2.2整式的加减(第4课时 整式的加减(四))
整式的加减教学设计【4篇】
整式的加减教学设计【优秀4篇】整有乘法法则,也有加减法则,两个都是经常会用到的。
以下是人见人爱的我分享的4篇《整式的加减教学设计》,我们不妨阅读一下,看看是否能有一点抛砖引玉的作用。
整式的加减篇一第4课时教学内容:教科书第63—64页,2.2整式的加减:1.同类项。
教学目标和要求:1.理解同类项的概念,在具体情景中,认识同类项。
2.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流的能力。
3.初步体会数学与人类生活的密切联系。
教学重点和难点:重点:理解同类项的概念。
难点:根据同类项的概念在多项式中找同类项。
教学方法:分层次教学,讲授、练习相结合。
教学过程:一、复习引入:1、创设问题情境⑴、5个人+8个人=⑴、5只羊+8只羊=⑴、5个人+8只羊=(数学教学要紧密联系学生的生活实际、学习实际,这是新课程标准所赋予的任务。
学生尝试按种类、颜色等多种方法进行分类,一方面可提供学生主动参与的机会,把学生的注意力和思维活动调节到积极状态;另一方面可培养学生思维的灵活性,同时体现分类的思想方法。
) 2、观察下列各单项式,把你认为相同类型的式子归为一类。
8x2y,-mn2,5a,-x2y,7mn2,,9a,-,0,0.4mn2,,2xy2。
由学生小组讨论后,按不同标准进行多种分类,教师巡视后把不同的分类方法投影显示。
要求学生观察归为一类的式子,思考它们有什么共同的特征?请学生说出各自的分类标准,并且肯定每一位学生按不同标准进行的分类。
(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。
) 二、讲授新课: 1.同类项的定义:我们常常把具有相同特征的事物归为一类。
8x2y与-x2y可以归为一类,2xy2与-可以归为一类,-mn2、7mn2与0.4mn2可以归为一类,5a与9a可以归为一类,还有、0与也可以归为一类。
人教版数学七年级上册 课程讲义第二章:2.2 整式的加减-解析版
整式的加减知识定位讲解用时:3分钟A 、适用范围:人教版初一,基础一般;B 、知识点概述:本讲义主要用于人教版初一新课,主要对同类项的概念和整式加减运算进行讲解,掌握去括号,添括号的法则,重点是能判断同类项,且能熟练的合并同类项,能准确的进行去括号,添括号,难点是能根据题目的要求,正确熟练地进行整式的加减运算.知识梳理讲解用时:20分钟并且相同字母的指数也分别相等的项叫做同类项.几个常数项也是同类项.要点诠释:(1)判断是否同类项的两个条件:①所含字母相同;②相同字母的指数分别相等,同时具备这两个条件的项是同类项,缺一不可.(2)同类项与系数无关,与字母的排列顺序无关.(3)一个项的同类项有无数个,其本身也是它的同类项.法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变.要点诠释:合并同类项的根据是乘法分配律的逆运用,运用时应注意:(1)不是同类项的不能合并,无同类项的项不能遗漏,在每步运算中都含有.(2) 合并同类项,只把系数相加减,字母、指数不作运算.(1)如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;(2)如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.要点诠释:①去括号法则实际上是根据乘法分配律推出的:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.②去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号.③对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.④去括号只是改变式子形式,但不改变式子的值,它属于多项式的恒等变形.2.添括号法则(1)添括号后,括号前面是“+”号,括到括号里的各项都不变符号;(2)添括号后,括号前面是“-”号,括到括号里的各项都要改变符号.要点诠释:①添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.②去括号和添括号是两种相反的变形,因此可以相互检验正误.一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.要点诠释:(1)整式加减的一般步骤是:①先去括号;②再合并同类项.(2)两个整式相加减时,减数一定先要用括号括起来.(3)整式加减的最后结果中:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.课堂精讲精练【例题1】若﹣2xy m 和x n y 3是同类项,则 m+n 的值是 .【答案】4【解析】解:由题意可知:1=n ,m=3∴m+n=4,故答案为:4讲解用时:3分钟解题思路:根据同类项的定义即可求出答案.教学建议:让学生正确理解同类项的定义难度: 3 适应场景:当堂例题 例题来源:无年份:2019 【练习1.1】若b a b a y x -+-5.0与3132y x a -是同类项,则a+b= .【答案】1【解析】解:∵代数式b a b a y x -+-5.0与3132y x a -是同类项,∴a+b=a ﹣1,a ﹣b=3,a=2,b=﹣1,∴a+b=1,故答案为:1.讲解用时:3分钟解题思路:根据同类项是字母相同,相同字母的指数相等,可得a 、b 的值,再根据a 、b 的值,可得a+b 的值.教学建议:和学生强调同类项的核心是相同字母的指数相等.难度: 3 适应场景:当堂练习 例题来源:无 年份:2019【练习1.2】若232(1)x x b x bx -++--+中不存在含x 的项,则______b =. 【答案】-3【解析】解: 去括号得:1232+--+-bx x b x x合并同类项得:)1()3(32+++-b x b x∵不存在含x 的项解得:3-=b讲解用时:5分钟解题思路:把所有含有x 的项合在一起,系数为0,即可求出b 的值. 教学建议:强调不存在某一项即该项的系数为0难度: 3 适应场景:当堂练习 例题来源:无 年份:2019【例题2】已知单项式2a m b 2与1421--n b a 的差是单项式,那么m 2﹣n= .【答案】13.【解析】解:∵单项式2a m b 2与1421--n b a 的差是单项式, ∴m=4,n ﹣1=2,则n=3,故m 2﹣n=42﹣3=13.故答案为:13.讲解用时:3分钟解题思路:直接利用合并同类项法则得出m ,n 的值,进而得出答案. 教学建议:讲解合并同类项的概念及方法.难度: 3 适应场景:当堂例题 例题来源:无 年份:2019【练习2.1】若3x m+5y 2与x 2y n 的和仍为单项式,则m n = .【答案】9.【解析】解:∵3x m+5y 2与x 2y n 的和仍为单项式,∴m+5=2,n=2,则m=3,故m n =32=9.故答案为:9.讲解用时:3分钟解题思路:直接利用合并同类项法则得出m ,n 的值,进而得出答案. 教学建议:考查了合并同类项,正确得出m ,n 的值是解题关键. 难度: 3 适应场景:当堂练习 例题来源:无 年份:2019【练习2.2】如果0a <,0ab <,那么13b a a b -++--的值等于__________.【答案】-2【解析】解:由0a <,0ab <得:0>b讲解用时:5分钟解题思路:利用有理数的乘法,确定字母b的符号,同时确定字母a的符号,再进行取绝对值,合并同类项运算即可.教学建议:确定a、b的符号是本题的易错点,需要特别注意.难度:3 适应场景:当堂练习例题来源:无年份:2019【例题3】化简:﹣5m2n+4mn2﹣2mn+6m2n+3mn.【答案】m2n+4mn2+mn【解析】解:原式=m2n+4mn2+mn.讲解用时:3分钟解题思路:根据合并同类项的法则把系数相加即可.教学建议:强调再合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.难度:3 适应场景:当堂练习例题来源:无年份:2019【练习3.1】合并同类项:(1)3223--++-;8673x xy y xy y x(2)233221146553423a a a a a -+-+--; (3)115286n n n n n a a a a a ++--+-(n 为正整数).【答案】(1)23y xy --;(2)4353223-+--a x x ;(3)nn a a 991+-+【解析】解: (1)原式=23)36()78()11(y xy x +-++-+-(2)原式=)2141(5)3432()56(23--++-++-a x x (3)原式=n n a a )625()18(1+-+--+讲解用时:10分钟 解题思路:根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变进行计算即可.教学建议:解题关键是掌握合并同类项计算法则难度: 3 适应场景:当堂例题 例题来源:无 年份:2019【例题4】去括号,并合并同类项:3(5m﹣6n)+2(3m﹣4n).【答案】21m﹣26n【解析】解:3(5m﹣6n)+2(3m﹣4n)=15m﹣18n+6m﹣8n=21m﹣26n讲解用时:5分钟解题思路:利用去括号法则,如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,进而合并同类项即可.教学建议:引导学生准确掌握去括号法则的应用难度:3 适应场景:当堂例题例题来源:无年份:2019【练习4.1】先去括号,再合并同类项(1)2(2b﹣3a)+3(2a﹣3b)(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)【答案】(1)﹣5b;(2)﹣ab+1.【解析】解:(1)2(2b ﹣3a )+3(2a ﹣3b )=4b ﹣6a+6a ﹣9b=﹣5b ;(2)4a 2+2(3ab ﹣2a 2)﹣(7ab ﹣1)=4a 2+6ab ﹣4a 2﹣7ab+1=﹣ab+1. 讲解用时:6分钟解题思路:根据括号前是正号去括号不变号,括号前是负号去掉括号要变号,可去掉括号,根据合并同类项,可得答案;教学建议:强调去括号法则与合并同类项的运算法则难度: 3 适应场景:当堂练习 例题来源:无 年份:2019【练习4.2】合并同类项:()(){}6328a c a c b c a b c ----++-+-⎡⎤⎣⎦. 【答案】b c a 1755+-【解析】解:原式=)]216236([c b a c b c a c a -+-++---讲解用时:6分钟解题思路:根据括号前是正号去括号不变号,括号前是负号去掉括号要变号,可去掉括号,根据合并同类项,可得答案;教学建议:强调去括号时应按照小中大括号的顺序去【例题5】有一道题目是一个多项式减去x2+14x﹣6,小强误当成了加法计算,结果得到2x2﹣x+3.正确的结果应该是多少?【答案】﹣29x+15【解析】解:设该多项式为A,由题意可知:A+(x2+14x﹣6)=2x2﹣x+3,∴A=2x2﹣x+3﹣(x2+14x﹣6)=2x2﹣x+3﹣x2﹣14x+6=x2﹣15x+9∴正确结果为:x2﹣15x+9﹣(x2+14x﹣6)=x2﹣15x+9﹣x2﹣14x+6=﹣29x+15讲解用时:8分钟解题思路:根据整式的运算法则即可求出答案.教学建议:熟练运用整式的运算法则【练习5.1】已知代数式A=2x2+5xy﹣7y﹣3,B=x2﹣xy+2.(1)求3A﹣(2A+3B)的值;(2)若A﹣2B的值与x的取值无关,求y的值.【答案】(1)﹣x2+8xy﹣7y﹣9;(2)y=0.【解析】解:(1)3A﹣(2A+3B)=3A﹣2A﹣3B=A﹣3B∵A=2x2+5xy﹣7y﹣3,B=x2﹣xy+2∴A﹣3B=(2x2+5xy﹣7y﹣3)﹣3(x2﹣xy+2)=2x2+5xy﹣7y﹣3﹣3x2+3xy﹣6=﹣x2+8xy﹣7y﹣9(2)A﹣2B=(2x2+5xy﹣7y﹣3)﹣2(x2﹣xy+2)=7xy﹣7y﹣7∵A﹣2B的值与x的取值无关∴7y=0,∴y=0讲解用时:10分钟解题思路:(1)根据整式的运算法则即可求出答案.(2)根据题意将A﹣2B化简,然后令含x的项的系数为0即可求出y的值.教学建议:回顾整式的运算法则难度:3 适应场景:当堂练习例题来源:无年份:2019【例题6】规定一种新运算:a*b=a﹣b,当a=5,b=3时,求(a2b)*(3ab+5a2b﹣4ab)的值.【答案】﹣285.【解析】解:(a2b)*(3ab+5a2b﹣4ab)=(a2b)﹣(3ab+5a2b﹣4ab)=a2b﹣3ab﹣5a2b+4ab=﹣4a2b+ab当a=5,b=3时,原式=﹣4×52×3+5×3=﹣285.讲解用时:5分钟解题思路:首先利用整式加减运算法则化简进而把已知代入求出答案. 教学建议:提醒学生注意化简求值问题的解题格式,注意计算的正确性. 难度: 3 适应场景:当堂例题 例题来源:无 年份:2019【练习6.1】先化简,再求值:2x 2﹣3(﹣31x 2+32xy ﹣y 3)﹣3x 2,其中x=2,y=﹣1. 【答案】3y 3﹣2xy ;1.【解析】解:原式=2x 2+x 2﹣2xy+3y 3﹣3x 2=3y 3﹣2xy ;当x=2,y=﹣1时,3y 3﹣2xy=3×(﹣1)3﹣2×2×(﹣1)=﹣3+4=1. 讲解用时:5分钟解题思路:原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值. 教学建议:整式的加减﹣化简求值问题核心就是整式的加减运算,学生必须熟练掌握整式的加减运算.难度: 3 适应场景:当堂练习 例题来源:无 年份:2019【练习6.2】若多项式()2222231(543)mx x x x y x -++--+与x 无关,求322[345)m m m -+-( ]m +的值.【答案】17【解析】解:化简多项式:∵多项式的值与x 无关解得:3=m∴原式=)543(223m m m m +-+-当3=m 时,原式=1753593272=+⨯-⨯-⨯讲解用时:10分钟解题思路:先化简,利用多项式与x 无关这个条件,求出m 的值,然后再对后面的多项式求值教学建议:多项式求值时,注意先化简,再求值.难度: 3 适应场景:当堂练习 例题来源:无 年份:2019【例题7】求证:某三位数的百位数字是a ,十位数字是b ,个位数字是c ,如果把这个三位数的十位数字与个位数字交换位置,得到一个新的三位数,则这两个三位数的差一定能被9整除.【答案】证明:∵(100a+10b+c)﹣(100a+10c+b)=100a+10b+c﹣100a﹣10c﹣b=9b﹣9c=9(b﹣c)∵b与c都是整数,∴b﹣c是整数,∴这两个三位数的差一定能被9整除.【解析】证明:∵(100a+10b+c)﹣(100a+10c+b)=100a+10b+c﹣100a﹣10c﹣b=9b﹣9c=9(b﹣c),∵b与c都是整数,∴b﹣c是整数,∴这两个三位数的差一定能被9整除.讲解用时:6分钟解题思路:根据题意表示出新三位数与原三位数,求出两个三位数之差,再进行适当的变形,即可得出结论.教学建议:掌握整式的加减运算难度:3 适应场景:当堂例题例题来源:无年份:2019【练习7.1】一个三位正整数M,其各位数字均不为零且互不相等.若将M的十位数字与百位数字交换位置,得到一个新的三位数,我们称这个三位数为M的“友谊数”,如:168的“友谊数”为“618”;若从M的百位数字、十位数字、个位数字中任选两个组成一个新的两位数,并将得到的所有两位数求和,我们称这个和为M的“团结数”,如:123的“团结数”为12+13+21+23+31+32=132.求证:M与其“友谊数”的差能被15整除;【答案】证明:由题意可得,设M为100a+10b+c,则它的友谊数为:100b+10a+c,(100a+10b+c)﹣(100b+10a+c)=100a+10b+c﹣100b﹣10a﹣c=100(a﹣b)+10(b﹣a)=90(a﹣b),∴M与其“友谊数”的差能被15整除;【解析】证明:由题意可得,设M 为100a+10b+c ,则它的友谊数为:100b+10a+c ,(100a+10b+c )﹣(100b+10a+c )=100a+10b+c ﹣100b ﹣10a ﹣c=100(a ﹣b )+10(b ﹣a )=90(a ﹣b ),∴M 与其“友谊数”的差能被15整除;讲解用时:6分钟解题思路:根据题意可以表示出M 的友谊数,然后作差再除以15即可解答本题. 教学建议:帮助学生掌握整式的加减运算难度: 3 适应场景:当堂练习 例题来源:无 年份:2019课后作业【作业1】 已知123a b x y +-与225x 是同类项,求2221232a b a b a b +-的值.【答案】9【解析】由已知得:⎩⎨⎧=-=+0221b a 解得:⎩⎨⎧=-=21b a 原式=b a 2)2123(-+=b a 229 当21=-=b a ,时,原式=92)1(292=⨯-⨯ 讲解用时:5分钟难度: 2 适应场景:练习题 例题来源:无 年份:2019【作业2】先化简,再求值:()()2237547a ab ab a -+--+,其中2a =,13b =【答案】24.【解析】解:原式7457322-+-+-a ab ab a =31,2==b a 当时, 原式312647⨯⨯-⨯= 428- ==24讲解用时:5分钟难度: 3 适应场景:练习题 例题来源:无 年份:2019【作业3】第- 21 -页/共21页 已知2325A a a =-+,2868B a a =--,1A B C ++=,求C 的值.【答案】48112++-a a【解析】解:由已知得:1)868()523(22=+--++-C a a a a讲解用时:5分钟难度: 3 适应场景:练习题 例题来源:无 年份:2019【作业4】有一道题目是一个多项式减去2146x x +-,小红误当成了加法算式,结果得到223x x -+,正确的结果应该是___________.【答案】1529+-x【解析】解:设这个多项式是A 32)614(22+-=-++x x x x A ,则: )614()915(22-+-+-x x x x 则正确结果为:讲解用时:8分钟难度: 3 适应场景:练习题 例题来源:无 年份:2019。
人教版七年级数学上册教案(RJ) 第二章 整式的加减
第二章 整式的加减 2.1 整式(2课时) 第1课时 单项式1.使学生理解单项式及单项系数、次数的概念,并会找出单项式的系数、次数. 2.初步培养学生的观察分析和归纳概括的能力,使学生初步认识特殊与一般的辩证关系.重点掌握单项式及单项式系数、次数的概念,并会找出单项式的系数、次数. 难点识别单项式的系数和次数.一、创设情境,导入新课师:出示图片. 青藏铁路线上,在格尔木到拉萨之间有段很长的冻土地段,列车在冻土地段的行驶速度是100千米/小时,在非冻土地段的行驶速度可以达到120千米/小时,请根据这些数据回答:(1)列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?利用怎样的一个等量关系来解决?(2)t 小时呢? 二、推进新课(一)用含字母的式子表示数量关系. 师:出示第54页例1.生:解答例1后,讨论问题,用字母表示数有什么意义?学生经过讨论得出一定的答案,但可能不会太规范,教师总结.师:用字母表示数,在具有某些共性的问题上具有更广泛的意义,在形式上更简单,使用上更方便(可考虑补充:像这样的用运算符号把数或字母连接起来的式子叫做代数式.一个数或表示数的字母也是代数式).师生共同完成例2,进一步体会用字母表示数的意义.巩固练习:第56页练习. (二)单项式的概念. 师:出示问题.引言与例1中的式子100t ,0.8p ,mn ,a 2h ,-n 这些式子有什么特点? 生:通过观察、对比、讨论得出,各式都是数或字母的积.师:指出单项式的概念,特别地,单独的一个数或字母也是单项式. 巩固练习:下列各式是单项式的式子是____________. 0.7,-a ,-3+b ,2a 2b 7,0,1x .(三)单项式的系数,次数.师:提出问题,观察单项式,6a 2,2.5x ,-n ,2a 2b7,它们各由哪几个部分组成? 生:观察讨论得出结果.师:指出,单项式中的数字因数叫做这个单项式的系数.应当注意的是,单项式的系数包括它前面的性质符号.而如-n,a3这样的式子的系数分别是-1和1,不能说没有系数.师:进一步提出问题:以上各式中的字母部分,每个字母的指数是多少?每个单项式中所有字母的指数的和是多少?生:举手回答.师:指出,一个单项式中,所有字母的指数的和叫做这个单项式的次数.一般地,一个单项式的次数是几,我们就称它为几次单项式.如:6a2叫二次单项式,-n叫做一次单项式,你能举出一个三次单项式的例子吗?练习:第57页练习第1题.(四)例题讲解.例3:用单项式填空,并指出它们的系数和次数:(1)每包书有12册,n包书有________册.(2)底边长为a,高为h的三角形面积是________.(3)一个长方体的长和宽都是a,高是h,它的体积是________.(4)一台电视机原价是a元,现按原价的9折出售,现在的售价是________.(5)一个长方形的长是0.9,宽是a,这个长方形的面积是________.生:独立完成,然后举手回答.师:针对学生的问题,进行点拨和进一步的解释.师:进一步提出问题,观察(4),(5)两个题的答案,你有什么看法?生:自由发表意见.师总结:用字母表示数,相同的字母在同一个式子中表示的意义相同,在不同的式子中可以有不同的含义.请同学们大胆想一想,你还能赋予0.9a什么实际的意义.生:自由发言即可.(教师不必太苛求学生,对学生的回答只要符合题意,就一律给予鼓励)三、练习与小结练习:第57页练习第2题.小结:学习本节内容以后,(1)请你谈一谈你对用字母表示数的认识;(2)请你谈一谈你对单项式的认识.四、布置作业习题2.1第1题.教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫.第2课时多项式1.掌握多项式的概念,进而理解整式的概念.2.掌握多项式的项数、次数的概念,并能熟练地说出多项式的项数和次数.重点多项式的概念及多项式的项数、次数的概念.难点多项式的次数.一、创设情境,导入新课师:出示问题(投影).观察一列数1,4,9,16,25,…,第6个数是多少?第n 个数呢?你能用含n 的式子表示第n 个数吗?观察一列数2,5,10,17,26,…,第6个数是多少?第n 个数呢?你能用含n 的式子表示第n 个数吗?生:思考得出答案,第一列中第6个数是36,第n 个数是n 2,第二列中第6个数是37,第n 个数是n 2+1. 师:我们知道,n 2是一个单项式,而n 2+1不是单项式,那么,它属于哪一类代数式呢?这就是我们今天要解决的问题. 二、推进新课(一)多项式及多项式的项数、次数的概念师:引导学生回想课本55页例2的内容,进一步观察所列之式υ+2.5,υ-2.5,3x +5y +2z ,12ab -πr 2,x 2+2x +18,有何特点?生:思考讨论.师:进一步提出问题,以上各式显然不是单项式,它们和单项式有联系吗? 生:讨论,交流.自由发言回答上面的问题.师:指出多项式的概念及其相关的几个概念.每个单项式叫做多项式的项,不含字母的项叫做常数项.一个多项式有几个单项式组成,我们就把它叫做几项式,如2x -3可以叫做二项多项式,3x +5y +2x 可以叫做三项多项式.师:进一步引导学生探究多项式次数的概念. 生:可以发挥自己的想象去探究给多项式的次数命名的方法,教师不必苛求学生怎样想,让学生大胆发言,只要能发挥他们的想象力即可.师:在这一过程中教师可以引导,多项式的次数是不是也可以将所有字母的指数加在一块呢?如果字母多的话是不是有点太乱呢?如果这样的话我们是不是派个代表就行了,派谁当代表呢?引导学生说出,以次数最高的项的次数作为代表.师:多项式中次数最高的项的次数叫做多项式的次数.同单项式一样,一个多项式的次数是几,我们就称它为几次式.如2x -3可以叫做一次二项式,3x +5y +2z 可以叫做一次三项式.(二)整式的概念学生阅读教材,找出整式的概念.师:什么是整式?生:单项式和多项式统称为整式.师:进一步提问,你能说一说单项式、多项式和整式三者之间的关系吗? 生:讨论后回答.师:根据学生回答情况予以点拨、强调. (三)例题例4:如图,用式子表示圆环的面积,当R =15 cm ,r =10 cm 时,求圆环的面积.(π取3.14)解析:圆环的面积是外部大圆的面积与内部小圆面积的差.生:写解答过程.师:巡回指导,发现问题,及时点拨.三、练习与小结练习:58~59页练习.小结:1.说一说单项式、多项式、整式各有什么特点?2.它们三者之间的关系是怎样的?四、布置作业习题2.1第2题.本课的知识点比较简单,属于概念介绍型的,先让学生自己阅读课本,了解相关的概念,然后完成自学检测.教师进行适当点评后,学生完成分层练习,巩固对概念的掌握.整节课基本以学生自学为主线,完成整个教学过程,意在培养学生的自学能力.2.2整式的加减(4课时)第1课时同类项1.理解同类项的概念,在具体情境中,认识同类项.2.理解合并同类项的概念,掌握合并同类项的法则.重点理解同类项的概念,掌握合并同类项的法则.难点根据同类项的概念在多项式中找同类项.活动1:创设情境,导入新课师出示图片引言中的问题2.在西宁到拉萨路段,如果列车通过冻土地段的时间是t小时,那么它通过非冻土地段的时间是2.1t小时,这段路的全长(单位:千米)是100t+120×2.1t,即100t+252t.怎样化简这个式子呢?活动2:探究同类项及合并同类项的方法教师出示教材第62页探究1;学生讨论完成,然后教师继续出示63页探究2内容,学生讨论交流完成.师生共同归纳特点,引出同类项的定义.像100t与252t,3ab2与-4ab2这样的式子,它们所含字母相同,并且相同字母的指数也相同的项叫做同类项.师进一步提出问题,在探究2中,你是如何化简的?学生观察、讨论、交流,然后归纳出合并同类项的法则.尝试运用:化简:4x2+2x+7+3x-8x2-2(找出多项式中的同类项)=(4x2-8x2)+(2x+3x)+(7-2)(运用运算律进行整理)=(4-8)x2+(2+3)x+(7-2)(运用分配律进行合并)=-4x2+5x+5一般结果按某个字母的升降幂排列.活动3:巩固运用法则教师出示例1.师生共同完成,教师要给学生示范,可以采用学生口述,教师板书的方法.过程中注意结合法则和方法.练习:教材第65页练习第1题.教师出示例3.学生尝试独立完成,然后同学交流.教师点拨:这里的结果用整式表示.练习:教材第65页练习2,3题.活动4:小结与作业小结:谈谈你对同类项及合并同类项的认识.作业:习题2.2第1题.本节课在概念的讲解时通过典型的例题让学生充分去感受概念的意义,启发学生,鼓励学生合作交流,让学生充分发表意见,使学生真正成为学习的主人.因而,人人都开动脑筋,积极发言,积极参与,掌握知识效果较好.第2课时去括号法则能运用运算律探究去括号法则,并且利用去括号法则将整式化简.重点去括号法则,准确应用法则将整式化简.难点括号前面是“-”号去括号时,括号内各项变号容易产生错误.活动1:创设情境,导入新课师:数学爱好者发现了一个非常有趣的现象,将一个两位数的个位和十位对调得到一个新的两位数以后,这两个数的差能被9整除,和能被11整除,这是为什么呢?提示:如果设这个两位数的个位数字是a,十位数字是b,如何表示这个两位数?学生讨论以后师生共同得出以下结果:原数10b+a,新数10a+b差是10b+a-(10a+b),和是10b+a+(10a+b).将10b,a,10a,b看做几个数,类似小学中的计算,你能化简这两个式子吗?学生讨论交流,然后尝试完成.10b+a+(10a+b)=10b+a+10a+b==11a+11b10b+a-(10a+b)=10b+a-10a-b=9b-9a现在你能说明为什么一个能被9,另一个能被11整除了吗?再看下面的问题,你能化简这两个式子吗?你的依据是什么?100u+120(u-0.5)100u-120(u-0.5)学生交流讨论,然后尝试完成.活动2:归纳去括号法则师:观察以上各式,在去括号的过程中,你发现有什么规律?学生讨论交流.归纳:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.特别地,对于形如+(10a+b),-(10a+b)的式子,可以将因数看做1或者-1.活动3:运用法则教材展示教材例4.教师提示:先观察判断是哪种类型的去括号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.易犯错误:①括号前是“-”时,去括号以后,只是第一项改变了符号,而其他各项未变号.②括号前面的系数不为1或者-1时,容易漏乘除第一项以外的项.师生共同完成,学生口述,教师板书.教师展示例5.问题:船在水中航行时它的速度都与哪些量有关,它们之间的关系如何?学生思考、小组交流.然后学生完成,同学间交流.活动4:练习与小结练习:教材第67页练习.小结:1.谈谈你对去括号法则的认识.2.去括号的依据是什么?活动5:作业布置习题2.2第2,5,8题.通过回顾小学学过的去括号方法,运用类比方法,得到了整式的去括号法则,这样的设计起点低,学生学起来更自然,对新知识更容易接受.第3课时去括号法则的深入1.使学生进一步掌握去括号法则,并能熟练运用去括号法则解决问题.2.培养学生分析解决问题的能力.重点准确应用去括号法则将整式化简.难点括号前面是“-”号去括号时,括号内各项变号容易产生错误.活动1:复习提问,导入新课师提出问题:①合并同类项法则的内容是什么?②去括号法则的内容是什么?活动2:熟练运用合并同类项,去括号法则师:刚才我们回忆了合并同类项,去括号法则,它们是进行整式加减运算的基础.师:出示教材例6.计算:(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b).分析:根据法则,应如何进行计算?学生讨论后,教师归纳:先去括号,然后合并同类项.师生共同完成,边讲解边叙述法则.解:(1)(2x-3y)+(5x+4y)=2x-3y+5x+4y………………………………去括号=(2x+5x)+(-3y+4y)……………………找同类项=7x+y ……………………………………合并同类项(2)略教师出示教材例7.教师引导学生从不同的角度去列算式,①小明花________元,小红花________元,二人共花________元.②买笔记本花________元,买圆珠笔花________元,共花________元.学生独立完成,然后交流.教师出示教材例2.(这里将教材内容做了一个调整,没有完全按照教材次序,一来是出于对第一课时时间过紧的考虑,二是为下一节课的化简求值作准备)学生独立完成,教师告诉学生一般这种类型题目先化简再求值.活动3:练习与小结练习:教材第69页练习1,2题.小结:谈谈你这节课的收获.活动4:布置作业习题2.2第3,6题.本节课采用去括号法则与实例相结合的方式导入,经历对同一问题的数量关系的不同表示方法,让学生更形象更具体地体会去括号法则的合理性,整个过程以学生为主,让学生观察思考、合作交流来发现并亲身体会去括号法则的过程和数与式之间的关系,收到效果较好.但在教学中还应给予学生较多的思考反思总结的时间效果会更好些.第4课时整式的加减让学生从实际背景中去体会进行整式的加减的必要性,并能灵活运用整式的加减的步骤进行运算.重点整式的加减.难点总结出整式的加减的一般步骤.一、创设情境,复习引入练习:化简:(1)(x+y)-(2x-3y);(2)2(a2-2b2)-3(2a2+b2).提问:以上化简实际上进行了哪些运算?怎样进行整式的加减运算?二、推进新课师:出示投影.例8:做两个长方体纸盒,尺寸如下(单位:cm)(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比做小纸盒多用料多少平方厘米?分析:做一个纸盒用料多少,实际上是在求什么?学生回答.大盒用料多少,小盒用料多少?请列式表示.解:略教师讲解后归纳:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接,然后去括号,合并同类项.教师出示教材例9.教师点拨:求代数式的值的问题,一般地,先对多项式进行化简,然后再代入求值.三、练习与小结练习:教材第69页练习第3题.小结:如何进行整式的加减,你能谈谈你学完本节的收获吗?四、布置作业习题2.2第4,7题.其实整式的加减本质上就是合并同类项的问题,重点是让学生较好的记住法则,依据法则去解决问题.只是学生的基本计算能力有待加强,计算出现的错误比较多,说明学生计算的基本功有待加强.有理数的学习不够优秀是本章学习的一大难题.。
人教七年级数学上册-整式的加减(附习题)
练习1 若单项式-3amb2与单项式1 a3bn 是 3
同类项,则m=__3__,n=_2___.
知识点2 合并同类项的概念和法则
把多项式中的同类项合并成一项,叫做合并 同类项.
合并同类项后,所得项的系数是合并前 各同类项的系数的和,且字母连同它的指数 不变.
例如 4x2 2x 7 3x 8x2 2 4x2 8x2 2x 3x 7 2 (交换律) (4x2 8x2 ) (2 x 3 x) (7 2)(结合律) (4 8)x2 (2 3) x (7 2)(分配律)
(2)若x=5,y=3,求他的卫生间的面积.
解:(1)卧室面积为xy,厨房面积为 xy, 客厅面积为 × xy=xy. ∴卫生间面积为3xy-xy- xy-xy= xy. (2)当x=5,y=3时,
卫生间的面积= ×5×3=5 m2
课堂小结 所含字母相同,并且相同字母的指数也 相同的项叫做同类项.几个常数项也是同类项.
=2x2-2x2-3xy-2xy+5xy+y2-2y+1
=y2-2y+1 当x= 22 ,y=-1时,原式= 4
7
4. 某人购置了一套一室一厅的住宅,总面积为
3xy m2,其中卧室是长为x m,宽为y m的长方形,
客厅的面积为厨房的 3 ,厨房的面积是卧室
的
2 3
2
,还有一个卫生间.
(1)用x、y表示他的卫生间的面积.
解:7x2-3x2-2x-2x2+5+6x =(7-3-2) x2+(-2+6)x+5 =2x2+4x+5
当x = -2时,原式=2×(-2)2+4×(-2)+5=5
2.2 整式的加减
乘任何一项;(2)同号得正,异号得负,不要出 现符号错误;(3)去完括号,可运用去括号法则 进行验证.
意若所给的值是负数,代入时要添上括号;若所给的值是
(3)整式加减的结果一定要化为最简,即最后结果中:①不能
含有同类项;②不能出现带分数,带分数要化成假分数;③一 般按某一字母的降幂或升幂排列
巧记乐背
整式进行加和减,
实质就是在化简; 先去括号再合并, 化到最简才算完.
整式加减与求值:整式的加减常与整式的求值相结合,解 决这类问题的大致步骤为:先利用整式的加减化简整式, 再把有关的数值代入并计算,简记为“一化、二代、三计 算”.在化简时要注意去括号时是否变号,在代入时要注
第二章 整式的加减
2.2 整式的加减
同类项
概念 同类 项 所含字母相同,并且相同字母的指数也相同的项叫作同类项.几个 常数项也是同类项
(1)同类项不一定是两项,也可以是三项、四项或更多项,但至
少为两项.(2)同类项的特征:“两相同,两无关”.“两相同”是 知识 指:①所含字母相同;②相同字母的指数相同.“两无关”是指:①
整式的加减
概念
整式加 减的运 算法则 一般地,几个整式相加减,如果有括号就先去括号,再合并同
类项
(1)整式加减的一般步骤:①如果有括号,先去括号;②如果
有同类项,要合并同类项;③如果运算结果是多项式,把这个
知识解 读 多项式按某一字母的降(升)幂排列.(2)整式加减的一般步 骤并不绝对,在具体运算中,也可以先合并同类项,再去括号.
七年级数学上册(人教版)2.2.3整式的加减说课稿
(一)学生特点
面对七年级的学生,他们正处于青少年时期,好奇心强,求知欲旺盛。他们在小学阶段已经接触过一些代数知识,具备了一定的数学基础。然而,由于年龄特征,他们可能存在注意力不集中、自控能力较弱等问题。因此,在教学过程中,需要充分考虑这些特点,采用生动有趣的教学方法,激发他们的学习兴趣,帮助他们建立良好的学习习惯。
四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我将以生活实例导入新课。例如,我会提出这样一个问题:“如果你有3个苹果,你的朋友给你带来了2个苹果,你一共有多少个苹果?”这个问题既简单又贴近生活,能够激发学生的兴趣,使他们积极参与到课堂中来。通过这个问题,我会引入整式的加减法,并解释整式就是数学中的“苹果”。这样的导入方式能够使学生产生好奇心,激发他们对整式加减法的探究欲望。
本节课通过具体的例子引导学生掌握整式的加减法,培养学生运用数学知识解决实际问题的能力。学生在学习本节课的过程中,能够进一步巩固和运用之前学过的知识,如加减法、同类项、代数表达式等,同时为后续学习更复杂的代数知识打下基础。
(二)教学目标
1.知识与技能:使学生掌握整式的加减法,能够正确进行整式的加减运算,理解并运用合并同类项的法则。
1.通过生活实例引入整式的加减法,让学生感受到数学与生活的紧密联系,提高他们的学习兴趣。
2.设计有趣的课堂游戏,如“整式接龙”,让学生在游戏中巩固整式的加减法知识,增强学习的趣味性。
3.组织小组讨论,让学生合作4.对学习有困难的学生进行个别辅导,关注他们的学习进步,增强他们的自信心。
2.过程与方法:通过具体的例子,引导学生运用已有知识解决新问题,培养学生独立思考、合作交流的能力。
3.情感态度与价值观:培养学生对数学的兴趣,使学生感受到数学在生活中的应用,培养学生的抽象思维能力。
2.2整式的加减
2.2整式的加减《22 整式的加减》在数学的世界里,整式的加减就像是一场有趣的运算游戏。
它看似简单,却蕴含着深刻的规律和方法,是我们探索数学奥秘的重要一步。
让我们先来认识一下整式。
整式是由数和字母的积组成的代数式,单独的一个数或一个字母也叫做整式。
比如 3x、5、a 等等,这些都是整式。
整式可以分为单项式和多项式。
单项式是只有一个项的整式,像 5x 就是一个单项式;而多项式则是由几个单项式相加组成的,比如3x + 2y 就是一个多项式。
那整式的加减到底是怎么一回事呢?其实,整式的加减就是把几个整式合并成一个整式的过程。
这就好比我们把一堆相同类型的水果放在一起,把苹果和苹果放一起,香蕉和香蕉放一起。
在进行整式加减的时候,我们首先要做的就是“去括号”。
如果括号前面是“+”号,去掉括号后,括号里的各项都不变号;如果括号前面是“”号,去掉括号后,括号里的各项都要变号。
比如说,(2x 3y),去掉括号就变成-2x + 3y。
去完括号之后,接下来就是“合并同类项”。
什么是同类项呢?同类项就是所含字母相同,并且相同字母的指数也相同的项。
比如 3x 和 5x 就是同类项,2y²和 6y²也是同类项。
合并同类项就是把同类项的系数相加,字母和字母的指数不变。
比如 3x + 5x = 8x,2y²+ 6y²= 8y²。
为了更好地掌握整式的加减,我们来做几道例题。
例 1:计算(2x² 3x + 5) +(3x²+ 5x 7)首先,去掉括号得到:2x² 3x + 5 + 3x²+ 5x 7然后,合并同类项:(2x²+ 3x²) +(-3x + 5x) +(5 7) = 5x²+ 2x 2例 2:化简 5a (2a 3b) + 4(b a)去括号:5a 2a + 3b + 4b 4a合并同类项:(5a 2a 4a) +(3b + 4b) = a + 7b通过这两个例子,我们可以看到,只要掌握了去括号和合并同类项的方法,整式的加减其实并不难。
2024年人教版七年级上册教学设计第四章 整式的加减第四章 整式的加减
一、单元学习主题本单元是“数与代数”领域“数与式”主题中的“整式”.二、单元学习内容分析1.课标分析《标准2022》指出初中阶段数与代数领域包括“数与式”“方程与不等式”和“函数”三个主题,是学生理解数学符号,以及感悟用数学符号表达事物的性质、关系和规律的关键内容,是学生初步形成抽象能力和推理能力,感悟用数学的语言表达现实世界的重要载体.“数与式”是代数的基本语言,初中阶段关注用字母表述代数式以及代数式的运算,字母可以像数一样进行运算和推理,通过字母运算和推理得到的结论具有一般性.课标的内容要求:理解整式的概念,掌握合并同类项和去括号的法则;能进行简单的整式加减运算,能进行简单的整式乘法运算(多项式乘法仅限于一次式之间和一次式与二次式的乘法).教师应把握数与式的整体性,使学生理解除了数与数之间可以进行加减运算,整式与整式之间也可以进行加减运算,理解运算方法与运算律的关系,提升运算能力.在教学过程中,要关注数学知识与实际的结合,让学生在实际背景中理解数量关系和变化规律,经历从实际问题中建立数学模型、求解模型、验证反思的过程,形成模型观念;要关注基于代数的逻辑推理,能在比较复杂的情境中,提升学生发现问题、提出问题、分析问题和解决问题的能力,以及有逻辑地表达与交流的能力.2.本单元教学内容分析人教版教材七年级上册第四章“整式的加减”,本章包括两个小节:4.1整式;4.2整式的加法与减法.我们知道,因为可以用字母符号表示数,所以可以将字母和数(实际上都是符号)一起进行各种各样的运算,而且在运算上满足运算律.从中我们可以发现,式的运算在本质上就是对符号运用运算律所进行的形式运算.例如,两个多项式相加,就是把同类项利用分配律对它们的系数进行加减运算,当遇到有括号的多项式的加减运算时,仍然是利用交换律、结合律以及分配律对其进行加减运算.本单元的学习是对数的加减运算以及运算律的推广运用,通过本单元的学习,使学生初步形成式也可以进行运算的意识,并为代数式的其他运算打下基础,为解一元二次方程做好准备.三、单元学情分析整式的加减是继有理数运算后学生第一次接触式的运算,与小学阶段的学习相比,初中数学难度增加,加之受到有理数运算以及小学六年级的非负数运算的干扰,学生的计算经验已经根深蒂固,在整式运算的学习中困难增加.进入初中后,数学内容显得多而抽象,尤其是由过去的数演绎到数、式,乃至今后的形,引发了学生学习方法的变化.本章内容试图让学生通过与数的运算做类比,引出合并同类项的方法,让学生知道合并同类项的依据就是乘法对加法的分配律,甚至所有在数的运算中成立的运算律和法则在式的运算中都适用.本单元的主要任务之一就是帮助学生实现数的运算到式的计算的类比过渡,完善类比思想,简化数学思维过程,让数学思想方法在思考中得到锻炼与提升.去括号法则是本单元学习的难点,它是整式加减的基础,也是今后学习因式分解、分式运算及解方程的基础,上课时要引导学生与数的运算作比较,考察在数的运算中遇到去括号时是怎样去掉括号的,去掉括号的理由是什么,在学生弄懂数的运算中去括号的算理后,再考查式子中去括号的问题,真正引导好学生知其所以然,应用时方可得心应手.四、单元学习目标1.经历观察、思考、归纳总结等过程,理解整式的概念,能够准确地找到单项式的系数和次数以及多项式的项与次数.2.通过对合并同类项法则和去括号法则的探究过程,让学生感受数学知识中数与式之间的联系性,提高学生的学习能力.3.通过自主探究、小组合作、类比等方法,使学生掌握合并同类项法则和去括号法则,能进行简单的整式的加减运算,培养学生的运算能力、推理能力、抽象能力和应用意识.五、单元学习内容及学习方法概览六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.自主性原则:学生可以根据自己的学习能力自主选择,每课时留下拓展性练习或自主编写自己的易错题类型.生活性原则:本节课的知识来源于生活,应回归于生活,体现数学的应用价值.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
七年级数学上册第二章整式的加减2.2整式的加减(第四课时)整式的加减(2)教案(新版)新人教版
七年级数学上册第二章整式的加减2. 2整式的加减(第四课时)整式的加减(2)教案(新版)新人教版一、教学目标(-)学习目标1 .熟练掌握整式的加减运算法则,并能准确化简求值.2 .体会整体代入法的作用.3 .准确的运用去括号法则、合并同类项法则进行整式的化简求值.(二)学习重点熟练掌握整式的加减运算法则,并能化简求值.(三)学习难点准确的运用整体代入的方法化简求值.体会整体的代入方法的作用.二、教学设计(-)课前设计1 .预习任务整式的化简求值一般先一化简,再求值 .2 .预习自测(1)化简:-(a -h)2+\ 3(a - b)2 - 8(« - b)2 + 7(a - b)2. 2【知识点】合并同类项.【数学思想】整体思想.1 25【解题过程】解:原式=(一 + 13-8 + 7)(0-。
)2 二一(々一。
)2. 2 2【思路点拨】根据同类项,把同类项结合到一起,根据合并同类项,可得答案.9S【答案】—(a-b)2. 2(2)化简:6x2y + 2xy^-3x2y2 -7x-5yx-4y2x2 -6x2y .【知识点】合并同类项.【解题过程】解:原式二—7/),2—3邛—7-【思路点拨】根据合并同类项的法则求解即可.【答案】-7x2r-3^-7x.(3)化简求值:(7〃?。
-4〃?〃 -4,/)一(2"/ 一+ 2/J);其中/7? = ■!■ ; // =-- 22【知识点】去括号、合并同类项.【解题过程】解:原式=7〃/一4〃〃?一4/一2〃72+〃〃?一2万=5m2 -3//Z/Z-6/?2当〃2 =—, 〃 = 一工时,5m2 -36〃-6/ =5x(—)2 - 3x — x(--)-6x(--)2 =— 2 2 2 2 22 2【思路点拨】先化简再代入求值,可以简化计算.【答案】2(4)化简求值:(1〃2_2〃-6)-1(!〃2-4a-7),其中〃=2.3 2 2【知识点】化简求值【解题过程】解:(L『-2«-6)--(—i/2-4a-7) =-a2 -2a-6- — a2+2a + — = — a2-- 3 2 2 3 4 2 12 2i 5 i Q当a = 2时,原式二上x2?—二二一上.12 2 6【思路点拨】先化简再代入求值,可以简化计算.13【答案】—上6(二)课堂设计1 .知识回顾(1)去括号法则是.注意:①去括号,看符号,是“+”不变号,是“一”全变号.②括号前的因数分配到括号内不要漏乘项.③去括号前后项数一致.(2)合并同类项的法则:系数相加,字母和字母的指数不变.(3)整式加减运算实际是,2 .问题探究探究一•活动①(整合旧知,探究整式的化简求值)化简求值:4x?),一[6个一3(4\y-2)-x1] + l,其中x = 2,2学生独立自主的解决,老师巡视,发现学生在解题过程中的不同方法.抽两个不同方法的学生板书(一个是直接代入求值,另一个先化简再求值)师问:比较两解法,哪种方法更简单?生答:先化简再求值更简单一些.师问:你们能总结整式的化简求值的方法步骤吗?生答:先化简,再求值【设计意图】使学生进一步理解掌握整式的加减法则,熟练进行整式的化简求值,掌握化简求值的格式要求.探究二•活动①(大胆操作,探究整体思想代入求值)已知代数式2/+3y + l的值是2,求6r+9)、-7的值.师问:题目没有直接告知x和y的值,如何求值呢?引导学生观察与思考.【设计意图】让学生初步认识整体思想的作用.・活动②(集思广益,证明整体代入的方法)师问:注意观察条件和结论中含字母的部分的系数有何特征?生答:成倍数关系师问:这类型的题目用什么方法求值呢?法一、由条件向结果转化V 2x2+3y + \ = 2,则3(2x2+3y + l) = 3x2,则6』+9y + 3 = 6, A 6x2+9y = 3. ・•.把6/ + 9 y作为整体带入6/ + 9 y - 7得值是-4法二、由结果向条件转化6/+9),一7:3(2/+3乃一7,再由2丁+3y + l = 2得2/+3y = 1,・••原式二—4 【设计意图】让学生认识到整体带入的数学思想使运算化简更简便.探究三运用整式的加减化简求值・活动①i i 3 1 ?例L 求Lx — 2(x —:y2) +(—, x + =),2)的值,其中工=—2,),=二.2 3 2 3 3【知识点】整式的化简求值.1 1 3 1【解题过程】解:ix-2(x-ir)+(--x+ir)2 3 2 31 个2)3 1 ,=—x-2x + — ~ — x + - y2 3, 2 3.= -3x+y2当x = -2, y = g时,原式二(一3)乂(一2) + ($2=6 + [=62.【思路点拨】先化简,再求值.4【答案】6-.9练习:先化简,再求值:12(。
2.2_整式的加减(教案)
一、教学内容
2.2_整式的加减:本节教学内容来自七年级数学上册,主要包括以下内容点:(1)理解整式的概念,掌握整式的加减法则;(2)能够正确列出整式,进行整式的加减运算;(3)掌握合并同类项的方法,并运用到实际问题中。具体内容包括:单项式与多项式的定义、同类项的辨识、合并同类项、整式的加减运算。通过本节内容的学习,使学生能够熟练掌握整式的加减运算,为后续学习打下基础。
三、教学难点与重点
1.教学重点
(1)整式的概念:使学生理解并掌握单项式、多项式的定义,能够辨识各种整式。
举例:如2x、-3xy、4x^2y等是单项式;3x+2y、4x^2-5xy+6等是多项式。
(2)整式的加减法则:使学生熟练掌握整式加减运算的步骤和方法,特别是合并同类项。
举例:如2x+3x=5x,-4xy-2xy=-6xy。
3.重点难点解析:在讲授过程中,我会特别强调整式的加减法则和合并同类项这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与整式加减相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。例如,通过计算不同物品的价格总和,演示整式的加减原理。
(3)应用整式加减解决实际问题:培养学生将现实问题抽象为整式加减运算,并能正确求解。
举例:某商品的单价为x元,购买a个该商生需掌握辨识同类项的规则,包括字母相同、指数相同。
举例:2x与3x是同类项,但2x与2x^2不是同类项。
(2)合并同类项:学生需学会将同类项的系数相加减,字母及指数保持不变。
举例:2x+3x=5x,而不是6x;4x^2-3x^2=x^2,而不是7x^2。
2.2整式的加减(第4课时)
数学
七年级
上册
2.2 整式的加减 (第4课时)
学习目标:
(1)理解整式的加减就是去括号,合并同类项;
(2) 在掌握合并同类项、去括号的基础上,掌 握整式加减的一般步骤; (3)能熟练、准确地进行整式的加减运算
学习重点:
运用合并同类项、去括号进行整式的加
减.
练一练
先去括号,再合并同类项。
练一练
1.(1)求整式3x+4y与2x-2y-1的和 (2)求整式3x+4y与2x-2y-1的差
注意:当多项式做减数时,要用括号括起来!
2.已知A=x3+x2+x+1,B=x-x2,求: (1)2A+B注意用括号前的 数值去乘括号内的每一项; (2)找出同类项,放到同一个括号里; (3)合并同类项,计算出最简式; (4)把x,y的值代入式子.
注意:多项式做减数时,应用括号括起来!
练一练
已知(x+1)2+|y-1|=0,
求: 2(xy-5xy2) -(3xy2-xy)的值。 解 x 1) y 1 0 ( 当x= -1,y=1时
2
x 1 0, y 1 0
x 1, y 1 2(xy-5xy2)-(3xy2-xy)
=2xy-10xy2-3xy2+xy =3xy-13xy2
原式=3×(-1)×113×(-1)×12 = -3+13=10
补充作业: 1.已知两个多项式A,B.其中 B=4x2+3x-4, A-B=-7x2-6x+8. 求:A+B.
提示:因为(A+B)-(A-B)=2B, 所以A+B=2B+(A-B)
2.已知A=3a2+2b2,B=a2-2a-b2, 当 (b+4)2+|a-3|=0时,求A-B的值。
人教版 2.2整式的加减--整式的加减运算
应用
做大小两个长方体纸盒(不考虑材 料损失),尺寸如下(单位:cm):
小纸盒 大纸盒
长 a 1.5a
宽 b 2b
高 c 2c
(1)做这两个纸盒共用料多少? (2)做大纸盒比小纸盒多用料多少?
总 结:
整式加减运算法则: 一般的,几个整式相加减,如果有 括号就先去括号(小括号→中括号 →大括号),然后再合并同类项。 整式加减,最后结果中无括号,无 同类项。结果项数较多时,一般按 出现较多的字母的升幂或降幂排列。 (最常用降幂排列)
提 高:
1、化简求值:
1 其中a=0.5,b= . 3
2
5(3a
2b ab2
) (ab
2 3a2b
)
2、若 M 3x 5x 2 , 3x 5x 2 N 试比较M,N的大小。
2
提 高:
3、若2<x<3,化简:
| 2- x | - | x -3|
4、已知关于x,y的多项式
回顾与思考
计算:
(2) (4x - 8y) +(5x + 6y) (3) - 4xy + 3xy - (-2x y) 1 1 2 1 2 2ab (4) - ab - ( a + a ) - () 3 4 3 3
2
应用
飞机的无风航速为a km/h(a>20), 风速为20 km/h.飞机顺风飞行4h的 行程是多少?飞机逆风飞行3h的行 程是多少?两个行程相差多少? 顺风速度=无风航速+风速; 逆风速度=无风航速-风速。
2 2
ax 2bxy x x 4 xy y
不含二次项,求5a-2b的值.
作 业:
七年级数学《整式的加减-去括号》教案
第4课时整式的加减(2)学生独立列出式子,[活动2]合作探究获取新知(一)主动参与,探究法则问题3:请类比数的运算,化简你所列的两个式子。
并思考化简的依据是什么?问题4:利用运算律去括号(1)+(x-3)(2)-(x-3)问题5:观察下列两个等式中括号和各项符号的变化,你能得到什么结论?(1)+(x-3)=x-3(括号没了,符号没变)(2)-(x-3)= -x+3(括号没了,括号变了。
)【即兴演练】(二)范例点击应用新知问题6(课本P67例4):化简下列各式(1)8a+2b+(5a-b)(2)(5a-3b)-3(a2-2b)问题7(课本P67例5):两船从统一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米/时。
(1)2小时后两船相距多远?(2)2小时甲船比乙船多航行多少千米?[教师活动]1、提出问题3,引导学生联系乘法分配律尝试去括号,提两名学生板演。
关注学困生,提醒学生注意括号前面的符号以及去掉括号后括号内各项的变化情况。
2、评价板演情况,分别在+120(t-0.5)=+120t-60和-120(t-0.5)=-120t+60下面做上标记后提问:你能从这两个式子中发现去括号时符号的变化规律吗?这个问题先暂不做回答,再看下面的问题(出示问题4),在学生独立完成的基础上提出问题53、结合学生回答,板书: +(a+b)=a+b;-(a+b)=-a-b。
即:正号不变号;负号全相反。
强调“括号前面是负号,去掉括号后,括号内的每一项的符号都要改变”【学生活动】1、独立解决问题3、4,2、综合问题3、4讨论回答问题53、总结去括号的法则,参与对同伴表现情况的评价【教师活动】1、出示问题6,诱导:根据前面的经验,要化简这两个式子,就得设法合并同类项,式子中有没有同类项?要想合并同类项首先得干什么?你们能独立完成吗?在此基础上,提两名学生板演,其他学生独立完成,设计意图1、复习引新,做好知识之间的过渡。
2.2 整式的加减(第4课时)
2.2 整式的加减 (第4课时)
大连市第五十一中学 刘悦
例8
做两个长方体纸盒,尺寸如下(单位:cm)
长
宽
高
小纸盒 a
b
c
大纸盒 1.5a 2b
2c
(1)做这两个纸盒共用料多少平方厘米? (2)做大纸盒比做小纸盒多用料多少平方厘米?
小组合作:(1)独立思考1分钟 (2)组内讨论4分钟 (3)小组展示方案3分钟
作业:教科书习题2.2 第3,4, 5题.
(3) x y x 2 y 2 x 2 y 2 8 x y
( )( ) (4) 53 a 2 b -a b 2-a b 2 + 3 a 2 b 其中 a = 1 , b = 1 23
打开学案完成2,3,4题
课堂小结
从知识,方法,经验三个方面我们 有哪些收获?
完成学案中的课堂检测
想一想:你是如何计算整式加减的 呢?你可以归纳下整式加减的法则 吗?
求 1x2(x1y2)(3x1y2)的值,
2
3
23
其中 x 2, y 2 .
3
练习: 打开猿题库,自行完成题库中2.2整式 加减,利用软件解析错题。
四、闯关竞赛
(1) abcd (2) 5 a 4 c 7 b 5 c 3 b 6 a
人教版数学七年级上册.4整式加减常见题型专题课件
考点四:整体代入
类型一:直接代入 如果x+y=2,则(x+y)2+2x+2y+1=
a-b=-3,c+d=2,则(b+c)-(a-d)=
类型二:整体思想之配系数 若多项式3x2-4x+6 的值为8,则6x2-8x-1的值
(1) 探究方框内的9个数字之和与方框正中间的数有什么关系?
解:(1) 方框内的9个数之和是方框正中间的数的9倍.
(2) 不改变方框的大小,任意移动方框的位置,你能得到什么结论?并说 明理由.
(2) 结论:方框内的9个数之和是方框正 中间的数的9倍. 理由:设方框正中间的数为x,则其他 的8个数分别为x-8,
考点三:绝对值化简
类型一:
1.已知有理数a<0,b>0,化简:|2a-b|+|b-a|.
解:因为a<0,b>0, 所以2a-b<0,b-a>0, 原式=-(2a-b)+(b-a)=-2a+b+b-a=-3a+2b
2.若x,y为非零有理数,且x=|y|,y<0,化简:|y|+|-2y|-|3y-2x|.
解:2x3-8x2+x-1+(3x3+2mx2-5x+3) =2x3-8x2+x-1+3x3+2mx2-5x+3 =5x3+(-8+2m)x2-4x+2
∵两多项式的和不含二次项
∴ -8+2m=0 得m=4
3、关于x,y的多项式6mx2+4nxy+2x+2xy-x2+y+4不含二次项,求 多项式2m2n+10m-4n+2-2m2n-4m+2n的值
数学活动——用整式表示实际问题中的数量关系
数学活动——用整式表示实际问题中的数量关系一、新课导入1.活动导入:本节课我们通过两个数学活动体验如何将本章所学的“整式加减”的相关知识应用于生产、生活实际之中.2.三维目标:(1)知识与技能用整式和整式的加减运算表示实际问题中的数量关系.(2)过程与方法体会从特殊到一般,从个体到整体来观察、分析问题的方法.(3)情感态度尝试从不同角度探究问题,提升应用意识和创新意识.3.活动重、难点:重点:用整式表示实际问题中的数量关系,以及从特殊到一般的探究方法.难点:利用整式和整式的加减运算准确表示出具体情境中的数量关系.4.活动材料:一盒火柴棍、一张月历、投影仪、几何画板等.二、活动过程活动1探索用火柴棍摆的三角形1.活动指导:(1)自学内容:教材第72页活动1(1).(2)自学时间:8分钟.(3)自学方法:用准备好的火柴棍动手摆放图形,从特殊情况入手,通过观察、分析、思考、推理得出一般性规律.(4)活动参考提纲:由于观察图形时的角度不同,规律的显现方式,得到的表达形式也就不同,下面提供几种不同的思路(或方法)供同学们参考:①从第二个图形起,与前一图形比,每增加一个三角形,就增加2根火柴棍,于是有:表达形式:3+2(n-1)=2n+1.②每个三角形由三根火柴棍组成,从第一个图形起,火柴棍根数等于所含三角形个数乘3再减去重复的火柴棍根数,于是有:表达形式:3n-(n-1)=2n+1.③从第一个图形起,以一根火柴棍为基础,每增加一个三角形,就增加2根火柴棍,于是有:表达形式:1+2n=2n+1.④将组成图形的火柴棍分为“横”放和“斜”放两类统计计数,可得:表达形式:n-1+n=2n-1.2.自学:学生参考活动指导进行活动性学习.3.助学:(1)师助生:①明了学情:教师巡视课堂了解学生的自学情况:其一是能否顺利得出提纲指示的思路下的最终表达式,其二是还有没有得到其他的思路.②差异指导:根据反馈的学情情况有针对性地进行相关指导.(2)生助生:小组内相互交流,互帮互学.4.强化:不同思路下的表达形式.活动2探索月历中的数字规律1.活动指导:(1)自学内容:教材第73页活动3.(2)自学时间:10分钟.(3)自学方法:可从水平方向(从左到右),竖直方向(从上到下),对角线方向(从左上到右下)等不同方向去观察,分析月历中数字间的规律,再恰当设字母表示它们,然后化简得出一般规律.(4)活动参考提纲:①按顺序完成本活动中的六个问题.②设日历中间的某数为a,则它上面的数是a-7,下面的数是a+7,左边的数是a-1,右边的数是a+1.2.自学:学生参考活动指导进行活动性学习.3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生的自学情况,主要关注:a.自学进度;b.解决第(3)个问题时,如何设字母表示数;c.第(5)、第(6)个问题有没有学生从几个数的乘除之间的关系找规律.②差异指导:根据反馈的学情进行相应的指导.(2)生助生:小组内相互交流、展示,互帮互学.4.强化:(1)各小组选派代表展示交流各自的学习成果.(2)日历中数字间关系.三、评价1.学生学习的自我评价:反思整个活动过程,自评活动表现如何,有何收获(如何用所学知识解决问题,学到了什么思想方法等).2.教师对学生的评价:(1)表现性评价:根据活动表现、学习态度和完成状况对学生给予评价.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节课是数学活动课,学生对这类探索规律题目并不陌生,大多数学生能够发现规律并完成活动,少数学生需要在教师的提示下才能完成这三个活动,活动的目的是,让学生对本章知识有更深的了解——整式的加减不仅是计算,还能解决生活中或学习中一些较为复杂的问题,或揭示一些问题的本质,所以教学过程中,要引导学生往这方面思考.一、基础巩固(第1、2、3题每题10分,第4题20分,共50分)1.(30分)观察下列一组数:13,25,37,49,…,第n个数是21nn.2.(20分)如图所示,以一根火柴棍为一边,用火柴棍拼成一排由正方形组成的图形,如果图形中含有n个正方形,需要多少根火柴棍?解:3n+1二、综合应用(每题15分,共30分)3.(20分)如图所示,用大小相等的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形,……拼一拼,想一想,按照这样的方法拼成的第n个正方形比第(n-1)个正方形多几个小正方形?…第1个正方形第2个正方形第3个正方形解:拼第n-1个正方形需要n2个小正方形,第n个正方形需要(n+1)2个小正方形,则第n个正方形比第(n-1)个正方形多(n+1)2-n2=2n+1个小正方形.三、拓展延伸(20分)4.(30分)若干个偶数排列成如下图所示,探究方框中数之间的关系.解:左边的框中,设中间的数为a,则上面的数为a-16,下面的数为a+16,三数和为3a.中间的框中,设左上角数字为b,则右上角数字为(b+2),左下数字为(b+16),右下数字为(b+18).四数和为4b+36,且左上+右下=右上+左下.右边的框,设中间的数为c,则有c-18 c-16 c-14c-2 c c+2c+14 c+16 c+18九数和为9c,且两斜线上的数的和相等.2.2 整式的加减第3课时整式的加减一、新课导入1.课题导入:前面我们学习了合并同类项,去括号等知识,它们是进行整式加减运算的基础,这节课我们来学习整式的加减运算.(板书课题).2.三维目标:(1)知识与技能让学生从实际背景中去体会进行整式的加减的必要性,并能灵活运用整式的加减的步骤进行运算.(2)过程与方法培养学生的观察、分析、归纳、总结以及概括能力.(3)情感态度认识到数学是解决实际问题和进行交流的重要工具.3.学习重难点:重点:熟练进行整式加减运算.难点:能运用整式加减运算解决简单的实际问题.二、分层学习1.自学指导:(1)自学内容:教材第67页例6的内容.(2)自学时间:6分钟.(3)自学要求:认真阅读课文,理解例6中两个算式的意义,尝试归纳出整式加减运算的解题步骤.(4)自学参考提纲:①第(1)题是计算多项式2x-3y和5x+4y的和;第(2)题是计算多项式8a-7b和4a-5b的差.这说明求几个多项式的和或差的运算时,每个多项式都要用括号括起来.②由例题可归纳出整式加减运算的一般步骤是怎样的?小组同学相互交流一下自己的见解.先去括号,再移项,合并同类项.③尝试解答下列问题,并相互展示自己的计算过程和结果.a.计算:5(3a2b-ab2)-3(ab2+2a2b)原式=15a2b-5ab2-3ab2-6a2b=9a2b-8ab2.b.求12x-2(x-13y2)+(- 32x+13y2)的值,其中x=-2,y=23.原式化简为y2-3x.当x=-2,y=23,原式=(23)2-3×(-2)=589.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生是否掌握了去括号法则及自学参考提纲完成情况.②差异指导: 对个别学生在法则认知上存在的问题或提出的疑点进行点拨和引导.(2)生助生:学生相互交流探讨来解决自学中的疑难问题.4.强化:(1)整式加减的一般步骤:先去括号,再合并同类项.(2)应注意的问题:①去括号时,不能漏乘括号前的系数,并注意符号的变化.②求值时,要先化简,并注意求值的书写格式.(3)练习:教材第69页“练习”的第1、2、3题.1.自学指导:(1)自学内容:教材第68页例7和例8.(2)自学时间:8分钟.(3)自学要求:认清例题中反映的条件,思考问题中要利用的数量关系,正确列出相关的代数式.(4)自学参考提纲:①例7有两种考虑问题的角度.第一种先求出小红和小明买这两种物品分别花费多少钱,再得出花费多少钱,这样可列出式子:(3x+2y)+(4x+3y).第二种先求出买笔记本和买圆珠笔分别花费多少钱,再得共花费多少钱,于是可列出式子:(3x+4x)+(2y+3y).②长方体共有几个面?都是什么形式?相对的两个面大小有什么关系?因此,在例8中,a.小纸盒的表面积是(2ab+2bc+2ca)cm2,大纸盒的表面积是(6ab+8bc+6ca)cm2.b.做两个纸盒共用料多少平方厘米?可列出式子:(2ab+2bc+2ca)+(6ab+8bc+6ca).计算得8ab+10bc+8ca.c.做大纸盒比做小纸盒多用料多少平方厘米,可列出式子(6ab+8bc+6ca)-(2ab+2bc+2ca).计算得4ab+6bc+4ca.2.自学:同学们可结合自学参考提纲进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂了解学生的自学情况以及存在的问题.注意在求多项式的和或差时,相应的多项式是不是没加括号.②差异指导: 对个别学生在法则认知上存在的问题或提出的疑点进行点拨和引导.(2)生助生:学生相互交流探讨来解决自学中的疑难问题.4.强化:(1)集中讲解学生自学过程中存在的共性问题.(2)练习:甲村种植小麦a亩,种植水稻面积是小麦面积的2倍,乙村种植小麦b亩,种植水稻的面积比小麦面积的3倍少200亩,求甲、乙两村两种作物的总面积是多少亩?解:甲村种植作物总面积为(a+2a)亩,乙村种植总面积为(b+2b-200)亩.所以甲、乙两村两种作物的总面积为(a+2a)+(b+3b-200)=(3a+4b-200)亩.三、评价1.学生的自我评价(围绕学习目标):自我评价在本节课学习的收获和不足.2.教师对学生的评价:(1)表现性评价:对学生在本节课学习中相关方面情况进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时是在学生掌握了合并同类项、去括号法则的基础上学习的,主要任务是通过探索性练习,引导学生总结归纳出整式加减的一般步骤,并应用其进行整式加减的准确运算,所以可采用以旧带新的方式,让学生在练习中熟悉法则,纠正错误,弥补不足.鼓励学生间互相交流,互相改正问题,充分体现学生自行解决问题的主体作用.一、基础巩固(第1、2、3题每题10分,第4题20分,共50分)1.(40分)计算:(1)(5a+4c+7b)+(5c-3b-6a)解:原式=5a+4c+7b+5c-3b-6a=-a+4b+9c(2)(8xy-x2+y2)-(x2-y2+8xy)解:原式=8xy-x 2+y 2-x 2+y 2-8xy=-2x 2+2y 2(3)(2x 2-12+3x)-4(x-x 2+12)解:原式=2x 2-12+3x-4x+4x 2-2=6x 2-x-52(4)3x 2-[7x-(4x-3)-2x 2]解:原式=3x 2-(7x-4x+3-2x 2)=3x 2-7x+4x-3+2x 2=5x 2-3x-32.(10分)求(-x 2+5+4x )+(5x-4+2x 2)的值,其中x=-2.解:(-x 2+5+4x)+(5x-4+2x 2)=-x 2+5+4x+5x-4+2x 2=x 2+9x+1当x=-2时,原式=(-2)2+9×(-2)+1=4-18+1=-13.3.(10分)已知一个多项式与3x 2+9x 的和等于3x 2+4x-1,求这个多项式.解:这个多项式为(3x 2+4x-1)-(3x 2+9x)=3x 2+4x-1-3x 2-9x=-5x-1.二、综合应用(每题15分,共30分)4.(10分)窗户的形状如图所示(图中长度单位:cm),其上部是半圆形,下部是边长相同的四个小正方形.已知下部小正方形的边长是a cm ,计算:(1)窗户的面积;(2)窗户外框的总长.解:(1)窗户的面积为:22a π+4a 2=π+282a π+ (cm 2) (2)窗户的外框总长是:πa+2a ×3=πa+6a=(π+6)a(cm)5.(10分)观察下列图形并填表(单位:cm ).三、拓展延伸(20分)6.(20分)(1)一个两位数的个位上的数是a,十位上的数是b,列式表示这个两位数.(2)列式表示上面的两位数与10的乘积.(3)列式表示(1)中的两位数与它的10倍的和,这个和是11的倍数吗?为什么?解:(1)10b+a;(2)10(10b+a);(3)10b+a+10(10b+a)=11(10b+a),这个和是11的倍数,因为它含有11这个因数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习目标
1. 能运用运算律探究去括号法则,掌握去括 号法则; 2.熟练地运用去括号法则化简整式.
探究点一 应用去括号法则计算
例1 化简下列各式: (1)8a+2b+(5a-b); (2)(5a-3b)-3(a2-2b).
反思归纳:去括号时应注意什么?去括号的依据是什么?
探究点一 应用去括号法则计算
(1)去括号规律要准确理解,去括号应对括 号的每一项的符号都予考虑,做到要变,括 号内的每一项都变号;要不变,括号内的每 一项都不改变变号; (2)括号内原有几项去掉括号后仍有几项.法 则顺口溜:去括号,看符号:是“+”号,不 变号;是“―”号,全变号. 去括号的依据 乘法的分配律.
探究点二 去括号法则的实际应用
例2 两船从同一港口同时出发反向而行,甲船顺水,乙 船逆水,两船在静水中的速度都是50千米/时,水流速度是a 千米/时. (1)2小时后两船相距多远? (2)2小时后甲船比乙船多航行多少千米? 思考: 船顺水航行的速度=船在静水中的速度+____________, 船逆水航行速度=船在静水中行驶速度-__________. 因此,甲船速度为 千米/时,乙船速度为 千米/ 时,2小时后,甲船行程为 千米,乙船行程为 千米.
达标测评 7、下列各式于x3-5x2-4x+9相等的是( ) A (x3-5x2)-(-4x+9) B x3-5x2-(4x+9) C -(-x3+5x2)-(4x-9) D x3+9-(5x2-4x) 8、化简下列各式 (1)-5(m3-3)-2(3m3-6) ; (2) 2(x-3y)+3(2x-4y); (3) (2xy-y)-(-y+xy) ; (4)(6a2-2b2)-(-a2+2ab+b2)-(a2-4ab+3b2).
2.2整式的加减
第4课时 整式的加减(四)
创设情景
在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那 么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地 段的路程为100t千米,非冻土地段的路程为120(t-0.5)千米, 因此,这段铁路全长为 100t+120(t-0.5)千米 ① 冻土地段与非冻土地段相差 100t-120(t-0.5)千米 ② 上面的式子①、②都带有括号,它们应如何化简?
括号法则的内容是什么?其依据是什么? 3、举例说明数的运算律和运算性质在整式的加 减运算中仍然成立.
达标测评
1、x+(y-z)=________,x-(y-z)=_________. 2、2a-(a+b)=__________,2a+(-a+b)=________. 3 、有理数-a+b-c的相反数是_____ 4 、 一 个 代 数 式 加 上 -2x-1 等 于 5x2+3x-9 , 则 这 个 代 数 式 等 于 ________ 5 、 如 果 长 方 形 的 周 长 为 4m, 一 边 长 为 m-n , 则 另 一 边 长为 ________ 6、下列去括号正确的是( ) A – (x-6)=-x-6 B – (x-6)=x+6 C –(x-6)=x-6 D – (x-6)=6-x