高等代数-北京大学第三版--北京大学精品课程
北京大学数学系《高等代数》(第3版)(欧几里得空间)笔记和课后习题(含考研真题)详解【圣才出品】
第9章欧几里得空间9.1复习笔记一、定义与基本性质1.欧几里得空间定义设V是实数域R上一线性空间,在V上定义了一个二元实函数,称为内积,记作(α,β),它具有以下性质:(1)(α,β)=(β,α);(2)(kα,β)=k(α,β);(3)(α+β,γ)=(α,γ)+(β,γ);(4)(α,α)≥0,当且仅当α=0时(α,α)=0.这里α,β,r是V中任意的向量,k是任意实数,这样的线性空间V称为欧几里得空间.2.长度(1)定义非负实数称为向量α的长度,记为|α|.(2)关于长度的性质①零向量的长度是零,②|kα|=|k||α|,③长度为1的向量称为单位向量.如果α≠0,向量1αα就是一个单位向量,通常称此为把α单位化.3.向量的夹角(1)柯西-布涅柯夫斯基不等式,即对于任意的向量α,β有|(α,β)|≤|α||β|当且仅当α,β线性相关时,等号才成立.(2)非零向量α,β的夹角<α,β>规定为(3)如果向量α,β的内积为零,即(α,β)=0,那么α,β称为正交或互相垂直,记为α⊥β.零向量才与自己正交.(4)勾股定理,即当α,β正交时,|α+β|2=|α|2+|β|2.4.有限维空间的讨论(1)度量矩阵设V是一个n维欧几里得空间,在V中取一组基ε1,ε2,…,εn,对V中任意两个向量α=x1ε1+x2ε2+…+x nεn,β=y1ε1+y2ε2+…+y nεn,由内积的性质得a ij=(εi,εj)(i,j=1,2,…,n),显然a ij=a ji,于是利用矩阵,(α,β)还可以写成(α,β)=X'AY,其中分别是α,β的坐标,而矩阵A=(a ij)nn称为基ε1,ε2,…,εn的度量矩阵.(2)性质①设η1,η2,…,ηn是空间V的另外一组基,而由ε1,ε2,…,εn到η1,η2,…,ηn的过渡矩阵为C,即(η1,η2,…,ηn)=(ε1,ε2,…,εn)C,于是基η1,η2,…,ηn的度量矩阵B=(b ij)=(ηi,ηj)=C'AC;表明不同基的度量矩阵是合同的.②对于非零向量α,即有(α,α)=X'AX>0.因此,度量矩阵是正定的.二、标准正交基1.正交向量组欧式空间V中一组非零的向量,如果它们两两正交,就称为一正交向量组.按定义,由单个非零向量所成的向量组也是正交向量组.2.标准正交基(1)定义在n维欧氏空间中,由n个向量组成的正交向量组称为正交基;由单位向量组成的正交基称为标准正交基.说明:①对一组正交基进行单位化就得到一组标准正交基.②一组基为标准正交基的充分必要条件是:它的度量矩阵为单位矩阵.(2)标准正交基的求法①定理1n维欧氏空间中任一个正交向量组都能扩充成一组正交基.②定理2对于n维欧氏空间中任意一组基ε1,ε2,…,εn,都可以找到一组标准正交基η1,η2,…,ηn,使L(ε1,ε2,…,εi)=L(η1,η2,…,ηi),i=1,2,…,n.定理2中把一组线性无关的向量变成一单位正交向量组的方法称做施密特正交化过程.例:把α1=(1,1,0,0),α3=(-1,0,0,1),α2=(1,0,1,0),α4=(1,-1,-1,1)变成单位正交的向量组.解:①先把它们正交化,得β1=α1=(1,1,0,0),②再单位化,得3.基变换公式设ε1,ε2,…,εn与η1,η2,…,ηn是欧氏空间V中的两组标准正交基,它们之间的过渡矩阵是A=(a ij),即因为η1,η2,…,ηn是标准正交基,所以矩阵A的各列就是η1,η2,…,ηn在标准正交基ε1,ε2,…,εn下的坐标.4.正交矩阵n级实数矩阵A称为正交矩阵,如果A'A=E.由标准正交基到标准正交基的过渡矩阵是正交矩阵;反过来,如果第一组基是标准正交基,同时过渡矩阵是正交矩阵,那么第二组基一定也是标准正交基.三、同构1.同构定义实数域R上欧式空间V与V'称为同构的,如果由V到V'有一个双射σ,满足(1)σ(α+β)=σ(α)+σ(β),(2)σ(kα)=kσ(α),(3)(σ(α),σ(β))=(α,β),这里α,β∈V,k∈R,这样的映射σ称为V到V'的同构映射.同构的欧氏空间必有相同的维数.每个n维的欧氏空间都与R n同构.2.同构的性质同构作为欧氏空间之间的关系具有(1)反身性;(2)对称性;(3)传递性;(4)两个有限维欧氏空间同构的充分必要条件是它们的维数相同..四、正交变换1.定义欧氏空间V的线性变换A称为正交变换,如果它保持向量的内积不变,即对于任意的α,β∈V,都有(Aα,Aβ)=(α,β).2.性质。
北京大学数学系《高等代数》(第3版)(双线性函数与辛空间)笔记和课后习题(含考研真题)详解【圣才出品
第10章双线性函数与辛空间10.1复习笔记一、线性函数1.定义设V是数域P上的一个线性空间,f是V到P的一个映射,如果f满足(1)f(α+β)=f(α)+f(β),(2)f(kα)=kf(α),式中α、β是V中任意元素,k是P中任意数,则称f为V上的一个线性函数.2.性质(1)设f是V上的线性函数,则f(0)=0,f(-α)=-f(α).(2)如果β是α1,α2,…,αs的线性组合:β=k1α1+k2α2+…+k sαs.那么f(β)=k1f(α1)+k2f(α2)+…+k s f(αs).3.矩阵的迹A是数域P上一个n级矩阵.设则A的迹Tr(A)=a11+a22+…+a nn是P上全体n级矩阵构成的线性空间P n×n上的一个线性函数.4.定理设V是P上一个n维线性空间,ε1,ε2,…,εn是V的一组基,a1,a2,…,a n是P中任意n个数,存在唯一的V上线性函数f使f(εi)=a i,i=1,2,…,n.二、对偶空间1.L(V,P)的加法和数量乘法(1)设f,g是V的两个线性函数定义函数f+g如下:(f+g)(α)=f(α)+g(α),α∈V,f+g也是线性函数:f+g称为f与g的和.(2)设f是V上线性函数.对P中任意数k,定义函数kf如下:(kf)(α)=k(f(α)),α∈V,kf称为k与f的数量乘积,易证kf也是线性函数.2.L(V,P)的性质(1)对V中任意向量α,有而对L(V,P)中任意向量f,有(2)L(V,P)的维数等于V的维数,而且f1,f2,…,f n是L(V,P)的一组基.3.对偶空间(1)定义L(P,V)称为V的对偶空间.由决定的L(V,P)的基,称为ε1,ε2,…,εn的对偶基.V的对偶空间记作V*.(2)对偶基的性质(1)设ε1,ε2,…,εn及η1,η2,…,ηn是线性空间V的两组基,它们的对偶基分别为f1,f2,…,f n及g1,g2,…,g n.如果由ε1,ε2,…,εn到η1,η2,…,ηn的过渡矩阵为A,那么由f1,f2,…,f n到g1,g2,…,g n的过渡矩阵为(A')-1.(2)设V是P上一个线性空间,V*是其对偶空间.取定V中一个向量x,定义V*的一个函数x**如下:x**(f)=f(x),f∈V*.则x**是V*上的一个线性函数,因此是V*的对偶空间(V*)*=V**中的一个元素.(3)V是一个线性空间,V**是V的对偶空间的对偶空间.V到V**的映射x→x**是一个同构映射.结论:任一线性空间都可看成某个线性空间的线性函数所成的空间.三、双线性函数1.定义V是数域P上一个线性空间,f(α,β)是V上一个二元函数,即对V中任意两个向量α,β,根据f都唯一地对应于P中一个数f(α,β).如果f(α,β)有下列性质:(1)f(α,k1β1+k2β2)=k1f(α,β1)+k2f(α,β2);(2)f(k1α1+k2α2,β)=k1f(α1,β)+k2f(α2,β).其中α,α1,α2,β,β1,β2是V中任意向量,k1,k2是P中任意数,则称f(α,β)为V 上的一个双线性函数.2.常用结论(1)欧氏空间V的内积是V上双线性函数;(2)设f1(α),f2(α)都是线性空间V上的线性函数,则f(α,β)=f1(α)f2(β),α,β∈V是V上的一个双线性函数.(3)设P n是数域P上n维列向量构成的线性空间X,Y∈P n,再设A是P上一个n 级方阵.令f(X,Y)=X'AY,则f(X,Y)是P n上的一个双线性函数.3.度量矩阵(1)定义设f(α,β)是数域P上n维线性空间V上的一个双线性函数.ε1,ε2,…,εn是V的一组基,则矩阵称为f(α,β)在ε1,ε2,…,εn下的度量矩阵.(2)性质①度量矩阵被双线性函数及基唯一确定.②不同的双线性函数在同一组基下的度量矩阵一定是不同的.③在不同的基下,同一个双线性函数的度量矩阵一般是不同的,但是在不同基下的度量矩阵是合同的.4.非退化设f(α,β)是线性空间V上一个双线性函数,如果f(α,β)=0,对任意β∈V,可推出α=0,f就称为非退化的.双线性函数f(α,β)是非退化的充要条件为其度量矩阵A为非退化矩阵.5.对称双线性函数(1)定义f(α,β)是线性空间V上的一个双线性函数,如果对V中任意两个向量α,β都有f (α,β)=f(β,α),则称f(α,β)为对称双线性函数.如果对V中任意两个向量α,β都有f(α,β)=-f(β,α),则称f(α,β)为反对称双线性函数.这就是说,双线性函数是对称的,当且仅当它在任一组基下的度量矩阵是对称矩阵.同样地,双线性函数是反对称的当且仅当它在任一组基下的度量矩阵是反对称矩阵.(2)性质(1)设V是数域P上n维线性空间,f(α,β)是V上对称双线性函数,则存在V的一组基ε1,ε2,…,εn,使f(α,β)在这组基下的度量矩阵为对角矩阵.(2)设V是复数域上n维线性空间,f(α,β)是V上对称双线性函数,则存在V的一组基ε1,ε2,…,εn,对V中任意向量,有(3)设V是实数域上n维线性空间.f(α,β)是V上对称双线性函数.则存在V的一组基ε1,ε2,…,εn,对V中任意向量,有(4)V上的对称双线性函数f(α,β)如果是非退化的.则有V的一组基ε1,ε2,…,εn满足前面的不等式是非退化条件保证的,这样的基称为V的对于f(α,β)的正交基.6.二次齐次函数对称双线性函数与二次齐次函数是1-1对应的.设V是数域P上线性空间,f(α,β)是V上双线性函数.当α=β时,V上函数f(α,β)称为与f(α,β)对应的二次齐次函数.7.反对称双线性函数性质(1)设f(α,β)是n维线性空间V上的反对称线性函数,则存在V的一组基ε1,ε。
高等代数课件北大三版 第六章 向量空间
惠州学院数学系
9
(a2) [f(x)+g(x)]+h(x)= f(x)+ [g(x) +h(x) ],
任给f(x),g(x),h(x) ? F[x].
(a3) 0向量就是零多项式. (a4) f(x)的负向量为(- f(x)). (m1) (ab) f(x)= a(bf(x)).
(m2) a [f(x)+g(x)]= a f(x)+ a g(x). (m3) (a ? b) f(x)= a f(x)+ b f(x).
加法和数乘两种,并且满足(教材P183):
1. A+B=B+A 2. (A+B)+C= A+( B+C) 3. O+A=A 4. A+(-A)=O
5. a(A+B)= aA+Ab 6. (a+b)B=a B +Bb 7. (ab)A=a(b)A 还有一个显而易见的: 8. 1A =A
惠州学院数学系
5
(m4) 1 ? f(x)= f(x).
注1:刚开始,步骤要完整.
惠州学院数学系
10
例5 C[a,b] 表示区间[a,b] 上连续实函数按照通常的加法 与数乘构成实数域 R的向量空间,称为函数空间 . 证明: 比照例3,给出完整步骤. 例6 (1)数域F是F上的向量空间. (2)R是Q上的向量
空间,R是否为C上的向量空间?
惠州学数学系
12
例8 在 R2 上定义加法和数乘:
(a, b) ? (c, d) ? (a ? c, b ? d ? ac) k (a,b) ? (ka, kb? k(k ? 1) a 2 )
2
证明 R2 关于给定运算构成R上的向量空间.
《高等代数》考试大纲
《高等代数》考试大纲一.课程任务二.教材与参考书目1.教材:1.《高等代数》北京大学数学系几何与代数教研室代数小组编,第三版,高等教育出版社,2003年7月。
2.《高等代数辅导与习题解答》王萼芳,石生明编,高等教育出版社,2007年2月。
3.《高等代数》丘维声编,第二版,高等教育出版社,2002年7月。
4.《LinearAlgebra》彭国华,李德琅编,高等教育出版社,2006年5月。
5.《高等代数解题方法与技巧》李师正主编,高等教育出版社,2004年2月。
三.课程考核方法与命题要求本课程考核以笔试为主,一般采用闭卷形式,主要考核学生对基础理论,基本概念的掌握程度,以及学生逻辑推理能力计算能力以及综合应用能力。
平时成绩占30%,期末成绩占70%。
考试大纲根据教学目标,划分标准为“识记、领会、简单应用、综合应用”四级,其中识记占20%,领会占30%,简单应用占40%,综合应用占10%,考试的试题应按照这四个层次,按比例命题。
本课程考试题型分为客观题和主观题两部分,其中客观题目有选择题(判断题)、填空题,主观题有解答题(计算题)、证明题等。
(第二学期考核第一至第五章部分;第三学期考核第六至第九章部分)四.课程内容与考核要求第一章基本概念1.知识范围:本章主要介绍集合,映射,数学归纳法,整数的一些整除性质,数环和数域的基本知识。
2.考核要求:深入理解集合的相等、子集、空集、交集、卡氏集等概念及他们之间的关系,掌握映射、满射、单射、双射、映射的合成、可逆映射的概念和映射可逆的充要条件,理解和掌握数学归纳法原理,整数的性质及带余除法、最大公因数与互素、素数的一些简单性质。
能够判别一些数集是否为数环、数域。
3.考核知识点:映射、满射、单射、双射、映射的合成、可逆映射,映射可逆的充要条件,数学归纳法原理,整数的性质及带余除法、最大公因数与互素、素数的一些简单性质,数环、数域的概念。
第二章多项式1.知识范围:本章主要讨论了多项式的整除性,最大公因,因式分解及在常见数域(有理数域、实数域、复数域)上多项式的约性,多项式根的一些性质,属多项式代数的基本知识,是对中学所学知识的加深和推广。
专业课《高等代数》考研大纲和参考书目
*正交变换,对称变换;
*对称矩阵的标准型及用正交线性替换化二次型为标准型;
酉空间介绍。
矩阵线性运算,乘法,转置及运算律;
矩阵初等变换,初等矩阵;
逆矩阵极其存在条件,求逆矩阵;
分块矩阵运算;
二次型:
*二次型的矩阵表示;
矩阵合同
*可逆线性变换化二次型为标准型;
惯性定理;
*正定二次型判定;
线性空间
线性空间的定义与性质;
*有限维线性空间的基与维数,向量坐标;
*基变换与坐标变换;
*子空间定义,维数与基、维数公式;
*复系数与实系数多项式的因式分解;
行列式:
*行列式的定义;
*行列式性质及按行按列展开法则,并用此计算行列式;
Laplace定理;
*克莱拇法则;
*线性方程组:
消元法;
向量组的线性相关与线性无关性,向量组的极大无关组与秩;
矩阵的秩及求法;
线性方程组有解判别定理;
线性方程组基础解系、通解及解的结构;
*矩阵:
专业课《高等代数》考研大纲和参考源自目参考教材及参考书:《高等代数》(第三版),北京大学编,高等教育出版社
《高等代数教程》(上、下册),王萼芳等编,清华大学出版社
课程内容(打*部分内容或章节要求重点掌握)
多项式:
*整除概念,带余除法理论;
最大公因式定义及求法;
*多项式互素的概念与性质;
*因式分解定理和不可约多项式的性质;
*子空间的交与和,直和;
线性空间的同构;
*线性变换
线性变换的运算,线性变换的矩阵
特征值与特征向量;
可对角化问题;
线性变换的值域与核;
北京大学数学系《高等代数》(第3版)(课后习题 双线性函数与辛空间)
第10章 双线性函数与辛空间1.V是数域P上一个3维线性空间,ε1,ε2,ε3是它的一组基,f是V上一个线性函数,已知f(ε1+ε3)=1,f(ε2-2ε3)=-1,f(ε1+ε2)=-3,求f(x1ε1+x2ε2+x3ε3).解:先计算出f(ε1)=4,f(ε2)=-7,f(ε3)=-3,就得到f(x1ε1+x2ε2+x3ε3)=4x1-7x2-3x3.2.V及ε1,ε2,ε3同上题,试找出一个线性函数f,使f(ε1+ε3)=f(ε1-2ε3)=0,f(ε1+ε2)=1.解:可算出f(ε1)=f(ε3)=0,f(ε2)=1,就得到f(x1ε1+x2ε2+x3ε3)=x2.3.设ε1,ε2,ε3是线性空间V的一组基,f1,f2,f3是它的对偶基,a1=ε1-ε3,a2=ε1+ε2+ε3,a3=ε2+ε3.试证a1,a2,a3是V的一组基并求它的对偶基(用f1,f2,f3表出).解:可利用定理3.计算由于右端的矩阵的行列式≠0,故a1,a2,a3是V的一组基.设g1,g2,g3是a1,a2,a3的对偶基,则即g1=f2-f3,g2=f1-f2+f3,g3=-f1+2f2-f3.4.设V是一个线性空间,f1,f2,…,f n是V*中非零向量,试证,存在a∈V,使f(a)≠0,i=1,2, (5)证明:每个f i(a)=0作为V上向量的方程,其全体解向量构成V的一个子空间V,且都不等于V.由第六章补充题第5题的结论及解答后面的注,必有a∈V,a∈,i=1,2,…,s.所以a满足f i(a)≠0,i=1,2,V…,s.5.设a1,a2,…,a s是线性空间V中非零向量,证明有f∈V*使f(a i)≠0,i=1,2,…,s.证明:由于a i**∈(V*)*,a i**(f)=f(a i),f∈V*,a i**是(V*)*上的非零向量.由第四题必有f∈V*使f(a i)=a i**(f)≠0.6.V=P[x]3,对p(x)=c0+c1x+c2x2∈V定义试证f1,f2,f3都是V上线性函数,并找出V的一组基p1(x),p2(x),p3(x)使f1,f2,f3是它的对偶基.证明:易证f1,f2,f3都是V=P[x]3上线性函数.令p1(x)=c0+c1x+c2x2使得f1(p1(x))=1,f2(p1(x))=f3(p1(x))=0,即有解出得同样可算出满足由于p1(x),p2(x),p3(x)是V的一组基,而f1,f2,f3是它的对偶基.7.设V是一个n维欧氏空间,它的内积为(α,β),对V中确定的向量α,定义V 上一个函数α*:α*(β)=(α,β).(1)证明α*是V上线性函数;(2)证明V到V*的映射:α→α*是V到V*的一个同构映射.(在这个同构下,欧氏空间可看成自身的对偶空间)证明:(1)易证α*是V上线性函数,即α*∈v*.(2)现在令映射φ为下面逐步证明φ是线性空间的同构.①φ是单射.即证明当φ(α)=φ(β)时有α=β.对γ∈V,(φ(α))(γ)=α*(γ)=(α,γ),(φ(β))(γ)=(β,γ).故(α,γ)=(β,γ),∨γ∈V.这样(α,α)=(β,α),(α,β)=(β,β).于是(α-β,α-β)=(α,α)-(α,β)-(β,α)-(β,β)=0,即有α-β=0,因此α=β.②φ是满射.取ε1,ε2,…,εn 是V 的一组标准正交基,令f 1,f 2,…,f n 是它们的对偶基,对f =l 1f 1+…+l n f n ∈V*,令a =l 1ε1+l 2ε2+…+l n εn 则对所有εi ,∀故对所有εi ,有φ(α)(εi )=f (εi ),即φ(α)=f .③φ是线性映射.对α,β,γ∈V,k∈R,∀ φ(α+β)(γ)=(α+β,γ)=(α,γ)+(β,γ)=φ(α)(γ)+φ(β)(γ)=[φ(α)+φ(β)](γ).故φ(α+β)=φ(α)+φ(β).又φ(kα)(γ)=(kα,γ)=k (α,γ)=kφ(α)(γ)=(kφ(α))(γ),故φ(kα)=kφ(α).以上证明了φ是线性空间V 到V *的同构.8.设A 是P 上n 维线性空间V 的一个线性变换.(1)证明:对V 上的线性函数f ,fA 仍是V 上线性函数;(2)定义V *到自身的映射A *为f→fA证明A *是V *上的线性变换(3)设ε1,ε2,…,εn 是V 的一组基,f 1,f 2,…,f n 是它的对偶基,并设A 在ε1,ε2,…,εn 下的矩阵为A .证明:A *在f 1,f 2,…,f n 下的矩阵为A'.(因此A *称作A 的转置映射)证明:(1)α,β∈V,k∈P,有∀∀f A (α+β)=f (A (α+β))=f (A α+A β)=f A α+f A β,f A (kα)=f (A (kα))=f (k A α)=kf A α.故f A 是V 上线性函数.(2)由定义A *f =f A ,对f ,g∈V *,k∈P,α∈V 有∀A *(f +g )(α)=[(f +g )A ](α)=(f +g )(A (α))=f A (α)+g A (α)=(f A +g A )(α)=(A *f +A *g )(α)故A *(f +g )=A *(f )+A *(g ).又(A *(kf ))(α)=(kf )A (α)=kf (A (α))=k (A *f )(α),故A *(kf )=k (A *f ).以上证明了A *是V *上的线性变换.(3)由A (ε1,ε2,…,εn )=(ε1,ε2,…,εn )A ,f i A (ε1,ε2,…,εn )=(f i (ε1),…,f i (εn ))A =(a i1,a i2,…,a in ),于是即有。
高等代数 北大 课件
拉普拉斯定理与因式分解
总结词
拉普拉斯定理的表述、应用和因式分解的方法。
详细描述
拉普拉斯定理是行列式计算中的重要定理,它提供了计算行列式的一种有效方法。因式分解是将多项式分解为若 干个因子的过程,是解决代数问题的重要手段之一。
CHAPTER 04
矩阵的分解与二次型
矩阵的分解
01
02
03
矩阵的三角分解
矩阵的乘法
矩阵的乘法满足结合律和分配律,但不一定满足 交换律。
பைடு நூலகம்
矩阵的逆与行列式
矩阵的逆
对于一个非奇异矩阵,存在一个逆矩阵,使得原矩阵 与逆矩阵相乘等于单位矩阵。
行列式的定义
行列式是一个由矩阵元素构成的数学量,可以用于描 述矩阵的某些性质。
行列式的性质
行列式具有一些重要的性质,如交换律、结合律、分 配律等。
将一个矩阵分解为一个下 三角矩阵和一个上三角矩 阵之积。
矩阵的QR分解
将一个矩阵分解为一个正 交矩阵和一个上三角矩阵 之积。
矩阵的奇异值分解
将一个矩阵分解为若干个 奇异值和若干个奇异向量 的组合。
二次型及其标准型
二次型的定义
一个多项式函数,可以表示为$f(x_1, x_2, ..., x_n) = sum_{i=1}^{n} sum_{ j=1}^{n} a_{ij} x_i x_j$,其中 $a_{ij}$是常数。
VS
二次型的标准型
通过线性变换,将一个二次型转化为其标 准形式,即一个平方项之和减去另一个平 方项之和。
正定二次型与正定矩阵
正定二次型的定义
对于一个二次型,如果对于所有 的非零向量$x$,都有$f(x) > 0$ ,则称该二次型为正定二次型。
北京大学高等代数3
向量空间是带运算的集合
数域 K 上全体 n 维向量构成的集合, 连同其上定义的加法、数乘运算, 构成 n 维向量空间, 记为 Kn .
从向量空间到线性空间
在前两章中, 我们已经可以看到向量方法的威力. 在 Gauss 消元法中, 我们对行向量组做初等变换, 用向量表示解集合; 要从几何上理解行列式, 理解克莱姆法则, 也离不开向量…
例: 仅由八条性质就可推出
4) k K , 有 k 0 = 0 . 证: k 0 = 0 + k 0
= ((–k0)+k0)+k0 =(–k0)+( k0 + k0 ) =(–k0)+ k(0+0) =(–k0)+ k0 =0
性质 (3) 性质 (4) 性质 (2) 性质 (7) 性质 (3) 性质 (4)
1. α β β α
2. ( α β ) γ α ( β γ )
3. 0, α , α 0 α (存在零元素)
4. α , β, α β 0
(存在负元素)
5. 1α α
6. ( k l )α k α l α
7. k (α β) k α k β 8. ( k l )α k (l α)
( 麻省理工开放课程教学影片)
课件下载:
/index.jsp
用户名:linalg1 密码: linalg1
linalg2
linalg2
…
…
linalg10
linalg10
进入后点击 讲义资料 下载
第三章 线性空间
1 向量空间与线性空间 2 线性相关与线性无关 3 向量组的极大无关组与秩 4 线性空间的基与维数 5 矩阵的秩 6 线性方程组解的结构
北京大学数学系《高等代数》考点讲义
绪 论 1 第一章 多项式 4 第二章 行列式 13 第三章 线性方程组 19 第四章 矩阵 25 第五章 二次型 31 第六章 线性空间 35 第七章 线性变换 40 第八章 λ-矩阵 43 第九章 欧氏空间 44
三、教材选用
主要参考教材:《高等代数》(第三版),高等教育出版社,2003,北京大学数学系几何与代数教研 室代数小组编.
1.该教材的内容覆盖了《高等代数》考试大纲的所有内容和知识点. 2.全国采用该教材的学校所占比例非常大. 3.该教材荣获全国高等学校优秀教材. 4.该教材习题编排较好,有梯度.
四、考题综述及变化趋势
— 1—
量、矩阵的若当标准型、矩阵的方幂、矩阵的对角化、矩阵的秩、矩阵张成的线性空间、正定矩阵等概 念,分值占到 150分中的 105分.
厦门大学 2012年考题中,16道题中有 10道题考察了矩阵的相关概念和理论. 中科院研究生院 2012年考题中,8道题中有 5道题考察了矩阵的相关内容. (2)线性空间和线性变换理论. 南开 2012年试题中,9道题中有 4道题考察了线性空间及线性变换的内容,占到 150分中的 70分. (3)多项式理论. 多项式理论在各校的考研题中所占的比例适中,一般占到 150分的 15分至 25分,但这部分内容 是各校考试题中的必考内容. 3.从方法看,考察的热点有: (1)矩阵的初等变换方法; (2)特征值和特征向量方法; (3)标准正交化方法; (4)子空间直和的判定方法. 4.发展趋势 (1)题型仍会以证明题和计算题为主,因为研究生考试重点考察学生分析问题的能力及综合利用 知识解决问题的能力. 但随着数学在各个领域的应用逐渐扩大,计算题的比重有上升的趋势. (2)考察内容仍将以矩阵理论、线性空间和线性变换理论、多项式理论和线性方程组为热点内容. (3)注意新的概念和新的理论的出现. 中山大学 2001年考察了线性空间商空间的概念、对偶空间、子空间的零化子等概念. (4)反问题的讨论. (南京航天航空大学 2011)(20分)设二次型 f(x1,x2,x3) =a(x2 1 +x2 2 +x2 3)+2b(x1x2 +x1x3 + x2x3)经过正交变换 X =CY化为二次型 3y2 1 +3y2 2,求参数 a,b的值及正交矩阵.
高等代数-北京大学第三版--北京大学精品课程
一个集合,如果在它里面存在一种或若干种代数运算,这些运算满足一定的运算法则, 则称这样的一个体系为定义(数域) 设K 是某些复数所组成的集合。
如果 K 中至少包含两个不同的复数,且 K 对复数的加、减、乘、四则运算是封闭的,即对K 内任两个数a 、 b ( a 可 以等于b ), 必有b K , abK ,且当b 0时,a/b K ,则称K 为一个数域。
1.1典型的数域举例:复数域C ;实数域R ;有理数域Q ; Gauss 数域:Q (i) = { a b i | a, b € Q},其中 i = •.1命题 任意数域K 都包括有理数域Q 。
证明 设K 为任意一个数域。
由定义可知,存在一个元素K ,且 a 0。
于是进而最后,m, n Z巴K 。
这就证明了nK 。
证毕。
1.1.3集合的运算, 集合的映射(像与原像、单射、满射、双射)的概念 和B 中的元素合并在一起组成的集合成为A 与B 的并集, 记做A B ;从集合A 中去掉属于B 的那些元素之后剩定义(集合的映射) 设A 、B 为集合。
如果存在法则f ,使得A 中任意元素a 在法则f 下对应B 中唯一确定若a a'代都有f (a)第一章代数学的经典课题§ 1若干准备知识1.1.1代数系统的概念个代数系统。
1.1.2数域的定义定义(集合的交、并、差)设S 是集合,A 与B 的公共元素所组成的集合成为A 与B 的交集,记作A B ;把A下的元素组成的集合成为A 与B 的差集,记做A B 。
的元素(记做f(a)),则称f 是A 到B 的一个映射,记为B, f (a).如果f(a) b B ,则b 称为a 在f 下的像,a 称为b 在f 下的原像。
A 的所有元素在f 下的像构成的 B 的子集称为A 在f 下的像,记做f (A),即 f (A) f(a)| a A 。
f(a'),则称f 为单射。
若 b B,都存在a A ,使得f(a) b ,则称f 为满射。
高等代数(1)课程教学大纲
高等代数(1)课程教学大纲第一部分前言一、课程基本信息1.课程类别:专业基础课2.开课单位:数学与财经系3.适用专业:数学与应用数学专业4.备选教材:《高等代数(第三版)》,北京大学数学系几何与代数教研室前代数组编.高等教育出版社,2003.二、课程性质和目标高等代数是数学与应用数学专业的一门重要基础课程。
本课程的主要内容是多项式理论和线性代数理论。
通过本课程的教学,使学生掌握代数基本理论和基本方法,培养学生代数方面的科学的思维、抽象的思维,逻辑推理、提高运算以及解决实际应用的能力,为进一步学习专业后续课程奠定坚实的代数基础。
本课程的教学目的是使学生获得一元多项式,行列式,线性方程组,矩阵等方面的系统知识,为进一步学习近世代数,复变函数、等后续课程打下坚实的基础,也为深入理解初等数学、指导中学数学教学提供了高等的专业知识与重要的方法论。
通过本门课程系统的学习与严格的训练,全面掌握高等代数的基本理论知识;培养抽象的逻辑思维能力与推理论证能力;具备熟练的运算能力与技巧;提高建立数学模型,并应用代数学的理论知识解决实际应用问题的能力。
三、课程学时与学分教学时数:96学时,其中理论教学81学时,实践教学15学时学分数: 6 学分教学时数具体分配:第二部分教学内容及其要求第一章多项式1.教学目标:要求学生理解数域的概念;掌握一元多项式的概念、运算及基本性质;掌握带余除法与整除性的关系,会进行相关运算;会求多项式的最大公因式;理解不可约多项式的概念,掌握求重因式的方法;理解多项式在不同的数域的因式分解形式;掌握Eisenstein判别法,会求有理系数多项式的根。
2.教学重点:整除概念,带余除法及整除的性质,最大公因式、互素、辗转相除法、不可约多项式概念、性质,k重因式与k重根的关系。
3.教学难点:因式分解及唯一性定理,多项式根的理论,复(实)系数多项式分解定理,本原多项式,Eisenstein判别法。
4.教学时数5.教学内容纲要:第一节数域一、代数研究的基本问题。
北京大学数学系《高等代数》(第3版)(名校考研真题 欧几里得空间)
第9章 欧几里得空间一、分析计算题1.设B 是实数域上n×n 矩阵,,对任一大于0的常数n ,证明定义了的一个内积,使得成为欧氏空间.其中表示列向量的转置,E表示单位矩阵.[浙江大学研]证明:(1)(2)(3)(4)由于,所以由上可知,定义了上的一个内积,从而成为欧氏空间.2.设n 维欧氏空间的两个线性变换在V 的基下的矩阵分别是A 和B ,证明:,都有,则存在正定矩阵P ,使[武汉大学研]证明:由题设任给,令则同理令基的度量矩阵为,则同理因,故考虑的任意性,并结合与均为对称矩阵知3.设是n 维欧氏空间V 子空间,且的维数小于的维数,证明必有一个非零向量正交于中一切向量.[浙江大学研]证:证法1:由于恰由一切与正交的向量组成,所以只要证明即可.事实上,如,则为直和.所以又 所以 所以 所以矛盾.证法2:(1)当时,结论显然成立.(2)设,取的基的基令因为等价于(1)而方程组(1)的方程个数未知量个数s ,所以它有非零解.即使.4.设α是欧氏空间V 的线性变换,τ是V 的一个变换,且.都有(σ(α),β)=(α,τ(β)).证明:(1)τ是V 的线性变换;(2)τ的值域Imτ等于σ的核ker (σ)的正交补.[武汉大学研]证明:(1)β,α,γ∈V∈V,由题设可得由α的任意性知(1)同理,λ∈R,ξ∈V,有(2)所以由式(1)、式(2)得τ是V的线性变换.(2)可等价地证明①,有所以②如,则有所以从而结合①、②可得5.设S 是酉空间V 的一个非空集合,记证明:是子空间,且,并举例说明不一定成立.[西安交通大学研]证明:对给定的集合S ,显然V 的零元素属于,所以(复数域),对任一γ∈S 有所以即由α、β、k 、l的任意性知是V的子空间.又,由题设知可见 因此不一定成立,如在酉空间中,取S={(0,0,1)},S 不是V 的子空间,但是V 的子空间,所以6.在欧氏空间V 中(1)若向量α,β等长,证明:α+β与α-β正交,作出几何解释;(2)设V 是n 维的,S 是V 的子空间,是V 中的一切与s 正交的向量所成集合,证明:是V的子空间,且[四川大学研]证明:(1)因为,所以几何解释:表示菱形两对角线互相垂直.(2)由已知有仿上题可证是V 的予空间,且,故①成立,且故S 和是同一子空间的正交补,由正交补的惟一性,即证②.7.实矩阵A 和B ,证明:A 和B 实相似的充要条件是复相似.[复旦大学研]证明:必要性显然.下证充分性,设A 与B 复相似,即存在复可逆阵使其中M 和H 都是n 阶实方阵,由①有,此即因为故不是零多项式,它在复数域上仅有有限个根,从而存在实数a ,使,令有8.设T 是酉空间V 的一个线性变换,证明:下面四个命题互相等价.(1)T 是酉变换;(2)T 是同构映射;(3)如果是标准正交基,那么也是标准正交基;(4)T 在任一组标准正交基下的矩阵为酉矩阵.[湖南大学研] 证明:(1)=>(3)设T 是酉变换,即取为V 的一组标准正交基,且。
北京大学数学系《高等代数》(第3版)【教材精讲+考研真题解析】第9章 欧式空间 【圣才出品】
第9章欧式空间[视频讲解]9.1本章要点详解本章要点■欧式空间的定义■标准正交基■同构■正交变换■子空间■对称矩阵的标准型重难点导学一、定义与基本性质1.欧式空间的定义设V 是实数域R 上一线性空间,在V 上定义了一个二元实函数,记作(α,β),若(α,β)满足(1)(α,β)=(β,α);(2)(k α,β)=k (α,β);(3)(α+β,γ)=(α,γ)+(β,γ);(4)(α,α)≥0,当且仅当α=0时(α,α)=0.这里α,β,r 是V 中任意的向量,k 是任意实数,则称(α,β)为α和β的内积,并称线性空间V 为欧几里得空间.2.内积的简单性质V 为欧氏空间,∀α,β,γ,∀k ∈R ,则(1)(,)(,)k k =αβαβ;(2)(,)(,)(,)+=+αβγαβαγ;(3)(0,)=0β.2.欧氏空间中向量的长度(1)向量长度的定义非负实数称为向量α的长度,记为|α|.(2)关于长度的性质①零向量的长度是零;②|kα|=|k||α|;③长度为1的向量称为单位向量.如果α≠0,向量1αα就是一个单位向量,称此过程为把α单位化.3.欧氏空间中向量的夹角(1)柯西-布涅柯夫斯基不等式,即对于任意的向量α,β有|(α,β)|≤|α||β|当且仅当α,β线性相关时,等号才成立.(2)非零向量α,β的夹角<α,β>定义为(3)如果向量α,β的内积为零,即(α,β)=0,则称α,β为正交或互相垂直,记为α⊥β.注:零向量才与自己正交.(4)勾股定理:当α,β正交时,|α+β|2=|α|2+|β|2.4.有限维空间的讨论(1)度量矩阵设V是一个n维欧几里得空间,在V中取一组基ε1,ε2,…,εn,对V中任意两个向量α=x1ε1+x2ε2+…+x nεn,β=y1ε1+y2ε2+…+y nεn,由内积的性质得a ij=(εi,εj)(i,j=1,2,…,n)有a ij=a ji,则(α,β)还可写成(α,β)=X'AY,其中分别是α,β的坐标,而矩阵A=(a ij)nn称为基ε1,ε2,…,εn的度量矩阵.(2)性质①设η1,η2,…,ηn是空间V的另外一组基,而由ε1,ε2,…,εn到η1,η2,…,ηn的过渡矩阵为C,即(η1,η2,…,ηn)=(ε1,ε2,…,εn)C,于是基η1,η2,…,ηn的度量矩阵B=(b ij)=(ηi,ηj)=C'AC,则不同基的度量矩阵是合同的.②对于非零向量α,即有(α,α)=X'AX>0.因此,度量矩阵是正定的.二、标准正交基1.正交向量组欧式空间V中一组非零的向量,如果它们两两正交,称为正交向量组.按定义,由单个非零向量所成的向量组也是正交向量组.2.标准正交基(1)定义在n维欧氏空间中,由n个向量组成的正交向量组称为正交基;由单位向量组成的正交基称为标准正交基.注:①对一组正交基进行单位化就得到一组标准正交基.②一组基为标准正交基的充分必要条件是:它的度量矩阵为单位矩阵.(2)标准正交基的求法①n维欧氏空间中任一个正交向量组都能扩充成一组正交基.②对于n维欧氏空间中任意一组基ε1,ε2,…,εn,存在一组标准正交基η1,η2,…,η,使L(ε1,ε2,…,εi)=L(η1,η2,…,ηi),i=1,2,…,n.n把一组线性无关的向量变成一单位正交向量组的方法称为施密特正交化过程.3.标准正交基间的基变换设ε1,ε2,…,εn与η1,η2,…,ηn是欧氏空间V中的两组标准正交基,它们之间的过渡矩阵是A=(a ij),即因为η1,η2,…,ηn是标准正交基,所以矩阵A的各列就是η1,η2,…,ηn在标准正交基ε1,ε2,…,εn下的坐标.4.正交矩阵n级实数矩阵A称为正交矩阵,如果A'A=E.由标准正交基到标准正交基的过渡矩阵是正交矩阵;反过来,如果第一组基是标准正交基,同时过渡矩阵是正交矩阵,则第二组基一定也是标准正交基.三、同构。
北京大学数学系《高等代数》(第3版)【教材精讲+考研真题解析】第7章 线性变换 【圣才出品】
第7章线性变换[视频讲解]7.1本章要点详解本章要点■线性变换的定义及其运算■线性变换的矩阵■特征值与特征向量■对角矩阵■线性变换的值域与核■不变子空间■若当标准型■最小多项式重难点导学一、线性变换的定义1.线性变换的定义线性空间V的一个变换A称为线性变换,如果对于V中任意的元素α、β和数域P中任意数k,有2.线性变换的简单性质(1)设A是V的线性变换,则;(2)线性变换保持线性组合与线性关系式不变,如果β是α1,α2,…,αr的线性组合则经过线性变换A之后,是的线性组合又如果之间有一线性关系式则(3)线性变换把线性相关的向量组变成线性相关的向量组.二、线性变换的运算1.线性变换的乘积(1)定义设A ,B 是线性空间V 的两个线性变换,定义它们的乘积AB 为注:①线性变换的乘法适合结合律,即.②线性变换的乘法一般是不可交换的.(2)基本性质①满足结合律:()()στδστδ=;②,E E E σσσ==为单位变换;③交换律一般不成立,即一般地,στστ≠.2.线性变换的和(1)定义设A ,B 是线性空间V 的两个线性变换,则称为A +B 的和.(2)基本性质①满足交换律:σττσ+=+;②满足结合律:()()στδτσδ++=++;③线性变换的和还是线性变换;④零变换与所有线性变换A 的和仍等于A ,A +0=A ;⑤线性变换的乘法对加法有左右分配律,即(3)负变换设σ为线性空间V 的线性变换,定义变换σ-为()()(),V σασαα-=-∀∈则σ-也为V 的线性变换,称之为σ的负变换.3.线性变换的数量乘法(1)定义数域P 中的数与线性变换的数量乘法为,即(2)基本性质4.线性变换的逆(1)定义V的变换A称为可逆的,如果有V的变换B存在,使AB=BA=E,则变换B称为A的逆变换,记为A-1.注:如果线性变换A是可逆的,它的逆变换A-1也是线性变换.(2)基本性质σ-也是V的线性变换.①可逆变换σ的逆变换1②线性变换σ可逆⇔线性变换σ是一一对应.5.线性变换的多项式(1)线性变换的幂当n个(n是正整数)线性变换A相乘时,可以用来表示,称为A的n次幂,简单地记作A n.指数法则:当线性变换可逆时,的负整数幂为(n是正整数).注:线性变换乘积的指数法则不成立,即一般说来,(2)线性变换的多项式设f(x)=a m x m+a m-1x m-1+…+a0是P[x]中一多项式,是V的一线性变换,定义.f ()是一线性变换,它称为线性变换的多项式.注:同一个线性变换的多项式的乘积是可交换的.三、线性变换的矩阵1.线性变换与基(1)设ε1,ε2,…,εn 是线性空间V 的一组基,σ为V 的线性变换,则对任意V ξ∈存在唯一的一组数12,,...,n x x x P ∈,使1122...n n x x x ξ=+++εεε,则1122()()()...()n n x x x σσσσ=+++ξεεε(2)设ε1,ε2,…,εn 是线性空间V 的一组基,如果线性变换与在这组基上的作用相同,即。
北京大学数学系《高等代数》(第3版)笔记和课后习题(含考研真题)详解-第五章至第六章【圣才出品】
第5章二次型5.1复习笔记一、二次型及其矩阵表示1.二次型定义设P是一数域,一个系数在数域P中的x1,x2,…,x n的二次齐次多项式称为数域P上的一个n元二次型,或简称二次型.2.线性替换与二次型矩阵(1)线性替换定义设x1,…,x n;y1,…,y n是两组文字,系数在数域P中的一组关系式称为由x1,…,x n到y1,…,y n的一个线性代替,或简称线性替换.如果系数行列式,那么线性替换就称为非退化的.(2)二次型的矩阵令由于所以二次型可以写成其中的系数排成一个n×n 矩阵它就称为二次型的矩阵,因为a ij =a ji ,i,j=1,…,n,所以A=A'二次型的矩阵都是对称的.3.合同矩阵(1)定义数域P 上n×n 矩阵A ,B 称为合同的,如果有数域P 上可逆的n×n 矩阵C ,使B C AC¢=(2)性质①反身性:A=E'AE ;②对称性:由B=C'AC 即得A=(C -1)'BC -1;③传递性:由A 1=C 1'AC 1和A 2=C 2'A 1C 2即得经过非退化的线性替换,新二次型的矩阵与原二次型的矩阵是合同的.二、标准形1.定义数域P 上任意一个二次型都可以经过非退化的线性替换变成平方和2221122n nd x d x d x +++ 的形式,该形式就称为的一个标准形.注意:二次型的标准型不是唯一的,而与所作的非退化线性替换有关.2.定理在数域P 上,任意一个对称矩阵都合同于一对角矩阵.即对于任意一个对称矩阵A 都可以找到一个可逆矩阵C,使C AC ¢成对角矩阵,并且该对角矩阵的值就是对应的标准形式的系数.三、唯一性1.基本概念(1)二次型的秩在一个二次型的标准形中,系数不为零的平方项的个数是唯一确定的,与所作的非退化线性替换无关,二次型矩阵的秩有时就称为二次型的秩.(2)复二次型的规范性设f(x1,x2,…,x n)是一个复系数的二次型.经过一适当的非退化线性替换后,f(x1,x2,…,x n)变成标准形,不妨假定它的标准形是易知r就是f(x1,x2,…,x n)的矩阵的秩.因为复数总可以开平方,我们再作一非退化线性替换(1)就变成称为复二次型f(x1,x2,…,x n)的规范形.结论:任意一个复系数的二次型,经过一适当的非退化线性替换可以变成规范形,且规范形是唯一的.即任一复数的对称矩阵合同于一个形式为的对角矩阵.从而有,两个复数对称矩阵合同的充分必要条件是它们的秩相等.(3)实二次型的规范形设f(x1,x2,…,x n)是一实系数的二次型,经过某一个非退化线性替换,再适当排列文字的次序,可使f(x1,x2,…,x n)变成标准形其中d i>0,i=1,…,r;r是f(x1,x2,…,x n)的矩阵的秩.因为在实数域中,正实数总可以开平方,所以再作一非退化线性替换(4)就变成(6)称为实二次型f(x1,x2,…,x n)的规范形.结论:任意一个实数域上的二次型,经过一适当的非退化线性替换可以变成规范形,且规范形是唯一的.2.惯性定理设实二次型f(x1,x2,…,x n)经过非退化线性替换X=BY化成规范形而经过非退化线性替换X=CZ也化成规范形则p=q.另一种表述:实二次型的标准形中系数为正的平方项的个数是唯一确定的,它等于正惯性指数,而系数为负的平方项的个数就等于负惯性指数.3.惯性指数在实二次型f(x1,x2,…,x n)的规范形中,(1)正惯性指数:正平方项的个数p;(2)负惯性指数:负平方项的个数r-p;(3)符号差:p-(r-p)=2p-r.该定义对于矩阵也是适合的.四、正定二次型1.定义实二次型,f(x1,x2,…,x n)称为正定的,如果对于任意一组不全为零的实数c1,c2,…,c n都有f(c1,c2,…,c n)>0.2.常用的判别条件(1)n元实二次型f(x1,x2,…,x n)是正定的充分必要条件是它的正惯性指数等于。
高等代数课件(北大三版)--第九章 二次型
例1
设
0 0 A 0 3 0 3 6 0 0 6 12 4 3 0 4 0
惠州学院数学系
我们按定理9.1.2所给出的方法对A施行行和列 初等变换,将A变成 P AP ,使得 P AP是一个对 角形矩阵。同时对单位矩阵 I 4 ,施行同样的初等 变换而得出P。 交换A第一列和第二列,第一行和第二行,同 时交换 I 4 的第一列和第二列。这时A和 I 4 分别化 为:
① 自反性:任意矩阵A都与自身合同,因为IAI=A ② 对称性:如果B与A合同,那么A也与B合同,因为 由 P AP B 可以得出
(P
1 1 1 ) BP ( P ) 1BP A
③ 传递性:如果 B 与 A 合同,C 与 B 合同,那 么C 与 A 合同。
惠州学院数学系
xi x j x j xi ,
n
n
(2) q( x1 , x2 , , xn ) aij xi x j , aij a ji
i 1 j 1
是(2)式右端的系数所构成的矩阵,称 为二次型 q( x1 , x2 ,, xn ) 的矩阵。因为 a ij a ji , 所以A是F上的一个n 阶对称矩阵,利用矩阵的乘 法,(2)式可以写成
惠州学院数学系
9.1.1 二次型及矩阵
定义1 设F是一个数域,F上n元二次齐次多项式
(1)
q( x1 , x 2 , , x n ) a11 x1 a 22 x 2 a nn x n
2
2
2
2a12 x1 x 2 2a13 x1 x 3 2a n1,n x n1 x n
惠州学院数学系
(5)
x1 y1 x2 y2 P x y n n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一学期第一次课第一章 代数学的经典课题§1 若干准备知识1.1.1 代数系统的概念一个集合,如果在它里面存在一种或若干种代数运算,这些运算满足一定的运算法则,则称这样的一个体系为一个代数系统。
1.1.2 数域的定义定义(数域) 设K 是某些复数所组成的集合。
如果K 中至少包含两个不同的复数,且K 对复数的加、减、乘、除四则运算是封闭的,即对K 内任意两个数a 、b (a 可以等于b ),必有K b a b K ab K b a ∈≠∈∈±/0时,,且当,,则称K 为一个数域。
例1.1 典型的数域举例: 复数域C ;实数域R ;有理数域Q ;Gauss 数域:Q (i) = {b a +i |b a ,∈Q },其中i =1-。
命题 任意数域K 都包括有理数域Q 。
证明 设K 为任意一个数域。
由定义可知,存在一个元素0≠∈a K a ,且。
于是K aaK a a ∈=∈-=10,。
进而∈∀m Z 0>,K m ∈+⋯⋯++=111。
最后,∈∀n m ,Z 0>,K n m ∈,K nmn m ∈-=-0。
这就证明了Q ⊆K 。
证毕。
1.1.3 集合的运算,集合的映射(像与原像、单射、满射、双射)的概念定义(集合的交、并、差) 设S 是集合,A 与B 的公共元素所组成的集合成为A 与B 的交集,记作B A ⋂;把A 和B 中的元素合并在一起组成的集合成为A 与B 的并集,记做B A ⋃;从集合A 中去掉属于B 的那些元素之后剩下的元素组成的集合成为A 与B 的差集,记做B A \。
定义(集合的映射) 设A 、B 为集合。
如果存在法则f ,使得A 中任意元素a 在法则f 下对应B 中唯一确定的元素(记做)(a f ),则称f 是A 到B 的一个映射,记为).(,:a f a B A f →如果B b a f ∈=)(,则b 称为a 在f 下的像,a 称为b 在f 下的原像。
A 的所有元素在f 下的像构成的B 的子集称为A 在f 下的像,记做)(A f ,即{}A a a f A f ∈=|)()(。
若,'A a a ∈≠∀都有),'()(a f a f ≠ 则称f 为单射。
若 ,B b ∈∀都存在A a ∈,使得b a f =)(,则称f 为满射。
如果f 既是单射又是满射,则称f 为双射,或称一一对应。
1.1.4 求和号与求积号1.求和号与乘积号的定义. 为了把加法和乘法表达得更简练,我们引进求和号和乘积号。
设给定某个数域K 上n 个数n a a a ,,,21 ,我们使用如下记号:∑==+++ni i n a a a a 121 ,∏==ni i n a a a a 121 .当然也可以写成∑≤≤=+++ni in aa a a 121......,∏≤≤=ni in aa a a 121.......2. 求和号的性质. 容易证明,∑∑===n i ni i i a a 11λλ∑∑∑===+=+ni n i ni i i i ib a b a111)(∑∑∑∑=====n i m j ni ij mj ija a1111事实上,最后一条性质的证明只需要把各个元素排成如下形状:nmn n mm a a a a a a a a a (2)12222111211分别先按行和列求和,再求总和即可。
第一学期第二次课§2一元高次代数方程的基础知识1.2.1高等代数基本定理及其等价命题1. 高等代数基本定理设K 为数域。
以][x K 表示系数在K 上的以x 为变元的一元多项式的全体。
如果)0(],[......)(0110≠∈+++=-a x K a x a x a x f n n n ,则称n 为)(x f 的次数,记为)(deg x f 。
定理(高等代数基本定理) C ][x 的任一元素在C 中必有零点。
命题 设)10(,......)(0110≥≠+++=-n a a xa x a x f n n n ,是C 上一个n 次多项式,a 是一个复数。
则存在C 上首项系数为0a 的1-n 次多项式)(x q ,使得)())(()(a f a x x q x f +-=证明 对n 作数学归纳法。
推论 0x 为)(x f 的零点,当且仅当)(0x x -为)(x f 的因式(其中1)(deg ≥x f )。
命题(高等代数基本定理的等价命题) 设n n n a xa x a x f +++=-......)(110 )10(0≥≠n a ,为C 上的n 次多项式,则它可以分解成为一次因式的乘积,即存在n 个复数n a a a ,......,,21,使))......()(()(210n x x x a x f ααα---=证明 利用高等代数基本定理和命题1.3,对n 作数学归纳法。
2.高等代数基本定理的另一种表述方式定义 设K 是一个数域,x 是一个未知量,则等式0 (11)10=++++--n n n n a x a xa x a (1) (其中0,,......,,010≠∈a K a a a n )称为数域K 上的一个n 次代数方程;如果以K x ∈=α带入(1)式后使它变成等式,则称α为方程(1)在K 中的一个根。
定理(高等代数基本定理的另一种表述形式) 数域K 上的)1(≥n 次代数方程在复数域C 内必有一个根。
命题 n 次代数方程在复数域C 内有且恰有n 个根(可以重复)。
命题(高等代数基本定理的另一种表述形式)给定C 上两个n 次、m 次多项式)0(......)(10≠+++=n n n a x a x a a x f , )0(......)(10≠+++=m mm b x b x b b x g ,如果存在整整数l ,n l m l ≥≥,,及1+l 个不同的复数121,,......,,+l l ββββ,使得)1,......,2,1()()(+==l i g f i i ββ,则)()(x g x f =。
1.2.2 韦达定理与实系数代数方程的根的特性设101()n n n f x a x a x a -=+++,其中0,0i a K a ∈≠。
设()0f x =的复根为12,,,n ααα(可能有重复),则1210112121()()()()()().ni n i n n n n f x x x x x a x x αααααααααα=-=-=---=-+++++∏所以)()1(21101n a a ααα+++-= ; ∑≤≤≤-=ni i i i a a 21210202)1(αα;.)1(210n n na a ααα -= 我们记1),,,(210=n ααασ ;n n αααααασ+++= 21211),,,(;∏≤≤≤≤≤=ni i i i i i n r r r2121021),,,(αααααασ;n n n αααααασ 2121),,,(=(12,,,n σσσ称为12,,,n ααα的初等对称多项式)。
于是有定理 2.5 (韦达定理) 设101()n n n f x a x a x a -=+++,其中0,0i a K a ∈≠。
设()0f x =的复根为12,,,n ααα。
则),,,()1(211101n a a ααασ -=; ),,,()1(212202n a a ααασ -=;).,,,()1(210n n n na a ααασ -= 命题 给定R 上n 次方程0 (11)10=++++--n n n n a x a xa x a , 00≠a , 如果b a +=αi 是方程的一个根,则共轭复数b a -=αi 也是方程的根。
证明 由已知,1011......0n n n n a a a a ααα--++++=.两边取复共轭,又由于∈n a a a ,......,,10R ,所以1011......0n n n n a a a a ααα--++++=.推论 实数域上的奇数次一元代数方程至少有一个实根。
证明 因为它的复根(非实根)必成对出现,已知它在C 内有奇数个根,故其中必有一根为实数。
第一学期第三次课§3线性方程组1.3.1数域K 上的线性方程组的初等变换举例说明解线性方程组的Gauss 消元法。
定义(线性方程组的初等变换) 数域K 上的线性方程组的如下三种变换 (1) 互换两个方程的位置;(2) 把某一个方程两边同乘数域K 内一个非零元素c ; (3) 把某一个方程加上另一个方程的k 倍,这里K k ∈ 的每一种都称为线性方程组的初等变换。
容易证明,初等变换可逆,即经过初等变换后的线性方程组可以用初等变换复原。
命题 线性方程组经过初等变换后与原方程组同解 证明 设线性方程组为11112211121222221122,,.......n n n n m m mn n n a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ (*)经过初等变换后得到的线性方程组为(**),只需证明(*)的解是(**)的解,同时(**)的解也是(*)的解即可。
设n n k x k x k x ===,......,,2211是(*)的解,即(*)中用),......2,1(n i k x i i ==代入后成为等式。
对其进行初等变换,可以得到n n k x k x k x ===,......,,2211代入(**)后也成为等式,即n n k x k x k x ===,......,,2211是(**)的解。
反之,(**)的解也是(*)的解。
证毕。
1.3.2线性方程组的系数矩阵和增广矩阵以及矩阵的初等变换定义(数域K 上的矩阵) 给定数域K 中的mn 个元素j i a (m i ,,1 =,n j ,,1 =)。
把它们按一定次序排成一个m 行n 列的长方形表格111212122212.....................................n n m m mn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦ 称为数域K 上的 一个m 行n 列矩阵,简称为n m ⨯矩阵。
定义(线性方程组的系数矩阵和增广矩阵) 线性方程组中的未知量的系数排成的矩阵A 称为方程组的系数矩阵;如果把方程组的常数项添到A 内作为最后一列,得到的)1(+⨯n m 矩阵11121121222212.....................................n n m m mn n a a a b a a a b A a a a b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦ 称为方程组的增广矩阵。