2020最新七年级下整式的乘除平方差公式(重点难点)

合集下载

整式的乘除(重点、难点、考点复习总结)

整式的乘除(重点、难点、考点复习总结)

整式的乘除(重点、难点、考点复习总结)1.知识系统总结2.重点难点易错点归纳(1)几种幂的运算法则的推广及逆用例1:(1)已知52x=4,5y=3,求(53x)2; 54x+2y-2练习:1. 已知a x=2,a y=3, a z=4求a3x+2y-z(2)46×0.256= (-8)2013×0.1252014 =(2)同底数幂的乘除法:底数互为相反数时如何换底能使计算简便判断是否同底:判断底数是否互为相反数:看成省略加号的和,每一项都相反结果就互为相反数换底常用的两种变形:例2:(1)-x7÷(-x)5·(-x)2 (2)(2a-b)7·(-b+2a)5÷(b-2a)8(3)区分积的乘方与幂的乘方例3:计算(1)(x3)2 (2) (-x3)2 (3)(-2x3)2(4)-(2x3)2(4)比较法:逆用幂的乘方的运算性质求字母的值(或者解复杂的、字母含指数的方程)例4:(1)如果2×8n×16n=28n ,求n的值(2)如果(9n)2=316,求n的值(3)3x=,求x的值(4)(-2)x= -,求x的值(5)利用乘方比较数的大小指数比较法:833,1625, 3219底数比较法:355,444,533乘方比较法:a2=5,b3=12,a>0,b>0,比较a,b的大小比较840与6320的大小(6)分类讨论思想例6:是否存在有理数a,使(│a│-3)a =1成立,若存在,求出a的值,若不存在,请说明理由整式的乘法(1)计算法则明确单项式乘以单项式、单项式乘以多项式、多项式乘以多项式的计算法则,尤其注意符号的问题,结果一定要是最简形式。

单项式乘以多项式、多项式乘以多项式最终都是要转化为单项式乘以单项式,通过省略加号的和巧妙简化符号问题。

【例1】计算:(1)(-3x2y)(-xz4)(-2y3zt) (2)-5x n y n+2(3x n+2y-2x n y n-1+y n) (3)(-x+2)(x3-x2)练一练:先化简再求值:[xy(x2-3y)+3xy2](-2xy)+x3y2(2x-y),其中x=-0.25,y=4(2)利用整式的乘法求字母的值①指数类问题:②系数类问题:【例2】已知-2x3m+1y2n与7x m-6y-3-n的积与x4y是同【例3】在x2+ax+b与2x2-3x-1的积中,x3项项,求m与n的值的系数为—5,x2项的系数为-6,求a,b的值(3)新定义题【例4】现规定一种新运算:a*b=ab+a-b,其中a,b为有理数,则(a*b)+[(b-a)*b]=练一练:现规定一种新运算:a※b=ab+a-b,其中a,b为有理数,计算:[(m+n)※n]+[(n-m)※n] 课后提升:1.(-0.7×104)×(0.4×103)×(-10)=2.若(2x-3)(5-2x)=ax2+bx+c,则a= ,b=3.若(-2x+a)(x-1)的结果不含x的一次项,则a=4.计算:(1)(-5x-6y+z)(3x-6y) (2)-2xy(x2-3y2)- 4xy(2x2+y2)平方差公式(1)公式:(a+b)(a-b)=a2-b2注意:公式中的a,b既可以是具体的数字,也可以是单项式或多项式,只要不是单独的数字或字母,写成平方的差时都要加括号公式的验证:根据面积的不同表达方式是验证整式乘法公式常用的方法(2)平方差公式的不同变化形式【例1】计算下列各式:(1)(-5x+2y)(-2y-5x)= (2)(2a-1)(2a+1)(4a2+1)=(3)20132-2012×2014 =练一练:1、(2y-x-3z)(-x-2y-3z)=2、99×101×10001=3、 3×(22+1)×(24+1)×(28+1)×…×(232+1)+1=(3)平方差公式的逆用【例2】∣x+y-3∣+(x-y+5)2=0,求3x2-3y2的值练一练:已知实数a,b满足a+b=2,a-b=5,求(a+b)3(a-b)3的值.课后提升:1.已知下列式子:①(x-y)(-x-y);②(-x+y)(x-y);③(-x-y)(x+y);④(x-y)(y-x).其中能利用平方差公式计算的是2.(-a-3)( )=9-a23.如果a2-2k=(a-0.5)(a+0.5),那么k=4.为了美化城市,经统一规划,将一正方形的南北方向增加3米,东西方向缩短3米,将改造后的长方形草坪面积与原来的正方形草坪面积相比()A.增加6平方米B.增加9平方米C.减少9平方米D.保持不变5.解方程:(3x+4)(3x-4)=9(x-2)26.计算:(2+1)×(22+1)×(24+1)×…×(22014+1)完全平方公式(1)公式:(a±b)2=a2±2ab +b2首平方,尾平方,2倍乘积放中央,同号加,异号减注意:公式中的a,b既可以是具体的数字,也可以是单项式或多项式【例1】计算下列各式:(2x-5y)2 = (-mn+1)2 =(-t2-2)2=(2)完全平方公式的推广应用①直接推广②间接推广【例2】计算(a-2b+3c)2【例3】已知x+y+z=10,xy+xz+yz=8,求x2+y2+z2的值(3)利用完全平方公式求字母的值【例4】两数和的平方的结果是x2+(a-1)x+25,则a的值是()A.-9B.1C.9或-11D.-9或11(4)利用完全平方公式进行简化计算【例5】计算:(1)1992 (2)3.012(5)完全平方公式的变形应用【例6】(1)已知m+n=7,mn=10,求8m2+8n2的值(2)已知(x+y)2=16,(x-y)2=4,求xy的值课后提升:1.下列展开结果是2mn-m2-n2的式子是()A.(m+n)2B.(-m+n)2C.-(m-n)2D.-(m+n)22.(x+2y-z)2=3.若∣x+y-7∣+(xy-6)2=0,则3x2+3y2=4.若代数式x2+3x+2可以表示为 (x-1)2+a(x-1)+b的形式,则a+b的值是5.计算:(2x-y)2(2x+y)2整式的除法(1)计算法则整式乘法的逆运算,可以互相验证。

北师大版七年级数学下册教学设计(含解析):第一章整式的乘除5平方差公式

北师大版七年级数学下册教学设计(含解析):第一章整式的乘除5平方差公式

北师大版七年级数学下册教学设计(含解析):第一章整式的乘除5平方差公式一. 教材分析平方差公式是北师大版七年级数学下册第一章整式的乘除中的一个重要内容。

本节课的内容主要包括平方差公式的定义、表达式以及如何运用平方差公式进行计算。

平方差公式的学习不仅为学生今后学习多项式的乘法和其他高级数学知识打下基础,而且也培养学生的逻辑思维能力和运算能力。

二. 学情分析学生在学习本节课之前,已经掌握了整数乘法、有理数乘法、多项式的概念等基础知识。

在此基础上,学生需要通过本节课的学习,进一步理解平方差公式的含义,并能够运用平方差公式进行计算。

此外,学生还需要具备一定的观察、分析、归纳能力,以便能够发现并理解平方差公式的内在规律。

三. 教学目标1.知识与技能:让学生掌握平方差公式的定义和表达式,能够运用平方差公式进行计算。

2.过程与方法:通过观察、分析、归纳等方法,让学生发现并理解平方差公式的内在规律。

3.情感态度与价值观:培养学生的团队协作精神,激发学生对数学的兴趣,提高学生的自信心。

四. 教学重难点1.重点:平方差公式的定义和表达式,以及如何运用平方差公式进行计算。

2.难点:平方差公式的推导过程,以及如何灵活运用平方差公式解决实际问题。

五. 教学方法1.情境教学法:通过生活实例引入平方差公式,激发学生的学习兴趣。

2.小组讨论法:引导学生分组讨论,培养学生的团队协作能力和口头表达能力。

3.实践操作法:让学生通过动手操作,加深对平方差公式的理解。

4.归纳总结法:引导学生总结平方差公式的规律,提高学生的归纳能力。

六. 教学准备1.教学课件:制作平方差公式的课件,包括图片、动画、例题等。

2.教学素材:准备一些有关平方差公式的练习题,用于巩固和拓展学生的知识。

3.教学设备:投影仪、计算机、黑板等。

七. 教学过程1.导入(5分钟)通过一个生活实例,如一个正方形的面积比一个相同边长的长方形的面积大多少,引入平方差公式。

让学生观察并思考,如何用数学公式表达这个关系。

北师大版七年级数学下册说课稿(含解析):第一章整式的乘除5平方差公式

北师大版七年级数学下册说课稿(含解析):第一章整式的乘除5平方差公式

北师大版七年级数学下册说课稿(含解析):第一章整式的乘除5平方差公式一. 教材分析北师大版七年级数学下册第一章整式的乘除5平方差公式是本章的重要内容,平方差公式是整式乘除运算的基础,对于学生理解整式乘除的运算规律有重要意义。

本节内容通过平方差公式的引入和证明,使学生能够掌握整式乘除的基本方法,为后续学习更复杂的整式乘除运算打下基础。

二. 学情分析学生在学习本节内容前,已经学习了有理数的乘方、平方根等基础知识,对于整式的加减运算也有了一定的了解。

但学生对于整式的乘除运算可能还存在一定的困难,对于平方差公式的理解和运用还需要进一步的引导和培养。

三. 说教学目标1.知识与技能:学生能够理解平方差公式的含义,掌握平方差公式的运用方法,能够进行简单的整式乘除运算。

2.过程与方法:通过学生的自主探究和合作交流,培养学生的解决问题的能力和团队协作的能力。

3.情感态度与价值观:学生能够体验到数学学习的乐趣,增强对数学学习的自信心,培养学生的耐心和细心。

四. 说教学重难点1.教学重点:平方差公式的理解和运用。

2.教学难点:平方差公式的推导过程和运用方法的掌握。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、合作交流法等,引导学生主动探究,培养学生的解决问题的能力和团队协作的能力。

2.教学手段:利用多媒体课件进行辅助教学,通过动画演示和图形展示,使学生更直观地理解平方差公式的含义和运用方法。

六. 说教学过程1.导入新课:通过一个实际问题,引导学生思考如何进行整式的乘除运算,激发学生的学习兴趣。

2.自主探究:学生通过自学教材,理解平方差公式的含义,并尝试进行推导。

3.合作交流:学生分组进行讨论,分享各自的推导过程和运用方法,教师进行巡回指导。

4.案例分析:教师展示一些典型的例题,引导学生运用平方差公式进行解答,巩固学生的理解。

5.练习巩固:学生进行一些相关的练习题,检验自己对平方差公式的掌握程度。

6.总结提升:教师引导学生总结平方差公式的运用方法和注意事项,提高学生的运用能力。

七年级数学下册第一章整式的乘除1.5平方差公式2说课稿新版北师大版

七年级数学下册第一章整式的乘除1.5平方差公式2说课稿新版北师大版

七年级数学下册第一章整式的乘除1.5平方差公式2说课稿新版北师大版一. 教材分析本次说课的教材是北师大版七年级数学下册第一章整式的乘除中的1.5平方差公式。

平方差公式是整式乘除中的一个重要概念,它揭示了两个平方项之间的相互关系。

本节课的内容是在学生已经掌握了整式的加减、乘法的基础上进行的,是进一步学习多项式乘法、因式分解等知识的基础。

二. 学情分析面对的是七年级的学生,他们已经掌握了整式的加减、乘法等基本知识,具备了一定的逻辑思维和运算能力。

但是,对于平方差公式的理解和运用还需要进一步的引导和培养。

此外,学生对于新知识的接受程度和理解能力各有不同,需要针对性地进行教学。

三. 说教学目标1.知识与技能目标:学生能够理解和掌握平方差公式的概念和运用,能够运用平方差公式进行简单的计算和问题解决。

2.过程与方法目标:通过观察、分析、归纳等方法,培养学生自主学习和解决问题的能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和积极进取的精神。

四. 说教学重难点1.教学重点:平方差公式的概念和运用。

2.教学难点:对平方差公式的理解,能够灵活运用平方差公式进行问题解决。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,引导学生主动探究,提高学生的学习兴趣和参与度。

2.教学手段:利用多媒体课件、教学卡片、黑板等辅助教学,使教学内容更加直观、生动。

六. 说教学过程1.导入:通过复习整式的加减、乘法知识,引导学生进入新课,激发学生的学习兴趣。

2.知识讲解:讲解平方差公式的概念和运用,通过例题展示平方差公式的运用过程,让学生理解和掌握平方差公式。

3.练习巩固:布置一些相关的练习题,让学生运用平方差公式进行计算和问题解决,巩固所学知识。

4.拓展延伸:通过一些综合性的问题,引导学生运用平方差公式进行解决,提高学生的运用能力和解决问题的能力。

5.课堂小结:对本节课的内容进行总结,强调平方差公式的概念和运用。

北师大版本七年级下册第一单元《整式的乘除》全章知识讲解+经典练习

北师大版本七年级下册第一单元《整式的乘除》全章知识讲解+经典练习

《整式的乘除》全章复习与巩固【要点梳理】要点一、幂的运算1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加. 2.幂的乘方:(m n ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >).同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1. 6.负指数幂:1n na a -=(a ≠0,n 是正整数). 要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;需灵活地双向应用运算性质.要点二、整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.2.单项式乘以多项式单项式与多项式相乘,就是根据分配率用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:运算时,要注意积的符号,多项式中的每一项包含前面的“+”“-”号.根据多项式的乘法,能得出一个应用广泛的公式:()()()2x a x b x a b x ab ++=+++. 4.单项式相除单项式相除、把系数、同底数幂分别相除后,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点三、乘法公式1.平方差公式:22()()a b a b a b +-=-两个数和与这两个数差的积,等于这两个数的平方差. 要点诠释:1.在这里,a b ,既可以是具体数字,也可以是单项式或多项式.2.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:()2222a b a ab b +=++;2222)(b ab a b a +-=-两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是三项,是这两数的平方和加(或减)这两数之积的2倍.【典型例题】类型一、幂的运算1、已知:2m +3n =5,则4m •8n =( )A .16B .25C .32D .64 【解答】解:4m •8n =22m •23n =22m +3n =25=32,故选:C .2.下列各式正确的有( )①x 4+x 4=x 8;②﹣x 2•(﹣x )2=x 4;③(x 2)3=x 5;④(x 2y )3=x 3y 6;⑤(﹣3x 3)3=﹣9x 9;⑥2100×(﹣0.5)99=﹣2;A .1个B .2个C .3个D .4个【解答】解:①x 4+x 4=2x 4,此计算错误;②﹣x 2•(﹣x )2=﹣x 4,此计算错误;③(x 2)3=x 6,此计算错误;④(x 2y )3=x 6y 3,此计算错误;⑤(﹣3x 3)3=﹣27x 9,此计算错误;⑥2100×(﹣0.5)99=2×299×(﹣0.5)99=2×(﹣0.5×2)99=2×(﹣1) =﹣2,此计算正确;故选:A .3、阅读下列两则材料,解决问题:材料一:比较322和411的大小.解:∵411=(22)11=222,且3>2∴322>222,即322>411小结:指数相同的情况下,通过比较底数的大小,来确定两个幂的大小材料二:比较28和82的大小解:∵82=(23)2=26,且8>6∴28>26,即28>82小结:底数相同的情况下,通过比较指数的大小,来确定两个幂的大小【方法运用】(1)比较344、433、522的大小(2)比较8131、2741、961的大小(3)已知a 2=2,b 3=3,比较a 、b 的大小(4)比较312×510与310×512的大小【解答】解;(1)∵344=(34)11=8111,433=(43)11=6411,522=(52)11=2511, ∵81>64>25,∴8111>6411>2511,即344>433>522;(2)∵8131=(34)31=3124,2741=(33)41=3123,961=(32)61=3122,∵124>123>122,∴3124>3123>3122,即8131>2741>961;(3)∵a 2=2,b 3=3,∴a 6=8,b 6=9,∵8<9,∴a 6<b 6,∴a <b ;(4)∵312×510=(3×5)10×32,310×512=(3×5)10×52,又∵32<52,∴312×510<310×512.类型二、整式的乘除法运算1、要使()()621x a x -+的结果中不含x 的一次项,则a 等于( )A.0B.1C.2D.3【答案】D ;【解析】先进行化简,得:,要使结果不含x 的一次项,则x 的一次项系数为0,即:62a -=0.所以3a =.【总结升华】代数式中不含某项,就是指这一项的系数为0.2.如图,一个边长为(m +2)的正方形纸片剪去一个边长为m 的正方形,剩余的部分可以拼成一个长方形,若拼成的长方形的一边长为2,则另一边长为 2m +2 .【解答】解:设另一边长为x ,根据题意得,2x =(m +2)2﹣m 2,解得x =2m +2.故答案为:2m +2.3.如图,现有A ,C 两类正方形卡片和B 类长方形卡片各若干张,用它们可以拼成一些新的长方形.如果要拼成一个长为(3a+2b),宽为(a+b)的长方形,那么需要B类长方形卡片5张.【解答】解:长为3a+2b,宽为a+b的长方形的面积为:(3a+2b)(a+b)=3a2+5ab+2b2,∵A类卡片的面积为a2,B类卡片的面积为ab,C类卡片的面积为b2,∴需要A类卡片3张,B类卡片5张,C类卡片2张,故答案为:5.类型三、乘法公式1.如果x2﹣2(m+1)x+4是一个完全平方公式,则m=.【解答】解:∵x2﹣2(m+1)x+4是一个完全平方公式,∴﹣2(m+1)=±4,则m=﹣3或1.故答案为:﹣3或1.2、用简便方法计算:(1)1002﹣200×99+992(2)2018×2020﹣20192 (3)计算:(x﹣2y+4)(x+2y﹣4)【解答】解:(1)1002﹣200×99+992=1002﹣2×100×(100﹣1)+(100﹣1)2=[100﹣(100﹣1)]2=12=1;(2)2018×2020﹣20192=(2019﹣1)(2019+1)﹣20192=20192﹣1﹣20192=﹣1.(3)原式=x2﹣(2y﹣4)2=x2﹣4y2+16y﹣16;3.图①是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称抽)剪开,把它分成四块形状和大小都一样的小长方形,然后按图②那样拼成一个正方形,则中间空的部分的面积是()A.ab B.a2+2ab+b2C.a2﹣b2D.a2﹣2ab+b2【解答】解:图(1)是一个长为2a,宽为2b(a>b)的长方形,∴正方形的边长为:a +b ,∴正方形的面积为(a +b )2,∵原矩形的面积为4ab ,∴中间空的部分的面积=(a +b )2﹣4ab =a 2﹣2ab +b 2.故选:D .4、已知222246140x y z x y z ++-+-+=,求代数式2012()x y z --的值.【思路点拨】将原式配方,变成几个非负数的和为零的形式,这样就能解出,,x y z .【答案与解析】解:222246140x y z x y z ++-+-+= ()()()2221230x y z -+++-= 所以1,2,3x y z ==-=所以20122012()00x y z --==.【总结升华】一个方程,三个未知数,从理论上不可能解出方程,尝试将原式配方过后就能得出正确答案.类型四、综合类大题1.在前面的学习中,我们通过对同一面积的不同表达和比较,利用图①和图②发现并验证了平方差公式和完全平方公式,不仅更清晰地“看到”公式的结构,同时感受到这样的抽象代数运算也有直观的背景.这种利用面积关系解决问题的方法,使抽象的数量关系因几何直观而形象化.请你利用上述方法解决下列问题:(1)请写出图(1)、图(2)、图(3)所表示的代数恒等式(2)试画出一个几何图形,使它的面积能表示(x+y)(x+3y)=x2+4xy+3y2【拓展应用】提出问题:47×43,56×54,79×71,……是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?几何建模:用矩形的面积表示两个正数的乘积,以47×43为例:(1)画长为47,宽为43的矩形,如图③,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原矩形的上面.(2)分析:几何建模步骤原矩形面积可以有两种不同的表达方式,47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,用文字表述47×43的速算方法是:十位数字4加1的和与4相乘,再乘以100,加上个位数字3与7的积,构成运算结果.请你参照上述几何建模步骤,计算57×53.要求画出示意图,写出几何建模步骤(标注有关线段)归纳提炼:两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述):证明上述速算方法的正确性.【解答】解:(1)图(1)所表示的代数恒等式:(x+y)•2x=2x2+2xy,图(2)所表示的代数恒等式:(x+y)(2x+y)=2x2+3xy+y2图(3)所表示的代数恒等式:(x+2y)(2x+y)=2x2+5xy+2y2.(2)几何图形如图所示:拓展应用:(1)①几何模型:②用文字表述57×53的速算方法是:十位数字5加1的和与5相乘,再乘以100,加上个位数字3与7的积,构成运算结果;即57×53=(50+10)×50+3×7=6×5×100+3×7=3021;十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果;故答案为十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果;2.阅读下列材料并解决后面的问题材料:对数的创始人是苏格兰数学家纳皮尔(J.Npler,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler,1707﹣﹣1783)才发现指数与对数之间的联系,我们知道,n个相同的因数a相乘a•a…,a记为a n,如23=8,此时,3叫做以2为底8的对数,记为log28,即log28=3一般地若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b,即log a b=n.如34=81,则4叫做以3为底81的对数,记为log381,即log381=4.(1)计算下列各对数的值:log24=,log216=,log264=(2)通过观察(1)中三数log24、log216、log264之间满足的关系式是;(3)拓展延伸:下面这个一股性的结论成立吗?我们来证明log a M+log a N=log,a MN(a>0且a≠1,M>0,N>0)证明:设log a M=m,log a N=n,由对数的定义得:a m=M,a n=N,∴a m•a n=a m+n=M•N,∴log a MN=m+n,又∵log a M=m,log a N=n,∴log a M+log a N=log a MN(a>0且a≠1,M>0,N>0)(4)仿照(3)的证明,你能证明下面的一般性结论吗?log a M﹣log a N=log a(a>0且a≠1,M>0,N>0)(5)计算:log34+log39﹣log312的值为.【解答】解:(1)log24=log222=2,log216=log224=4,log264=log226=6;故答案为:2,4,6;(2)通过观察(1)中三数log24、log216、log264之间满足的关系式是:log24+log216=log264;(4)证明:设log a M=m,log a N=n,由对数的定义得:a m=M,a n=N,∴a m÷a n=a m﹣n=,∴log a=m﹣n,又∵log a M=m,log a N=n,∴log a M﹣log a N=log a(a>0且a≠1,M>0,N>0)(5)log34+log39﹣log312,=log3,=log33,=1,故答案为:1.。

北师大版七年级数学下册说课稿(含解析):第一章整式的乘除章末复习

北师大版七年级数学下册说课稿(含解析):第一章整式的乘除章末复习

北师大版七年级数学下册说课稿(含解析):第一章整式的乘除章末复习一. 教材分析北师大版七年级数学下册第一章整式的乘除,主要内容包括整式的乘法、平方差公式、完全平方公式、多项式乘以多项式、整式的除法等。

这一章是代数学习的重要基础,通过本章的学习,使学生掌握整式的乘除运算,培养学生逻辑思维能力和解决问题的能力。

二. 学情分析七年级的学生已经掌握了整数、分数、有理数等基础知识,具备一定的数学运算能力。

但学生在学习整式乘除时,可能会遇到因式分解不彻底、运算顺序混乱等问题。

因此,在教学过程中,需要关注学生的学习情况,引导学生理清运算思路,提高运算速度和准确性。

三. 说教学目标1.知识与技能:使学生掌握整式的乘除运算方法,能够熟练运用平方差公式、完全平方公式等进行计算。

2.过程与方法:培养学生逻辑思维能力和解决问题的能力,学会运用整式乘除解决实际问题。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。

四. 说教学重难点1.教学重点:整式的乘法、平方差公式、完全平方公式的运用,以及整式的除法。

2.教学难点:整式乘除的运算顺序和运算规律,以及如何灵活运用公式解决实际问题。

五. 说教学方法与手段1.采用情境教学法,通过生活实例引入整式乘除的概念,激发学生的学习兴趣。

2.运用分组合作学习法,让学生在小组内讨论、交流,共同解决问题,培养学生的团队合作精神。

3.采用讲解法、示范法,引导学生理清运算思路,突破教学难点。

4.利用多媒体课件辅助教学,直观展示整式乘除的运算过程,提高学生的理解能力。

六. 说教学过程1.导入:通过生活实例,如计算一块矩形土地的面积,引入整式乘除的概念。

2.新课讲解:讲解整式的乘法、平方差公式、完全平方公式,以及整式的除法。

在讲解过程中,注意引导学生理清运算思路,突破教学难点。

3.课堂练习:布置一些具有代表性的题目,让学生独立完成,检验学生对知识点的掌握情况。

七年级下册整式的乘除

七年级下册整式的乘除
(4) b2m·b2m+1 = b2m+2m+1= b4m+1
【练习1】计算:
① (a+b-c)4·(a+b-c)5 ② (a-b)2·(b-a)3
【练习2】判断(正确的 错误的打“×”)
打“√”,
(1) x3·x5=x15 (×) (2) x·x3=x3 (×)
(3) x3+x5=x8 (×) (3)x2·x2=2x4 (×)
1.计算:
(1)s7 s3
(3)(t)11 (t)2
(5)(3)6 (3)2
(2)x10 x8
(4)(ab)5 (ab)
(6)a100 a100
2.填空:
x x (1) 7 ( )= 8
a a (2)(

3
=
8
c c b (3)b4 b3 ( ) = 21 (4) 8 ( )= 5
3. 与整式加法之间的关系。如2a与a2的区别。
【法则推导】 33·32=?(-3)3·(-3)2=?
am ·an等于什么(m,n都是正整数)? 为什么?
am ·an =(a·a·… ·a)(a·a·… ·a)
m个a
=a·a·… ·a
m+n个a
=am+n
n个a
同底数幂相乘 底数 不变 , 指数 相加 .
(3) (an)3 = an×3 =a3n ;
(4) -(x2)m = -x2×m = -x2m ;
(5) (y2)3 ·y= y2×3 ·y = y6 ·y = y7;
(6) 2(a2)6 – (a3)4 =2a2×6 - a3×4 =2a12-a12 =a12.
【练习1】计算
⑴( [ a)3 ]2 ⑵( [ x 2 y)3 ]2n

初中数学-整式的乘除-复习课教学设计学情分析教材分析课后反思精选全文完整版

初中数学-整式的乘除-复习课教学设计学情分析教材分析课后反思精选全文完整版

可编辑修改精选全文完整版七下第一章《整式的乘除》复习教学设计教学目标:1、掌握同底数幂的乘法、幂的乘方和积的乘方。

2、能灵活运用单项式和多项式的乘法。

3、熟练平方差公式和完全平方公式4、通过练习,梳理知识建立系统的知识体系。

教学重点:重点:掌握同底数幂的乘法、幂的乘方和积的乘方。

能灵活运用单项式和多项式的乘法。

难点:熟练和灵活运用平方差公式和完全平方公式教学思路:先复习整式乘除一系列的知识,通过学生自己对自我知识的掌握情况有针对性的找出重点题、易错题、难题,小组对题目分析和理解,然后全班交流,以学生为主体、教师主导,共同分享解决问题,最后归纳方法、思路,明确知识。

教学方法:小组分组学习为主教学过程:教学过程预设环节教师活动(教学内容的呈现)学生活动(学习活动的设计)设计意图一、梳理知识①请一位学生将梳理的整式的乘除这部分的知识进行板书。

学生板书②其余学生小组交流,互相检查,看看是否同学是否写对了,有遗漏之处,互相补充。

小组学员互助二、学生自主出题把学生分成6个大组,每个大组再分成两个小组,小组之间互相共享、推荐、解决学生自己找出的重点题、易错题、难题,然后每组派一个代表上黑板给全班同学推荐好题,并由学生充当小老师讲解,然后不当之处教师点播。

提起学生的兴趣提高学生的辨析题目的能力提高学生的语言表达能力提高学生的逻辑思维能力七下第一章《整式的乘除》学情分析及教学方法和学法从年龄特点来看,初一学生好动,好奇,好表现,爱发表见解,希望得到老师的表扬,所以在教学中要抓住这一生理特点,充分调动学生的的兴趣、创造性,另一方面要创造条件和机会,让其发表见解,发挥学习的主动性。

从知识掌握层次来看,学生已经学会了整式运算的相关知识,具备了一定解题技巧和能力,只是缺少对零散知识点进行组串,使之条理化、系统化,形成新的认知结构。

此时让学生让学生根据以往的作业、试卷、课外题等手头的资料,根据自己平时的易错题、重点题目,进行反思总结,集大家的智慧与一体,教师和学生们进行甄选。

新北师大版七年级数学下册整式的乘除知识点梳理

新北师大版七年级数学下册整式的乘除知识点梳理

新北师大版七年级数学下册整式的乘除知识点梳理一、概述新北师大版七年级数学下册整式的乘除知识点是整个数学体系中的重要组成部分,为学生后续学习代数表达式、方程、函数等奠定基础。

本章节主要围绕整式的概念、性质以及乘除法的运算规则进行展开,帮助学生理解和掌握整式的基本运算技巧。

通过本章的学习,学生可以更好地理解数学中的代数结构,为后续学习复杂的数学问题做好准备。

在学习过程中,学生需要掌握整式的定义、性质以及乘法公式和法则,并理解整式除法的基本原理和方法。

通过大量的练习和实践,学生能够熟练掌握整式的乘除运算技巧,并能够独立解决相关数学问题。

在学习过程中,教师的作用也不可忽视,需要通过恰当的教学方法和手段,帮助学生理解和掌握这些知识点,激发学生的学习兴趣和动力。

整式的乘除知识点不仅是数学学习的基础,也是日常生活中的应用工具,学生需要认真对待并熟练掌握。

1. 介绍新北师大版七年级数学下册整式的乘除知识点的重要性和应用场景。

《新北师大版七年级数学下册整式的乘除知识点梳理》之开篇概述:整式的乘除的重要性与应用场景在代数世界中,整式的乘除是学生初步接触代数运算的关键一步。

它是多项式运算的基础,为学生后续的复杂数学问题求解提供工具和基础方法。

通过整式的乘除学习,学生不仅能够掌握基本的代数运算技巧,还能够理解代数表达式和方程在实际问题中的应用方式。

整式乘除的学习有助于培养学生的逻辑思维能力和问题解决能力,为未来的数学学习和生活做好准备。

整式的乘除在现实生活中有着广泛的应用场景。

在物理学的力学、几何学等领域中,很多问题都可以转化为整式方程来求解。

在经济学的统计、数据分析等方面,整式的乘除也是进行数据建模和问题解决的重要工具。

在学习自然科学、社会科学甚至日常生活方面,我们遇到的问题经常需要运用整式乘法来解决,比如求解几何图形的面积、解决物体运动的位移问题等。

通过对整式的学习和应用,学生不仅能在学校中获得丰富的知识,更能在日后的生活中运用所学的数学知识解决实际问题。

七(下)第1章整式的乘除(全章复习与巩固)知识讲解与专项讲练

七(下)第1章整式的乘除(全章复习与巩固)知识讲解与专项讲练

2023七(下)第1章整式的乘除知识讲解与专项讲练2023.06.12~6.15【学习目标】1.掌握正整数幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;2.会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;3.掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算。

【知识要点】要点一、幂的运算1.同底数幂的乘法:a m ·a n =a m +n (m 、n 为正整数);同底数幂相乘,底数不变,指数相加.2.幂的乘方:(a m )n =a mn =a nm =(a n )m (m 、n 为正整数);幂的乘方,底数不变,指数相乘.3.积的乘方:(ab )n =a n b n ,(a x b y )n =a nx b ny (n 、x 、y 为正整数);积的乘方,等于各因数乘方的积.4.同底数幂的除法:a m ÷a n =a m -n (a ≠0,m 、n 为正整数,并且m >n ).同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即:任何不等于零的数的零次方等于1.6.负整数次幂:p p a a 1=-(a ≠0,p 为正整数),a n 与a -n 互为倒数,n m m n pp a b b a ,a b b a =⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---即:任何一个不等于零的数的-p (p 是正整数)次幂,等于这个数的p 次幂的倒数.特别说明:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.要点二、整式的乘除1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.特别说明:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:()()()2x a x b x a b x ab ++=+++.4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点三、乘法公式1.平方差公式:22()()a b a b a b +-=-两个数的和与这两个数的差的积,等于这两个数的平方差.特别说明:在这里,a b ,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2.完全平方公式:()2222a b a ab b +=++;2222)(b ab a b a +-=-两数和(差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.特别说明:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.【典型例题】类型一、整式的乘除➽➼幂的运算✭✭幂的逆运算1.计算:(1)()3201113823π-⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()2331233282a a a a -⋅-÷举一反三:【变式1】计算:101|2|(2023667)3π-⎛⎫---+ ⎪⎝⎭(2)()()223234(6)x y xy ⋅-÷【变式2】计算:(1)22012()272--+-(2)2642135(2)5x x x x x⋅--+÷(1)253()()[()]a b b a a b -⋅-÷--;(2)先化简,再求值:426223225(3)()(2)a a a a a ⎡⎤⋅-÷÷-⎣⎦,其中5a =-.2.(2022春·福建泉州·八年级福建省永春第三中学校联考期中)阅读:已知正整数a 、b 、c ,显然,当同底数时,指数大的幂也大,若对于同指数,不同底数的两个幂b a 和b c ,当a c >时,则有b b a c >,根据上述材料,回答下列问题(1)比较大小:205______204(填写>、<或=)(2)比较332与223的大小(写出具体过程)(3)已知23a =,86b =求()322a b +的值【答案】(1)>(2)332223<,见分析(3)972【分析】(1)根据同指数,不同底数的两个幂b a 和b c ,当a c >时,则有b b a c >,即可进行解答;(2)将根据幂的乘方的逆运算,将332与223转化为同指数的幂,再比较大小即可;(3)根据同底数幂乘法的逆运算,将()322a b +转化为()3222a b ⨯,再根据积的乘方的逆运算,整理为含有2a 和8b 的性质,进行计算即可.(1)解:∵54>,∴202054>,故答案为:>.(2)∵()1133311228==,()1122211339==,89<,∴332223<.(3)原式()3222a b =⨯()()33222a b =⨯()()32322ba =⨯()2338b =⨯3236=⨯=972.【点拨】本题主要考查了幂的乘方与积的乘方的运算法则和逆运算,解题的关键是熟练掌握幂的乘方和积的乘方的运算法则及其逆运算法则.举一反三:【变式1】已知,若实数a 、b 、c 满足等式54a =,56b =,59c =.(1)求25a b +的值;(2)求25b c -的值;(3)求出a 、b 、c 之间的数量关系.【变式2】(2022春·全国·八年级专题练习)按要求解答下列各小题.(1)已知1012m =,103n =,求10m n -的值;(2)如果33a b +=,求327a b ⨯的值;(3)已知682162m m ⨯÷=,求m 的值.类型二、整式的乘除➽➼整式的乘法3.计算:(1)()()()2332ab a a b --- ;(2)()()221a a -+;(3)()()212x x +-.【答案】(1)446a b -(2)3222a a --(3)2232x x --【分析】(1)按照单项式乘以单项式的法则进行运算即可;(2)按照单项式乘以多项式的法则进行运算即可;(3)按照多项式乘以多项式的法则进行运算即可;(1)解:()()()2332ab a a b --- ()2236a b a b =- 44a b =-.(2)()()221a a -+3222a a =--;(3)()()212x x +-2242x x x =-+-2232x x =--.【点拨】本题考查的是单项式乘以单项式,单项式乘以多项式,多项式乘以多项式,掌握“整式的乘法运算的运算法则”是解本题的关键.举一反三:【变式1】计算:(1)()()202024311202323π-⎛⎫-+-+-- ⎪⎝⎭(2)()()()222x y x y x x y -++--【变式2】(2022春·河南周口·七年级校联考期中)如图,把8张长为a ,宽为b 的小长方形纸片摆放在一个大长方形纸盒内,空白部分分别用A ,B 表示,两个摆放小纸片的长方形(阴影)公共的部分边长为m ,(用a ,b ,m 分别表示周长和面积)(1)填空:①空白部分A 的周长A P =__________,面积A S =_____________,②空白部分B 的周长B P =______________,面积B S =________________;(2)若5a b =,求A B P P -,A B S S -的代数式.类型三、整式的乘除➽➼平方差公式✭✭完全平方公式4.(2022春·山西大同·八年级大同一中校考阶段练习)化简下列多项式:(1)()()()214121x x x +---;(2)()()223223a b a b +--+.【答案】(1)72x -(2)2244129a b b -+-【分析】(1)先计算乘法,再合并同类项,即可求解;(2)利用平方差公式计算,即可求解.(1)解:()()()214121x x x +---22441441x x x x x =-+--+-72x =-(2)解:()()223223a b a b +--+()()223223a b a b =+---⎡⎤⎣⎦()()22223a b =--2244129a b b =-+-【点拨】本题主要考查了整式的混合运算,灵活利用乘法公式计算是解题的关键.举一反三:【变式1】(2022春·重庆·八年级重庆市育才中学校考阶段练习)计算:(1)()()()y x y x y x y +--+;(2)()()224x x x ++-【变式2】运用公式进行简便计算:(1)210.210.2 2.4 1.44-⨯+;(2)2222111111112342022⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.5.(2022春·四川内江·八年级校考阶段练习)(1)已知实数x ,y 满足2296x y -=,8x y -=,求x y +的值.(2)已知实数a 、b 满足()23a b +=,()227a b -=,求22a b ab ++的值.【答案】(1)12x y +=;(2)229a b ab ++=.【分析】(1)利用平方差公式,化简求解即可;(2)利用完全平方公式进行化简,分别求得22a b +和ab 的值,即可求解.解:(1)∵2296x y -=,∴()()96x y x y +-=,∵8x y -=,∴12x y +=;(2)∵()23a b +=,()227a b -=,∴2223a ab b ++=,22227a ab b -+=,∴222a 2b 30+=,424ab =-,∴22a b 15+=,6ab =-,∴()221569a b ab ++=+-=.【点拨】此题考查了完全平方公式和平方差公式,解题的关键是熟练掌握相关基础性质.举一反三:【变式1】已知5a b +=,3ab =.求下列各式的值:(1)22a b +;(2)()2a b -;(3)()()()()1111a b a b ++--.【变式2】已知:221x x +=,将()()()()2(1)3331x x x x x --+----先化简,再求它的值.类型四、整式的乘除➽➼整体的除法6.(2022春·八年级课时练习)计算下列各题:(1)()()322432714x y xy x y ⋅-÷;(2)()()222x y x y y x ⎡⎤+-+÷.【变式1】先化简,再求值:()()()21242x y x y x y y ⎡⎤+--+÷⎣⎦,其中1x =,2y =.【变式2】已知24750a a -+=,求代数式()2232(21)a a a a -÷--的值.类型五、整式的乘除➽➼图形问题7.(2021春·陕西延安·八年级陕西延安中学校考阶段练习)如图所示,两个长方形用不同形式拼成图1和图2两个图形.(1)若图1中的阴影部分面积为22a b -;则图2中的阴影部分面积为_________.(用含字母a ,b 的式子且不同于图1的方式表示)(2)由(1)你可以得到乘法公式____________.(3)根据你所得到的乘法公式解决下面的问题:计算:①10397⨯;②()()22a b c a b c +---.【变式1】图a 是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图b 的形状拼成一个正方形.(1)你认为图b 中的阴影部分的正方形的边长等于多少?(2)请用两种不同的方法求图中阴影部分的面积.方法1:方法2:(3)观察图b 你能写出下列三个代数式之间的等量关系吗?代数式:()()22,,m n m n mn+-(4)根据(3)题中的等量关系,解决如下问题:若75a b ab +==,,则2()a b -=.(请直接写出计算结果)【变式2】(2022春·八年级课时练习)如图,在边长为a 的正方形中挖去一个边长为b 的小正方形(a b >),把余下的部分剪拼成一个矩形.(1)通过计算两个图形的面积(阴影部分的面积),可以验证的等式是:_________A .()2222a ab b a b -+=-B .()()22a b a b a b -=+-C .()2a ab a a b +=+D .()222a b a b -=-(2)应用你从(1)选出的等式,完成下列各题:①已知:3a b -=,2221a b -=,求a b +的值;②计算:22222111111111123420202021⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.【中考真题专练】【1】(2022·江苏常州)计算:(1)201(3)3---+π;(2)2(1)(1)(1)+--+x x x .【2】(2022·广西·统考)先化简,再求值()()()22x y x y xy xy x +-+-÷,其中11,2x y ==.【3】(2022·河北·统考)发现两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.验证:如,()()22212110++-=为偶数,请把10的一半表示为两个正整数的平方和.探究:设“发现”中的两个已知正整数为m ,n ,请论证“发现”中的结论正确.a+,宽为2a的矩形分割成四个全等的直角三角形,拼成“赵【4】(2022·浙江金华)如图1,将长为23爽弦图”(如图2),得到大小两个正方形.(1)用关于a的代数式表示图2中小正方形的边长.(2)当3a=时,该小正方形的面积是多少?2023七(下)第1章整式的乘除知识讲解与专项讲练2023.06.12~6.15【学习目标】1.掌握正整数幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;2.会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;3.掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算。

七年级数学下册第一章整式的乘除1.5平方差公式1说课稿新版北师大版

七年级数学下册第一章整式的乘除1.5平方差公式1说课稿新版北师大版

七年级数学下册第一章整式的乘除1.5平方差公式1说课稿新版北师大版一. 教材分析本次说课的内容是北师大版七年级数学下册第一章整式的乘除1.5平方差公式。

平方差公式是初中数学中的一个重要公式,它对于学生后续学习二次函数、二次方程等知识有着至关重要的作用。

本节课的内容是让学生掌握平方差公式的推导过程及其应用,培养学生运用平方差公式解决实际问题的能力。

二. 学情分析面对七年级的学生,他们在之前的学习中已经掌握了整式的乘法运算,对因式分解有一定的了解。

但学生在运用平方差公式时,往往会忽略公式的适用范围,以及符号的判断。

因此,在教学过程中,我们需要关注学生对平方差公式的理解程度,引导学生正确运用公式。

三. 说教学目标1.知识与技能目标:让学生掌握平方差公式的推导过程,能够灵活运用平方差公式进行计算。

2.过程与方法目标:通过合作交流,培养学生运用平方差公式解决实际问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的耐心和自信心。

四. 说教学重难点1.教学重点:平方差公式的推导过程及应用。

2.教学难点:平方差公式的灵活运用,以及符号的判断。

五. 说教学方法与手段为了提高教学效果,我将采用以下教学方法与手段:1.情境教学法:通过生活实例引入平方差公式,让学生感受数学与生活的紧密联系。

2.合作学习法:学生进行小组讨论,共同探究平方差公式的推导过程,培养学生的团队协作能力。

3.引导发现法:教师引导学生发现平方差公式的特点,培养学生独立思考的能力。

4.利用多媒体辅助教学:通过动画演示,使学生更直观地理解平方差公式的推导过程。

六. 说教学过程1.导入新课:通过生活实例,引出平方差公式,激发学生的学习兴趣。

2.自主探究:让学生独立思考,尝试推导平方差公式。

3.小组讨论:学生进行小组讨论,分享各自的推导过程,培养学生的团队协作能力。

4.讲解与示范:教师讲解平方差公式的推导过程,并进行示范运算。

5.练习与拓展:布置相关练习题,让学生巩固所学知识,并进行拓展训练。

2023七年级数学下册第一章整式的乘除5平方差公式第1课时平方差公式的认识教案(新版)北师大版

2023七年级数学下册第一章整式的乘除5平方差公式第1课时平方差公式的认识教案(新版)北师大版
3.思考题:布置一些思考题,引导学生深入思考平方差公式的本质和应用,提高学生的思维能力。
作业反馈:
1.及时批改:在规定的时间内完成对学生的作业进行批改,及时反馈学生的学习情况。
2.指出问题:在批改作业的过程中,指出学生在作业中存在的问题,如计算错误、应用不当等,帮助学生及时纠正。
3.给出建议:针对学生的问题,给出具体的改进建议,如加强练习、多思考问题等,帮助学生提高学习效果。
2.能力水平:学生在之前的学习中已经锻炼了一定的逻辑推理、数学运算和问题解决能力。他们能够通过具体的例子来总结和推导出一般性的规律,并能够运用所学的知识解决实际问题。然而,对于平方差公式的推导和应用,他们可能还缺乏一定的经验和技巧。因此,在教学过程中,我需要设计合适的教学活动和练习题,引导学生通过观察、分析和计算,掌握平方差公式的推导和应用方法。
教学方法与手段
教学方法:
1.问题驱动法:通过提出问题,引导学生思考和探索,激发学生的学习兴趣和主动性。例如,在讲解平方差公式时,可以提问学生:“为什么会有平方差公式?它是如何得出的?”
2.案例分析法:通过具体的例子,让学生观察和总结平方差公式的推导过程,增强学生对知识的理解和记忆。例如,可以给学生提供一些实际问题,让学生运用平方差公式进行解决。
4.学习习惯:学生能够在课前进行自主探索,通过阅读资料和思考问题,培养自主学习的习惯。在课堂上,学生能够积极参与讨论和实践活动,培养主动学习和思考的习惯。在课后,学生能够认真完成作业和拓展学习,通过反思总结,培养自我提升的习惯。
5.情感态度:学生能够对数学学科产生更浓厚的兴趣,通过解决实际问题,感受到数学的实用性和趣味性,从而增强对数学学科的情感态度。
2.在线教学平台:利用在线教学平台,进行教学资源的共享和交流,提供学生自主学习和复习的机会。例如,可以通过在线平台发布练习题和讲解视频,让学生在课后进行自主学习和巩固。

七年级初一数学复习重难点知识

七年级初一数学复习重难点知识

第1单元 整式的乘除1.幂的运算概念:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂,在n a 中,a 叫做底数,n 叫做指数. 含义:n a 中,a 为底数,n 为指数,即表示a 的个数,n a 表示有n 个a 连续相乘.例如:53表示33333⨯⨯⨯⨯,5(3)-表示(3)(3)(3)(3)(3)-⨯-⨯-⨯-⨯-,⑴ 同底数幂相乘.同底数的幂相乘,底数不变,指数相加.用式子表示为: m n m n a a a +⋅=(,m n 都是正整数). ⑵ 幂的乘方.幂的乘方,底数不变,指数相乘.用式子表示为:()nm mna a =(,m n 都是正整数).⑶ 积的乘方.积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.用式子表示为:()nn naba b =(n 是正整数).⑷ 同底数幂相除.同底数的幂相除,底数不变,指数相减.用式子表示为:m n m na a a -÷= (0a ≠,m ,n 都是正整数)⑸ 规定()010a a =≠;1pp a a-=(0a ≠,p 是正整数).预习检测同底数幂的乘法法则:【例1】 如果把()2x y -看作一个整体,下列计算正确的是( )A .()()()235222x y y x x y -⋅-=- B .()()()224222x y y x x y -⋅-=-- C .()()()()23272222x y y x x y x y -⋅--=- D .()()()235222x y y x x y -⋅-=--幂的乘方的性质【例2】 计算:⑴ ()54x; ⑵ ()32a b ⎡⎤+⎣⎦; ⑶ ()435a a ⋅; ⑷ ()()23211n n a a -+⋅积的乘方的法则应用【例3】 计算:⑴ ()4xy - ⑵ ()322ab -零指数、负指数【例4】 已知0a ≠,下列等式不正确的是( )A. 0(7)1a -= B. 201()12a += C. 0(1)1a -= D.01()1a=2. 整式的乘法⑴ 单项式与单项式相乘:系数、同底数幂分别相乘作为积的因式,只有一个单项式里含有的字母,则连同它的指数作为积的一个因式.比如:23234233ab a b c a b c ⋅=,两个单项式的系数分别为1和3,乘积的系数是3,两个单项式中关于字母a 的幂分别是a 和2a ,乘积中a 的幂是3a ,同理,乘积中b 的幂是4b ,另外,单项式ab 中不含c 的幂,而2323a b c 中含2c ,故乘积中含2c .⑵ 单项式与多项式相乘:单项式分别与多项式中的每一项相乘,然后把所得的积相加,公式为:()m a b c ma mb mc ++=++,其中m 为单项式,a b c ++为多项式.⑶ 多项式与多项式相乘:将一个多项式中的每一个单项式分别与另一个多项式中的每一个单项式相乘,然后把积相加,公式为:()()m n a b ma mb na nb ++=+++预习检测单项式乘以单项式 【例5】 计算:(1)332x x x ⋅⋅ (2)()2x x -⋅- (3)()32a单项式乘以多项式 【例6】 计算⑴()()24231x x x -⋅+- ⑵221232ab ab ab ⎛⎫-⋅⎪⎝⎭ 多项式乘以多项式 【例7】 计算下列各式:⑴ ()()253x y a b ++ ⑵ ()()234x x -+ ⑶ ()()32x y x y +-3.乘法公式(1)平方差公式 活动1 知识复习多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.(a+b )(m+n )=am+an+bm+bn活动2 计算下列各题,你能发现什么规律?(1)(x+1)(x -1); (2)(a+2)(a -2); (3)(3-x )(3+x ); (4)(2m+n )(2m -n ). 再计算:(a+b )(a -b )=a 2-ab+ab -b 2=a 2-b 2.得出平方差公式(a+b )(a -b )= a 2-b 2. 即两数和与这两数差的积等于这两个数的平方差. 活动3 请用剪刀从边长为a 的正方形纸板上,剪下一个边长为b 的小正方形(如图1),然后拼成如图2的长方形,你能根据图中的面积说明平方差公式吗?图1 图2图1中剪去一个边长为b 的小正方形,余下图形的面积,即阴影部分的面积为(a 2-b 2).在图2中,长方形的长和宽分别为(a +b )、(a -b ),所以面积为(a +b )(a -b ). 这两部分面积应该是相等的,即(a +b )(a -b )= a 2-b 2. 平方差公式的特点:即两数和与它们差的积等于这两数的平方差。

部编版2020七年级数学下册 第一章 整式的乘除 1.5 平方差公式(2)教案 (新版)北师大版

部编版2020七年级数学下册 第一章 整式的乘除 1.5 平方差公式(2)教案 (新版)北师大版
3.请用字母表示这一规律,你能说明它的正确性吗?
四、例题教学
例3.用平方差公式进行计算:
(1)103×97;(2)11#43; b) ( a - b ) + a 2 b 2;
(2)( 2 x - 5) ( 2 x + 5 ) - 2 x ( 2 x - 3 )
例题由学生独立完成,并让四名学生到黑板上板 演,再集体订正、讲解。
重点
巩固掌握平方差公式的结构特征,能运用公式进行简单的运算。
难点
利用数形结合的数学思想方法解释平方差公式,灵活运用平方差公式进行计算。
教学用具
教学环节
说明
二 次备课
新课导入
一、复习
1.平方差公式是什么?
2.运用公式时应该注意什么?
二、探索平方差公式的几何背景
如图1-3,边长为a的大正方形中 有一个 边长为b的小正方形。
(1)请表示图1-3中阴影部分的面积。
(2)小颖将阴影部分拼成了一个长方形(如图1-4),这个长方形的长和宽分别是多少?你能表示出它的面积吗?
(3)比较(1)(2)的结果,你能验证平方差公式吗?
引导学生进行探索,并帮助学生理解公式的几何解释。
三、想一想
1.计算下列各组算式,并观察它们的共同特点。
2.从以上的过程中,你发现 了什么规律?
小结
1.平方差公式的几何意义。
2.平方差公式的正确运用,在进行混合运算时,注意运算顺序及各项符号。
作业布置
课后习题
板书设计
平方差公式2
一、复习二、探索平方差公式的几何背景
课后反思
让学生在公式的运用中积累解题的经验,体会 成功的喜悦。
平方差公式
课题
平方差公式2

《平方差公式》整式的乘除

《平方差公式》整式的乘除

整式乘除的例子
$(x^2+3x+2)(x^2-3x+2)$ $(x^2+5x+6)(x^2-5x+6)$
• 结果为:$x^4-9x^2+4$。 • 结果为:$x^4-25x^2+36$。
03
平方差公式的深入应用
与其他公式的结合
与完全平方公式的结合
在复杂的整式乘除中,平方差公式常常与 完全平方公式结合使用,以简化计算过程 。
03
在整式乘除的学习中,我们需要掌握 相关的运算技巧和方法,比如如何提 取公因式、如何进行通分、如何进行 约分等。同时,我们还需要注意一些 常见的错误,比如符号错误、运算顺 序错误等。通过不断地练习和巩固, 我们可以逐渐提高自己的运算能力和 思维水平。
感谢您的观看
THANKS
06
在进行整式乘法运算时,应先确定结果的符 号,并将相同字母的幂相乘。
整式除法的基本法则
把除式颠倒相乘,所得的积作为商。
被除式与除式的商乘以被除式,所得的 积作为积。
被除式与除式的积除以被除式,所得的 商作为商。
被除式与除式的和除以被除式,所得的 商作为商。
被除式与除式的差除以被除式,所得的 商作为商。
在金融中的应用
计算复利
在金融领域,整式的乘除运算被广泛应用 于计算复利。例如,在计算储蓄或投资的 收益时,我们需要将本金乘以利率,再乘 以时间,这涉及到整式的乘法。同时,在 计算债券或贷款的本息时,我们需要将每 期还款额乘以期数,再减去本金,这涉及 到整式的除法。
计算折旧
在会计和财务分析中,折旧的计算通常涉 及到整式的乘法和除法。例如,直线折旧 法中,折旧值等于固定资产原值除以预计 使用年限,这涉及到整式的除法。而双倍 余额递减法中,每期折旧额等于固定资产 原值的2/预计使用年限,这涉及到整式的 乘法。

北师大版数学七年级下册 第一章 整式的乘除 平方差公式-平方差公式(二)

北师大版数学七年级下册  第一章  整式的乘除   平方差公式-平方差公式(二)

平方差公式(二)一、教学目标(一)教学目标1.了解平方差公式的几何背景.2.会用面积法推导平方差公式,并能运用公式进行简单的运算.3.体会符号运算对证明猜想的作用.(二)能力目标1.用符号运算证明猜想,提高解决问题的能力.2.培养学生观察、归纳、概括等能力.(三)情感目标1.在拼图游戏中对平方差公式有一个直观的几何解释,体验学习数学的乐趣.2.体验符号运算对猜想的作用,享受数学符号表示运算规律的简捷美.二、教学重难点(一)教学重点平方差公式的几何解释和广泛的应用.(二)教学难点准确地运用平方差公式进行简单运算,培养基本的运算技能.三、教具准备一块大正方形纸板,剪刀.投影片四张第一张:想一想,记作(§1.7.2 A)第二张:例3,记作(§1.7.2 B)第三张:例4,记作(§1.7.2 C)第四张:补充练习,记作(§1.7.2 D)四、教学过程Ⅰ.创设问题情景,引入新课[师]同学们,请把自己准备好的正方形纸板拿出来,设它的边长为a.这个正方形的面积是多少?[生]a2.[师]请你用手中的剪刀从这个正方形纸板上,剪下一个边长为b的小正方形(如图1-23).现在我们就有了一个新的图形(如上图阴影部分),你能表示出阴影部分的面积吗?图1-23[生]剪去一个边长为b的小正方形,余下图形的面积,即阴影部分的面积为(a2-b2).[师]你能用阴影部分的图形拼成一个长方形吗?同学们可在小组内交流讨论.(教师可巡视同学们拼图的情况,了解同学们拼图的想法)[生]老师,我们拼出来啦.[师]讲给大伙听一听.[生]我是把剩下的图形(即上图阴影部分)先剪成两个长方形(沿上图虚线剪开),我们可以注意到,上面的大长方形宽是(a-b),长是a;下面的小长方形长是(a-b),宽是b.我们可以将两个长方形拼成一个更大长方形,是由于大长方形的宽和小长方形的长都是(a-b),我们可以将这两个边重合,这样就拼成了一个如图1-24所示的图形(阴影部分),它的长和宽分别为(a+b),(a-b),面积为(a+b)(a-b).图1-24[师]比较上面两个图形中阴影部分的面积,你发现了什么?[生]这两部分面积应该是相等的,即(a+b)(a-b)=a2-b2.[生]这恰好是我们上节课学过的平方差公式.[生]我明白了.上一节课,我们用多项式与多项式相乘的法则验证了平方差公式.今天,我们又通过拼图游戏给出平方差公式的一个几何解释,太妙了.[生]用拼图来验证平方差公式很直观,一剪一拼,利用面积相等就可推证.[师]由此我们对平方差公式有了更多的认识.这节课我们来继续学习平方差公式,也许你会发现它更“神奇”的作用.Ⅱ.讲授新课[师]出示投影片(§1.7.2 A)想一想:(1)计算下列各组算式,并观察它们的特点⎩⎨⎧=⨯=⨯8897 ⎩⎨⎧=⨯=⨯12121311 ⎩⎨⎧=⨯=⨯80808179 (2)从以上的过程中,你发现了什么规律?(3)请你用字母表示这一规律,你能说明它的正确性吗?[生](1)中算式算出来的结果如下⎩⎨⎧=⨯=⨯64886397 ⎩⎨⎧=⨯=⨯14412121431311 ⎩⎨⎧=⨯=⨯6400808063998179 [生]从上面的算式可以发现,一个自然数的平方比它相邻两数的积大1. [师]是不是大于1的所有自然数都有这个特点呢?[生]我猜想是.我又找了几个例子如:⎩⎨⎧=⨯=⨯422331 ⎩⎨⎧=⨯=⨯10000100100999910199 ⎩⎨⎧=⨯=⨯62525256242624 [师]你能用字母表示这一规律吗?[生]设这个自然数为a ,与它相邻的两个自然数为a -1,a +1,则有(a +1)(a -1)=a 2-1.[生]这个结论是正确的,用平方差公式即可说明.[生]可是,我有一个疑问,a 必须是一个自然数,还必须大于2吗?(同学们惊讶,然后讨论)[生]a 可以代表任意一个数.[师]很好!同学们能大胆提出问题,又勇于解决问题,值得提倡.[生]老师,我还有个问题,这个结论反映了数字之间的一种关系.在平时有什么用途呢?(陷入沉思)[生]例如:计算29×31很麻烦,我们就可以转化为(30-1)(30+1)=302-1=900-1=899.[师]的确如此.我们在做一些数的运算时,如果能一直有这样“巧夺天工”的方法,太好了.我们不妨再做几个类似的练习.出示投影片(§1.7.2 B)[例3]用平方差公式计算:(1)103×97 (2)118×122[师]我们可以发现,直接运算上面的算式很麻烦.但注意观察就会发现新的奥妙.[生]我发现了,103=100+3,97=100-3,因此103×97=(100+3)(100-3)=10000-9=9991.太简便了![生]我观察也发现了第(2)题的“奥妙”.118=120-2,122=120+2118×122=(120-2)(120+2)=1202-4=14400-4=14396.[生]遇到类似这样的题,我们就不用笔算,口算就能得出.[师]我们再来看一个例题(出示投影片§1.7.2 C).[例4]计算:(1)a2(a+b)(a-b)+a2b2;(2)(2x-5)(2x+5)-2x(2x-3).分析:上面两个小题,是整式的混合运算,平方差公式的应用,能使运算简便;还需注意的是运算顺序以及结果一定要化简.解:(1)a2(a+b)(a-b)+a2b2=a2(a2-b2)+a2b2=a4-a2b2+a2b2=a4(2)(2x-5)(2x+5)-2x(2x-3)=(2x)2-52-(4x2-6x)=4x2-25-4x2+6x=6x-25注意:在(2)小题中,2x与2x-3的积算出来后,要放到括号里,因为它们是一个整体.[例5]公式的逆用(1)(x+y)2-(x-y)2 (2)252-242分析:逆用平方差公式可以使运算简便.解:(1)(x+y)2-(x-y)2=[(x+y)+(x-y)][(x+y)-(x-y)]=4xy(2)252-242=(25+24)(25-24)=49Ⅲ.随堂练习1.(课本P 32)计算(1)704×696(2)(x +2y )(x -2y )+(x +1)(x -1)(3)x (x -1)-(x -31)(x +31) (可让学生先在练习本上完成,教师巡视作业中的错误,或同桌互查互纠) 解:(1)704×696=(700+4)(700-4)=490000-16=489984(2)(x +2y )(x -2y )+(x +1)(x -1)=(x 2-4y 2)+(x 2-1)=x 2-4y 2+x 2-1=2x 2-4y 2-1(3)x (x -1)-(x -31)(x +31) =(x 2-x )-[x 2-(31)2] =x 2-x -x 2+91 =91-x 2.(补充练习)出示投影片(§1.7.2 D)解方程:(2x +1)(2x -1)+3(x +2)(x -2)=(7x +1)(x -1)(先由学生试着完成)解:(2x +1)(2x -1)+3(x +2)(x -2)=(7x +1)(x -1)(2x )2-1+3(x 2-4)=7x 2-6x -14x 2-1+3x 2-12=7x 2-6x -1x=2Ⅳ.课时小结[师]同学们这节课一定有不少体会和收获.[生]我能用拼图对平方差公式进行几何解释.也就是说对平方差公式的理解又多了一个层面.[生]平方差公式不仅在计算整式时,可以使运算简便,而且数的运算如果也能恰当地用了平方差公式,也非常神奇.[生]我觉得这节课我印象最深的是犯错误的地方.例如a(a+1)-(a+b)(a-b)一定要先算乘法,同时减号后面的积(a+b)(a-b),算出来一定先放在括号里,然后再去括号.就不容易犯错误了.……Ⅴ.课后作业课本P32、习题1.12.Ⅵ.活动与探究计算:19902-19892+19882-19872+…+22-1.[过程]先做乘方运算,再做减法,则计算繁琐,观察算式特点,考虑逆用平方差公式.[结果]原式=(19902-19892)+(19882-19872)+…+(22-1)=(1990+1989)(1990-1989)+(1988+1987)(1988-1987)+…+(2+1)(2-1)=1990+1989+1988+1987+…+2+1=2)11990(1990+⨯=1981045五、板书设计§1.7.2 平方差公式(二)一、平方差公式的几何解释:二、想一想特例——归纳——建立猜想——用符号表示——给出证明即(a+1)(a-1)=a2-1三、例题讲解:例3 例4四、练习。

七年级数学平方差及整式知识点有哪些

七年级数学平方差及整式知识点有哪些

七年级数学平方差及整式知识点有哪些平方差公式中常见错误有:学生难于跳出原有的定式思维,混淆公式;运算结果中符号错误;变式应用难以掌握。

我们平时考试要注意这些问题。

下面是小编给大家带来的七年级数学平方差及整式知识点,欢迎大家阅读参考,我们一起来看看吧!七年级北师大版数学整式知识点知识点1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

单项式的数字因数叫做单项式的系数,所有字母指数和叫单项式的次数。

如:bc a 22-的系数为2-,次数为4,单独的一个非零数的次数是0。

2、多项式:几个单项式的和叫做多项式。

多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。

如:122++-x ab a ,项有2a 、ab 2-、x 、1,二次项为2a 、ab 2-,一次项为x ,常数项为1,各项次数分别为2,2,1,0,系数分别为1,-2,1,1,叫二次四项式。

3、整式:单项式和多项式统称整式。

注意:凡分母含有字母代数式都不是整式。

也不是单项式和多项式。

4、多项式按字母的升(降)幂排列:如:1223223--+-y xy y x x按x 的升幂排列:3223221x y x xy y +-+--按x 的降幂排列:1223223--+-y xy y x x数学初一年级北师大版下平方差公式知识点知识点当除式是两个数之和以及这两个数之差相乘时,积是二项式。

这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了。

而它们的积等于乘式中这两个数的平方差,即(a+b)(a-b)=a^2-b^2,两数的和与这两数的差的积,就是它们的平方差。

表达式:(a+b)(a-b)=a^2-b^2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式公式运用可用于某些分母含有根号的分式:1/(3-4倍根号2)化简:1×(3+4倍根号2)/(3-4倍根号2)^2;=(3+4倍根号2)/(9-32)=(3+4倍根号2)/-23注意事项:(1)有公因式(包括负号)则先提取公因式;(2)整式乘法的平方差公式与因式分解的平方差公式是互逆关系;(3)平方差公式中的a与b既可以是单项式,又可以是多项式;平方差公式的运用可用于某些分母含有根号的分式:1/(3-4倍根号2)化简:1×(3+4倍根号2)/(3-4倍根号2)^2=(3+4倍根号2)/(9-32)=(3+4倍根号2)/-23[解方程]x^2-y^2=1991[解题过程]x^2-y^2=1991(x+y)(x-y)=1991因为1991可以分成996和995所以如果x+y=1991,x-y=1,解得x=996,y=995如果x+y=181,x-y=11,x=96,y=85同时也可以是负数所以解有x=996,y=995,或x=996,y=-995,或x=-996,y=995或x=-996,y=-995或x=96,y=85,或x=96,y=-85或x=-96,y=85或x=-96,y=-85。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020最新七年级下整式的乘除(重点难点)数学平方差公式
1.下列各式中:
①(x−1
2y)(x+1
2
y),②(3a−bc)(bc−3a),③(3−x+y)(3+x+y),④(x2y−3xy)(3x2y+xy),
⑤(xy−5)(−xy+5),⑥(2
3a6−5b4c3)(2
3
a6+5b3c4),能用平方差公式计算的有()
A. 1个
B. 2个
C. 3个
D. 4个
2.(22+1)(24+1)(28+1)(216+1)的值为()
A. 232−1
B. 232+1
C. 232−1
3D. 232−1
2
3.为了应用平方差公式计算(a−b+c)(a+b−c),必须先适当变形,下列各变形中,正确的是()
A. [(a+c)−b][(a−c)+b]
B. [(a−b)+c][(a+b)−c]
C. [a−(b+c)][a+(b+c)]
D. [a−(b−c)][a+(b−c)]
4.乘积(1−1
22)(1−1
32
)(1−1
42
)…(1−1
19982
)(1−1
19992
)(1−1
20002
)等于()
A. 1999
2000B. 2001
2000
C. 1999
4000
D. 2001
4000
5.如图,阴影部分是边长是a的大正方形剪去一个边
长是b的小正方形后所得到的图形,将阴影部分通
过割、拼,形成新的图形,给出下列4幅图割拼方
法:其中能够验证平方差公式有()
A. ①②③④
B. ①③
C.
①④ D. ①③④
6.计算2021×2019−20202的值为______.
7.如果(3m+n+3)(3m+n−3)=40,则3m+n的值为______.
8.(m−1)(m+1)(______)=m4−1.
9.利用平方差公式计算:
(1)(a+6)⋅(a−6);(2)(1+x)⋅(1−x);(3)(x−20y)⋅(x+20y);(4)(a−3)⋅(a+3)⋅(a2+9) 10.用平方差公式计算:
(1)(2+a)(a−2).(2)(x+y
3)(x−y
3
).(3)102×98.。

相关文档
最新文档