1A =∠P 1CO =∠COA =90°,∴四边形COAP 1为矩形,∴点P 1(16,12),当点P 1(16,12)时,CP 1∥OA,∠P 1CA =∠CAB ,∠ACB =∠CP 1A ,∴△P 1CA ∽△CAB ,作P 2A ⊥AC 交CP 1延长线于P 2,∵∠CAP 2=∠BCA =90°,∠P 2CA=∠CAB, ∴△CAP 2∽△ACB ,∴cos∠CAO =164205CO AC ==, ∴cos∠P 2CA = cos∠CAO =222045AC CP CP ==,∴225CP =,∴点P 2的横坐标绝对值=225CP =,纵坐标的绝对值=OC=12, ∴点P 2(25,12),作∠P 3CA =∠OCA ,在射线CP 3截取CP 3=CO =12,连结AP 3, 在△CP 3A 和△COA 中,33CP CO PCA OCA CA CA =⎧⎪∠=∠⎨⎪=⎩, ∴△CP 3A ≌△COA (SAS ),∴AP 3=OA =16, ∴33124164,155205CP P A CB CA ====, ∴3334,905CP P A CP A BCA CB CA ==∠=∠=︒ ∴△P 3CA ∽△CAB ,设P 3(x ,y )()()22222216161212x y y x ⎧-+=⎪⎨-+=⎪⎩, 整理得22223224x y x y x y⎧+=⎨+=⎩, 解得:2882538425x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴点P 3(2883842525,), 延长CP 3与延长线交P 4,过P 4作PH ⊥x 轴于H , ∵∠P 4CA =∠CAB ,∠P 4AC =∠BAC =90°, ∴△CAP 4∽△ACB , ∵∠BAC +∠HAP4=∠CAP 3+∠P 3AP 4=90°,∠CAP 3=∠BAC , ∴∠HAP4=∠P 3AP 4, ∠P 4P 3A =180°-∠CP 3A =180°-90°=90°=∠P 4HA , 在△P 4P 3A 和△P 4HA 中, 34444434P AP HAP AP AP P P A P HA ∠=∠⎧⎪=⎨⎪∠=∠⎩, △P 4P 3A ≌△P 4HA (ASA ), ∴AP 3=AH =16,P 3P 4=P 4H ,∵cos∠P 3CA =34123205PC CACA CP ===, ∴4510033CA CP ==,∴43443100641233P H P P CP CP ==-=-=,OH =OA +AH =OA +AP 3=16+16=32, ∴点464323P ⎛⎫ ⎪⎝⎭,, 综合直线CB 下方,使以C 、A 、P 为顶点的三角形与△ABC 相似.点P 的坐标(16,12)或(25,12)或64323⎛⎫ ⎪⎝⎭,或(2883842525,).【点睛】本题考查一元二次方程的解法,直线与y 轴的交点,反比例函数解析式,锐角三角形函数,勾股定理,三角形全等判定与性质,矩形判定与性质,三角形相似,图形与坐标,解方程组,本题难度大,综合性强,涉及知识多,利用动点作出准确图形是解题关键.2、(1)见解析;(2)①y =1x 2.②245或185.③1或2 【解析】【分析】(1)由直径所对的圆周角是直角,得∠ADB =∠DGC =90°,证明AD∥CG ;根据∠1=∠2=∠ACD ,证明AG∥CD ;根据平行四边形的定义判定即可;(2)①如图1,过点A 作AP ⊥CF 于点P ,根据AD ∥CF ,得AF =DC ,四边形APGD 是矩形,△APF≌△DGC,从而得到CG=GP=PF=AD,设CG=GP=PF=AD=a,DE=EG=b,则GF=2a,GD=2b,BG=CG GF GD=2a b ,在Rt△BGC中,tan∠3=y=CGGB,在Rt△APF中,tan F=x=APPF,消去a,b即可;②运用勾股定理,确定a,b的值,显然DE与AF是不平行的,故分DH∥AF和EH∥AF两种情形计算即可.③过点O作OM⊥CF于点M,过点O作ON⊥BD于点N,根据OG平分∠DGF,OM=ON,于是BD=CF,从而确定a,b之间的数量关系,代入计算即可.【详解】(1)∵AB是⊙O的直径,弦CF⊥BD于点G,∴∠ADB=∠DGC=90°,∴AD∥CG;∵∠1=∠2=∠ACD,∴AG∥CD;∴四边形AGCD为平行四边形;(2)①如图1,过点A作AP⊥CF于点P,则四边形ADGP是矩形∵四边形AGCD为平行四边形∴AD∥CF,AD=CG,DE=EG,∠DAC=∠ACF∴AF=DC,AP=DG,∴△APF≌△DGC,∴CG=GP=PF=AD,设CG=GP=PF=AD=a,DE=EG=b,则GF=2a,CF=3a,GD=2b,∵BG GD CG GF⋅=⋅,∴BG=CG GFGD=2ab,在Rt△BGC中,tan∠3=y=CGGB=2baa⨯=ba,在Rt△APF中,tan F=x=APPF=2ba,消去a,b即可;∴x=2y,∴y关于x的函数表达式为y=1x2;②∵tan∠3=y=CGGB=2baa⨯=ba,y=34,∴ba=34,∴b=34 a,∴GD=2b=32 a,∴BG=2ab=43a,∴BD =DG +BG =43a +32a =176a ,∵AB 222AD BD AB +=,∴22217()6a a +=, 解得a =125; 显然DE 与AF 是不平行的,如图2,当DH ∥AF 时,∵AD ∥FH ,∴四边形ADHF 是平行四边形,∴AD =FH =a ,∴CH =2a =245;如图3,当EH ∥AF 时,∵四边形AGCD是平行四边形,∴AE=EC,∴H是CF的中点,∵CF=3a=365,∴CH=185;故CH的长为245或185;③如图4,过点O作OM⊥CF于点M,过点O作ON⊥BD于点N,∵OG平分∠DGF,∴OM=ON,∴BD=CF,∴3a=2b+2ab,整理,得2232a ab b-+=0,解得a=b或a=2b,∵tan F=x=APPF=2ba,当a=b时,x=2ba=2,当a=2b时,x=2ba=1,故答案为:1或2.【点睛】本题考查了圆的基本性质,圆心角,弦,弦心距之间的关系,圆周角的性质,勾股定理,平行四边形的判定和性质,三角形函数,因式分解,熟练掌握圆的基本性质,灵活掌握三角函数的计算,分类思想是解题的关键.3、建筑物BC的高约为24.2米【解析】【分析】先根据等腰直角三角形的判定与性质可得BC CD =,设m BC CD x ==,从而可得(8)m AC x =+,再在Rt ACD △中,利用正切三角函数解直角三角形即可得.【详解】解:由题意得:AC CD ⊥,8m AB =,53ADC ∠=︒,45BDC ∠=︒,Rt BCD ∴是等腰直角三角形,BC CD ∴=,设m BC CD x ==,则(8)m AC x =+,在Rt ACD △中,tan AC ADC CD∠=,即8tan 53 1.33x x +=︒≈, 解得24.2(m)x ≈,经检验,24.2(m)x ≈是所列分式方程的解,且符合题意,∴建筑物BC 的高约为24.2米,答:建筑物BC 的高约为24.2米.【点睛】本题考查了等腰直角三角形的判定与性质、解直角三角形的应用,熟练掌握解直角三角形的方法是解题关键.4、(1)见详解;(2)见详解;(3)OA =【解析】【分析】(1)连结OA 、OB ,根据点C 是优弧ACB 的中点.得出AC BC =,得出圆心角相等,得出∠AOD =180°-∠AOC =180°-∠BOC =∠BOD ,根据等腰三角形性质即可得出AG =BG ;(2)作∠KCB 的平分线交AB 于H ,连结AC ,CK 与AB 交于L ,根据AB ,CH 为直径,AB ⊥CD ,可得AC BC =,∠ACB =90°,得出∠ABC =∠BAC =45°,根据CH 平分∠KCB ,得出∠KCH =∠HCB =11222KCB KAB KAB ∠=⨯∠=∠,可得∠AKL =180°-∠KAL -∠KLA =180°-∠ACH -∠HLC =∠LHC ,利用∠LHC为△HCB 的外角得∠LHC =∠ABC +∠HCB =∠KAB +∠BAC =∠AKC 即可;(3)连结AE ,RK 与AB 交于P ,延长BN 交AC 与Q ,根据CH 平分∠KCB ,得出∠KCS =∠BCS =∠KAB ,根据BN∥AK ,可得∠EKA =∠EBN ,∠KAB =∠ABN ,可证∠BKR =∠SCB ,再证∠KBA =∠NBC ,求出∠EKA =45°,根据等腰三角形性质与勾股定理AE =KE =2,AK=,再证四边形AQNK为平行四边形,可得AK =QN =AQ =KN ,设BR =10m ,KN =13m ,BN =x ,先证△PNB ∽△BNK ,PN BN BN KN =,即213BN BN x PN KN m⋅==,再根据勾股定理Rt △BNR 中,根据勾股定理222+BN NR BR =,求出x =,然后证明△AQB ∽△BNK ,AQ BQ BN KN =即BQ BN AQ KN ⋅=⋅,解得m =△BNR ∽△BQC ,可得1026m BR BQ BC BN ⋅==即可. 【详解】(1)证明:连结OA ,OB∵点C 是优弧ACB 的中点.∴AC BC =,∴∠AOC =∠BOC ,∴∠AOD =180°-∠AOC =180°-∠BOC =∠BOD ,∵OA=OB,∴OG 平分AB ,∴AG =BG ;(2)作∠KCB的平分线交AB于H,连结AC,CK与AB交于L,∵AB,CH为直径,AB⊥CD,∵AC BC=,∠ACB=90°,∴∠ABC=∠BAC=45°,∵CH平分∠KCB,∴∠KCH=∠HCB,∵2KCB KAB∠=∠∴∠KCH=∠HCB=11222KCB KAB KAB∠=⨯∠=∠,∵∠KLA=∠HLC,∴∠AKL=180°-∠KAL-∠KLA=180°-∠ACH-∠HLC=∠LHC,∵∠LHC为△HCB的外角,∴∠LHC=∠ABC+∠HCB=∠KAB+∠BAC=∠AKC,∴∠AKC-∠KAB=∠BAC即AKC KAB ABC∠-∠=∠(3)连结AE,RK与AB交于P,延长BN交AC与Q,∵CH平分∠KCB,∴∠KCS=∠BCS=∠KAB,∵BN∥AK,∴∠EKA=∠EBN,∠KAB=∠ABN,∵∠AKL=∠LHC=∠HBC+∠HCB=∠KAB+∠BAC=∠KAC,∴AC=KC=BC,∵CH平分∠KCB,∴CS⊥BK,BS=KS,∴∠SCB+∠SBC=90°,∵KR⊥BC,∴∠RKB+∠RBK=90°,∵∠CBS=∠KBR,∵AC=BC,∠ACB=90°,∴∠ABC=∠BAC=45°,∴∠BPR=45°=∠RKB+∠ABP=∠ABN+∠NBC,∵∠RKB=∠ABN,∴∠KBA=∠NBC,∴∠EBN=45°,∴∠EKA=45°,∵∠AEK=90°,∴∠EAK=90°-∠EKA=45°∴AE=KE=2,AK=∵KR⊥BC,∠ACB=90°,∴AC∥KR,AK∥BQ,∴四边形AQNK为平行四边形,∴AK=QN=AQ=KN,设BR=10m,KN=13m,BN=x,∴AQ=KN=13m,∵∠PBN=∠BKN,∠PNB=∠BNK,∴△PNB∽△BNK,∴PN BNBN KN=,即213BN BN xPNKN m⋅==,∵PR⊥BC,∠PBR=45°∴NR =PR -PN =10m-213x m, 在Rt △BNR 中,根据勾股定理222+BN NR BR = 即()2222101013x x m m m ⎛⎫=-+ ⎪⎝⎭ ∴2422222010010013169x x x m m m =-++ 整理得4224429338000x m x m -+=,解得22325x m =舍去,22104x m =∴x =∵PN∥AQ,∴∠BNP =∠BQA ,∠BPN =∠BAQ ,∴△PNB ∽△AQB ,∴△AQB ∽△BNK ,AQ BQ BN KN=即BQ BN AQ KN ⋅=⋅∴(2169x x m +=∴22169x m += ∴2x = ∴222104m =解得m =∴NR∥QC ,∴∠BNR =∠BQC ,∠BRN =∠BCQ ,∴△BNR ∽△BQC ,∴BN BR BQ BC =即1026m BR BQ BC BN ⋅===, ∴AB =BC=,∴OA =1122AB =⨯=【点睛】本题考查等腰三角形性质,角平分线定义,三角形外角性质,等腰直角三角形判定与性质,三角形相似判定与性质,直径所对圆周角性质,勾股定理,一元高次方程,锐角三角函数,本题难度大,综合性强,图形复杂,利用辅助线构造准确图形,是中考压轴题,掌握多方面知识是解题关键.5、(1)213222y x x =--+;(2)(3,2)D -;(3)325(,)28Q -【解析】【分析】(1)根据tan 2CBA ∠=求出点C 的坐标,把点C 的坐标代入()()41y a x x =+-即可求出a ,即可得出抛物线解析式;(2)先求直线AC 解析式,设23,2)12(2D m m m -+-,则可表示点P 坐标,y 值相减即可得出答案; (3)作CAO ∠的角平分线为AM ,作MN AC ⊥交于点N ,过点K 作KT y ⊥轴交于点T ,由(2)得点D 坐标,求出直线AD 解析式,令0x =,求出F 点坐标,由对称得出点H 坐标,求出直线AH 的解析式,求出AK 、AH 的值,可得GF 、FG ,FH 满足勾股定理,即FG HG ⊥,求出点G 坐标,得出直线FG 解析式,即可得出直线CR 解析式,与抛物线解析式联立,即可求出点Q 的坐标.【详解】(1)由题得:(4,0)A -,(1,0)B ,∴1OB =,∵tan 2CBA ∠=, ∴2OC OB=,即2OC =, ∴(0,2)C ,把(0,2)C 代入()()41y a x x =+-得:12a =-, ∴抛物线解析式为:()()2141213222y x x x x =--=-++-; (2)设直线AC 的解析式为y kx b =+,把(4,0)A -,(0,2)C 代入得:402k b b -+=⎧⎨=⎩, 解得:122k b ⎧=⎪⎨⎪=⎩,∴直线AC 的解析式为122y x =+, 设23,2)12(2D m m m -+-,则1(,2)2P m m +, ∴2213113(2)(2)222222m m m m m --+-+=--=, 解得:3m =-或1m =-, ∵213222y x x =--+的对称轴为直线332122()2x -=-=-⨯-,点D 是对称轴左侧抛物线上一点, ∴3m =-, ∴2132222m m --+=, ∴(3,2)D -;(3)如图,作CAO ∠的角平分线为AM ,作MN AC ⊥交于点N ,过点K 作KT y ⊥轴交于点T ,由(4,0)A -,(3,2)D -得直线AD 解析式为28y x =+,∴AC =()0,8F ,∵H 是点C 的对称点,∴(0,2)H -,由(4,0)A -,(0,2)H -得直线AH 解析式为122y x =--,∴AH AC ==设(0,)M t ,1(,2)2T n n --,则OM MN t ==,2CM t =-,4CN AC AN AC OA =-=-=,2224)(2)t t +=-,解得:8t =, ∵12KCH CAO ∠=∠,∴KCT MAO ∠=∠,∵90CTK AOM ∠=∠=︒,∴CTK AOM ,CT KT AO MO =,即12(2)24n ++=解得:n =,122n --=K , 由题知:HTK HOA ,∴HK KT HA AO =54=,解得:8HK =,∴8)8AK ==-∴88GH AK AH =+=-=,∵:3:4GF GH =,∴6GF =,∵8210FH =+=,∴FGH 是直角三角形, 设1(,2)2G x x +,11681022FGH S x =⨯⨯=⨯, 解得:245x =, 122225x +=, ∴2422(,)55G , 由()0,8F ,2422(,)55G 得直线FG 的解析式为384y x =-+, ∵CR GH ⊥,∴CR FG ∥,∴直线CR 解析式为34y x c =-+,把(0,2)C 代入得:324y x =-+,232413222y x y x x ⎧=-+⎪⎪⎨⎪=--+⎪⎩, 解得:02x y =⎧⎨=⎩或32258x y ⎧=-⎪⎪⎨⎪=⎪⎩, ∴325(,)28Q -. 【点睛】本题考查二次函数综合问题,还涉及了解直角三角形以及相似三角形的判定与性质,属于中考压轴题,掌握用待定系数法求解析式是解题的关键.。

锐角三角函数能力测试

锐角三角函数能力测试

偏东 6。 0 的方 向上 ( 图所 示 ) 队伍决 定 分 成两 组 : 一 组 马上 下 水游 向 A处 救 人 , 如 , 第 同时 第
二组 从陆地 往 正东方 向奔跑 10m 到达 C处 , 2 再从 C处 下水 游 向 处救 人. 已知点 A 在点 C
的北偏 东 3 o 0 的方 向上 , 救 援 人员 在 水 中游 进 的速 度 均 为 1 s 在 陆 地 上奔 跑 的速 度 为 且 , m/

是 锐角 , s = 则 i — — nA

是锐 角 , s = 则 i — n


、 、


7 4
、 、 、、

三、 解答 题 1 . 用下 列 条件 解题 : 5利
1 . 算下 列 各题 6计
// , , ,,

7 5
1 . 图所 示 , 8如 AAB C是 等腰 三 角 形 , 4 B= 0 , B 三 厶 9 。 过 C的 中点 D 作 D L B, 足 为 连接 C E_A 垂 E,
又 ’ J BC= 0 . /BAC= 0 . 4 3 。. . 。 3。
ABD= LBAC . . . AC= 。 BC
于 F. 段 E 线 F即 为 D 的 投 影 E

BC=1 0,’ 2 . AC=1 0. . 2
在 R AA D 中 . AC 6 。AC 1 0 t C D= 0 . = 2
A 8c . m
B 2 / C1 . 、百 / / /
C2 而 c . m
D (+ 、 了 ) m .2 2 / c
) .
D. 。 75
6 已知 A 是锐 角 , s . 且 i 2 , 么 A 等 于 ( A: 那

锐角三角函数综合题型

锐角三角函数综合题型

锐角三角函数综合题型一、单选题(共8题;共16分)1.如图,在直角△BAD中,延长斜边BD到点C,使DC= BD,连接AC,若tanB= ,则tan∠CAD的值()A. B. C. D.2.(2017•杭州)如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A. x﹣y2=3B. 2x﹣y2=9C. 3x﹣y2=15D. 4x﹣y2=213.如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,则∠CDE的正切值为()A. B. 2 C. 3 D. 44.(2017•广元)如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为F,连结DF,下列四个结论:①△AEF∽△CAB;②tan∠CAD= ;③DF=DC;④CF=2AF,正确的是()A. ①②③B. ②③④C. ①③④D. ①②④5.(2017•佳木斯)如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点G,连接AG交BE于点H,连接DH,下列结论正确的个数是()①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG:S△HBG=tan∠DAG ⑤线段DH的最小值是2 ﹣2.A. 2B. 3C. 4D. 56.如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE,DE 分别交AB于点O、F,且OP=OF,则cos∠ADF的值为()A. B. C. D.7.如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=6 ;③sin∠AOB= ;④四边形ABOC是菱形.其中正确结论的序号是()A. ①③B. ①②③④C. ②③④D. ①③④8.如图,正方形ABCD中,内部有6个全等的正方形,小正方形的顶点E、F、G、H分别在边AD、AB、BC、CD上,则tan∠DEH=( )A. B. C. D.二、填空题(共3题;共3分)9.(2016•上海)如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A、C分别落在点A′、C′处.如果点A′、C′、B在同一条直线上,那么tan∠ABA′的值为________.10.(2017•绵阳)如图,过锐角△ABC的顶点A作DE∥BC,AB恰好平分∠DAC,AF平分∠EAC交BC的延长线于点F.在AF上取点M,使得AM= AF,连接CM并延长交直线DE于点H.若AC=2,△AMH的面积是,则的值是________.11.(2017•宁波)如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则cos∠EFG的值为________.三、综合题(共9题;共107分)12.(2017•温州)如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO交AB于点G,作ED∥AC交CG于点D(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.13.(2017•包头)如图,AB是⊙O的直径,弦CD与AB交于点E,过点B的切线BP与CD的延长线交于点P,连接OC,CB.(1)求证:AE•EB=CE•ED;(2)若⊙O的半径为3,OE=2BE,= ,求tan∠OBC的值及DP的长.14.(2017•绥化)如图,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分线交AE于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F.(1)求证:CD与⊙O相切;(2)若BF=24,OE=5,求tan∠ABC的值.15.如图,AB是的直径,点D在上(点D不与A,B重合),直线AD交过点B的切线于点C,过点D作的切线DE交BC于点E。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 C 2. . D 3. 4. D C 5. 6 C 7. 8. C . D A
9 一 堕 . 三
1 3 1 3
三 11 1 o 1 . J
2 5 1 3
1.1 1 3 2 2 3 0。

1. 46

1 . 1c 、 5() 儒 _
= / _A C D 91 C A :6或 AB D AB 9 5或 C AC : 2
△c AD A B AC 1 : 5 62 1 1 21 5. 8 ‘
1 . 示 : 证 AA D ̄ △A B D 6提 可 B
1 . D= 1 , 案 不 唯 一 7C 3 8 答
) .
A 大于 .

B 小 于 .

C 大_ . y V ̄-


小 明沿着 坡 角为 3 。 0 的坡 面 向下走 了 2I, 么他 下 降( l那 l
A.1l T l B. m C. 2 m
) .
D. 3 m
3 . 国 科 举 制 度是 从 ( 1我 A. 国时 期 三

/ / / / / / / / / / / / / / // / /
f才采 了 科 士 人 ,取 开 取
【 ;■ _ ■ 1_
维普资讯




皆 上, AB= m, _ AC 5 . 2k / D =1 。 _
0 ( 之的离 ) 麓间距. 求 C

( ): × o B 1 x V3 2口 6 ct = 0 —

l V 3- O
维普资讯

≥叠 - i 纛 誊 麓 | | 誊- t : ≯譬 I。 誊 季《t 哇鬟蕾萋。t 乏莲 。 鬻 争毫 鼍 。 : 奄

汽 集 团第四 中学
提 供

选 择 题 ( 小 题 3分 , 2 每 共 4分 )
在直 角 三角形 中, 边 的长度 都扩 大 3倍 , 各 则锐 角A的三 角 函数值 (
) 始 的。 开 C 南 北朝 . D. 朝 唐 E 隋 朝 .
B 西 晋 时期 .
维普资讯


八 V
o t6・ 1 a0c3 n。 t。 o0
‘q II u V

o 0
丫 粕

子. 一次 是 当 阳光 与地 面 成 第 第 一次 长 多少米 ?
‘ . ‘
L DAE=1 5 ,‘ DAB+ 0 。 .L . LD= C E . A
C= 5 =L D 7。 AB+ D ,
。 . .
_ . .
△ B△ -= - D 一A . 1. A . , 1 } ‘ .
一 坚

() 2若成

锐 角三 角 函数 综 合能 力测 试l ( 1在 第 6 4页 )
A. CS /1 (O , ) O B ( ,i O . 】s ) n/
) .
C (i ,O ) .s n CS / O D (O ,i ) . CS /s O n
若 tn o 1 。= a (t 0 ) V , 锐 角 O 的度 数是 ( + 则 g
A. 0 2。 B. 0。 3
¨




- 一



, am 一

m一
相似综合能力测试题( 在第 6 题 O页 )
1 C 2 3. 4. 5. 6. 7 8. . .A B B C D .B A
9 _ 1 12 1 . 似 .j 0 1 1 相

1 . : 1 . 75 2 13 3 6 .
A 也扩 大 3倍
C 都 不变 .
) .
B 缩 小 为原来 的 .

D 有 的 扩 大 . 的 缩 小 . 有
以直角 坐标 系 的原 点 0 为 圆心 . 1为半 径作 圆. 点 P是该 圆上 第 一象 限 内的 一 点 . O 以 若 且 P 与 轴 正方 向组成 的角 为 , 点 P的坐标 为( 则
B. 2x/6 m c
C 2 / 0 11 . 、 1 1 3 3 已知/A 是锐 角 , s —/ _ 且 i A:x n T

D (+ 、 . 2 2 /5) m c

那么 A等于(
) .
A. 0 3。
B. 。 45
C. 60。
当锐 角 o 3 。 , C S 的 值 是 ( r 0 时 则 O >
) .
C. 5 3。 D. 0 5。
直角 三 角形 的两条 边长 分别是 6和 8 则 第 三条边 的长为 ( .
A 1 .0 N 的最 短 路 线 是 (
A. m 8c
) .
D. 法 确 定 无 A B
B2 . ) .
C1 . 0或 2
如 图, 一个棱 长 为 4c 的 正方体 盒 子 , 只 蚂蚁 在 边 D C 是 m 一 的 中点 处 , 它到 边 B 的 中点 B

审 I I E


磊Ⅻ 雌

×




_





÷





÷

日 }
i々
t {
# 々
l÷




÷
_ 々 卫









, {

维普资讯 ; # ; ÷ { ; j {



1 .3 4 n 9 1 . 4I
2 . 1 。LF B O ( ) ‘ E =LD . AAB . AE Rt E ̄R ADF ( ) = . t A 2 DF 7 2 2. 1 AB E D △E HC等 . 2 . 3 2 . 8 2 1 3 4
2 . 1‘ B = 0 , - . 4 ( ) 。 AC 3 。AB AC LAB = . C LAC = 5 . B 7。
相关文档
最新文档