2015南平公务员考试行测解不定方程重在时速

合集下载

2015国家公务员行测答题技巧:行程问题中的相遇和追及问题

2015国家公务员行测答题技巧:行程问题中的相遇和追及问题

2015国家公务员行测答题技巧:行程问题中的相遇和追及问题行程问题在国家公务员行测考试中往往是考生觉得比较难的一个问题,究其原因,无非就是过程多,以及在考虑问题的时候会出现一个参照物的选择,也就是需要运用到一些简单的初中物理知识,但是只要掌握了好的技巧,那么行程问题也是非常容易的,接下来中公教育专家带大家来认识一下行程问题。

对于行程问题的核心公式S=vt,大家肯定非常熟悉,但是在考试的时候往往会给出很多个v以及很多个S或者t,如果再配上需要选取参照物的相遇和追及问题,可能有些考生就开始犯迷糊了。

判断相遇还是追及问题其实通过速度v的方向也可以判断,如果两个速度的方向是相同的,那么就是追及问题,如果两个速度方向是相反的,那么就是相遇问题。

下面从一道题入手帮助大家认识这一性质。

例:一支600米长的队伍行军,队尾的通讯员要与最前面的连长联系,他用3分钟跑步追上了连长,又在队伍休息的时间以同样的速度跑回了队尾,用了2分24秒,如队伍和通讯员均匀速前进,则通讯员在行军时从最前面跑步回到队尾需要多长时间?A.48秒B.1分钟C.1分48秒D.2分钟中公解析:这道题目其实是描述了3个过程,分别是相遇过程、追及过程、普通的行程过程,设通讯员的速度为V1,队伍的速度为V2,队伍行进的速度方向是向右,则第一个过程中通讯员的速度方向是向右,速度相同的话考虑追及问题,便有追及距离S= (V1- V2)×T1 ①。

第二个过程中V1的方向是向左,V2为0,则这个过程是普通的行程问题,满足关系式S=V1×T2 ②。

第三个过程中V1的方向是向左,V2的方向向右,二者方S=向相反,满足相遇条件,则满足关系式S=(V1+ V2)T3 ③。

分析题目可以得到S=600m,T1=3min,T2 =2min24s,将以上已知条件分别带入①②③式中即可找到正确答案为D。

此题就是典型的行程问题中过程比较多的一类,其实行程问题的难度不在于它的计算,而是过程很多,中公教育专家建议广大考生在做行程问题的时候可以将比较冗长复杂的文字语言转换成图像语言,使整个过程更加简洁明了,从而帮助大家快速列式和计算。

国考行测备考:重点题型之不定方程问题

国考行测备考:重点题型之不定方程问题

国考行测备考:重点题型之不定方程问题近年来不定方程在国考和省考中都有很多的考察,当未知数的个数多于方程个数时,我们将这种方程叫做不定方程,因为它的解不是唯一的,是不确定的。

在行测考试中,最常出现的是二元一次方程,其形式一般表现为:ax+by=c 。

在这里,华图教育研究员给大家总结了三种解不定方程的方法:奇偶特性、尾数法、代入排除法,其中最常用的是奇偶特性(对于加减法:同类为偶、异类为奇;对于乘法:乘数有偶则为偶,乘数无偶则为奇)。

下面通过几道例题来给大家具体演示。

【例题1】某儿童艺术培训中心有5名钢琴教师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人分剐平均地分给各个老师带领,刚好能够分完,且每位老师所带的学生数量都是质数。

后来由于学生人数减少,培训中心只保留了4名钢琴教师和3名拉丁舞教师,但每名教师所带的学生数量不变,那么目前培训中心还剩下学员多少人?A. 36B. 37C. 39D. 41【答案】D【解析】设每位钢琴老师带x 人,拉丁老师带y 人,根据题意得:5x+6y=76,首先根据奇偶特性知x 必为偶数,而且题目中要求x 是质数,而2是所有的质数里面唯一的一个偶数,所以x=2,代入解得y=11,因此还剩学员4×2+3×11=41(人)。

【例题2】超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果,共用了十多个盒子刚好装完。

问两种包装盒相差多少个?( )A. 3B. 4C. 7D. 13 【答案】D【解析】设大盒x 个,小盒y 个,根据题意得12x +5y=99,根据尾数法,5y 的尾数为0或5,相应的12x 的尾数只能是9或4,但是12x 是偶数,所以它的尾数不能是9,所以12x 的尾数只能是4,x 只能等于2或者7,接下来代入排除。

721259913315x x x y y x y y ==⎧⎧+=⇒⇒-=⎨⎨==⎩⎩(舍)或 【例题3】小李用150元钱购买了16元一个的书包、10元一个的计算器和7元一支的钢笔寄给灾区儿童。

行测答题技巧:不定方程固定解法

行测答题技巧:不定方程固定解法

⾏测答题技巧:不定⽅程固定解法 想要让考试的答题更加准确掌握答题技巧⾮常重要,下⾯由店铺⼩编为你准备了“⾏测答题技巧:不定⽅程固定解法”,仅供参考,持续关注本站将可以持续获取更多的内容资讯!⾏测答题技巧:不定⽅程固定解法 说起⽅程法⼤家都不陌⽣,从⼩到⼤它是我们解决数学问题的得⼒⼩助⼿,同时设未知数的思想也影响着我们为⼈处事。

但是你知道在公职类考试中我们还有不定⽅程么。

接下来⼩编就和⼤家⼀起来看看不定⽅程。

⾸先我们来了解⼀下什么叫做不定⽅程。

所谓不定⽅程,即未知数的个数多于独⽴⽅程个数。

常规的⽅法很难求解,因此我们需要重点关注未知数受到某些限制,这些限制主要是要求所求未知数是正整数、质数等,这些要求有的时候在题⺫中明确已知,有的时候隐含在⽅程中,有时候隐藏在题⺫中。

所以求解不定⽅程关键就是先找到等量关系列出⽅程,另外就是找到所求量的限制条件。

下⾯就结合⼏道题来详细解释不定⽅程组的求解吧。

例1、装某种产品的盒⼦有⼤、⼩两种,⼤盒每盒能装11个,⼩盒每盒能装8个,要把89个产品装⼊盒内,要求每个盒⼦都恰好装满,需要⼤、⼩盒⼦各多少个( )?A. 3,7B. 4,6C. 5,4D. 6,3 【答案】A。

解析:设⼤、⼩盒⼦的个数各为x,y。

则有,11x+8y=89。

有且仅有这样⼀个⽅程,⽽这⼀个⽅程就是不定⽅程,由不定⽅程的性质我们可以知道,其解得个数可以是⽆限多的,但是由于这⾥盒⼦的个数应该是整数,故其解应该是⽐较确定的值,但是依然⽆法直接求解,故此类不定⽅程我们采⽤带⼊排除的⽅式进⾏解题。

答案只有A满⾜。

故选择A。

例2.超市将99个苹果装进两种包装盒,⼤包装盒每个装12个苹果,⼩包装盒每个装5个苹果,共⽤了⼗多个盒⼦刚好装完。

问两种包装盒相差多少个?( )A.3B.4C.7D.13 【答案】D。

解析:设⼤盒有x个,⼩盒有y个,则可得12x+5y=99。

因为12x是偶数,99是奇数,所以5y是奇数,则y必须是奇数,则5y的尾数是5,可得12x的尾数是4,则可得x=2或者x=7。

行测数量关系解题技巧:解不定方程

行测数量关系解题技巧:解不定方程

⾏测数量关系解题技巧:解不定⽅程 任何考试想要成功都离不开点点滴滴的积累,下⾯由店铺⼩编为你精⼼准备了“⾏测数量关系解题技巧:解不定⽅程”,持续关注本站将可以持续获取更多的考试资讯!⾏测数量关系解题技巧:解不定⽅程 题型介绍 1.不定⽅程定义:未知数的个数多于独⽴⽅程的个数(例:2x+3y=21,未知数个数2多于⽅程的个数1) 2.解不定⽅程:常见的有两个范围(正整数范围内即不定⽅程;任意范围内即解不定⽅程组);⽆论哪种情况其核⼼都为带⼊排除。

例:已知2x+3y=21,且x、y均为正整数,求x=()A.1B.2C.3D.4 若想求解其原则为带⼊选项选择符合等式即题⼲限制条件的答案,但在考试中若四个选项依次带⼊的话会浪费时间,所以有些解题技巧可以帮助快速排除选项;因此其解题核⼼为带⼊排除。

解题技巧 (⼀)正整数范围内1.整除:若某未知数系数与常数项存在公约数则可以⽤整除排除选项 例:已知2x+3y=21,且x、y均为正整数,求x=()A.1B.2C.3D.4 【解析】若想求x则需将等式中的y消除,其中常数项21与y前的系数3有公约数3则观察等式,⼀个能被3整除的数3y加上某数其和21也能被3整除,则某数2x也要能被3整除,因为2不能被3整除所以只能是x能被3整除,因此观察选项,选C。

2.奇偶性:未知数前系数为⼀奇⼀偶的情况可以⽤奇偶性排除选项 3.尾数法:某未知数前系数的位数为0或5的情况可以⽤尾数法排除选项 例:(奇偶性+尾数法)已知4x+5y=31;且x、y均为正整数,求x=()A.1B.2C.3D.4 【解析】观察等式,未知数前系数⼀奇⼀偶的情况,根据奇偶性4⼀定为偶数加上某数其和31为奇数则某数5y⼀定为奇数;y前系数为5则根据尾数法5y尾数为0或5,且5y为奇数的话则其尾数只能是5,则5y的尾数5加上某数的尾数的和是31的尾数1,那么某数4x尾数只能是6,观察选项,能使4x尾数是6的只有D项4,所以选D。

2015国家公务员考试行测指导:不定方程解法

2015国家公务员考试行测指导:不定方程解法

在行政能力测试数量关系中,以不定方程的形式出现的题目越来越频繁,如果掌握了不定方程的方法,这类题目相对来说是比较容易的。

一、定义不定方程指的是未知数的个数大于方程的个数,且未知数受到某些限制(如要求是整数、质数等)的方程或方程组。

二、形式二元不定方程:ax+by=c;多元不定方程组。

三、方法二元不定方程:数字特性思想中的整数倍数、奇偶特性和尾数法。

多元不定方程组:整体消去法、特值代入法。

【例1】某汽车厂商生产甲、乙、丙三种车型,其中乙型产量的3倍与丙型产量的6倍之和等于甲型产量的4倍,甲型产量与乙型产量的2部之和等于丙型产量7倍。

则甲、乙、丙三型产量之比为:()?A. 5∶4∶3B. 4∶3∶2C. 4∶2∶1D. 3∶2∶1【解析】由题意可知,3乙+6丙=4甲,发现左边都包含3这个因子,那么可以得出甲应为3的倍数。

,观察选项只有D项满足。

这里用到了数字特性的思想。

行测、申论复习与考试过程中,阅读量都非常的大,如果不会提高效率,一切白搭。

首先要学会快速阅读,一般人每分钟才看200字左右,我们要学会一眼尽量多看几个字,甚至是以行来计算,把我们的速读提高,然后再提高阅读量,这是申论的基础。

《行测》的各种试题都是考察学生的思维,大家平时还要多刻意的训练自己的思维。

学会快速阅读,不仅在复习过程中效率倍增,在考试过程中更能够节省大量的时间,提高效率,而且,在我们一眼多看几个字的时候,还能够高度的集中我们的思维,大大的利于归纳总结,学会后,更有利于《行测》的复习、考试,特别是在学习速读的同事,还能够学习思维导图,对于《行测》的各种试题都能得心应手的应付。

本人当年有幸学习了快速阅读,至今阅读速度已经超过5000字/分钟,学习效率自然不用说了。

我读大学的成绩是很差,考公务员的时候我妈说我只是碰运气,结果最后成绩出来了居然考了岗位第二,对自己的成绩非常满意,速读记忆是我成功最大的功劳。

找了半天,终于给大家找到了下载的地址,怕有的童鞋麻烦,这里直接给做了个超链接,先按住键盘最左下角的“ctrl”按键不要放开,然后鼠标点击此行文字就可以下载了。

攻克2015公务员考试行测老大难之不定方程

攻克2015公务员考试行测老大难之不定方程

攻克2015公务员考试行测老大难之不定方程所谓不定方程,是指未知数的个数多于方程个数,且未知数受到某些限制的方程或方程组。

基于这样一个特点,如何在方程个数不够时,快速定位出最终答案,就成为了解题的关键环节。

其实数学运算当中有一个潜在的条件,这就是未知数一定是整数,且绝大部分是正整数。

应用好这样的一个隐藏条件,结合所给的选项特征,加上合适的解不定方程技巧,相信广大考生在行测考试中遇到不定方程问题都能够引刃而解。

下面专家针对不定方程的解题方法以及它们对应的应用环境进行详解。

例1:已知有1分、2分和5分的硬币共100枚,如果其中2分硬币的价值比1分硬币的价值多13分,那么三种硬币分别多少枚?()A.51、32、17 B.60、20、20 C.45、40、15 D.54、28、18中公解析:设3种的硬币个数分别为x,y,z。

根据题意列出方程:2y-x=13。

通过观察发现本题的选项比较全面,给出了每个未知数的具体值。

因此考虑使用代入排除,这道题,我们直接可以排除B、D,因为B、D选项x、y都为偶数,两个偶数相减不可能为13奇数。

再带入A、D。

发现D不符合题意,因此本题答案选择A选项。

例2:超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果,共用了十多个盒子刚好装完。

问两种包装盒相差多少个?()A.3B.4C.7D.13中公解析:设大盒x个,小盒y个。

列出方程,12x+5y=99。

一个方程,两个未知数。

属于不定方程问题,观察y的系数为5,那么5y的尾数好判断,一定为0或5。

由于等号右边的99尾数为9,因此12x尾数对应的为9或4。

但是12x尾数不可能为9,所以能确定12x尾数为4。

x取值只能为2或者7。

当x=2时,y=15,共用了17个盒子,两者差了13个,符合题意;当x=7时,y=3共用了10个盒子,不满足共用十多个盒子,排除。

因此,本题答案选择D选项。

例3:某儿童艺术培训中心有5名钢琴教师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人分别平均地分给各个老师带领,刚好能够分完,且每位老师所带的学生数量都是质数。

2015年国家公务员行测备考:不定方程组的解法

2015年国家公务员行测备考:不定方程组的解法

不定方程及不定方程组的解法华图教育任小芳在公务员行政职业能力测试数量关系模块中,经常会运用到方程法解答各类文字应用题型,但是在运用方程法的过程中,常会遇到所设的未知数数量多于方程个数的情况。

未知数数量多于方程数量,这种方程我们称之为“不定方程(组)”。

解不定方程(组)最典型的方法为代入排除法,即直接将选项代入方程中,验证是否能使其他未知数都有符合题目要求的解。

【例1】有271位游客欲乘大、小两种客车旅游,已知大客车有37个座位,小客车有20个座位。

为保证每位游客均有座位,且车上没有空座位,则需要大客车的辆数是()?A.1辆B.3辆C.2辆D.4辆【答案】:B【解析】:每位游客均有座位且车上没有空座位,可知座位总数与游客人数相等。

假设需要大客车x辆,需要小客车y辆,根据题意列出方程:37x+20y=271。

未知数个数多于方程个数,此为不定方程问题。

20的倍数尾数一定为0,则37x的尾数应为1,代入四个选项,只有当x=3时,37x 的尾数为1,B选项正确。

【例2】超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装 5个苹果共用了十多个盒子刚好装完。

问两种包装盒相差多少个?()A.3B.4C.7D.13【答案】:D【解析】:假设大包装盒用了x个,小包装盒用了y个,根据题意可列出方程:12x+5y=99。

题干中只有一个等量关系,2个未知数,1个方程,此为不定方程问题。

结合数字的奇偶特性,偶数的倍数一定是偶数,可知12x为偶数。

两个数的和99为奇数,这两个数的奇偶性一定相反,因此5y的值一定为奇数。

5的倍数尾数不是0就是5,因此可以确定5y尾数为5,12x尾数为9-5=4。

由此推出x=2,y=15。

或者x=7,y=3。

题目条件“共用了10多个盒子”,x=7,y=3不符合题意,结果为x=2,y=15,差是13。

D选项正确。

在解不定方程时可结合数字的奇偶特性、尾数特性等数字特性思想,然后通过代入选项得出答案。

行测数学运算:不定方程的求解方法汇总

行测数学运算:不定方程的求解方法汇总

行测数学运算:不定方程的求解方法汇总行测不定方程类题型只要多练习,还是能轻易拿分的!小编为大家提供行测数学运算:不定方程的求解方法汇总,一起来看看吧!希望大家好好复习!行测数学运算:不定方程的求解方法汇总行测数量运算的考查中,不定方程是计算问题的常考题型,难度不大,易求解。

但是想要快速正确的求解出结果,还是需要一些技巧和方法的。

小编认为,掌握了技巧和方法,经过大量练题一定可以实现有效的提升,不定方程的题目必定成为你的送分题。

一、不定方程的概念在学习之前,首先了解一下不定方程的概念:指对于一个方程或者方程组,未知数的个数大于独立方程的个数,便将其称为不定方程或者不定方程组。

在这里解释一下独立方程。

看个例子大家便可以明白了:4x+3y=26①,8x+6y=52②因为①×2=②,相互之间可以进行转化得到,所以①、②两个式子并不是两个独立的方程,。

二、求解不定方程的方法1、奇偶性奇数+奇数=偶数奇数×奇数=奇数偶数+偶数=偶数偶数×偶数=偶数奇数+偶数=奇数奇数×偶数=偶数【例题】某学校购买桌凳,已知每张桌子单价70元,每张凳子单价40元,且购买凳子的数量大于购买的桌子的数量,购买桌凳共花费了430元,问购买凳子多少张?A.8B.9C.10D.11【解析】B。

设桌子和凳子的单价分别为x元、y元,得到式子:70x+40y=430,化简得7x+4y=43。

7x + 4y = 43。

性质:奇偶奇7x为奇数,x也为奇数。

x可能的取值有1、3、5。

当x=1时,y=9,满足题干要求,凳子数量大于桌子数量,其余情况不符合要求,故答案选择B。

2、尾数法当看到未知数前面的系数为0或者5结尾时,考虑尾数法。

任何正整数与5的乘积尾数只有两种可能0或5。

【例题】某单位分发报纸,共有59份。

甲部门每人分的5份,乙部门每人分的4份,且已知乙单位人员超过十人,问甲部门人数为多少?A.1B.2C.3D.4【解析】C。

【行测】不定方程的解题思路

【行测】不定方程的解题思路

【行测】不定方程的解题思路不定方程(组)是指未知数个数多于方程个数,不能通过一般的消元法直接得到唯一解,常与差倍比问题、利润问题等热门考点相结合,故需要考生们在备考的过程中加以重视。

今天与大家一起探讨一下公务员行测考试中不定方程(组)的解题思路。

不定方程(组)包含不定方程与不定方程组,而根据题目条件对未知数是否必须为整数的限制,可以将不定方程组分为限定性不定方程组和非限定性不定方程组。

前者指未知数必须为正整数,后者则无此要求。

两种类型的不定方程组问题都有其固定的解题思路,方法性与技巧性比较强,掌握相应的思路去解题便会事半功倍。

不定方程题型特征:根据题干可列出一个包含两个未知数的方程解题方法:首先分析奇偶、倍数、尾数等数字特性,然后尝试代入排除例1.【2015联考】每年三月某单位都要组织员工去A、B两地参加植树活动,已知去A地每人往返车费20元,人均植树5棵,去B地每人往返车费30元,人均植树3棵,设到A地有员工x人,A、B两地共植树y棵,y与x之间满足y=8x-15,若往返车费总和不超过3000元时,那么,最多可植树多少棵?A.498B.400C.489D.500【解题思路】已知植树棵数 y=8x-15,一个方程两个未知数为不定方程,8x为偶数,15为奇数,偶数-奇数=奇数,则y为奇数,排除A、B、D项,正确答案为C。

【点评】本题若采用常规解方程的方法也可解题,但耗费时间久,不适合考场使用。

本题不需要算车费等其他数值,因此可利用数字特性直接锁定答案。

不定方程组1.限定性不定方程组题型特征:可根据题意列出方程组,未知数多于方程数,且未知数必须为正整数,常用来表示人数、盒子或者其他物体的个数等解题方法:先消元转化为不定方程,再按不定方程求解例1.【2017江苏】小王打靶共用了10发子弹,全部命中,都在10环、8环和5环上,总成绩为75环,则命中10环的子弹数是:A.1 发B.2 发C.3 发D.4 发【解题思路】设命中10环、8环、5环的子弹数分别为正整数x、y、z。

行测数量关系技巧:如何巧解不定方程

行测数量关系技巧:如何巧解不定方程

行测数量关系技巧:如何巧解不定方程不定方程在行测中经常考到,为大家提供行测数量关系技巧:如何巧解不定方程,一起来看看吧!希望大家顺利通过考试!行测数量关系技巧:如何巧解不定方程方程法是在公务员考试行测中比较常用且最基础的一种方法。

而在具体使用中,普通方程大家都较为熟悉,而对于不定方程不太了解。

其实,不定方程也是在考试中常考查的一种题型,同时也是较为简单的部分,学习不定方程,巧解方程,不定方程将变为送分题,下面就来带领大家学习了解不定方程。

一、不定方程定义:未知数的个数大于独立方程的个数。

例:3X+4Y=16二、不定方程的求解:方程法主要根据题干的条件,构建等量关系,列出方程式,接下来进行求解。

对于不定方程来说,只看不定方程,如3X+4Y=16是有无数组解的,那要如何求出具体X、Y为多少呢?其实题干一般会给出限制条件,例如:超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果共用了十多个盒子刚好装完。

问两种包装盒相差多少个?我们可以直接设大包装盒用了X个,小包装盒用了Y个,列出方程:12X+5Y=99。

接下来就是具体求解,通过题意可以看到无论大小盒子,个数肯定为整数,因此对X、Y就限定了范围便于求解。

在考试中一般题目都会有正整数的限定条件,我们就可以利用这个进行求解。

1、整除法:存在未知数系数与常数存在共同因数时使用例:已知6X+7Y=49,X、Y为正整数,求X=?A.3B.4C.5D.7【解析】D。

我们通过式子可以看出来,7Y和49都可以被7整除,所以6X肯定也可以被7整除,6不能够被7整除,那么X 一定能够被7整除,选择D。

2、奇偶性:利用最多的方式例:已知7X+8Y=43,X、Y为正整数,求X=?A.5B.4C.3D.2【解析】D。

8Y为偶数,43为奇数,所以7X为奇数,所以X 为奇数,排除B、C,代入A选项若X=5,则Y=1,所以选择D。

3、尾数法:利用0、5尾数的特性,0乘任何数尾数为0.5乘奇数尾数为5,乘偶数尾数为0例:已知6X+5Y=41,X、Y为正整数,求X=?A.6B.5C.4D.3【解析】A。

2015南平公务员考试行测数量关系:不定方程的解法

2015南平公务员考试行测数量关系:不定方程的解法

南平中公教育2015南平公务员考试行测数量关系:不定方程的解法在公务员行测考试中,数量关系部分对不定方程时有考查。

不定方程,即未知数的个数多于方程个数,且未知数受到某些限制的方程或方程组,这些限制主要是要求所求未知数是正整数、质数等,这些要求有的时候在题目中明确已知,有的时候隐含在题目中。

在此,中公教育专家总结出不定方程的解题方法,帮助大家获得此类题的分值。

一、利用数的奇偶性【例题1】超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果,共用了十多个盒子刚好装完。

问两种包装盒相差多少个?( )A.3B.4C.7D.13【答案】D。

【中公解析】设大盒有x个,小盒有y个,则可得12x+5y=99。

因为12x是偶数,99是奇数,所以5y是奇数,y是奇数,则5y的尾数是5,可得12x的尾数是4,则可得x=2或者x=7。

当x=2时,y=15,符合题意,此时y-x=13;当x=7时,y=3,x+y=10,不满足共用十多个盒子,排除。

故正确答案为D。

二、利用消元法【例题2】某总公司由A、B、C三个分公司构成,若A公司的产出增加10%,可使总公司产出增加5%,若B公司产出增加10%,可使总公司产出增加2%,问若C公司产出减少10%可使总公司的产出减少百分之几?( )A.2B.3C.4D.5【答案】B。

【中公解析】设A、B、C三个公司产值分别为a、b、c,设所求为x%。

则:,将三式相加,把(a+b+c)消掉,解得x%=3,故正确答案为B。

南平中公教育三、利用带入排除法【例题3】某儿童艺术培训中心有5名钢琴教师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人分别平均地分给各个老师带领,刚好能够分完,且每位老师所带的学生数量都是质数。

后来由于学生人数减少,培训中心只保留了4名钢琴教师和3名拉丁舞教师,但每名教师所带的学生数量不变,那么目前培训中心还剩下学员多少人?( )A.36B.37C.39D.41【答案】D。

2016陕西公务员考试行测备考:解不定方程重在时速

2016陕西公务员考试行测备考:解不定方程重在时速

最全汇总>>>陕西公务员历年真题2016陕西公务员考试行测备考:解不定方程重在时速通过最新陕西公务员考试资讯、大纲可以了解到,《行政职业能力测验》主要测查从事公务员职业必须具备的基本素质和潜在能力,测试内容包括言语理解与表达能力、判断推理能力、数理能力、常识应用能力和综合分析能力。

陕西中公教育整理了陕西省考资料大全供考生备考学习。

需要更多指导,请选择在线咨询一对一解答。

在公务员考试行测中经常可以见到的一种题型就是不定方程问题,难度相对来说比较小,但是有些考生还是难以掌握其中要领,虽然最后能够选出答案,但是这个过程却相对曲折,耗费时间较长。

众所周知,在行测考试中最紧张的就是时间,所以最重要的是你要快速选出正确答案。

今天中公教育专家就解决不定方程的方法做一下总结,希望考生也能够完全掌握,在考场上快速并且正确地解决不定方程问题。

首先应该弄清楚什么是不定方程,我们非常熟悉的一类方程是与不定方程相对应的定方程,也就是我们常见的普通方程,比如3x+2=11,其中一个未知数一个方程,我们可以轻松地把其中的未知数x求出来。

而不定方程,其实就是方程的个数<未知数的个数,比如3x+5y=21,其中有两个未知数x、y,但是只有一个方程,在这种情况下我们得不到x、y 确切值。

在行测考试的具体题目中一般会给出一些限制条件,比如x、y都是质数或其中的x或y是整数等条件,这个时候我们就能够解出未知数的值了。

那么怎样才能快速得出正确答案呢。

下面中公教育专家重点来讲一下解决不定方程经常用到的方法,如整除性、尾数、奇偶性等。

1、整除特性例1.若x,y都是质数,且3x+5y=21,则x+y=()?A.4B.5C.6D.7中公解析:3x+5y=21且x、y都是质数,从不定方程可以看出:3x可以被3整除,21可以被3整除,那么5y也一定能被3整除,所以y可以被3整除又y是质数,所以y=3,进而可以求得x=2,则x+y=5。

行测数量关系技巧:巧解不定方程.doc

行测数量关系技巧:巧解不定方程.doc

行测数量关系技巧:巧解不定方程公务员行测常识判断题一般来说考的几率非常大,但是许多考生还是容易丢分,这可能是平时知识点积累的太少了,下面由我为你精心准备了“行测数量关系技巧:巧解不定方程”,持续关注本站将可以持续获取更多的考试资讯!行测数量关系技巧:巧解不定方程在行测考试的数量关系当中,经常会遇到题目中出现等量关系,然后让我们利用题中的等量关系来构建方程进行求解的题目,那么这类等量关系构建的方程我们通常可以分为两类,一类是一般方程,另一类是不定方程。

一般方程相信大家已经接触的非常多,求解起来也会比较容易,不定方程对于大家来说就可能接触的比较少,会比较陌生了,那么今天给大家讲解一下,什么是不定方程,它又是如何进行求解的。

首先不定方程就是未知数的个数大于独立方程的个数,比如3x+4y=12,这里有两个未知数,但是只有一个方程,所以这里我们把他叫做不定方程,而且可想而知x、y都是有很多组解符合我们题目的要求的。

但是行测考试中都是单选题,那么碰到不定方程,我们是如何求解的呢,下面我给大家介绍几种常用的方法。

1、整除法3x+8y=36,已知x、y为正整数,则y=()?A、1B、3C、5D、7【解析】答案:B。

这个题目很明显是一个不定方程分题目,但是我们前面说,不定方程应该有无数组解,但是为什么这里只有一组解,可以放在单选题里面,那是因为在题目中有限定,下、y都是正整数,所以这个解就变得有限组解了。

那么面对这样的题目我们可以怎么去做呢,第一个大家最容易想到的当然是代入了,将每个选项代入看答案是否合适,这样当然可以,但是我们会发现比较浪费时间,所以我们有了第二种方法我们通过观察这个式子,会发现系数3和常数项36都是3的倍数,那么我们可以知道8y也应该是3的倍数,8不是3的整数倍,那么必然就应该是3的倍数结合选项可知,只有B选项才是符合条件的。

这个方法我们叫做整除法,当未知数系数跟常数项有公约数就可以使用。

2、尾数法或奇偶性4x+5y=23,已知x、y为正整数,求xA、1B、2C、3D、4【解析】那么这道题目我们会发现前面说过的整除法就不适用了,那么这里我们可以使用什么方法呢,还是首先观察系数跟常数项,我们会发现系数有5,那么5y肯定是一个以0或5结尾的数,又因为23是一个奇数,4x是一个偶数,所以5y肯定是一个奇数,一定是5结尾,那么4x 肯定要是8结尾才能加成3结尾的数,所以这个题目选B。

2015公务员考试行测不定方程解法大全

2015公务员考试行测不定方程解法大全

2015公务员考试行测不定方程解法大全不定方程是考试试卷当中最为常见的一种题型,也是考生在备考过程中重点关注的内容。

所谓不定方程,是指未知数的个数多于方程的个数,例如一个方程两个未知数、两个方程三个未知数等等。

这样的方程我们直接解是解不出来的,需要借助一些其他的方法来选出正确答案,常见的解决不定方程的方法包括:尾数法、奇偶性、质合性、整除特性、代入排除等方法,下面专家就结合例子讲解下如何运用这些方法解不定方程问题。

绝大多数题目描述的量是整数,可以通过这些数的尾数的特点选出正确选项。

例1 .超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果,共用了十多个盒子刚好装完。

问两种包装盒相差多少个?A.3B.4C.7D.13【中公解析】选D。

设有x个大包装盒,y个小包装盒,则12x+5y=99,其中5y的尾数应为5或0,但是12x为偶数,99为奇数,所以5y必为奇数,这样就确定了5y的尾数一定为5,那么12x就是尾数为4的数,所以x可能为2或7,对应的y等于15或3,根据“共用了十多个盒子刚好装完”,排除x=7,y=3。

即x=2,y=15,15—2=13。

总结:可用尾数法的不定方程问题的题型特点:当未知数的系数中出现了5的倍数,比如20x、35y、105z时,可能会用到尾数法。

因为如果是10的倍数,其尾数必然是0,如果是5的倍数,其尾数必然是5或0,这样尾数就容易确定,范围比较小。

奇偶性和质合性的运用也是在题干中描述的量是整数的前提下。

例2.某儿童艺术培训中心有5名钢琴老师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人分别平均地分给各个老师带领,刚好能够分完,且每位老师所带的学员数量都是质数,后来由于学生人数减少,培训中心只保留了4名钢琴教师和3名拉丁舞教师,但每名教师所带的学生数量不变,那么目前培训中心还剩下学员多少人?A.36B.37C.39D.41【中公解析】选D。

公务员考试行测高频考点不定方程解法点拨

公务员考试行测高频考点不定方程解法点拨

不定方程问题是公考考试的重要内容,尤其是在国家公务员考试中,不定方程问题更是几乎年年出现。

不定方程有很多解法,如尾数法、奇偶性,这两种方法能解决大部分不定方程问题,但是有一些不定方程问题用这两种方法可能解不出来。

因此,中公教育专家接下来介绍另外两种解决不定方程问题的方法,以拓宽考生视野,提升考生能力。

1、整除例1.某国家对居民收入实行下列税率方案:每人每月不超过3000美元的部分按照1%税率征收,超过3000美元不超过6000美元的部分按照x%税率征收,超过6000美元的部分按照y%税率征收(x、y为整数)。

假设该国某居民月收入为6500美元,支付了120美元的所得税,则y为多少?A.6B.3C.5D.4中公解析:根据题目给的条件可以列出方程:3000×1%+(6000-3000)x%+(6500-6000)y%=120。

化简得6x+y=18,此题只能列出这一个方程,不能直接解出来,但是最终化简出来的式子中有两个常数6、18都是6的倍数,由此想到y=6(3-x),即y是6的倍数,所以只有A符合,选择A。

此题最终化简后的方程的特点是给出x、y均为整数,且存在多个常数是6的倍数,由此想到了整除性。

因此:当方程中未知数是整数,且方程中有多个数是某一个数的倍数时,我们可以尝试整除性来解题。

在这道题目中也可以根据奇偶性结合代入排除选出结果,一道不定方程问题的解法往往可以用不同种解法,考生在做题时一定要多方面思考,以锻炼做题思维。

2、余数性质例1.现在有100个小球,要将其装到大小两种袋中,大袋子能装3个球,小袋子能装1个球,要把全部的球放到袋子中,需要多少个小袋子?A.41B.42C.43D.44中公解析:设大、小两种袋子分别用了x、y个(x、y均为正整数),则可以列出方程3x+y=100,求y值,此方程中x的系数为3,则3x必为3的倍数,而100除以3余1,所以可以得出y除以3应该余1,满足这个条件的只有C符合,选择C。

公务员考试 行测 数量关系

公务员考试 行测  数量关系

数量关系1.三大方法(必考题型的方法):代入排除、数字特性、方程法。

2.六大题型:工程问题、行程问题;经济利润、排列组合;容斥原理、最值问题。

【小结】代入排除:1.范围:(1)特定题型:年龄、不定方程、余数、多位数。

(2)选项信息充分:选项为一组数(例1);可转化为一组数(例2)。

(3)题目复杂:题目长、主体多,关系乱(例3)。

2.方法:(1)先排除:大小、奇偶、倍数、尾数(出现5和10的倍数)。

(2)再代入:简单入手、最值思想。

【小结】奇偶特性:1.范围:(1)不定方程:一般优先考虑奇偶性。

(2)平均分成两份、2倍(4、6、8等偶数倍):必然是偶数。

(3)知和求差、知差求和。

(4)质数:逢质必2。

2.方法:(1)和差:①同奇同偶则为偶、一奇一偶则为奇。

②和差同性。

(2)积:①一偶则偶、全奇为奇。

②4x、6y必为偶数;3x、5y不确定(x、y均为整数)。

【小结】倍数特性:1.整除判定:(1)3/9/5/4是重点(考得最多)。

(2)拆分:普遍使用。

(3)因式分解:①45=5*9≠3*15。

②分解时必须互质。

2.比例型:出现分数、比例、百分数、倍数时使用。

(1)若A/B=m/n,则:①A是m的倍数,B是n的倍数。

②A±B是m±n的倍数。

(2)前提:A、B均为整数,m、n互质(最简分数)。

3.余数型:(1)若答案=ax±b,则答案∓b能被a整除。

(2)前提:a、x均为整数。

【小结】方程法:1.普通方程:设、列、解三步走。

(1)设未知数:①设小不设大(避免分数);②最大信息化(方便列式);③求谁设谁(避免陷阱)。

(2)列方程:“共、是、比、相等”等明显的等量关系。

(3)解方程:①约分:如3600=400x+800y,先消掉2个0;②消元:求谁留谁。

2.不定方程:(1)主流:未知数必须为整数:①奇偶特性:系数一奇一偶。

②倍数特性:系数与常数有公因子。

例如5a+3b=25,5a、15均有公因子5。

公务员行测数量关系技巧:如何求解不定方程组

公务员行测数量关系技巧:如何求解不定方程组

公务员⾏测数量关系技巧:如何求解不定⽅程组 国考考试即将开始了,为了帮助⼤家更好备考,下⾯由店铺⼩编为你精⼼准备了“公务员⾏测数量关系技巧:如何求解不定⽅程组”,持续关注本站将可以持续获取更多的考试资讯!公务员⾏测数量关系技巧:如何求解不定⽅程组 在⾏测数量关系当中,经常会遇到⼆元⼀次的不定⽅程,在求解过程中通常会⽤到整除法、奇偶性以及代⼊排除等⽅法,但对于不定⽅程组的求解很多考⽣⽐较陌⽣,为了让各位考⽣更好的熟悉这类题的求解。

下⾯⼩编就“如何求解不定⽅程组”进⾏详细的介绍: ⼀、不定⽅程组的形式 求:x+y+z=()A.1.05B.1.4C.1.85D.2.1 上⾯式⼦中含有3个未知量且只有2个等量关系,所以属于不定⽅程组。

⼆、3种⽅法 1、线性组合 求:x+y+z=()A.1.05B.1.4C.1.85D.2.1 【解析】最终求解x+y+z等于多少,即想办法把未知数前⾯的系数变成1,在求解过程中需要将第⼀个式⼦的3倍与第⼆个式⼦的2倍作减法,直接求得:x+y+z=1.05,选A。

这种⽅法需要⼤家有⼀定的数学基础,即通过两个式⼦的线性组合得出最终的结果。

2、换元法 求:x+y+z=()A.1.05B.1.4C.1.85D.2.1 【解析】因为要求解x+y+z等于多少,可以将上⾯两个式⼦分别提出x+y+z,得出 ,观察这两个式⼦都含有x+3y这个因⼦,进⽽可得 ,令x+y+z为N,x+3y为M,原式转换为 ,变成了⼀个普通⽅程,经计算可得N=1.05,故选A。

3、特值法 求:x+y+z=()A.1.05B.1.4C.1.85D.2.1 【解析】因为所求量是关于x、y、z的线性组合,选项的结果只有⼀个是正确的,即当确定其中⼀个未知量的时候,另外两个未知量的数值也可以确定下来,x+y+z的整体不会变,此时可以另其中⼀个未知量为⼀个特值,不妨令y=0,上式可得 ,进⽽得出x=1.05,z=0,最终x+y+z=1.05。

2015年陕西公务员考试行测备考:解不定方程重在时速(2)

2015年陕西公务员考试行测备考:解不定方程重在时速(2)

2、尾数法
尾数法就是利用某些特殊值的尾数进行判定分析,如5x的尾数只能是0或者5,10x 的尾数就是0等。

例3.某国硬币有5分和7分两种,问用这两种硬币支付142分货款,且硬币不剩余,有多少种不同的方法?
A.3
B.4
C.6
D.8
中公解析:根据题意设5分和7分硬币分别有x、y个,则5x+7y=142。

5x的尾数为0或者5,那么7y的尾数就是2或者7,那么y的取值可以是6、16、1、11这四种情况,故答案选B。

3、奇偶性
例4. 5x+4y=144且x、y都是整数,则y可以为下列哪个数?
A.20
B.25
C.29
D.31
中公解析:由不定方程可以知:4y、144都为偶数,那么5x也一定为偶数,则5x的尾数为0,进而4y的尾数为4,选项中只有D选项乘以4后尾数是4,故答案选D。

由例4我们发现,整除法、尾数法、奇偶性等方法有时候并不是孤立使用的,在考试题目中往往需要多个方法融汇使用,这一点考生在做题时一定要注意。

中公教育专家提醒考生,不定方程并不难,掌握诀窍很重要,快速解题是关键,希望各位考生能快速学会以上方法并加以一定量的练习,解不定方程一定可以又快又准。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015南平公务员考试行测解不定方程重在时速
2015南平公务员考试将至,很多考生都加入到了备考大军的行列之中,中公教育针对历年行测考试内容,特别整合了2015南平公务员考试行测答题技巧,帮助考生轻松掌握备考先机。

预祝各位考生在2015南平公务员考试中能够抢占先机,成“公”上岸。

在公务员考试行测中经常可以见到的一种题型就是不定方程问题,难度相对来说比较小,但是有些考生还是难以掌握其中要领,虽然最后能够选出答案,但是这个过程却相对曲折,耗费时间较长。

众所周知,在行测考试中最紧张的就是时间,所以最重要的是你要快速选出正确答案。

今天中公教育专家就解决不定方程的方法做一下总结,希望考生也能够完全掌握,在考场上快速并且正确地解决不定方程问题。

首先应该弄清楚什么是不定方程,我们非常熟悉的一类方程是与不定方程相对应的定方程,也就是我们常见的普通方程,比如3x+2=11,其中一个未知数一个方程,我们可以轻松地把其中的未知数x求出来。

而不定方程,其实就是方程的个数<未知数的个数,比如
3x+5y=21,其中有两个未知数x、y,但是只有一个方程,在这种情况下我们得不到x、y确切值。

在行测考试的具体题目中一般会给出一些限制条件,比如x、y都是质数或其中的x 或y是整数等条件,这个时候我们就能够解出未知数的值了。

那么怎样才能快速得出正确答案呢。

下面中公教育专家重点来讲一下解决不定方程经常用到的方法,如整除性、尾数、奇偶性等。

1、整除特性
例1.若x,y都是质数,且3x+5y=21,则x+y=()?
A.4
B.5
C.6
D.7
中公解析:3x+5y=21且x、y都是质数,从不定方程可以看出:3x可以被3整除,21可以被3整除,那么5y也一定能被3整除,所以y可以被3整除又y是质数,所以y=3,进而可以求得x=2,则x+y=5。

故答案选B。

下面再看看较为复杂的涉及三个未知量的不定方程。

例2. 某公司的6名员工一起去用餐,他们各自购买了三种不同食品中的一种,且每人只购买了一份。

已知盖饭15元一份,水饺7元一份,面条9元一份,他们一共花费了60元。

问他们中最多有几人买了水饺?()。

A.1人
B.2人
C.3人
D.4人
中公解析:设买盖饭、水饺、面条的员工人数分别为x、y、z,根据题意,列出方程:x+y+z=6,15x+7y+9z=60。

15x、9z、60都可以被3整除,那么7y也一定可以被3整除,则y一定可以被3整除,选项中只有C选项可以被3整除。

故答案选C。

通过上面两道题目我们可以体会到整除特性的魅力,整除可以帮助我们快速排除错误选项进而得到正确答案!
2、尾数法
尾数法就是利用某些特殊值的尾数进行判定分析,如5x的尾数只能是0或者5,10x 的尾数就是0等。

例3.某国硬币有5分和7分两种,问用这两种硬币支付142分货款,且硬币不剩余,有多少种不同的方法?
A.3
B.4
C.6
D.8
中公解析:根据题意设5分和7分硬币分别有x、y个,则5x+7y=142。

5x的尾数为0或者5,那么7y的尾数就是2或者7,那么y的取值可以是6、16、1、11这四种情况,故答案选B。

3、奇偶性
例4. 5x+4y=144且x、y都是整数,则y可以为下列哪个数?
A.20
B.25
C.29
D.31
中公解析:由不定方程可以知:4y、144都为偶数,那么5x也一定为偶数,则5x的尾数为0,进而4y的尾数为4,选项中只有D选项乘以4后尾数是4,故答案选D。

由例4我们发现,整除法、尾数法、奇偶性等方法有时候并不是孤立使用的,在考试题目中往往需要多个方法融汇使用,这一点考生在做题时一定要注意。

中公教育专家提醒考生,不定方程并不难,掌握诀窍很重要,快速解题是关键,希望各位考生能快速学会以上方法并加以一定量的练习,解不定方程一定可以又快又准。

本文摘自:/。

相关文档
最新文档