-七年级数学上期末复习试卷(第1-3章)含答案.doc

合集下载

人教版 七年级数学上册 第1_3章 期中综合复习(3份)及答案

人教版 七年级数学上册 第1_3章 期中综合复习(3份)及答案

人教版 七年级数学上册 第1~3章 期中综合复习(一)一、选择题(本大题共10道小题)1. 计算2a -3a ,结果正确的是( )A .-1B .1C .-aD .a 2. 下列各数:53,+4,-7,0,-0.5,3.456,-516中,负数有( )A .2个B .3个C .4个D .5个3. 计算4+(-3)+(-2)+(-1)+2的结果是( )A .0B .1C .2D .34. 解方程x +12-2x -36=1时,去分母正确的是( )A .3(x +1)-2x -3=6B .3(x +1)-2x -3=1C .3(x +1)-(2x -3)=12D .3(x +1)-(2x -3)=65. 下列各式的计算结果是负数的是( )A .-2×3×(-2)×5B .3÷(-3)×2.6÷(-1.5)C .|-3|×4×(-2)÷(-12) D .(-7)×52÷|-10|6. 下列计算运用运算律恰当的有( )①28+(-19)+6+(-21)=[(-19)+(-21)]+28+6;②14+1+⎝ ⎛⎭⎪⎫-14+13=⎣⎢⎡⎦⎥⎤14+⎝ ⎛⎭⎪⎫-14+1+13;③3.25+⎝ ⎛⎭⎪⎫-235+534+(-8.4)=⎝ ⎛⎭⎪⎫3.25+534+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-235+(-8.4).A .0个B .1个C .2个D .3个7. 有理数m ,n 在数轴上的位置如图所示,则下列各式正确的是 ()A .m>n B.-n>|m|C .-m>|n|D .|m|<|n|8. 已知M =4x 2-3x -2,N =6x 2-3x +6,则M 与N 的大小关系是() A .M <N B .M >NC .M =ND .以上都有可能9. 下列说法错误的是 ( )A .若|a |=|b |,则a =b 或a =-bB .若a ≠b ,则|a |≠|b |C .若|a |+|b |=0,则|a |=0且|b |=0D .若|a |=a ,则a ≥0;若|b |=-b ,则b ≤010. 若三个连续偶数的和是24,则它们的积是( )A .48B .480C .240D .120 二、填空题(本大题共10道小题)11. 计算:(14+16-12)×12=________. 12. 计算:(-14)×23-23=________. 13. 5G 信号的传播速度为300000000 m/s ,将300000000用科学记数法表示为 .14. 用“>”“<”或“=”填空:(1)-31×(-58)×(-4)×(-7)________0;(2)(-32.75)×(-1)×101×⎝ ⎛⎭⎪⎫-9918×0________0; (3)-|-3|×(-5)×(-11)×51________0.15. 已知关于x 的方程2x +a -5=0的解是x =2,则a 的值为________. 16. 若m +1与-2互为相反数,则m 的值为________.17. 李勇同学假期打工收入了一笔钱,他立即存入银行,存期为一年,整存整取,若年利率为 2.16%,一年后李勇同学共得到本息和510.8元,则李勇同学存入________元.18. 若定义一种运算*,其规则是:a *b =-1b ÷1a ,则(-3) * (-2)=________. 19. 一项工作,甲单独做4天完成,乙单独做8天完成.现甲先做1天,然后和乙共同完成余下的工作,则甲一共做了________天.20. 某班学生在实践基地进行拓展活动,因为器材的原因,教练要求分成固定的a 组,若每组5人,则多出9名同学;若每组6人,最后一组的人数将不满,则最后一组的人数用含a 的式子可表示为 .三、解答题(本大题共5道小题)21. 水葫芦是一种水生漂浮植物,有着惊人的繁殖能力.据研究表明:适量的水葫芦生长对水质的净化是有利的,关键是对水葫芦的科学管理和转化利用.若在适宜的条件下,1株水葫芦每5天就能繁殖1株(不考虑死亡、被打捞等其他因素).(1)假设湖面上现有1株水葫芦,填写下表(其中n 为正整数):天数5 10 15 … 50 … 5n 总株数 2 4 … …(2)假定某个流域的水葫芦维持在1280株以内对水质净化有益,若现有10株水葫芦,请你计算,按照上述生长速度,多少天后该流域内有1280株水葫芦?22. 求关于x 的一元一次方程21(1)(1)80k k x k x --+--=的解.23. 解方程:0.10.020.10.10.30.0020.05x x -+-=24. 解方程:0.10.90.210.030.7x x --=25. 已知1abc =,求关于x 的方程2004111x x x a ab b bc c ca++=++++++的解.人教版 七年级数学上册 第1~3章 期中综合复习(一)-答案一、选择题(本大题共10道小题)1. 【答案】C2. 【答案】B3. 【答案】A4. 【答案】D [解析] 由此方程的分母2,6可知,其最小公倍数为6,故去分母得3(x +1)-(2x -3)=6.故选D.5. 【答案】D6. 【答案】D7. 【答案】C8. 【答案】A [解析] 因为M -N =(4x 2-3x -2)-(6x 2-3x +6)=4x 2-3x -2-6x 2+3x -6=-2x 2-8<0,所以M <N.9. 【答案】B10. 【答案】B [解析] 两个连续偶数相差2,所以可设中间一个偶数为x ,则第一个偶数为x -2,第三个偶数为x +2,则有x -2+x +x +2=24,解得x =8,故这三个偶数为6,8,10,所以它们的积为6×8×10=480.二、填空题(本大题共10道小题)11. 【答案】-112. 【答案】-10 [解析] (-14)×23-23=-14×23-1×23=23×(-14-1)=-10. 13. 【答案】3×108[解析] 将300000000用科学记数法表示为3×108. 14. 【答案】(1)>(2)= (3)< 15. 【答案】1 [解析] 把x =2代入原方程,得2×2+a -5=0,解得a =1,故答案为1.16. 【答案】117. 【答案】500 [解析] 本题中要求的未知数是本金.设存入的本金为x 元,由于年利率为2.16%,期数为一年,则利息为2.16%x 元.根据题意,得x +2.16%x =510.8,解得x =500.18. 【答案】-32 [解析] (-3) * (-2)=12÷(-13)=12×(-3)=-32. 19. 【答案】3 [解析] 设乙做了x 天,则甲做了(x +1)天,根据题意,得x +14+x 8=1,解得x =2,x +1=3.故甲一共做了3天.20. 【答案】15-a [解析] 最后一组的人数可表示为5a +9-6(a -1)=15-a .三、解答题(本大题共5道小题)21. 【答案】解:(1)表中依次填入23,210,2n .(2)根据题意,得10×2n =1280,解得n=7,7×5=35(天).答:按照上述生长速度,35天后该流域内有1280株水葫芦.22. 【答案】2x =或者4x =-【解析】由一元一次方程的概念可知,原方程是一元一次方程,有两种情况:(1)当11k -=,即2k =时,原方程可化为:380x x +-=,解得2x =; (2)当210k -=且10k -≠时,即1k =-时,原方程可化为280x --=,解得4x =-.综上所得2x =或者4x =-.23. 【答案】 4116024. 【答案】121925. 【答案】2004 【解析】原方程可化为:111()2004111x a ab b bc c ca++=++++++, 因为1abc =,所以11111111(1)a abc a ab b bc c ca a ab a b bc abc c ca++=++++++++++++++ 1111111a ab a ab a ab a ab a ab a ab++=++==++++++++,故2004x =.人教版 七年级数学上册 第1~3章 期中综合复习(二)一、选择题(本大题共10道小题)1. 据市统计局调查数据显示,我市目前常住人口约为4470000人.数据“4470000”用科学记数法可表示为( )A. 4.47×106B. 4.47×107C. 0.447×107D. 447×1042. 若海平面以上1045米,记作+1045米,则海平面以下155米,记作() A .-1200米 B .-155米C .155米D .1200米3. 下列方程中是一元一次方程的是( )A .x +2y =9B .x 2-3x =1C .2x +4=1x D.12x -1=3x4. 计算-2(x -y )-2y 的结果是( )A .-2x -4yB .-2xC .2x -4yD .-4x +2y5. 给出一个数-0.1010010001,下列说法正确的是 ( )A .这个数不是分数,但是有理数B .这个数是负数,也是分数C .这个数与π一样,不是有理数D .这个数是一个负小数,不是有理数6. 下列各组数中,互为相反数的一组是( )A .|-3|与-13B .|-3|与-(-3)C .|-3|与-|-3|D .|-3|与|-13|7. 计算(-2)2020÷(-2)2019所得的结果是 ( )A.22019B.-22019C.-2D.18. 二模若a >0,b <0,则a -b 的值( )A .大于零B .小于零C .等于零D .不能确定9. 某企业今年第一季度盈利22000元,第二季度亏损5000元,若盈利记为正,亏损记为负,则该企业今年上半年盈利(或亏损)的金额(单位:元)可用算式表示为( )A .(+22000)+(+5000)B .(-22000)+(+5000)C .(-22000)+(-5000)D .(+22000)+(-5000) 10. 计算0-(-5)-(+1.71)+(+4.71)的结果是( )A .7B .-8C .8D .-7 二、填空题(本大题共10道小题)11. 化简:-54-8=________,-6-0.3=________. 12. 对于算式(-3)÷13×(-3),下面有几种算法: ①原式=(-3)×3×(-3);②原式=(-3)×(-3)÷13;③原式=(-3)÷⎣⎢⎡⎦⎥⎤13×(-3); ④原式=(-3)÷⎣⎢⎡⎦⎥⎤13÷(-3). 其中正确的算法有________.(填序号)13. 当x =________时,式子5x -3的值为7.14. 化简下列各数:(1)-(+3)=________;(2)-(-3)=________;(3)+(+3)=________;(4)+(-3)=________;(5)-[-(+3)]=________;(6)-[-(-3)]=________. 15. 合并同类项:4a 2+6a 2-a 2=________.16. 一只蜗牛从地面开始爬高为6米的墙,先向上爬3米,然后向下滑1米,接着又向上爬3米,然后又向下滑1米,则此时蜗牛离地面的距离为________米. 17. 我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元.”该物品的价格是________元.18. 把a -b 看作一个整体,合并同类项:3(a -b )+4(a -b )2-2(a -b )-3(a -b )2-(a -b )2= .19. 观察下列砌钢管的横截面(如图),则第n (n 是正整数)个图中的钢管数是__________.(用含n 的式子表示)20. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之.”其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走________步才能追到速度慢的人.三、解答题(本大题共5道小题)21. 先化简,再求值:12(8x 2-3xy )-3(x 2-12xy +13y ),其中x =-2,y =1.22. 去掉下列各式中的括号:(1)8m -(3n +5); (2)n -4(3-2m ); (3)2(a -2b )-3(2m -n ).23. 据美国詹姆斯·马丁的测算,在近十年,人类知识总量已达到每3年翻一番,到2020年甚至要达到每73天翻一番的空前速度,因此,基础教育的任务已不是“教会一切人一切知识,而是让一切人会学习”.已知2000年底,人类知识总量为a,假如从2000年底到2009年底是每3年翻一番;从2009年底到2019年底是每1年翻一番;从2020年是每73天翻一番.(1)2009年底人类知识总量是多少?(2)2019年底人类知识总量是多少?(3)2020年按365天计算,2020年底人类知识总量是多少?24. 暑假期间,学校组织学生去某景点游玩,甲旅行社说:“如果带队的一名老师购买全票,则学生享受半价优惠.” 乙旅行社说:“所有人按全票价的六折优惠.”已知全票价为a元,学生有x人,带队老师有1人.(1)试用含a和x的式子分别表示甲、乙旅行社的收费情况;(2)若有30名学生参加本次活动,请你为他们选择一家更优惠的旅行社.25. 解方程:4213 2[()] 3324x x x--=人教版七年级数学上册第1~3章期中综合复习(二)-答案一、选择题(本大题共10道小题)1. 【答案】A【解析】把一个大数用科学记数法表示为a×10n的形式,其中1≤a <10,故a=4.47,n等于原数的整数位数减1,即n=7-1=6,∴4470000=4.47×106.2. 【答案】B3. 【答案】D4. 【答案】B5. 【答案】B6. 【答案】C7. 【答案】C8. 【答案】A9. 【答案】D10. 【答案】C二、填空题(本大题共10道小题)11. 【答案】27 42012. 【答案】①②④13. 【答案】2[解析] 由题意,得5x-3=7.两边同时加上3,得5x=10.两边同时除以5,得x=2.14. 【答案】(1)-3(2)3(3)3(4)-3(5)3 (6)-3[解析] “-”号不仅是运算符号、性质符号,还可理解为“相反”的意义,如-(+3)表示+3的相反数.15. 【答案】9a216. 【答案】417. 【答案】53[解析] 设有x个人共同购买该物品,依题意,得8x-3=7x+4,解得x=7.8x-3=8×7-3=53.故答案为53.18. 【答案】a -b[解析] 3(a -b )+4(a -b )2-2(a -b )-3(a -b )2-(a -b )2=(3-2)·(a -b )+(4-3-1)·(a -b )2=a -b .19. 【答案】32n (n +1) [解析] 第1个图中钢管数为1+2=3,第2个图中钢管数为2+3+4=12×(2+4)×3=9,第3个图中钢管数为3+4+5+6=12×(3+6)×4=18,第4个图中钢管数为4+5+6+7+8=12×(4+8)×5=30,…依此类推,第n 个图中钢管数为n +(n +1)+(n +2)+(n +3)+(n +4)+2n =12(n +2n )(n +1)=32n (n +1).20. 【答案】250[解析] 设速度快的人追上速度慢的人所用时间为t ,根据题意,得(100-60)t =100,解得t =2.5.所以100t =100×2.5=250,即速度快的人要走250步才能追上速度慢的人.三、解答题(本大题共5道小题)21. 【答案】解:原式=4x 2-32xy -3x 2+32xy -y =x 2-y . 当x =-2,y =1时,原式=(-2)2-1=3.22. 【答案】解:(1)8m -(3n +5)=8m -3n -5.(2)n -4(3-2m )=n -(12-8m )=n -12+8m .(3)2(a -2b )-3(2m -n )=2a -4b -(6m -3n )=2a -4b -6m +3n .23. 【答案】解:(1)23×a .(2)213×a .(3)218×a .24. 【答案】解:(1)甲旅行社收取的费用为a+50%ax=a+ax元,乙旅行社收取的费用为(x+1)×60%a=ax+a元.(2)当x=30时,甲旅行社收取的费用为=a+15a=16a(元),乙旅行社收取的费用为a·31=a(元).因为a>0,所以16a<a.所以选择甲旅行社更优惠.25. 【答案】127人教版七年级数学上册第1~3章期中综合复习(三)一、选择题(本大题共10道小题)1. 下列各组数中,不相等的是()A.-(+8)和+(-8) B.-5和-(+5)C.+(-7)和-7 D.+(-23)和+232. 计算-2×3×(-4)的结果是()A.24 B.12 C.-12 D.-24 3. 下列关于“0”的说法正确的是()A.0既是正数,也是负数B.0是偶数,但不是自然数C.0既不是正数,也不是负数D.0 ℃表示没有温度4. 小磊解题时,将式子(-12)+(-7)+(+7)先变成(-12)+[(-7)+(+7)],再计算结果,则小磊运用了()A.加法交换律B.加法交换律和加法结合律C.加法结合律D.无法判断5. 如果x=y,那么根据等式的性质,下列变形不正确的是()A.x+2=y+2 B.3x=3yC.5-x=y-5 D.-x3=-y36. 下列交换加数位置的变形中,正确的是()A.1-4+5-4=1-4+4-5B.1-2+3-4=2-1-4-3C.5.5-4.2-2.5+1.2=5.5-2.5+1.2-4.2D.13+2.3-5-4.3=13+5-2.3-4.37. 下列各式中,不相等的是()A.(-3)2和-32B.(-3)2和32C.(-2)3和-23D.|-2|3和|-23|8. 若a,b互为倒数,则-4ab的值为()A.-4 B.-1 C.1 D.09. 如图所示,下列判断正确的是()A.ab<0B.ab=0C.ab>0D.-ab<010. 已知七年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则()A.2x+3(72-x)=30 B.3x+2(30-x)=72C.2x+3(30-x)=72 D.3x+2(72-x)=30二、填空题(本大题共10道小题)11. 若|x|=2,则x的倒数是________.12. 计算:(-12)÷(-4)÷(-115)=________.13. 如图,数轴上点A,B分别表示数a,b,则a+b________0.(填“>”或“<”).14. 原价为a元的书包,现按8折出售,则售价为________元.15. a的相反数是-9,则a=________.16. 若关于x,y的多项式4xy3-2ax2-3xy+2x2-1不含x2项,则a=.17. 用算式表示(写成省略加号和括号的和的形式):(1)负20、正15、负40、负15、正14的和:________________________;(2)40减35加12减16减4:________________.18. 甲、乙两列火车分别从相距660千米的A,B两地同时出发,相向而行,2小时后相遇,其中甲车的速度是乙车速度的1.2倍,则甲车的速度是________千米/时.19. 某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件的销售利润为________元.20. 一只蜘蛛有8条腿,一只蜻蜓有6条腿,现有蜘蛛、蜻蜓若干只,它们共有120条腿,且蜻蜓的只数是蜘蛛的2倍,那么蜘蛛有________只.三、解答题(本大题共5道小题)21. 解方程:4x-3=2(x-1).22. 一张铁皮可生产10个盒底或6个盒身,两个盒底与一个盒身配套.现有110张铁皮,怎样安排生产盒身和盒底的铁皮张数,才能使生产出来的盒底和盒身恰好配套?(注:一张铁皮只能生产一种产品)23. 甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润率定价,乙服装按40%的利润率定价.在实际出售时,应顾客要求,两件服装均按九折出售,这样商店共获利157元.求甲、乙两件服装的成本各是多少元.24. 小李读一本名著,第一天读了36页,第二天读了剩余部分的14,这两天共读了整本书的38,这本名著共有多少页?25. 若1abc =,解关于x 的方程:2221111ax bx cxab a bc b ca c ++=++++++人教版 七年级数学上册 第1~3章 期中综合复习(三)-答案一、选择题(本大题共10道小题)1. 【答案】D2. 【答案】A3. 【答案】C4. 【答案】C5. 【答案】C6. 【答案】C7. 【答案】A 8. 【答案】A 9. 【答案】A 10. 【答案】B二、填空题(本大题共10道小题) 11. 【答案】±12 12. 【答案】-5213. 【答案】< 14. 【答案】45a15. 【答案】916. 【答案】1[解析] 因为关于x ,y 的多项式4xy 3-2ax 2-3xy +2x 2-1不含x 2项,所以2-2a =0,解得a=1.17. 【答案】(1)-20+15-40-15+14(2)40-35+12-16-418. 【答案】180[解析] 根据相等关系:甲车的路程+乙车的路程=总路程列方程.设乙车的速度为x千米/时,则甲车的速度为1.2x千米/时.根据题意,得2·1.2x +2x=660,解方程,得x=150.150×1.2=180(千米/时).19. 【答案】4[解析] 设该商品每件的销售利润为x元,根据题意,得80+x=120×0.7,解得x=4.故该商品每件的销售利润为4元.故答案为4.20. 【答案】6[解析] 设蜘蛛有x只,则蜻蜓有2x只,由题意,得8x+2x·6=120,解得x=6.三、解答题(本大题共5道小题)21. 【答案】[解析] 去括号、移项、合并同类项、系数化为1,即可得到方程的解.解:4x-3=2(x-1),4x-3=2x-2,4x-2x=-2+3,2x=1,x=1 2.22. 【答案】解:设用x张铁皮生产盒底,则用(110-x)张铁皮生产盒身,依题意可列方程10x=6(110-x)×2.解得x=60.于是110-x=50.答:用60张铁皮生产盒底,用50张铁皮生产盒身,才能使生产出来的盒底和盒身恰好配套.23. 【答案】解:设甲服装的成本是x元,则乙服装的成本是(500-x)元,依题意可列方程0.9[(1+50%)x+(1+40%)(500-x)]=500+157.解得x=300,于是500-x=200.答:甲、乙两件服装的成本分别是300元和200元.24. 【答案】[解析] 根据相等关系“这两天共读了整本书的38”列一元一次方程求解.解:设这本名著共有x页.根据题意,得36+14(x -36)=38x .解得x =216. 答:这本名著共有216页.25. 【答案】12【解析】由2221111ax bx cxab a bc b ca c ++=++++++得2111a b c x ab a abc bc b ca c ⎛⎫⨯++= ⎪++++++⎝⎭,1211b c x bc b abc ca c +⎛⎫⨯+= ⎪++++⎝⎭,()()12111b bcx b ca c b ca c ⎛⎫+⨯+= ⎪ ⎪++++⎝⎭,()211abc b bcx b ca c ++⨯=++故12x =.。

2013-2014学年七年级数学上期末复习试卷(第1-3章)含答案

2013-2014学年七年级数学上期末复习试卷(第1-3章)含答案

初一级数学《第一~第三单元》综合检测【2013年12月4日】初一()班学号:姓名:成绩:一、选择题(每小题3分,共30分,请将唯一正确答案的序号填在下面相应的表格中)题号 1 2 3 4 5 6 7 8 9 10 答案 1. 我国以2010年11月1日零时为标准时点,进行了第六次全国人口普查. 查得广州市常住人口约为12700000人,将12700000用科学记数法可表示为( * )1 2 3 4 5 6 7 8 9 10 答案 1. 我国以2010年11月1日零时为标准时点,进行了第六次全国人口普查. 查得广州市常住人口约为12700000人,将12700000用科学记数法可表示为( * )2 3 4 5 6 7 8 9 10 答案 1. 我国以2010年11月1日零时为标准时点,进行了第六次全国人口普查. 查得广州市常住人口约为12700000人,将12700000用科学记数法可表示为( * )3 4 5 6 7 8 9 10 答案 1. 我国以2010年11月1日零时为标准时点,进行了第六次全国人口普查. 查得广州市常住人口约为12700000人,将12700000用科学记数法可表示为( * )4 5 6 7 8 9 10 答案 1. 我国以2010年11月1日零时为标准时点,进行了第六次全国人口普查. 查得广州市常住人口约为12700000人,将12700000用科学记数法可表示为( * )5 6 7 8 9 10 答案 1. 我国以2010年11月1日零时为标准时点,进行了第六次全国人口普查. 查得广州市常住人口约为12700000人,将12700000用科学记数法可表示为( * )6 7 8 9 10 答案 1. 我国以2010年11月1日零时为标准时点,进行了第六次全国人口普查. 查得广州市常住人口约为12700000人,将12700000用科学记数法可表示为( * )7 8 9 10 答案 1. 我国以2010年11月1日零时为标准时点,进行了第六次全国人口普查. 查得广州市常住人口约为12700000人,将12700000用科学记数法可表示为( * )8 9 10 答案 1. 我国以2010年11月1日零时为标准时点,进行了第六次全国人口普查. 查得广州市常住人口约为12700000人,将12700000用科学记数法可表示为( * )9 10 答案 1. 我国以2010年11月1日零时为标准时点,进行了第六次全国人口普查. 查得广州市常住人口约为12700000人,将12700000用科学记数法可表示为( * )10 答案 1. 我国以2010年11月1日零时为标准时点,进行了第六次全国人口普查. 查得广州市常住人口约为12700000人,将12700000用科学记数法可表示为( * )答案 1. 我国以2010年11月1日零时为标准时点,进行了第六次全国人口普查. 查得广州市常住人口约为12700000人,将12700000用科学记数法可表示为( * )1. 我国以2010年11月1日零时为标准时点,进行了第六次全国人口普查. 查得广州市常住人口约为12700000人,将12700000用科学记数法可表示为( * )1. 我国以2010年11月1日零时为标准时点,进行了第六次全国人口普查. 查得广州市常住人口约为12700000人,将12700000用科学记数法可表示为( * )A. 127 EMBED Equation.3B. 12.7 EMBED Equation.3C. 1.27 EMBED Equation.3D. 1.27 EMBED Equation.314. 一个两位数,十位上的数字是 EMBED Equation.3,个位上的数字比十位上的数字多1,则这个两位数是 (用 EMBED Equation.3 表示).15. 若 EMBED Equation.3 与 EMBED Equation.3互为倒数,则x = .16. 下列图形都是由同样大小的平行四边形按一定的规律组成。

人教版七年级上册数学 第一章+第二章+第三章 共3个单元测试卷(Word版,含答案)

人教版七年级上册数学 第一章+第二章+第三章 共3个单元测试卷(Word版,含答案)

人教版七年级上册数学 第一章 有理数 单元测试卷(满分 120分)一、选择题(每题3分,共30分)1. 如图,表示正确的数轴的是( )A. B.C.D.2. -1的相反数是( )A . 1B . -1C . 0D . -123. 下列四个数中,最小的数是( )A . -12B . 0C . -1D . 14. 据统计,近十年中国累积节能1 570 000万吨标准煤,1 570 000这个数用科学记数法表示为( )A . 0.157×107B . 1.57×106C . 1.57×107D . 1.57×1085. 下列说法不正确的是( )A . 最大的负整数为-1B . 最小的正整数为1C . 最小的整数是0D . 相反数等于它本身的数是06. 某旅游景点11月5日的最低气温为-2 ℃,最高气温为8 ℃,那么该景点这天的温差是( )A . 4 ℃B . 6 ℃C . 8 ℃D . 10 ℃7. 某校小卖铺一周的盈亏情况如下表所示(每天固定成本200元,其中“+”表示盈利,“-”表示亏损):则这个周共盈利( )A .715元B .630元C .635元D .605元8. 如果一对有理数a ,b 使等式a -b =a ·b +1成立,那么这对有理数a ,b 叫做“共生有理数对”,记为(a ,b ).根据上述定义,下列四对有理数中不是“共生有理数对”的是( )A .3,12B .2,13C .5,23D .-2,-139. 有理数m ,n 在数轴上的对应点的位置如图所示,则正确的结论是( )A .m +n <0B .m -n >0C .mn >0D .m n<010. 细胞分裂按照一分为二,二分为四,四分为八……如此规律进行.例如:1个细胞分裂10次可以得到细胞的个数为210=1 024个,估计1个细胞分裂40次所得细胞的个数为( )A .七位数B .十二位数C .十三位数D .十四位数二、填空题(每题4分,共28分)11.||-2 022的倒数是________. 12. 如果||a -1+(b +2)2=0,那么(a +b )2 021的值是________.13. 放学静校,值周班的小明同学负责一条东西走向楼道巡视工作.记向东为正,小明巡视过程如下:+5,-3,-1,+7,-9,+4(单位:米),则小明这次巡视共走了________米.14. 如图是一个计算程序,若输入a 的值为-1,则输出的结果应为________.15. 某高山上的温度从山脚处开始每升高100米,就降低0.6 ℃.若山脚处温度是28 ℃,则山上500米处的温度是______℃.16. 已知||a =5,||b =3,则(a +b )(a -b )=________.17. 有一组数据:25,47,811,1619,3235,….请你根据此规律,写出第n 个数是________.三、解答题(一)(每题6分,共18分)18.计算:(1)-14-||1-0.5×13×[2-(-3)2];(2)(-34-56+712)÷124.19. 把下列各数先在数轴上表示出来,再按照从小到大的顺序用“<”号连接起来:-(+6),0,-(-4),+(-52),-||-2.20. 某地发生特大山洪泥石流灾害,消防总队迅速出动支援灾区.在抢险救灾中,消防官兵的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+4,-9,+8,-7,+13,-6,+10,-5.(1)B地在A地的何处?(2)救灾过程中,最远处离出发点A有多远?(3)若冲锋舟每千米耗0.5升,油箱里原有油20升,求途中还需补充多少升油.四、解答题(每题8分,共24分)21. 某洗衣粉厂上月生产了30 000袋洗衣粉,每袋标准重量450克,质量检测部门从中抽出了20袋进行检测,超过或不足标准重量的部分分别记为“+”和“-”,记录如下:(1)通过计算估计本厂上月生产的洗衣粉平均每袋多少克?(2)厂家规定超过或不足的部分大于5克时,不能出厂销售,若每袋洗衣粉的定价为2.30元,试估计本厂上月生产的洗衣粉销售的总金额为多少元?22. 小明有5张写着不同数的卡片,请你分别按要求抽出卡片,写出符合要求的算式:(1)从中取出2张卡片,使这2张卡片上的数的乘积最大;(2)从中取出2张卡片,使这2张卡片上的数相除的商最小;(3)从中取出2张卡片,使这2张卡片上的数通过有理数的运算后得到的结果最大;(4)从中取出4张卡片,使这4张卡片通过有理数的运算后得到的结果为24(写出一种即可).23. 有规律的一列数:2,4,6,8,10,12,…,它的每一项可用2n(n为正整数)来表示.现在解决另外有规律排列的一列数:1,-2,3,-4,5,-6,7,-8,….(1)它的第100个数是多少?(2)请用n(n为正整数)表示它的第n个数;(3)计算前2 022个数的和.五、解答题(每题10分,共20分)24. 随着手机的普及,微信的兴起,许多人抓住这种机会,做起了“微商”,很多农产品也改变了来的销售模式,实行了网上销售.刚大学华业的夏明把自家的冬枣产品放到网上销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入.下表是某周的销售情况(超出的量记为正数,不足的量记为负数.单位:斤,1斤=500克)(1)根据记录的数据可知,前三天卖出________斤;(2)根据记录的数据可知,销售量最多的一天比销售量最少的一天多销售________斤;(3)本周实际销售总量达到了计划销售量吗?(4)若冬枣每斤按8元出售,每斤冬枣的运费平均为3元,那么夏明这一周一共收入多少元?25. 在数轴上依次有A ,B ,C 三点,其中点A ,C 表示的数分别为-2,5,且BC =6AB .(1)在数轴上表示出A ,B ,C 三点;(2)若甲、乙、丙三个动点分别从A 、B 、C 三点同时出发,沿数轴负方向运动,它们的速度分别是14,12,2(单位长度/秒),当丙追上甲时,甲乙相距多少个单位长度? (3)在数轴上是否存在点P ,使P 到A 、B 、C 的距离和等于10?若存在,结合数轴,写出点P 对应的数;若不存在,请说明理由.参考答案1.D 2.A 3.C 4.B 5.C 6.D 7.D 8.D 9.D 10.C11.12 022 12.-1 13.29 14.-5 15.25 16.16 17.2n3+2n18.解:(1)原式=-1-0.5×13×[2-9]=-1-0.5×13×(-7)=-1-16×(-7)=-1+76=16(2)原式=(-34-56+712)×24=-34×24-56×24+712×24=-18-20+14 =-2419.解:在数轴上表示各数如下:-(+6)<+⎝ ⎛⎭⎪⎫-52<-||-2<0<-(-4)20.解:(1)∵4-9+8-7+13-6+10-5=8, ∴B 地在A 地的东边8千米(2)∵路程记录中各点离出发点的距离分别为: 4千米||4-9=5千米; ||4-9+8=3千米; ||4-9+8-7=4千米; ||4-9+8-7+13=9千米; ||4-9+8-7+13-6=3千米; ||4-9+8-7+13-6+10=13千米;||4-9+8-7+13-6+10-5=8千米.∴最远处离出发点13千米; (3)这一天走的总程为:4+||-9+8+||-7+13+||-6+10+||-5=62(千米), 应耗油62×0.5=31(升),故途中还需补充的油量为:31-20=11(升).21.解:(1)450+(-6×1-3×1-2×1+0×6+1×5+4×2+5×4)÷20=450+1.1=451.1(克) 答:上月生产的洗衣粉平均每袋451.1克.(2)2.30×⎝ ⎛⎭⎪⎫30 000-30 000×120=2.30×28 500=65 550(元). 答:本厂上月生产的洗衣粉销售的总金额为65 550元. 22.解:(1)(-3)×(-5)=15; (2)-5÷3=-53;(3)(-5)4=625;(4)[(-3)-(-5)]×(3×4)=2×12=24 23.解:(1)它的第100个数是:-100 (2)它的第n 个数是:(-1)n +1n(3)(1-2)+(3-4)+…+(2 021-2 022) =(-1)×2 022÷2 =-1 01124.解:(1)4-3-5+300=296(斤) 故答案为296. (2)21+8=29(斤) 故答案为29.(3)+4-3-5+14-8+21-6=17>0 故本周实际销售总量达到了计划销售量. (4)(17+100×7)×(8-3)=717×5 =3 585(元)答:小明本周一共收入3 585元. 25.解:(1)设B 点表示的数为x ,∵点A ,C 表示的数分别为-2,5,且BC =6AB ,∴5-x =6[x -(-2)], 解得:x =-1所以点B 表示的数为-1,(2)7÷⎝ ⎛⎭⎪⎫2-14=4(秒) 4×⎝ ⎛⎭⎪⎫12-14-1=0 答:丙追上甲时,甲乙相距0个单位长度. (3)设P 点表示的数x ,依题意得||x +2+||x +1+||x -5=10,结合数轴得x =-83,2,∴P 点表示的数为-83或2.人教版七年级上册数学 第二章 整式的加减 单元测试卷(满分 120分)一、选择题(每题3分,共30分)1. 单项式-2ab 4c23的系数与次数分别是( )A .-23,6B .-23,7C .23,6D .23,72. 下列各组数是同类项的是( )A .x 2y 和xy 2B .3ab 和-abcC .x 2和12D .0和-53. 下列计算正确的是( )A .7a +a =7a 2B .5y -3y =2C .3x 2y -2x 2y =x 2yD .3a +2b =5ab4. 某商品的原价为每件x 元,后来店主将每件加价10元,再降价25%销售,则现在的单价是() A .(25%x +10)元 B .[(1-25%)x +10]元C .25%(x +10)元D .(1-25%)(x +10)元5. 整式x 2-3x 的值是4,则3x 2-9x +8的值是( )A .20B .4C .16D .-46. 化简a -[-2a -(a -b )]等于( )A .-2aB .2aC .4a -bD .2a -2b7. 如图,阴影部分的面积可表示为( )A .ab -r 2B .12ab -r 2C .12ab -πr 2D .ab8. 观察如图所示的图形,则第n个图形中三角形的个数是( )A.2n+2 B.4n+4 C.4n D.4n-49. 如图,两个六边形的面积分别为16和9,两个阴影部分的面积分别为a,b(a<b),则b-a的值为( )A.4 B.5 C.6 D.710. 如图①是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图②),下列表示a,b,c,d之间关系的式子中不正确的是( )A.a-b=b-c B.a+c+2=b+dC.a+b+14=c+d D.a+d=b+c二、填空题(每题4分,共28分)11. “比x的2倍大5的数”用式子表示是________.12. 若单项式x4y n与-2x m y3的和仍为单项式,则这个和为________.13. 一根铁丝的长为5a+4b,剪下一部分围成一个长为a,宽为b的长方形,则这根铁丝还剩下________.14. 某城市按以下规定收取每月的煤气费:用气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分每立米按1.2元收费.已知某户用煤气x立方米(x>60),则该户应交煤气费________元.15. 按如图所示的程序计算,若开始输入的值为x =3,则最后输出的结果为________.16. 如图所示的每幅图是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n (n >1)盆花,每个图案花盆的总数是s 盆.按此规律推断,s 与n 之间的数量关系可以表示为s =________.17. 已知a ,b ,c 在数轴上的位置如图所示,化简:||a -b +||b +c +||c -a =________.三、解答题(一)(每题6分,共18分)18. 合并同类项4a 2-3b 2+2ab -4a 2-3b 2+5ba .19. 先化简,再求值:2(x 2y +xy )-3(x 2y -xy )-4x 2y ,其中x =2,y =-14.20. 先化简,再求值:3m +4n -[2m +(5m -2n )-3n ],其中m =1n=2.四、解答题(二)(每题8分,共24分)21. 李叔叔买了一套新房,他准备将地面全铺上地板砖,这套新房的平面图如图所示,请解答下列问题:(1)用含x的式子表示这套新房的面积;(2)若每铺1 m2地板砖的费用为120元,当x=6时,求这套新房铺地板砖所需的总费用.22. 已知A =2a 2-a ,B =-5a +1.(1)化简:3A -2B +2;(2)当a =-12时,求3A -2B +2的值.23. 暑假期间,学校组织学生去某景点游玩,甲旅行社说:“如果带队的一名老师购买全票,则学生享受半价优惠.”乙旅行社说:“所有人按全票价的六折优惠.”已知全票为a 元,学生有x 人,带队老师有1人.(1)试用含a 和x 的式子表示甲、乙旅行社的收费情况;(2)若有30名学生参加本次活动,请你为他们选择一家更优惠的旅行社.五、解答题(三)(每题10分,共20分)24. 如下数表,是由从1开始的连续自然数组成的,观察规律完成下列各题的解答.12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 36(1)表中第7行的最后一个数是________,它是自然数________的平方,第7行共有________个数;(2)用含n的代数式表示:第n行的第一个数是________,最后一个数是________,第n行共有________个数;(3)若将每行最中间的数取出,得到新的一列数1,3,7,13,21,31…,则第n个数与第(n-1)个数的差是多少?其中有两个相邻的数的差是24,那么这两个数分别在原数表的第几行?25. 某商场销某款西装和领带,西装每套定价1 000元,领带每条定价200元.国庆节期间商场计划开展促销活动,活动期间向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现一位客户要到该商场购买西装20套,领带x 条(x >20).(1)若该客户按方案一购买,需付款________________元(用含x 的式子表示),若该客户按方案二购买,需付款________________元(用含x 的式子表示);(2)当x =30时,通过计算说明此时按哪种方案购买较为合算;(3)当x =30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案.参考答案1.B 2.D 3.C 4.D 5.A 6.C7.C 8.C 9.D 10.A11.2x +5 12.-x 4y 3 13.3a +2b14.1.2x -24 15.231 16.n (n +1)217.-2a18.解:4a 2-3b 2+2ab -4a 2-3b 2+5ba=-6b 2+7ab19.解:2(x 2y +xy )-3(x 2y -xy )-4x 2y=2x 2y +2xy -3x 2y +3xy -4x 2y=-5x 2y +5xy当x =2,y =-14时 原式=-5×22×(-14)+5×2×(-14) =5-52=5220.解:3m +4n -[2m +(5m -2n )-3n ]=3m +4n -(2m +5m -2n -3n )=3m +4n -7m +5n=-4m +9n ,把m =1n=2,n =0.5,代入代数式得 原式=-8+4.5=-3.521.解:(1)这套新房的面积为2x +x 2+4×3+2×3=x 2+2x +12+6=x 2+2x +18(m 2).(2)当x =6时,这套新房的面积是 x 2+2x +18=62+2×6+18=36+12+18=66(m 2).66×120=7 920(元).故这套新房铺地板砖所需的总费用为7 920元.22.解:(1)3A -2B +2=3(2a 2-a )-2(-5a +1)+2=6a 2-3a +10a -2+2=6a 2+7a ;(2)当a =-12时, 3A -2B +2=6×⎝ ⎛⎭⎪⎫-122+7×⎝ ⎛⎭⎪⎫-12 =-2,23.解:(1)由题意可得:甲:a +12ax ,乙:0.6a (x +1); (2)当x =30时,甲所需费用:16a 元;乙所需费用:0.6a (x +1)=18.6a 元因为18.6a >16a ,所以到甲旅行社更优惠.24.解:(1)每行数的个数为1,3,5,…的奇数列,由题意最后一个数是该行数的平方即得49,其他也随之解得:7,13;故答案为49;7;13.(2)由(1)知第n 行最后一数为n 2,则第一个数为n 2-2n +2,每行数由题意知每行数的个数为1,3,5,…的奇数列,故个数为2n -1;故答案为n 2-2n +2;n 2;2n -1.(3)第n 个和第(n -1)个数的差是2(n -1);2(n -1)=24 n -1=12n =13这两个数分别在原数表的第12行和第13行.25.解:(1)方案一:20×1 000+(x -20)×200=200x +16 000方案二:1 000×20×0.9+0.9×200x =180x +18 000故答案为200x +16 000;180x +18 000.(2)方案一:当x =30时,200x +16 000=200×30+16 000=22 000(元)方案二:当x =30时,180x +18 000=180×30+18 000=23 400(元),而22 000<23 400∴按方案一购买较合算.(3)先按方案一购买20套西装获赠送20条领带,再按方案二购买10条领带,此时共花费:20×1 000+10×200×0.9=21 800(元),∵21 800<22 000,∴先按方案一购买20套西装获赠送20条领带,再按方案二购买10条领带最便宜.人教版七年级上册数学 第三章 一元一次方程 单元测试卷(满分 120分)一、选择题(每题3分,共30分)1. 如果方程(m -1)x +2=0是关于x 的一元一次方程,那么m 的取值范围是( ) A . m ≠0 B . m ≠1 C . m =-1 D . m =02. 下列方程的解是x =0的是( )A . 2x +3=x -3B . 3x =xC . x -9+4=5D . x +1=-13. 设x ,y ,c 是有理数,则下列结论正确的是( )A . 若x =y ,则x +c =y -cB . 若x =y ,则xc =ycC . 若x =y ,则x c =y cD . 若x 2c =y 3c,则2x =3y4. 方程x -x -53=1去分母,得( ) A . 3x -2x +10=1 B . x -(x -5)=3C . 3x -(x -5)=3D . 3x -2x +10=65. 如果x =-8是方程3x +8=-a 的解,则a 的值为( )A . -14B . 16C . 32D . -306. 下列两个方程的解相同的是( )A . 方程5x +3=6与方程2x =4B . 方程3x =x +1与方程2x =4x -1C . 方程x +12=0与方程x +12=0 D . 方程6x -3(5x -2)=5与6x -15x =37. 解方程4.5(x +0.7)=9x ,最简便的方法是首先( )A . 去括号B . 在方程两边同时乘10C . 移项D . 在方程两边同时除以4.58. 某车间有工人85人,平均每人每天加工大齿轮16个或小齿轮10个,又知2个大齿轮与3个小齿轮配成一套,若有x 人生产大齿轮,则可列方程为( )A . 2×16x =3×10(85-x )B . 2×10x =3×16(85-x )C . 3×16x =2×10(85-x )D . 3×10x =2×10(85-x )9. 学校食堂提供两种午餐:已知12月份盈盈在学校共吃了22次午餐,每次吃一份,刚好把妈妈给的300元午餐费全部用完,则盈盈这个月的午餐吃自助餐( )A . 6次B . 10次C . 12次D . 16次10. 一商店以每件150元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%,则商店卖这两件商品总的盈亏情况是( )A . 亏损20元B . 盈利30元C . 亏损50元D . 不盈不亏二、填空题(每题4分,共28分)11. 若代数式3x +7的值为-2,则x =________.12. 若代数式x -5的值与2x -4的值互为相反数,则x =________. 13. 若-0.2a3x +4b 3与12ab y 是同类项,则xy =________.14. 在某年全国足球超级联赛前15场比赛中,某队保持连续不败,共积37分,按比赛规则,胜一场得3分,平一场得1分,则该队共胜了________场.15. 如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息,可知买5束鲜花和5个礼盒的总价为________元.16. 如图,是某年6月份的月历,用一个圈竖着圈3个数,若被圈住的三个数的和为39,则这三个数中最大的一个为________.17. 对于实数p 、q ,我们用符号min {p ,q }表示p ,q 两数中较小的数,如min {1,2}=1,若min {4x +12,1}=x,则x=________.三、解答题(一)(每题6分,共18分)18. 解方程x-3(1-2x)=11.19. 解方程x+53-x-32=1.20. 某校组织学生种植芽苗菜,三个年级共种植909盆,初二年级种植的数量比初一年级的2倍少3盆,初三年级种植的数量比初二年级多25盆.初一、初二、初三年级各种植多少盆?四、解答题(二)(每题8分,共24分)21. 下面是马小哈同学做的一道题: 解方程:2x -13=1-x +24.解:①去分母,得4(2x -1)=1-3(x +2), ②去括号,得8x -4=1-3x -6, ③移项,得8x +3x =1-6+4, ④合并同类项,得11x =-1, ⑤系数化为1,得x =-111.(1)上面的解题过程中最早出现错误的步骤是________;(填代号) (2)请正确地解方程:x -x -12=2-x +24.22. 某学校举行排球赛,积分榜部分情况如下:(1)分析积分榜,平一场比负一场多得________分;(2)若胜一场得3分,七(6)班也比赛了6场,胜场是平场的一半且共积了14分,则七(6)班胜几场?23. 列方程解应用题:某人从家里骑自行车到学校,若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;从家里到学校的路程有多少千米?五、解答题(三)(每题10分,共20分)24. 某公园的门票价格规定如下表:某校七年级甲、乙两班共103人(其中甲班人数多于乙班人数,且甲班人数不超过100)去该公园游玩.如果两班都以班级为单位分别购票,那么一共需付486元.(1)如果两班联合起来作为一个团体购票,那么可以节约多少钱?(2)甲、乙两班各有多少人?25. 某商店5月1日当天举行优惠促销活动,当天到该商店购买商品有两种优惠方案:方案1:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的八折优惠;方案2:若不购买会员卡,则购买商店内任何商品,一律按商品价格的九五折优惠.已知小红5月1日前不是该商店的会员.(1)若小红不购买会员卡,所购买商品的总价格为120元,则实际应支付多少元?(2)请问购买商品的总价格是多少时,两种方案的优惠情况相同?(3)你认为哪种方案更合算?(直接写出答案) 参考答案1.B 2.B 3.B 4.C 5.B 6.B 7.D 8.C 9.D 10.A 11.-3 12.3 13.-3 14.11 15.440 16.20 17.-12或118.解:x -3(1-2x )=11x -3+6x =117x =14x =219.解:x +53-x -32=1方程两边同时乘6得, 6×x +53-6×x -32=62(x +5)-3(x -3)=6 2x +10-3x +9=6 -x =6-10-9=-13x =1320.解:设初一年级种植x 盆, 依题意得:x +(2x -3)+(2x -3+25)=909,解得x =178. ∴2x -3=353 2x -3+25=378.答:初一、初二、初三年级各种植178盆、353盆、378盆. 21.解:(1)①. (2)去分母,得4x -2(x -1)=8-(x +2), 去括号,得4x -2x +2=8-x -2, 移项,得4x -2x +x =8-2-2, 合并同类项,得3x =4, 系数化为1,得x =43.22.解:(1)17-16=1;故答案为1. (2)设负1场得x 分. 根据题意得:3×5+x =16. 解得:x =1.∴负1场得1分,平一场得2分. 设七(6)胜y 场,则平2y 场,负6-3y 场. 根据题意得:3y +2×2y +6-3y =14.解得:y =2答:七(6)班胜2场.23.解:设从家到学校有x 千米,15分钟=14小时,依题意得:x 15+14=x 9-14,12x +45=20x -45, 8x =90x =11.25,答:从家里到学校的路程有11.25千米. 24.解:(1)∵103>100∴每张门票按4元收费的总票额为103×4=412(元) 可节省486-412=74(元)答:如果两班联合起来,作为一个团体购票,则可以节约74元钱. (2)∵甲、乙两班共103人,甲班人数>乙班人数∴甲班一定大于50人.,又甲班人数不超过100人,则甲班票价按每人4.5元计算.下面就乙班人数分析:①若乙班少于或等于50人,设乙班有x 人,则甲班有(103-x )人,依题意,得 5x +4.5(103-x )=486 解得x =45, ∴103-45=58(人)即甲班有58人,乙班有45人. ②若乙班此时也大于50人,而 103×4.5=463.5<486.应舍去. 答:甲班有58人,乙班有45人. 25.解:(1)120×0.95=114 (元),若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付114元. (2)设购买商品的价格是x 元, 根据题意,得0.8x +168=0.95x , 解得x =1 120,所以所购买商品的价格是1 120元时,两种方案的优惠情况相同. (3)当不购买会员卡,实际应支付的钱数=购买会员卡应支付的钱数时,则0.8x+168=0.95x,解得:x=1 120,当不购买会员卡,实际应支付的钱数>购买会员卡应支付的钱数时,则0.8x+168>0.95x解得:x<1 120 ,当不购买会员卡,实际应支付的钱数<购买会员卡应支付的钱数时,则0.8x+168<0.95x,解得:x>1 120.所以当购买商品的价格等于1 120元时,两种方案同样合算,当购买商品的价格在1 120元以上时,采用方案一更合算,当购买商品的价格在1 120元以下时,采用方案二合算.。

2022学年沪科版七年级数学上册1-3章复习检测试题卷附答案解析

2022学年沪科版七年级数学上册1-3章复习检测试题卷附答案解析

2022学年七年级数学上册1-3章复习检测试题卷一、单选题1.方程3x a =的解是( )A .方程有唯一解3x a= B .方程有唯一解3a x = C .当0a ≠方程有唯一解3a x = D .当0a =时方程有无数多个解2.实数a 的绝对值是54,a 的值是( ) A .54B .54-C .45±D .54± 3.若盈余2万元记作2+万元,则2-万元表示( )A .盈余2万元B .亏损2万元C .亏损2-万元D .不盈余也不亏损4.如图,数轴上点A 对应的数是32,将点A 沿数轴向左移动2个单位至点B ,则点B 对应的数是( )A .12-B .2-C .72D .12 5.如果单项式2522m n a b -+与32n ab -可以合并同类项,那么m 和n 的值分别为( )A .2,3B .3,2C .-3,2D .3,-26.有理数m ,n 满足|m +1|+(n ﹣2)2=0,则mn +mn 等于( ).A .3B .-2C .-1D .07.下列说法中,正确的是( )A .2与2-互为倒数B .2与12互为相反数C .0的相反数是0D .2的绝对值是2-8.在一次数学测验中,小明所在班级的平均分为86分,把高出平均分的部分记为正数,小明考了98分记作+12分,若小强成绩记作-4分,则他的考试分数为( )A .90分B .88分C .84分D .82分9.两个形状大小完全相同的长方形中放入4个相同的小长方形后,得到图①和图①的阴影部分,如果大长方形的长为m ,则图①与图①的阴影部分周长之差是( )A .2m -B .2mC .3mD .3m - 10.若关于x 的一元一次方程1322022x x b +=+的解为3x =-,则关于y 的一元一次方程1(1)32(1)2022y y b ++=++的解为( ) A .1y = B .=2y - C .=3y - D .4y =-11.下列说法正确的是( )A .有理数包括正有理数和负有理数B .2a 是正数C .正数又可称为非负数D .有理数中有绝对值最小的数12.数学家华罗庚曾经说过:“数形结合百般好,隔裂分家万事休”.如图,将一个边长为1的正方形纸板等分成两个面积为12的长方形,接着把面积为12的长方形分成两个面积为14的长方形,如此继续进行下去,根据图形的规律计算:23101111()()()2222++++的值为( )A .101()2B .1011-()2C .111()2D .1111-()213.若关于x 的方程()5221x m x -=-+的解是2x =-,则m 的值为( )A .-3B .-5C .-13D .514.古希腊毕达哥拉斯学派的“三角形数”是一列点(或圆球)在等距的排列下可以形成正三角形的数,如1,3,6,10,15,….我国宋元时期数学家朱世杰在《四元玉鉴》中所记载的“垛积术”其中的“落一形”堆垛就是每层为“三角形数”的三角锥的锥垛(如图所示顶上一层1个球,下一层3个球,再下一层6个球),若一个“落一形”三角锥垛有10层,则该堆垛球的总个数为( )A .55B .220C .285D .38515.如图1,点A ,B ,C 是数轴上从左到右排列的三个点,分别对应的数为5-,b ,4,某同学将刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点A ,发现点B 对应刻度1.8cm ,点C 对齐刻度5.4cm .则数轴上点B 所对应的数b 为( )A .3B .1-C .2-D .3-16.下面算式与11152234-+的值相等的是( ) A .111324234⎛⎫⎛⎫--+- ⎪ ⎪⎝⎭⎝⎭ B .11133234⎛⎫--+ ⎪⎝⎭ C .111227234⎛⎫+-+ ⎪⎝⎭ D .11143234⎛⎫--+ ⎪⎝⎭ 17.如图,A ,B ,C ,D 是数轴上四个点,A 点表示数为10,E 点表示的数为10010AB BC CD DE ===,,则数9910所对应的点在线段( )上.A .AB B .BC C .CD D .DE18.如图,数轴上的点O 和点A 分别表示0和10,点P 是线段OA 上一动点.点P 沿O →A →O 以每秒2个单位的速度往返运动1次,B 是线段OA 的中点,设点P 运动时间为t 秒(t 不超过10秒).若点P 在运动过程中,当PB =2时,则运动时间t 的值为( )A .32秒或52秒B .32秒或72秒或132秒或152秒C .3秒或7秒或132秒或172秒D .32秒或72秒或132秒或172秒 19.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38 =6561,…,根据上述算式中的规律,221+311的末位数字是( )A .3B .5C .7D .920.如图,甲、乙两动点分别从正方形ABCD 的顶点A ,C 同时沿正方形的边开始移动,甲按顺时针方向环形,乙按逆时针方向环行,若乙的速度是甲的3倍,那么它们第一次相遇在AD 边上,请问它们第2019次相遇在哪条边上?( )A .ADB .DC C .BCD .AB二、填空题 21.如将()x y -看成一个整体,则化简多项式22()5()4()3()x y x y x y x y -----+-=__.22.小明在一次比赛中做错了3道题,做对的占1415,他做对了( )道题. 23.一群学生参加夏令营活动,男生戴白色帽子,女生戴红色帽子,休息时他们坐在一起,大家发现了一个有趣的现象:每位男生看到的白色与红色的帽子一样多,而每位女生看到的白色帽子数量是红色的2倍.根据信息,这群学生共有______人.24.用加减法解二元一次方程组21349x y x y -=⎧⎨+=⎩时,你能让两个方程中x 的系数相等吗?①你的办法是_________.25.已知点O 是数轴的原点,点A 、B 、C 在数轴上对应的数分别是﹣12、b 、c ,且b 、c 满足(b ﹣9)2+|c ﹣15|=0,动点P 从点A 出发以2单位/秒的速度向右运动,同时点Q 从点C 出发,以1个单位/秒速度向左运动,O 、B 两点之间为“变速区”,规则为从点O 运动到点B 期间速度变为原来的一半,之后立刻恢复原速,从点B 运动到点O 期间速度变为原来的3倍,之后立刻恢复原速,运动时间为 _____秒时,P 、Q 两点到点B 的距离相等.三、解答题26.计算与解一元一次方程和解方程组(1)()842-+⨯- (2)()()4.5 3.2 1.1 1.4+-++-(3)134x x -=+ (4)2151136x x +--=(5)428336x y x y +=⎧⎨-+=⎩ (6)536132515m n n m ⎧+=⎪⎪⎨⎪-=⎪⎩27.如图所示,在数轴上点A ,B ,C 表示得数为﹣2,0,6,点A 与点B 之间的距离表示为AB ,点B 与点C 之间的距离表示为BC ,点A 与点C 之间的距离表示为AC .(1)求AB 、AC 的长;(2)点A ,B ,C 开始在数轴上运动,若点A 以每秒2个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和4个单位长度的速度向右运动.请问:BC ﹣AB 的值是否随着运动时间t 的变化而变化?若不变,请求其值;若变化,请说明理由并判断是否有最值,若有求其最值.28.问题探索:如图,将一根木棒放在数轴(单位长度为1cm)上,木棒左端与数轴上的点A重合,右端与数轴上的点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为cm.(2)图中点A所表示的数是,点B所表示的数是.实际应用:由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:(3)一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要35年才出生;你若是我现在这么大,我就115岁啦! ”请问妙妙现在多少岁了?29.我国股市交易中,每买卖一次需付交易款的千分之七点五作为交易费用,某投资者以每股50元的价格(单位:元):(1)星期三收盘时,每股是多少元?(2)本周内每股最高价为多少元?最低价是多少元?(3)若该投资者在星期五收盘前将股票全部卖出,他的收益情况如何?30.问题提出:学习了|a|为数轴上表示a的点到原点的距离之后,小凡所在数学兴趣小组对数轴上分别表示数a和数b的两个点A,B之间的距离进行了探究:(1)利用数轴可知5与1两点之间距离是;一般的,数轴上表示数m和数n的两点之间距离为.问题探究:(2)请求出|x﹣3|+|x﹣5|的最小值.问题解决:(3)如图在十四运的场地建设中有一条直线主干道L,L旁依次有3处防疫物资放置点A,B,C,已知AB=800米,BC=1200米,现在设计在主干道L旁修建防疫物资配发点P,问P建在直线L上的何处时,才能使得配发点P到三处放置点路程之和最短?最短路程是多少?参考答案1--10BDBAB CCDBD 11--20DBABC CADDC21.23()2()x y x y ----22.4223.724.让①两边同乘以325.334或3026.(1)()842-+⨯-()88=-+-16=-.(2)()()4.5 3.2 1.1 1.4+-++-4.5 3.2 1.1 1.4=-+- 1.3 1.1 1.4=+- 2.4 1.4=-1=.(3)134x x -=+解:341x x --=-43-=x34x =-.(4)2151136x x +--= 解:2151661636x x +-⨯-⨯=⨯()()221516x x +--=42516x x +-+=45612x x -=--3x =.(5)解:428336x y x y +=⎧⎨-+=⎩①②3⨯①得:12624x y +=③ 4⨯② 得:121224x y -+=④ ③+④得:6122424y y +=+ 解得:83y = 将83y =代入①式得:386x -+= 解得:23x = 所以方程组的解是2383x y ⎧=⎪⎪⎨⎪=⎪⎩(6)解:536132515m n n m ⎧+=⎪⎪⎨⎪-=⎪⎩①②5⨯②得:13103m n -=③①+③得:311036m m += 解得:12m = 将12m =代入①式得:11322515n ⨯-= 解得:23n = 所以方程组的解是1223m n ⎧=⎪⎪⎨⎪=⎪⎩27.(1)解:AB =0-(-2)=2, AC =()628--=.(2)当运动时间为t 秒时,点A 表示的数为-2-2t ,点B 表示的数为3t ,点C 表示的数为6+4t , 则6436BC t t t =+-=+,()32225AB t t t =---=+()62544BC AB t t t ∴-=+-+=-当0=t 时,BC AB -的值最大,最大值为4.28.解:(1)观察数轴可知三根木棒长为30−6=24(cm ),则这根木棒的长为24÷3=8(cm ); 故答案为8.(2)6+8=14,14+8=22.所以图中A 点所表示的数为14,B 点所表示的数为22.故答案为:14,22.(3)当奶奶像妙妙这样大时,妙妙为(35)-岁,所以奶奶与妙妙的年龄差为[115(35)]350--÷=(岁),所以妙妙现在的年龄为115505015--=(岁).29.(1)解:星期三收盘时,每股的价格是50+(+2)+(+1.5)+(-0.5)=53(元).(2)解:本周内每股最高价是50+(+2)+(+1.5)=53.5(元),最低价是50+(+2)+(+1.5)+(-0.5)+(-4.5)=48.5(元).(3)解:星期五每股卖出价为:50+(+2)+(+1.5)+(-0.5)+(-4.5)+(+2.5)=51(元), 其收益:7.57.5511000(1)501000501000242.510001000⨯⨯--⨯-⨯⨯=(元). 30.解:(1)数轴上表示5和1的两点距离为4,数轴上表示数m 和数n 的两点之间距离为||m n -; 故答案为:4,||m n -;(2)①|x ﹣3|表示x 的点到3的点的距离,|x ﹣5|表示x 的点到5的点的距离,到数轴上两个点距离之和最小的点取在这两点之间,最小距离即是这两个点的距离,①|x ﹣3|+|x ﹣5|的最小值为352=-=,(3)①到数轴上三个点距离之和最小的点即是中间那个点,最小值是左右两边二点之间的距离, ①当配发点P 在点B 时,到三处放置点路程之和最短;即:最小距离和=AB +BC = 800米+1200米=2000米.。

人教版初中数学七年级上期末复习专题卷(1-4及答案

人教版初中数学七年级上期末复习专题卷(1-4及答案

第一学期七年级数学期末复习专题有理数姓名:_______________班级:_______________得分:_______________一选择题:1.如果+20%表示增加20%,那么﹣6%表示()A.增加14%B.增加6%C.减少6%D.减少26%2.一种零件的直径尺寸在图纸上是30±(单位:mm),它表示这种零件的标准尺寸是30mm,加工要求尺寸最大不超过()A.0.03mmB.0.02mmC.30.03mmD.29.98mm3.某项科学研究,以45分钟为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正,例如:9:15记为-1,10:45记为1等等.依此类推,上午7:45应记为()A.3B.-3C.-2.5D.-7.452.010010001…中,有理数有()4.在-,3.1415,0,-0.333…,-,-,A.2个B.3个C.4个D.5个5.10月7日,铁路局“十一”黄金周运输收官,累计发送旅客640万人,640万用科学计数法表示为()A.6.4×102B.640×104C.6.4×106D.6.4×1056.若向北走27米记为-27米,则向南走34米记为()A.34米B.+7米C.61米D.+34米7.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,相反数最大是()A.aB.bC.cD.d8.比较,,的大小,结果正确的是()A. B.C. D.9.如果,则x的取值范围是()A.x>0B.x≥0C.x≤0D.x<010.已知ab≠0,则+的值不可能的是()A.0B.1C.2D.﹣211.如图,M、N、P、R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若+=3,则原点是().A.M或NB.M或RC.N或PD.P或R12.一只蚂蚁从数轴上A点出发爬了4个单位长度到了表示-1的点B,则点A所表示的数是()A.-3或5B.-5或3C.-5D.313.已知=3,=4,且x>y,则2x-y的值为()A.+2B.±2C.+10D.-2或+1014.有理数a,b,c在数轴上的位置如图所示,则()A.-2bB.0C.2cD.2c-2b15.计算1﹣2+3﹣4+5﹣6+7﹣8+…+2009﹣2010的结果是()A.﹣1005B.﹣2010C.0D.﹣116.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a、b的值分别为()A.10、91B.12、91C.10、95D.12、9517.下列是用火柴棒拼成的一组图形,第①个图形中有3根火柴棒,第②个图形中有9根火柴棒,第②个图形中有18根火柴棒,…依此类推,则第6个图形中火柴棒根数是()A.60B.61C.62D.6318.a为有理数,定义运算符号“※”:当a>-2时,※a=-a;当a<-2时,※a=a;当a=-2时,※a=0.根据这种运算,则※[4+※(2-5)]的值为()A.1B.-1C.7D.-719.计算:31+1=4,32+1=10,33+1=28,34+1=82,35+1=244,…,归纳各计算结果中的个位数字的规律,猜测32017+1的个位数字是()A.0B.2C.4D.820.计算(﹣2)2016+(﹣2)2015的结果是()A.﹣1B.﹣22015C.22015D.﹣22016二填空题:21.把下面的有理数填在相应的大括号里:15,-,0,-30,0.15,-128,,+20,-2.6.(1)非负数集合:{,…};(2)负数集合:{,…};(3)正整数集合:{,…};(4)负分数集合:{,…}.22.近似数3.06亿精确到___________位.23.按照如图所示的操作步骤,若输入的值为3,则输出的值为________.24.已知(x﹣2)2+|y+4|=0,则2x+y=_______.25.绝对值不大于5的整数有个.26.小韦与同学一起玩“24点”扑克牌游戏,即从一幅扑克牌(去掉大、小王)中任意抽出4张,根据牌面上的数字进行有理数混合运算(每张牌只能用一次)使运算结果等于24或-24,小韦抽得四张牌如图,“哇!我得到24点了!”他的算法是__27.有理数在数轴上的对应点如图所示,化简:.28.观察下列各题:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52…根据上面各式的规律,请直接写出1+3+5+7+9+…+99=________.29.观察下列等式:,,,…则=.(直接填结果,用含n的代数式表示,n是正整数,且n≥1)30.观察下列等式:解答下面的问题:21+22+23+24+25+26+…+22015的末位数字是三计算题:31.32.33.34.35.小丽有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字乘积最大,如何抽取?最大值是多少?(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?(3)从中取出2张卡片,利用这2张卡片上数字进行某种运算,得到一个最大的数,如何抽取?最大的数是多少?(4)从中取出4张卡片,用学过的运算方法,使结果为24,如何抽取?写出运算式子(一种即可).37.如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A,B是数轴上的点,请参照下列图象并思考,完成下列各题:(1)如果点A表示数-3,将点A向右移动7个单位长度,那么终点B表示的数是_______,A,B两点间的距离是________;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是_______,A,B两点间的距离为________;(3)如果点A表示数-4,将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是_________,A,B两点间的距离是________.(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么,请你求出终点B表示什么数?A,B两点间的距离为多少?38.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)求|4﹣(﹣2)|=.(2)若|x﹣2|=5,则x=.(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,这样的整数是.39.阅读材料:求1+2+22+23+24+…+2200的值.解:设S=1+2+22+23+24+…+2199+2200,将等式两边同时乘以2得2S=2+22+23+24+25+…+2200+2201,将下式减去上式得2S-S=2201-1,即S=2201-1,即1+2+22+23+24+…+2200=2201-1.请你仿照此法计算:(1)1+2+22+23+24+ (210)(2)1+3+32+33+34+…+3n.(其中n为正整数)40.已知数轴上有A、B、C三个点,分别表示有理数﹣24,﹣10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=,PC=;(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.第一学期七年级数学期末复习专题有理数参考答案1、C2、C3、B4、D5、C6、D7、A8、D9、C10、B11、B12、B13、D14、B15、A16、A17、D18、B19、C20、C21、(1)15,0,0.15,,+20(2)-,-30,-128,-2.6(3)15,+20(4)-,-2.622、百万;23、5524、0.25、1126、23(1+2)__.27、-b+c+a;28、502.29、30、4.31、32、.33、;34、原式=-1×[-32-9+]-2.5=-1×(-32-9+2.5)-2.5=+32+9-2.5-2.5=36.35、(1)抽取;(2)抽取;(3)抽取;(4)答案不唯一;例如抽取-3,-5,3,4;36、37、(1)4_7__(2)1_2__(3)—92__88__(4)m+n-p_38、【解答】解:(1)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴|4﹣(﹣2)|=6.(2)|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,∵﹣3或7与2两数在数轴上所对应的两点之间的距离是5,∴若|x﹣2|=5,则x=﹣3或7.(3)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),∴这样的整数是﹣2、﹣1、0、1、2、3、4.故答案为:6;﹣3或7;﹣2、﹣1、0、1、2、3、4.39、解:(1)211-1(2)设S=1+3+32+33+34+…+3n ,将等式两边同乘以3得3S=3+32+33+34+35+…+3n+1,所以3S-S=3n+1-1,即2S=3n+1-1,所以S=2131-+n ,即1+3+32+33+34+ (3)=2131-+n 40、【解答】解:(1)∵动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒,∴P 到点A 的距离为:PA=t,P 到点C 的距离为:PC=(24+10)﹣t=34﹣t;故答案为:t,34﹣t;(2)当P 点在Q 点右侧,且Q 点还没有追上P 点时,3t+2=14+t 解得:t=6,∴此时点P 表示的数为﹣4,当P 点在Q 点左侧,且Q 点追上P 点后,相距2个单位,3t﹣2=14+t 解得:t=8,∴此时点P 表示的数为﹣2,当Q 点到达C 点后,当P 点在Q 点左侧时,14+t+2+3t﹣34=34解得:t=13,∴此时点P 表示的数为3,当Q 点到达C 点后,当P 点在Q 点右侧时,14+t﹣2+3t﹣34=34解得:t=14,∴此时点P 表示的数为4,综上所述:点P 表示的数为﹣4,﹣2,3,4.第一学期七年级数学期末复习专题整式的加减姓名:_______________班级:_______________得分:_______________一选择题:1.下列说法中错误的是()A.-x2y的系数是-B.0是单项式C.xy的次数是1D.-x是一次单项式2.下列说法:①最大的负整数是;②的倒数是;③若互为相反数,则;④=;⑤单项式的系数是-2;⑥多项式是关于x,y的三次多项式。

(期末复习)七年级上《第一章有理数》单元试卷有答案(PDF版)

(期末复习)七年级上《第一章有理数》单元试卷有答案(PDF版)

人教版七年级初中数学上册:第一章有理数单元检测试卷一.选择题(共10小题)1.2的相反数是()A .﹣2B .C .﹣D .22.若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A .零上3℃B .零下3℃C .零上7℃D .零下7℃3.若a <0,b >0,且|a|<|b|,则a+b 的值一定是()A .正数B .负数C .0D .非负数4.下列化简错误的是()A .﹣(﹣5)=5B .﹣|﹣|=C .﹣(﹣3.2)=3.2D .+(+7)=75.股民小王上周五买进某公司的股票,每股25元,下表为本周内该股票的涨跌情况,则本周五收盘时,该股票每股价格是()星期一二三四五每股涨跌(与前一天相比)﹣2.1+2﹣1.2+0.5+0.3A .27.1元B .24.5元C .29.5元D .25.8元6.当n 为正整数时,(﹣1)2n+1﹣(﹣1)的值为()A .0B .2C .﹣2D .2或﹣27.(﹣2)6表示()A .6个﹣2相乘的积B .﹣2与6相乘的积C .2个6相乘的积的相反数D .6与2相乘的积8.有理数m ,n 在数轴上的对应点的位置如图所示,则正确的结论是()A .m <﹣1B .n >3C .m <﹣n D .m >﹣n 9.现规定一种运算:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,……,则的值为()A.200B.199C.D.110.根据最新数据统计,2018年中山市常住人口已达到3260000人.将3260000用科学记数法表示,下列选项正确的是()A.3.26×105B.3.26×106C.32.6×105D.0.326×107二.填空题(共7小题)11.在数轴上表示a、b两数的点如图所示,则a+b+|a+b|=.12.﹣的相反数是,倒数是.13.8÷(﹣32)=.14.数轴上表示1的点和表示﹣2的点的距离是.15.某种零件,标明要求是φ25±0.2mm(φ表示直径,单位:毫米),经检查,一个零件的直径是24.9mm,该零件(填“合格”或“不合格”).16.若定义一种新的运算,规定=ab﹣cd,则=.17.计算:①﹣7﹣3=;②3﹣(﹣2)×4=;③比3小﹣5的数是.三.解答题(共6小题)18.(1)计算:﹣1+(﹣2)÷(﹣)×(2)计算:(﹣+﹣)×(﹣24)(3)计算:﹣24÷(﹣8)﹣×(﹣2)219.我们规定“※”是一种数学运算符号,两数A、B通过“※”运算是(A+2)×2﹣B,即A※B=(A+2)×2﹣B,例如:3※5=(3+2)×2﹣5=5(1)求:7※9的值;(2)求:(7※9)※(﹣2)的值.20.在东西向的绿道上设有一个岗亭,佳佳从岗亭出发以13km/h的速度沿绿道巡逻.规定向东巡逻为正,向西巡逻为负,巡逻情况记录(单位:km)如下:第一次第二次第三次第四次第五次第六次第七次4﹣53﹣4﹣36﹣1(1)第六次巡逻结束时,佳佳在岗亭的哪一边?(2)在第几次巡逻结束时,佳佳离岗亭最远?(3)佳佳一共巡逻多少时间?21.在下面给出的数轴中,点A表示1,点B表示﹣2,回答下面的问题:(1)A、B之间的距离是;(2)观察数轴,与点A的距离为5的点表示的数是:;(3)若将数轴折叠,使点A与﹣3表示的点重合,则点B与数表示的点重合;(4)若数轴上M、N两点之间的距离为2018(M在N的左侧),且M、N两点经过(3)中折叠后互相重合,则M、N两点表示的数分别是:M:;N:.22.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把记作2÷2÷2,2②,读作“的圈3次方,”(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作:“(﹣3)的圈4次方”.一般地,把a记作aⓝ,读作“a的圈n次方”【初步探究】(1)直接写出计算结果:2②=,(﹣)②=.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(2)试一试,仿照上面的算式,将下列运算结果直接写成幂的形式.5⑥=;(﹣)⑩=.(3)想一想:有理数a(a≠0)的圈n(n≥3)次方写成幂的形式等于.23.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正,减产为负):星期一二三四五六日增减(辆)+5﹣2﹣2+13﹣10+6﹣9(1)根据记录可知,前三天共生产多少辆?(2)产量最多的一天比产量最少的一天多生产多少辆?(3)该厂实行计件工资制,每辆车60元,超额完成任务的,超出部分,每辆奖15元,少于部分每辆扣15元,那么该厂工人这一周的工资总额是多少?参考答案一.选择题(共10小题)1.2的相反数是()A.﹣2B.C.﹣D.2【解答】解:2的相反数是﹣2.故选:A.2.若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故选:B.3.若a<0,b>0,且|a|<|b|,则a+b的值一定是()A.正数B.负数C.0D.非负数【解答】解:∵a<0,b>0,且|a|<|b|,∴a+b的值一定是正数,故选:A.4.下列化简错误的是()A.﹣(﹣5)=5B.﹣|﹣|=C.﹣(﹣3.2)=3.2D.+(+7)=7【解答】解:A、﹣(﹣5)=5,正确;B、﹣|﹣|=﹣,错误;C、﹣(﹣3.2)=3.2,正确;D、+(+7)=7,正确;故选:B.5.股民小王上周五买进某公司的股票,每股25元,下表为本周内该股票的涨跌情况,则本周五收盘时,该股票每股价格是()星期一二三四五每股涨跌(与前﹣2.1+2﹣1.2+0.5+0.3一天相比)A.27.1元B.24.5元C.29.5元D.25.8元【解答】解:25﹣2.1+2﹣1.2+0.5+0.3=24.5(元),故选:B.6.当n为正整数时,(﹣1)2n+1﹣(﹣1)的值为()A.0B.2C.﹣2D.2或﹣2【解答】解:∵n为正整数,∴2n+1是奇数,2n是偶数,∴(﹣1)2n+1﹣(﹣1)=﹣1﹣1=﹣2,故选:C.7.(﹣2)6表示()A.6个﹣2相乘的积B.﹣2与6相乘的积C.2个6相乘的积的相反数D.6与2相乘的积【解答】解:根据乘方的意义知:(﹣2)6表示6个﹣2相乘,故选:A.8.有理数m,n在数轴上的对应点的位置如图所示,则正确的结论是()A.m<﹣1B.n>3C.m<﹣n D.m>﹣n【解答】解:由数轴可得,﹣1<m<0<2<n<3,故选项A错误,选项B错误,∴m>﹣n,故选项C错误,选项D正确,故选:D.9.现规定一种运算:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,……,则的值为()A.200B.199C.D.1【解答】解:根据题中的新定义得:原式==200,故选:A.10.根据最新数据统计,2018年中山市常住人口已达到3260000人.将3260000用科学记数法表示,下列选项正确的是()A.3.26×105B.3.26×106C.32.6×105D.0.326×107【解答】解:3260000用科学记数法表示为:3.26×106,故选:B.二.填空题(共7小题)11.在数轴上表示a、b两数的点如图所示,则a+b+|a+b|=0.【解答】解:根据题意得:b<0<a,|b|>|a|,∴a+b<0,∴a+b+|a+b|=a+b﹣a﹣b=0.故答案是:0.12.﹣的相反数是,倒数是﹣.【解答】解:﹣的相反数是,倒数是﹣.故答案为:,﹣.13.8÷(﹣32)=﹣0.25.【解答】解:8÷(﹣32)=﹣0.25.故答案为:0.25.14.数轴上表示1的点和表示﹣2的点的距离是3.【解答】解:∵|1﹣(﹣2)|=3,∴数轴上表示﹣2的点与表示1的点的距离是3.故答案为:3.15.某种零件,标明要求是φ25±0.2mm(φ表示直径,单位:毫米),经检查,一个零件的直径是24.9mm,该零件合格(填“合格”或“不合格”).【解答】解:根据零件标明要求是φ25±0.2mm,得:合格范围在24.8mm和25.2mm之间,24.9mm在合格范围之间.故答案为:合格.16.若定义一种新的运算,规定=ab﹣cd,则=14.【解答】解:∵=ab﹣cd,∴=1×2﹣4×(﹣3)=2+12=14,故答案为:14.17.计算:①﹣7﹣3=﹣10;②3﹣(﹣2)×4=11;③比3小﹣5的数是8.【解答】解:①﹣7﹣3=(﹣7)+(﹣3)=﹣10;②3﹣(﹣2)×4=3+8=11;③比3小﹣5的数是:3﹣(﹣5)=3+5=8,故答案为:﹣10;11;8.三.解答题(共6小题)18.(1)计算:﹣1+(﹣2)÷(﹣)×(2)计算:(﹣+﹣)×(﹣24)(3)计算:﹣24÷(﹣8)﹣×(﹣2)2【解答】解:(1)原式=﹣1+2××=﹣1+1=0;(2)原式=18﹣4+9=23;(3)原式=2﹣1=1.19.我们规定“※”是一种数学运算符号,两数A、B通过“※”运算是(A+2)×2﹣B,即A※B=(A+2)×2﹣B,例如:3※5=(3+2)×2﹣5=5(1)求:7※9的值;(2)求:(7※9)※(﹣2)的值.【解答】解:(1)根据题中的新定义得:原式=9×2﹣9=18﹣9=9;(2)根据题中的新定义得:原式=9※(﹣2)=22﹣(﹣2)=22+2=24.20.在东西向的绿道上设有一个岗亭,佳佳从岗亭出发以13km/h的速度沿绿道巡逻.规定向东巡逻为正,向西巡逻为负,巡逻情况记录(单位:km)如下:第一次第二次第三次第四次第五次第六次第七次4﹣53﹣4﹣36﹣1(1)第六次巡逻结束时,佳佳在岗亭的哪一边?(2)在第几次巡逻结束时,佳佳离岗亭最远?(3)佳佳一共巡逻多少时间?【解答】解:(1)4﹣5+3﹣4﹣3+6=1.答:第六次巡逻结束时,佳佳在岗亭的东边;(2)第一次4km;第二次4+(﹣5)=﹣1(km);第三次﹣1+3=2(km);第四次2+(﹣4)=﹣2(km);第五次﹣2+(﹣3)=﹣5(km);第六次﹣5+6=1(km);第七次1+(﹣1)=0(km);答:在第五次巡逻结束时,佳佳离岗亭最远;(3)|4|+|﹣5|+|3|+|﹣4|+|﹣3|+|6|+|﹣1|=26(km),26÷13=2(小时).答:佳佳一共巡逻2小时.21.在下面给出的数轴中,点A表示1,点B表示﹣2,回答下面的问题:(1)A、B之间的距离是3;(2)观察数轴,与点A的距离为5的点表示的数是:﹣4或6;(3)若将数轴折叠,使点A与﹣3表示的点重合,则点B与数0表示的点重合;(4)若数轴上M、N两点之间的距离为2018(M在N的左侧),且M、N两点经过(3)中折叠后互相重合,则M、N两点表示的数分别是:M:﹣1010;N:1008.【解答】解:(1)A、B之间的距离是1﹣(﹣2)=3;(2)在A的左边时,1﹣5=﹣4,在A的右边时,1+5=6,所表示的数是﹣4或6;(3)设点B对应的数是x,则=,解得x=0.所以,点B与表示数0的点重合;(4)∵M、N两点之间的距离为2018,∴MN==1009,对折点为﹣1,∴点M为﹣1﹣1009=﹣1010,点N为﹣1+1009=1008.故答案为:(1)1,﹣2;(2)﹣4或6;(3)0;(4)﹣1009,100822.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把记作2÷2÷2,2②,读作“的圈3次方,”(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作:“(﹣3)的圈4次方”.一般地,把a记作aⓝ,读作“a的圈n次方”【初步探究】(1)直接写出计算结果:2②=,(﹣)②=﹣2.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(2)试一试,仿照上面的算式,将下列运算结果直接写成幂的形式.5⑥=;(﹣)⑩=(﹣2)8.(3)想一想:有理数a(a≠0)的圈n(n≥3)次方写成幂的形式等于.【解答】解:(1)2②=2÷2÷2=2②=﹣÷(﹣)÷(﹣)=﹣2答案:,﹣2(2)5⑥=5×××××=同理得;(﹣)⑩=(﹣2)8答案:,)(﹣2)8(3)aⓝ=a×××…×=答案:23.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正,减产为负):星期一二三四五六日增减(辆)+5﹣2﹣2+13﹣10+6﹣9(1)根据记录可知,前三天共生产多少辆?(2)产量最多的一天比产量最少的一天多生产多少辆?(3)该厂实行计件工资制,每辆车60元,超额完成任务的,超出部分,每辆奖15元,少于部分每辆扣15元,那么该厂工人这一周的工资总额是多少?【解答】解:(1)5+(﹣2)+(﹣2)=1,200×3+1=601(辆),∴前三天共生产601辆;(2)13﹣(﹣10)=23(辆),∴产量最多的一天比产量最少的一天多生产23辆自行车;(3)5﹣2﹣2+13﹣10+6﹣9=1(辆),1400+1=1401(辆),60×1400+15×1=84015(元),答:该厂工人这一周的工资总额是84015元.。

华东师大版七年级数学上第1章~第3章过关综合检测(包含答案)

华东师大版七年级数学上第1章~第3章过关综合检测(包含答案)

第1章~第3章过关检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷30分,第Ⅱ卷70分,共100分,考试时间100分钟.第Ⅰ卷(选择题共30分)一、选择题(本大题有10小题,每小题3分,共30分)1.(-3)4表示()A.4与-3的积B.-3与4的和C.4个-3的和D.4个-3的积2.把矿井口的高度记作0 m,升降车从矿井上3 m到矿井下29 m,下降了()A.32 mB.-32 mC.26 mD.-26 m3.坚定走精准扶贫之路,建设好全面小康社会.“精准扶贫”的战略构想的提出,意味着每年要减贫约11700000人.对于数据11700000,下列说法正确的是()A.它是一个精确数B.它精确到万位C.用科学记数法可以表示为1.17×107D.精确到十分位可以写成1.17×1074.下列说法中,正确的是()A. ->-0.1B.当m=-2时,-m是负数C.-与2的绝对值相等D.-1与-1互为倒数5.大于-1.8且小于3的所有非零整数的积是()A.-2B.1C.-1D.06.下列说法正确的是()A.0不是单项式B.x2++2不是多项式C.的系数是3D.-m2n与πnm2不是同类项7.下列运算中正确的是()A.-mn+mn=0B.3a2+2a3=5a5C.3x2y+4yx2=7D.a+a=a8.下列去括号所得的结果正确的是()A.x2--=x2-x+y+2zB.x---=x+2x-3y+1C.3x---=3x-5x-x+1D.---=x-1-x2-29.若(a+1)2+|b-2|=0,化简a(x2y+xy2)-b(x2y-xy2)的结果为()A.3x2yB.-3x2y+xy2C.-3x2y+3xy2D.3x2y-xy210.把四张形状、大小完全相同的小长方形卡片(如图JD2-1①)不重叠地放在一个底面为长方形(长为m cm,宽为n cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是()图JD2-1A.4m cmB.4n cmC.2(m+n)cmD.4(m-n)cm第Ⅱ卷(非选择题共70分)二、填空题(本大题有6小题,每小题3分,共18分)11.单项式-a2bc3的系数是;多项式2x+1-3x2的次数是.12.一种商品每件成本价为p元,按成本价增加25%定出价格,则该商品每件的售价为元,当p=100时,售价为元.13.某班学生在实践基地进行拓展活动分组,因为器材的原因,教练要求分成固定的a组,若每组5人,就有9名同学多出来;若每组6人,最后一组的人数将不满,则最后一组的人数用a的代数式可表示为.14.若a m b3与-3a2b n是同类项,则m-n=.15.若a,b互为相反数,c,d互为倒数,则2cd+a+b=.图JD2-216.柜台上放着一堆罐头,它们摆放的形状如图JD2-2所示:第一层有2×3听罐头,第二层有3×4听罐头,第三层有4×5听罐头,…根据这堆罐头排列的规律,第n(n为正整数)层有听罐头.(用含n的代数式表示)三、解答题(本大题有8小题,共52分)17.(6分)(1)如图JD2-3,在数轴上点A表示的数是,点B表示的数是,点C表示的数是;(2)在所给的数轴上画出表示下列三个数的点:3,-1.5,3;(3)指出(1)(2)中所涉及的6个数中的整数和负分数.图JD2-318.(9分)计算:(1)26-18-(-7)+(-15);(2)-×36;(3)-12-(1+0.5)×÷(-4).19.(6分)先化简,再求值:(1)5ab2+3a2b-3-,其中a=2,b=-1.(2)2(x2y+xy2)-2(x2y-1)-3xy2-2,其中x=-2,y=.20.(5分)若多项式2x2-ax+3y-b+bx2+2x-6y+5的值与字母x的取值无关,试求多项式6(a2-2ab-b2)-(2a2-3ab+4b2)的值.21.(6分)已知A,B是两个多项式,且A-2B=7a2-7ab,B=-4a2+6ab+7.(1)求A的值;(2)若a+1=0,b-2=0,求A的值.22.(6分)某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正,减产记为负):(1)根据记录的数据可知该厂星期五生产自行车辆;(2)根据记录的数据可知该厂本周实际生产自行车辆;(3)该厂实行每日计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少元?(4)若将上面第(3)问中“实行每日计件工资制”改为“实行每周计件工资制”,其他条件不变,在此方式下这一周工人的工资与按日计件的工资哪一个更多?请说明理由.23.(6分)淡水资源越发宝贵了.为节约用水,某市做出了对用水大户限制用水的规定:每一个用水大户,月用水量不超过规定标准m吨时,按每吨1.6元的价格收费;如果超过了标准,则超标部分每吨加收0.4元的附加费用.(1)某用户在6月份用水x(x>m)吨,则该用户应交水费多少元?(2)若规定标准用水量为120吨,某用户在7月份用水160吨,则该用户应交水费多少元?24.(8分)我国古代的建筑文化博大精深,图JD2-4是晋商大院窗格的一部分.其中“o”代表窗纸上所贴的剪纸.图JD2-4探索并回答下列问题:(1)第⑥个图案中所贴剪纸“o”的个数是.(2)第个图案中所贴剪纸“o”的个数是.(3)是否存在一个图案,其上所贴剪纸“o”的个数为2018个,若存在,指出是第几个;若不存在,请说明理由.阶段综合测试二(期中一)1.D2.A3.C4.D5.A6.B7.A8.B9.B10.[全品导学号:14552028]B11.-212.1.25p12513.15-a14.-115.216.[全品导学号:14552029](n+1)(n+2)17.(1)-30 2(2)表示如图所示.(3)上述6个数中的整数有-3,0,2,3;负分数有-1.5.18.解:(1)原式=26-18+7-15=(26+7)+(-18-15)=33+(-33)=0.(2)原式=×36-×36+×36=28-30+27=25.(3)原式=-1-××-=-1+=-.19.解:(1)原式=5ab2+3a2b-3a2b+2ab2=5ab2+2ab2+3a2b-3a2b=7ab2.当a=2,b=-1时,原式=7×2×(-1)2=14.(2)原式=2x2y+2xy2-2x2y+2-3xy2-2=2xy2-3xy2=-xy2.当x=-2,y=时,原式=-(-2)×=2×=.20.[全品导学号:14552030]解:2x2-ax+3y-b+bx2+2x-6y+5=(2+b)x2+(2-a)x-3y+5-b.因为多项式2x2-ax+3y-b+bx2+2x-6y+5的值与字母x的取值无关,所以2+b=0,2-a=0,解得b=-2,a=2.所以6(a2-2ab-b2)-(2a2-3ab+4b2)=6a2-12ab-6b2-2a2+3ab-4b2=4a2-9ab-10b2=4×22-9×2×(-2)-10×(-2)2=12.21.解:(1)∵A-2B=A-2(-4a2+6ab+7)=7a2-7ab,∴A=(7a2-7ab)+2(-4a2+6ab+7)=-a2+5ab+14.即A=-a2+5ab+14.(2)根据a+1=0,b-2=0,得a=-1,b=2.∴A=-(-1)2+5×(-1)×2+14=3.22.解:(1)190(2)1409(3)1409×60+(5+13+16)×15+(-2-4-10-9)×20=84550(元),故该厂工人这一周的工资总额是84550元.(4)实行每周计件工资制,该厂工人这一周的工资总额为1409×60+9×15=84675 (元)>84550 元,所以按周计件制的一周工资较高.23.解:(1)1.6m+(1.6+0.4)(x-m)=(2x-0.4m)元.答:该用户应交水费(2x-0.4m)元.(2)当m=120,x=160时,2x-0.4m=272(元).答:该用户应交水费272元.24.[全品导学号:14552031]解:(1)20(2)3n+2(3)存在.理由:令3n+2=2018,则3n=2016,解得n=672.因此第个图案中所贴剪纸“o”的个数为2018个.。

人教版七年级数学上册《第1章有理数》期末复习综合练习题(附答案)

人教版七年级数学上册《第1章有理数》期末复习综合练习题(附答案)

人教版七年级数学上册《第1章有理数》期末复习综合练习题(附答案)一.选择题1.若气温上升2℃记作+2℃,则气温下降3℃记作()A.﹣2℃B.+2℃C.﹣3℃D.+3℃2.一个数的相反数是它本身,则该数为()A.0B.1C.﹣1D.不存在3.根据世界卫生组织的统计,截止10月28日,全球新冠确诊病例累计超过4430万,用科学记数法表示这一数据是()A.4.43×107B.0.443×108C.44.3×106D.4.43×1084.下列各组的两个数中,运算后的结果相等的是()A.23和32B.﹣33和(﹣3)3C.﹣22和(﹣2)2D.﹣|﹣2|和|﹣2|5.把算式:(﹣5)﹣(﹣4)+(﹣7)﹣(+2)写成省略括号的形式,结果正确的是()A.﹣5﹣4+7﹣2B.5+4﹣7﹣2C.﹣5+4﹣7﹣2D.﹣5+4+7﹣26.下列各数在数轴上所对应的点与原点的距离最远的是()A.2B.1C.﹣1.5D.﹣37.下列各式比较大小正确的是()A.﹣<﹣B.﹣100>0.1C.|﹣|<D.|﹣7|>|﹣8|8.在数学课上,老师让甲、乙、丙、丁,四位同学分别做了一道有理数运算题,你认为做对的同学是()甲:9﹣32÷8=0÷8=0乙:24﹣(4×32)=24﹣4×6=0丙:(36﹣12)÷=36×﹣12×=16丁:(﹣3)2÷×3=9÷1=9A.甲B.乙C.丙D.丁9.已知a、b、c大小如图所示,则的值为()A.1B.﹣1C.±1D.010.等边△ABC在数轴上的位置如图所示,点A,C对应的数分别是0和﹣1,若△ABC绕顶点A沿顺时针方向连续翻转,翻转一次后点B对应的数为1,则翻转2021次后点B对应的数是()A.不对应任何数B.2019C.2020D.2021二.填空题11.的倒数等于.12.用四舍五入法将0.00519精确到千分位的近似数是.13.101﹣102+103﹣104+…+199﹣200=.14.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a,如1☆3=1×32+2×1×3+1=16.则(﹣2)☆3的值为.15.已知a<b,且|a|=6,|b|=3,则a+b的值为.三.解答题16.计算:(1)13+(﹣15)﹣(﹣23).(2)﹣17+(﹣33)﹣10﹣(﹣16).17.计算:(1)﹣14﹣(﹣2)3÷4×[5﹣(﹣3)2];(2).18.(6分)已知|a﹣2|与(b+2)2互为相反数,c、d互为倒数,x的绝对值为4,求的值.19.淇淇在计算:时,步骤如下:解:原式=﹣2022﹣(﹣6)+6÷﹣6………………①=﹣2022+6+12﹣18………………………②=﹣2048…………………………………③(1)淇淇的计算过程中开始出现错误的步骤是;(填序号)(2)请给出正确的解题过程.20.已知点A、B、C、D、E在数轴上分别对应下列各数:0,|﹣3.5|,(﹣1)2,﹣(+4),﹣2.(1)如图所示,在数轴上标出表示其余各数的点.(标字母)(2)用“<”号把这些数连接起来.21.小虫从某点O出发在一直线上来回爬行,假定向右爬行路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.问:(1)小虫是否回到原点O?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫共可得到多少粒芝麻?22.定义一种新的运算:x★y=(x+2)×(y+2).(1)计算(﹣3)★(﹣4)与(﹣4)★(﹣3),此运算满足乘法交换律吗?(2)计算[(﹣3★(4)]★(﹣5)与(﹣3)★[(﹣4)★(﹣5)],此运算满足乘法结合律吗?23.已知|a|=5,|b|=2,回答下列问题:(1)由|a|=5,|b|=2,可得a=,b=;(2)若a+b>0,求a﹣b的值;(3)若ab<0,求|a+b|的值.24.如图,半径为1个单位长度的圆形纸片上有一点Q与数轴上的原点重合.(提示:圆的周长C=2πr,π取值为3.14)(1)把圆形纸片沿数轴向左滚动1周,点Q到达数轴上点A的位置,则点A表示的数是;(2)圆形纸片在数轴上向右滚动的周数记为正数,圆形纸片在数轴上向左滚动的周数记为负数,依次运动周数记录如下:+2,﹣1,﹣5,+4,+3,﹣2.当圆形纸片结束运动时,Q点运动的路程共是多少?此时点Q所表示的数是多少?参考答案一.选择题1.解:∵气温上升2℃记作+2℃,∴气温下降3℃记作﹣3℃.故选:C.2.解:∵0的相反数是0,∴一个数的相反数是它本身,则该数为0.故选:A.3.解:4430万=44300000=4.43×107.故选:A.4.解:A.23=8,32=9,∴23≠32,故此选项不符合题意;B.﹣33=﹣27,(﹣3)3=﹣27,∴﹣33=(﹣3)3,故此选项符合题意;C.﹣22=﹣4,(﹣2)2=4,∴﹣22≠(﹣2)2,故此选项不符合题意;D.﹣|﹣2|=﹣2,|﹣2|=2,∴﹣|﹣2|≠|﹣2|,故此选项不符合题意;故选:B.5.解:(﹣5)﹣(﹣4)+(﹣7)﹣(+2)=﹣5+4﹣7﹣2=﹣10故选:C.6.解:A.2到原点的距离是2个长度单位,不符合题意;B.1到原点的距离是1个长度单位,不符合题意;C.﹣1.5到原点的距离是1.5个长度单位,不符合题意;D.﹣3到原点的距离是3个长度单位,符合题意;∴在数轴上所对应的点与原点的距离最远的点表示的数是﹣3.故选:D.7.解:A.∵|﹣|=,|﹣|=,而,∴,故本选项不合题意;B.﹣100<0.1,故本选项不合题意;C.|﹣|==,而,∴,故本选项符合题意;D.∵|﹣7|=7,|﹣8|=8,∴|﹣7|<|﹣8|,故本选项不合题意;故选:C.8.解:甲:9﹣32÷8=9﹣9÷8=7,原来没有做对;乙:24﹣(4×32)=24﹣4×9=﹣12,原来没有做对;丙:(36﹣12)÷=36×﹣12×=16,做对了;丁:(﹣3)2÷×3=9÷×3=81,原来没有做对.故选:C.9.解:根据图示,知a<0<b<c,∴=++=﹣1+1+1=1.故选:A.10.解:由题意得:2021÷3=673•2,所以:翻转2021次后点B对应的数是2020,故选:C.二.填空题11.解:的倒数是:2.故答案为:2.12.解:将0.00519精确到千分位的近似数是0.005.故答案为:0.005.13.解:原式=(﹣1)+(﹣1)+…+(﹣1)=﹣50,故答案为:﹣5014.解:∵a☆b=ab2+2ab+a,∴(﹣2)☆3=﹣2×32+2×(﹣2)×3+(﹣2)=﹣18﹣12﹣2=﹣32.15.解:∵|a|=6,|b|=3,∴a=±6,b=±3,∵a<b,∴a=﹣6,b=±3,∴a+b=﹣9或a+b=﹣3,故答案为:﹣9或﹣3.三.解答题16.解:(1)13+(﹣15)﹣(﹣23)=13+(﹣15)+23=21.(2)﹣17+(﹣33)﹣10﹣(﹣16)=﹣17+(﹣33)+(﹣10)+16=﹣44.17.解:(1)原式=﹣1﹣(﹣8)÷4×(5﹣9)=﹣1﹣(﹣8)÷4×(﹣4)=﹣1﹣8÷4×4=﹣1﹣8=﹣9;(2)原式===﹣9+(﹣)×12=﹣9+(﹣13)=﹣22.18.解:由题意得:|a﹣2|+(b+2)2=0,cd=1,x=4或﹣4,则a﹣2=0,b+2=0,解得a=2,b=﹣2,则当x=4时,原式=0+(﹣1﹣1)×4﹣5=﹣8﹣5=﹣13;当x=﹣4时,原式=0+(﹣1﹣1)×(﹣4)﹣5=8﹣5=3.故的值是﹣13或3.19.解:(1)∵(﹣1)2022=1,(﹣2)3=﹣8,6÷(﹣)=6÷=36,∴原式=1﹣(﹣8)+6÷,∴开始出现错误的步骤是①,故答案为:①;(2)原式=1﹣(﹣8)+6÷=1+8+6×6=1+8+36=45.20.解:(1)如图所示:(2)用“<”号把这些数连接起来:﹣(+4)<﹣2<0<(﹣1)2<|﹣3.5|.21.解:(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=27+(﹣27)=0,所以,小虫最后能回到出发点O;(2)根据记录,小虫离开出发点O的距离分别为5cm、2cm、12cm、4cm、2cm、10cm、0cm,所以,小虫离开出发点的O最远为12cm;(3)根据记录,小虫共爬行的距离为:5+3+10+8+6+12+10=54(cm),所以,小虫共可得到54粒芝麻.22.解:(1)此运算满足乘法交换律,理由如下:(﹣3)★(﹣4)=(﹣3+2)×(﹣4+2)=(﹣1)×(﹣2)=2;(﹣4)★(﹣3)=(﹣4+2)(﹣3+2)=(﹣2)×(﹣1)=2.故此运算满足乘法交换律.(2)运算不满足乘法结合律,理由如下:[(﹣3)★(﹣4)]★(﹣5)=[(﹣3+2)(﹣4+2)]★(﹣5)=2★(﹣5)=(2+2)(﹣5+2)=4×(﹣3)=﹣12;(﹣3)★[(﹣4)★(﹣5)]=(﹣3)★[(﹣4+2)(﹣5+2)]=(﹣3)★6=(﹣3+2)(6+2)=﹣1×8=﹣8.故此运算不满足乘法结合律.23.解:(1)∵|a|=5,|b|=2,∴a=±5,b=±2.故答案为:±5,±2;(2)∵a+b>0,∴a=5,b=±2,当a=5,b=2时,a﹣b=5﹣2=3;当a=5,b=﹣2时,a﹣b=5﹣(﹣2)=5+2=7;综上,a﹣b=3或7.(3)∵ab<0,∴a=5,b=﹣2或a=﹣5,b=2.当a=5,b=﹣3时,|a+b|=|5﹣2|=3;当a=﹣5,b=3时,|a+b|=|﹣5+2|=3;∴|a+b|=3.24.解:(1)∵2πr=2×3.14×1=6.28,∴点A表示的数是﹣6.28,故答案为:﹣6.28;(2)∵|+2|+|﹣1|+|﹣5|+|+4|+|+3|+|﹣2|=17,∴17×2π×1=106.76,∴当圆片结束运动时,Q点运动的路程共有106.76,∵2﹣1﹣5+4+3﹣2=1,∴1×2π×1≈6.28,∴此时点Q所表示的数是6.28.答:当圆片结束运动时,Q点运动的路共是106.76,此时点Q所表示的数是6.28.。

七年级数学上册第1-3章复习检测题(含答案)

七年级数学上册第1-3章复习检测题(含答案)

七年级数学(上)复习检测(第1~3章)(时间90分钟 满分100分)班级 姓名 得分一、填空题(每题2分,共32分)1.-2 的倒数是 . 2.4 的平方根是 . 3.-27 的立方根是 .4.23-的相反数地 ,绝对值是 . 51 2 -1 3. 6.用计算器计算:(结果保留4个有效数字):=31400 ,618.0±= ,30005432.0--= .7.写出两个无理数,使它们的和为有理数 ;写出两个无理数,使它们的积为有理数 .8.2007年我国外汇储备4275.34亿美元,结果保留三个有效数字,用科学记数法表示为亿美元.9.一个正数的算术平方根与立方根是同一个数,则这个数是 . 10.在数轴上,到原点距离为5个单位的点表示的数是 .11.不小于2154的最小整数是 . 12.若n 为自然数,那么221(1)(1)nn +-+-= .13.若实数 a 、b 满足212()02a b -++=,则 ab = .14.小红做了棱长为5cm 的一个正方体盒子,小明说:“我做的盒子的体积比你的大218cm 3.”则小明的盒子的棱长为 cm .15a 和b 之间,a <10<b ,那么a , b 的值分别是 . 16.罗马数字共有 7 个:I (表示 1),V (表示 5),X (表示 10),L (表示 50),C (表示 100),D (表示 500),M (表示 1000),这些数字不论位置怎样变化,所表示的数目都是不变的,其计数方法是用“累积符号”和“前减后加”的原则来计数的:如IX =10-1=9,VI =5+1=6,CD =500-100=400,则XL = ,XI = .二、解答题(每题2分,共32分)17.(8分)(1)判断下列各式是否正确.你认为成立的,请在括号内打“√”,不成立的打“×”. ①322322=+( ) ② 833833=+( ) ③ 15441544=+( ) ④ 24552455=+( ) (2)你判断完以上各题之后,请猜测你发现的规律,用含n 的式子将其规律表示出来,并注明n 的取值范围: . 18.(5分)在数轴上表示下列各数:2 的相反数,绝对值是1 2 的数,-114的倒数.19.(8分)计算 (1)-21 2 ÷(-5)×1 5 ; (2)(13 4 -7 8 -712)÷(-13 4);(3)(-11 2 )3×32+23; (4)π+3-23 .(精确到0.01)20.(5分)已知:x 是|-3|的相反数,y 是-2的绝对值,求 2x 2-y 2 的值.4-的整数部分为a,小数部分为b,求()3-a b的值.(保留3个有效21.(5分)3数字)22.(5分)利用4×4方格,作出面积为10平方厘米10与-.的正方形,然后在数轴上表示实数1023.(5分)一本书长是宽的1.6倍,面积为274平方厘米,则这本书的宽大约是多少?(精确到0.1cm)24.(5分)一个圆柱的体积是10cm3,且底面圆的直径与圆柱的高相等,求这个圆柱的底面半径是多少?(保留2个有效数字)25.(5分)已知长方形的长与宽为比3:2,面积为36cm2,求长方形的长与宽.(结果保留根号)26.(5分)把一个长方形的长和宽分别扩大相同的倍数,使面积扩大40倍,求长和宽分别扩大的倍数.(结果保留根号)27.(5分)座钟的摆针摆动一个来回所需的时间称为一个周期,其计算公式为2l g=T ,其中T 表示周期(单位:秒)l 表示摆长(单位:米)g =9.8米/秒2,假如一台座钟的摆长为0.5米,它每摆动一个来回发出一次滴答声,那么在1分内该座钟大约发出了多少次滴答声?28.(7分)在第六册课本的阅读材料中,介绍了一个第七届国际数学教育大会的会徽.它的主题图案是由一连串如图所示的直角三角形演化而成的.设其中的第一个直角三角形OA 1A 2是等腰三角形,且OA 1=A 1A 2=A 2A 3=A 3A 4=……=A 8A 9=1,请你先把图中其它8条线段的长计算出来,填在下面的表格中,然后再计算这8条线段的长的乘积.(结果精确到0.1)OA 1OA 2OA 3OA 4OA 5OA 6OA 7OA 8八年级数学(上)期末复习检测(13章)一、填空题1.12-2.2± 3.3- 4.22 5.< 6.37.42,±0.7861,0.081597.2-+ 8.34.2810⨯ 9.1 10. 11.10 12.0 13.1-14.7 15.3,4 16.40,11 二、解答题17.(1)4个全对;(2= 18.略 19.(1)110;(2)16-;(3)58;(4)4.21 20.14 21.1 22.略 23.13.1cm 24.1.17cm 25.,cm 26. 27.约42次 28.表格中依次填积为200.8。

2022-2023学年人教版七年级数学上册《第1章有理数》期末复习综合练习题(附答案)

2022-2023学年人教版七年级数学上册《第1章有理数》期末复习综合练习题(附答案)

2022-2023学年人教版七年级数学上册《第1章有理数》期末复习综合练习题(附答案)一.选择题1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若收入80元记作+80元,则﹣50元表示()A.收入50元B.收入30元C.支出50元D.支出30元2.下列式子简化不正确的是()A.+(﹣5)=﹣5B.﹣(﹣0.5)=0.5C.﹣(+1)=1D.﹣|+3|=﹣33.数轴上表示﹣6和4的点分别是A和B,则线段AB的长度是()A.﹣2B.2C.﹣10D.104.下列结论中不正确的是()A.最小的正整数为1B.最大的负整数为﹣1C.绝对值最小的有理数为0D.倒数等于它本身的数为15.﹣的倒数的绝对值是()A.﹣2021B.C.2021D.﹣6.在算式3﹣|﹣1□2|中的“□”里,选择一个运算符号,使得算式的值最大()A.+B.﹣C.×D.÷7.以下说法,正确的是()A.数据475301精确到万位可表示为480000B.王平和李明测量同一根钢管的长,按四舍五入法得到结果分别是0.80米和0.8米,这两个结果是相同的C.近似数1.5046精确到0.01,结果可表示为1.50D.小林称得体重为42千克,其中的数据是准确数8.有一种放射性物质,它的质量缩减为原来的一半所用的时间是一个不变的量﹣﹣120年,它的质量由96克变为6克,所需要的时间是()A.240年B.480年C.600年D.960年二.填空题9.如果规定从原点出发,向南走为正,那么﹣100m表示的意义是.10.(﹣2)2|﹣3|(用“>”或“<”填空).11.在﹣5,,0,1.6这四个有理数中,整数是.12.在数轴上,如果点A所表示的数是﹣2,那么到点A距离等于3个单位的点所表示的数是.13.计算:﹣32×(﹣2)3=.14.计算(﹣9)÷×的结果是.15.计算:=.16.在迎来中国共产党成立一百周年的重要时刻,我国脱贫攻坚战取得了全面胜利,现行标准下98990000农村贫困人口全部脱贫,将数据98990000用科学记数法表示为.17.把有理数130542按四舍五入法精确到千位的近似值为.18.某公交车原坐有22人,经过4个站点时上下车情况如下(上车为正,下车为负):(+4,﹣8),(﹣5,+6),(﹣3,+2),(+1,﹣7),则车上还有人.三.解答题19.把下列各数分别填在相应的大括号里.13,,﹣31,0.21,﹣3.14,0,21%,,﹣2020.负有理数:{…};正分数:{…};非负整数:{…}.20.(每题要写出必要的解题步骤)(1)(﹣3.1)+(6.9)(2)90﹣(﹣3)(3)(4)﹣7+13﹣6+20(5)(﹣2)4+3×(﹣1)6﹣(﹣2)(6)﹣8721+53﹣1279+43(7)(8).21.请把下面不完整的数轴补充完整,并在数轴上标出下列各数:﹣,﹣(﹣2),3,﹣150%,|﹣0.5|.22.某服装店购进10件羊毛衫,实际销售情况如表所示:(售价超出成本为正,不足记为负)件数(件)32212钱数(元/件)﹣10﹣20+20+30+40(1)这批羊毛衫销售中,最高售价的一件与最低售价的一件相差多少元?(2)通过计算求出这家服装店在这次销售中盈利或者亏损多少元?23.小明觉得像0.0000057这样的数写起来很麻烦,当他学习了科学记数法以后,发现0.0000057==,所以发明了一种“类科学记数法”,类比科学记数法,将0.0000057写成5.7÷106.(1)将下列各数用“类科学记数法”表示,0.02=;0.000407=;(2)若一个数0.0……035用“类科学记数法”表示为3.5÷106,则原数中“0”的个数为;(3)比较大小:9÷1081÷107,0.000106 9.8÷105;(4)纳米是长度度量单位.1纳米=1.0÷109米,一种病毒的直径平均为200纳米.200纳米这个数据用“类科学记数法”可表示为米.24.如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+(b﹣4)2=0.(1)点A表示的数为;点B表示的数为;(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以3个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①当t=1时,甲小球到原点的距离=;乙小球到原点的距离=;当t=2时,甲小球到原点的距离=;乙小球到原点的距离=;②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由若能,请求出甲,乙两小球到原点的距离相等时t的值.③若当甲和乙开始运动时,挡板也从原点以1个单位/秒的速度向右运动,直接写出甲,乙两小球到挡板的距离相等时t的值.参考答案一.选择题1.解:根据题意,若收入80元记作+80元,则﹣50元表示支出50元.故选:C.2.解:A、+(﹣5)=﹣5,计算正确,故此选项不合题意;B、﹣(﹣0.5)=0.5,计算正确,故此选项不合题意;C、﹣(+1)=﹣1,原计算错误,故此选项符合题意;D、﹣|+3|=﹣3,计算正确,故此选项不合题意;故选:C.3.解:AB=4﹣(﹣6)=10.故选:D.4.解:最小的正整数为1,是正确的;最大的负整数为﹣1于是正确的;绝对值最小的有理数为0,其它数的绝对值都大于0,因此选项C是正确的;倒数等于它本身的数为±1,因此选项D是错误的;故选:D.5.解:﹣的倒数为﹣2021,﹣2021的绝对值为2021,故选:C.6.解:在算式3﹣|﹣1□2|中的“□”里,要使得算式的值最大,就要使﹣1□2的绝对值最小,∴选择的运算符号是÷.故选:D.7.解:A、数据475301精确到万位可表示为4.8×105,所以A选项错误;B、0.80m精确到0.01m,而0.8m精确到0.1m,所以B选项错误;C、近似数1.5046精确到0.01,结果可表示为1.50,所以C选项正确;D、小林称得体重为42千克,其中的数据是近似数.故选:C.8.解:减少一半为一个半衰期,设经过x个半衰期,根据题意,得:96×=6,,x=4,一个半衰期120年.所以需要的时间是4×120=480(年).故选:B.二.填空题9.解:如果规定从原点出发,向南走为正,那么﹣100m表示的意义是向北走100米.故答案为:向北走100米.10.解:∵(﹣2)2=4,|﹣3|=3,∴(﹣2)2>|﹣3|.故答案为:>.11.解:在﹣5,,0,1.6这四个有理数中,在,1.6是分数,﹣5、0是整数.故答案是:﹣5、0.12.解:﹣2+3=1,﹣2﹣3=﹣5,则A表示的数是:1或﹣5.故答案为:1或﹣513.解:﹣32×(﹣2)3=﹣9×(﹣8)=72.故答案为:72.14.解:(﹣9)÷×=(﹣9)××=﹣6×=﹣4,故答案为:﹣4.15.解:原式=﹣×(﹣)==10.故答案为:10.16.解:98990000=9.899×107,故答案为:9.899×107.17.解:130542≈1.31×105(精确到千位),故答案为:1.31×105.18.解:由题意,得22+4+(﹣8)+6+(﹣5)+2+(﹣3)+1+(﹣7)=12(人),故答案为:12三.解答题19.解:负有理数:{,﹣31,﹣3.14,﹣2020…};正分数:{0.21,21%,…};非负整数:{13,0…}.故答案为:,﹣31,﹣3.14,﹣2020;0.21,21%,;13,0.20.解:(1)(﹣3.1)+(6.9),=+(6.9﹣3.1),=3.8;(2)90﹣(﹣3),=90+3,=93;(3)(﹣)×8=﹣6;(4)﹣7+13﹣6+20,=﹣13+33,=20;(5)(﹣2)4+3×(﹣1)6﹣(﹣2),=16+3×1+2,=16+3+2,=21;(6)﹣8721+53﹣1279+43,=﹣8721﹣1279+53+43,=﹣10000+97,=﹣9903;(7)﹣22×(﹣)+8÷(﹣2)2,=﹣4×(﹣)+8÷4,=2+2,=4;(8)﹣12+3×(﹣2)3+(﹣6)÷(﹣)2,=﹣1+3×(﹣8)+(﹣6)×9,=﹣1﹣24﹣54,=﹣79.21.解:数轴补充完整如下图所示:22.解:(1)40﹣(﹣20)=60(元),答:最高售价的一件与最低售价的一件相差60元;(2)3×(﹣10)+2×(﹣20)+2×20+1×30+2×40=80(元),答:该这家服装店在这次销售中是盈利了,盈利80元.23.解:(1)0.02=2÷102,0.000407=4.07÷104,故答案为:2÷102;4.07÷104;(2)∵3.5÷106=0.0000035,∴原数中“0”的个数为6个,故答案为:6;(3)9÷108=0.00000009,1÷107=0.0000007,∵0.00000009<0.0000007,∴9÷108<1÷107,9.8÷105=0.000098,∵0.000106>0.000098,∴0.000106>9.8÷105,故答案为:<;>;(4)∵1纳米=1.0÷109米,∴200纳米=200×1.0÷109=2.0÷107米,故答案为:2.0÷107.24.解:(1)∵|a+2|+|b﹣4|=0,∴a=﹣2,b=4,∴点A表示的数为﹣2,点B表示的数为4,故答案为:﹣2,4;(2)①当t=1时,∵一小球甲从点A处以1个单位/秒的速度向左运动,∴甲小球1秒钟向左运动1个单位,此时,甲小球到原点的距离=2+1=3,∵一小球乙从点B处以3个单位/秒的速度也向左运动,∴乙小球1秒钟向左运动3个单位,此时,乙小球到原点的距离=4﹣3=1,当t=2时,∵一小球甲从点A处以1个单位/秒的速度向左运动,∴甲小球1秒钟向左运动2个单位,此时,甲小球到原点的距离=2+2=4,∵一小球乙从点B处以3个单位/秒的速度也向左运动,∴乙小球1秒钟向左运动6个单位,此时,乙小球到原点的距离=3×2﹣4=2,故答案为:3,1,4,2;②当0<t≤2时,得t+2=4﹣2t,解得t=;当t>2时,得t+2=2t﹣4,解得t=6;故当t=秒或t=6秒时,甲乙两小球到原点的距离相等;(3)B碰到挡板需要4÷(3+1)=1(秒),A碰到挡板需要2÷2=1(秒),∴t=1时,甲,乙两小球到挡板的距离相等,①都向左运动时,则2+t+t=4﹣3t﹣t,即6t=2,解得t=,②反弹时,则t﹣1+t﹣1=(3﹣1)(t﹣1),即2t=2t,∴当t≥1时,甲,乙两小球到挡板的距离相等,∴t值为或t≥1时,甲,乙两小球到挡板的距离相等.。

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题一(含答案) (3)

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题一(含答案) (3)

人教版七年级数学上册第三章实际问题与一元一次方程解答题复习试题一(含答案)列方程解应用题:我校七年级某班共有学生48人,其中女生人数比男生人数的2倍少12人,则这个班的男生有多少人?【答案】这个班有男生20人.【解析】【分析】设这个班有男生x 人,则有女生(2x -12)人,根据男生人数+女生人数=48列出方程,解方程即可.【详解】解:设这个班有男生x 人,则有女生(2x -12)人,列方程得:21248x x +-=,解得,20x答:这个班有男生20人.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.22.你知道为什么任何无限循环小数都可以写成分数形式吗?下面的解答会告诉你方法.(1)阅读下列材料:问题:利用一元一次方程将0.7•化成分数.解:设0.7x •=.方程两边都乘以10,可得7.710x •=.由0.7x •=和7.710x •=,可得7.70.710x x ••-=-即710x x =-.(请你体会将方程两边都乘以10起到的作用) 解得79x =,即70.79•=. 填空:将0.4写成分数形式为 .(2)请你仿照上述方法把小数1.3化成分数,要求写出利用一元一次方程进行解答的过程.【答案】(1)49;(2)1.3=113,计算见解析. 【解析】【分析】(1)根据阅读材料设0.4=x ,方程两边都乘以10,转化为4+x=10x ,求出其解即可;(2)设0.3=m ,程两边都乘以10,转化为3+m=10m ,求出其解即可.【详解】解:(1)设0.4=x ,则4+x=10x ,∴x=49. 故答案是49; (2)设0.3=m ,方程两边都乘以10,可得10×0.3=10m .由0.3=0.3333⋅⋅⋅,可知10×0.3=3.3333…=3+0.3333….即3+m=10m可解得m=13,∴1.3=11.3【点睛】本题考查了无限循环小数转化为分数的运用,运用一元一次方程解实际问题的运用,解答时根据等式的性质变形建立方程是解答的关键.23.在抗击新冠状病毒战斗中,有152箱公共卫生防护用品要运到A、B 两城镇,若用大小货车共15辆,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,则恰好能一次性运完这批防护用品求这大小货车各多少辆?【答案】大货车8辆,小货车7辆.【解析】【分析】根据题意,可以先设这15辆车中大货车有a辆,则小货车有(15-a)辆,然后即可得到相应的方程,从而可以求得这15辆车中大小货车各多少辆.【详解】解:设这15辆车中大货车有a辆,则小货车有(15-a)辆,12a+8(15-a)=152解得,a=8,则15-a=7,答:这15辆车中大货车8辆,小货车7辆.【点睛】本题考查一元一次方程的应用,解答本题的关键是明确题意,利用题目中等量关系列出方程正确计算解答.24.2020年新冠肺炎爆发,省疾控中心组织医护人员和防疫药品赶赴湖北救援,装载防疫药品的货运飞机从机场出发,以600千米/小时的速度飞行,半小时后医护人员乘坐客运飞机从同一个机场出发,客运飞机速度是货运飞机速度的1.2倍,结果客运飞机比装载防疫药品的货运飞机迟15分钟到达湖北.(1)设货运飞机全程飞行时间为t 小时,用t 表示出发的机场到湖北的路程s ;(2)求出发的机场到湖北的路程.【答案】(1)s =600t ;(2)900千米.【解析】【分析】(1)根据路程=时间×速度列出关系式即可;(2)根据货运飞机和客运飞机的路程相同列出方程求的t 的值,进而可求得路程s 的值.【详解】解:(1)由题意,得s =600t(2)根据题意可知11600600 1.2()24t t =⨯⨯-+ 解得t =1.5∴s =600t =600×1.5=900答:出发的机场到湖北的路程是900千米【点睛】本题考查了一元一次方程的应用.解决本题的关键是要弄懂题意,找到题中的数量关系,列出方程进行解答.25.甲乙两辆汽车同时从 A 、B 两地相向开出,甲车每小时行 56 千米,乙车每小时行 48 千米,两车在距 A 、B 两地的中点 32 千米处相遇.求甲乙两地相距多少千米?【答案】甲乙两地相距832千米【解析】【分析】设甲乙两地相距x 千米,根据两车相遇,所用时间相等即可列出一元一次方程,求解方程即可.【详解】甲乙两地相距x 千米,根据题意得,3232225648x x +-= 解得,x=832所以,甲乙两地相距832千米【点睛】此题考查了列一元一次方程解决问题,关键是找出等量关系.26.“雷神山”病床安装突击队有 22 名队员,按要求在规定时间内要完成 340 张病床安装,其中高级工每人能安装 20 张,初级工每人能安装 15 张. 问该突击队高级工与初级工各多少人?【答案】该突击队有高级工2人,初级工20人.【解析】【分析】设该突击队高级工有x 人,则初级工有y 人,根据高级工+初级工=22人,x 名高级工安装的病床数+y 名初级工安装的病床数=340即可列出方程组,解方程组即得结果.【详解】解:设该突击队高级工有x 人,则初级工有y 人,根据题意,得:222015340x y x y +=⎧⎨+=⎩,解得:220x y =⎧⎨=⎩, 答:该突击队有高级工2人,初级工20人.【点睛】本题考查了二元一次方程组的应用,属于基本题型,正确理解题意、找准相等关系是解题关键.27.已知,两正方形在数轴上运动,起始状态如图所示.A 、F 表示的数分别为-2、10,大正方形的边长为4个单位长度,小正方形的边长为2个单位长度,两正方形同时出发,相向而行,小正方形的速度是大正方形速度的两倍,两个正方形从相遇到刚好完全离开用时2秒.完成下列问题:(1)求起始位置D、E表示的数;(2)求两正方形运动的速度;(3)M、N分别是AD、EF中点,当正方形开始运动时,射线MA开始以15°/s的速度顺时针旋转至MD结束,射线NF开始以30°/s的速度逆时针旋转至NE结束,若两射线所在直线互相垂直时,求MN的长.....【答案】(1)0,6;(2)小正方形速度2个单位/秒,大正方形速度1个单位/秒;(3)t=2,MN=3,t=6,MN=9【解析】【分析】(1)利用图象和正方形的边长即可得出;(2)设小正方形的速度是2x个单位/秒,大正方形的速度是x个单位/秒,然后列方程计算即可;(3)由题意可得若想要两射线所在直线互相垂直,则有①15°t+30°t=90°或②15°t+30°t=270°两种情况,根据两种情况分别讨论即可.【详解】(1)∵A、F表示的数分别为-2、10,大正方形的边长为4个单位长度,小正方形的边长为2个单位长度,∴D表示的数为:-2+2=0,E表示的数为:10-4=6;(2)解:设小正方形的速度是2x个单位/秒,大正方形的速度是x个单位/秒,则有2(2x+x)=2+4,解得:x=1,∴小正方形的速度是2个单位/秒,故小正方形速度2个单位/秒,大正方形速度1个单位/秒;(3)设运动时间为t,由题意可得若想要两射线所在直线互相垂直,则有①15°t+30°t=90°或②15°t+30°t=270°,①15°t+30°t=90°,解得t=2,此时小正方形运动了4个单位,D点在数字4的位置,大正方形运动了2个单位,E点也在数字4的位置,即D,E重合,∵M、N分别是AD、EF中点,∴MN=3;②15°t+30°t=270°,解得t=6,此时小正方形运动了12个单位,D点在数字12的位置,大正方形运动了6个单位,E点在数字0的位置,∵M、N分别是AD、EF中点,∴此时M点位于数字11的位置,N点位于数字2的位置,∴MN=11-2=9;综上:当t=2时,MN=3;当t=6时,MN=9.【点睛】本题考查了数轴的动点问题,一元一次方程的应用,根据题意推出对应情况是解题关键.28.姐妹两人在50米的跑道上进行短路比赛,两人从出发点同时起跑,姐姐到达终点时,妹妹离终点还差3米,已知姐妹两人的平均速度分别为a米/秒、b米/秒.(1)如果两人重新开始比赛,姐姐从起点向后退3米,姐妹同时起跑,两人能否同时到达终点?若能,请求出两人到达终点的时间;若不能,请说明谁先到达终点.(2)如果两人想同时到达终点,应如何安排两人的起跑位置?请你设计两种方案.【答案】(1)姐姐用时5350k 秒,妹妹用时5047k秒,所以不能同时到,姐姐先到;(2)姐姐后退15047米或妹妹前进3米【解析】【分析】(1)先求出姐姐和妹妹的速度关系,然后求出再次比赛时两人用的时间,从而得出结论;(2)2种方案,姐姐退后或者妹妹向前,要想同时到达终点,则比赛用时相等,根据这个关系列写等量关系式并求解.【详解】(1)∵姐姐到达终点是,妹妹距终点还有3米∴姐姐跑50米和妹妹跑47米的时间相同,设这个时间为:1k即:50471a b k == ∴a=50k ,b=47k 则再次比赛,姐姐的时间为:50350k +=5350k秒 妹妹的时间为:5047k秒 ∵532491502350k k =,502500472350k k= ∴5350k <5047k,即姐姐用时短,姐姐先到达终点 (2)情况一:姐姐退后x 米,两人同时到达终点 则:5050x k +=5047k,解得:x=15047 情况二:妹妹向前y 米,两人同时到达终点 则:5050k =5047y k -,解得:y=3 综上得:姐姐退后15047米或妹妹前进3米,两人同时到达终点 【点睛】本题考查行程问题,解题关键是引入辅助元k ,用于表示姐姐和妹妹的速度关系.29.玲玲和牛牛相约在小区笔直的步行道上健步走锻炼身体.两人都从步行道起点A 向终点B 走去.牛牛出发2分钟后,玲玲出发.又过了2分钟,牛牛停下来接了5分钟的电话,玲玲则以原速继续步行,与牛牛相遇后,玲玲的速度减少到原来的4走向终点B.牛牛接完电话后,提高速度向终点B走去,1.4分5钟后刚好追上玲玲,到达终点B后立即调头以提速后的速度返回起点A(调头时间忽略不计),玲玲、牛牛两人相距的路程y(米)与牛牛出发的时间x(分钟)之间的关系如图所示.(1)牛牛开始健步走的速度为_______米/分;(2)求玲玲开始健步走的速度和牛牛提速后的速度;(3)玲玲走到终点B后,停下来休息了一会儿.牛牛回到起点A后,立即调头仍以提速后的速度走向终点B,玲玲休息1分钟后以减速后的速度调头走向起点,A两人恰好在AB中点处相遇,求步行道AB的长度.【答案】(1)70;(2)玲玲开始健步走的速度为50米/分,牛牛提速后的速度为80米/分;(3)步行道AB的长度为624米.【解析】【分析】(1)根据第1段图像即可求得牛牛开始健步走的速度;(2)根据第2段图像即可求得玲玲开始健步走的速度,根据牛牛停下接了5分钟电话及需要1.4分钟刚好追上玲玲结合玲玲的速度可求得牛牛提速后的速度;(3)设AB的长度为a米,根据两人相遇后所用时间相同列出方程求解即可.【详解】解:(1)根据第1段图像可知,牛牛开始健步走的速度为:140÷2=70(米/分),故答案为:70;(2)根据第2段图像可知,玲玲开始健步走的速度比牛牛慢,且两人的速度差为:(180-140)÷2=20(米/分),∴玲玲开始健步走的速度为:70-20=50(米/分),根据题意可知第3段图像为牛牛接电话时玲玲追赶牛牛,则,追赶时间为180÷50=3.6(分),∵牛牛停下接了5分钟电话,∴第4段图像对应的时间是:5-3.6=1.4(分),此时玲玲的速度变为:50×45=40(米/分), ∵牛牛需要1.4分钟刚好追上玲玲∴牛牛提速后的速度为:40×(1.4+1.4)÷1.4=80(米/分),答:玲玲开始健步走的速度为50米/分,牛牛提速后的速度为80米/分;(3)由(2)可知牛牛追上玲玲时,两人的已行路程为:70×4+40×2.8=392(米)设AB 的长度为a 米,根据题意可知:113923922218040a a a a a -++-+=+解得624a =答:步行道AB 的长度为624米.【点睛】本题考查了一次函数图像的实际应用,读懂题意并结合图像正确理解两人的运动过程是解决本题的关键.30.通讯员骑摩托车要在规定的时间内把文件送到.他骑摩托车的速度是每小时36千米结果早到20分钟,若每小时30千米,就迟到12分钟.求规定时间是多少.【答案】3小时【解析】【分析】设规定时间为x 小时,两次行驶路程分别表示为1363x ⎛⎫- ⎪⎝⎭和1305x ⎛⎫+ ⎪⎝⎭,列方程,解方程即可.【详解】解:设规定时间为x 小时,由题意得11363035x x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭ 解得3x =答:规定时间是3小时.【点睛】本题考查了一元一次方程的应用,解题的关键是根据行程问题的数量关系“路程=速度×时间”两次表示出路程,由此列方程解决问题.。

2019-2020学年七年级数学上期末复习试卷(第1-3章)含答案

2019-2020学年七年级数学上期末复习试卷(第1-3章)含答案

2019-2020学年七年级数学上期末复习试卷(第1-3章)含答案【年12月4日】初一( )班 学号: 姓名: 成绩: 一、选择题(每小题3分,共30分,请将唯一正确答案的序号填在下面相应的表格中) 1. 我国以年11月1日零时为标准时点,进行了第六次全国人口普查. 查得常住人口约为12700000人,将12700000用科学记数法可表示为( * )A. 127510⨯B. 12.7610⨯C. 1.27710⨯D. 1.27810⨯2. 9442y x π的系数与次数分别为( * )A. 94,7B. π94,6C. π4,6D. π94,43. 对方程13122=--x x 去分母正确的是( * )A. ()61223=--x xB. ()11223=--x xC. 6143=--x xD. ()112=--x x4. 有理数3.645精确到百分位的近似数为( * )A. 3.6B. 3.64C. 3.7D. 3.65 5. 已知一个多项式与x x 932+的和等于1432-+x x ,则这个多项式是( * )A. 15--xB. 15+xC. -x 13 1D.11362-+x x6. 若4=x 是关于x 的方程42=-a x的解,则a 的值为( * )A. -6B. 2C. 16D. -27. 一个长方形的周长是26cm ,若这个长方形的长减少1cm ,宽增加2cm ,就可以成为一个正方形,则长方形的长是( * )A. 5cmB. 7cmC.8cmD. 9cm 8.甲比乙大15岁,5年前甲的年龄是乙的两倍,乙现在的年龄是( * )A.10岁B.15岁C.20岁D.30岁9.关于x 的方程(2k -1)x 2-(2k +1)x +3=0是一元一次方程,则k 值为( * )A.12 B.21- C.0 D.110.正方形ABCD 在数轴上的位置如图所示,点A 、D 对应的数分别为0和-1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1;则连续翻转次后,数轴上数所对应的点是( * ) A.点A B.点B C.点C D.点D二、填空题(每小题3分,共18分) 11.代数式2245--x x 的值为6,则2522--x x 的值为 .12.x 的三倍减去7,等于它的两倍加上5,用方程表示为 .13.若b a x 325-与5453+-y b a 是同类项,则=x __________,=y __________.14. 一个两位数,十位上的数字是m ,个位上的数字比十位上的数字多1,则这个两位数是(用m 表示). 15. 若34+x 与53互为倒数,则x = . 16. 下列图形都是由同样大小的平行四边形按一定的规律组成。

【人教版】七年级上期第3章 《一元一次方程》期末复习试卷及答案

【人教版】七年级上期第3章 《一元一次方程》期末复习试卷及答案

第一学期七年级数学期末复习专题一元一次方程姓名:_______________班级:_______________得分:_______________一选择题:1.若是一元一次方程,则m的值为 ( )A.±2B.-2C.2D.42.下列解方程过程中,变形正确的是()(A)由2x-1=3,得2x=3-1 (B)由2x-3(x+4) =5, 得2x-3x-4=5 (C)由-75x=76,得x=-(D)由2x-(x-1)=1,得2x-x=03.若x=-3是方程2(x-m)=6的解,则m的值为()A.6B.-6C.12D.-124.已知x=3是关于x的方程x+m=2x-1的解,则(m+1)2的值是( )A.1B.9C.0D.45.若|m|=3,|n|=7,且m﹣n>0,则m+n的值是()A.10B.4C.﹣10或﹣4D.4或﹣46.某企业 2015 年 1 月份生产产值为 a 万元,2 月份比 1 月份减少了 20%,3 月份比 2 月份增加了25%,则 3 月份的生产产值是()A.(a﹣20%)(a+25%)万元B.a(1﹣20%+25%)万元C.(a﹣20%+25%)万元D.a(1﹣20%)(1+25%)万元7.把方程3x+=3-去分母,正确的是( )A. B.C. D.8.把方程中的分母化为整数,正确的是()A. B.C. D.9.已知方程的解满足,则的值是()A. B. C.或 D.任何数10.关于 x 的方程 5x﹣a=0 的解比关于 y 的方程 3y+a=0 的解小 2,则 a 的值是()A. B.﹣ C. D.﹣11.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a元后,再次打7折,现售价为b元,则原售价为()A. B. C. D.12.如图所示的运算程序中,若开始输入的值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,……第2013次输出的结果为()A.3B.6C.4D.113.一列火车长m米,以每秒n米的速度通过一个长为p米的桥洞,用代数式表示它刚好全部通过桥洞所需的时间为()A.秒B.秒C.秒D.秒14.三个连续正整数的和不大于15,则符合条件的正整数有()A.2组B.4组C.8组D.12组15.方程|x+1|+|x-3|=4的整数解有( )(A)2个 (B)3个 (C)5个 (D)无穷多个16.足球比赛的积分规则为胜一场得3分,平一场得1分,负一场得0分.一个球队打了14场,负5场,共得19分,那么这个球队胜了()A.3场B.4场C.5场D.6场17.按下面的程序计算:若输入x=100,输出结果是501,若输入x=25,输出结果是631,若开始输入的x值为正整数,最后输出的结果为556,则开始输入的x值可能有()A.1种B.2种C.3种D.4种18.某商场卖出两个进价不同的手机,都卖了1200元,其中一个盈利50%,另一个亏本20%,在这次买卖中,这家商场()A.不赔不赚B.赔100元C.赚100元D.赚360元19.用绳子量井深:把绳子三折来量,井外余4尺;把绳子四折来量,井外余1尺,则井深和绳长分别是().(A)8尺,36尺(B)3尺,13尺(C)10尺,34尺(D)11尺,37尺20.如图,甲乙两人同时沿着边长为30米的等边三角形,按逆时针的方向行走,甲从A以65米/分的速度,乙从B以71米/分的速度行走,当乙第一次追上甲时在等边三角形的()A.AB边上B.点B处C.BC边上D.AC边上二填空题:21.如果x2m﹣1+8=0是一元一次方程,则m= .22.若(m-2)x=5是一元一次方程,则m的值为23.兰兰同学买了铅笔m支,每支0.8元,买了练习本n本每本2元,则她买铅笔和练习本一共花费了元.24.一件服装进价200元,按标价的8折销售,仍可获利10%,该服装的标价是元.25.若一个两位数的个位数字是x,十位数字比个位数字少1,则这个两位数是。

浙教版-7年级-上册-数学《第1-3章月考测试卷》1-含答案

浙教版-7年级-上册-数学《第1-3章月考测试卷》1-含答案

浙教版-7年级-上册-数学《第1-3章月考测试卷》1 学校:年级:学生姓名:得分:一、选择题(共10小题)1、下列四个数中,比0小的数是()A.B.C.πD.2、一个潜水员从水面潜入水下50米,然后又上升32米,此时潜水员的位置是()A.水下82米B.水下32米C.水下28米D.水下18米3、下列运算正确的是()A.=±2 B.C.(﹣3)2=﹣9 D.4、近似数3.5万,精确到()A.个位B.千位C.百位D.十分位5、下列各组数中,数值相等的是()A.32和23B.﹣23和(﹣2)3C.﹣|23|和|﹣23| D.﹣32和(﹣3)26、数轴上到﹣1的距离等于3的点所表示的数是()A.±2 B.±4 C.﹣4或2 D.﹣2或4⑥中,是无理数的是()7、在①﹣2,②,③,④ 3.14,⑤,A.②③⑤B.②③⑤⑥C.③⑤⑥D.③⑥8、下列说法:其中正确的个数是()①任何无理数都是无限不循环小数;②整数与数轴上的点一一对应;③在1和3之间的无理数只有这4个;④ a、b互为相反数,则a+b=0.A.1个B.2个C.3个D.4个9、实数a、b在数轴上的位置如图,则|a+b|﹣|a﹣b|等于()A.2a B.2b C.2b﹣2a D.2b+2a10、下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依次规律,图⑩中黑色正方形的个数是()A.32 B.29 C.28 D.26二、填空题(共8小题)11、的倒数是.12、81的平方根是.13、计算:12×()=.14、绝对值不大于3的所有整数的和等于.15、(a﹣3)2+|2a+b﹣3|=0,则b a=.16、若的整数部分是a,小数部分是b,计算2a+b﹣的值.17、有一个正方体的集装箱,原体积为125m3,现准备将其扩容以盛放更多的货物,若要使其体积达到343m3,则它的棱长需要增加m.18、设a,b,c为不为零的实数,且a为负数,x=,则x的所有可能取值为.三、解答题(共6小题)19、把下列各数表示到数轴上,并将它们从小到大用“<”连接.﹣3, 0,,﹣(﹣2.5),.20、把下列各数的序号填在相应的数集内:①﹣2.5,② 0,③ +8,④,⑤﹣2,⑥,⑦,⑧,⑨1.010010001.(1)负数集合{ };(2)正分数集合{ };(3)整数集合{ };(4)无理数集合{ }。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一级数学《第一~第三单元》综合检测【2013年12月4日】初一( )班 学号: 姓名: 成绩: 一、选择题(每小题3分,共30分,请将唯一正确答案的序号填在下面相应的表格中)1. 我国以2010年11月1日零时为标准时点,进行了第六次全国人口普查. 查得广州市常住人口约为12700000人,将12700000用科学记数法可表示为( * )A. 127510⨯B. 12.7610⨯C. 1.27710⨯D. 1.27810⨯2. 9442y x π的系数与次数分别为( * )A. 94,7B. π94,6C. π4,6D. π94,43. 对方程13122=--x x 去分母正确的是( * )A. ()61223=--x xB. ()11223=--x xC. 6143=--x xD. ()112=--x x4. 有理数3.645精确到百分位的近似数为( * ) A. 3.6 B. 3.64 C. 3.7 D. 3.655. 已知一个多项式与x x 932+的和等于1432-+x x ,则这个多项式是( * )A. 15--xB. 15+xC. -x 13 1D. 11362-+x x 6. 若4=x 是关于x 的方程42=-a x的解,则a 的值为( * )A. -6B. 2C. 16D. -27. 一个长方形的周长是26cm ,若这个长方形的长减少1cm ,宽增加2cm ,就可以成为一个正方形,则长方形的长是( * )A. 5cmB. 7cmC.8cmD. 9cm8.甲比乙大15岁,5年前甲的年龄是乙的两倍,乙现在的年龄是( * ) A.10岁 B.15岁 C.20岁 D.30岁9.关于x 的方程(2k -1)x 2-(2k +1)x +3=0是一元一次方程,则k 值为( * )A.12B.21- C.0 D.110.正方形ABCD 在数轴上的位置如图所示,点A 、D 对应的数分别为0和-1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1;则连续翻转2014次后,数轴上数2014所对应的点是( * ) A.点A B.点B C.点C D.点DBACD二、填空题(每小题3分,共18分) 11.代数式2245--x x 的值为6,则2522--x x 的值为 . 12.x 的三倍减去7,等于它的两倍加上5,用方程表示为 . 13.若b a x 325-与5453+-y b a 是同类项,则=x __________,=y __________.14. 一个两位数,十位上的数字是m ,个位上的数字比十位上的数字多1,则这个两位数是 (用m 表示). 15. 若34+x 与53互为倒数,则x = . 16. 下列图形都是由同样大小的平行四边形按一定的规律组成。

其中,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,……,则第⑥个图形中平行四边形的个数是 .三、解答题(本大题共6小题,共52分)17.计算或解方程(4分+5分+4分+5分,共18分) ⑴⎥⎦⎤⎢⎣⎡--⨯---22012)21(4)5332(1 ⑵)2(161)32()31()2(42-⨯-+-÷--+-⑶ 4)20(34-=--x x ⑷31652--=+-x x x18.(本题6分)若236m xm -+=是关于x 的一元一次方程,试求整式20133)(+x 的值.19.(本题6分)先化简,再求值: 222233[22()]2x y xy xy x y x y ---+,其中31,3-==y x .20.(本题6分,要求列一元一次方程求解...........)某商店进了一批商品,以高出进价的30%后标价,又以8折卖出,结果仍获利200元,这种商品的进价为多少元?21.(本题7分)对有理数d c b a ,,,规定一种运算:a c b d =ad bc -.那么当)(x x --12 54=14时,求x 的值.某校七年级(1)(2)两个班共104人去游园,其中(1)班有40多人,不足50人。

经估算,如果两个班都以班为单位购票,则一共应付1240元.问: (1)两班各有多少学生?(5分,要求列一元一次方程求解...........) (2)如果两班联合起来,作为一个团体购票,可省多少钱?(2分)(3)如果(1)班单独组织去游园,作为组织者的你将如何购票才最省钱?(2分)四、附加题:(本题5分,可记入总分,但总分不得超过100分)如图,在长方形ABCD 中,AB =6,CB =8,点P 与点Q 分别是AB 、CB 边上的动点,点P 与点Q 同时出发,点P 以每秒2个单位长度的速度从点A →点B 运动,点Q 以每秒1个单位长度的速度从点C →点B 运动.当其中一个点到达终点时,另一个点随之停止运动.设运动时间为t 秒. (1)如果存在某一时刻恰好使QB =2PB ,求出此时t 的值;(3分)(2)在(1)的条件下,求图中阴影部分的面积.(2分)初一数学《第一~第三单元》综合检测【参考答案】初一( )班 学号: 姓名: 成绩: 一、选择题(每小题3分,共30分,请将唯一正确答案的序号填在下面相应的表格中)人口约为12700000人,将12700000用科学记数法可表示为( * )A. 127510⨯B. 12.7610⨯C. 1.27710⨯D. 1.27810⨯2. 9442y x π的系数与次数分别为( * )A. 94,7B. π94,6C. π4,6D. π94,43. 对方程13122=--x x 去分母正确的是( * )A. ()61223=--x xB. ()11223=--x xC. 6143=--x xD. ()112=--x x4. 有理数3.645精确到百分位的近似数为( * ) A. 3.6 B. 3.64 C. 3.7 D. 3.655. 已知一个多项式与x x 932+的和等于1432-+x x ,则这个多项式是( * )A. 15--xB. 15+xC. -x 13 1D. 11362-+x x 6. 若4=x 是关于x 的方程42=-a x的解,则a 的值为( * )A. -6B. 2C. 16D. -27. 一个长方形的周长是26cm ,若这个长方形的长减少1cm ,宽增加2cm ,就可以成为一个正方形,则长方形的长是( * )A. 5cmB. 7cmC.8cmD. 9cm9.甲比乙大15岁,5年前甲的年龄是乙的两倍,乙现在的年龄是( * ) A.10岁 B.15岁 C.20岁 D.30岁9.关于x 的方程(2k -1)x 2-(2k +1)x +3=0是一元一次方程,则k 值为( * )A.12B.21- C.0 D.110.正方形ABCD 在数轴上的位置如图所示,点A 、D 对应的数分别为0和-1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1;则连续翻转2014次后,数轴上数2014所对应的点是( * ) A.点A B.点B C.点C D.点DBACD二、填空题(每小题3分,共18分)11.代数式2245--x x 的值为6,则2522--x x 的值为 3 . 12.x 的三倍减去7,等于它的两倍加上5,用方程表示为 5273+=-x x .13.若b a x 325-与5453+-y b a 是同类项,则=x 4 ,=y −1 .14. 一个两位数,十位上的数字是m ,个位上的数字比十位上的数字多1,则这个两位数是 11m +1 (用m 表示). 15. 若34+x 与53互为倒数,则x = 1 . 16. 下列图形都是由同样大小的平行四边形按一定的规律组成。

其中,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,……,则第⑥个图形中平行四边形的个数是 41 .三、解答题(本大题共6小题,共52分) 17、计算或解方程(4分+5分+4分+5分=18分)⑴⎥⎦⎤⎢⎣⎡--⨯---22012)21(4)5332(1. ⑵)2(161)32()31()2(42-⨯-+-÷--+- 解:原式=)(4141511-⨯-- 解:原式=)()()(161612344-⨯+-⨯-+=4151511⨯--=411- =164-+=9⑶ 4)20(34-=--x x ⑷31652--=+-x x x 解:去括号得43604-=+-x x 解:去分母得)()(126512--=+-x x x 移项合并得567=x 去括号得 226512+-=--x x x 系数化为1得8=x 移项合并得 55-=-x 系数化为1 1=x18.(本题6分)若236m xm -+=是关于x 的一元一次方程,试求整式20133)(+x 的值.解:由题意得132=-m , 解得2=m ,再把2=m 代入原方程得26=+x , 解得4-=x 所以20133)(+x = 113420132013-=-=+-)()( 19.(本题6分)先化简,再求值:222233[22()]2x y xy xy x y x y ---+,其中31,3-==y x .解:原式=][22223223y x y x xy xy y x ++-- =22223223y x y x xy xy y x --+- =22y x - 当31,3-==y x 时,原式=22313)(-⨯-=1-20.(本题6分,要求列一元一次方程求解...........)某商店进了一批商品,以高出进价的30%后标价,又以8折卖出,结果仍获利200元,这种商品的进价为多少元? 解:设这种商品的进价为x 元,根据题意得:20080301=-⨯+x x %%)( 解得 200041=-x x . 200040=x . 5000=x 经检验, 5000=x 是方程的解,且符合题意. 答:这种商品的进价为5000元.22.(本题7分)对有理数d c b a ,,,规定一种运算:a c b d =ad bc -.那么当)(x x --12 54=14 时,求x 的值.解:由题意得 141410=---)(x x 去括号得 144410=+--x x 移项合并得 186=-x 系数化为 3-=x某校七年级(1)(2)两个班共104人去游园,其中(1)班有40多人,不足50人。

经估算,如果两个班都以班为单位购票,则一共应付1240元.问:(1)两班各多少学生?(5分,要求列一....元一次方程求解.......) (2)如果两班联合起来,作为一个团体购票,可省多少钱?(2分)(3)如果(1)班单独组织去游园,作为组织者的你将如何购票才最省钱?(2分) 解:(1)因为两个班共104人,而(1)又不足50人,所以(2)超过50人.假设(1)有学生为x 人,则(2)有学生为(104 - x )人,依题意得: 13x + 11(104 - x )= 1240 解得 13x + 1144 - 11x = 1240x = 48 104 - x = 56经检验, 48=x 是方程的解,且x = 48与104 - x = 56符合题意. 答:七年级(1)班有学生48人,(2)班有56人.(2)如果两班联合起来,作为一个团体购票,则应该购票104张.需付票款104×9=936元.可以节省1240-936=304元.(3)如果(1)班单独组织去游园,按48人购票,则需付票款48×13=624元.按51人购票,则需付票款51×11=561元.因561<624,所以,购买51人的团体票最省钱. 四、附加题:(本题5分,可记入总分,但总分不得超过100分)如图,在长方形ABCD 中,AB =6,CB =8,点P 与点Q 分别是AB 、CB 边上的动点,点P 与点Q 同时出发,点P 以每秒2个单位长度的速度从点A →点B 运动,点Q 以每秒1个单位长度的速度从点C →点B 运动.当其中一个点到达终点时,另一个点随之停止运动.设运动时间为t 秒. (1)如果存在某一时刻恰好使QB =2PB ,求出此时t 的值;(3分)(2)在(1)的条件下,求图中阴影部分的面积.(2分)解:(1)依题意得AP =2t, PB =AB - AP = 6 - 2t, CQ =t, BQ =BC - CQ = 8 - t. 若QB =2PB ,则8 - t = 2(6 - 2t )解得 8- t =12 - 4t34=t 答:34=t 时恰好使QB =2PB. (2)当34=t 时, PB =31038626=-=-t , BQ =3203488=-=-t ,93323203102186-=⨯⨯-⨯==BPQ ABCD S S S ∆正方形阴影。

相关文档
最新文档