高一数学必修 不等式知识点总结

合集下载

基本不等式知识点总结高一

基本不等式知识点总结高一

基本不等式知识点总结高一基本不等式知识点总结一、不等式的定义和性质不等式是数学中表示大小关系的一种符号方法。

不等式的定义如下:若两个数a、b满足条件a>b,则称a大于b,记作a>b;若a≠b 且a>b或a<b,则称a与b之间存在不等关系。

不等式的性质如下:1. 传递性:若a>b且b>c,则a>c。

2. 对称性:若a>b,则-b>-a。

3. 相反数性质:若a>b,且c>0,则 ac>bc;若a>b,且c<0,则 ac<bc。

4. 分解性质:若a>b,且c>0,则a+c>b+c。

5. 翻转性质:若a>b,且c<0,则-a<-b。

6. 加法性质:若a>b,则a+c>b+c。

7. 乘法性质:若a>b且c>0,则ac>bc;若a<b且c<0,则ac>bc。

二、基本不等式1. 加法不等式:若a>b,则a+c>b+c,其中c为任意实数。

2. 减法不等式:若a>b,则a-c>b-c,其中c为任意实数。

3. 乘法不等式:a) 正数乘法不等式:若a>b且c>0,则ac>bc。

b) 负数乘法不等式:若a>b且c<0,则ac<bc。

4. 除法不等式:a) 正数除法不等式:若a>b且c>0,则a/c>b/c。

b) 负数除法不等式:若a>b且c<0,则a/c<b/c。

5. 绝对值不等式:a) 若|a|<b,则-a<b<a。

b) 若|a|>b,则a<-b 或 a>b。

6. 平方不等式:a) 若a>b>0,则a^2>b^2。

b) 若a<b<0,则a^2>b^2。

三、解不等式的方法1. 加减法解法:对于不等式a+c>b+c,若c>0,则原不等式成立;若c<0,则原不等式不成立。

高一数学不等式知识点总结

高一数学不等式知识点总结

高一数学不等式知识点总结一、要点精析1.比较法比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法)。

(1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”。

其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论。

应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法。

(2)商值比较法的理论依据是:“若a,b∈R+,a/b≥1a≥b;a/b≤1a≤b”。

其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1。

应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法。

2.综合法利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”。

其逻辑关系为:AB1B2B3…BnB,即从已知A逐步推演不等式成立的必要条件从而得出结论B。

3.分析法分析法是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”。

用分析法证明AB的逻辑关系为:BB1B1B3…BnA,书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真。

高一必修五不等式的知识点

高一必修五不等式的知识点

高一必修五不等式的知识点不等式是数学中常见的一种数学关系符号,用于表示两个数或两个算式之间的大小关系。

高中数学中,不等式是一个重要的知识点,其中必修五的学习内容涉及到不等式的基本概念、性质、解法等。

下面将介绍高一必修五不等式的主要知识点。

一、不等式的基本概念不等式是用不等号表示两个数或两个算式之间的大小关系。

不等式中的不等号可以是小于号(<)、大于号(>)、小于等于号(≤)或大于等于号(≥)。

二、不等式的性质1. 加法性性质:对于不等式两边同时加减一个相同的数,不等式的方向不变。

例如,若a > b,则 a + c > b + c。

2. 乘法性性质:对于不等式两边同时乘除一个正数,不等式的方向不变;对于不等式两边同时乘除一个负数,不等式的方向改变。

例如,若a > b(a > 0),则 a · c > b · c。

3. 反身性:任何数与自身进行大小比较时都满足等式关系。

例如,a = a。

4. 传递性:若 a > b,b > c,则 a > c。

例如,若a > b,b > c,则 a > c。

5. 两边加或减一个相同的数对不等式关系不会改变。

例如,若a > b,则 a + c > b + c。

三、不等式的解法1. 图解法:通过在数轴上绘制对应数值的数轴图形,来解读不等式的解集。

例如,对于不等式 x > 3,可以在数轴上绘制一个开口向右的箭头,并在箭头右侧标记出无限大的数集。

2. 几何法:利用几何图形,如包含在坐标系上的点、线段、平面等,来求解不等式的解集。

例如,对于不等式 2x + y > 5,可以在坐标系上绘制直线 2x + y = 5,然后根据不等式的要求确定直线上、下两侧的解集。

3. 符号法:通过变量和符号的运算来对不等式进行转化,从而求解不等式的解集。

例如,对于不等式 3x + 2 < 10,可以通过减去2再除以3的方式将不等式转化为 x < 2。

完整版)高中数学不等式知识点总结

完整版)高中数学不等式知识点总结

完整版)高中数学不等式知识点总结1、不等式的基本性质不等式有以下基本性质:①对称性:a>b等价于b<a。

②传递性:a>b。

b>c则a>c。

③可加性:a>b等价于a+c>b+c,其中c为任意实数。

同向可加性:a>b,c>d,则a+c>b+d。

异向可减性:a>b,cb-d。

④可积性:a>b,c>0则ac>bc,a>b,c<0则ac<bc。

⑤同向正数可乘性:a>b>0,c>d>0则ac>bd。

异向正数可除性:a>b>0,0bc。

a>b>0,则a^n>b^n,其中n为正整数且n>1.⑦开方法则:a>b>0,则√a>√b。

⑧倒数法则:a>b>0,则1/a<1/b。

2、几个重要不等式以下是几个重要的不等式:a/b+b/a>=2,当且仅当a=b时取等号。

a^2+b^2>=2ab,当且仅当a=b时取等号。

a+b/2>=√ab,当且仅当a=b时取等号。

a+b+c/3>=∛abc,当且仅当a=b=c时取等号。

a^2+b^2+c^2>=ab+bc+ca,当且仅当a=b=c时取等号。

a+b+c>=3√abc,当且仅当a=b=c时取等号。

a/b+b/c+c/a>=3,当且仅当a=b=c时取等号。

a-b|<=|a-c|+|c-b|,对任意实数a,b,c成立。

3、几个著名不等式以下是几个著名的不等式:a-b|<=√(a^2+b^2),对任意实数a,b成立。

a+b)/2<=√(a^2+b^2),对任意实数a,b成立。

a+b/2<=√(a^2+1)√(b^2+1),对任意实数a,b成立。

a+b)/2<=√(a^2-ab+b^2),对任意实数a,b成立。

a+b)/2>=√ab,对任意正实数a,b成立。

高一数学不等式知识点

高一数学不等式知识点

高一数学不等式知识点在高一数学的学习中,不等式是一个重要的内容。

不等式不仅在数学中有着广泛的应用,也为我们解决实际问题提供了有力的工具。

接下来,让我们一起深入了解一下高一数学中不等式的相关知识点。

一、不等式的基本性质1、对称性:若 a > b,则 b < a 。

比如说,5 > 3 ,那么 3 < 5 。

2、传递性:若 a > b 且 b > c ,则 a > c 。

例如 7 > 5 ,5 > 3 ,所以 7 > 3 。

3、加法性质:若 a > b ,则 a + c > b + c 。

比如 8 > 6 ,那么 8 + 2 > 6 + 2 。

4、乘法性质:若 a > b 且 c > 0 ,则 ac > bc ;若 a > b 且 c <0 ,则 ac < bc 。

举个例子,若 4 > 2 ,当 c = 3 时,4×3 > 2×3;当 c =-3 时,4×(-3) < 2×(-3) 。

二、一元一次不等式形如 ax + b > 0 或 ax + b < 0 (其中a ≠ 0 )的不等式叫做一元一次不等式。

解一元一次不等式的一般步骤:1、去分母(若有分母):根据不等式的性质,在不等式两边同时乘以分母的最小公倍数,去掉分母。

但要注意,当乘以或除以一个负数时,不等号的方向要改变。

2、去括号:运用乘法分配律去掉括号。

3、移项:将含未知数的项移到不等式的一边,常数项移到另一边。

4、合并同类项:将同类项合并,化简不等式。

5、系数化为 1 :在不等式两边同时除以未知数的系数,得到不等式的解集。

例如,解不等式 2(2x 1) 3(x + 1) < 5 ,首先去括号得 4x 2 3x 3 < 5 ,然后移项得 4x 3x < 5 + 2 + 3 ,合并同类项得 x < 10 。

三、一元二次不等式形如 ax²+ bx + c > 0 或 ax²+ bx + c < 0 (其中a ≠ 0 )的不等式叫做一元二次不等式。

高一数学不等式知识点的

高一数学不等式知识点的

高一数学不等式知识点的一、基本概念不等式是数学中的一种重要概念,表示两个量之间的大小关系。

在高一数学学习中,我们主要掌握以下几个基本概念:1. 不等式的符号在不等式中,常见的符号有大于(>)、小于(<)、大于等于(≥)、小于等于(≤)等。

2. 不等式的解集解集是指使不等式成立的所有实数的集合。

可以用区间表示解集,比如(a, b)表示大于a小于b的实数集合。

二、一元一次不等式一元一次不等式是指只含有一个未知数,并且该未知数的最高次数为1的不等式。

我们可以通过移项和同乘(同除)等基本运算解决一元一次不等式的求解问题。

例如,对于不等式2x - 3 > 5,我们可以先将常数项移至另一侧,得到2x > 8,然后同除以2,得到x > 4。

因此,不等式的解集为(4, +∞)。

三、一元二次不等式一元二次不等式是指只含有一个未知数,并且该未知数的最高次数为2的不等式。

解决一元二次不等式的方法通常有以下几种:1. 寻找零点可以将不等式转化为一个二次函数的零点问题,通过求解二次函数的零点来得到不等式的解集。

2. 使用判别式对于形如ax^2 + bx + c > 0或ax^2 + bx + c < 0的不等式,可以计算出其判别式Δ=b^2 - 4ac的值,并根据判别式的正负情况来确定不等式的解集。

3. 图像法通过绘制一元二次函数的图像,找到使函数大于(或小于)零的区间,从而确定不等式的解集。

四、绝对值不等式绝对值不等式是指含有绝对值符号的不等式,常见的形式有|a - b| > c或|a - b| < c。

解决绝对值不等式的方法主要有以下几种:1. 分情况讨论法根据绝对值的定义,将绝对值不等式分解为正负两个部分,然后分别求解并合并解集。

2. 图像法通过绘制绝对值函数的图像,找到使函数大于(或小于)某个值的区间,从而确定绝对值不等式的解集。

五、常见的不等式性质在高一数学的学习中,我们还需了解一些常见的不等式性质,如:1. 不等式的加法、减法性质对于不等式a > b和c > d,有a + c > b + d和a - c > b - d的性质。

高一不等式及知识点总结

高一不等式及知识点总结

高一不等式及知识点总结一、不等式不等式是数学中比较大小关系的表示形式,以不等号(>、<、≥、≤)连接。

在高中数学中,不等式是一个重要的概念,不仅在代数、函数等知识中经常出现,也在实际问题中有广泛的应用。

二、一元一次不等式1. 一元一次不等式的定义一元一次不等式是指只含有一个未知数的一次项的不等式,例如:ax + b > 0。

2. 一元一次不等式的解集表示解一元一次不等式的过程与解一元一次方程类似,需要进行变形、运算和判断。

例如,对于不等式2x + 4 < 10,我们可以首先将不等式转化为等价的形式2x < 6,然后再根据系数的正负情况确定不等式的解集。

3. 解一元一次不等式的充分条件解一元一次不等式的充分条件是指在变形和运算的过程中需要针对不等式的符号进行讨论,以确定最终的解集。

例如,当一元一次不等式中出现除法运算时,需要考虑分母为0的情况,以避免出现错误的解集。

三、一元一次不等式组1. 一元一次不等式组的定义一元一次不等式组是指由多个一元一次不等式组成的集合,例如:{2x + 3 > 1,4x - 5 < 3}。

2. 解一元一次不等式组的方法解一元一次不等式组的方法与解一元一次方程组类似,需要将不等式组中的每个不等式进行变形、运算和判断,最终确定解集的范围。

四、二次不等式1. 二次不等式的定义二次不等式是指含有二次项的不等式,例如:ax^2 + bx + c > 0。

2. 二次不等式的解集表示解二次不等式的方法主要是利用一元二次函数的图像特点和一次不等式的解法,通过绘制函数图像和分析函数在不同区间的正负性,确定二次不等式的解集。

五、绝对值不等式1. 绝对值不等式的定义绝对值不等式是指含有绝对值表达式的不等式,例如:|x - a| < b。

2. 绝对值不等式的解集表示解绝对值不等式的关键是将绝对值表达式拆解为两个不等式,并分别求解这两个不等式。

高一数学不等式知识点整理归纳

高一数学不等式知识点整理归纳

高一数学不等式知识点整理归纳一、不等式的基本性质1. 对称性:若 \(a > b\),则 \(b a\);若 \(a b\),则\(b > a\)。

2. 传递性:若 \(a > b\) 且 \(b > c\),则 \(a > c\);若\(a b\) 且 \(b c\),则 \(a c\)。

3. 加法性质:若 \(a > b\),则 \(a + c > b + c\)。

4. 乘法性质:若 \(a > b\) 且 \(c > 0\),则 \(ac > bc\);若 \(a > b\) 且 \(c 0\),则 \(ac bc\)。

二、一元一次不等式形如 \(ax + b > 0\) 或 \(ax + b 0\)(\(a \neq 0\))的不等式。

解法步骤:1. 移项:将常数项移到不等式的另一边。

2. 化简:将 \(x\) 的系数化为 \(1\),注意当系数为负数时,不等号方向改变。

三、一元二次不等式形如 \(ax^2 + bx + c > 0\) 或 \(ax^2 + bx + c 0\)(\(a \neq 0\))的不等式。

解法:1. 求出方程 \(ax^2 + bx + c = 0\) 的根(可用求根公式 \(x = \frac{b \pm \sqrt{b^2 4ac}}{2a}\) )。

2. 根据二次函数 \(y = ax^2 + bx + c\) 的图像与 \(x\) 轴的交点,确定不等式的解集。

当 \(a > 0\) 时:若方程有两个不同实根 \(x_1\) , \(x_2\) (\(x_1x_2\)),则不等式 \(ax^2 + bx + c > 0\) 的解集为 \(x x_1\)或 \(x > x_2\) ;不等式 \(ax^2 + bx + c 0\) 的解集为 \(x_1x x_2\) 。

高一数学不等式知识点

高一数学不等式知识点

不 等 式1、 不等式的性质是证明不等式和解不等式的基础。

不等式的基本性质有: (1) 对称性:a>b ⇔b<a ;(2) 传递性:若a>b ,b>c ,则a>c ; (3) 可加性:a>b ⇒a+c>b+c ;(4) 可乘性:a>b ,当c>0时,ac>bc ;当c<0时,ac<bc 。

不等式运算性质:(1) 同向相加:若a>b ,c>d ,则a+c>b+d ; (2) 异向相减:b a >,d c <d b c a ->-⇒. (3) 正数同向相乘:若a>b>0,c>d>0,则ac>bd 。

(4) 乘方法则:若a>b>0,n ∈N +,则n n b a >; (5) 开方法则:若a>b>0,n ∈N +,则n n b a >; (6) 倒数法则:若ab>0,a>b ,则b1a 1<。

2、基本不等式定理:假如R b a ∈,,则ab b a222≥+(当且仅当a=b 时取“=”号)推论:假如0,>b a ,则ab ba ≥+2(当且仅当a=b 时取“=”号) 算术平均数2ba +;几何平均数ab ;推广:若0,>ba ,则ba ab b a b a 1122222+≥≥+≥+当且仅当a=b 时取“=”号; 3、肯定值不等式(1)|x |<a (a >0)的解集为:{x |-a <x <a};|x |>a (a >0)的解集为:{x |x >a 或x <-a}。

(2)|b ||a ||b a |||b ||a ||+≤±≤- 4、不等式的证明:(1) 常用方法:比较法,公式法,分析法,反证法,换元法,放缩法; (2) 在不等式证明过程中,应注意与不等式的运算性质联合运用; (3) 证明不等式的过程中,放大或缩小应适度。

高一的不等式知识点归纳总结

高一的不等式知识点归纳总结

高一的不等式知识点归纳总结不等式是数学中重要的一部分,其应用广泛,特别是在代数、几何和数论中。

在高一的数学学习中,不等式是一个重点内容,并为后续的数学学习打下基础。

下面是对高一阶段的不等式知识点进行归纳总结。

一、基础概念1.1 不等式的定义不等式是两个数或者表达式之间用不等号(<、>、≤、≥)联系起来的数学关系。

其中,>表示大于,<表示小于,≥表示大于等于,≤表示小于等于。

1.2 不等式的性质不等式存在传递性,即若a>b且b>c,则有a>c。

不等式两边同时加减一个相同的数,不等式的方向不变。

不等式两边同时乘除一个正数,不等式的方向不变。

不等式两边同时乘除一个负数,不等式的方向改变。

1.3 不等式的解集表示方法解集表示不等式中使得不等式成立的数的集合。

当不等式为严格不等号时,解集用开区间表示。

当不等式为不严格不等号时,解集用闭区间表示。

当不等式为大于号或小于号时,解集用开区间和闭区间表示。

二、一元一次不等式一元一次不等式是形如ax+b<0(或>)的不等式,其中a和b为已知数,x为未知数。

解一元一次不等式的基本思路是找到方程ax+b=0的解,然后根据a的正负情况确定解集。

三、一元二次不等式一元二次不等式是形如ax2+bx+c<0(或>)的不等式,其中a、b和c为已知数,x为未知数。

解一元二次不等式的基本思路是找到方程ax2+bx+c=0的解,然后根据a和二次项的系数的正负情况确定解集。

四、绝对值不等式绝对值不等式是形如|ax+b|<c(或>|)的不等式,其中a、b和c为已知数,x为未知数。

绝对值不等式的解集有两部分组成,即当ax+b>0和ax+b<0时的解集。

五、分式不等式分式不等式是形如f(x)<0(或>)的不等式,其中f(x)为一个分式函数。

解分式不等式的基本方法是找到分式函数的零点,然后根据分式函数的正负情况确定解集。

高一基本不等式知识点大全

高一基本不等式知识点大全

高一基本不等式知识点大全不等式在数学中起着重要的作用,它是数学分析和数学推理的基础。

在高一学年,学生需要掌握并理解基本不等式的概念、性质和解法。

下面将详细介绍高一基本不等式的知识点。

一、不等式的基本概念不等式是数学中比大小关系的一种表示方式,用符号“<”(小于)、“>”(大于)、“≤”(小于等于)、“≥”(大于等于)等表示。

二、不等式的性质1. 加减性质:对于不等式两边同时加(减)一个相同的数,不等号方向不变。

例如:若 a < b,则 a + c < b + c(其中 c 为常数)。

2. 乘除性质:对于两个不等式,若乘(除)以同一个正数,则不等号方向不变;若乘(除)以同一个负数,则不等号方向相反。

例如:若 a < b 且 c > 0,则 ac < bc;若 a < b 且 c < 0,则 ac > bc。

3. 倒置性质:若不等号两边同时倒置,则不等号方向改变。

例如:若 a < b,则 -a > -b。

三、不等式的解法1. 一元一次不等式的解法:(1) 将不等式看作等式,求解得到解集;(2) 在数轴上用表示不等式的符号表示解集。

2. 一元二次不等式的解法:(1) 将不等式化为一元二次函数的解析式;(2) 求解得到关于未知数的区间。

3. 绝对值不等式的解法:(1) 分情况讨论绝对值的取正负;(2) 求解得到关于未知数的区间。

4. 一元分式不等式的解法:(1) 得到分子和分母的符号条件;(2) 求解不等式。

5. 二元一次不等式的解法:(1) 将不等式化为方程组的解析式;(2) 求解得到关于两个未知数的区域。

四、不等式的应用不等式在各个学科中都有广泛应用,下面列举几个常见领域的应用:1. 几何应用:用不等式表示线段长度、角度大小等几何关系。

2. 经济学应用:用不等式表示供需关系、利润大小等经济问题。

3. 物理学应用:用不等式表示速度、加速度等物理量之间的关系。

高一数学必修 不等式知识点总结

高一数学必修 不等式知识点总结
2
5、常用的基本不等式:① a2 b2 2ab a,b R ;② ab a2 b2 a,b R ;
2
③ ab
ab 2
2
a
0, b
0 ;④
a2
b2 2
a
b 2
2
a,b R .
6、极值定理:设 x 、 y 都为正数,则有
⑴若 x y s (和为定值),则当 x y 时,积 xy 取得最大值 s2 . 4
判别式 b2 4ac
0
0
0
二次函数 y ax2 bx c
a 0 的图象
一元二次方程 ax2 bx
c 0 a 0 的根
有两个相异实数根
x1,2
b 2a
x1 x2
有两个相等实数

x1
x2
b 2a
没有实数根
ax2 bx c 0
x x x1或x x2
一元二次 a 0
x
⑵若 xy p (积为定值),则当 x y 时,和 x y 取得最小值 2 p .
例:(13-14 耀华 7)若 2-m 与|m|-3 异号,则 m 的取值范围是
A、m>3
B、-3<m<3
C、2<m<3 D、-3<m<2 或 m>3
2 m 0 2 m 0
解析:由题 得
m
3
0或
m
3
, 3 0
m
2或m
3.
答案:D
例:(13-14 蓟县 11)已知实数 x、y R,且x y 1,则 2 1 的最小值为 xy
解析: 2 1 ( 2 1 )(x y) 3 2 y x 3 2 2 当且仅当 x2 2 y2

高一不等式知识点归纳总结

高一不等式知识点归纳总结

高一不等式知识点归纳总结高一阶段学习数学,不等式是一个重点知识点,也是数学建模等应用题的常见考点。

在高中阶段,学生需要对不等式的性质、解集的表示和不等式的应用等方面进行深入学习。

本文将对高一阶段的不等式知识点进行归纳总结。

一、不等式的性质1. 不等式的传递性:如果a<b,b<c,那么a<c。

这个性质在证明不等式的过程中经常会用到。

2. 不等式的加减性:如果a<b,那么a±c<b±c。

即不等式两侧同时加(或减)一个常数,不等号的方向保持不变。

3. 不等式的乘法性:如果a<b,且c>0,那么ac<bc。

如果a<b,且c<0,那么ac>bc。

也就是说,不等式两侧同时乘以一个正数(或负数),则不等号的方向保持不变;若乘以一个负数,不等号的方向则反向。

4. 不等式的倒数性:如果a<b,且ab≠0,那么1/b<1/a。

当不等式两侧取倒数后,不等号的方向发生改变。

二、不等式解集的表示1. 不等式解的表示方式:不等式解集通常用区间表示,包括开区间、闭区间和无穷区间。

- 开区间:表示不包含某一值的解集,一般用(a, b)表示,表示a<b 之间的所有数但不包括a和b。

- 闭区间:表示包含某一值的解集,一般用[a, b]表示,表示a≤x≤b 之间的所有数。

- 无穷区间:表示解集没有上下界的情况,分为无穷大区间和无穷小区间。

2. 解不等式的步骤:解不等式的主要步骤有:移项、消项、分析正负、绘制数轴和表示解集。

三、不等式的类型1. 一元一次不等式:形如ax+b>0或ax+b<0的不等式,其中a和b 为已知实数,x为未知数。

- 解一元一次不等式的步骤:先将不等式化简为ax>c或ax<c的形式,然后根据a的正负情况进行讨论,最后找出解集。

2. 一元二次不等式:形如ax^2+bx+c>0或ax^2+bx+c<0的不等式,其中a、b和c为已知实数,x为未知数。

数学必修一不等式知识点

数学必修一不等式知识点

数学必修一不等式知识点一、不等式的基本性质。

1. 对称性。

- 如果a > b,那么b < a;如果a < b,那么b > a。

2. 传递性。

- 如果a > b,b > c,那么a > c。

3. 加法法则。

- 如果a > b,那么a + c>b + c。

- 推论:如果a > b,c > d,那么a + c>b + d。

4. 乘法法则。

- 如果a > b,c>0,那么ac > bc;如果a > b,c < 0,那么ac < bc。

- 推论:如果a > b>0,c > d>0,那么ac > bd。

- 乘方法则:如果a > b>0,那么a^n>b^n(n∈ N,n≥slant1)。

- 开方法则:如果a > b>0,那么sqrt[n]{a}>sqrt[n]{b}(n∈ N,n≥slant2)。

二、一元二次不等式及其解法。

1. 一元二次不等式的一般形式。

- ax^2+bx + c>0(a≠0)或ax^2+bx + c < 0(a≠0)。

2. 求解一元二次不等式的步骤(以ax^2+bx + c>0(a>0)为例)- 先求出一元二次方程ax^2+bx + c = 0的根(判别式Δ=b^2-4ac)。

- 当Δ>0时,方程ax^2+bx + c = 0有两个不同的实根x_1,x_2(x_1,不等式的解集为{xx < x_1或x>x_2}。

- 当Δ = 0时,方程ax^2+bx + c = 0有两个相同的实根x_0,不等式的解集为{xx≠ x_0}。

- 当Δ<0时,方程ax^2+bx + c = 0无实根,不等式ax^2+bx + c>0的解集为R。

- 对于ax^2+bx + c < 0(a>0)的情况,当Δ>0时,解集为{xx_1;当Δ = 0时,解集为varnothing;当Δ<0时,解集为varnothing。

高一不等式知识点总结详细

高一不等式知识点总结详细

高一不等式知识点总结详细引言:高中数学作为一门重要的学科,对于学生的数学思维能力和逻辑推理能力的培养具有重要意义。

其中,不等式作为数学中的一个重要概念,对于学生的数学能力的提升有着极大的促进作用。

本文将对高一不等式的知识点进行总结和详细阐述。

一、基本概念1. 不等式的定义:不等式是数学中比较两个数大小关系的一种表示方式,用于描述大小关系的不等关系。

2. 不等式的符号:常见的不等式符号有“<”(小于)、“>”(大于)、“≤”(小于等于)、“≥”(大于等于)等。

3. 等式与不等式的区别:不等式描述的是数值之间的比较大小关系,而等式则表示两个数相等。

二、简单不等式的求解1. 加减法不等式:通过移项和求解等式来求解不等式。

例:2x - 5 > 7,首先移项得到2x > 12,然后除以2得到x > 6。

2. 乘除法不等式:在乘除不等式中,若乘以一个正数,则不等号不变;若乘以一个负数,则不等号反向。

例:-3x + 6 < 9,首先移项得到-3x < 3,然后除以-3得到x > -1(注意乘以或除以负数时不等号需要反向)。

三、复合不等式的求解1. 与不等式的合并:当两个不等式同时成立时,我们可以将它们合并成一个复合不等式。

例:x + 2 > 5,x - 3 < 2,合并为x - 3 < 2 < x + 2。

2. 或不等式的合并:当两个不等式中至少有一个成立时,我们可以将它们合并成一个复合不等式。

例:x > 3 或 x < -2,合并为x < -2 或 x > 3。

四、绝对值不等式的求解1. 单绝对值的不等式:对于形如|ax + b| > c(或 < c)的不等式,我们需要分情况讨论。

当ax + b > 0时,不等式可转化为ax + b > c(或 < -c);当ax + b < 0时,不等式可转化为-(ax + b) > c(或 < -c)。

不等式的高一知识点总结

不等式的高一知识点总结

不等式的高一知识点总结不等式是数学中一种常见的表达方式,用来表示数值之间的大小关系。

在高一的学习中,我们学习了一些关于不等式的基础知识和技巧。

本文将对这些知识点进行总结。

一、不等式的基本概念不等式是用不等号(>、<、≥、≤)表示的数值大小关系。

其中大于号(>)表示大于关系,小于号(<)表示小于关系,大于等于号(≥)表示大于等于关系,小于等于号(≤)表示小于等于关系。

二、解不等式的方法解不等式的方法与解方程类似,需要通过一系列的变换将不等式转化为等价的形式。

1. 加减法变换:可以在不等式的两边同时加减一个数。

2. 乘法变换:对不等式的两边同乘以一个正数时,不等关系不变;对不等式的两边同乘以一个负数时,需要反转不等关系。

3. 绝对值不等式:对于含有绝对值的不等式,需要根据绝对值的性质进行分类讨论。

三、不等式的性质1. 传递性:若a > b,b > c,则a > c。

2. 加法性:若a > b,则a + c > b + c。

3. 乘法性:若a > b,c > 0,则ac > bc;若a > b,c < 0,则ac < bc。

四、一元一次不等式一元一次不等式是最简单的一类不等式,其形式为ax + b > 0或ax+ b < 0(a ≠ 0)。

解一元一次不等式的步骤:1. 将不等式转化为等价形式。

2. 求解得到不等式的解集。

3. 根据解集对原不等式进行判断,确定最终的解集。

五、一元二次不等式一元二次不等式是以一元二次方程为基础的不等式,其形式为ax^2 + bx + c > 0或ax^2 + bx + c < 0(a ≠ 0)。

解一元二次不等式的步骤:1. 将不等式转化为等价形式。

2. 求解得到不等式的解集。

3. 根据解集对原不等式进行判断,确定最终的解集。

六、不等式组不等式组是由多个不等式组成的系统,解不等式组的方法有图解法和代入法。

高一不等式知识点总结

高一不等式知识点总结

高一不等式知识点总结不等式是代数学中的一个重要概念,它是用来表示数之间大小关系的数学式子。

在高中数学的学习中,不等式是一个重要的知识点,它涉及到绝对值不等式、一元一次不等式、一元二次不等式等内容。

本文将从不等式的定义、性质、解法以及应用等方面对高一不等式知识点进行总结。

一、不等式的定义不等式是用不等号(<、>、≤、≥)表示的数之间的大小关系。

一般地,如果a和b是两个实数,那么a>b表示a大于b,a<b表示a小于b,a≥b表示a大于等于b,a≤b表示a小于等于b。

例如,2>1表示2大于1,3<4表示3小于4,5≥3表示5大于等于3,6≤9表示6小于等于9。

二、不等式的性质1. 加法性质:若a>b,则a+c>b+c,其中c为任意实数。

2. 减法性质:若a>b,则a-c>b-c,其中c为任意实数。

3. 乘法性质:若a>b且c>0(或c<0),则ac>bc(或ac<bc)。

4. 除法性质:若a>b且c>0(或c<0),则a/c>b/c(或a/c<b/c);若a>b且c<0,则a/c<b/c(或a/c>b/c)。

5. 对称性:若a > b,则-b > -a。

6. 传递性:若a>b,b>c,则a>c。

三、一元一次不等式一元一次不等式是形如ax + b < c或ax + b > c的不等式,其中a、b、c均为实数且a不等于0。

一元一次不等式的解法主要有以下几种方法:1. 图解法:根据不等式的符号关系和一次函数图像的性质,画出函数图像,并确定不等式的解集。

2. 实数法:根据不等式的性质和实数的加减乘除性质,通过变形等方式求出不等式的解集。

3. 区间法:将不等式转化为求解方程的问题,根据方程解的个数和不等式的符号关系,求出不等式的解集。

高一数学不等式知识点笔记

高一数学不等式知识点笔记

高一数学不等式知识点笔记一、不等式的定义和性质不等式是指两个数、两个代数式或两个函数之间的大小关系,通常用不等号(<、>、≤、≥)表示。

1. 不等式的基本性质:- 反身性:任何数与自身之间没有大小关系,即 a = a。

- 对称性:如果 a > b,则 b < a;如果a ≥ b,则b ≤ a。

- 传递性:如果 a > b 且 b > c,则 a > c;如果a ≥ b 且b ≥ c,则a ≥ c。

2. 不等式的加减性质:- 加法:如果 a > b,那么 a + c > b + c。

- 减法:如果 a > b,那么 a - c > b - c(当 c > 0)或 a - c < b - c (当 c < 0)。

3. 不等式的乘除性质:- 正数乘法:如果 a > b 且 c > 0,那么 ac > bc。

- 负数乘法:如果 a > b 且 c < 0,那么 ac < bc。

- 正数除法:如果 a > b 且 c > 0,那么 a/c > b/c。

- 负数除法:如果 a > b 且 c < 0,那么 a/c < b/c。

二、一元一次不等式一元一次不等式是指形如 ax + b > c 或 ax + b < c 的不等式,其中 a、b、c 是已知实数。

1. 解一元一次不等式的方法:- 将不等式转换为等价不等式。

- 使用数轴图,根据系数 a 的正负和不等号的方向确定解集。

- 需要注意的是,当不等式中存在乘法或除法时,需考虑 a 的正负和不等号的方向是否改变。

三、一元二次不等式一元二次不等式是指形如 ax^2 + bx + c > 0 或 ax^2 + bx + c < 0的不等式,其中 a、b、c 是已知实数且a ≠ 0。

1. 求解一元二次不等式的步骤:- 将一元二次不等式转换为二元一次不等式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式
一、基本不等式
1、0a b a b ->⇔>;0a b a b -=⇔=;0a b a b -<⇔<.
2、不等式的性质:
①a b b a >⇔<;②,a b b c a c >>⇒>;③
a b a c b c >⇒+>+;④,0a b c ac bc >>⇒>,,0a b c ac bc ><⇒<;⑤,a b c d a c b d >>⇒+>+;⑥0,0a b c d ac bd >>>>⇒>;⑦()0,1n n a b a b n n >>⇒>∈N >;⑧()0,1n n a b a b n n >>⇒>∈N >.
3、设a 、b 是两个正数,则
2
a b +称为正数a 、b 的算术平均数,ab 称为正数a 、b 的几何平均数.4、均值不等式定理:若0a >,0b >,则2a b ab +≥,即
2a b ab +≥.5、常用的基本不等式:①()222,a b ab a b R +≥∈;②()22
,2
a b ab a b R +≤∈;③()20,02a b ab a b +⎛⎫≤>> ⎪⎝⎭;④()2
22,22a b a b a b R ++⎛⎫≥∈ ⎪⎝⎭
.6、极值定理:设x 、y 都为正数,则有⑴若x y s +=(和为定值),则当x y =时,积xy 取得最大值2
4
s .⑵若xy p =(积为定值),则当x y =时,和x y +取得最小值2p .
例:(13-14耀华7)若2-m 与|m |-3异号,则m 的取值范围是
A、m >3
B、-3<m <3
C、2<m <3
D、-3<m <2或m >3
解析:由题.323,03020302><<-∴⎩
⎨⎧>-<-⎩⎨⎧<->-m m m m m m 或或得答案:D
例:(13-14蓟县11)已知实数的最小值为则且、y
x y x R y x 12,1,+=+∈解析:22323))(12(12+≥++=++=+y
x x y y x y x y x 当且仅当222y x =
答案:2
23+二、一元二次不等式
1、一元二次不等式:只含有一个未知数,并且未知数的最高次数是2的不等式.
2、二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:判别式24b ac
∆=-0∆>0∆=0
∆<二次函数2y ax bx c
=++()0a >的图象
一元二次方程2ax bx +0c +=()0a >的根有两个相异实数根
1,22b x a -±∆=()12x x <有两个相等实数根122b x x a ==-没有实数根
一元二次
不等式的
解集20
ax bx c ++>()0a >{}12x x x x x <>或2b x x a ⎧⎫≠-⎨⎬⎩⎭R
20ax bx c ++<()0a >{}12x x x x <<∅∅
若二次项系数为负,先变为正
例:(12-13南开区17)已知不等式2230x x --<的解集为A,不等式260x x +-<的解集是B.
(I)求A B ;
(Ⅱ)若不等式20x ax b ++<的解集是A B ,求20ax x b ++<的解集..
,022
1,0240-1(-1,2)0(2)(-1,2)
).
2,3(23-06(-1,3)
,31-032)1(2222R x x b a b a b a b ax x B A B x x x A x x x 解得解集为解得,
的解集是由,得解得解解:<-+-∴⎩⎨⎧-=-=⎩⎨⎧=++=+∴<++=∴-=∴<<<-+=∴<<<--
3、⎪⎪⎩
⎪⎪⎨⎧⎪⎩⎪⎨⎧图像法(数形结合)根的分布分离参数法恒成立问题:分类讨论(因式分解)含参一元二次不等式:例:(13-14红桥区17)解关于x 的不等式2(1)10ax a x -++<.
.
1;11,111;11,1110;110)1)(1(00)1)(1(0;
10 时,不等式的解为当不等式的解为时,当不等式的解为时,当或,不等式的解化为时,原不等是等价于当时,因式分解为当时,不等式解为解:当=<<>><<<<<<><--<>--≠>=a x a
a a a
x a a a
x x x a x a x a
x a a x a 例:(13-14蓟县13)已知一元二次不等式02
122≥+
+kx kx 对一切实数x 都成立,则实数k 的取值范围为解析:400
40,002
1,02≤≤⎩⎨⎧≤-=∆≥≠≥=k k k k k k 得则若,成立;则不等式化为若综上可得4
0≤≤k 答案:[]
4,0例:(12-13南开12)己知一元二次不等式2(2)2(2)40m x m x -+-+>的解集为R,则实数m 的取值范围是_________________.
解析:
22,
2064(2)4(2)0
m m m m m ≠-≥⎧<<⎨∆=---<⎩ 不等式为一元二次不等式,则则得2得2<m<6
答案:(2,6)
三、线性规划
1.了解线性约束条件、目标函数、可行域、可行解、最优解
2.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题.
3.解线性规划实际问题的步骤:
(1)将数据列成表格;(2)列出约束条件与目标函数;(3)根据求最值方法:①画:画可行域;②移:移与目标函数一致的平行直线;③求:求最值点坐标;④答;求最值;
(4)验证所求解是否在可行域内。

例:(13-14耀华11)x 、y 满足条件01,02,2 1.x y y x ≤≤⎧⎪≤≤⎨⎪-≥⎩
,设224z y x =-+,则z 的最小值是;解析:由题得可行域(阴影部分):
目标函数可化为:z x y 212+
-=所以在(1,1)处取得最小值为4答案:4。

相关文档
最新文档