小专题训练圆中动点与最值问题
微专题12 与圆有关的定点、定值、最值、范围问题
12-
32
2
∴ 82+|8a(--3|6)2=12,
又∵M(a,0)在l的下方,∴8a-3>0,∴8a-3=5,a=1. 故圆M的方程为(x-1)2+y2=1.
10
(2)由已知可设AC的斜率为k1,BC的斜率为k2(k1>k2),则直线AC的方程为y=k1x +t,直线BC的方程为y=k2x+t+6. 由方程组yy==kk12xx++tt,+6, 得 C 点的横坐标为 x0=k1-6 k2. ∵AB=t+6-t=6, ∴S=12k1-6 k2×6=k11-8k2.
的弦长为 3,且圆心 M 在直线 l 的下方. (1)求圆 M 的方程; (2)设 A(0,t),B(0,t+6)(-5≤t≤-2),若圆 M 是△ABC 的内切圆,求△ABC 的面积 S 的最大值和最小值.
9
解 (1)设圆心 M(a,0),由已知得圆心 M 到 l:8x-6y-3=0 的距离为 =12,
23
解 (1)连接OP,OA,OB,因为PA,PB为过点P的圆O的切线,切点为A,B, 所以OA⊥PA,OB⊥PB. 因为∠APB=60°,∠APO=30°,在Rt△APO中,OA=1,所以OP=2. 设点 P 的坐标为(t,t+2 2),则 t2+(t+2 2)2=4,t2+2 2t+2=0,即(t+ 2)2=0, 解得 t=- 2, 所以点 P 的坐标为(- 2, 2).
24
(2)假设存在符合条件的定点R. 设点 M(x,y),R(x0,y0),MMPR22=λ,则 x2+y2=1, 即(x-x0)2+(y-y0)2=λ[(x+ 2)2+(y- 2)2], 整理得-2x0x-2y0y+x20+y20+1=λ(2 2x-2 2y+5), 上式对任意x,y∈R,且x2+y2=1恒成立,
圆中动点与最值问题集锦
5.如图,⊙O的直径为4,C为⊙O上一个定点,∠ABC=30°,动点P从A点出发沿半圆弧 向B点运动(点P与点C在直径AB的异侧),当P点到达B点时运动停止,在运动过程中,过点C作CP的垂线CD交PB的延长线于D点.
(1)在点P的运动过程中,线段CD长度的取值范围为_________;
25.如图,CD是⊙O的直径,点A是半圆上的三等分点,B是弧AD的中点,P点为直线CD上的一个动点,当CD=4时,
求:(1)AP+BP的最小值.
(Hale Waihona Puke )AP﹣BP的最大值.第25题图第26题图
26.如图,已知圆O的面积为3π,AB为直径,弧AC的度数为80°,弧BD的度数为20°,点P为直径AB上任一点,则PC+PD的最小值为_________.
10.如图,若Rt△ABC的斜边AB=2,内切圆的半径为r,则r的最大值为_________.
第10题图第11题图第12题图
11.如图,在平面直角坐标系xOy中,直线AB经过点A(﹣4,0)、B(0,4),⊙O的半径为1(O为坐标原点),点P在直线AB上,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为_________.
(1)探究线段EF长度为最小值时,点D的位置,请画出图形;
(2)求出该最小值.
※14.如图,在△ABC中,已知AB=5,BC=8,AC=7,动点P、Q分别在边AB、AC上,使△APQ的外接圆与BC相切,则线段PQ的最小值等于_________.
15.如图,点C在以AB为直径的⊙O上,CD⊥AB于P,设AP=a,PB=b.
圆中与最值有关的问题专题研究
1.如图,在边长为1的等边△OAB中,以边AB为直径作⊙D,以O为圆心OA长为半径作⊙O,C为半圆弧 上的一个动点(不与A、B两点重合),射线AC交⊙O于点E,BC= ,AC= ,求 的最大值.
微专题12 与圆有关的定点、定值、最值、范围问题
微专题12与圆有关的定点、定值、最值、范围问题真题感悟(2019·全国Ⅰ卷)已知点A,B关于坐标原点O对称,AB=4,⊙M过点A,B且与直线x+2=0相切.(1)若A在直线x+y=0上,求⊙M的半径;(2)是否存在定点P,使得当A运动时,MA-MP为定值?并说明理由.解(1)因为⊙M过点A,B,所以圆心M在AB的垂直平分线上.由已知A在直线x+y=0上,且A,B关于坐标原点O对称,所以M在直线y=x上,故可设M(a,a).因为⊙M与直线x+2=0相切,所以⊙M的半径为r=|a+2|.连接MA,由已知得AO=2.又MO⊥AO,故可得2a2+4=(a+2)2,解得a=0或a=4.故⊙M的半径r=2或r=6.(2)存在定点P(1,0),使得MA-MP为定值.理由如下:设M(x,y),由已知得⊙M的半径为r=|x+2|,AO=2.由于MO⊥AO,故可得x2+y2+4=(x+2)2, 化简得M的轨迹方程为y2=4x.因为曲线C:y2=4x是以点P(1,0)为焦点,以直线x=-1为准线的抛物线,所以MP=x+1.因为MA-MP=r-MP=x+2-(x+1)=1,所以存在满足条件的定点P.考点整合1.最值与范围问题(1)研究与圆有关的最值问题时,可借助圆的性质,利用数形结合求解.(2)常见的最值问题有以下几种类型:①形如μ=y-bx-a的最值问题,可转化为动直线斜率的最值问题;②形如t=ax+by的最值问题,可转化为动直线截距的最值问题;③形如μ=(x -a )2+(y -b )2的最值问题,可转化为动点到定点的距离的平方的最值问题.(3)对于圆的方程也可以利用三角代换,转化为三角函数问题:对于圆(x -a )2+(y -b )2=r 2,可设x =a +r cos θ,y =b +r sin θ.2.定点问题的求解步骤(1)选参变量:需要证明过定点的动直线(曲线)往往随着某一个量的变化而变化,可以选择这个量为参变量.(2)求动直线(曲线)方程:求出含上述参变量的动直线(曲线)方程,通过消元或整体思想,使得方程只含有一个参量(当根据几何条件建立的等式中含有多个参量时,要注意区别对待,与动点、动直线、动圆有关的参量是主要参量,其他参量可看作系数).(3)定点:求出定点坐标.利用方程ax +b =0恒成立来处理定点问题.在处理时也可以用从特殊到一般的思想,先求出一个特殊点,再代入进行验证.3.定值问题的处理(1)可以直接求出相关等式,再论证该等式与参数无关,类似于三角化简求值.(2)也可以用从特殊到一般的思想,先让参数取特殊值来论证性质,再将性质推广至一般情形.热点一 最值与范围问题【例1】 已知圆M 的圆心M 在x 轴上,半径为1,直线l :y =43x -12被圆M 所截的弦长为3,且圆心M 在直线l 的下方.(1)求圆M 的方程;(2)设A (0,t ),B (0,t +6)(-5≤t ≤-2),若圆M 是△ABC 的内切圆,求△ABC 的面积S 的最大值和最小值.解 (1)设圆心M (a ,0),由已知得圆心M 到l :8x -6y -3=0的距离为12-⎝ ⎛⎭⎪⎫322=12,∴|8a -3|82+(-6)2=12,又∵M (a ,0)在l 的下方,∴8a -3>0,∴8a -3=5,a =1.故圆M 的方程为(x -1)2+y 2=1.(2)由已知可设AC 的斜率为k 1,BC 的斜率为k 2(k 1>k 2),则直线AC 的方程为y =k 1x +t ,直线BC 的方程为y =k 2x +t +6.由方程组⎩⎨⎧y =k 1x +t ,y =k 2x +t +6, 得C 点的横坐标为x 0=6k 1-k 2. ∵AB =t +6-t =6,∴S =12⎪⎪⎪⎪⎪⎪6k 1-k 2×6=18k 1-k 2. ∵圆M 与AC 相切,∴1=|k 1+t |1+k 21,∴k 1=1-t 22t , 同理,k 2=1-(t +6)22(t +6),∴k 1-k 2=3(t 2+6t +1)t 2+6t, ∴S =6(t 2+6t )t 2+6t +1=6⎝ ⎛⎭⎪⎫1-1t 2+6t +1. ∵-5≤t ≤-2,∴-2≤t +3≤1,∴-8≤t 2+6t +1≤-4,∴S max =6×⎝ ⎛⎭⎪⎫1+14=152,S min =6×⎝ ⎛⎭⎪⎫1+18=274, ∴△ABC 的面积S 的最大值为152,最小值为274.探究提高 直线与圆中的最值问题主要包含两个方面(1)参量的取值范围:由直线和圆的位置关系或几何特征,引起的参量如k ,b ,r 的值变化.此类问题主要是根据几何特征建立关于参量的不等式或函数.(2)长度和面积的最值:由于直线或圆的运动,引起的长度或面积的值变化.此类问题主要是建立关于与参数如k 或(x ,y )的函数,运用函数或基本不等式求最值.【训练1】 已知实数x ,y 满足方程x 2+y 2-4x +1=0.(1)求y -x 的最大值和最小值;(2)求x 2+y 2的最大值和最小值.解 由x 2+y 2-4x +1=0得(x -2)2+y 2=3,它表示以(2,0)为圆心,3为半径长的圆.(1)y -x 可看作是直线y =x +b 在y 轴上的截距,当直线y =x +b 与圆相切时,纵截距b 取得最大值或最小值,此时|2-0+b |2=3,解得b =-2±6. 所以y -x 的最大值为-2+6,最小值为-2- 6.(2)x 2+y 2表示圆上的点与原点距离的平方,由平面几何知识知,过原点和圆心的直线与圆有两个交点,在这两个交点处x 2+y 2取得最值.因为圆心到原点的距离为(2-0)2+(0-0)2=2, 所以x 2+y 2的最大值是(2+3)2=7+43,x 2+y 2的最小值是(2-3)2=7-4 3.热点二 与圆有关的定点问题【例2】 (2019·北京卷)已知抛物线C :x 2=-2py (p >0)经过点(2,-1).(1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =-1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.(1)解 由抛物线C :x 2=-2py 经过点(2,-1)得p =2.所以抛物线C 的方程为x 2=-4y ,其准线方程为y =1.(2)证明 抛物线C 的焦点为F (0,-1).设直线l 的方程为y =kx -1(k ≠0).由⎩⎨⎧y =kx -1,x 2=-4y ,得x 2+4kx -4=0. 设M (x 1,y 1),N (x 2,y 2),则解方程得 x 1,2=-2k ±2k 2+1,从而x 1x 2=-4.直线OM 的方程为y =y 1x 1x . 令y =-1,得点A 的横坐标x A =-x 1y 1, 同理得B 的横坐标x B =-x 2y 2.所以A ⎝ ⎛⎭⎪⎫-x 1y 1,-1,B ⎝ ⎛⎭⎪⎫-x 2y 2,-1. 设点D (0,n ),则DA →=⎝ ⎛⎭⎪⎫-x 1y 1,-1-n , DB →=⎝ ⎛⎭⎪⎫-x 2y 2,-1-n , DA →·DB →=x 1x 2y 1y 2+(n +1)2=x 1x 2⎝ ⎛⎭⎪⎫-x 214⎝ ⎛⎭⎪⎫-x 224+(n +1)2 =16x 1x 2+(n +1)2=-4+(n +1)2. 令DA →·DB→=0,即-4+(n +1)2=0,得n =1或n =-3. 故以AB 为直径的圆经过y 轴上的定点(0,1)和(0,-3).探究提高 圆锥曲线中的定值与定点问题是高考的常考题型,运算量较大,题目逻辑性较强.解决这类问题一般有两种方法:一是根据题意求出相关的表达式,再根据已知条件列出方程组,消去参数,求出定值或定点坐标;二是先利用特殊情况确定定值或定点坐标,再从一般情况进行验证.【训练2】 已知圆x 2+y 2=9的圆心为P ,点Q (a ,b )在圆P 外,以PQ 为直径作圆M 与圆P 相交于A ,B 两点.(1)试判断直线QA 与圆P 的位置关系;(2)若QA =QB =4,试问点Q 在什么曲线上运动?(3)若点Q 在直线x +y -9=0上运动,问:直线AB 是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.解 (1)因为以PQ 为直径的圆M 与圆P 相交于A ,B ,所以P A ⊥QA ,又AP 为圆P 的半径,所以AQ 为圆P 的切线,从而直线QA 与圆P 相切.(2)因为P A ⊥QA ,AP =3,AQ =4,所以PQ =32+42=5,故点Q 在以P 为圆心,5为半径的圆上运动.(3)因为点Q (a ,b )在直线x +y -9=0上,所以点Q (a ,9-a ),所以,以PQ 为直径的圆M 的方程为x 2+y 2-ax -(9-a )y =0,又AB 为圆P 与圆M 的公共弦,所以直线AB 的方程为ax +(9-a )y -9=0,即a(x-y)-9y-9=0,从而此直线过x-y=0与9y-9=0的交点,即过定点(1,1).热点三与圆有关的定值问题【例3】(2018·高邮调研)如图,已知圆O的方程为x2+y2=1,直线l的方程为x-y+22=0,点P是直线l上的动点,过点P作圆O的切线P A,PB,切点为A,B.(1)若∠APB=60°,试求点P的坐标;(2)在(1)的条件下,对于圆O上任意一点M,平面内是否存在一定点R,使MR MP为定值?如果存在,求出点R的坐标;如果不存在,请说明理由.解(1)连接OP,OA,OB,因为P A,PB为过点P的圆O的切线,切点为A,B,所以OA⊥P A,OB⊥PB.因为∠APB=60°,∠APO=30°,在Rt△APO中,OA=1,所以OP=2.设点P的坐标为(t,t+22),则t2+(t+22)2=4,t2+22t+2=0,即(t+2)2=0,解得t=-2,所以点P的坐标为(-2,2).(2)假设存在符合条件的定点R.设点M(x,y),R(x0,y0),MR2MP2=λ,则x2+y2=1,即(x-x0)2+(y-y0)2=λ[(x+2)2+(y-2)2],整理得-2x0x-2y0y+x20+y20+1=λ(22x-22y+5),上式对任意x,y∈R,且x2+y2=1恒成立,则⎩⎨⎧-2x 0=22λ,-2y 0=-22λ,x 20+y 20+1=5λ,解得⎩⎪⎨⎪⎧λ=14,x 0=-24,y 0=24或⎩⎨⎧λ=1,x 0=-2,(舍去)y 0=2.所以R 的坐标为⎝ ⎛⎭⎪⎫-24,24, 经检验,符合条件MR MP =12,所以对于圆O 上任意一点M ,平面内存在一定点R ,使MR MP 为定值,且R 的坐标为⎝ ⎛⎭⎪⎫-24,24. 探究提高 本题考查直线与圆相切问题以及定值问题.相切问题的基本处理方法是将切点与圆心连接,从而它与切线相互垂直,利用这一直角来进行转化研究问题;第(2)问是探索性问题,在研究探索性问题时,先假设存在是一般性的处理方法,其次将所要研究的问题转化为关于点M 的坐标为元的方程问题,利用该方程的解与点M 的坐标无关来研究问题.【训练3】 (2019·泰州中学检测)已知圆O :x 2+y 2=4与坐标轴交于点A 1,A 2,B 1,B 2(如图).(1)点Q 是圆O 上除A 1,A 2外的任意点(如图1),A 2Q ,A 1Q 与直线y +3=0交于不同的两点M ,N ,求MN 的最小值;(2)点P 是圆O 上除A 1,A 2,B 1,B 2外的任意点(如图2),直线B 2P 交x 轴于点F ,直线A 1B 2交A 2P 于点E .设A 2P 的斜率为k ,EF 的斜率为m ,求证:2m -k 为定值.(1)解 由题意可设直线A 2Q 的方程为y =k ′(x -2),直线A 1Q 的方程为y =-1k ′(x+2),k ′≠0.由⎩⎨⎧y =k ′(x -2),y +3=0,解得⎩⎪⎨⎪⎧x =2-3k ′,y =-3,由⎩⎪⎨⎪⎧y =-1k ′(x +2),y +3=0,解得⎩⎨⎧x =3k ′-2,y =-3. 所以直线A 2Q 与直线y +3=0的交点为M ⎝ ⎛⎭⎪⎫2-3k ′,-3, 直线A 1Q 与直线y +3=0的交点为N (3k ′-2,-3),所以MN =⎪⎪⎪⎪⎪⎪3k ′+3k ′-4. 当k ′>0时,MN =⎪⎪⎪⎪⎪⎪3k ′+3k ′-4≥6-4=2,当且仅当k ′=1时等号成立; 当k ′<0时,MN =⎪⎪⎪⎪⎪⎪3k ′+3k ′-4≥|4-(-6)|=10,当且仅当k ′=-1时等号成立. 故线段MN 长度的最小值是2.(2)证明 由题意可知点A 1(-2,0),A 2(2,0),B 1(0,-2),B 2(0,2),A 2P 的斜率为k ,所以直线A 2P 的方程为y =k (x -2),由⎩⎨⎧y =k (x -2),x 2+y 2=4,得P ⎝ ⎛⎭⎪⎫2k 2-2k 2+1,-4k k 2+1, 则直线B 2P 的方程为y =-k +1k -1x +2, 令y =0,则x =2(k -1)k +1,即F ⎝ ⎛⎭⎪⎫2(k -1)k +1,0. 因为直线A 1B 2的方程为x -y +2=0,由⎩⎨⎧x -y +2=0,y =k (x -2),解得⎩⎪⎨⎪⎧x =2k +2k -1,y =4k k -1,所以E ⎝ ⎛⎭⎪⎫2k +2k -1,4k k -1, 所以EF 的斜率m =4kk -12k +2k -1-2(k -1)k +1=k +12, 所以2m -k =2·k +12-k =1(定值).【新题感悟】 (2019·苏北七市高三一模)在平面直角坐标系xOy 中,圆O :x 2+y 2=1,圆C :(x -4)2+y 2=4.若存在过点P (m ,0)的直线l ,l 被两圆截得的弦长相等,则实数m 的取值范围是________.解析 直线l 的斜率k 不存在或为0时均不成立,设直线l 的方程为kx -y -km =0,则圆心O (0,0)到直线l 的距离d 1=|km |k 2+1,圆心C (4,0)到直线l 的距离d 2=|4k -km |k 2+1.因为l 被两圆截得的弦长相等,所以21-d 21=24-d 22,即d 22-d 21=3,所以16k 2+k 2m 2-8k 2m -k 2m 2k 2+1=3,化为:16k 2-8k 2m =3k 2+3,k 2=313-8m>0,得:m <138.又d 21=k 2m 2k 2+1=m 21+1k 2=m 21+13-8m 3=3m 216-8m <1,即3m 2+8m -16<0,解得:-4<m <43.综上,-4<m <43.答案 ⎝ ⎛⎭⎪⎫-4,43一、填空题1.(2015·江苏卷)在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为________.解析直线mx-y-2m-1=0恒过定点(2,-1),由题意,得半径最大的圆的半径r=(1-2)2+(0+1)2= 2.故所求圆的标准方程为(x-1)2+y2=2.答案(x-1)2+y2=22.(2019·靖江调研)已知圆C:x2+y2-2x-2y+1=0,直线l:3x+4y-17=0.若在直线l上任取一点M作圆C的切线MA,MB,切点分别为A,B,则AB的长度取最小值时直线AB的方程为________.解析圆C的标准方程为(x-1)2+(y-1)2=1,当AB的长度最小时,圆心角∠ACB最小,设为2θ,则由cos θ=ACCM=1CM,知当θ最小时,cos θ最大,即CM最小,那么CM⊥l,所以k AB=k l=-34.设直线AB的方程为3x+4y=m.又由CM=|3+4-17|5=2,此时cos θ=12,则点C到直线AB的距离为AC cos θ=12,即1 2=|3+4-m|5,解得m=192或m=92,经检验m=192,则直线AB的方程为6x+8y-19=0.答案6x+8y-19=03.在平面直角坐标系中,A,B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线2x+y-4=0相切,则圆C面积的最小值为________.解析由题意可知以线段AB为直径的圆C过原点O,要使圆C的面积最小(D 为切点),只需圆C的半径或直径最小,又圆C与直线2x+y-4=0相切,所以由平面几何知识,当OC所在直线与直线2x+y-4=0垂直时,OD最小(D为切点),即圆C的直径最小,此时OD=|2×0+0-4|5=45,所以圆的半径为25,圆C的面积的最小值为S=πr2=4 5π.答案4 5π4.(2018·全国Ⅲ卷改编)直线x+y+2=0分别与x轴、y轴交于A,B两点,点P 在圆(x-2)2+y2=2上,则△ABP面积的取值范围是________.解析由题意知圆心的坐标为(2,0),半径r=2,圆心到直线x+y+2=0的距离d=|2+2|1+1=22,所以圆上的点到直线的最大距离是d+r=32,最小距离是d-r= 2.易知A(-2,0),B(0,-2),所以AB=22,所以2≤S△ABP≤6. 答案[2,6]5.(2019·常州调研)在平面直角坐标系xOy中,若圆(x-2)2+(y-2)2=1上存在点M,使得点M关于x轴的对称点N在直线kx+y+3=0上,则实数k的最小值为________.解析圆(x-2)2+(y-2)2=1关于x轴的对称圆的方程为(x-2)2+(y+2)2=1,由题意得圆心(2,-2)到直线kx+y+3=0的距离d=|2k-2+3|k2+1≤1,解得-43≤k≤0,所以实数k的最小值为-4 3.答案-4 36.(2019·南京、盐城模拟)在平面直角坐标系xOy中,已知点P为函数y=2ln x的图象与圆M:(x-3)2+y2=r2的公共点,且它们在点P处有公切线,若二次函数y=f(x)的图象经过点O,P,M,则y=f(x)的最大值为________.解析设P(x0,2ln x0),x0>0,则函数y=2ln x在点P处的切线斜率为2x0,则2x0·2ln x0x0-3=-1,即4ln x0=-x0·(x0-3)①.由二次函数y=f(x)的图象经过点O和M可设f (x )=ax (x -3),代入点P (x 0,2ln x 0),x 0>0,得2ln x 0=ax 0(x 0-3) ②.由①②比较可得a =-12,则f (x )=-12x (x -3),则f (x )max =f ⎝ ⎛⎭⎪⎫32=-12×32×⎝ ⎛⎭⎪⎫-32=98.答案 987.直线2ax +by =1与圆x 2+y 2=1相交于A ,B 两点(其中a ,b 是实数),且△AOB 是直角三角形(O 是坐标原点),则点P (a ,b )与点(0,1)之间距离的最小值为________.解析 根据题意画出图形,如图所示,过点O 作OC ⊥AB 于C ,因为△AOB 为等腰直角三角形,所以C 为弦AB 的中点,又OA =OB =1,根据勾股定理得AB =2, ∴OC =12AB =22.∴圆心(0,0)到直线2ax +by =1的距离为12a 2+b 2=22,即2a 2+b 2=2,即a 2=-12b 2+1≥0.∴-2≤b ≤ 2.则点P (a ,b )与点(0,1)之间的距离d =(a -0)2+(b -1)2=a 2+b 2-2b +1=12b 2-2b +2.设f (b )=12b 2-2b +2=12(b -2)2,此函数图象为对称轴为b =2的开口向上的抛物线,∴当-2≤b ≤2<2时,函数为减函数.∴f (b )min =f (2)=12(2-2)2, ∴d 的最小值为12(2-2)2=(2-1)2=2-1.答案2-18.(2019·南京师大附中模拟)已知直线x -y +b =0与圆x 2+y 2=9交于不同的两点A ,B .若O 是坐标原点,且|OA →+OB →|≥22|AB →|,则实数b 的取值范围是________. 解析 设AB 的中点为D ,则OA→+OB →=2OD →,故|OD →|≥24|AB →|,即|OD →|2≥18|AB →|2.再由直线与圆的弦长公式可得,AB =2r 2-d 2(d 为圆心到直线的距离),又直线与圆相交,故d <r ,得|b |2<3,所以-32<b <32,根据|OD→|2≥18|AB →|2,|AB →|2=4(9-OD →2),得|OD →|2≥3.由点到直线的距离公式可得|OD →|2=b 22,即b 22≥3,所以b ≥6或b ≤- 6.综上可得,b 的取值范围是(-32,-6]∪[6,32). 答案 (-32,-6]∪[6,32) 二、解答题9.如果实数x ,y 满足(x +2)2+y 2=3. (1)求yx 的最大值; (2)求2x -y 的最小值.解 (1)问题可转化为求圆(x +2)2+y 2=3上任意一点到原点连线的斜率k =yx 的最大值,由图形性质可知,由原点向圆(x +2)2+y 2=3作切线,其中切线斜率的最大值即为yx 的最大值.设切线方程为y =kx ,即kx -y =0,由|-2k -0|k 2+1=3,解得k =3或k =-3,所以yx 的最大值为 3.(2)将2x -y 看作直线y =2x +b 在y 轴上的纵截距的相反数,当直线y =2x +b 与圆(x +2)2+y 2=3相切时,纵截距b 取得最大值或最小值.此时|-4+b |22+1=3,所以b =4±15,所以2x -y 的最小值为-4-15. 10.(2019·扬州模拟)已知圆O :x 2+y 2=4.(1)直线l 1:3x +y -23=0与圆O 相交于A ,B 两点,求弦AB 的长度; (2)如图,设M (x 1,y 1),P (x 2,y 2)是圆O 上的两个动点,点M关于原点的对称点为M 1,点M 关于x 轴的对称点为M 2,如果直线PM 1,PM 2与y 轴分别交于(0,m )和(0,n ),问mn 是否为定值?若是,求出该定值;若不是,请说明理由.解 (1)由于圆心(0,0)到直线l 1:3x +y -23=0的距离d =|-23|2= 3.圆的半径r =2,所以AB =2r 2-d 2=2.(2)由于M (x 1,y 1),点M 关于原点的对称点为M 1,点M 关于x 轴的对称点为M 2,可得M 1(-x 1,-y 1),M 2(x 1,-y 1), 由M (x 1,y 1),P (x 2,y 2)是圆O 上的两个动点,可得x 21+y 21=4,x 22+y 22=4.直线PM 1的方程为y +y 1y 2+y 1=x +x 1x 2+x 1,令x =0,求得y =m =x 1y 2-x 2y 1x 2+x 1.直线PM 2的方程为y +y 1y 2+y 1=x -x 1x 2-x 1,令x =0,求得y =n =-x 1y 2-x 2y 1x 2-x 1.所以mn =x 22y 21-x 21y 22x 22-x 21=x 22(4-x 21)-x 21(4-x 22)x 22-x 21=4. 故mn 为定值.11.如图所示,已知圆A 的圆心在直线y =-2x 上,且该圆上存在两点关于直线x +y -1=0对称,又圆A 与直线l 1:x +2y +7=0相切,过点B (-2,0)的动直线l 与圆A 相交于M ,N 两点,Q 是MN 的中点,直线l 与l 1相交于点P .(1)求圆A 的方程;(2)当MN =219时,求直线l 的方程;(3)(BM →+BN →)·BP→是否为定值?如果是,求出此定值;如果不是,请说明理由.解 (1)由圆上存在两点关于直线x +y -1=0对称知圆心A 在直线x +y -1=0上.由⎩⎨⎧y =-2x ,x +y -1=0,得A (-1,2). 设圆A 的半径为R ,∵圆A 与直线l 1:x +2y +7=0相切,∴R =|-1+4+7|5=25, ∴圆A 的方程为(x +1)2+(y -2)2=20.(2)当直线l 与x 轴垂直时,易知x =-2符合题意; 当直线l 与x 轴不垂直时, 设直线l 的方程为y =k (x +2),即kx -y +2k =0,连接AQ ,则AQ ⊥MN , ∵MN =219,∴AQ =20-19=1. 由AQ =|k -2|k 2+1=1,得k =34, ∴直线l 的方程为y =34(x +2),即3x -4y +6=0, ∴所求直线l 的方程为x =-2或3x -4y +6=0. (3)∵AQ ⊥BP ,∴AQ →·BP→=0,∴(BM →+BN →)·BP →=2BQ →·BP →=2(BA →+AQ →)·BP →=2BA →·BP →; 当直线l 与x 轴垂直时,得P ⎝ ⎛⎭⎪⎫-2,-52,则BP →=⎝ ⎛⎭⎪⎫0,-52,又BA →=(1,2), ∴(BM →+BN →)·BP →=2BA →·BP→=-10;当直线l 的斜率存在时,设直线l 的方程为y =k (x +2), 由⎩⎨⎧y =k (x +2),x +2y +7=0,解得P ⎝ ⎛⎭⎪⎫-4k -71+2k ,-5k 1+2k , ∴BP →=⎝⎛⎭⎪⎫-51+2k ,-5k 1+2k , ∴(BM →+BN →)·BP →=2BA →·BP→=2⎝ ⎛⎭⎪⎫-51+2k -10k 1+2k =-10. 综上所述,(BM →+BN →)·BP→为定值-10.。
初中数学圆中最值定值问题专题(推荐)
初中数学圆中最值定值问题专题(推荐)圆中最值域定值问题研究类型一:例1:在图中,AB是⊙O的直径,AB=10cm,M是半圆AB的一个三等分点,N是半圆AB的一个六等分点,P是直径AB上一动点,连接MP、NP。
求MP+NP的最小值。
例2:已知圆O的面积为3π,AB为直径,弧AC的度数为80度,弧BD的度数为20度,点P为直径AB上任一点。
求PC+CD的最小值。
例3:在菱形ABC中,∠A=60度,AB=3,圆A、圆B的半径为2和1,P、E、F分别是CD、圆A和圆B上的动点。
求PE+PF的最小值。
类型二:折叠隐圆基本原理】:点A为圆外一点,P为圆O上动点,连接AO并延长交圆于P1,则AP的最小值为AP2,最大值为AP1.例1:在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△XXX沿MN所在的直线翻折得到△A′MN,连接A′C,求A′B长度的最小值。
例2:已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(1,1),点B(5,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,则CB’的最小值为多少?例3:在四边形ABCD中,AD∥BC,∠A=90,AD=1,AB=2,BC=3,P是线段AD上一动点,将△ABP沿BP所在直线翻折得到△QBP,则△CQD的面积最小值为多少?类型三:随动位似隐圆例:在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=6,点D是边AC上一点且AD=23,将线段AD绕点A旋转得线段AD′,点F始终为BD′的中点,则将线段CF最大值为多少?分析]:易知D’轨迹为以A为圆心AD为半径的圆,则在运动过程中AD’为定值23,故取AB中点G,则FG为中位线,FG=3,故F点轨迹为以G为圆心,3为半径的圆。
问题实质为已知圆外一点C和圆G上一点F,求CF的最大值。
方法归纳:1.如图,点A和点O1为定点,圆O1半径为定值,P为圆O1上动点,M为AP中点。
动点问题最小值典型练习
动点问题最小值典型练习一.解答题(共25小题)1.如图,正三角形ABC的边长为2,M是BC边上的中点,P是AC边上的一个动点,求PB+PM的最小值.2.如图,在▱ABCD中,E、F是对角线BD上的两个动点,且BE=DF.试猜想并证明AE 与CF的关系.3.在矩形ABCD中,P为AB上的动点,PE⊥AC于E,PF⊥BD于F,求证:PE+PF为定值.4.如图,△ABD、△BCD都是等边三角形,E、F分别是AD、CD上的两个动点,且满足DE=CF.求证:BE=BF.5.已知等边△ABC中,D是BC边上的动点,∠EDF=60°.求证:△BDE∽△CFD.6.如图,等边三角形ABC中,D是AB边上的动点,以CD为一边,向上作等边三角形EDC,连接AE.求证:(1)△ACE≌△BCD;(2)AE∥BC.7.如图,在锐角三角形ABC中,BC=4√2,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,试求CM+MN的最小值.8.如图,已知⊙O的半径为R,C、D是直径AB同侧圆周上的两点,AC的度数为96°,BD的度数为36°,动点P在AB上.求PC+PD的最小值.9.如图,在矩形ABCD中,B(16,12),E、F分别是OC、BC上的动点,EC+CF=8.当F运动到什么位置时,△AEF的面积最小,最小为多少?10.已知点A的坐标为(2,0),动点P在直线y=1/2 x−3上,求使△PAO为直角三角形的点P的坐标.11.如图,四边形ABCD中,AB∥CD,P为BC上一点,设∠CDP=α,∠CPD=β,当点P在BC上移动时,猜想α,β与∠B的关系,并说明理由.12.如图,已知正方形ABCD的边长是8,点E在BC边上,且CE=2,点P是对角线BD 上的一个动点,求PE+PC的最小值.13.如图,在菱形ABCD中,P是AB上的一个动点(不与A,B重合),连接DP交对角线AC于E,连接EB,求证:∠APD=∠EBC.14.正方形ABCD的边长为4,M、N分别是BC、CD上的两个动点,且始终保持AM⊥MN.当BM为多少时,四边形ABCN的面积最大?15.如图,平面直角坐标系中A(1,4),B(3,2),C、D为x轴上两动点,且CD=1,试求四边形ACDB周长最小时,C、D两点的坐标.16.如图,矩形ABCD,AB=3,BC=4,E、F是AB、BC边上的动点,以EF为轴翻折△BEF 得△B′EF,连接AB′,求AB′的最小值.17.如图,矩形ABCD中,AB=6,BC=8,P是边AD上的动点,PE⊥AC于点E,PF⊥BD 于点F,PE+PF的值是多少?18.如图,直角坐标系中,A(2,0),B(6,0),C在直线y=4上移动,试求出C点坐标使得∠ACB最大.19.如图:(1)分别求出直线和抛物线的解析式;(2)若M为抛物线第一象限的动点,求S△AMB的最值.20.如图:点A的坐标是(2,2),点P是x轴正半轴上的一个动点,若△AOP是等腰三角形,求P点的坐标.21.已知任意△ABC,D、E是AB、BC上的两个点,D是定点,E是动点.请问如何尺规操作才能使S△BED=S△ADC.22.如图,已知矩形ABCD,AB=2,AD=4,点P在BC上移动,△ABP和△PCD能相似吗?若能,求出点P的位置;若不能,请说明理由.23.如图,等边△ABC中,D是AB边上动点,作等边△EDC,连AE.(1)△DBC和△EAC全等吗?说说你的理由.(2)求证:AE∥BC.24.已知正方形ABCD的边长为2,点P、Q为AD、CD的中点,E、F为AB、BC边上的两个动点,求四边形PQFE周长的最小值.25.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线,若P,Q分别是AD和AC上的动点,求PC+PQ的最小值.。
高中数学与圆有关的轨迹问题与最值问题
b a 1 ,解得 a 1 , b 2 ,从而 r 2 2 (5 分)
圆 C 方程为: (x 1)2 ( y 2)2 8(6 分)
(Ⅱ)设 M (x, y) , B(x0
,
y0
)
,则有
1
x0 2
x,
y0 2
y , (8
分)
解得 x0 2x 1 , y0 2 y ,代入圆 C 方程得: (2x 2)2 (2y 2)2 8 , (10 分)
| MA | 2
(x 3)2 y2 2
化简整理得: x2 y2 2x 3 0 ,即 (x 1)2 y2 4 ,
点 M 的轨迹方程 (x 1)2 y2 4 ,轨迹是以 (1, 0) 为圆心,以 2 为半径的圆;
(2)由(1)可知, P(x, y) 为圆 (x 1)2 y2 4 上任意一点, 3x1 ,
(1)求动点 M 的阿波罗尼斯圆的方程; (2)过 P(2,3) 作该圆的切线 l ,求 l 的方程.
【解答】解:(1)设动点 M 坐标为 (x, y) ,则 AM (x 4)2 y2 , BM (x 1)2 y2 ,
又知 AM 2BM ,则 (x 4)2 y2 2 (x 1)2 y2 ,得 x2 y2 4 .
专题 05 与圆有关的轨迹问题与最值问题
题型一 轨迹问题
1.动圆 x2 y2 (4m 2)x 2my 4m2 4m 1 0 的圆心的轨迹方程是 x 2y 1 0(x 1) .
【解答】解:把圆的方程化为标准方程得 [x (2m 1)]2 ( y m)2 m2 (m 0)
3 / 13
【解答】解: ( 1) 由两点式可知,对角线 AC 所在直线的方程为 y 2 2 2 , x4 04
整理得 y x 2 0 ,
人教版九年级上册数学24章圆的动点最值问题期末压轴训练题
故答案为:9.
13.
解:作出D关于AB的对称点D′,连接OC,OD′,CD′.
又∵点C在⊙O上,∠CAB=30°,D为弧 的中点,即 ,
∴∠BAD′= ∠CAB=15°.
∴∠CAD′=45°.
∴∠COD′=90°.则△COD′是等腰直角三角形.
∵OC=OD′= AB=10,
∴CD′= ,
∵AB是直径
∴
在 中,AB=13,AD=5
由勾股定理得:
即:
∵
∴
∵E为AD的中点
∴
在 中, ,
由勾股定理得:
即:
∵
∴
又∵DH⊥AC,且点E为AD的中点
∴
∴
故答案为:
9.
解:连接AO与⊙O相交于点P′,如图,
在△AOP中,AP+OP AO,
即:AP′是AP的最小值,
∵∠ACB=90°,AC=BC=2,BC为直径,
(1)求证: ;
(2)若 ,求 长;
(3)当 从 增大到 的过程中,求弦 在圆内扫过的面积.
18.已知 是⊙ 的直径,点 在 的延长线上, , , 是⊙ 上半部分的一个动点,连接 , .
(1)如图①, 的最大面积是;
(2)如图②,延长 交⊙ 于点 ,连接 ,当 时,求证: 是⊙ 的切线.
19.如图,△ABC中,AC=BC,CD是△ABC的高,AB=8,CD=3,以点C为圆心,半径为2作⊙C,点E是⊙C上一动点,连接AE,点F是AE的中点,求线段DF的最小值
∵OA=OT,
∴四边形ADTE是平行四边形,
∴AD=ET,
∵AD+AE=AE+ET≥10,
∴AD+AE的最小值为10.
圆上有动点的几何最值问题及其解法
圆上有动点的几何最值问题及其解法
几何最值问题是数学中一类常见的问题,它涉及到求解几何图形中的最大值或最小值。
而圆上有动点的几何最值问题又是一类比较特殊的几何最值问题,它涉及到圆内某点的最大值或最小值的求解。
圆上有动点的几何最值问题可以用三种不同的方法来解决:
利用微积分的技术,利用极坐标系来求解。
利用简单几何的方法,求解圆上最大值或最小值的位置。
利用几何图形的性质,求解圆上最大值或最小值的位置。
首先,利用微积分的技术,利用极坐标系来求解圆上有动点的几何最值问题,即求解圆上点的最大值或最小值的位置。
极坐标系的定义是:以原点O为圆心,以极轴为半径的圆绕极轴旋转,经过极轴的曲线形成的极坐标系。
在极坐标系中,点P(x,y)在极轴上的投影为点P’,其坐标为(r,θ),其中r表示点P到原点O的距离,θ表示点P与极轴的夹角。
接着,利用简单几何的方法,求解圆上最大值或最小值的位置。
首先,将圆分成若干个等份,即将圆分成N等份,每等份的弧度为2π/N。
然后,在每个等份的弧段上,取一点,并计算这些点的值,最后取最大值或最小值所在的点,即得到最大值或最小值的位置。
最后,利用几何图形的性质,求解圆上最大值或最小值的位置。
例如,若圆上的动点的值满足某种函数关系,则可以利用函数的导数来求解最大值或最小值的位置;若圆上的动点的值满足某种几何关系,则可以利用几何图形的性质来求解最大值或最小值的位置。
以上就是圆上有动点的几何最值问题及其解法的介绍。
总的来说,圆上有动点的几何最值问题可以利用微积分的技术,简单几何的方法和几何图形的性质来求解,从而得到最大值或最小值的位置。
初中数学圆中最值定值问题专题(推荐)
圆中最值域定值问题研究类型一、例1、如图,AB是⊙O的直径,AB=10cm,M是半圆AB的一个三等分点,N是半圆AB 的一个六等分点,P是直径AB上一动点,连接MP、NP,则MP+NP的最小值是_______1、已知圆O的面积为3 ,AB为直径,弧AC的度数为80度,弧BD的度数为20度,点P为直径AB上任一点,则PC+CD的最小值为______2、如图,菱形ABC中,∠A=60度,AB=3, 圆A、圆B的半径为2和1,P、E、F分别是CD,圆A和圆B上的动点,则PE+PF的最小值为_________类型二、折叠隐圆【基本原理】(一箭穿心)点A为圆外一点,P为圆O上动点,连接AO并延长交圆于P1、P2,则AP的最小值为AP2,,最大值为A P1例、如图4,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,请求出A′B长度的最小值.1、已知一个矩形纸片OACB,将该纸片放置在平面直角坐标洗中,点A(11,0),点B (0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,则CB’的最小值为______2、四边形ABCD中,AD∥BC,∠A=90,AD=1,AB=2,BC=3,P是线段AD上一动点,将△ABP沿BP所在直线翻折得到△QBP,则△CQD的面积最小值为____类型三、随动位似隐圆例、在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=6.点D是边AC上一点D且AD=23,将线段AD绕点A旋转得线段AD′,点F始终为BD′的中点,则将线段CF最大值为_________[分析]:易知D’轨迹为以A为圆心AD为半径的圆,则在运动过程中AD’为定值23,故取AB中点G,则FG为中位线,FG=12AD'=3,故F点轨迹为以G为圆心,3为半径的圆。
中考热点:(一)圆中动点“PA+...
中考热点:圆中动点“PA+kPB”型最值问题一、问题导读在初中数学中,有一类几何动点“PA+kPB”型最值问题,学生普遍感到“害怕”。
普通方法求解可能就会失效!当k=1时,可以转化为“将军饮马”模型,我们可以利用对称变换来处理。
而如果k不等于1的话,我们必须利用转换思路,截取线段灵活转化线段值,转化为常见求解模式。
二、典例精析类型1 探究圆中“PA+kPB”型的最值问题例1.如图,在平面直角坐标系中,点A、B的坐标分别为(﹣2,0),(2,0),点M是AO中点,⊙A 的半径为2.(1)若△PAB是直角三角形,则点P的坐标为______.(直接写出结果)(2)若PM⊥AB,则BP与⊙A有怎样的位置关系?为什么?(3)若点E的坐标为(0,3),那么⊙A上是否存在一点P,使PE+1/2PB最小,如果存在,求出这个最小值,如果不存在,简要说明理由.【解析】(1)分两种情形:①∠PAB=90°,②∠APB=90°分别求解即可解决问题;答案为(﹣2,2)或(﹣2,﹣2)或(﹣1,√3)或(﹣1,﹣√3).(2)求出PA,PB的长,利用勾股定理的逆定理证明即可;(3)如图,连接EM.∵PA=4,AMAB=4,∴PA=AMAB,∴PA/AM=AB/PA,∵∠PAM=∠BAP,∴△PAM∽△BAP,∴PM/PB=PA/AB=1/2,∴PM=1/2PB,∴PE+1/2PB=PE+PM,∵PE+PM≥EM,∴PE+PM的最小值为线段EM的长,∵E(0,3),∴OE=3,∴由勾股定理可求得EM=√10,∴PE+1/2PB的最小值为√10.【点评】本题属于属于圆综合题,考查了勾股定理以及逆定理,相似三角形的判定和性质,三角形的三边关系等知识,解题的关键是学会利用分类讨论的思想思考问题,学会构造相似三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.例2.如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC 于点C,过点E作ED⊥AF,交AF的延长线于点D.(1)求证:DE是⊙O的切线;(2)若DE=3,CE=2,①求BC/AE的值;②若点G为AE上一点,求OG+1/2EG最小值.【解析】(1)根据切线的判定,连接过切点E的半径OE,利用等腰三角形和平行线性质即能证得OE⊥DE.(2)①观察DE所在的△ADE与CE所在的△BCE的关系,由等角的余角相等易证△ADE∽△BEC,即得BC/AE 的值.②先利用BC/AE的值和相似求出圆的直径,发现∠BAC=30°;利用30°所对直角边等于斜边一半,给EG构造以EG为斜边且有30°的直角三角形,把1/2EG转化到EP,再从P出发构造PQ=OG,最终得到三点成一直线时线段和最短的模型.解:①连接BE∵AB是⊙O直径∴∠AEB=90°∴∠BED=∠D=90°,∠BAE+∠ABE=90°∵BC是⊙O的切线,∴∠ABC=∠ABE+∠CBE=90°,∴∠BAE=∠CBE∵∠DAE=∠BAE,∴∠DAE=∠CBE,∴△ADE∽△BEC, ∴AE/BC=DE/CE,∵DE=3,CE=2,∴BC/AE=2/3②过点E作EH⊥AB于H,过点G作GP∥AB交EH于P,过点P作PQ∥OG交AB于Q,∴EP⊥PG,四边形OGPQ 是平行四边形,∴∠EPG=90°,PQ=OG∵BC/AE=2/3,∴设BC=2x,AE=3x,∴AC=AE+CE=3x+2∵∠BEC=∠ABC=90°,∠C=∠C,∴△BEC∽△ABC,∴BC/AC=CE/BC,∴BC =ACCE 即(2x)=2(3x+2),解得:x =2,x =﹣1/2(舍去)∴BC=4,AE=6,AC=8,∴sin∠BAC=BC/AC=1/2,∴∠BAC=30°∴∠EGP=∠BAC=30°,∴PE=1/2EG,∴OG+1/2EG=PQ+PE∴当E、P、Q在同一直线上(即H、Q重合)时,PQ+PE=EH最短∵EH=1/2AE=3,∴OG+1/2EG的最小值为3【点评】本题考查了等腰三角形和平行线性质,切线的判定和性质,相似的判定和性质,最短路径问题.第(1)题为常规题型较简单;第(2)①题关键是发现DE、CE所在三角形的相似关系;②是求出所有线段长后发现30°角,利用30°构造1/2EG,考查了转化思想.类型2 由已知含有PA+kPB型最值条件,探究圆的综合问题例3.如图,在△ACE中,CA=CE,∠CAE=30°,⊙O经过点C,且⊙O的直径AB在线段AE上.(1)试说明CE是⊙O的切线;(2)若△ACE中AE边上的高为h,试用含h的代数式表示⊙O的直径AB;(3)设点D是线段AC上任意一点(不含端点),连接OD,当1/2CD+OD的最小值为4√3时,求⊙O的直径AB的长.【解析】(1)连接OC,要证CE是⊙O的切线,只需证∠OCE=90°即可(2)过点C作CH⊥AB于H,连接OC,在Rt△OHC中运用三角函数即可求AB=4√3h/3AB;(3)作OF平分∠AOC,交⊙O于F,连接AF、CF、DF,先证明四边形AOCF是菱形,根据对称性可得DF =DO,过点D作DH⊥OC于H,DH=1/2DC,1/2DC+OD=DH+FD,根据两点之间线段最短可得:当F、D、H三点共线时,DH+FD最小,然后在Rt△OHF中运用三角函数求得AB的长.解:作OF平分∠AOC,交⊙O于F,连接AF、CF、DF则∠AOF=∠COF=1/2∠AOC=1/2(180°﹣60°)=60°.∵OA=OF=OC,∴△AOF、△COF是等边三角形,∴AF=AO=OC=FC,∴四边形AOCF是菱形,∴根据对称性可得DF=DO.过点D作DM⊥OC于M,∵OA=OC,∴∠OCA=∠OAC=30°,∴DM=DCsin∠DCM=DCsin30°=1/2DC,∴1/2CD+OD=DM+FD.根据两点之间线段最短可得:当F、D、M三点共线时,DM+FD(即1/2 CD+OD)最小,此时FM=OFsin∠FOM=√3/2OF=4√3,则OF=8,AB=2OF=16.∴当 CD+OD的最小值为4√3时,⊙O的直径AB的长为16.三、总结提升“PA+kPB”型最值问题问题核心解题思想就是“折转直”,通过截取构造等值线段,利用相似三角形、解直角三角形等,将问题利用这类问题常用定理:①三角形的三边关系:两边之和大于第三边,两边之差小于第三边;②两点间线段最短;③垂线段最短,从而求解问题。
与圆有关的最值问题-高三数学备考练习
与圆有关的最值问题-高三数学备考练习近几年高考试题分析发现,与圆有关的最值问题是高考热点问题之一。
这类问题既能与平面几何相联系,又能与圆锥曲线相结合,命题方式比较灵活。
解决这类问题的主要思路是利用圆的几何性质将问题转化。
常见类型包括与圆有关的长度或距离的最值问题和与圆上点(x,y)有关代数式的最值问题。
对于长度或距离的最值问题,一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解。
对于与圆上点(x,y)有关代数式的最值问题,常见类型包括形如u=x-a型、t=ax+by型和(x-a)2+(y-b)2型。
这些问题可以转化为斜率的最值问题、动直线的截距的最值问题和动点到定点(a,b)的距离平方的最值问题。
与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面。
知识拓展包括圆外一点P到圆C上点的距离距离的最大值等于,最小值等于PC-r,圆C上的动点P到直线l距离的最大值等于点C到直线l距离的最大值加上半径,最小值等于点C到直线l距离的最小值减去半径,以及圆C内一点M的弦长的最大值为直径,最小的弦长为圆心角对应的弧长。
解决与圆相关的最值问题的主要思路是利用圆的几何性质将问题转化。
例如,与直线的倾斜角或斜率的最值问题可以利用公式k=tan(≠90°)将直线的斜率与倾斜角紧密联系到一起,通过正切函数的图象可以解决已知斜率的范围探求倾斜角的最值,或者已经倾斜角的范围探求斜率的最值。
处理方法包括分别讨论斜率的范围和倾斜角的范围。
例6】已知实数x,y满足方程$x^2+y^2-4x+1=0$,求:1) $x$ 的最大值和最小值;2) $y-x$ 的最大值和最小值。
解析】1) 将方程化为标准形式:$(x-2)^2+y^2=3$,得到一个以点 $(2,0)$ 为圆心,半径为 $\sqrt{3}$ 的圆。
由于 $x$ 的取值范围为 $[2-\sqrt{3},2+\sqrt{3}]$,所以$x$ 的最大值为 $2+\sqrt{3}$,最小值为 $2-\sqrt{3}$。
圆中动点与最值问题集锦
第20题图第21题图第22题图
21.如图,Rt△ABC中,∠C=90°,∠A=30°,AB=4,以AC上的一点O为圆心OA为半径作⊙O,若⊙O与边BC始终有交点(包括B、C两点),则线段AO的取值范围是.
(1)求弦CD的长;(2)如果a+b=10,求ab的最大值,并求出此时a,b的值.
第15题图第16题图第17题图
16.如图,⊙O的半径为2,点P是⊙O内一点,且OP= ,过P作互相垂直的两条弦AC、BD,则四※边形ABCD面积的最大值为_________.
※17.如图,以O为圆心,1为半径的圆内有一定点A,过A引互相垂直的弦PQ,RS.求PQ+RS取值范围.
8.如图,已知AB是⊙O的弦,C是⊙O上的一个动点,连接AC、BC,∠C=60°,⊙O的半径为2,则△ABC面积的最大值是_________.
9.如图,已知直线MN经过⊙O上的点A,点B在MN上,连OB交⊙O于C点,且点C是OB的中点,AC= OB,若点P是⊙O上的一个动点,当AB= 时,△APC的面积的最大值为_________.
10.如图,若Rt△ABC的斜边AB=2,内切圆的半径为r,则r的最大值为_________.
第10题图第11题图第12题图
11.如图,在平面直角坐标系xOy中,直线AB经过点A(﹣4,0)、B(0,4),⊙O的半径为1(O为坐标原点),点P在直线AB上,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为_________.
12.如图所示,在直角坐标系中,A点坐标为(﹣3,﹣2),⊙A的半径为1,P为x轴上一动点,PQ切⊙A于点Q,则当PQ最小时,P点的坐标为_________.
初三专题 圆中的最值问题
初三专题圆中的最值问题一.选择题(共18小题)1.如图,线段AB=4,C为线段AB上的一个动点,以AC、BC为边作等边△ACD和等边△BCE,⊙O外接于△CDE,则⊙O半径的最小值为()A.4B.C.D.22.如图,以G(0,1)为圆心,半径为2的圆与x轴交于A、B两点,与y轴交于C、D两点,点E为⊙G上一动点,CF⊥AE于F.当点E从点B出发顺时针运动到点D时,点F所经过的路径长为()A.B.C.D.3.如图,▱ABCD的对角线AC,BD相交于点O,E是以A为圆心,以2为半径为圆上一动点,连接CE,点P为CE的中点,连接BP,若AC=a,BD=b,则BP的最大值为()A.+1B.+1C.D.+14.如图,在平面直角坐标系xOy中,A(﹣2,0),B(0,2),⊙O的半径为1,点C为⊙O上一动点,过点B作BP⊥直线AC,垂足为点P,则P点纵坐标的最大值为()A.B.C.2D.5.如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=2,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为()A.2﹣2B.C.D.6.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,D为AB上不与AB重合的一个动点,过点D分别作DE⊥AC于点E,DF⊥BC于点F,则线段EF的最小值为()A.3B.4C.D.7.在等腰直角三角形ABC中,∠BAC=90°,BC=6,点P是线段BC上的一个动点,过点P分别作AB、AC的垂线交AB、AC于点M、N,连接MN,则MN的最小值为()A.4B.3C.2D.18.如图,在矩形ABCD中,AB=3,BC=4,O为矩形ABCD的中心,以D为圆心1为半径作⊙D,P为⊙D上的一个动点,连接AP、OP,则△AOP面积的最大值为()A.4B.C.D.9.如图,矩形ABCD中,AB=2,BC=3,分别以A、D为圆心,1为半径画圆,E、F分别是⊙A、⊙D上的一动点,P是BC上的一动点,则PE+PF的最小值是()A.2B.3C.4D.510.如图,△ABC内接于⊙O,AB是⊙O的直径,AB=10,AC=BC,点E,F 分别是边AC,BC的中点,点P是线段EF上的一个动点,连接AP、OP,则△AOP的周长的最小值为()A.5B.5+5C.10D.1511.如图,点D,E分别是⊙O的内接正三角形ABC的AB,AC边的中点,若DE=,则⊙O的半径为()A.B.C.1D.212.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是()A.4.75B.4.8C.5D.413.如图,已知∠AOB=60°,半径为2的⊙M与边OA、OB相切,若将⊙M 水平向左平移,当⊙M与边OA相交时,设交点为E和F,且EF=6,则平移的距离为()A.2B.2或6C.4或6D.1或5 14.已知⊙O的半径为1,圆心0到直线l的距离为2,过l上任一点A作⊙O 的切线,切点为B,则线段AB的最小值为()A.1B.C.D.215.如图,已知A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心坐标为(﹣1,0),半径为1.若D是⊙O上的一个动点,线段DA与y轴交于点E,则△ABE面积的最大值为()A.2+B.2+C.1D.216.如图,已知A、B两点的坐标分别为(﹣2,0)、(0,1),⊙C的圆心坐标为(0,﹣1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是()A.3B.C.D.417.如图,已知A、B两点的坐标分别为(﹣2,0)、(0,1),⊙C的圆心坐标为(0,﹣1),半径为1,E是⊙C上的一动点,则△ABE面积的最大值为()A.2+B.3+C.3+D.4+18.如图∠BAC=60°,半径长1的⊙O与∠BAC的两边相切,P为⊙O上一动点,以P为圆心,PA长为半径的⊙P交射线AB、AC于D、E两点,连接DE,则线段DE长度的最大值为()A.3B.6C.D.二.填空题(共11小题)19.如图,已知线段AB=6,C为线段AB上的一个动点(不与A、B重合),将线段AC绕点A逆时针旋转120°得到AD,将线段BC绕点B顺时针旋转120°得到BE,⊙O外接于△CDE,则⊙O的半径最小值为.20.如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O是一动点且P在第一象限内,过P作⊙O切线与x轴相交于点A,与y 轴相交于点B.则线段AB的最小值是.21.如图,⊙O的半径为1,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为.22.如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=2,⊙C的半径为1,点P 是斜边AB上的点,过点P作⊙C的一条切线PQ(点Q是切点),则线段PQ 的最小值为.23.如图,矩形ABCD中,AB=6,BC=5,以D为圆心,2为半径画⊙D,E是圆⊙D上一动点,P是BC上一动点,则PE+PA最小值是.24.如图,在矩形ABCD中,AB=3,AD=4,点E是边BC的中点,连接AE,与对角线BD交于点F.点M是AD边上的一个动点,连接MF、MC,则MF+MC的最小值为.25.如图,已知A,B两点的坐标分别为(2,0),(0,2),⊙C的圆心坐标为(﹣1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是.26.如图,已知A、B两点的坐标分别为(﹣4,0)、(0,4),⊙C的圆心坐标为C(2,0),半径为2.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最大值是.27.如图,平面直角坐标系中,分别以点M(2,3)、N(3,﹣5)为圆心,以l、2为半径作⊙M、⊙N,A、B分别是⊙M、⊙N上的动点,P为y轴上的动点,则PA+PB的最小值等于.28.如图,平面直角坐标系中,分别以点A(2,3)、点B(3,4)为圆心,以1、3为半径作⊙A、⊙B,M,N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值为.29.如图,平面直角坐标系中,分别以点A(﹣2,3),B(3,4)为圆心,以1、2为半径作⊙A、⊙B,M、N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值等于.三.解答题(共1小题)30.问题情境:如图1,P是⊙O外的一点,直线PO分别交⊙O于点A、B,则PA是点P到⊙O上的点的最短距离.(1)探究:如图2,在⊙O上任取一点C(不为点A、B重合),连接PC、OC.试证明:PA <PC.(2)直接运用:如图3,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是上的一个动点,连接AP,则AP的最小值是.(3)构造运用:如图4,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,请求出A′B长度的最小值.解:由折叠知A′M=AM,又M是AD的中点,可得MA=MA′=MD,故点A′在以AD为直径的圆上.(请继续完成解题过程)(4)综合应用:(下面两小题请选择其中一道完成)①如图5,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是.②如图6,平面直角坐标系中,分别以点A(﹣2,3),B(3,4)为圆心,以1、2为半径作⊙A、⊙B,M、N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值等于.初三专题圆中的最值问题参考答案与试题解析一.选择题(共18小题)1.如图,线段AB=4,C为线段AB上的一个动点,以AC、BC为边作等边△ACD和等边△BCE,⊙O外接于△CDE,则⊙O半径的最小值为()A.4B.C.D.2【分析】分别作∠A与∠B角平分线,交点为P.由三线合一可知AP与BP为CD、CE垂直平分线;再由垂径定理可知圆心O在CD、CE垂直平分线上,则交点P与圆心O重合,即圆心O是一个定点;连OC,若半径OC最短,则OC⊥AB,由△AOB为底边4,底角30°的等腰三角形,可求得OC=.【解答】解:如图,分别作∠A与∠B角平分线,交点为P.∵△ACD和△BCE都是等边三角形,∴AP与BP为CD、CE垂直平分线.又∵圆心O在CD、CE垂直平分线上,则交点P与圆心O重合,即圆心O是一个定点.连接OC.若半径OC最短,则OC⊥AB.又∵∠OAC=∠OBC=30°,AB=4,∴OA=OB,∴AC=BC=2,∴在直角△AOC中,OC=AC•tan∠OAC=2×tan30°=.故选:B.【点评】本题考查了圆的综合题.需要掌握等边三角形的“三线合一”的性质,三角形的外接圆圆心为三角形的垂心,点到直线的距离垂线段最短以及解直角三角形等知识点.难度不大,注意数形结合数学思想的应用.2.如图,以G(0,1)为圆心,半径为2的圆与x轴交于A、B两点,与y轴交于C、D两点,点E为⊙G上一动点,CF⊥AE于F.当点E从点B出发顺时针运动到点D时,点F所经过的路径长为()A.B.C.D.【分析】连接AC,AG,由OG垂直于AB,利用垂径定理得到O为AB的中点,由G的坐标确定出OG的长,在直角三角形AOG中,由AG与OG的长,利用勾股定理求出AO的长,进而确定出AB的长,由CG+GO求出OC的长,在直角三角形AOC中,利用勾股定理求出AC的长,由CF垂直于AE,得到三角形ACF始终为直角三角形,点F的运动轨迹为以AC为直径的半径,如图中红线所示,当E位于点B时,CO⊥AE,此时F与O重合;当E位于D 时,CA⊥AE,此时F与A重合,可得出当点E从点B出发顺时针运动到点D时,点F所经过的路径长,在直角三角形ACO中,利用锐角三角函数定义求出∠ACO的度数,进而确定出所对圆心角的度数,再由AC的长求出半径,利用弧长公式即可求出的长.【解答】解:连接AC,AG,∵GO⊥AB,∴O为AB的中点,即AO=BO=AB,∵G(0,1),即OG=1,∴在Rt△AOG中,根据勾股定理得:AO==,∴AB=2AO=2,又CO=CG+GO=2+1=3,∴在Rt△AOC中,根据勾股定理得:AC==2,∵CF⊥AE,∴△ACF始终是直角三角形,点F的运动轨迹为以AC为直径的半圆,当E位于点B时,CO⊥AE,此时F与O重合;当E位于D时,CA⊥AE,此时F与A重合,∴当点E从点B出发顺时针运动到点D时,点F所经过的路径长,在Rt△ACO中,tan∠ACO==,∴∠ACO=30°,∴度数为60°,∵直径AC=2,∴的长为=π,则当点E从点B出发顺时针运动到点D时,点F所经过的路径长π.故选:B.【点评】此题属于圆综合题,涉及的知识有:坐标与图形性质,勾股定理,锐角三角函数定义,弧长公式,以及圆周角定理,其中根据题意得到点E从点B出发顺时针运动到点D时,点F所经过的路径长是解本题的关键.3.如图,▱ABCD的对角线AC,BD相交于点O,E是以A为圆心,以2为半径为圆上一动点,连接CE,点P为CE的中点,连接BP,若AC=a,BD=b,则BP的最大值为()A.+1B.+1C.D.+1【分析】连接OP,根据平行四边形对角线互相平分知AO=CO=AC=a、BO=DO=BD=b,由点P为CE中点得知随着点E的运点,点P的运动轨迹是以O为圆心、1为半径的圆,据此解答可得.【解答】解:如图,连接OP,∵四边形ABCD是平行四边形,∴AO=CO=AC=a,BO=DO=BD=b,∵点P为CE中点,∴OP∥AE,且OP=AE=1,∴随着点E的运点,点P的运动轨迹是以O为圆心、1为半径的圆,则当⊙O与OD交于点P时,BP最大,为BO+OP=+1,故选:B.【点评】本题主要考查圆的综合问题,掌握平行四边形的性质、中位线定理及点的运动轨迹问题是解题的关键.4.如图,在平面直角坐标系xOy中,A(﹣2,0),B(0,2),⊙O的半径为1,点C为⊙O上一动点,过点B作BP⊥直线AC,垂足为点P,则P点纵坐标的最大值为()A.B.C.2D.【分析】当AC与⊙O相切于点C时,P点纵坐标的最大值,如图,直线AC交y轴于点D,连结OC,作CH⊥x轴于H,PM⊥x轴于M,DN⊥PM于N,由切线性质得OC⊥AC,在△AOC中判断∠OAC=30°,∠AOC=60°,再在Rt△AOD中利用含30度的直角三角形三边的关系得到OD=OA=,则在Rt△BDP中,由于∠BDP=∠ADO=60°,则可计算出DP=BD=1﹣,然后在Rt△DPN中计算出PN=DP=﹣,最后计算PN+MN,从而可得到P点纵坐标的最大值.【解答】解:当AC与⊙O相切于点C时,P点纵坐标的最大值,如图,直线AC交y轴于点D,连结OC,作CH⊥x轴于H,PM⊥x轴于M,DN⊥PM 于N,∵AC为切线,∴OC⊥AC,在△AOC中,∵OA=2,OC=1,∴∠OAC=30°,∠AOC=60°,在Rt△AOD中,∵∠DAO=30°,∴OD=OA=,在Rt△BDP中,∵∠BDP=∠ADO=60°,∴DP=BD=(2﹣)=1﹣,在Rt△DPN中,∵∠PDN=30°,∴PN=DP=﹣,而MN=OD=,∴PM=PN+MN=1﹣+=,即P点纵坐标的最大值为.故选:B.【点评】本题考查了圆的综合题:熟练掌握切线的性质和含30度的直角三角形三边的关系;理解坐标与图形性质,题目比较好,有一定的难度.5.如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=2,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为()A.2﹣2B.C.D.【分析】连结AE,如图1,先根据等腰直角三角形的性质得到AB=AC=2,再根据圆周角定理,由AD为直径得到∠AED=90°,接着由∠AEB=90°得到点E 在以AB为直径的⊙O上,于是当点O、E、C共线时,CE最小,如图2,在Rt△AOC中利用勾股定理计算出OC=,从而得到CE的最小值为﹣1.【解答】解:连结AE,如图1,∵∠BAC=90°,AB=AC,BC=2,∴AB=AC=2,∵AD为直径,∴∠AED=90°,∴∠AEB=90°,∴点E在以AB为直径的⊙O上,∵⊙O的半径为1,连接OE,OC,∴OE=AB=1在Rt△AOC中,∵OA=2,AC=4,∴OC==,由于OC=,OE=1是定值,点E在线段OC上时,CE最小,如图2,∴CE=OC﹣OE=﹣1,即线段CE长度的最小值为﹣1.故选:C.【点评】本题考查了圆的综合题:熟练掌握圆周角定理和等腰直角三角形的性质;会利用勾股定理计算线段的长.解决本题的关键是确定E点运动的规律,从而把问题转化为圆外一点到圆上一点的最短距离问题.6.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,D为AB上不与AB重合的一个动点,过点D分别作DE⊥AC于点E,DF⊥BC于点F,则线段EF的最小值为()A.3B.4C.D.【分析】连接CD,利用勾股定理列式求出AB,判断出四边形CFDE是矩形,根据矩形的对角线相等可得EF=CD,再根据垂线段最短可得CD⊥AB时,线段EF的值最小,然后根据三角形的面积公式列出方程求解即可.【解答】解:如图,连接CD.∵∠ACB=90°,AC=6,BC=8,∴AB==10,∵DE⊥AC,DF⊥BC,∠C=90°,∴四边形CFDE是矩形,∴EF=CD,由垂线段最短可得CD⊥AB时,线段CD的值最小,即线段EF的值最小,=BC•AC=AB•CD,此时,S△ABC即×8×6=×10•CD,解得CD=,∴EF=.故选:D.【点评】本题考查了矩形的判定与性质,垂线段最短的性质,勾股定理,判断出CD⊥AB时,线段EF的值最小是解题的关键,难点在于利用三角形的面积列出方程.7.在等腰直角三角形ABC中,∠BAC=90°,BC=6,点P是线段BC上的一个动点,过点P分别作AB、AC的垂线交AB、AC于点M、N,连接MN,则MN的最小值为()A.4B.3C.2D.1【分析】首先证明四边形PMAN是矩形,可得MN=PA,根据垂线段最短即可解决问题;【解答】解:∵PM⊥AB,PN⊥AC,∴∠PMA=∠PNA=∠A=90°,∴四边形PMAN是矩形,∴MN=PA,∴当PA⊥BC时,PA的值最小,此时∵AB=AC,PA⊥BC,∴PB=PC,∴PA=BC=3,∴MN的最小值为3,故选:B.【点评】本题考查等腰直角三角形的性质、矩形的判定和性质、垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.如图,在矩形ABCD中,AB=3,BC=4,O为矩形ABCD的中心,以D为圆心1为半径作⊙D,P为⊙D上的一个动点,连接AP、OP,则△AOP面积的最大值为()A.4B.C.D.【分析】当P点移动到平行于OA且与⊙D相切时,△AOP面积的最大,由于P 为切点,得出MP垂直与切线,进而得出PM⊥AC,根据勾股定理先求得AC 的长,进而求得OA的长,根据△ADM∽△ACD,求得DM的长,从而求得PM的长,最后根据三角形的面积公式即可求得;【解答】解:当P点移动到平行于OA且与⊙D相切时,△AOP面积的最大,如图,∵P是⊙D的切线,∴DP垂直与切线,延长PD交AC于M,则DM⊥AC,∵在矩形ABCD中,AB=3,BC=4,∴AC==5,∴OA=,∵∠AMD=∠ADC=90°,∠DAM=∠CAD,∴△ADM∽△ACD,∴=,∵AD=4,CD=3,AC=5,∴DM=,∴PM=PD+DM=1+=,∴△AOP的最大面积=OA•PM=××=,故选:D.【点评】本题考查了圆的切线的性质,矩形的性质,平行线的性质,勾股定理的应用以及三角形相似的判定和性质,本题的关键是判断出P处于什么位置时面积最大;9.如图,矩形ABCD中,AB=2,BC=3,分别以A、D为圆心,1为半径画圆,E、F分别是⊙A、⊙D上的一动点,P是BC上的一动点,则PE+PF的最小值是()A.2B.3C.4D.5【分析】以BC为轴作矩形ABCD的对称图形A′BCD′以及对称圆D′,连接AD′交BC于P,交⊙A、⊙D′于E、F′,连接PD,交⊙D于F,EF′就是PE+PF 最小值;根据勾股定理求得AD′的长,即可求得PE+PF最小值.【解答】解:如图,以BC为轴作矩形ABCD的对称图形A′BCD′以及对称圆A′,连接A′D交BC于P,则DE′就是PE+PD最小值;∵矩形ABCD中,AB=2,BC=3,圆A的半径为1,∴A′D′=BC=3,AA′=2AB=4,AE=D′F′=1,∴AD′=5,EF′=5﹣2=3∴PE+PF=PF′+PE=EF′=3,故选:B.【点评】本题考查了轴对称﹣最短路线问题,勾股定理的应用等,作出对称图形是本题的关键.10.如图,△ABC内接于⊙O,AB是⊙O的直径,AB=10,AC=BC,点E,F 分别是边AC,BC的中点,点P是线段EF上的一个动点,连接AP、OP,则△AOP的周长的最小值为()A.5B.5+5C.10D.15【分析】连接:OC,PC.先证明EF为OC的垂直平分线,从而可得到PC=OP,然后依据三角形的三边关系可知当点A、P、C在一条直线上时,AP+OP有最小值,然后由OA为定值可知当AP+OP最小时,△APO的周长最小.【解答】解:连接:OC,PC.∵AC=BC,AO=OB,OC=OC,∴△AOC≌△BOC,∴∠AOC=∠BOC=90°.∴OC⊥AB.∵点E,F分别是边AC,BC的中点,∴EF∥AB.∴OC⊥EF,且CG=OG.∴GP为CO的垂直平分线,∴CP=OP.∴AP+OP=AP+CP.∴当点A、P、C在一条直线上时(点P与点E重合时),AP+OP有最小值.又∵OA为定值,∴当AP+OP最小时,△APO的周长有最小值.∴△APO的周长最小值=AO+AC=AO+OA=5+5.故选:B.【点评】本题主要考查的是三角形的外接圆与外心、找出△APO周长取得最小值的条件是解题的关键.11.如图,点D,E分别是⊙O的内接正三角形ABC的AB,AC边的中点,若DE=,则⊙O的半径为()A.B.C.1D.2【分析】连接OB、OC,作OF⊥BC于F,根据三角形中位线定理求出BC,根据圆周角定理得到∠BOC=120°,利用余弦的概念计算即可.【解答】解:连接OB、OC,作OF⊥BC于F,则BF=CF=BC,∵点D,E分别AB,AC边的中点,∴BC=2DE=2,由圆周角定理得,∠BOC=2∠A=120°,∴∠OBF=30°,∴OB==2,故选:D.【点评】本题考查的是三角形的外接圆与外心,掌握三角形中位线定理、圆周角定理以及锐角三角函数的定义是解题的关键.12.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是()A.4.75B.4.8C.5D.4【分析】设QP的中点为F,圆F与AB的切点为D,连接FD,连接CF,CD,则有FD⊥AB;由勾股定理的逆定理知,△ABC是直角三角形,FC+FD=PQ,由三角形的三边关系知,FC+FD>CD;只有当点F在CD上时,FC+FD=PQ 有最小值,最小值为CD的长,即当点F在直角三角形ABC的斜边AB的高CD上时,PQ=CD有最小值,由直角三角形的面积公式知,此时CD=BC•AC ÷AB=4.8.【解答】解:如图,设QP的中点为F,圆F与AB的切点为D,连接FD、CF、CD,则FD⊥AB.∵AB=10,AC=8,BC=6,∴∠ACB=90°,FC+FD=PQ,∴FC+FD>CD,∵当点F在直角三角形ABC的斜边AB的高CD上时,PQ=CD有最小值,∴CD=BC•AC÷AB=4.8.故选:B.【点评】本题利用了切线的性质,勾股定理的逆定理,三角形的三边关系,直角三角形的面积公式求解.13.如图,已知∠AOB=60°,半径为2的⊙M与边OA、OB相切,若将⊙M 水平向左平移,当⊙M与边OA相交时,设交点为E和F,且EF=6,则平移的距离为()A.2B.2或6C.4或6D.1或5【分析】讨论:当将⊙M水平向左平移,当点M运动到M′位置时,作MC⊥OA 于C点,M′H⊥OA于H,M′Q⊥MC于Q,连结M′E,根据切线的性质得MM′∥OB,MC=2,再根据垂径定理得EH=EF=3,在Rt△EHM′中利用勾股定理计算出HM′=,则CQ=M′H=,所以MQ=2﹣=,然后利用含30°的直角三角形三边的关系可得到MM′;当将⊙M水平向左平移,当点M运动到M″位置时,作MC⊥OA于C点,M″H ⊥OA于H,M″M交OA于D点,同理得到MC=2,M′H=,利用平行线的性质得∠MDC=∠M″DH=∠AOB=60°,则∠HM″D=30°,∠CMD=30°,根据含30°的直角三角形三边的关系可得到M″D和MD,则可得到MM″=6.【解答】解:当将⊙M水平向左平移,当点M运动到M′位置时,如图作MC⊥OA于C点,M′H⊥OA于H,M′Q⊥MC于Q,连结M′E,∵⊙M与边OB、OA相切,∴MM′∥OB,MC=2,∵M′H⊥OA,∴EH=FH=EF=×6=3,在Rt△EHM′中,EM′=2,∴HM′==,∵M′Q⊥MC,∴四边形M′QCH为矩形,∴CQ=M′H=,∴MQ=2﹣=,∵∠QMM′=∠AOB=60°,∴∠QM′M=30°,∴M′Q==1,∴MM′=2;当将⊙M水平向左平移,当点M运动到M″位置时,如图2,作MC⊥OA于C点,M″H⊥OA于H,M″M交OA于D点,易得MC=2,M′H=,∵∠MDC=∠M″DH=∠AOB=60°,∴∠HM″D=30°,∠CMD=30°,在Rt△HM″D中,M″D=,则DH==1,∴M″D=2DH=2,在Rt△CDM中,CM=2,则DC==2,∴DM=2DC=4,∴MM″=2+4=6,综上所述,当⊙M平移的距离为2或6.故选:B.【点评】本题考查了切线的性质:圆的切线垂直于过切点的半径.也考查了垂径定理以及含30°的直角三角形三边的关系.14.已知⊙O的半径为1,圆心0到直线l的距离为2,过l上任一点A作⊙O 的切线,切点为B,则线段AB的最小值为()A.1B.C.D.2【分析】先连接OB,易知△AOB是直角三角形,再利用勾股定理即可求出AB.【解答】解:如右图所示,OA⊥l,AB是切线,连接OB,∵OA⊥l,∴OA=2,又∵AB是切线,∴OB⊥AB,在Rt△AOB中,AB===.故选:C.【点评】本题考查了切线的性质、勾股定理.解题的关键是连接OB,构造直角三角形.15.如图,已知A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心坐标为(﹣1,0),半径为1.若D是⊙O上的一个动点,线段DA与y轴交于点E,则△ABE面积的最大值为()A.2+B.2+C.1D.2【分析】由题意可得当AD和⊙C相切时,△ABE的面积最大,画出此时的图形,然后由已知条件和三角形的相似,可以求得此时的△ABE面积的最大值.【解答】解:由题意可得,当AD与⊙C相切时,△ABE的面积最大,此时点D 在D1的位置,如下图所示,连接CD1,则∠CD1A=90°,∴△CD1A∽△OE1A,∴∵OA=2,AC=3,CD1=1,∴,∴,∴=2+,故选:B.【点评】本题考查切线的性质、一次函数图象上点的坐标特征、三角形的相似、最值,解题的关键是明确题意画出相应的图形,求出相应的图形的面积.16.如图,已知A、B两点的坐标分别为(﹣2,0)、(0,1),⊙C的圆心坐标为(0,﹣1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是()A.3B.C.D.4【分析】当射线AD与⊙C相切时,△ABE面积的最大.设EF=x,由切割线定理表示出DE,可证明△CDE∽△AOE,根据相似三角形的性质可求得x,然后求得△ABE面积.【解答】解:当射线AD与⊙C相切时,△ABE面积的最大.连接AC,∵∠AOC=∠ADC=90°,AC=AC,OC=CD,∴Rt△AOC≌Rt△ADC,∴AD=AO=2,连接CD,设EF=x,∴DE2=EF•OE,∵CF=1,∴DE=,∴△CDE∽△AOE,∴=,即=,解得x=,S△ABE===.故选:B.【点评】本题是一个动点问题,考查了切线的性质和三角形面积的计算,解题的关键是确定当射线AD与⊙C相切时,△ABE面积的最大.17.如图,已知A、B两点的坐标分别为(﹣2,0)、(0,1),⊙C的圆心坐标为(0,﹣1),半径为1,E是⊙C上的一动点,则△ABE面积的最大值为()A.2+B.3+C.3+D.4+18.如图∠BAC=60°,半径长1的⊙O与∠BAC的两边相切,P为⊙O上一动点,以P为圆心,PA长为半径的⊙P交射线AB、AC于D、E两点,连接DE,则线段DE长度的最大值为()A.3B.6C.D.【分析】连接AO并延长,与圆O交于P点,当AF垂直于ED时,线段DE长最大,设圆O与AB相切于点M,连接OM,PD,由对称性得到AF为角平分线,得到∠FAD为30度,根据切线的性质得到OM垂直于AD,在直角三角形AOM中,利用30度角所对的直角边等于斜边的一半求出AO的长,由AO+OP求出AP的长,即为圆P的半径,由三角形AED为等边三角形,得到DP为角平分线,在直角三角形PFD中,利用30度所对的直角边等于斜边的一半求出PF的长,再利用勾股定理求出FD的长,由DE=2FD求出DE的长,即为DE的最大值.【解答】解:连接AO并延长,与ED交于F点,与圆O交于P点,此时线段ED最大,连接OM,PD,可得F为ED的中点,∵∠BAC=60°,AE=AD,∴△AED为等边三角形,∴AF为角平分线,即∠FAD=30°,在Rt△AOM中,OM=1,∠OAM=30°,∴OA=2,∴PD=PA=AO+OP=3,在Rt△PDF中,∠FDP=30°,PD=3,∴PF=,根据勾股定理得:FD==,则DE=2FD=3.故选:D.【点评】此题考查了切线的性质,等边三角形的判定与性质,勾股定理,含30度直角三角形的性质,熟练掌握切线的性质是解本题的关键.二.填空题(共11小题)19.如图,已知线段AB=6,C为线段AB上的一个动点(不与A、B重合),将线段AC绕点A逆时针旋转120°得到AD,将线段BC绕点B顺时针旋转120°得到BE,⊙O外接于△CDE,则⊙O的半径最小值为3.【分析】如图,连接OD、OA、OC、OB、OE.只要证明△AOB是等边三角形,即可推出当OC⊥AB时,OC的长最短,此时OC=OA•sin60°;【解答】解:如图,连接OD、OA、OC、OB、OE.∵OA=OA,OD=OC,AD=AC,∴△OAD≌△OAC,∴∠OAC=∠OAD=∠CAD=60°,同法可证:∠OBC=∠OBE=∠ABE=60°,∴△AOB是等边三角形,∴当OC⊥AB时,OC的长最短,此时OC=OA•sin60°=3,故答案为3.【点评】本题考查三角形的外心,全等三角形的判定和性质、等边三角形的判定和性质、垂线段最短等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考填空题中的压轴题.20.如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O是一动点且P在第一象限内,过P作⊙O切线与x轴相交于点A,与y 轴相交于点B.则线段AB的最小值是4..【分析】如图,设AB的中点为C,连接OP,由于AB是圆的切线,故△OPC 是直角三角形,有OP<OC,所以当OC与OP重合时,OC最短;【解答】解:(1)线段AB长度的最小值为4,理由如下:连接OP,∵AB切⊙O于P,∴OP⊥AB,取AB的中点C,∴AB=2OC;当OC=OP时,OC最短,即AB最短,此时AB=4.故答案为:4.【点评】本题利用了切线的性质,等腰直角三角形的性质求解,属于基础性题目.21.如图,⊙O的半径为1,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为2.【分析】因为PQ为切线,所以△OPQ是Rt△.又OQ为定值,所以当OP最小时,PQ最小.根据垂线段最短,知OP=3时PQ最小.根据勾股定理得出结论即可.【解答】解:∵PQ切⊙O于点Q,∴∠OQP=90°,∴PQ2=OP2﹣OQ2,而OQ=1,∴PQ2=OP2﹣1,即PQ=,当OP最小时,PQ最小,∵点O到直线l的距离为3,∴OP的最小值为3,∴PQ的最小值为=2.故答案为2.【点评】此题综合考查了切线的性质及垂线段最短等知识点,如何确定PQ最小时点P的位置是解题的关键,难度中等偏上.22.如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=2,⊙C的半径为1,点P 是斜边AB上的点,过点P作⊙C的一条切线PQ(点Q是切点),则线段PQ的最小值为.【分析】当PC⊥AB时,线段PQ最短;连接CP、CQ,根据勾股定理知PQ2=CP2﹣CQ2,先求出CP的长,然后由勾股定理即可求得答案.【解答】解:连接CP、CQ;如图所示:∵PQ是⊙C的切线,∴CQ⊥PQ,∠CQP=90°,根据勾股定理得:PQ2=CP2﹣CQ2,∴当PC⊥AB时,线段PQ最短,∵在Rt△ACB中,∠A=30°,BC=2,∴AB=2BC=4,AC=2,∴CP===,∴PQ==,∴PQ的最小值是;故答案为:.【点评】本题考查了切线的性质以及勾股定理的运用;注意掌握辅助线的作法,注意当PC⊥AB时,线段PQ最短是关键.23.如图,矩形ABCD中,AB=6,BC=5,以D为圆心,2为半径画⊙D,E是圆⊙D上一动点,P是BC上一动点,则PE+PA最小值是11.【分析】以BC为轴作矩形ABCD的对称图形A′BCD′以及对称圆D′,连接AD'交BC于P,交⊙D'于E,则AE′就是PE+PD最小值;根据勾股定理求得AD'的长,即可求得PE+PA最小值.【解答】解:如图,以BC为轴作矩形ABCD的对称图形A′BCD′以及对称圆D′,连接AD'交BC于P,交⊙D'于E,则AE′就是PE+PA最小值,∵矩形ABCD中,AB=6,BC=5,圆D的半径为2,∴AD=BC=5,DD′=2DC=12,∴由勾股定理得:AD'===13,∵D'E'=2,∴AE′=13﹣2=11,∴PE+PA=PE′+PA=AE′=11,故答案为11.【点评】本题考查了轴对称﹣最短路线问题,勾股定理的应用等,作出对称图形,确定点P的位置是本题的关键.24.如图,在矩形ABCD中,AB=3,AD=4,点E是边BC的中点,连接AE,与对角线BD交于点F.点M是AD边上的一个动点,连接MF、MC,则MF+MC的最小值为.【分析】作点C关于AD的对称点C',连接C'F,利用相似三角形的性质和勾股定理解答即可.【解答】解:作点C关于AD的对称点C',连接C'F,过F作FP⊥CD于P,∵矩形ABCD,∴BE∥AD,∴△BEF∽△ADF,∴,∴△BFE的高:△ADF的高=1:2,∴,∴DP=2,∵,∴FP=,在Rt△C'FP中,C'F=,即MF+MC的最小值为,故答案为:【点评】此题主要考查轴对称、矩形的性质、相似三角形的性质,考查知识点比较多,综合性比较强,另外要注意辅助线的作法.25.如图,已知A,B两点的坐标分别为(2,0),(0,2),⊙C的圆心坐标为(﹣1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是2﹣.26.如图,已知A、B两点的坐标分别为(﹣4,0)、(0,4),⊙C的圆心坐标为C(2,0),半径为2.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最大值是2+8.【分析】由于OA的长为定值,若△ABE的面积最大,则BE的长最长,此时AD与⊙相切且位于x轴的下方;可连接CD,在Rt△ADC中,由勾股定理求得AD的长,即可得到△ADC的面积;易证得△AEO∽△ACD,可以求出OE的长,进而可得出△AOB和△AOE的面积和,由此得解.【解答】解:若△ABE的面积最大,则AD与⊙C相切,连接CD,则CD⊥AD;∴△AEO∽△ACD∴∵A(﹣4,0)、B(0,4)、C(2,0),∴AC=6,AO=4,CD=2,∴AD=4,∴,∴OE=,∴△ABE的最大面积为:×4×+×4×4=2+8,故答案为:2+8【点评】本题考查了直线与圆的位置关系,坐标与图形的性质,三角形的面积公式的运用.27.如图,平面直角坐标系中,分别以点M(2,3)、N(3,﹣5)为圆心,以l、2为半径作⊙M、⊙N,A、B分别是⊙M、⊙N上的动点,P为y轴上的动点,则PA+PB的最小值等于﹣3.【分析】作⊙M关于y轴的对称⊙M′,连接NM′分别交⊙M′和⊙N于A、B,交y轴于P,如图,根据两点之间线段最短得到此时PA+PB最小,再利用对称确定M′的坐标,接着利用两点间的距离公式计算出M′N的长,然后用M′N 的长减去两个圆的半径即可得到AB的长,即得到PA+PB的最小值.【解答】解:作⊙M关于y轴的对称⊙M′,连接NM′分别交⊙M′和⊙N于A、B,交y轴于P,如图,则此时PA+PB最小,。
2.5.3 与圆有关的最值问题专项
m1 13
4
| AC | 5 最短弦长为2 52 ( 5)2 4 5
4.有几何意义的代数式的最值 [例4]已知实数x, y满足y 9 x2 ,则 y 3的取值范围为_(___,_23_]__[_43_,__.)
x 1
解: y 9 x2化为x2 y2 9( y 0),表示圆心为(0,0),半径为3的上半圆周.
(1)求切线长|PA|的最小值.
(1) PA m in
|
PC
|2
m in
2
(2
2)2 2
6.
(2)求四边形PAOB面积的最小值.
(2)S四
2SPAC
2
1 2
PA
2
2 PA 2 3
(3)求两切线的夹角的最大值;
(3)sin APC 2 | PC | 2
2 1 22
APC 30
APB 60
(弦长为2 r2 d 2 )
[例3]已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0,求 直线l被圆C截得的弦长最短时m的值及最短弦长.
析 : 直线可化为(x y 4) m(2x y 7) 0 直线过定点A(3,1).
当AC l时,弦长最短, 即( 2m 1) 2 1 1,得m 3 . l : 2x y 5 0
PQOP (x x0 )x0 ( y y0 ) y0 x0x y0 y x02 y02 0, x0 x y0 y r 2. 当P,Q重合时,Q(x0, y0 )亦满足上式. 2. 过圆(x-a)2 + (y-b)2 = r2上一点P(x0, y0)的切线方程为 (x0 a)( x a) ( y0 b)( y b) r 2
百益数学 动点与最值专项训练
百益数学动点与最值专项训练百益数学是数学教育领域中备受关注的品牌之一,其动点与最值专项训练课程更是备受推崇。
在这篇文章中,我们将从不同角度探讨百益数学动点与最值专项训练课程的特点、优势和学习方法,以期帮助您更深入地了解这一主题。
一、动点与最值的概念解析在数学领域,动点与最值是一个重要且常见的概念。
动点通常指的是在运动过程中的某一时刻的位置,而最值则是指在某一条件下达到的最大值或最小值。
动点与最值的问题在数学竞赛和实际问题中都有广泛的应用,因此对这一概念的深入理解和掌握至关重要。
二、百益数学动点与最值专项训练课程的特点1. 知识点全面:百益数学的动点与最值专项训练囊括了数学中涉及动点与最值的所有知识点,内容全面,层次清晰。
2. 专项强化:针对动点与最值这一重点知识,百益数学开设了专门的强化训练课程,旨在帮助学生加深对这一知识点的理解,提高解题能力。
3. 实例分析:课程中大量运用实例进行讲解和分析,通过实际案例的讲解,帮助学生更好地理解动点与最值的概念和解题方法。
4. 互动讨论:课程设置了互动讨论环节,鼓励学生主动提问和共享自己的解题思路,促进思维碰撞和知识交流。
三、如何有效学习百益数学动点与最值专项训练课程1. 注重基础:学习动点与最值专项训练课程前,要确保自己对相关的基础知识有扎实的掌握,如函数、导数等。
2. 多做练习:课程结束后,要多做相关的练习题,巩固所学知识,提高解题能力。
3. 定期复习:定期进行复习,查漏补缺,确保对动点与最值的知识有全面的理解。
四、个人观点和理解对于百益数学动点与最值专项训练课程,我个人认为其课程设置合理,内容丰富,能够帮助学生系统地掌握动点与最值这一知识点。
通过课程的学习,我深刻认识到动点与最值在数学中的重要性,并提高了解题能力和解题思路。
总结回顾通过本文的阐述,我们对百益数学动点与最值专项训练课程有了全面的了解。
课程的特点、学习方法以及个人观点都得到了充分的阐述,相信读者对这一主题也有了更深入的认识。
利用“辅助圆”模型求最值问题专题训练
利用“辅助圆”模型求最值问题专题训练【知识梳理】隐圆模型(1)动点到定点定长模型(共顶点的三条等线段)若P为动点,但AB=AC=AP 原理:圆A中,AB=AC=AP则B、C、P三点共圆,A圆心,AB半径备注:常转全等或相似证明出定长(2)直角圆周角模型固定线段AB所对动角∠C恒为90°原理:圆O中,圆周角为90°所对弦是直径则A、B、C三点共圆,AB为直径备注:常通过互余转换等证明出动角恒为直角(3)定边对定角模型固定线段AB所对动角∠P为定值原理:弦AB所对同侧圆周角恒相等则点P运动轨迹为过A、B、C三点的圆备注:点P在优弧、劣弧上运动皆可(4)四点共圆模型①若动角∠A+动角∠C=180°原理:圆内接四边形对角互补则A、B、C、D四点共圆备注:点A与点C在线段AB异侧(5)四点共圆模型②固定线段AB所对同侧动角∠P=∠C 原理:弦AB所对同侧圆周角恒相等则A、B、C、P四点共圆备注:点P与点C需在线段AB同侧【精典训练题】【01】如图,菱形ABCD中,∠BAD=120º,对角线BD=4√3,BD与AC交于点O,P是同一平面的内一个动点,PC=4,若点P到直线BD的距离为2,则∠BPC的度数为______________【02】在矩形ABCD中,已知AB=2cm,BC=3cm,现有一根长为2cm的木棒EF紧贴着矩形的边(即两个端点始终落在矩形的边上),按逆时针方向滑动一周,则木棒EF的中点P在运动过程中所围成的图形的面积为_____cm2.【03】点P 为平面内的一点,已知点P 到⊙O 的最短距离是5cm ,最长距离是9 cm ,求⊙O 的直径为_______ cm【04】如图,已知圆C 的半径为3,圆外一定点O 满足OC=5,点P 为圆C 上一动点,经过点O的直线l 上有两点A 、B ,且OA=OB ,∠APB=90°,l 不经过点C ,则AB 的最小值为________。
数学《与圆有关的定点、定值、最值与范围问题》(复习限时提分训练基础到提升含精细解析)
与圆有关的定点、定值、最值与范围问题分层训练A级基础达标演练(时间:30分钟满分:60分)一、填空题(每小题5分,共30分)1.已知实数x,y满足错误!则点(x,y)到圆(x+2)2+(y-6)2=1上点的距离的最小值是________.答案4错误!-12.已知x,y满足x2+y2-4x-6y+12=0,则x2+y2最小值为________.解析法一点(x,y)在圆(x-2)2+(y-3)2=1上,故点(x,y)到原点距离的平方即x2+y2最小值为(错误!-1)2=14-2错误!。
法二设圆的参数方程为错误!则x2+y2=14+4cos α+6sin α,所以x2+y2的最小值为14-42+62=14-2错误!.答案14-2错误!3.圆C的方程为(x-2)2+y2=4,圆M的方程为(x-2-5cos θ)2+(y-5sin θ)2=1(θ∈R).过圆M上任意一点P作圆C的两条切线PE,PF,切点分别为E,F,则错误!·错误!的最小值是________.解析如图所示,连接CE,CF。
由题意,可知圆心M(2+5cos θ,5sin θ),设错误!则可得圆心M的轨迹方程为(x-2)2+y2=25,由图,可知只有当M,P,C三点共线时,才能够满足错误!·错误!最小,此时|PC|=4,|EC|=2,故|PE|=|PF|=2错误!,∠EPF=60°,则错误!·错误!=(2错误!)2×cos 60°=6。
答案64.直线2ax+by=1与圆x2+y2=1相交于A,B两点(其中a,b是实数),且△AOB是直角三角形(O是坐标原点),则点P(a,b)与点(0,1)之间的距离的最大值为________.解析△AOB是直角三角形等价于圆心(0,0)到直线错误!ax+by=1的距离等于错误!,由点到直线的距离公式,得错误!=错误!,即2a2+b2=2,即a2=1-错误!且b∈[-错误!,错误!].点P(a,b)与点(0,1)之间的距离为d=错误!=错误!,因此当b=-错误!时,d取最大值,此时d max=错误!=错误!+1。