2019一轮复习《高考调研》全套复习课件和练习5-1-文档资料

合集下载

专题30 数列求和5题型分类-备战2025年高考数学一轮专题复习全套考点突破和专题检测(原卷版)

专题30 数列求和5题型分类-备战2025年高考数学一轮专题复习全套考点突破和专题检测(原卷版)

专题30数列求和5题型分类数列求和的几种常用方法1.公式法直接利用等差数列、等比数列的前n项和公式求和.(1)等差数列的前n项和公式:S n=n(a1+a n)2=na1+n(n-1)2d.(2)等比数列的前n项和公式:S n1,=a1(1-q n)1-q,q≠1.2.分组求和法与并项求和法(1)分组求和法若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.(2)并项求和法一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如a n=(-1)n f(n)类型,可采用两项合并求解.3.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的.4.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.常见的裂项技巧(1)1n (n +1)=1n -1n +1.(2)1n (n +2)=(3)1(2n -1)(2n +1)=(4)1n +n +1=n +1-n .(5)1n (n +1)(n +2)=121n (n +1)-1(n +1)(n +2).常用结论常用求和公式(1)1+2+3+4+…+n =n (n +1)2.(2)1+3+5+7+…+(2n -1)=n 2.(3)12+22+32+…+n 2=n (n +1)(2n +1).(4)13+23+33+…+n 3=n (n +1)22.(一)分组求和(1)若数列{c n }的通项公式为c n =a n ±b n ,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.(2)若数列{c n }的通项公式为c n =a n ,n 为奇数,b n ,n 为偶数,其中数列{a n },{b n }是等比数列或等差数列,可采用分组求和法求{c n }的前n 项和.(二)错位相减法求和(1)如果数列{a n}是等差数列,{b n}是等比数列,求数列{a n·b n}的前n项和时,常采用错位相减法.(2)错位相减法求和时,应注意:①在写出“S n”与“qS n”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“S n-qS n”的表达式.②应用等比数列求和公式时必须注意公比q是否等于1,如果q=1,应用公式S n=na1.b(三)裂项相消法的原则及规律(1)裂项原则一般是前面裂几项,后面就裂几项,直到发现被消去项的规律为止.(2)消项规律消项后前面剩几项,后面就剩几项,前面剩第几项,后面就剩倒数第几项.2(四)倒序相加法将一个数列倒过来排列,当它与原数列相加时,若有规律可循,并且容易求和,则这样的数列求和时可用倒序相加法(等差数列前n项和公式的推导即用此方法).一、单选题1.(2024高二上·陕西西安·阶段练习)数列9,99,999,…的前n 项和为A .109(10n -1)+n B .10n -1C .109(10n -1)D .109(10n -1)-n 2.(2024高二下·湖北·阶段练习)高斯(Gauss )被认为是历史上最重要的数学家之一,并享有“数学王子”之称.小学进行123100++++L 的求和运算时,他这样算的:1100101+=,299101+=,…,5051101+=,共有50组,所以501015050⨯=,这就是著名的高斯算法,课本上推导等差数列前n 项和的方法正是借助了高斯算法.已知正数数列{}n a 是公比不等于1的等比数列,且120231a a =,试根据以上提示探求:若24()1f x x =+,则()()()122023f a f a f a +++= ()A .2023B .4046C .2022D .40443.(2024高三下·江西·开学考试)已知数列21443n n ⎧⎫⎨⎬+-⎩⎭的前n 项和为n T ,若对任意的*n ∈N ,不等式263n T a a <-恒成立,则实数a 的取值范围是()A .2,[1,)3⎛⎤-∞-+∞ ⎥⎝⎦ B .2(,1],3⎡⎫-∞-+∞⎪⎢⎣⎭ C .2,13⎡⎤-⎢⎥⎣⎦D .2,(1,)3x ⎛⎫--+∞ ⎪⎝⎭ 4.(2024·浙江)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则()A .100332S <<B .10034S <<C .100942S <<D .100952S <<二、填空题5.(2024高二下·江苏南京·期中)已知数列{}i a 的项数为()N n n *∈,且1C (1,2,)i i n i n a a i n -++== ,则{}i a 的前n 项和n S 为.6.(2024高二上·湖北黄冈·期末)1202年意大利数学家列昂那多-斐波那契以兔子繁殖为例,引人“兔子数列”,又称斐波那契数列,即11235813213455 ,,,,,,,,,,该数列中的数字被人们称为神奇数,在现代物理,化学等领域都有着广泛的应用.若此数列各项被3除后的余数构成一新数列{}n a ,则数列{}n a 的前2022项的和为.7.(2024高二上·上海黄浦·期中)数列()()()22311,(12),122,1222,,122,n -+++++++++ 的前n 项和为.8.(2024高三下·全国·开学考试)现取长度为2的线段MN 的中点1M ,以1MM 为直径作半圆,该半圆的面积为1S (图1),再取线段1M N 的中点2M ,以12M M 为直径作半圆.所得半圆的面积之和为2S (图2),再取线段2M N 的中点3M ,以23M M 为直径作半圆,所得半圆的面积之和为3S ,以此类推,则1ni i iS ==∑.9.(2024高三·全国·对口高考)已知函数4()42x x f x =+,则()(1)f x f x +-=;数列{}n a 满足2016n n a f ⎛⎫= ⎪⎝⎭,则这个数列的前2015项的和等于.10.(2024·江苏·模拟预测)若数列{}n a 满足C (1,2,3,,1)ii n i n a a i n -+==- ,12n a =,则{}n a 的前n 项和为.11.(2024高三·全国·专题练习)已知{}n a 为无穷等比数列,13a =,n a 的各项和为9,2n n b a =,则数列{}n b 的各项和为.12.(2024·全国)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm 12dm ⨯的长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,它们的面积之和22180dm S =,以此类推,则对折4次共可以得到不同规格图形的种数为;如果对折n 次,那么1nkk S==∑2dm .13.(2024·湖北·模拟预测)“数学王子”高斯是近代数学奠基者之一,他的数学研究几乎遍及所有领域,并且高斯研究出很多数学理论,比如高斯函数、倒序相加法、最小二乘法、每一个n 阶代数方程必有n 个复数解等.若函数()22log 1x f x x =-,设()112311,,2n n a a f f f f n n n n n n -⎛⎫⎛⎫⎛⎫⎛⎫==++++∈≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭N ,则1210a a a +++=.14.(2024·黑龙江齐齐哈尔·三模)已知数列{}n a 的前n 项和为n S ,且1211121n n S S S n ++⋅⋅⋅+=+,设函数()1cos π2f x x =+,则32021122022202220222022a a a a f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.15.(2024高三上·河北·阶段练习)德国大数学家高斯年少成名,被誉为数学届的王子,19岁的高斯得到了一个数学史上非常重要的结论,就是《正十七边形尺规作图之理论与方法》.在其年幼时,对123100+++⋯⋯+的求和运算中,提出了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律生成,因此,此方法也称之为高斯算法,现有函数()xf x ={}n a 满足()121(0)(1)N n n a f f f f f n n n n *-⎛⎫⎛⎫⎛⎫=+++++∈ ⎪ ⎪⎝⎭⎝⎭⎝⎭,若12n n n b a +=,则{}n b 的前n 项和n S =.16.(2024高三上·福建泉州·期中)已知12cos 2cos x x f x x +⎛⎫+= ⎪⎝⎭,则202112022i i f =⎛⎫=⎪⎝⎭∑.17.(2024高三·全国·对口高考)数列()55,55,555,5555,,101,9n- 的前n 项和n S =.18.(2024高二上·湖北黄冈·期末)已知{}n a 的前n 项和为n S ,()()1221n n n n aa n +++-=,50600S =,则12a a +=.三、解答题19.(2024高一下·山西·阶段练习)已知数列{}221:1,12,122,,1222,-+++++++ n n a ,求数列{}n a 的前n 项和n S .20.(2024高三上·河北·期末)已知数列{}n a 满足312232222n na a a a n ++++= .(1)求数列{}n a 的通项公式;(2)若2log n n b a =,求数列11n n b b +⎧⎫⎨⎬⋅⎩⎭的前n 项和.21.(2024高三上·河北邯郸·阶段练习)已知数列{}n a 的前n 项和为n S ,且满足11340,4n n a S a +--==.(1)证明:数列{}n a 是等比数列;(2)求数列{}n na 的前n 项和n T .22.(2024·陕西商洛·模拟预测)已知公差为正数的等差数列{}n a 的前n 项和为2,3n S a =,且136,,23a a a +成等比数列.(1)求n a 和n S .(2)设n b =,求数列{}n b 的前n 项和n T .23.(2024高三上·海南·期末)已知数列{}n a 满足14a =,*122(N )n n a a n +=+∈.(1)求数列{}n a 的通项公式;(2)若1n n n b a a +=+,求数列{}n b 的前n 项和n S .24.(2024高一下·广东梅州·期末)已知等差数列{}n a 的前四项和为10,且237,,a a a 成等比数列(1)求通项公式na (2)设2n an b =,求数列n b 的前n 项和nS 25.(2024高三上·辽宁大连·期末)已知数列{}n a 满足:()*111,1,2,n n n a n a a n a n +-⎧==∈⎨⎩N 为奇数为偶数.设21n n b a -=.(1)证明:数列{}2n b -为等比数列,并求出{}n b 的通项公式;(2)求数列{}n a 的前2n 项和2n S .26.(2024高三上·重庆·阶段练习)已知数列{}n a 中,2122a a ==,且22,4,n n na n a a n ++⎧=⎨⎩为奇数为偶数.(1)求{}n a 的通项公式;(2)求{}n a 的前10项和10S .27.(2024·云南红河·一模)已知等比数列{}n a 的前n 项和为n S ,其中公比451211,8a a q a a +≠-=+,且378S =.(1)求数列{}n a 的通项公式;(2)若2log ,1, n n na nb n a ⎧⎪=⎨⎪⎩为奇数为偶数,求数列}n b 的前2n 项和2n T .28.(2024·全国·模拟预测)已知数列{}n a 的前n 项积为,0,2nn n n n T T a a T ≠=-.(1)求证:数列{}n T 是等差数列,并求数列{}n a 的通项公式;(2)令()()()11111n n n n b a a -+=-+-,求数列{}n b 的前n 项和n S .29.(2024高三上·云南·阶段练习)已知数列{}n a 满足:312232222n n a a a a n +++⋅⋅⋅+=(*n ∈N ),数列{}n b 满足5012n n b a =+.(1)求数列{}n a 的通项公式;(2)求1299b b b ++⋅⋅⋅+.30.(2024高二下·江西萍乡·期末)已知函数()142xa f x =++关于点11,22⎛⎫⎪⎝⎭对称,其中a 为实数.(1)求实数a 的值;(2)若数列{}n a 的通项满足2023n n a f ⎛⎫=⎪⎝⎭,其前n 项和为n S ,求2022S .31.(2024高三上·天津河北·期末)已知{}n a 是等差数列,其公差d 不等于0,其前n 项和为{},n n S b 是等比数列,且11223131,,2a b a b S a b ===-=.(1)求{}n a 和{}n b 的通项公式;(2)求数列{}n n a b 的前n 项和n T ;(3)记1222n n n n a c a a ++=,求{}n c 的前n 项和n P .32.(2024高三·全国·专题练习)记n S 为数列{}n a 的前n 项和,()1121n n a S n a ==+,,.(1)求{}n a 的通项公式;(2)求数列12n n a -⎧⎫⎨⎬⎩⎭的前n 项和n T .33.(2024高三上·全国·期末)数列{}n a 为等差数列,{}n b 为等比数列,公比11223303,1,4,12q a b a b a b <<====.(1)求{}{}n n a b 、的通项公式;(2)求数列{}nna b 的前n 项和.34.(2024·吉林白山·一模)已知等比数列{}n a 满足12a =,且2420a a +=.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足n n b n a =⋅,{}n b 其前n 项和记为n S ,求n S .35.(2024·全国·模拟预测)已知{}2n n a 是等差数列,n a n ⎧⎫⎨⎬⎩⎭是等比数列.(1)求证:12a a =;(2)记{}n a 的前n 项和为n S ,对任意*n ∈N ,16n S ≤≤,求1a 的取值范围.36.(2024高二上·湖南张家界·阶段练习)已知等差数列{}n a 满足24a =,4527a a -=,公比不为1-的等比数列{}n b 满足34b =,()45128b b b b +=+.(1)求{}n a 与{}n b 通项公式;(2)设()*13N n n n c n a a +=∈⋅,求{}n c 的前n 项和n S .37.(2024·全国·模拟预测)已知正项等比数列{}n a 的前n 项和为n S ,且425S S =,222n n a a =.(1)求数列{}n a 的通项公式;(2)设11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .38.(2024·新疆·一模)非零数列{}n a 满足()()()()*112212n n n n n n n a a a a a a a n +++++--=-∈N ,且121,2a a ==.(1)设1nn n na b a a +=-,证明:数列{}n b 是等差数列;(2)设11n n n c a a +=,求{}n c 的前n 项和n T .39.(2024高三上·辽宁沈阳·期中)已知正项数列{}n a 的前n 项和为n S ,且满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,(1)求nS (2)求12233411111n n S S S S S S S S ++++⋯+++++40.(2024·广东广州·模拟预测)设数列{}n a 的前n 项和为n S ,且21n n S a =-.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足2log ,,n n na nb a n ⎧=⎨⎩为奇数为偶数,求数列{}n b 的前2n 项和2n T .41.(2024高三上·山西忻州·阶段练习)已知数列{}n a 的前n 项和为n S ,123a =-,1322n n S S +=-(*n ∈N ).(1)求{}n a 的通项公式;(2)设数列{}n b ,{}n c 满足()32log n n b a =-,n n n c a b =+,求数列{}n c 的前n 项和n T .42.(2024·四川攀枝花·二模)已知数列{}n a 满足()*1144,313n n na a a n a +=-=∈-N .(1)证明:11n a ⎧⎫+⎨⎬⎩⎭是等比数列;(2)求数列1n n a ⎧⎫+⎨⎬⎩⎭的前n 项和n S .43.(2024高二上·黑龙江哈尔滨·期末)已知数列{}n a 的前n 项和为n S ,且2321n n S a n =-+.(1)求数列{}n a 的通项公式;(2)若2n n b a =,求数列{}n b 的前n 项和n T .44.(2024高三上·云南曲靖·阶段练习)已知数列{}n a 是公差为()0d d ≠的等差数列,n S 是{}n a 的前n 项和,n *∈N .(1)若11a =,且22n n a a =,求数列{}n a 的通项公式;(2)若13a d =,数列{}n b a 的首项为1a ,满足13n n b b a a +=,记数列{}n b 的前n 项和为n T ,求5T .45.(2024高三上·广东东莞·期末)数列{}n a 的前n 项积为n T ,且满足()()1122n T n n =++.(1)求数列{}n a 的通项公式;(2)记()1ln nn n b a =-,求数列{}n b 的前2n 项和2n S .46.(2024·全国·模拟预测)已知数列{}n a 满足11334n n a a a +==-,,记)23n n b a =-+.(1)求数列{}n b 的通项公式;(2)已知()1111n n n n n b c b b +++=-⋅,记数列{}n c 的前n 项和为n S .求证:221n S ≥.47.(2024高二下·福建厦门·阶段练习)数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项积为n T ,且()()**21,!n n n S a n T n n =-∈=∈N N .(1)求{}n a 和{}n b 的通项公式;(2)若,,n n na n cb n ⎧=⎨⎩为奇数为偶数,求{}n c 的前n 项和n P .48.(2024高三上·云南德宏·阶段练习)已知数列{}n a 的前n 项和为n S ,满足2n n S a n =-.(1)求数列{}n a 的通项公式;(2)设()()211n n b n a =++,求数列{}n b 的前n 项和n T .49.(2024高三上·河北廊坊·期末)已知数列{}n a 是递增的等比数列,142332,12a a a a =+=.(1)求数列{}n a 的通项公式;(2)若()()1111n n n n a b a a ++=++,求数列{}n b的前n 项和n S .50.(2024·四川绵阳·二模)已知等差数列{}n a 的前n 项和为n S ,且5645,60S S ==.(1)求{}n a 的通项公式;(2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T .51.(2024高三·全国·专题练习)仓库有一种堆垛方式,如图所示,最高一层2盒,第二层6盒,第三层12盒,第四层20盒,第五层30盒,L,请你寻找至少两个堆放的规律.52.(2024·广东广州·三模)已知正项数列{}n a 和{},n n b S 为数列{}n a 的前n 项和,且满足242n n n S a a =+,()*22log n n a b n N =∈(1)分别求数列{}n a 和{}n b 的通项公式;(2)将数列{}n a 中与数列{}n b 相同的项剔除后,按从条到大的顺序构成数列{}n c ,记数列{}n c 的前n 项和为n T ,求100T .53.(2024·湖南岳阳·三模)已知等比数列{}n a 的前n 项和为n S ,其公比1q ≠-,4578127a a a a +=+,且4393S a =+.(1)求数列{}n a 的通项公式;(2)已知13log ,,n n n a n b a n ⎧⎪=⎨⎪⎩为奇数为偶数,求数列{}n b 的前n 项和n T .54.(2024·湖南衡阳·模拟预测)已知等差数列{}n a 与等比数列{}n b 的前n 项和分别为:,n n S T ,且满足:()21413,2n n n S a S n +==+,22214n n n T S n n -=---(1)求数列{}{},n n a b 的通项公式;(2)若,2n nn c n S =⎨⎪⎩为奇数为偶数求数列{}n c 的前2n 项的和2n U .55.(2024高三下·湖南常德·阶段练习)已知数列{}n a ,{}n b ,n S 为数列{}n a 的前n 项和,210,4n a a b =>,若12a =,()2211202n n n n a a a a n ----=≥,且()211n n nb n b n n +-+=+,*N n ∈.(1)求数列{}{},n n a b 的通项公式;(2)若数列{}n c 的通项公式为,2,4n n n n n a b n c a b n ⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数,令n T 为{}n c 的前n 项的和,求2n T .56.(2024高三上·江苏南京·阶段练习)已知等比数列{}n a 的公比1q >,前n 项和为n S ,满足:234613,3S a a ==.(1)求{}n a 的通项公式;(2)设1,,n n n a n b b n n -⎧=⎨+⎩为奇数为偶数,求数列{}n b 的前2n 项和2n T .57.(2024·广东汕头·一模)已知数列{}n a 的前n 项和为n S ,()*322n n a S n n N =+∈.(1)证明:数列{}1n a +为等比数列,并求数列{}n a 的前n 项和为n S ;(2)设()31log 1n n b a +=+,证明:222121111n b b b ++⋅⋅⋅+<.58.(2024·浙江宁波·模拟预测)设各项均为正数的数列{}n a 的前n 项和为n S ,满足()()222*330,n n S n n S n n n N -+--+=∈.(1)求1a 的值:(2)求数列{}n a 的通项公式:(3)证明:对一切正整数n244⎫+≤-⎪⎭.59.(2024高三上·天津和平·阶段练习)已知{}n a 为等差数列,前n 项和为(){},*∈n n S n N b 是首项为2的等比数列,且公比大于0,2334111412,2,11b b b a a S b +==-=.(1){}n a 和{}n b 的通项公式;(2)求数列{}2n n a b ⋅的前8项和8T ;(3)证明:()212591nii i b b =<-∑.60.(2024·河北沧州·模拟预测)已知数列{}n a 为等差数列,n S 为其前n 项和,若34102252,33+==a a S .(1)求数列{}n a 的通项公式;(2)若()22π1cos3n n n b a =+,求数列{}n b 的前18项和18T .61.(2024·湖北武汉·模拟预测)已知数列{}n a 满足211222,1,3nn n n a a a a a +++-===.(1)求数列{}n a 的通项公式;(2)求111222(1)n n n n n a a +++⎧⎫⎛⎫+-⎪⎪-⋅⎨⎬ ⎪⎪⎪⎝⎭⎩⎭的前n 项和n T .62.(2024·安徽合肥·模拟预测)设数列{}n a 的前n 项和为n S ,已知21342n n n n S S S a +++=-,11a =,23a =.(1)证明:数列{}12n n a a +-是等差数列;(2)记22(1)n n n a b n n++=+,n T 为数列{}n b 的前n 项和,求n T .63.(2024·浙江·模拟预测)已知数列{}n a 满足2*11,N ,5n n a a n a +=∈=.(1)求数列{}n a 的通项;(2)设22,1n n n n a b S a =-为数列{}n b 的前n 项和,求证12n S <.64.(2024·江西南昌·三模)已知n S 是数列{}n a 的前n 项和,满足()111n n n S S n n a ++=+,且112a =.(1)求n S ;(2)若()221n n b n a =+,求数列{}n b 的前n 项和n T .65.(2024·山东烟台·三模)已知数列{}()11,1,11n n n a a na n a +=-+=.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足()1πsin cos π2n n n b a a +⎛⎫=+ ⎪⎝⎭,求数列{}n b 的前2n 项和2nT66.(2024·福建漳州·模拟预测)已知数列{}n a 的前n 项和为n S ,且11a =,21nnS n a =+.(1)求{}n a 的通项公式;(2)记数列12log n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求集合{}*10,N k k T k ≤∈中元素的个数.67.(2024·福建厦门·模拟预测)已知数列{}n a 满足111,12nn n a a a a +==+.(1)证明1n a ⎧⎫⎨⎬⎩⎭为等差数列,并{}n a 的通项公式;(2)设214n n n c n a a +=,求数列{}n c 的前n 项和n T .68.(2024高三上·河北邢台·阶段练习)已知数列{}n a 的前n 项和为n S ,且231n n S a =-.(1)求{}n a 的通项公式;(2)若()()1311n n n n b a a +=++,求数列{}n b 的前n 项和n T .69.(2024高三上·江西赣州·阶段练习)已知等差数列{}n a 的前n 项和为n S ,且540S =,9126S =.(1)求数列{}n a 的通项公式;(2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T ,并证明:16n T <.70.(2024·广东汕头·三模)已知各项均为正数的数列{an }中,a 1=1且满足221122n n n n a a a a ++-=+,数列{bn }的前n 项和为Sn ,满足2Sn +1=3bn .(1)求数列{an },{bn }的通项公式;(2)设n n n c a b =+,求数列{}n c 的前n 项和Sn ;(3)若在bk 与bk +1之间依次插入数列{an }中的k 项构成新数列{}n c ':b 1,a 1,b 2,a 2,a 3,b 3,a 4,a 5,a 6,b 4,……,求数列{cn }中前50项的和T 50.71.(2024·福建福州·模拟预测)已知数列{}n a 的首项145a =,1431n n n a a a +=+,*n ∈N .(1)设1nn na b a =-,求数列{}n b 的通项公式;(2)在k b 与1k b +(其中*k ∈N )之间插入2k 个3,使它们和原数列的项构成一个新的数列{}n c .记n S 为数列{}n c 的前n 项和,求36S .72.(2024高三上·江苏镇江·阶段练习)已知等差数列{}n a 的前n 项和为n S ,数列{}n b 为等比数列,满足12542,30,2a b S b ===+是3b 与5b 的等差中项.(1)求数列{}{},n n a b 的通项公式;(2)设()(1)nn n n c a b =-+,求数列{}n c 的前20项和20T .73.(2024·广东广州·模拟预测)设数列{}n a 的前n 项和为n S ,已知11a =,且数列23n n S a ⎧⎫-⎨⎩⎭是公比为13的等比数列.(1)求数列{}n a 的通项公式;(2)若()1213n n b n -=+,求其前n 项和nT 74.(2024高三上·湖南长沙·阶段练习)已知数列{}n x 的首项为1,且1121212222n n n n n nx x nx x x -+--++++= .(1)求数列{}n x 的通项公式;(2)若()()1121,2n n n n b n x x S +=+-为{}n b 前n 项的和,求n S .75.(2024·湖北武汉·模拟预测)已知n S 是数列{}n a 的前n 项和,2n n S na =,23a =.(1)求数列{}n a 的通项公式;(2)若16n n b a =-,求数列{}n b 的前n 项和n T .76.(2024高三上·重庆沙坪坝·阶段练习)已知数列{}n a 为等差数列,数列{}n b 为等比数列,且*∈N n b ,若1212312342,15a b a a a b b b b ==++=+++=.(1)求数列{}n a ,{}n b 的通项公式;(2)设由{}n a ,{}n b 的公共项构成的新数列记为{}n c ,求数列{}n c 的前5项之和5S .77.(2024高三·全国·专题练习)求和()()()22122323322332322n n n n n S --=+++⋅++⋅⋅⋅++⋅+⋅+⋅⋅⋅+.78.(2024·天津津南·模拟预测)已知{}n a 是单调递增的等差数列,其前n 项和为n S .{}n b 是公比为q 的等比数列.1142423,,a b a b S q S ====⋅.(1)求{}n a 和{}n b 的通项公式;(2)设()1,,7n n n n n nn a b n c a b n a S -⎧⎪=⎨⎪+⎩为奇数为偶数,求数列{}n c 的前n 项和n T .79.(2024·天津)已知{}n a 为等差数列,{}n b 为等比数列,()()115435431,5,4a b a a a b b b ===-=-.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,求证:()2*21n n n S S S n ++<∈N ;(Ⅲ)对任意的正整数n ,设()21132,,,.n nn n n n n a b n a a c a n b +-+⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数求数列{}n c 的前2n 项和.80.(2024·天津·一模)已知数列{}n a 是等差数列,其前n 项和为n A ,715a =,763A =;数列{}n b 的前n 项和为n B ,()*233n n B b n =-∈N .(1)求数列{}n a ,{}n b 的通项公式;(2)求数列1n A ⎧⎫⎨⎩⎭的前n 项和n S ;(3)求证:12nkk ka B =<∑.。

高考一轮复习备考策略分析ppt课件

高考一轮复习备考策略分析ppt课件
③周三下午理综(9月初)。
10
6.周三下午的高考研讨: ①提前分工:内容、日期(展示)。 ②展示:例子,难易不同。
11
7.周日下午专题讲座: ①内容、分工、日期。 ②展示:例子。
12
几点思 考
1.关于一轮复习模块顺序问题
以《人教版》为例,将课本知识分十一部分,物质的量及其在实验中的应用, 化学物质及其变化,金属及其化合物,非金属及其化合物,物质结构基础、化学能 与热能、化学反应速率与化学平衡,水溶液中的离子平衡、电化学基础、有机化学 基础、物质结构与性质等。
17
4.关于一轮复习中 的测验
系统练习,作业考试化,考试高考化
18
5.关于作业批改问题
有发必收、有收必看、有看必批、有批必
重视学生的反馈
19
6.关于小专题 练习
在一轮复习中为了提高学生对知识的理解和应用能力,有时我们 会在一轮复习的间隙进行一些小专题的强化练习。
小专题复习是有明确目的、明确任务、明确内容的专项综合训练,着重体现 “专”字。旨在强化重点、突破难点、总结规律、归纳方法、体现思维过程,则要 求训练中,将难度、高度、广度、深度提升到极致。
谢 谢!
让我们共同进步
31
23
(2)阶段性调研数据
24
(3)模拟考试数 据
25
8.一轮复习学生要做什么?
(1)通过高考经典题目的重构,强化学生反思,增强解题能力。 这道题怎么做? 为什么这么做? 怎么想到这么做?我为什么做错?
方式:错题本。通过将错题进行分类整理汇集成错题集不时加以再次辨析和巩 固。
要点:从审题、时间搭配、规范性、策略性、知识性等方面去反思。
20
学生学习的难点
1.害怕实验中的有序排列题:装置连接和实验步骤 排序。

《高考调研》衡水重点中学同步精讲练数学数学课件

《高考调研》衡水重点中学同步精讲练数学数学课件
z ∴ z =±i.
人教A版 ·数学 ·选修1-2
第21页
第三章 3.2 3.2.2
高考调研
人教A版 ·数学 ·选修1-2
探究2 涉及共轭复数的题目,要充分利用共轭复数的性 质:如z+ z 等于z的实部的两倍,z·z =|z|2等,另外注意复数问 题实数化及方程思想的应用.
思考题2 证明|z|=1⇔z= 1 . z
答:(1)|z|=| z |;(2)z·z =|z|2=| z |2;
(3)z= z ⇔z∈R, z =-z(z≠0)⇔z为纯虚数;
(4) z1+z2 = z 1+ z 2;(5) z1·z2 = z 1·z 2;
(6)(zz12)=
z z
1(z2≠0).
2
第7页
第三章 3.2 3.2.2
高考调研
第10页
第三章 3.2 3.2.2
高考调研
人教A版 ·数学 ·选修1-2
(3)原式=2-2i+33i+-i3i22-i =5+3i+2i-i=10-53i++i2i-i2 =113-+3i i=113-+3ii33--ii =33-11i1-0 9i+3i2 =30-1020i=3-2i.
第11页
第5页
第三章 3.2 3.2.2
高考调研
人教A版 ·数学 ·选修1-2
1.复数乘法满足怎样的运算律? 答:①z1·z2=z2·z1;②(z1·z2)·z3=z1·(z2·z3);③z1(z2+z3)=z1·z2 +z1·z3
第6页
第三章 3.2 3.2.2
高考调研
人教A版 ·数学 ·选修1-2
2.共轭复数有哪些主要性质?
高考调研
人教A版 ·数学 ·选修1-2
(3)(2010·陕西卷,文)复数z=

空间点、直线、平面之间的位置关系5题型分类-备战2025年高考数学一轮专题复习全套考点突破和专题检测

空间点、直线、平面之间的位置关系5题型分类-备战2025年高考数学一轮专题复习全套考点突破和专题检测

专题32空间点、直线、平面之间的位置关系5题型分类1.基本事实1:过不在一条直线上的三个点,有且只有一个平面.基本事实2:如果一条直线上的两个点在一个平面内,那么这条直线在这个平面内.基本事实3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.基本事实4:平行于同一条直线的两条直线平行.2.“三个”推论推论1:经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.3.空间中直线与直线的位置关系异面直线:不同在任何一个平面内,没有公共点.4.空间中直线与平面、平面与平面的位置关系图形语言符号语言公共点直线与平面相交a ∩α=A 1个平行a ∥α0个在平面内a ⊂α无数个平面与平面平行α∥β0个相交α∩β=l 无数个5.等角定理如果空间中两个角的两条边分别对应平行,那么这两个角相等或互补.6.异面直线所成的角(1)定义:已知两条异面直线a ,b ,经过空间任一点O 分别作直线a ′∥a ,b ′∥b ,我们把直线a ′与b ′所成的角叫做异面直线a 与b 所成的角(或夹角).(2),π2.常用结论1.过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.2.分别在两个平行平面内的直线平行或异面.(一)共面、共线、共点问题的证明(1)共面:先确定一个平面,然后再证其余的线(或点)在这个平面内.(2)共线:先由两点确定一条直线,再证其他各点都在这条直线上.(3)共点:先证其中两条直线交于一点,再证其他直线经过该点(1)E ,F ,G ,H 四点共面;(1)证明E ,F ,G ,H 四点共面;(2)证明GE ,FH ,1BB 相交于一点.1-3.(2024高三·全国·专题练习)如图所示,在正方体(1)求证:1CE D F DA ,,三线交于点(2)在(1)的结论中,G 是D (二)(1)点、直线、平面位置关系的判定,注意构造几何体(长方体、正方体)模型来判断,常借助正方体为模型.(2)求异面直线所成角的方法方法解读平移法将异面直线中的某一条平移,使其与另一条相交,一般采用图中已有的平行线或者作平行线,形成三角形求解补形法在该几何体的某侧补接上同样一个几何体,在这两个几何体中找异面直线相应的位置,形成三角形求解题型2:空间位置关系的判断都相交,则直线A .2GH EF=C .直线EF ,GH 是异面直线2-3.【多选】(2024·湖北荆门A .若l αβ= ,A α∈B .若A ,B ,C 是平面C .若A α∈且B α∈,则直线D .若直线a α⊂,直线2-4.(2024·上海长宁·二模)如图,已知正方体则下列命题中假命题为(A .存在点P ,使得PQ ⊥B .存在点P ,使得//PQ AC .直线PQ 始终与直线CC(1)直线AF 与直线DE 相交;(2)直线CH 与直线DE 平行;(3)直线BG 与直线DE 是异面直线;(4)直线CH 与直线BG 成3-2.(2024高三·全国·课后作业)已知正四面体小为.3-3.(2024高三·河北·学业考试)如图直线1A E 与BF 所成角的大小为3-4.(2024高一下·北京·期末)如图,等腰梯形112BC CD DA AB ====,则直线3-5.(2024高三·全国·对口高考)线段AB 的两端分别在直二面角CD αβ--的两个面αβ、内,且与这两个面都成30︒角,则直线AB 与CD 所成的角等于.(三)空间几何体的切割(截面)问题(1)作截面应遵循的三个原则:①在同一平面上的两点可引直线;②凡是相交的直线都要画出它们的交点;③凡是相交的平面都要画出它们的交线.(2)作交线的方法有如下两种:①利用基本事实3作交线;②利用线面平行及面面平行的性质定理去寻找线面平行及面面平行,然后根据性质作出交线.A .177B .134-2.(2024·河南·模拟预测)在正方体确的个数为()①//MN 平面11AAC C ;②MN①异面直线1D D与AF所成角可以为②当G为中点时,存在点③当E,F为中点时,平面④存在点G,使点C与点则上述结论正确的是(A.①③B.②④4-5.(2024·新疆·二模)已知在直三棱柱BC=,432AC=,如图所示,若过的面积为()(四)等角定理的应用空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.一、单选题-如图所示,则直线PC()1.(2024高三·北京·学业考试)四棱锥P ABCDA.与直线AD平行B.与直线AD相交C .与直线BD 平行D .与直线BD 是异面直线2.(2024·广东)若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是A .l 与1l ,2l 都相交B .l 与1l ,2l 都不相交C .l 至少与1l ,2l 中的一条相交D .l 至多与1l ,2l 中的一条相交3.(2024高一·全国·课后作业)若直线l 在平面α外,则l 与平面α的公共点个数为()A .0B .0或1C .1D .24.(2024·上海·模拟预测)如图,正方体1111ABCD A B C D -中,P Q R S 、、、分别为棱1AB BC BB CD 、、、的中点,连接11A S B D 、,对空间任意两点M N 、,若线段MN 与线段11A S B D 、都不相交,则称M N 、两点可视,下列选项中与点1D 可视的为()A .点PB .点QC .点RD .点B5.(2024高二上·四川乐山·期末)若直线l 与平面α有两个公共点,则l 与α的位置关系是()A .l ⊂αB .//l αC .l 与α相交D .l α∈6.(2024高二上·上海静安·阶段练习)设A B C D 、、、是某长方体四条棱的中点,则直线AB 和直线CD 的位置关系是().A .相交B .平行C .异面D .无法确定7.(2024高三·全国·专题练习)如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线()A.12对B.24对C.36对D.48对8.(2024高三·全国·专题练习)三棱柱各面所在平面将空间分成不同部分的个数为()A.18B.21C.24D.279.(2024高一·全国·课后作业)平面α上有三个不共线点到平面β距离相等,则平面α与平面β的位置关系是()A.相交B.平行C.垂直D.相交或平行10.(2024高一·全国·课前预习)下列命题中正确的是()A.一个平面内三条直线都平行于另一平面,那么这两个平面平行B.如果一个平面内所有直线都平行于另一个平面,那么这两个平面平行C.平行于同一直线的两个平面一定相互平行D.如果一个平面内有几条直线都平行于另一平面,那么这两个平面平行G N M H分别是正三棱柱(两底面为正三角形的直棱柱)的顶点或11.(2024高三·全国·专题练习)如图中,,,,GH MN是异面直线的图形有()所在棱的中点,则表示直线,A.①③B.②③C.②④D.②③④12.(2024高三上·内蒙古赤峰·阶段练习)已知直线l和平面α,若lα∥,Pα∈,则过点P且平行于l的直线().A.只有一条,不在平面α内B.只有一条,且在平面α内C.有无数条,一定在平面α内D.有无数条,不一定在平面α内13.(2024高三·全国·专题练习)将图(1)中的等腰直角三角形ABC沿斜边BC的中线AD折起得到空间四面体ABCD,如图(2),则在空间四面体ABCD中,AD与BC的位置关系是()A .相交且垂直B .相交但不垂直C .异面且垂直D .异面但不垂直14.(2024高三上·吉林长春·期末)如图,在底面为正方形的棱台1111ABCD A B C D -中,E 、F 、G 、H 分别为棱1CC ,1BB ,CF ,AF 的中点,对空间任意两点M 、N ,若线段MN 与线段AE 、1BD 都不相交,则称点M 与点N 可视,下列选项中与点D 可视的为()A .1B B .FC .HD .G15.(2024·全国)在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为()A .π2B .π3C .π4D .π616.(上海市曹杨中学2023-2024学年高二上学期期中数学试题)如图,在正方体1111ABCD A B C D -中,点P 是线段11A C 上的动点,下列与BP 始终异面的是()A .1DDB .AC C .1AD D .1B C17.(2024·福建福州·三模)在底面半径为1的圆柱1OO 中,过旋转轴1OO 作圆柱的轴截面ABCD ,其中母线AB =2,E 是弧BC 的中点,F 是AB 的中点,则()A .AE =CF ,AC 与EF 是共面直线B .AE CF ≠,AC 与EF 是共面直线C .AE =CF ,AC 与EF 是异面直线D .AE CF ≠,AC 与EF 是异面直线18.(2024高二下·广西桂林·期中)已知直线m ⊂平面α,则“平面α∥平面β”是“m ∥β”的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件19.(2024·新疆阿克苏·一模)已知M ,N ,P 是正方体1111ABCD A B C D -的棱AB ,1AA ,1CC 的中点,则平面MNP 截正方体1111ABCD A B C D -所得的截面是()A .三角形B .四边形C .五边形D .六边形20.(2023届上海春季高考练习)如图,P 是正方体1111ABCD A B C D -边11AC 上的动点,下列哪条边与边BP 始终异面()A .1DDB .AC C .1AD D .1B C21.(2024高二上·浙江杭州·期末)已知空间三条直线,,l m n ,若l 与m 异面,且l 与n 异面,则()A .m 与n 异面B .m 与n 相交C .m 与n 平行D .m 与n 异面、相交、平行均有可能22.(2024高三·全国·专题练习)下列命题中正确的个数为()①若ABC ∆在平面α外,它的三条边所在的直线分别交α于P Q R 、、,则P Q R 、、三点共线.②若三条直线a b c 、、互相平行且分别交直线l 于、、A B C 三点,则这四条直线共面;③空间中不共面五个点一定能确定10个平面.A .0B .1C .2D .323.(2024高三·全国·专题练习)下列结论正确的是()A .两个平面α,β有一个公共点A ,就说α,β相交于过A 点的任意一条直线.B .两两相交的三条直线最多可以确定三个平面.C .如果两个平面有三个公共点,则这两个平面重合.D .若直线a 不平行于平面α,且a ⊄α,则α内的所有直线与a 异面.24.(2024高三·全国·专题练习)给出下列说法:①梯形的四个顶点共面;②三条平行直线共面;③有三个公共点的两个平面重合;④三条直线两两相交,可以确定1个或3个平面.其中正确的序号是()A .①B .①④C .②③D .③④25.(2024·上海浦东新·一模)已知直线l 与平面α相交,则下列命题中,正确的个数为()①平面α内的所有直线均与直线l 异面;②平面α内存在与直线l 垂直的直线;③平面α内不存在直线与直线l 平行;④平面α内所有直线均与直线l 相交.A .1B .2C .3D .426.(2024高一·全国·课后作业)直线l 是平面α外的一条直线,下列条件中可推出//l α的是A .l 与α内的一条直线不相交B .l 与α内的两条直线不相交C .l 与αD .l 与α内的任意一条直线不相交27.(2024高三下·上海·阶段练习)如图所示,正三棱柱111ABC A B C -的所有棱长均为1,点P 、M 、N 分别为棱1AA 、AB 、11A B 的中点,点Q 为线段MN 上的动点.当点Q 由点N 出发向点M 运动的过程中,以下结论中正确的是()A .直线1C Q 与直线CP 可能相交B .直线1C Q 与直线CP 始终异面C .直线1C Q 与直线CP 可能垂直D .直线1C Q 与直线BP 不可能垂直28.(2024高三下·上海浦东新·阶段练习)已知正方体1111ABCD A B C D -中,M ,N ,P 分别是棱11A D ,11D C ,AB 的中点,Q 是线段MN 上的动点,则下列直线中,始终与直线PQ 异面的是()A .1AB B .1BC C .1CAD .1DD 29.(2024高一上·全国·专题练习)M ∈l ,N ∈l ,N ∉α,M ∈α,则有A .l ∥αB .l ⊂αC .l 与α相交D .以上都有可能30.(2024高三上·重庆沙坪坝·期中)在棱长为3的正方体1111ABCD A B C D -中,点Р是侧面11ADD A 上的点,且点Р到棱1AA 与到棱AD 的距离均为1,用过点Р且与1BD 垂直的平面去截该正方体,则截面在正方体底面ABCD 的投影多边形的面积是()A .92B .5C .132D .831.(2024高三下·上海闵行·阶段练习)在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为AB ,BC 的中点,对于如下命题:①异面直线1DD 与1B F ②点P 为正方形1111D C B A 内一点,当//DP 平面1B EF 时,DP 的最小值为322;③过点1D ,E ,F 的平面截正方体1111ABCD A B C D -所得的截面周长为1B BEF -的所有顶点都在球O 的表面上时,球O .则正确的命题个数为()A .1B .2C .3D .432.(2024高三·全国·对口高考)如图,正方体1111ABCD A B C D -的棱长为P 在对角线1BD 上,过点P 作垂直于1BD 的平面α,记这样得到的截面多边形(含三角形)的周长为y ,设BP x =,则当[]1,5x ∈时,函数()y f x =的值域为()A .36,66⎡⎤⎣⎦B .6,26⎡⎣C .(6D .(0,36二、多选题33.(2024高一下·辽宁营口·阶段练习)有下列命题:①经过三点确定一个平面;②梯形可以确定一个平面;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.其中正确命题是()A .①B .②C .③D .④34.(2024高一下·江苏苏州·阶段练习)下列命题中错误的是()A .空间三点可以确定一个平面B .三角形一定是平面图形C .若A ,B ,C ,D 既在平面α内,又在平面β内,则平面α和平面β重合D .四条边都相等的四边形是平面图形35.(2024·河北廊坊·模拟预测)我们知道,平面几何中有些正确的结论在空间中不一定成立.下面给出的平面几何中的四个真命题,在空间中仍然成立的有()A .平行于同一条直线的两条直线必平行B .垂直于同一条直线的两条直线必平行C .一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补D .一个角的两边分别垂直于另一个角的两边,那么这两个角相等或互补36.(2024高一下·陕西西安·期中)如图所示,在正方体1111ABCD A B C D -中,M ,N 分别为棱11C D ,1C C 的中点,则下列四个结论正确的是()A .直线AM 与1CC 是相交直线B .直线AM 与BN 是平行直线C .直线BN 与1MB 是异面直线D .直线AM 与1DD 是异面直线37.(2024高一·全国·课后作业)下列结论中正确的是()A .若两个平面有一个公共点,则它们有无数个公共点B .若已知四个点不共面,则其中任意三点不共线C .若点A 既在平面α内,又在平面β内,则α与β相交于b ,且点A 在b 上D .任意两条直线不能确定一个平面38.(2024高三·全国·专题练习)如图,已知正方体1111ABCD A B C D -的棱长为2,设P ,Q 分别为11A B ,1DD 的中点,则过点P ,Q 的平面α截正方体所得截面的形状可能为()A .三角形B .四边形C .五边形D .六边形39.(2024高一下·湖北武汉·期末)当三个平面都平行时,三个平面可将空间分成4个部分,那么三个平面还可将空间分成()部分.A .5B .6C .7D .840.(2024高三下·山东日照·阶段练习)如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点E 、F ,且12EF =,则下列结论中正确的是()A .线段11B D 上存在点E 、F 使得//AE BF B .//EF 平面ABCDC .AEF △的面积与BEF △的面积相等D .三棱锥A -BEF 的体积为定值三、填空题41.(2024高三·全国·专题练习)给出下列四个命题:①平面外的一条直线与这个平面最多有一个公共点;②若平面α内的一条直线a 与平面β内的一条直线b 相交,则α与β相交;③若一条直线和两条平行线都相交,则这三条直线共面;④若三条直线两两相交,则这三条直线共面.其中真命题的序号是.42.(2024高一下·全国·课后作业)已知直线MN ⊥平面α于N ,直线NP MN ⊥,则NP 与平面α的关系是.43.(2024高一·全国·课后作业)如图,把下列图形的点、线、面的关系,用集合的语言表述:(1);(2);(3).44.(2024高一下·黑龙江齐齐哈尔·期末)已知空间中两个角α,β,且角α与角β的两边分别平行,若70α=︒,则β=.45.(2024高二下·上海虹口·期末)在空间,如果两个不同平面有一个公共点,那么它们的位置关系为.46.(2024高三下·重庆渝中·阶段练习)空间四边形的对角线互相垂直且相等,顺次连接这个四边形各边中点,所组成的四边形是.47.(2024高二上·上海徐汇·阶段练习)如图,在长方体ABCD -A 1B 1C 1D 1中,(1)直线A 1B 与直线D 1C 的位置关系是;(2)直线A 1B 与直线B 1C 的位置关系是;(3)直线D 1D 与直线D 1C 的位置关系是;(4)直线AB 与直线B 1C 的位置关系是.48.(2024高二上·上海徐汇·阶段练习)设A ∠和B ∠的两边分别平行,若45A ∠=︒,则B ∠的大小为.49.(2024高一·全国·课后作业)“直线l 与平面α没有公共点”是“l α∥”的条件.50.(2024高一下·全国·课后作业)在底面为正六边形的六棱柱中,互相平行的面视为一组,则共有组互相平行的面,与其中一个侧面相交的面共有个.52.(2024高一·全国·单元测试)若直线a 与平面α内无数条直线平行,则a 与α的位置关系是.53.(2024高二上·上海奉贤·阶段练习)如图,将正方体沿交于一顶点的三条棱的中点截去一小块,八个顶“阿基米德多面体”,则异面直线AB 与CD 所成角的大小是四、解答题54.(2024高一·全国·课后作业)已知:l ⊂α,D α∈,∈A l ,B l ∈,C l ∈,D l ∉.求证:直线,,AD BD CD 共面于α.55.(2024高一·全国·课后作业)如图,ABCD 为空间四边形,点E ,F 分别是AB ,BC 的中点,点G ,H 分别在CD ,AD 上,且13DH AD =,13DG CD =.(1)求证:E ,F ,G ,H 四点共面;(2)求证:EH ,FG 必相交且交点在直线BD 上.56.(2024高一下·北京·期末)如图,在正方体1111ABCD A B C D -中,E 是棱1CC 上一点,且1:1:2CE EC =.(1)试画出过1,,D A E 三点的平面截正方体1111ABCD A B C D -所得截面α;(2)证明:平面1D AE 与平面ABCD 相交,并指出它们的交线.57.(2024高一·全国·课后作业)如图所示是一个三棱锥,欲过点P 作一个截面,使得截面与底面平行,该怎样在侧面上画出截线?58.(2024高一·全国·课后作业)59.(2024高一下·全国·课后作业)在直三棱柱ABC -A 1B 1C 1中,E ,F 分别为A 1B 1,B 1C 1的中点.求证:平面ACC 1A 1与平面BEF 相交.60.(2024高一上·安徽亳州·期末)如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是AB 和AA 1的中点.求证:(1)E ,C ,D 1,F 四点共面;(2)CE ,D 1F ,DA 三线共点.61.(2024高三·全国·专题练习)如图,在空间四边形ABCD 中,,,,E F G H 分别在,,,AB AD BC CD 上,EG 与FH 交于点P ,求证:,,P A C 三点共线.62.(2024高二·全国·课后作业)如图所示,在正方体1111ABCD A B C D -中,,E F 分别是AB 和1AA 的中点,求证:四边形1FECD 为平面图形.63.(2024高一·全国·专题练习)如图所示,在空间四边形ABCD 中,E ,F 分别为AB ,AD 的中点,G ,H 分别在BC ,CD 上,且::1:2BG GC DH HC ==.求证:(1)E 、F 、G 、H 四点共面;(2)EG 与HF 的交点在直线AC 上.64.(2024高二·上海·专题练习)如图所示,在正方体1111ABCD A B C D -中.画出平面11ACC A 与平面1BC D 及平面1ACD 与平面1BDC 的交线.65.(2024高一·全国·专题练习)如图,直升机上一点P 在地面α上的正射影是点A (即PA ⊥α),从点P 看地平面上一物体B (不同于A ),直线PB 垂直于飞机玻璃窗所在的平面β.求证:平面β必与平面α相交.66.(2024高一·全国·专题练习)如图,已知平面,αβ,且l αβ= ,设在梯形ABCD 中,AD BC ∕∕,且,AB CD αβ⊂⊂.求证:,,AB CD l 共点.67.(2024高一下·河南信阳·期中)如图,在正方体1111ABCD A B C D -中,E ,F 分别是1,AB AA 上的点,且12,2A F FA BE AE ==.(1)证明:1,,,E C D F 四点共面;(2)设1D F CE O ⋂=,证明:A ,O ,D 三点共线.68.(2024高一下·陕西西安·期中)(1)已知直线a b ∥,直线l 与a ,b 都相交,求证:过a ,b ,l 有且只有一个平面;(2)如图,在空间四边形ABCD 中,H ,G 分别是AD ,CD 的中点,E ,F 分别是边AB ,BC 上的点,且13CF AE FB EB ==.求证:直线EH ,BD ,FG 相交于一点.。

《高考调研》同步用书:人教版高考物理必修1一轮复习课件

《高考调研》同步用书:人教版高考物理必修1一轮复习课件
检验能力的超越 ·见证水平的攀升 第三节 力的合成与分解
检验能力的超越 ·见证水平的攀升
完成 课时作业(六)
检验能力的超越 ·见证水平的攀升
完成 课时作业(七)
பைடு நூலகம் 检验能力的超越 ·见证水平的攀升
检验能力的超越 ·见证水平的攀升 检验能力的超越 ·见证水平的攀升 完成 课时作业(五)
第二节 摩擦力受力分析
检验能力的超越 ·见证水平的攀升 完成 课时作业(六)
检验能力的超越 ·见证水平的攀升 检验能力的超越 ·见证水平的攀升 检验能力的超越 ·见证水平的攀升 检验能力的超越 ·见证水平的攀升 检验能力的超越 ·见证水平的攀升 检验能力的超越 ·见证水平的攀升 第二节 摩擦力受力分析
完成 课时作业(八)
完成 课时作业(八) 检验能力的超越 ·见证水平的攀升 完成 课时作业(五) 完成 课时作业(八) 完成 课时作业(五) 检验能力的超越 ·见证水平的攀升 第四节 共点力的平衡 完成 课时作业(六) 检验能力的超越 ·见证水平的攀升 检验能力的超越 ·见证水平的攀升 检验能力的超越 ·见证水平的攀升 检验能力的超越 ·见证水平的攀升 检验能力的超越 ·见证水平的攀升 完成 课时作业(六) 第四节 共点力的平衡 检验能力的超越 ·见证水平的攀升 检验能力的超越 ·见证水平的攀升 完成 课时作业(五) 第二节 摩擦力受力分析 第一节 力的概念、重力与弹力 检验能力的超越 ·见证水平的攀升 检验能力的超越 ·见证水平的攀升
第二章 相互作用
第一节 力的概念、重力与弹力 第二节 摩擦力受力分析 第三节 力的合成与分解 第四节 共点力的平衡 第五节 实验:验证力的平行四边形定则
第四节 共点力的平衡 完成 课时作业(八) 第四节 共点力的平衡 检验能力的超越 ·见证水平的攀升 检验能力的超越 ·见证水平的攀升 完成 课时作业(七) 第一节 力的概念、重力与弹力 检验能力的超越 ·见证水平的攀升 检验能力的超越 ·见证水平的攀升 第五节 实验:验证力的平行四边形定则 第一节 力的概念、重力与弹力 检验能力的超越 ·见证水平的攀升 完成 课时作业(五) 检验能力的超越 ·见证水平的攀升 完成 课时作业(六) 检验能力的超越 ·见证水平的攀升 第一节 力的概念、重力与弹力 检验能力的超越 ·见证水平的攀升 完成 课时作业(六) 检验能力的超越 ·见证水平的攀升 完成 课时作业(七) 第一节 力的概念、重力与弹力

【高考调研】高考政治一轮复习第1课美好生活的向导新人教版必修4PPT课件

【高考调研】高考政治一轮复习第1课美好生活的向导新人教版必修4PPT课件
(2)研究对象不同:具体科学研究世界某一具体领域的本质
(3 2.联系: (1)具体科学是哲学的基础,具体科学的进步推动着哲学的
(2)哲学为具体科学提供世界观和方法论的指导。
学习小贴士 认为“哲学是具体科学知识的总和”、“哲学是科学之 科学”、“哲学是科学之母”的说法都是错误的,都歪 曲了哲学与具体科学的关系。
③任何反映了自己时代的客观要求和历史趋势的哲 学,都可以成为这一时代社会变革的先导,推动时 代的步伐,指导社会的变革 (2 哲学具有世界观和方法论的功能,具有指导人们正 确地认识世界和改造世界的功能,具有帮助人们确 立人生观、价值观和理想信念的功能。
学习小贴士 哲学不等于真正的哲学,不等于马克思主义哲学, 哲学也有科学和非科学之分,并非所有的哲学都能 指导人们正确地认识世界和改变世界。
世界是普遍联系的→坚持用联系的观点看问题。
1. 哲学是关于世界观的学说,是理论化、系统化的世界观。两 者之间存在着紧密的联系。所以我们反对把哲学神秘化,认
2.正确理解哲学与生活、实践的关系 (1)哲学源于生活,哲学就在我们身边;哲学高于生活,哲学
(2)哲学依赖于实践。人们在实践中提出一系列问题,成为
(2
2. (1
②方法论是人们认识世界和改造世界的根本原则和根本方法。 (2)联系:世界观和方法论是同一问题的两个方面,二者不 可分割,没有脱离世界观的方法论,也没有脱离方法论的世界 观。一般来说,世界观决定方法论,方法论体现世界观,有什 么样的世界观就有什么样的方法论。哲学是世界观和方法论的 统一。
(1) (2) (3)哲学为人们认识世界和改造世界提供世界观和方法论指
(4)马克思主义哲学是科学的世界观和方法论的统一,是我 们认识世界和改造世界的强大思想武器。也为我们发展中 国特 色社会主义提供了理论基础。

同角三角函数的基本关系和诱导公式5题型分类-备战2025年高考数学一轮专题复习全套考点突破和专题检测

同角三角函数的基本关系和诱导公式5题型分类-备战2025年高考数学一轮专题复习全套考点突破和专题检测

专题17同角三角函数的基本关系和诱导公式5题型分类一、同角三角函数基本关系1、同角三角函数的基本关系(1)平方关系:22sin cos 1αα+=.(2)商数关系:sin tan ()cos 2k απααπα=≠+;【记忆口诀】奇变偶不变,符号看象限,说明:(1)先将诱导三角函数式中的角统一写作2n πα⋅±;(2)无论有多大,一律视为锐角,判断2n πα⋅±所处的象限,并判断题设三角函数在该象限的正负;(3)当n 为奇数是,“奇变”,正变余,余变正;当n 为偶数时,“偶不变”函数名保持不变即可.注:1、利用22sin cos 1αα+=可以实现角α的正弦、余弦的互化,利用sin tan cos =aa a可以实现角α的弦切互化.2、“sin cos sin cos sin cos αααααα+-,,”方程思想知一求二.222(sin cos )sin cos 2sin cos 1sin 2ααααααα+=++=+222(sin cos )sin cos 2sin cos 1sin 2ααααααα-=+-=-22(sin cos )(sin cos )2αααα++-=(一)同角求值(1)若已知角的象限条件,先确定所求三角函数的符号,再利用三角形三角函数定义求未知三角函数值.(2)若无象限条件,一般“弦化切”.(二)诱导求值与变形(1)诱导公式用于角的变换,凡遇到与2π整数倍角的和差问题可用诱导公式,用诱导公式可以把任意角的三角函数化成锐角三角函数.(2)通过2,,2πππ±±±等诱导变形把所给三角函数化成所需三角函数.(3)2,,2παβππ±=±±±等可利用诱导公式把,αβ的三角函数化(三)同角三角函数基本关系式和诱导公式的综合应用)利用同角三角函数关系式和诱导公式求值或化简时,关键是寻求条件、结论间的联系,灵活使用公式(π(四)三角恒等式的证明三角恒等式的证明中涉及到同角三角函数基本关系,和角公式,差角公式,二角公式,辅助角公式等基本知识点,理解和掌握这些基本知识点是解答该类问题的基础和关键原式得证【点睛】本题考查了利用同角三角函数关系证明三角函数恒等式,属于基础题.5-4.(2024高三·全国·专题练习)(1)求证:tan 2αsin 2α=tan 2α-sin 2α;(2)已知tan 2α=2tan 2β+1,求证:2sin 2α=sin 2β+1.【答案】(1)证明见解析;(2)证明见解析.【分析】(1)将22sin 1cos αα=-代入左式,化简即可得到右式.(2)将sin tan cos ααα=,sin tan cos βββ=代入条件,通分化简得到2212cos cos αβ=,即2cos 2α=cos 2β,然后由22sin cos 1αα+=,将余弦化成正弦即可证得结论.【详解】解析:(1)tan 2αsin 2α=tan 2α(1-cos 2α)=tan 2α-tan 2αcos 2α=tan 2α-sin 2α,则原等式得证.(2)因为tan 2α=2tan 2β+1,所以22sin cos αα+1=222sin 1cos ββ⎛⎫+ ⎪⎝⎭,即2212cos cos αβ=,从而2cos 2α=cos 2β,于是2-2sin 2α=1-sin 2β,也即2sin 2α=sin 2β+1,则原等式得证.一、单选题1.(2024·全国·模拟预测)已知2cos tan sin 5xx x =+,则cos2x =()A .13B .79C .23D .59【答案】B【分析】利用三角函数的基本关系式得到关于sin x 的方程,再利用倍角公式即可得解.【详解】因为2cos tan sin 5x x x =+,又sin tan cos xx x=,所以sin 2cos cos sin 5x xx x =+,则222cos sin 5sin x x x =+,即2222sin sin 5sin x x x -=+,则23sin 5sin 20x x +-=,即()()3sin 1sin 20x x -+=,所以1sin 3x =或sin 2x =-(舍去),所以217cos212sin 1299x x =-=-⨯=.故选:B.2.(2024·四川巴中·模拟预测)勾股定理,在我国又称为“商高定理”,最早的证明是由东汉末期数学家赵爽在为《周髀算经》作注时给出的,他利用了勾股圆方图,此图被称为“赵爽弦图”.“赵爽弦图”是由四个全等的直角三角形和中间的一个小正方形组成的大正方形图案(如图所示),若在大正方形内随机取一点,该点落在小正方形内的概率为917,则“赵爽弦图”里的直角三角形中最小角的正弦值为()A .217B C .217D 【答案】D【分析】设正方形的边长1,较小的角为θ,则中间小正方形的边长为cos sin θθ-,由题意可得29(cos sin )17θθ-=,显然可得π04θ<<,即可得到cos sin 0θθ>>,从而求出sin θ.【详解】设正方形的边长1,较小的角为θ,则中间小正方形的边长为cos sin θθ-,由题意可得29(cos sin )17θθ-=,显然π04θ<<,所以cos sin 0θθ>>,所以cos sin 17θθ-=,又229cos sin 2cos sin 17θθθθ+-=,所以2cos si 8n 17θθ=,所以22225(cos sin )cos sin 2cos sin 17θθθθθθ+==++,所以cos sin 17θθ+=,所以sin 17θ=.故选:D3.(2024·全国·模拟预测)已知2π2cos 53θ⎛⎫-= ⎪⎝⎭,则19π13π2sin cos 105θθ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭()A .2-B .2C .23-D .23【答案】A【分析】利用已知的三角函数值,利用换元法,结合三角函数的诱导公式,可得答案.【详解】令25m πθ=-,则22,cos 53m m πθ=+=,从而19π13π19π2π2π13π2sin cos 2sin cos 10510555m m θθ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-++=-++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦3π2sin cos(3π)3cos 22m m m ⎛⎫=-++=-=- ⎪⎝⎭.故选:A.4.(2024·山西·模拟预测)已知α为锐角,且cos 6πα⎛⎫+= ⎪⎝⎭,则tan 3πα⎛⎫-= ⎪⎝⎭()A.2B.CD.2【答案】D【分析】注意到πππ632αα⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭,利用同角三角函数的关系求角π6α+的正弦,再利用诱导公式求角π3α-的正弦、余弦,从而得到π3α-的正切.【详解】因为α为锐角,所以ππ2π,663α⎛⎫+∈ ⎪⎝⎭且πcos 6α⎛⎫+= ⎪⎝⎭,所以22πsin 06ππsin cos 166ααα⎧⎛⎫+> ⎪⎪⎪⎝⎭⎨⎛⎫⎛⎫⎪+++= ⎪ ⎪⎪⎝⎭⎝⎭⎩得πsin 6α⎛⎫+= ⎪⎝⎭由诱导公式得ππππsin sin cos 3266ααα⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ππcos sin 363αα⎛⎫⎛⎫-=+=⎪ ⎪⎝⎭⎝⎭.所以πsin π33tan π32cos 3ααα⎛⎫- ⎪⎛⎫⎝⎭-== ⎪⎛⎫⎝⎭- ⎪⎝⎭.故选:D5.(2024高三上·安徽合肥·阶段练习)已知角α为钝角,且角(02π)θθ<<终边上有一点()sin ,cos P αα-,则角θ=()A .πα+B .π2α+C .2πα-D .3π2α-【答案】B【分析】利用三角函数的诱导公式及三角函数的定义即可求解.【详解】点()sin ,cos P αα-,由诱导公式可化为ππcos ,sin 22P αα⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由三角函数的定义知,π2π2k θα=++,又因为α为钝角,02πθ<<,所以π2θα=+.故选:B.6.(2024高三上·宁夏银川·阶段练习)在平面直角坐标系中,在()1,3P 在角α终边上,则()()()3333sin πcos ππsin cos 2αααα++-⎛⎫--- ⎪⎝⎭的值为()A .1327B .1427C .1427-D .1413【答案】B【分析】根据三角函数的定义求角α的三角函数值,再利用诱导公式化简求值.【详解】因为点()1,3P 在角α终边上,则1x =,3y =,所以tan 3yxα==,()()()333333333sin πcos πsin cos 1114π227sin sin 2tan sin cos 2ααααααααα++---==+⎛⎫----- ⎪⎝⎭.故选:B7.(2024高三上·四川成都·期中)已知角α的顶点与坐标原点重合,始边与x 轴的正半轴重合,若角α的终边与23π角的终边相同,则sin()cos(2)3sin()2παπαπα+--=+()A1B1C.1D.1-【答案】C【分析】利用三角函数定义求得tan α=,再利用诱导公式化简即可.【详解】由题意得2tan tanπ3α==sin(π)cos(2π)sin cos sin cos sin cos tan 113ππcos cos sin()sin 22ααααααααααααα+------+====+=+-⎛⎫+-+ ⎪⎝⎭,故选:C.8.(2024·全国·模拟预测)已知直线:2310l x y +-=的倾斜角为θ,则()πsin πsin 2θθ⎛⎫-⋅-= ⎪⎝⎭()A .613B .613-C .25D .25-【答案】A【分析】根据直线一般方程可求得2tan 3θ=-,再利用诱导公式及同角三角函数之间的基本关系可得其结果.【详解】由直线l 的方程为2310x y +-=,得斜率2tan 3k θ==-,则()πsin cos sin πsin sin cos 21θθθθθθ-⋅⎛⎫-⋅-=-⋅= ⎪⎝⎭22222sin cos tan 63sin cos tan 113213θθθθθθ-⋅-====++⎛⎫-+ ⎪⎝⎭;故选:A .9.(2024·陕西宝鸡·一模)已知4ππsin 2sin 36αα⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭,则πsin 23α⎛⎫+= ⎪⎝⎭()A .34-B .34C .45-D .45【答案】C【分析】先利用诱导公式对已知条件化简得ππcos 2sin 66αα⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭;再利用同角三角函数基本关系求出2π1sin 65α⎛⎫+= ⎪⎝⎭;最后利用二倍角公式即可求解.【详解】4π3πππsin sin cos 3266ααα⎡⎤⎛⎫⎛⎫⎛⎫-=-+=-+⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.由4ππsin 2sin 36αα⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭可得:ππcos 2sin 66αα⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭.因为22ππsin cos 166αα⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,所以2π1sin 65α⎛⎫+= ⎪⎝⎭.所以2ππππ4sin 22sin cos 4sin 36665αααα⎛⎫⎛⎫⎛⎫⎛⎫+=++=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:C.10.(2024·全国·模拟预测)已知(ππtan cos 3cos 44ααα⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭,则cos2α=()AB.2C .12-D .1-【答案】B 【分析】由诱导公式和同角三角函数关系得到(πtan 3tan 4αα⎛⎫=-+ ⎪⎝⎭,再利用正切和角公式得到方程,求出tan 1α=,利用余弦二倍角,齐次化求出答案.【详解】因为ππππcos sin sin 4244ααα⎛⎫⎛⎫⎛⎫-=-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以(ππtan cos 3sin 44ααα⎛⎫⎛⎫+=-+ ⎪ ⎪⎝⎭⎝⎭,故(πtan 3tan 4αα⎛⎫=-+ ⎪⎝⎭,因为πtan tanπtan 14tan π41tan 1tan tan 4ααααα++⎛⎫+== ⎪-⎝⎭-,所以(tan 1tan 31tan ααα+=--,故)(2tan 21tan 30αα-+-=,解得tan 1α=,所以)()2222222211cos sin 1tan cos2cos sin 1tan 11ααααααα---=====+++-故选:B .11.(2024·全国·模拟预测)已知圆22:(1)(1)1C x y -+-=,过点()3,2P ,作圆C 的两条切线,切点分别为,A B ,则tan ACB ∠=()A .43-B .43C .12-D .34【答案】A【分析】设切线的方程为2(3)y k x -=-,求得圆心C到切线的距离1d ==,求得k 的值,得到4tan 3APB ∠=,结合180APB ACB ∠+∠=︒,即可求解.【详解】由题意知,圆22:(1)(1)1C x y -+-=的圆心为(1,1)C ,半径1r =,且切线PA ,PB 的斜率都存在,设切线的方程为2(3)y k x -=-,即320kx y k --+=,因为直线与圆相切,所以圆心C到切线的距离1d =,解得10k =或2k =43,所以4tan 3APB ∠=,在四边形APBC 中,因为90APC ABC ∠=∠= ,可得180APB ACB ∠+∠=︒,所以4tan tan(180)tan 3ACB APB APB ∠=-∠=-∠=-.故选:A .12.(2024·河南郑州·模拟预测)已知tan 2θ=,则3πsin sin 2θθ⎛⎫+= ⎪⎝⎭()A .35B .12C .12-D .25-【答案】D【分析】利用诱导公式,平方关系和商关系即可求解.【详解】3πsin sin sin cos 2θθθθ⎛⎫+=- ⎪⎝⎭222sin cos tan 2sin cos tan 15θθθθθθ=-=-=-++.故选:D13.(2024·陕西西安·二模)已知π5cos 513α⎛⎫-= ⎪⎝⎭,则7πsin 10α⎛⎫-= ⎪⎝⎭()A .513-B .513C .-1213D .1213【答案】A 【分析】因为7πππ1052αα⎛⎫-=-- ⎪⎝⎭,由诱导公式可得选项.【详解】7ππππ5sin sin cos 1052513ααα⎛⎫⎛⎫⎛⎫-=--=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:A.14.(2024·广东深圳·模拟预测)已知π4sin 35α⎛⎫+= ⎪⎝⎭,则5πcos 6α⎛⎫+ ⎪⎝⎭的值为()A .35-B .35C .45-D .45【答案】C 【分析】根据5πππ623αα⎛⎫+=++ ⎪⎝⎭,借助于诱导公式,即可求得结果.【详解】5πππcos cos 623αα⎡⎤⎛⎫⎛⎫+=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ sin 3πα⎛⎫=-+ ⎪⎝⎭45=-,5πcos 6α⎛⎫∴+ ⎪⎝⎭的值为45-,故选:C15.(2024高三上·陕西西安·阶段练习)若1sin 3A =,则()sin 6A π-的值为()A .13B .13-C.3-D.3【答案】B【分析】本题考查诱导公式的基础运用,套用公式即可.【详解】利用诱导公式可得()()1sin 6sin sin 3A A A π-=-=-=-,故选:B.16.(2024高三上·陕西西安·阶段练习)若()1sin 2πα+=-,则cos α的值为()A .12±B .12CD.【答案】D【分析】先化简已知得1sin =2α,再求cos α的值.【详解】由()1sin 2πα+=-得1sin =2α,所以α在第一、二象限,所以cos =2α=±.故选:D.17.(2024·贵州贵阳·模拟预测)已知πsin sin 2θθ⎛⎫-+= ⎪⎝⎭,则tan θ=()A.B .1-C .1D【答案】B【分析】利用诱导公式以及同角三角函数的平方关系可得出关于sin θ、cos θ的方程组,求出这两个量的值,即可求得tan θ的值.【详解】因为πsin sin sin cos 2θθθθ⎛⎫-+=-= ⎪⎝⎭,由题意可得22sin cos sin cos 1θθθθ⎧-=⎪⎨+=⎪⎩sin 2cos 2θθ⎧=⎪⎪⎨⎪=-⎪⎩,因此,sin tan 1cos θθθ==-.故选:B.18.(2024高一下·湖南长沙·阶段练习)已知1sin cos 5αα+=,且()0,πα∈,sin cos αα-=()A .75±B .75-C .75D .4925【答案】C【分析】将已知等式两边平方,利用三角函数的基本关系求得2sin cos αα的值,结合α的范围确定sin α与cos α的正负,再利用完全平方公式及三角函数的基本关系可求得sin cos αα-的值.【详解】因为1sin cos 5αα+=,两边平方得()21sin cos 12sin cos 25αααα+=+=,故242sin cos 025αα=-<,所以sin α与cos α导号,又因为0πα<<,所以sin 0α>,cos 0α<,所以7sin cos 5αα-====.故选:C.19.(2024高三下·重庆渝中·阶段练习)已知θ是三角形的一个内角,且满足sin cos 5θθ-=,则tan θ=()A .2B .1C .3D .12【答案】A【分析】利用平方关系可求得42sin cos 5θθ=,可解得29(sin cos )5θθ+=,再结合θ是三角形的一个内角即可得sin ,cos θθ==tan 2θ=.【详解】将sin cos θθ-=两边同时平方可得112sin cos 5θθ-=,即42sin cos 5θθ=;所以29(sin cos )12sin cos 5θθθθ+=+=若sin +cos θθ=,解得sin θθ==,这与θ是三角形的一个内角矛盾,所以sin +cos θθ=,解得sin θθ==,此时求得tan 2θ=.故选:A.20.(2024高三上·北京·阶段练习)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于直线y x =对称,若4sin 5α=,则cos β=()A .45-B .45C .35-D .35【答案】B【分析】根据题意利用任意角的三角函数的定义,结合诱导公式可求得结果.【详解】因为平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于直线y x =对称,所以ππ,Z 24k k αβ+=+∈,即π2π,Z 2k k αβ+=+∈,所以π2π,Z 2k k βα=-+∈,因为4sin 5α=,所以π4cos cos 2πsin (Z)25k k βαα⎛⎫=-+==∈ ⎪⎝⎭,故选:B21.(2024·辽宁抚顺·模拟预测)已知(),0,a βπ∈,则“tan tan 1αβ=”是“2a πβ+=”的()A .充要条件B .既不充分也不必要条件C .充分不必要条件D .必要不充分条件【答案】D【分析】根据诱导公式的逆运用以及由三角函数的概念即可判断其充分性,由2a πβ+=代入tan α化简计算即可判断其必要性,从而得出结论.【详解】若tan tan 1αβ=,则1tan ta 2n tan παββ⎛⎫==- ⎪⎝⎭,故()2k k παπβ=+-∈Z ,即()2k k παβπ+=+∈Z .又()0,2αβπ+∈,故0k =或1k =,充分性不成立;若2παβ+=,即2παβ=-,所以1tan tan 2tan παββ⎛⎫=-= ⎪⎝⎭,所以tan tan 1αβ=,所以必要性成立.故选:D .22.(2024·陕西榆林·二模)已知π7π1cos cos 12125αα⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,则2πc 23os +α⎛⎫ ⎪⎝⎭=()A .2325-B .2325C .2425-D .2425【答案】C【分析】利用诱导公式和倍角公式化简求值.【详解】7ππππcos cos sin 1212212ααα⎛⎫⎛⎫⎛⎫+=++=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由π7π1cos cos 12125αα⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,有ππ1cos sin 12125αα⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭,两边平方得π11sin 2625α⎛⎫-+= ⎪⎝⎭,则π24sin 2625α⎛⎫+= ⎪⎝⎭,故2ππππ24cos 2+=cos 2+=sin 2=225366ααα⎛⎫⎛⎫⎛⎫+-+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:C.23.(2024高三上·北京海淀·阶段练习)已知α为第二象限的角,且3cos 5α=-,则()sin πα-的值为()A .45B .45-C .35-D .35【答案】A【分析】先根据平方关系求出sin α,再利用诱导公式即可得解.【详解】因为α为第二象限的角,且3cos 5α=-,所以4sin 5α=,所以()4sin πsin 5αα-==.故选:A.24.(2024高一上·山西太原·阶段练习)已知π02α<<,且π1sin 34α⎛⎫-= ⎪⎝⎭,则5πsin 6α⎛⎫-= ⎪⎝⎭()A .4B .14-C .4D .14【答案】C【分析】根据角的范围及正弦值求出余弦值,进而利用诱导求出答案.【详解】因为π02α<<,所以ππ36π3α-<-<,又π1sin 34α⎛⎫-= ⎪⎝⎭,所以πcos 3α⎛⎫-== ⎪⎝⎭45πππππs 62in c 3sin cos os 33αααα⎛⎫⎛⎫⎛⎫⎛⎫-=+-=-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:C25.(2024·全国·模拟预测)已知π1tan 22θ⎛⎫+= ⎪⎝⎭,则()33sin 2cos sin πθθθ+=+()A .35B .56C .56-D .35-【答案】D【分析】结合诱导公式与同角三角函数的基本关系运算即可得.【详解】由题意得πsin cos 12πsin 2cos 2θθθθ⎛⎫+ ⎪⎝⎭==-⎛⎫+ ⎪⎝⎭,则tan 2θ=-,故()()33333322sin 2cos sin 2cos sin 2cos sin πsin sin sin cos θθθθθθθθθθθ+++==-+-+333323sin 2cos tan 2823sin sin cos tan tan 825θθθθθθθθ++-+=-=-=-=-++--.故选:D.26.(2024高三上·云南昆明·阶段练习)若π2αβ+=sin αβ+=tan α=()A.2BC .1D【答案】B【分析】由诱导公式可得出sin cos βα=,根据已知条件可得出关于sin α、cos α的方程组,解出这两个量的值,结合同角三角函数的商数关系可求得tan α的值.【详解】因为π2αβ+=,则π2βα=-,πsin sin cos 2αβαααα⎛⎫+=+-=+= ⎪⎝⎭联立22cos sin cos 1αααα+=+=⎪⎩sin cos αα⎧=⎨⎪=⎪⎩因此,sin tan cos 3ααα==故选:B.27.(2024高三上·四川成都·阶段练习)已知角α的终边过点()1,3,则πcos(π)cos()2αα-++的值是()A.B.C.D【答案】A【分析】利用三角函数定义,结合诱导公式计算得解.【详解】由角α的终边过点()1,3,得r =,31sin r r αα====,所以πcos(π)cos()cos sin 210105αααα-++=--=--=-.故选:A28.(2024高三上·安徽·阶段练习)在平面直角坐标系xOy 中,设角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,若角α的终边过点()4,3P -,则()3πsin 2cos π22αα⎛⎫++-= ⎪⎝⎭()A .1425-B .1425C .1725-D .1725【答案】A【分析】根据任意角的三角函数的定义可得sin α,再利用诱导公式、二倍角公式运算求解.【详解】由题意得,5OP ==,则3sin 5α=-,则()3πsin 2cos π2cos 2cos 22cos 22ααααα⎛⎫++-=--=- ⎪⎝⎭()22314212sin 212525α⎡⎤⎛⎫=--=-⨯-⨯-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.故选:A .29.(2024高三上·安徽·期中)已知()sin ,cos P θθ是角π3-的终边上一点,则tan θ=()A .B .C D 【答案】B【分析】由三角函数的定义可得sin ,cos θθ,进而由商数关系可求tan θ.【详解】因为()sin ,cos P θθ是角π3-的终边上一点,所以π1πcos sin ,sin cos 3232θθ⎛⎫⎛⎫-==-==- ⎪ ⎪⎝⎭⎝⎭,则sin tan cos 3θθθ==,故选:B.30.(2024高三上·安徽·期中)已知角θ的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点()2,4P -,则()cos 2cos 2πθπθ⎛⎫--+= ⎪⎝⎭()A .5-B .5-C .0D .5【答案】C【分析】根据终边上的点可求得:sinθ=cos θ=,再结合三角函数诱导公式从而求解.【详解】因为:r OP ==(O 为坐标原点),所以:由三角函数的定义,得sin θ==cos θ==所以:()cos 2cos sin 2cos 02πθπθθθ⎛⎫--+=+= ⎪⎝⎭.故C 项正确.故选:C.31.(2024高一上·江苏常州·阶段练习)若π1cos()63α+=,则5π5πcos()sin()63αα--+=()A .0B .23C.13+D.13-【答案】A【分析】利用整体代换法与诱导公式化简求值即可.【详解】依题,令π6t α+=,则15ππsin ,ππ366t t αα⎛⎫=-=-+=- ⎪⎝⎭,5π3ππ3π3262t αα+=++=+,所以5π5πcos()sin()63αα--+3π=cos(π)sin()2t t --+cos cos 0t t =-+=.故选:A32.(2024高三上·重庆永川·期中)已知π0,2θ⎛⎫∈ ⎪⎝⎭,π2tan tan 43θθ⎛⎫+=- ⎪⎝⎭,则πcos cos 22π4θθθ⎛⎫- ⎪⎝⎭=⎛⎫+ ⎪⎝⎭()A .12-B .35-C .3D .53【答案】B【分析】由条件π2tan tan 43θθ⎛⎫+=- ⎪⎝⎭化简求得tan 3θ=,将所求式子利用三角恒等变换化简再根据同角三角函数关系式转化为正切求得结果.【详解】由π2tan tan 43θθ⎛⎫+=- ⎪⎝⎭,即tan 12tan 1tan 3θθθ+=--,又π0,2θ⎛⎫∈ ⎪⎝⎭,解得tan 3θ=,()()22πcos cos2sin cos sin2sin cos sinπsin cos4θθθθθθθθθθθ⎛⎫-⎪-⎝⎭∴==-+⎛⎫+⎪⎝⎭2222222sin cos sin tan tan333sin cos tan1315θθθθθθθθ---====-+++.故选:B.33.(2024高一下·山东潍坊·阶段练习)下列化简正确的是()A.()tanπ1tan1+=-B.()()sincostan360ααα-=-C.()()sinπtancosπααα-=+D.()()()cosπtanπ1sin2πααα---=-【答案】B【分析】应用诱导公式以及同角三角函数的基本关系对四个选项验证即可.【详解】对于A,由诱导公式得,()tanπ1tan1+=,故A错误;对于B,()()sin sin sincossintantan360cos aααααααα--===-- ,故B正确;对于C,()()sinπsintancosπcosααααα-==-+-,故C错误;对于D,()()()()()sincoscosπtanπcos tan cos1sin2πsin sinαααααααααα⋅----==-=---,故D错误.故选:B.二、多选题34.(2024·辽宁·模拟预测)设α为第一象限角,π1cos83α⎛⎫-=⎪⎝⎭,则()A.5π1sin83α⎛⎫-=-⎪⎝⎭B.7π1cos83α⎛⎫+=-⎪⎝⎭C.13πsin83α⎛⎫-=-⎪⎝⎭D.πtan8α⎛⎫-=-⎪⎝⎭【答案】BD【分析】首先由题意得π8α-是第一象限角,所以πsin 83α⎛⎫-=⎪⎝⎭,再利用诱导公式和同角三角函数关系式对选项逐个计算确定正确答案.【详解】由题意得π2π2π,Z 2k k k α<<+∈,则ππ3π2π2π,Z 888k k k α-<-<+∈,若π8α-在第四象限,则ππ1cos cos 8423α⎛⎫->=⎪⎝⎭,所以π8α-也是第一象限角,即πsin 8α⎛⎫-=⎪⎝⎭5πππππ1sin sin cos cos 828883αααα⎛⎫⎛⎫⎛⎫⎛⎫-=+-=-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,A 项错误;7πππ1cos cos πcos 8883ααα⎛⎫⎛⎫⎛⎫+=-+=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,B 项正确;13π3ππππ1sin sin cos cos 828883αααα⎛⎫⎛⎫⎛⎫⎛⎫-=+-=--=--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,C 项错误;πsin ππ8tan tan 2π88cos 8αααα⎛⎫- ⎪⎛⎫⎛⎫⎝⎭-=--=-=- ⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭项正确.故选:BD.35.(江苏省宜兴中学、泰兴中学、泰州中学2023-2024学年高一上学期12月联合质量检测数学试卷)质点P 和Q 在以坐标原点O 1的圆O 上逆时针作匀速圆周运动,同时出发.P 的角速度大小为2rad /s ,起点为圆O 与x 轴正半轴的交点,Q 的角速度大小为5rad /s ,起点为角π3-的终边与圆O 的交点,则当Q 与P 重合时,Q 的坐标可以为()A .2π2πcos ,sin 99⎛⎫ ⎪⎝⎭B .ππcos ,sin 99⎛⎫- ⎪⎝⎭C .5π5πcos ,sin 99⎛⎫-- ⎪⎝⎭D .ππcos ,sin 99⎛⎫- ⎪⎝⎭【答案】ACD【分析】由题意列出重合时刻t 的表达式,进而可得Q 点的坐标,通过赋值对比选项即可得解.【详解】点Q 的初始位置1Q ,锐角1π3Q OP ∠=,设t 时刻两点重合,则π522π(N)3t t k k -∈=+,即π2π(N)93k t k +∈=,此时点ππcos 5,sin 533Q t t ⎛⎫⎛⎫⎛⎫-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即2π10π2π10πcos ,sin 9393k k Q ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎝⎭,(N)k ∈,当0k =时,2π2πcos ,sin 99Q ⎛⎫ ⎪⎝⎭,故A 正确;当1k =时,32π32πcos ,sin 99Q ⎛⎫ ⎪⎝⎭,即5π5πcos ,sin 99Q ⎛⎫-- ⎪⎝⎭,故C 正确;当2k =时,9,62π62πcos sin 9Q ⎛⎫ ⎪⎝⎭,即ππcos ,sin 99Q ⎛⎫- ⎪⎝⎭,故D 正确;由三角函数的周期性可得,其余各点均与上述三点重合,故B 错误,故选:ACD.36.(2024高一下·河南焦作·阶段练习)已知角,A B ,C 是锐角三角形ABC 的三个内角,下列结论一定成立的有()A .()sin sinBC A +=B .sin cos 22A B C +⎛⎫= ⎪⎝⎭C .()cos cos A B C +<D .sin cos A B<【答案】ABC【分析】根据三角形内角和及诱导公式,三角函数单调性一一判定选项即可.【详解】由题易知()()πsin sin πsin 2A B C A B C B C A A π⎛⎫++=<⇒+=-= ⎪⎝⎭、、,πsin sin cos 222A B C C +-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,()()cos cos πcos 0cos A B C C C +=-=-<<,即A 、B 、C 结论成立.对于D ,由锐角三角形知,2A B π+>,得ππ022B A <-<<,因此πsin sin cos 2A B B ⎛⎫>-= ⎪⎝⎭,所以错误.故选:ABC37.(2024高一下·河北沧州·阶段练习)在△ABC 中,下列关系式恒成立的有()A .()sin sin ABC +=B .cos sin 22A B C +⎛⎫= ⎪⎝⎭C .()sin 22sin20A B C ++=D .()cos 22cos20A B C ++=【答案】ABC【分析】结合三角形的内角和定理和诱导公式,准确运算,即可求解.【详解】对于A 中,由()()sin sin sin A B C C π+=-=,所以A 正确;对于B 中由cos cos sin 2222A B C C π+⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,所以B 正确;对于C 中,由()()()sin 22sin2sin 2sin2sin 2sin2A B C A B C C Cπ⎡⎤⎡⎤++=++=-+⎣⎦⎣⎦()sin 22sin2sin2sin20C C C C π=-+=-+=,所以C 正确;对于D 中,()cos(22)cos2cos 2cos2cos[2()]cos2A B C A B C C Cπ⎡⎤++=++=-+⎣⎦()cos 22cos2cos2cos22cos2C C C C C π=-+=+=,所以D 错误.故选:ABC.38.(2024高一上·江苏无锡·阶段练习)下列结论正确的有()A .sin cos 63ππαα⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭B .52cos sin 063ππθθ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭C .()()22sin 15cos 751αα-++=D .()()22sin 15sin 751αα-++=【答案】ABD【解析】本题可通过诱导公式将sin 6απ⎛⎫+ ⎪⎝⎭转化为cos 3πα⎛⎫- ⎪⎝⎭,A 正确,然后通过诱导公式将5cos 6πθ⎛⎫+⎪⎝⎭转化为2sin 3πθ⎛⎫-- ⎪⎝⎭,B 正确,最后根据()()sin 15cos 75 αα-=+以及同角三角函数关系判断出C 错误以及D 正确.【详解】A 项:sin sin cos cos 63332πππππαααα⎛⎫⎛⎫⎛⎫⎛⎫+=+-=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,A 正确;B 项:因为522cos sin sin sin 6333ππππθθπθθ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=-+=---=-- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,所以52cos sin 063ππθθ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭,B 正确;C 项:因为()()()sin 15sin 75cos 752πααα⎡⎤-=-+=+⎢⎥⎣⎦,所以()()()222sin 15cos 752cos 751ααα-++=+≠,C 错误;D 项:()()()()2222sin 15sin 75cos 75sin 751αααα-++=+++=,D 正确,故选:ABD.【点睛】关键点点睛:本题考查诱导公式以及同角三角函数关系的应用,考查的公式有sin cos 2παα⎛⎫+= ⎪⎝⎭、()cos cos αα=-、sin cos 2παα⎛⎫-= ⎪⎝⎭、22cos sin 1αα+=等,考查化归与转化思想,是中档题.39.(2024高一上·黑龙江齐齐哈尔·期末)已知下列等式的左右两边都有意义,则下列等式恒成立的是()A .cos 1sin 1sin cos x xx x-=+B .221sin 12tan sin cos tan x x x x x++=C .()()sin 53cos 37x x -=+D .()()sin 60cos 480x x -=+【答案】ABC【分析】对于A 、B ,由同角三角函数的基本关系进行化简证明即可,对于C 、D ,由诱导公式进行化简证明即可.【详解】对于A ,()()()()()22cos 1sin cos 1sin cos 1sin cos 1sin 1sin 1sin 1sin 1sin cos cos x x x x x x x x x x x x x x----====++--,故A 正确;对于B ,()2222222sin cos sin 1sin cos 2sin 12tan sin cos sin cos sin cos tan x x x x x x x x x x x x x x+++++===,故B 正确;对于C ,()()()sin 53sin 9037=cos 37x x x ⎡⎤-=-++⎣⎦,故C 正确;对于D ,()()()()cos 480=cos 0=cos 18060=cos 0126x x x x -⎡⎤++---⎣⎦,故D 错误.故选:ABC.三、填空题40.(2024·全国)若π10,,tan 22⎛⎫∈= ⎪⎝⎭θθ,则sin cos θθ-=.【答案】5-【分析】根据同角三角关系求sin θ,进而可得结果.【详解】因为π0,2θ⎛⎫∈ ⎪⎝⎭,则sin 0,cos 0θθ>>,又因为sin 1tan cos 2θθθ==,则cos 2sin θθ=,且22222cos sin 4sin sin 5sin 1+=+==θθθθθ,解得sin θ=或sin θ=(舍去),所以sin cos sin 2sin sin -=-=-=-θθθθθ故答案为:5-.41.(2024高一上·福建莆田·阶段练习)已知tan α=-2απ<<π,那么sin cos 1αα=+.【分析】由同角三角函数关系及已知条件求得1sin 33αα==-,代入目标式求值即可.【详解】由tan α=-2απ<<π,则1sin 33αα==-,所以sin cos 1αα=+.42.(2024高三·全国·对口高考)若sin cos 2sin cos x xx x-=+,求sin cos x x 的值为.【答案】310-/0.3-【分析】由已知求出tan 3x =-,再将sin cos x x 化为22sin cos sin cos x xx x+,利用齐次式法求值,即得答案.【详解】由sin cos 2sin cos x xx x-=+可得sin cos 2(sin cos ),sin 3cos x x x x x x -=+∴=-,因为cos 0x =不适合sin cos 2sin cos x xx x-=+,故cos 0x ≠,所以tan 3x =-,故222sin cos tan 33sin cos sin cos tan 19110x x x x x x x x -====-+++,故答案为:310-43.(2024高三上·江西南昌·阶段练习)若4tan 3θ=,则sin cos sin cos θθθθ-=+.【答案】17【分析】分式上下同除以cos θ,化弦为切,代入4tan 3θ=求值即可.【详解】4tan 3θ= ,sin 411sin cos tan 11cos 3sin 4sin cos tan 1711cos 3θθθθθθθθθθ----∴====++++.故答案为:17.44.(2024·上海浦东新·模拟预测)已知sin cos αα、是关于x 的方程2320x x a -+=的两根,则=a .【答案】56-【分析】先通过根与系数的关系得到sin ,cos αα的关系,再通过同角三角函数的基本关系即可解得.【详解】由题意:Δ41202sin cos 3sin cos 3a a αααα⎧⎪=-≥⎪⎪+=⎨⎪⎪=⎪⎩,所以13a ≤,所以()224sin cos 12sin cos 139a αααα+=+=+=,即650a +=,解得56a =-.故答案为:56-.45.(2024高三·全国·专题练习)已知1sin cos 4αα-=,则33sin cos αα-=.【答案】47128【分析】由立方差公式,得()()3322sin cos sin cos sin cos sin cos αααααααα-=-++.将1sin cos 4αα-=两边平方,解得15sin cos 32αα=,代入即可得解.【详解】由题知()()3322sin cos sin cos sin cos sin cos αααααααα-=-++,因为1sin cos 4αα-=,两边平方有112sin cos 16αα-=,所以15sin cos 32αα=,所以()3311547sin cos 1432128αα-=⨯+=.故答案为:47128.46.(2024高三上·安徽合肥·阶段练习)已知23sin 2m m α-=+,1cos 2m m α+=-+,且α为第二象限角,则()()sin 2024πcos 2023π2021πcos 2ααα+++=⎛⎫+ ⎪⎝⎭.【答案】73-/123-【分析】由已知可求出m 的取值范围,由同角三角函数的平方关系求出m 的值,可求出tan α的值,再利用诱导公式结合弦化切可求得所求代数式的值.【详解】因为23sin 2m m α-=+,1cos 2m m α+=-+,且α为第二象限角,则2302102m m m m -⎧>⎪⎪+⎨+⎪-<⎪+⎩,解得2m <-或32m >,因为22222223151010sin cos 12244m m m m m m m m αα-+-+⎛⎫⎛⎫+=+-== ⎪ ⎪++++⎝⎭⎝⎭,整理可得22730m m -+=,即()()2130m m --=,解得12m =(舍)或3m =,所以,233sin 25m m α-==+,14cos 25m m α+=-=-+,所以,sin 353tan cos 544ααα⎛⎫==⨯-=- ⎪⎝⎭,因此,()()sin 2024πcos 2023πsin cos 147112021πsin tan 33cos 2ααααααα+++-==-+=--=--⎛⎫+ ⎪⎝⎭.故答案为:73-.47.(2024·全国·模拟预测)若()223ππ1cos cos 714f x x x ⎡⎤⎤⎛⎫⎛⎫=--++ ⎪ ⎪⎢⎥⎥⎝⎭⎝⎭⎣⎦⎦,则()f x 的最大值为,()f x 的最小值为.【答案】91【分析】借助诱导公式将函数式转化,再利用两点间的距离公式将数转化为形,利用形的直观来求最值.【详解】因为πππ3π3πcos sin sin sin 1421477x x x x ⎛⎫⎛⎫⎛⎫⎛⎫+=--=-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,=,此式可看作点(到点3π3πcos ,sin 77x x ⎡⎤⎛⎫⎛⎫--⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的距离.而点3π3πcos ,sin 77x x ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的轨迹是圆221+=m n .又点(到圆心()0,0的距离为2,所以()f x 的最大值()()2max 219f x =+=,()f x 的最小值()()2min 211f x =-=.故答案为:9;1【点睛】将所给函数式展开必将陷入命题人的圈套,此时要整体把握目标,借助诱导公式将函数式转化,再利用两点间的距离公式将数转化为形,利用形的直观来求最值,既简单又节省时间.本题不仅要求学生具备扎实的基本功,具有整体把握目标的能力,还对学生分析问题和解决问题的能力、逻辑推理能力、运算求解能力等要求较高.48.(2024·四川绵阳·三模)已知π,π2θ⎛⎫∈ ⎪⎝⎭,()sin π3θ+=-,则tan θ=.【答案】【分析】根据诱导公式以及同角关系即可求解.【详解】由()sin π3θ+=-得sin 3θ=,由π,π2θ⎛⎫∈ ⎪⎝⎭可得cos θ=-,故sin tan cos θθθ==故答案为:2-49.(2024·山西阳泉·三模)已知πsin 6α⎛⎫+= ⎪⎝⎭ππ,44α⎛⎫∈- ⎪⎝⎭,则πsin 3α⎛⎫-=⎪⎝⎭.【分析】整体法诱导公式结合同角三角函数关系求出答案.【详解】因为ππ,44α⎛⎫∈- ⎪⎝⎭,所以ππ5π,61212α⎛⎫+∈- ⎪⎝⎭,故πcos 06α⎛⎫+> ⎪⎝⎭,所以πcos 6α⎛⎫+= ⎪⎝⎭ππππsin sin cos 3266ααα⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦50.(2024·浙江温州·二模)已知tan x =,则23sin 2sin cos x x x -=.【分析】利用同角三角函数的关系化简23sin 2sin cos x x x -为齐次式,再代入tan x =.【详解】因为tan x =,所以2222223sin 2sin cos 3tan 2tan 3sin 2sin cos sin cos 1tan x x x x xx x x x x x---==++、()2231⨯-==+51.(2024·黑龙江哈尔滨·二模)已知tan 2θ=,则1sin 2cos 2θθ+的值是.【答案】5【分析】利用正弦、余弦的二倍角公式以及弦化切的公式先化简,在将tan 2θ=代入即可.【详解】因为tan 2θ=,所以2211sin 2cos 22sin cos cos sin θθθθθθ=++-2222cos sin 2sin cos cos sin θθθθθθ+=+-221tan 2tan 1tan θθθ+=+-221252212+==⨯+-,故答案为:5.52.(2024高三·全国·专题练习)已知()7sin cos 0π13ααα+=<<,则tan α=.【答案】125-【分析】由同角三角函数的平方关系和商数关系,并分析三角函数值的正负即可求解.【详解】解:已知7sin cos 13αα+=①,则()2sin cos 12sin cos 69491αααα+=+=,60sin cos 0169αα=-<,0πα<< ,sin 0α∴>,则cos 0α<,sin cos 0αα->,17sin cos13αα∴-===②,联立①②,得12sin 13α=,5cos 13α=-12tan 5α∴=-,故答案为:125-.53.(2024高三上·湖南衡阳·期中)已知sin cos 3αα-=-,则sin 2α=.【答案】79【分析】sin cos 3αα-=-平方,结合同角三角函数平方关系即正弦二倍角公式求解.【详解】sin cos αα-=两边平方得:()22sin cos 12sin cos 1sin 29ααααα-=-=-=,解得:7sin 29α=.故答案为:7954.(2024·全国·模拟预测)已知π1sin 35α⎛⎫-= ⎪⎝⎭,则cos 6α5π⎛⎫-=⎪⎝⎭.【答案】15/0.2【分析】由三角函数的诱导公式化简可得.【详解】由题可得5π5ππππ1cos cos cos sin 663235αααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=-=--=-= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.故答案为:1555.(2024高三上·内蒙古包头·阶段练习)若πtan 4θ⎛⎫+= ⎪⎝⎭πtan 4θ⎛⎫-=⎪⎝⎭.【答案】【分析】以π4θ+为整体,根据诱导公式运算求解.【详解】由题意可得:πππ1tan tanπ442tan 4θθθ⎡⎤⎛⎫⎛⎫-=+-=-=- ⎪ ⎪⎢⎥⎛⎫⎝⎭⎝⎭⎣⎦+ ⎪⎝⎭故答案为:56.(2024高一下·黑龙江佳木斯·开学考试)已知()1sin 535α︒-=,且27090α-︒<<-︒,则()sin 37α︒+=.【答案】【分析】设53βα︒=-,37γα︒=+,则90βγ︒+=,90γβ︒=-,从而将所求式子转化成求cos β的值,利用α的范围确定cos β的符号.【详解】设53βα︒=-,37γα︒=+,那么90βγ︒+=,从而90γβ︒=-.于是()sin sin 90cos γββ︒=-=.因为27090α︒︒-<<-,所以143323β︒︒<<.由1sin 05β=>,得143180β︒︒<<.所以cos β===所以()sin 37sin 5αγ︒+==-.故答案为:57.(2024高一上·新疆乌鲁木齐·期末)已知角α的终边与单位圆221x y +=交于点1,2⎛⎫⎪⎝⎭y P ,则3πsin 2α⎛⎫-= ⎪⎝⎭.【答案】12-/-0.5【分析】根据任意角三角比的定义和诱导公式求解.【详解】因为角α的终边与单位圆221x y +=交于点1,2⎛⎫⎪⎝⎭y P ,所以||1r OP ==13π12sin cos 212x r αα⎛⎫-=-=-=-=- ⎪⎝⎭,故答案为:12-.58.(2024高一·全国·课后作业)若角α的终边落在直线y x =上,则co 3si 22n s παπα⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭-.【分析】化简得到3sin cos cos sin 22ππαααα⎛⎫⎫⎪⎪-++=--⎝⎭⎝⎭,考虑角α为第一或第三象限角两种情况,计算得到答案.【详解】因为角α的终边落在直线y x =上,所以角α为第一或第三象限角,3sin cos cos sin 22ππαααα⎛⎫⎛⎫⎪ ⎪-++=--⎝⎭⎝⎭,当角α为第一象限角时,cos sin αα==,cos sin αα--==当角α为第三象限角时,cos sin αα==cos sin 22αα--=+=或.四、解答题59.(2024高三·全国·专题练习)已知角α的终边落在直线2y x =上.求(1)4sin 2cos 5sin 3cos αααα-+的值;(2)25sin 3sin cos 2ααα+-的值.【答案】(1)613(2)165【分析】由角α的终边落在直线2y x =上可得tan 2α=,再根据同角函数的关系求解即可.【详解】(1)由角α的终边落在直线2y x =上可得tan 2α=则原式=4tan 28265tan 310313αα--==++;(2)原式222225sin 3sin cos 5tan 3tan 20616222sin cos tan 155αααααααα+++=-=-=-=++.60.(2024高一下·安徽·期中)已知角θ的顶点为坐标原点O ,始边为x 轴的非负半轴,终边与单位圆相交于点P (),x y ,若点P 位于x 轴上方且12x y +=.(1)求sin cos θθ-的值;(2)求44sin cos θθ+的值.【答案】(2)2332【分析】(1)根据cos sin θθ+,cos sin θθ-,cos sin θθ三个直接的关系,可得sin cos θθ-.(2)由4422sin cos 12sin cos θθθθ+=-可得.【详解】(1)由三角函数的定义,1cos sin 2θθ+=,sin 0θ>,两边平方,得221cos sin 2sin cos 4θθθθ++=则32sin cos 04θθ=-<,sin 0θ>,cos 0θ<,所以sin cos 0θθ->,sin cos2θθ-=.(2)由(1)知,3sin cos 8θθ=-,4422222923sin cos (sin cos )2sin cos 126432θθθθθθ+=+-=-⨯=.。

《高考调研》高三数学第一轮复习 第八章《直线和圆的方程》课件8-3

《高考调研》高三数学第一轮复习 第八章《直线和圆的方程》课件8-3

121 +8)= . 4
• 探究1 (1)确定Ax+By+C≥0表示的区域有两种方法.① 试点法,一般代入原点,②化为y≥kx+b(y≤kx+b)的形式 .不等式y≥kx+b表示的区域为直线y=kx+b的上方,不 等式y≤kx+b表示的区域为直线y=kx+b的下方. • (2)在封闭区域内找整点数目时,若数目较小时,可画网 格逐一数出;若数目较大,则可分x=m逐条分段统计.
• 1.(08·全国卷Ⅰ)点A(1,1),B(-1,b)位于 直线2x-3y+4=0的同侧,则实数b的取值 范围是________.
2 答案 b< . 3
2 . 已 知 函 数 f(x) = x2 - 5x + 4 , 则 不 等 式 组
fx-fy≥0, 1≤x≤4
对应的平面区域为(
• 1.二元一次不等式表示平面区域 • (1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标 系中表示直线Ax+By+C=0某一侧所有点组成的 . • (2)由于对在直线Ax+By+C=0同一侧的所有点(x,y),把 它的坐标(x,y)代入Ax+By+C,所得到实数的符号都 ,所以只需在此直线的某一侧取一个特殊点(x0,y0), 从 集合 Ax0+By0+C的 即可判断Ax+By+C>0表示直线哪一 侧的平面区域. 相同符号
3 【答案】 ;(-∞,-2]∪[1,+∞) 2
பைடு நூலகம்
• 题型三 线性规划实际应用 • 例3 (2010·广东卷,理)某营养师要为某个儿童预订午餐 和晚餐.已知一个单位的午餐含12个单位的碳水化合物 ,6个单位的蛋白质和6个单位的维生素C;一个单位的晚 餐含8个单位的碳水化合物,6个单位的蛋白质和10个单 位的维生素C.另外,该儿童这两餐需要的营养中至少含64 个单位的碳水化合物,42个单位的蛋白质和54个单位的 维生素C. • 如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那 么要满足上述的营养要求,并且花费最少,应当为该儿 童分别预订多少个单位的午餐和晚餐?

轮复习《高考调研》全套复习课件和练习

轮复习《高考调研》全套复习课件和练习

如图所示,在直角三棱锥A­ BCD中,AB⊥AC,AC⊥AD,

前 自 助
AD⊥ AB, E, F分 别是棱 BC, CD的中点 ,则有 AE= 12BC,

1
1
AE AF EF 1
授 AF=2CD,EF=2BD,∴BC=CD=BD=2,

以 渔


AEF∽△
CBD,

SΔ SΔ
ACEBFD=14



第十一章 ·第3课时
课 时 作 业
高三数学(人教版)
高考调研 ·新课标高考总复习
课 前 自 课本导读 助 餐
授 人 以 渔
推理
课前自助餐
第十一章 ·第3课时
课 时 作 业
高三数学(人教版)
高考调研 ·新课标高考总复习
第十一章 ·第3课时
课 前
教材回归
自 助
1.下面几种推理是合情推理的是(
)

明. 授

【思路分析】 由 f(x)→计算各和式→得出结论→归

渔 纳猜想一般结论→证明
1
1
1
1
【解析】 f(0)+f(1)=




30+ 3 31+ 3 1+ 3 3+ 3
3-1 3- 3 3 2 + 6 =3,

同理可得:f(- 1)+f(2)= 33,
时 作

高三数学(人教版)
高考调研 ·新课标高考总复习
合情推理在数学发现中的作用.

人 2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们
以 渔
进行一些简单的推理.

第02讲 动词和动词短语(课件)-中考英语一轮复习讲练测(全国通用)_1

第02讲 动词和动词短语(课件)-中考英语一轮复习讲练测(全国通用)_1

夯基·必备基础知识 知识点6 高频动词短语归纳
构成方式
常见短语
give a concert开音乐会,give a tea进行测试,have a
rest休息,have a picnic野餐,have a try试一试,keep a
动词+冠词+名词 record保持纪录,leave a message留言,make a face做
smile微笑;swim游泳
夯基·必备基础知识 知识点3 系动词
分类
常用词
例句
表示主语的状态 、特征和身份等
be(是),look(看起来),seem(似乎) ,feel(感觉),appear(出现),smell( 闻起来),taste(尝起来),sound(听 起来)
He is a good father. 他是一位好父亲。She looks younger than before. 她看起来比以前 年轻。
稿定PPT
注意:用省略to的不定式稿或定PP现T,海在量素分材持词续更作宾补的动词有: s如: 新,上千款模板选择总有一
believe相信;find发现;款适h合e你ar听见,听说;keep保持;
make使得;see看见等。
不能直接跟宾语
He is waiting for you at the gate. 他在门口等着你。
2024
中考一轮复习讲练测
第2讲 动词和动词短语
授课:×××
目录
CONTENTS
01
复习目标
02
网络构建
03
知识梳理 题型归纳
04
真题感悟
内容索引
目录

复习目标 掌握目标及备考方向

2025届人教版(2019)高中英语一轮话题复习高考题型通关练课件:话题2 学校生活

2025届人教版(2019)高中英语一轮话题复习高考题型通关练课件:话题2 学校生活
A.The driver took the blame for the accident. B.The accident had been worse than expected.
√C.Julia should overcome the fear to drive.
D.Julia was smart to deal with any trouble. 解析 推理判断题。根据第三段的“I realized that no matter how I felt about it...‘You’re stronger than you think,’ I said.”可知,当茱莉亚与保险公司 代理人打电话时,作者意识到朱莉亚长大了,应该克服开车的恐惧。
The Zem is the second zero-emission vehicle we’ve seen come out of the Eindhoven University of st year , another team of students created the Stella Vita,a solar-powered vehicle that could travel up to 450 miles a day.We can’t wait to see what the school’s students come up with next. 【语篇解读】 本文是说明文。文章介绍了埃因霍芬理工大学的学生们创造出 一款名叫Zem的吸收二氧化碳的电动汽车。
高考题型通关
2.What did the doctor suggest to Julia?
A.Staying away from driving. B.Attending a driving lesson. C.Contacting the insurance agent.

2019版数学一轮高中全程复习方略课件:第九章 计数原理、概率、随机变量及其分布9-8

2019版数学一轮高中全程复习方略课件:第九章 计数原理、概率、随机变量及其分布9-8

解析:(1)设 A 表示事件“观众甲选中 3 号歌手”,B 表示 事件“观众乙选中 3 号歌手”, 2 C1 2 C 2 4 3 则 P(A)=C2=3,P(B)=C3=5. 3 5 - ∵事件 A 与 B 相互独立,A 与- B 相互独立,则 A· B 表示事 件“甲选中 3 号歌手,且乙没选中 3 号歌手”. 2 2 4 - - ∴P(A B )=P(A)· P( B )=P(A)· [1-P(B)]=3×5=15. 即观众甲选中 3 号歌手且观众乙未选中 3 号歌手的概率是 4 . 15
解析:P(A|B)的含义是在事件 B 发生的条件下,事件 A 发 生的概率,即在“至少出现一个 6 点”的条件下,“三个点数都 不相同 ” 的概率,因为 “ 至少出现一个 6 点 ” 有 6×6×6 - 5×5×5=91 种情况,“至少出现一个 6 点,且三个点数都不相 60 1 同”共有 C3×5×4=60 种情况,所以 P(A|B)=91.P(B|A)的含义 是在事件 A 发生的情况下,事件 B 发生的概率,即在“三个点 数都不相同”的情况下,“至少出现一个 6 点”的概率,所以 1 P(B|A)=2.故选 A. 答案:A
9.3σ 原则 (1)P(μ-σ<X≤μ+σ)=0.682 6; (2)P(μ-2σ<X≤μ+2σ)=0.954 4; (3)P(μ-3σ<X≤μ+3σ)=0.997 4.
二、必明 2●个易要么发生,要么不发生,并且任何一次试验中某事件发生的概率 相等.注意恰好与至多(少)的关系,灵活运用对立事件. 2.二项分布要注意确定成功概率.
(2)设 C 表示事件“观众丙选中 3 号歌手”, C2 4 3 则 P(C)=C3=5, 5 依题意,A,B,C 相互独立,- A ,- B ,- C 相互独立, 且 AB- C ,A- B C ,- A BC,ABC 彼此互斥. 又 P(X=2)=P(AB- C )+P(A- B C)+P(- A BC) 2 3 2 2 2 3 1 3 3 33 =3×5×5+3×5×5+3×5×5=75, 2 3 3 18 P(X=3)=P(ABC)=3×5×5=75, 33 18 17 ∴P(X≥2)=P(X=2)+P(X=3)=75+75=25.

数学高考调研必修1

数学高考调研必修1

数学高考调研必修1引言数学是一门基础学科,对于学生的综合能力有着重要的影响。

高考作为我国教育体制中的重要组成部分,数学作为其中的一科也备受关注。

为了了解数学高考中必修1的相关内容和考试要求,我们进行了一次调研。

1. 必修1的概述数学高考必修1是以初中数学知识为基础,进一步拓宽和深化学生的数学思维能力和解决问题的能力的一门课程。

该课程共分为6个单元,分别是数与式、图形与运算、一次函数与方程、几何变换、统计与概率、分式方程。

2. 数与式这个单元主要是对于数的认识和数的运算进行复习与拓展。

包括自然数、整数、有理数和实数的认识与运算。

同时,还包括整式的基本概念和四则运算。

在高考中,这个单元通常会涉及到解方程、方程组以及分式方程等内容。

考生需要熟练掌握各种方程的解法,以及解方程的应用。

3. 图形与运算图形与运算单元主要包括平面图形和立体图形的相关知识。

平面图形涉及到的内容有圆的认识和性质、直线与圆的位置关系、多边形以及计算曲线的弧长等。

立体图形方面主要包括对立体图形的认识、计算体积和表面积等。

高考中,通常会涉及到平行线的性质、相似三角形、变形以及利用平面图形解决实际问题等内容。

4. 一次函数与方程一次函数与方程单元主要是对一次函数的认识和操作进行进一步学习。

包括一次函数的概念、一次函数的图像和性质、一次函数的应用等。

在高考中,这个单元通常会涉及到线性方程组的解法、一次函数的应用以及一次函数与方程的应用等。

考生需要熟练掌握一次函数的性质,能够灵活运用一次函数解决实际问题。

5. 几何变换几何变换单元主要包括平移、旋转、对称和相似等几何变换的知识。

通过学习这些内容,能够使学生更好地理解几何形状之间的关系和性质。

高考中,通常会涉及到平移、旋转和对称等几何变换的操作和应用。

6. 统计与概率统计与概率单元主要是对统计和概率的相关知识进行学习。

包括统计调查和样本调查的方法、统计表和图的制作和分析,以及概率的概念和初步应用等。

2019版高考数学创新大一轮复习江苏专用版全国通用讲义

2019版高考数学创新大一轮复习江苏专用版全国通用讲义

第23讲 函数y =A sin (ωx +φ)的图象及应用考试要求 1.函数y =A sin(ωx +φ)的物理意义,图象的画法,参数A ,ω,φ对函数图象变化的影响(A 级要求);2.利用三角函数解决一些简单实际问题(A 级要求).诊 断 自 测1.思考辨析(在括号内打“√”或“×”)(1)将函数y =3sin 2x 的图象左移π4个单位长度后所得图象的解析式是y =3sin ⎝⎛⎭⎪⎫2x +π4.( )(2)利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.( )(3)函数y =A cos(ωx +φ)的最小正周期为T ,那么函数图象的两个相邻对称中心之间的距离为T2.( )(4)由图象求解析式时,振幅A 的大小是由一个周期内图象中最高点的值与最低点的值确定的.( )解析 (1)将函数y =3sin 2x 的图象向左平移π4个单位长度后所得图象的解析式是y =3cos 2x .(2)“先平移,后伸缩”的平移单位长度为|φ|,而“先伸缩,后平移”的平移单位长度为|φ|ω.故当ω≠1时平移的长度不相等.答案 (1)× (2)× (3)√ (4)√2.(必修4P40练习5改编)y =2sin ⎝ ⎛⎭⎪⎫2x -π4的振幅、频率和初相分别为________.解析 根据y =A sin(ωx +φ)(A >0,ω>0)的振幅、频率、初相定义知,振幅A =2,频率f =ω2π=22π=1π,初相φ=-π4.答案 2,1π,-π4 3.(2017·江苏押题卷)已知角φ的终边经过点P (1,1),函数f (x )=sin(ωx +φ)(ω>0,0<φ<π2)图象的相邻两条对称轴之间的距离等于π3,则f ⎝ ⎛⎭⎪⎫π6的值为________.解析 由题设可得tan φ=1,0<φ<π2,所以φ=π4,又T 2=π3,则T =2π3⇒ω=2π2π3=3,所以f (x )=sin ⎝ ⎛⎭⎪⎫3x +π4,则f ⎝ ⎛⎭⎪⎫π6=sin ⎝ ⎛⎭⎪⎫3×π6+π4=sin 3π4=22.答案 224.(2017·南京、盐城模拟)将函数y =3sin ⎝ ⎛⎭⎪⎫2x +π3的图象向右平移φ⎝ ⎛⎭⎪⎫0<φ<π2个单位后,所得函数为偶函数,则φ=________.解析 由题意得y =3sin ⎝ ⎛⎭⎪⎫2(x -φ)+π3为偶函数,所以-2φ+π3=π2+k π(k ∈Z ),又0<φ<π2,所以φ=5π12. 答案 5π125.(必修4P45第9题改编)电流强度I (A)随时间t (s)变化的函数I =A sin(ωt +φ)⎝⎛⎭⎪⎫A >0,ω>0,0<φ<π2的部分图象如图所示,则当t =1100 s 时,电流强度是________ A.解析 由图象知A =10,T 2=4300-1300=1100, ∴ω=2πT =100π.∴I =10sin(100πt +φ).⎝ ⎛⎭⎪⎫1300,10为五点中的第二个点,∴100π×1300+φ=π2.∴φ=π6.∴I=10sin⎝⎛⎭⎪⎫100πt+π6,当t=1100s时,I=-5 A.答案-5知识梳理1.“五点法”作函数y=A sin(ωx+φ)(A>0,ω>0)的简图“五点法”作图的五点是在一个周期内的最高点、最低点及与x轴相交的三个点,作图时的一般步骤为:(1)定点:如下表所示.+φ)在一个周期内的图象.(3)扩展:将所得图象,按周期向两侧扩展可得y=A sin(ωx+φ)在R上的图象.2.函数y=A sin(ωx+φ)中各量的物理意义当函数y=A sin(ωx+φ)(A>0,ω>0),x∈[0,+∞)表示简谐振动时,几个相关的概念如下表:考点一 “五点法”与“变换法”作图【例1】 (必修4P37例1改编)设函数f (x )=sin ωx +3cos ωx (ω>0)的周期为π.(1)求它的振幅、初相;(2)用“五点法”作出它在长度为一个周期的闭区间上的图象;(3)(一题多解)说明函数f (x )的图象可由y =sin x 的图象经过怎样的变换而得到. 解 (1)f (x )=sin ωx +3cos ωx=2⎝ ⎛⎭⎪⎫12sin ωx +32cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π3.∵T =π,∴2πω=π,即ω=2. ∴f (x )=2sin ⎝⎛⎭⎪⎫2x +π3.∴函数f (x )=sin ωx +3cos ωx 的振幅为2,初相为π3. (2)令X =2x +π3,则y =2sin ⎝ ⎛⎭⎪⎫2x +π3=2sin X .列表,并描点画出图象:(3)法一 把y =sin x 的图象上所有的点向左平移π3个单位,得到y =sin ⎝ ⎛⎭⎪⎫x +π3的图象;再把y =sin ⎝ ⎛⎭⎪⎫x +π3的图象上的点的横坐标变为原来的12(纵坐标不变),得到y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象;最后把y =sin ⎝ ⎛⎭⎪⎫2x +π3上所有点的纵坐标变为原来的2倍(横坐标不变),即可得到y =2sin ⎝⎛⎭⎪⎫2x +π3的图象.法二 将y =sin x 的图象上每一点的横坐标x 变为原来的12,纵坐标不变,得到y =sin 2x 的图象;再将y =sin 2x 的图象向左平移π6个单位,得到y =sin 2⎝ ⎛⎭⎪⎫x +π6=sin ⎝ ⎛⎭⎪⎫2x +π3的图象;再将y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象上每一点的横坐标保持不变 ,纵坐标变为原来的2倍,得到y =2sin ⎝⎛⎭⎪⎫2x +π3的图象.规律方法 作函数y =A sin(ωx +φ)(A >0,ω>0)的图象常用如下两种方法: (1)五点法作图,用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象;(2)图象的变换法,由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象有两种途径:“先平移后伸缩”与“先伸缩后平移”.【训练1】 已知f (x )=cos(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2<φ<0的最小正周期为π,且f ⎝ ⎛⎭⎪⎫π4=32.(1)求ω和φ的值;(2)在给定坐标系中作出函数f (x )在[0,π]上的图象;(3)若f (x )>22,求x 的取值范围.解 (1)周期T =2πω=π,∴ω=2, ∵f ⎝ ⎛⎭⎪⎫π4=cos ⎝ ⎛⎭⎪⎫2×π4+φ=cos ⎝ ⎛⎭⎪⎫π2+φ=-sin φ=32,又-π2<φ<0,∴φ=-π3. (2)f (x )=cos ⎝⎛⎭⎪⎫2x -π3,列表如下:(3)∵cos ⎝⎛⎭⎪⎫2x -π3>22,∴2k π-π4<2x -π3<2k π+π4(k ∈Z ),∴2k π+π12<2x <2k π+7π12(k ∈Z ), ∴k π+π24<x <k π+7π24,()k ∈Z , ∴x的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪k π+π24<x <k π+7π24,k ∈Z .考点二 由图象求解析式【例2】 (2017·盐城第一学期期中)函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,且A >0,ω>0,0<φ<π)的部分图象如图所示.(1)求A ,ω,φ的值;(2)设θ为锐角,且f (θ)=-335,求f ⎝ ⎛⎭⎪⎫θ-π6的值.解 (1)由图象,得A =3,34T =712π-⎝ ⎛⎭⎪⎫-π6=34π,则T =π,∴ω=2πT =2, ∴f (x )=3sin(2x +φ),由f ⎝ ⎛⎭⎪⎫7π12=-3,得3sin ⎝ ⎛⎭⎪⎫712π×2+φ=-3,结合0<φ<π,得φ=π3. (2)由(1)得f (x )=3sin ⎝ ⎛⎭⎪⎫2x +π3,∴f (θ)=3sin ⎝ ⎛⎭⎪⎫2θ+π3=-335,∴sin ⎝⎛⎭⎪⎫2θ+π3=-35,∵θ∈⎝ ⎛⎭⎪⎫0,π2,∴2θ+π3∈⎝ ⎛⎭⎪⎫π3,4π3,又sin ⎝ ⎛⎭⎪⎫2θ+π3<0,∴2θ+π3∈⎝ ⎛⎭⎪⎫π,4π3,∴cos ⎝⎛⎭⎪⎫2θ+π3=-1-sin 2⎝⎛⎭⎪⎫2θ+π3=-45,∴f ⎝ ⎛⎭⎪⎫θ-π6=3sin 2θ=3sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2θ+π3-π3=3⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫2θ+π3cos π3-cos ⎝ ⎛⎭⎪⎫2θ+π3sin π3=3×⎝ ⎛⎭⎪⎫-35×12+45×32=12-3310.规律方法 已知f (x )=A sin(ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)五点法,由ω=2πT 即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ;(2)代入法,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.【训练2】 (1)(2016·全国Ⅱ卷改编)函数f (x )=A sin(ωx +φ)的部分图象如图所示,则函数f (x )的解析式为________.(2)如图,某地一天,从6~14时的温度变化曲线近似满足函数y =A sin(ωx +φ)+b (A >0,ω>0,0<φ<π),则这段曲线的函数解析式为________.解析 (1)由题图可知,T =2⎣⎢⎡⎦⎥⎤π3-⎝ ⎛⎭⎪⎫-π6=π,所以ω=2,由五点作图法可知2×π3+φ=π2,所以φ=-π6,所以函数的解析式为f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π6.(2)从图中可以看出,从6~14时是函数y =A sin(ωx +φ)+b 的半个周期,又12×2πω=14-6,所以ω=π8.由图可得A =12(30-10)=10,b =12(30+10)=20.又π8×10+φ=2π,解得φ=3π4, ∴y =10sin ⎝ ⎛⎭⎪⎫π8x +3π4+20,x ∈[6,14].答案 (1)f (x )=2sin ⎝⎛⎭⎪⎫2x -π6(2)y =10sin ⎝ ⎛⎭⎪⎫π8x +3π4+20,x ∈[6,14]考点三 三角函数图象与性质的综合问题(典例迁移)【例3】 (经典母题)(2017·山东卷)设函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝ ⎛⎭⎪⎫ωx -π2,其中0<ω<3.已知f ⎝ ⎛⎭⎪⎫π6=0.(1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )在⎣⎢⎡⎦⎥⎤-π4,3π4上的最小值.解 (1)因为f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝⎛⎭⎪⎫ωx -π2,所以f (x )=32sin ωx -12cos ωx -cos ωx =32sin ωx -32cos ωx =3⎝ ⎛⎭⎪⎫12sin ωx -32cos ωx=3sin ⎝ ⎛⎭⎪⎫ωx -π3.由题设知f ⎝ ⎛⎭⎪⎫π6=0,所以ωπ6-π3=k π,k ∈Z . 故ω=6k +2,k ∈Z ,又0<ω<3, 所以ω=2.(2)由(1)得f (x )=3sin ⎝⎛⎭⎪⎫2x -π3,所以g (x )=3sin ⎝ ⎛⎭⎪⎫x +π4-π3=3sin ⎝ ⎛⎭⎪⎫x -π12.因为x ∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以x -π12∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π12=-π3,即x =-π4时,g (x )取得最小值-32.【迁移探究1】 (2016·山东卷)设f (x )=23sin(π-x )sin x -(sin x -cos x )2. (1)求f (x )的单调递增区间;(2)把y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移π3个单位,得到函数y =g (x )的图象,求g ⎝ ⎛⎭⎪⎫π6的值.解 (1)由f (x )=23sin(π-x )sin x -(sin x -cos x )2 =23sin 2x -(1-2sin x cos x ) =3(1-cos 2x )+sin 2x -1=sin 2x -3cos 2x +3-1 =2sin ⎝⎛⎭⎪⎫2x -π3+3-1.由2k π-π2≤2x -π3≤2k π+π2(k ∈Z ), 得k π-π12≤x ≤k π+5π12(k ∈Z ). 所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z )⎝ ⎛⎭⎪⎫或⎝ ⎛⎭⎪⎫k π-π12,k π+5π12(k ∈Z ).(2)由(1)知f (x )=2sin ⎝⎛⎭⎪⎫2x -π3+3-1,把y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变). 得到y =2sin ⎝ ⎛⎭⎪⎫x -π3+3-1的图象.再把得到的图象向左平移π3个单位, 得到y =2sin x +3-1的图象, 即g (x )=2sin x +3-1.所以g ⎝ ⎛⎭⎪⎫π6=2sin π6+3-1= 3. 【迁移探究2】 已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +φ-π6(0<φ<π,ω>0)为偶函数,且函数y =f (x )图象的两相邻对称轴间的距离为π2. (1)求f ⎝ ⎛⎭⎪⎫π8的值;(2)将函数y =f (x )的图象向右平移π6个单位后,再将得到的图象上各点的横坐标变为原来的4倍(纵坐标不变),得到函数y =g (x )的图象,求g (x )的解析式,并写出g (x )的单调递减区间. 解 (1)∵f (x )为偶函数,∴φ-π6=k π+π2,k ∈Z ,解得φ=2π3+k π,k ∈Z .∵0<φ<π,∴φ=2π3. 由题意2πω=2×π2,得ω=2.故f (x )=2cos 2x ,f ⎝ ⎛⎭⎪⎫π8=2cos π4= 2. (2)将f (x )的图象向右平移π6个单位后,得到f ⎝ ⎛⎭⎪⎫x -π6的图象,再将所得图象上各点的横坐标伸长到原来的4倍(纵坐标不变),得到f ⎝ ⎛⎭⎪⎫x 4-π6的图象,所以g (x )=f ⎝ ⎛⎭⎪⎫x 4-π6=2cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x 4-π6=2cos ⎝ ⎛⎭⎪⎫x 2-π3. 当2k π≤x 2-π3≤2k π+π(k ∈Z ),即4k π+2π3≤x ≤4k π+8π3(k ∈Z )时,g (x )单调递减.因此g (x )的单调递减区间为⎣⎢⎡⎦⎥⎤4k π+2π3,4k π+8π3(k ∈Z ). 规律方法 (1)y =A sin(ωx +φ)(A >0,ω>0)的图象变换:由y =sin x 的图象变换得到y =A sin(ωx +φ)(A >0,ω>0)的图象有两种方法. 法一:(先平移后伸缩)y =sin x 的图象――――――――――――――――→向左(φ>0)或向右(φ<0)平移|φ|个单位y =sin(x +φ)的图象――――――――――→横坐标变为原来的1ωy =sin(ωx +φ)的图象――――――――→纵坐标变为原来的A 倍y =A sin(ωx +φ)的图象.法二:(先伸缩后平移)y =sin x 的图象――――――――→横坐标变为原来的1ωy =sin ωx 的图象――――――――――――――――→向左(φ>0)或向右(φ<0)平移|φ|ω个单位y =sin(ωx +φ)的图象――――――――→纵坐标变为原来的A 倍y =A sin(ωx +φ)的图象.(2)研究三角函数的单调性,首先将函数化为y =A sin(ωx +φ)+h (或y =A cos(ωx +φ)+h )的形式,要视“ωx +φ”为一个整体,另外注意A 的正负. (3)三角函数最值问题的解题思路:(ⅰ)用三角方法求三角函数的最值常见的函数形式 ① y =a sin x +b cos x =a 2+b 2sin(x +φ),其中cos φ=a a 2+b 2,sin φ=ba 2+b2. ②y =a sin 2x +b sin x cos x +c cos 2x 可先降次,整理转化为上一种形式. ③y =a sin x +bc sin x +d (或y =a cos x +bc cos x +d)可转化为只有分母含sin x 或cos x 的函数式或sinx =f (y )[cos x =f (y )]的形式,由正、余弦函数的有界性求解. (ⅱ)用代数方法求三角函数的最值常见的函数形式 ①y =a sin 2x +b cos x +c 可转化为cos x 的二次函数式.②y =a sin x +c b sin x (a ,b ,c >0),令sin x =t ,则转化为求y =at +cbt (-1≤t ≤1)的最值,一般可用基本不等式或单调性求解.【训练3】 (2018·苏、锡、常、镇四市调研)已知函数f (x )=3sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2≤φ<π2的图象关于直线x =π3对称,且图象上相邻最高点的距离为π.(1)求f ⎝ ⎛⎭⎪⎫π4的值;(2)将函数y =f (x )的图象向右平移π12个单位后,得到y =g (x )的图象,求g (x )的单调递减区间.解 (1)因为f (x )的图象上相邻最高点的距离为π,所以f (x )的最小正周期T =π,从而ω=2πT =2.又f (x )的图象关于直线x =π3对称,所以2×π3+φ=k π+π2(k ∈Z ),因为-π2≤<π2,所以k =0,所以φ=π2-2π3=-π6,所以f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6,则f ⎝ ⎛⎭⎪⎫π4=3sin ⎝ ⎛⎭⎪⎫2×π4-π6=3sin π3=32.(2)将f (x )的图象φ向右平移π12个单位后,得到f ⎝ ⎛⎭⎪⎫x -π12的图象, 所以g (x )=f ⎝ ⎛⎭⎪⎫x -π12=3sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12-π6=3sin ⎝⎛⎭⎪⎫2x -π3.当2k π+π2≤2x -π3≤2k π+3π2(k ∈Z ),即k π+5π12≤x ≤k π+11π12(k ∈Z )时,g (x )单调递减. 因此g (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π+5π12,k π+11π12(k ∈Z ).一、必做题1.(2016·全国Ⅰ卷改编)若将函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向右平移14个周期后,所得图象对应的函数为________.解析 函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的周期为π,将函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向右平移14个周期即π4个单位,所得函数为y =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π4+π6=2sin ⎝ ⎛⎭⎪⎫2x -π3.答案 y =2sin ⎝⎛⎭⎪⎫2x -π32.(2018·镇江模拟)将函数y =5sin(2x +π4)的图象向左平移φ(0<φ<π2)个单位后,所得函数图象关于y 轴对称,则φ=________.解析 由题意得y =5sin ⎝ ⎛⎭⎪⎫2(x +φ)+π4函数图象关于y 轴对称,所以2φ+π4=π2+k π(k ∈Z ),又0<φ<π2,所以φ=π8. 答案 π83.(2018·南京、盐城模拟)已知函数f (x )=2sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,且它的图象过点⎝ ⎛⎭⎪⎫-π12,-2,则φ的值为________.解析 由题意可得T =2πω=π,解得ω=2,则f (x )=2sin(2x +φ).又f ⎝ ⎛⎭⎪⎫-π12=2sin ⎝ ⎛⎭⎪⎫-π6+φ=-2⎝ ⎛⎭⎪⎫|φ|<π2,-π6+φ=5π4+2k π或7π4+2k π,k ∈Z ,解得φ=-π12. 答案 -π124.(2017·江苏大联考)已知f (x )=sin 2x +3cos 2x 的图象向右平移φ(0<φ<π2)个单位后,所得函数为偶函数,则φ=________.解析 由题意得y =2sin ⎣⎢⎡⎦⎥⎤2(x -φ)+π3为偶函数,所以-2φ+π3=π2+k π(k ∈Z ),又0<φ<π2,所以φ=5π12. 答案 5π125.(2018·南京调研)如图,它是函数f (x )=A sin(ωx +φ)(A >0,ω>0,φ∈(0,π))图象的一部分,则f (0)的值为________.解析 由函数图象得A =3,2πω=2[3-(-1)]=8,解得ω=π4,所以f (x )=3sin ⎝ ⎛⎭⎪⎫π4x +φ,又因为(3,0)为函数f (x )=3sin ⎝ ⎛⎭⎪⎫π4x +φ的一个下降零点,所以π4×3+φ=(2k +1)π(k ∈Z ),解得φ=π4+2k π(k ∈Z ),又因为φ∈(0,π),所以φ=π4,所以f (x )=3sin ⎝ ⎛⎭⎪⎫π4x +π4,则f (0)=3sin π4=322.答案3226.(2018·南京师大附中、淮阴中学、海门中学、天一中学四校联考)将函数y =sin(2x +φ)(0<φ<π)的图象沿x 轴向左平移π8个单位后,得到函数y =f (x )的图象,若函数f (x )的图象过原点,则φ=________.解析 将函数y =sin(2x +φ)(0<φ<π)的图象沿x 轴向左平移π8个单位后,得到函数f (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π8+φ=sin ⎝ ⎛⎭⎪⎫2x +π4+φ的图象,若函数f (x )的图象过原点,则f (0)=sin ⎝ ⎛⎭⎪⎫π4+φ=0,π4+φ=k π,k ∈Z ,φ=k π-π4,k ∈Z ,又0<φ<π,则φ=3π4. 答案3π47.(2017·江苏大联考)将函数f (x )=sin(2x +θ)⎝ ⎛⎭⎪⎫-π2<θ<π2的图象向右平移φ(0<φ<π)个单位长度后得到函数g (x )的图象,若f (x ),g (x )的图象都经过点P ⎝ ⎛⎭⎪⎫0,32,则φ的值为________.解析 由题意得sin θ=32,因为-π2<θ<π2,所以θ=π3,因为g (x )=sin ⎝ ⎛⎭⎪⎫2x -2φ+π3,所以sin ⎝ ⎛⎭⎪⎫-2φ+π3=32,又因为0<φ<π,所以-2φ+π3∈⎝ ⎛⎭⎪⎫-5π3,π3,即-2φ+π3=-4π3,故φ=5π6. 答案5π68.(2018·泰州一模)已知函数f (x )=2sin ωx 在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值为-2,则ω的取值范围是________.解析 当ω>0时,-π3ω≤ωx ≤π4ω,由题意知-π3ω≤-π2,即ω≥32;当ω<0时,π4ω≤ωx ≤-π3ω,由题意知π4ω≤-π2,∴ω≤-2.综上可知,ω的取值范围是(-∞,-2]∪⎣⎢⎡⎭⎪⎫32,+∞.答案 (-∞,-2]∪⎣⎢⎡⎭⎪⎫32,+∞9.(2018·南京、盐城模拟)设函数f (x )=A sin(ωx +φ)(A >0,ω>0,-π2<φ<π2,x ∈R )的部分图象如图所示.(1)求函数y =f (x )的解析式;(2)当x ∈⎣⎢⎡⎦⎥⎤-π2,π2时,求f (x )的取值范围.解 (1)由图象知,A =2,又T 4=5π6-π3=π2,ω>0,所以T =2π=2πω,得ω=1.所以f (x )=2sin(x +φ),将点⎝ ⎛⎭⎪⎫π3,2代入,得π3+φ=π2+2k π(k ∈Z ), 即φ=π6+2k π(k ∈Z ),又-π2<φ<π2,所以φ=π6. 所以f (x )=2sin ⎝⎛⎭⎪⎫x +π6.(2)当x ∈⎣⎢⎡⎦⎥⎤-π2,π2时,x +π6∈⎣⎢⎡⎦⎥⎤-π3,2π3,所以sin ⎝ ⎛⎭⎪⎫x +π6∈⎣⎢⎡⎦⎥⎤-32,1,即f (x )∈[-3,2].10.(2018·扬州中学质检)如图,函数y =2cos(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,0≤φ≤π2的部分图象与y 轴交于点(0,3),最小正周期是π.(1)求ω,φ的值;(2)已知点A ⎝ ⎛⎭⎪⎫π2,0,点P 是该函数图象上一点,点Q (x 0,y 0)是P A 的中点,当y 0=32,x 0∈⎣⎢⎡⎦⎥⎤π2,π时,求x 0的值.解 (1)将点(0,3)代入y =2cos(ωx +φ), 得cos φ=32, ∵0≤φ≤π2,∴φ=π6.∵最小正周期T =π,且ω>0,∴ω=2πT =2. (2)由(1)知y =2cos ⎝⎛⎭⎪⎫2x +π6.∵A ⎝ ⎛⎭⎪⎫π2,0,Q (x 0,y 0)是P A 中点,y 0=32,∴P ⎝ ⎛⎭⎪⎫2x 0-π2,3.又∵点P 在y =2cos ⎝⎛⎭⎪⎫2x +π6的图象上,∴2cos ⎝ ⎛⎭⎪⎫4x 0-π+π6=3,∴cos ⎝ ⎛⎭⎪⎫4x 0+π6=-32.∵x 0∈⎣⎢⎡⎦⎥⎤π2,π,∴4x 0+π6∈⎣⎢⎡⎦⎥⎤2π+π6,4π+π6,∴4x 0+π6=2π+π-π6或4x 0+π6=2π+π+π6, ∴x 0=2π3或3π4. 二、选做题11.(2018·苏北四市调研)如图,已知A ,B 分别是函数f (x )=3sin ωx (ω>0)在y 轴右侧图象上的第一个最高点和第一个最低点,且∠AOB =π2,则该函数的周期是________.解析 设函数的周期为T ,由图象可得A ⎝ ⎛⎭⎪⎫T 4,3,B ⎝ ⎛⎭⎪⎫3T 4,-3,则OA →·OB →=3T 216-3=0,解得T =4. 答案 412.(2018·南京模拟)设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6,给出下列结论:①f (x )的图象关于直线x =π3对称; ②f (x )的图象关于点⎝ ⎛⎭⎪⎫π6,0对称;③f (x )的最小正周期为π,且在⎣⎢⎡⎦⎥⎤0,π12上为增函数;④把f (x )的图象向右平移π12个单位,得到一个偶函数的图象. 其中正确的是________(填序号).解析 对于函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6,当x =π3时,f ⎝ ⎛⎭⎪⎫π3=sin 5π6=12,故①错;当x =π6时, f ⎝ ⎛⎭⎪⎫π6=sin π2=1,故⎝ ⎛⎭⎪⎫π6,0不是函数的对称中心,故②错;函数的最小正周期为T =2π2=π,当x ∈⎣⎢⎡⎦⎥⎤0,π12时,2x +π6∈⎣⎢⎡⎦⎥⎤π6,π3,此时函数为增函数,故③正确;把f (x )的图象向右平移π12个单位,得到g (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12+π6=sin 2x ,函数是奇函数,故④错. 答案 ③。

一轮复习《高考调研》全套复习课件和练习5-133页PPT

一轮复习《高考调研》全套复习课件和练习5-133页PPT

授 人
(3)① A→B+ B→C=A→C,A→B+B→A= 0,A→B-A→C= C→B


②A→1A2+A→2A3+……+An-1An+A→nA1= 0
③ ||a|- |b||≤ |a± b|≤ |a|+ |b|
课 时 作 业
高三数学(人教版)
高考调研 ·新课标高考总复习
第五章 ·第1课时

前 实数与向量的积(数乘) 自


现高难度的题目,所以复习时应以基本内容为主.

课 时 作 业
高三数学(人教版)
高考调研 ·新课标高考总复习
第五章 ·第1课时

课前自助餐


课本导读

一、向量的有关概念


1.向量的定义:既有大小又有方向的量叫做向量.
人 以
2.向量的长度:表示A→B 的有向线段的长度,即A→B的大小叫做A→B的长度或
(2)若A、B、C、D是不共线的四点,则=是四边形ABCD为平行四边形的

充要条件;

(3)a与b共线,b与c共线,则a与c也共线;
(4)两向量a、b相等的充要条件是|a|=|b|且a∥b;
(5)有相同起点的两个非零向量不平行.
【解析】 (1)不正确,两个向量的长度相等,但它们的方向不一定相同,
因此由|a|=|b|推不出a=b.
高三数学(人教版)
高考调研 ·新课标高考总复习
第五章 ·第1课时

5. 2011·衡水市联考卷 在△ABC中, A→B=c, A→C
前 自
=b,若点D满足→ BD=2D→C,则A→D=(
)
助 餐
A.23b+13c B.53c-23b
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

③||a|-|b||≤|a±b|≤|a|+|b|
课 时 作 业
高三数学(人教版)
高考调研 ·新课标高考总复习
第五章 · 第1课时
课 前 自 助 餐 授 人 以 渔

实数与向量的积(数乘) (1)定义:实数λ 与向量a的积是一个向量,记作λ a,λ a与a平行.规定: |λ a|=|λ ||a|,当λ __>__0时,λ a的方向与a的方向相同;当λ __<__0时, λ a的方向与a的方向相反;当λ =0时,λ a=0. (2)运算律:λ (μ a)=(λμ )a, (λ +μ )a=λ a+μ a,λ (a+b)=λ a+λb. 三、向量共线的充要条件 向量b与非零向量a共线的充要条件是有且只有一个实数λ ,使得b=λ a.

1.理解平面向量的概念,理解两个向量相等的含义.
2.理解向量的几何表示. 3.掌握向量加法、减法的运算并理解其几何意义. 4.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义. 5.了解向量线性运算的性质及其几何意义.
课 时 作 业
高三数学(人教版)
高考调研 ·新课标高考总复习
第五章 · 第1课时
课 前 自 助 餐 授 人 以 渔
请注意!
本节内容是平面向量的基础,向量的加法和减法,实数与向量的积, 两个向量共线的充要条件是本节的重点内容.但由于本章内容不会出 现高难度的题目,所以复习时应以基本内容为主.
课 时 作 业
高三数学(人教版)
高考调研 ·新课标高考总复习
第五章 · 第1课时
课 前 自 助 餐 授 人 以 渔
高考调研 ·新课标高考总复习
第五章 · 第1课时
课 前 自 助 餐 授 人 以 渔
(2)运算律:a+b=b+a, (a+b)+c=a+(b+c). → → → → → → → → (3)①AB+BC=AC,AB+BA=0,AB-AC=CB
→ → → ②A1A2+A2A3+……+An-1An+AnA1=0

课 时 作 业
高三数学(人教版)
高考调研 ·新课标高考总复习
第五章 · 第1课时
课 前 自 助 餐 授 人 以 渔
教材回归
1.给出下列命题 → ①向量AB的长度与向量→ BA的长度相等; ②向量a与向量b平行,则a与b的方向相同或相反; ③两个有共同起点而且相等的向量 ,其终点必相同; → → ④向量AB与向量CD是共线向量,则点A、B、C、D必在同一 条直线上; ⑤有向线段就是向量,向量就是有向线段 其中假命题的个数为 A.2 B.3 D.5
高三数学(人教版)
(
)
答案 B
C.4
课 时 作 业
高考调研 ·新课标高考总复习
第五章 · 第1课时
课 前 自 助 餐 授 人 以 渔
解析
选B.①真命题.
②假命题.当a与b中有一个为零向量时,其方向是不确定的. ③真命题. ④假命题.共线向量所在的直线可以重合,也可以平行. ⑤假命题.向量是用有向线段来表示的,但并不是有向线段. 2.下列算式中不正确的是(
5.
2011·衡水市联考卷
→ → 在△ABC中,AB =c,AC )
→ → → =b,若点D满足BD=2DC,则AD=( 2 1 A. b+ c 3 3 2 1 C. b- c 3 3 5 2 B. c- b 3 3 1 2 D. b+ c 3 3
答案 A
→ → → 2→ 由BD=2DC,知BD= BC. 3
→ → → A.AB+BC+CA=0 → C.0·AB=0
)
→ → → B.AB-AC=BC
D.λ(ωa)=(λω)a
答案 B
课 时 作 业
高三数学(人教版)
高考调研 ·新课标高考总复习
第五章 · 第1课时
课 前 自 助 餐 授 人 以 渔
→ → → 3.化简:(1)AB+CA-CB=__________. → → → → (2)AB-CD+BD-AC=__________. → → → (3)OA-OB+AB=__________. → → → → (4)NQ+MN-MP+QP=__________.
4.相等向量:长度相等且方向相同的向量叫做相等向量,向量a与b相等,记作a=b.
课 时 作 业
高三数学(人教版)
高考调研 ·新课标高考总复习
第五章 · 第1课时
课 前 自 助 餐 授 人 以 渔
5.相反向量:模相等方向相反的向量叫做相反向量. 二、向量运算 (1)加减法法则:
课 时 作 业
高三数学(人教版)
答案 (1)0 (2)0
4.
(3)0 (4)0
2010·北京海淀区期末 )
如图,向量a-b等于( A.-4e1-2e2 B.-2e1-4e2 C.e1-3e2 D.3e1-e2
答案 C
高三数学(人教版)
课 时 作 业
高考调研 ·新课标高考总复习
第五章 · 第1课时
课 前 自 助 餐 授 人 以 渔
高考调研· 教师用书
第五章 平面向量
新课标高考总复习 数学(人教版)
高考调研 ·新课标高考总复习
第五章 · 第1课时
课 前 自 助 餐课 时 作 业
高三数学(人教版)
高考调研 ·新课标高考总复习
第五章 · 第1课时
课 前 自 助 餐 授 人 以 渔
2019·考纲下
课前自助餐
课本导读
一、向量的有关概念 1.向量的定义:既有大小又有方向的量叫做向量. → → → 2.向量的长度:表示AB 的有向线段的长度,即AB的大小叫做AB的长度或 → 称为 AB 的模,长度为0的向量叫做零向量,记作0,长度等于1个单位长度 的向量,叫做单位向量. 3.平行向量:方向相同或相反的非零向量叫做平行向量.规定:0与任何 向量平行,平行向量也叫做共线向量.
解析
→ → 2 → → → 又∵BC=b-c,∴BD= (b-c),∴AD=AB+BD=c 3 2 2 1 + (b-c)= b+ c. 3 3 3
课 时 作 业
高三数学(人教版)
高考调研 ·新课标高考总复习
第五章 · 第1课时
课 前 自 助 餐 授 人 以 渔
授人以渔
题型一 向量的基本概念 例1 判断下列各命题是否正确: (1)若|a|=|b|,则a=b; (2)若A、B、C、D是不共线的四点,则=是四边形ABCD为平行四边形的 充要条件; (3)a与b共线,b与c共线,则a与c也共线; (4)两向量a、b相等的充要条件是|a|=|b|且a∥b;
相关文档
最新文档