龟兔进行10000米赛跑
六年级下册奥数讲义-奥数方法:综合训练(练习无答案)全国通用
1.在1997后面补上三个数字,组成一个七位数1997口口口,如果这个七位数能被4、5、6整除,那么补上的三个数字的和的最小可能值2.在300到400之间的自然数中,恰有3个约数的数的总和等于3.给定1997个连续的自然数。
已知其中最小数与最大数的平均但是1997,那么最大数等于4.在下式的方框里分别填上2、4、6、8四个数字,使等式成立。
最多可写出个不同的算式。
5.如图1所示,四边形ABCD的周长是60厘米.点M到各边的距离都是4.5厘米,这个四边形的面积是平方厘米。
6.有一些小朋友排成一行,从左面第一人开始每隔2人发一个苹果;从右面第一人开始每隔4人发一个橘子,结果有10个小朋友苹果和橘子都拿到,那么这些小朋友最多有人。
7.甲、乙两项工程分别由一、二队来完成。
在晴天,一队完成甲工程需要12天,二队完成乙工程需要15天;在雨天,一队的工作效率要下降 40%,二队的工作效率要下降10%。
结果两队同时完成这两项工程。
那么在施工的日子里,雨天确天。
8.龟兔进行10000米赛跑,兔子的速度是龟的速度的5倍。
当它们从起点一起出发后,龟不停地跑,兔子跑到某一地点开始睡觉。
兔子醒来时。
龟已经领先它5000米,兔子奋起直追,但龟到达终点时,兔子仍落后100米,那么在兔子睡觉期间,龟跑了米。
9.中山商场销售的名人系列笔记本电脑,按台数统计每月销售量平均增长20%,1996年12月份销售了120台,按此速度下去,预计1997年3月份比l月份多销售多少台?(按四舍五入计算)。
10.一辆汽车的速度是每小时50千米,现有一块每5小时慢2分的表,若用该表计时,测得这辆汽车的时速是多少?(得数保留一位小数) 11.图2中有九个方格,要求每个格中填入互不相同的数,使得每行、每列、每条对角线上的三个数之和都相等。
问:图中左上角的数是多少?12.甲管注水速度是乙管的一倍半,同时开放甲、乙两个水管向游泳池注水,12小时可注满。
现在先开甲管向游泳池注水若干小时,剩下的由乙管注9小时将游泳池注满,问:甲管注水时间是多少?13.威力集团生产的某种洗衣机的外形是长方体,装衣物部分是圆柱形的桶,直径40厘米,深36厘米,已知该洗衣机装衣物的空间占洗衣机体积的25%,长方体外形的长为52厘米,宽50厘米。
小学数学典型应用题行程问题
行程问题经典题型(一)1、甲、乙两地相距6千米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行70米。
问他走后一半路程用了多少分钟?2、小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路。
小明上学走两条路所用的时间一样多。
已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的多少倍?3、一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米。
那么甲、乙两地之间的距离是多少千米?4、一条电车线路的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟。
有一个人从乙站出发沿电车线路骑车前往甲站。
他出发的时候,恰好有一辆电车到达乙站。
在路上他又遇到了10辆迎面开来的电车。
到达甲站时,恰好又有一辆电车从甲站开出。
问他从乙站到甲站用了多少分钟?5、甲、乙两人在河中游泳,先后从某处出发,以同一速度向同一方向游进。
现在甲位于乙的前方,乙距起点20米,当乙游到甲现在的位置时,甲将游离起点98米。
问:甲现在离起点多少米?6、甲、乙两辆汽车同时从东西两地相向开出,甲每小时行56千米,乙每小时行48千米,两车在离两地中点32千米处相遇。
问:东西两地的距离是多少千米?7、李华步行以每小时4千米的速度从学校出发到20.4千米外的冬令营报到。
0.5小时后,营地老师闻讯前往迎接,每小时比李华多走1.2千米。
又过了1.5小时,张明从学校骑车去营地报到。
结果3人同时在途中某地相遇。
问:骑车人每小时行驶多少千米?8、快车和慢车分别从甲、乙两地同时开出,相向而行,经过5小时相遇。
已知慢车从乙地到甲地用12.5小时,慢车到甲地停留0.5小时后返回,快车到乙地停留1小时后返回,那么两车从第一次相遇到第二次相遇需要多少时间?9、某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来校作报告,往返需用1小时。
六年级下册奥数讲义-奥数方法:假设法(练习无答案)全国通用
六年级下册奥数讲义-奥数⽅法:假设法(练习⽆答案)全国通⽤对于某些数学问题,可以根据题⽬中的已知条件或结论作出某种假设,然后依据假设进⾏分析推理,这种解题⽅法叫做假设法。
假设思维是⼀种常⽤的推测性的辩证思维,它要求⼈们在错综复杂的数量关系中,找出能起主导作⽤的某⼀数量或某⼀等量关系,以显现可求解的对应关系,从⽽确定解题思路。
常⽤的假设有条件假设、问题假_设、单位假设及情境假设等。
⽤假设法解题的思维过程分为三步:第⼀步对题⽬中的部分条件进⾏假设,第⼆步由假设导出⽭盾,第三步分析产⽣⽭盾的原因,原因找到后,问题也就解决了。
【例1]有五堆苹果,较⼩的三堆平均有18个苹果,较⼤的两堆,苹果数之差为5个,⼜,较⼤三堆平均有26个苹果,较⼩的两堆苹果数之差为7个。
最⼤堆与最⼩堆平均有22个苹果。
则每堆各有个苹果。
分析与解答根据题意按从⼤到⼩⽤字母表⽰如下:abcde,因为a,b,c的平均数是26,所以b应接近26,则a=26+5=31,e=22×2-31=13,d=13+7= 20。
c=18×3-13-20=21,符合题意,故每堆有(从⼤到⼩)31、26、21、20、13。
[例2] 绕湖的⼀周是22千⽶,甲、⼄⼆⼈从湖边某⼀地点同时出发反向⽽⾏,甲以4千⽶/⼩时的速度每⾛1⼩时后休息5分钟,⼄以6千⽶/⼩时的速度每⾛50分钟后休息10分钟,则两⼈从出发到第⼀次相遇⽤分析与解答如图1所⽰,包括休息时间,甲65分钟⾛4千⽶,⼄60分钟⾛5千⽶(⼄以60千⽶/⼩时的速度⾛50分钟只能⾛5千⽶)。
剩下的路程两⼈共同⾛完需:(22-19)÷(4+6)=0.3(⼩时)=18(分钟)故两⼈从出发到第⼀次相遇⽤时:65×2+18=148(分钟)。
[例3】⼩⽞和⼩斌⼀起跳绳,⼩⽞先跳了2分钟,然后两⼈各跳了3分钟,⼀共跳了780下,已知⼩⽞⽐⼩斌每分钟多跳12下,问⼩⽞⽐⼩斌多跳了多少下?周『-路剖析因为本题中有些数量关系⽐较隐蔽,如果对已知条件作出假设,就能顺利找到解此题的途径和答案了。
行程问题题型
行程问题练习题型一1、小宇步行上学,若每分钟走150米,就可以早到4分钟。
若每分钟走120米,则迟到2分钟。
问小宇离学校多远?2、一辆汽车从甲地开往乙地,若每小时行50千米,第二天中午12点才能到达。
如果每小时行60 千米,第二天上午9点能到达。
现在要求汽车第二上午10点到达。
问汽车每小时要行多少千米?3、小机灵从家里去学校,先以每分钟50米的速度走了2分钟,如果仍按这个速度走,将迟到2分钟。
于是他每分钟多走10米,结果提早5分钟到校。
问小机灵家离学校有多远?题型二1、小轿车、面包车和大客车的速度分别是60千米/小时、48千米/小时和42千米/小时。
小轿车和大客车从甲地、面包车从乙地同时出发相向而行,面包车遇到小轿车后30分钟又遇到大客车。
甲、乙两地相距多少千米?2、甲、乙、丙三人的速度分别是每分钟55米、50米、60米,甲、乙从A地到B地,丙从B地到A地,三人同时出发,丙和甲相遇后6分钟又与乙相遇,A、B两地相距多少米?3、一列快车从甲站到乙站要5小时,一列慢车从乙站到甲站要8小时,现快车出发2小时后慢车才出发,两车相遇点距甲、乙两站中点84千米,求甲、乙两站之间的距离。
题型三1、甲、乙两辆汽车分别从A、B两地同时出发相向而行,第一次在距A地125千米相遇,之后继续前行,到达对方出发地后立即返回。
又在距A地65千米处第二次相遇。
问A、B两地相距多少千米?2、甲、乙两辆汽车分别从A、B两地同时出发相向而行,第一次在距A地125千米相遇,之后继续前行,到达对方出发地后立即返回。
又在距B地75千米处第二次相遇。
问A、B两地相距多少千米?3.甲、乙两辆车同时从A、B两站相对开出,第一次相遇时离A站有90千米,然后各按原速继续行驶.分别到达对方车站后立即沿原路返回,第二次相遇时离A地的距离占A、B两站间全程的65%,A、B两站问的路程是多少千米?5、甲乙两船分别从A、B两港口同时出发,相向而行,乙船的速度为甲船的2/3,两船相遇后继续航行,到达对方出发地后立即返回。
小学数学毕业专项训练(行程问题)部分01---05
(北师大版)小学数学毕业专项训练(行程问题)部分(一)小升初专题训练相遇与追及问题1.甲乙两地相距6千米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行70米。
问他走后一半路程用了多少分钟?2.小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路。
小明上学走两条路所用的时间一样多。
已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的多少倍?3.一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米。
那么甲、乙两地之间的距离是多少千米?4.一条电车线路的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟。
有一个人从乙站出发沿电车线路骑车前往甲站。
他出发的时候,恰好有一辆电车到达乙站。
在路上他又遇到了10辆迎面开来的电车。
到达甲站时,恰好又有一辆电车从甲站开出。
问他从乙站到甲站用了多少分钟?5.甲、乙两人在河中游泳,先后从某处出发,以同一速度向同一方向游进。
现在甲位于乙的前方,乙距起点20米,当乙游到甲现在的位置时,甲将游离起点98米。
问:甲现在离起点多少米?6.甲、乙两辆汽车同时从东西两地相向开出,甲每小时行56千米,乙每小时行48千米,两车在离两地中点32千米处相遇。
问:东西两地的距离是多少千米?7.李华步行以每小时4千米的速度从学校出发到20.4千米外的冬令营报到。
0.5小时后,营地老师闻讯前往迎接,每小时比李华多走1.2千米。
又过了1.5小时,张明从学校骑车去营地报到。
结果3人同时在途中某地相遇。
问:骑车人每小时行驶多少千米?8快车和慢车分别从甲、乙两地同时开出,相向而行,经过5小时相遇。
已知慢车从乙地到甲地用12.5小时,慢车到甲地停留0.5小时后返回,快车到乙地停留1小时后返回,那么两车从第一次相遇到第二次相遇需要多少时间?9.某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来校作报告,往返需用1小时。
【人教新课标】四年级上册数学试题 - 竞赛试卷(含答案解析)
2019年福建省泉州市永春实验小学四年级数学竞赛试卷一、填空题(共25小题,满分100分)1.(4分)巧妙计算.(1)(234567+345672+456723+567234+672345+723456)÷9=.(2)98766×98768﹣98765×98769=.2.(5分)A=B=C=D=E=.3.(5分)4.(3分)A、B、C、D均为自然数,若A×B=15,B×C=20,A×D=24,那么C×D=.5.(3分)司机开车按顺序到五个车站接学生到学校,每个站都有学生上车,第一站上了一批学生,以后每站上车人数都是前一站上车人数的一半,到学校时,车上最少有学生人.6.(3分)一本书共380页,印刷厂的排版工人编排这本书,仅排页码一共要用个铅字.7.(3分)如果1☉2=1+2,2☉3=2+3+4,…,5☉6=5+6+7+8+9+10,那么,在X☉3=54中,X=.8.(3分)小明去买同一种笔和同一种橡皮,所带的钱能买8支笔和4块橡皮,或买6支笔和12块橡皮.结果他用这些钱全部买了笔,他能买支.9.(4分)某班在一次测验中有26人语文获优,有30人数学获优,其中语、数双优的有12人,另外还有8人语、数均未获优,这个班共有人.10.(4分)一列火车长900米,从路边的一棵大树旁通过用了1.5分钟,以同样的速度通过一座大桥用了3.5分钟,这座大桥的长度是米.11.(4分)甲、乙、丙、丁四人年龄之和是101岁,甲32岁,乙27岁,当甲29岁时,丁的年龄是丙的3倍,丙、丁今年各是岁、岁.12.(4分)有鸡蛋18箩,每只大箩容180个,每只小箩容120个,共值302.4元,若将每个鸡蛋便宜2分出售,则可得款252元.大箩有只,小箩有只.13.(4分)将1~9这九个自然数分别填进九个小三角形中,使每4个小三角形组成的三角形内的4个数的和都等于20.14.(4分)六年级有100名学生,他们都订阅甲、乙、丙三种杂志中的一种、二种或三种,至少有名学生订阅的杂志种类相同.15.(4分)有1999个球,甲、乙两人轮流取球,每人每次至少取一个,最多取5个,取到最后一个球的人为输.如果甲先取,那么将获胜.16.(4分)牧场上有一片牧草,供23头牛5周吃完,供17头牛10周吃完,假定草的生长速度不变,则该牧场可供16头牛吃周.17.(4分)龟兔进行10000米赛跑,兔子速度是乌龟的5倍,当它们从起点出发后,乌龟不断地跑,兔子跑到某一地点开始睡觉,兔子醒来时,乌龟已经领先它5000米,兔子奋起直追,但乌龟到达终点时,兔子仍落后100米,那么在兔子睡觉期间,乌龟跑了米.18.(4分)甲仓的存粮是乙仓的2倍,每天从甲仓运出12吨粮食,从乙仓运出5吨粮食,若干天后,甲仓正好运完,而乙仓还剩粮食18吨,甲仓原有粮食吨,乙仓原有粮食吨.19.(4分)从装有写着1、2、3、4、5、6、7、8、9的9张卡片中,一次取出6张,计算它们的和,最多有种不同的和.20.(4分)两根电线一样长,第一根剪去50厘米,第二根剪去180厘米后,剩下部分第一根是第二根长度的3倍.这两根电线原来共长厘米.21.(4分)五位同学捐款,他们捐的钱有3张1元,4张2元,3张5元和3张10元.这五位同学捐款数各不相同,捐款最多的同学至少捐了元.22.(4分)一列数,1、2、3、5、8、13…,从第3个开始,每一个数都是前2个数的和,在前2000个数中,有个偶数.23.(5分)客车和货车同时从甲乙两站相对开出,客车每小时行54千米,货车每小时行48千米,两车相遇后又以原来的速度继续前进,客车到乙站后立即返回,货车到甲站后也立即返回,两车再次相遇时,客车比货车多行21.6千米.求甲乙两站间的路程是多少千米?24.(5分)除以13所得的余数是.25.(5分)某校202名学生排成两路纵队,以每秒3米的速度去春游,前后相邻两个人之间的距离为0.5米.李老师从队尾骑自行车以每秒5米的速度到队头,然后又返回到队尾,一共要用秒.2018年福建省泉州市永春实验小学四年级数学竞赛试卷参考答案与试题解析一、填空题(共25小题,满分100分)1.(4分)巧妙计算.(1)(234567+345672+456723+567234+672345+723456)÷9=33333.(2)98766×98768﹣98765×98769=3.【分析】(1)通过观察,个位,十位,百位,千位,万位的求和都等于(2+3+4+5+6+7)=27,所以原题可以化成27×(10000+1000+100+10+1)÷9,进行简算即可;(2)把98766变成(98765+1),98769变成(98768+1),再利用乘法的分配律进行简算.【解答】解:(1)(234567+345672+456723+567234+672345+723456)÷9=27×(10000+1000+100+10+1)÷9=3×(10000+1000+100+10+1)=30000+3000+300+30+3=33333;(2)98766×98768﹣98765×98769=(98765+1)×98768﹣98765×(98768+1)=98765×98768+98768﹣(98765×98768+98765)=98765×98768+98768﹣98765×98768﹣98765=98768﹣98765=3.故答案为:33333,3.【点评】认真观察,根据数字特点进行组合,从而达到巧算的目的.2.(5分)A=4B=2C=8D=5E=7.【分析】根据乘法口决,3乘E的末尾是1,E就是7,它同3相乘要向前一位进2,积的十位是E既7,D就是5,它同3相乘要向前一位进1,积的百位是D既5,C就是8,它同3相乘要向前一位进2,积的千位是C既8,B就是2,A与3相乘,积的万位是B既2,A就是4,据此解答.【解答】解:答案如下,故答案为:4,2,8,5,7.【点评】本题的关键是根据乘法口决从个位算起,先确定第一个因数的个位是几,再进行推理解答.3.(5分)【分析】第一步十位上的商乘□6积的末尾是8,3×6=18,8×6=48,那么商的十位可能是3或8,由此分别讨论,得出其它数可能的值,从而求解.【解答】解:观察算式发现:第一步,商的十位与除数的乘积的末尾是8,所以商的十位可能是8或3;①当商的十位是8时,16×8=128,26×8=208,除数的十位只能是1,除数是16,此时算式是:观察上述算式,没有余数,说明被除数的个位是2,14□﹣128的差是一位数,且这个一位数与2组成的数是16的倍数,只有32÷16=2符合要求,所以此时商的个位是2,整个算式的商就是82,被除数就是82×16=1312,这与被除数是1400多不相符;不合题意;②当商的十位是3时,36×3=108,46×3=138,56×3=168,那么如果除数是36,36与3的乘积是108,而140﹣108=32,差是两位数,与第一步计算的差是一位数不符;如果除数是56及以上,乘积都大于150了,不合题意,所以除数只能是46,此时算式变成:观察上述算式可得,被除数的个位是2,46×2=92,只有这一个可能,所以商的个位是2,商是32,此时被除数32×46=1472,符合要求,此时竖式就是:【点评】本题非常巧妙地考查了对整数的除法运算法则的熟悉掌握程度.4.(3分)A、B、C、D均为自然数,若A×B=15,B×C=20,A×D=24,那么C×D=32.【分析】分别将15,20,24分解质因数,再把质因数做适当的调整,求出相乘的两个因数,进而求出自然数A,B,C,D的值,再代入求C×D的值即可.【解答】解:因为15=3×5,20=2×2×5=4×5,所以可以得出B=5,A=3,C=4,因为24=A×D,所以D=8;所以C×D=4×8=32;故答案为:32.【点评】此题考查了合数分解质因数,分解质因数就是把一个合数写成几个质因数的连乘积的形式,一般先从简单的质数试着分解,得出B等于5,是解答此题的关键.5.(3分)司机开车按顺序到五个车站接学生到学校,每个站都有学生上车,第一站上了一批学生,以后每站上车人数都是前一站上车人数的一半,到学校时,车上最少有学生31人.【分析】5个站依次减半,那么从最后的一站(第5站)至少要上1个人,依次第4站为2人,第3站为4人,第2站为8人,第一站为16人.相加得:1+2+4+8+16=31个.【解答】解:最后的一站(第5站)至少要上1个人,依次第4站为2人,第3站为4人,第2站为8人,第一站为16人.1+2+4+8+16=31(个).答:车上最少有31个学生.故答案为:31.【点评】考查了逆推问题,关键是从最后的一站(第5站)至少要上1个人进行推理求解.6.(3分)一本书共380页,印刷厂的排版工人编排这本书,仅排页码一共要用1032个铅字.【分析】排版时一个铅字只能排一位数字,因此只要算出组成1~380这380个数需要多个数字即可知道排这本书的页码共要用多少个铅字:一位数:1~9共有9个数字;两位数:组成10~99共需要90×2=180个数字;三位数:组成100~380共需要281×3=843个数字.把这三部分相加即可求解.【解答】解:一位数:1~9共有9个数字;两位数:组成10~99共需要90×2=180个数字;三位数:组成100~380共需要281×3=843个数字.9+180+843=1032(个)答:仅排页码一共要用1032个铅字.故答案为:1032.【点评】根据自然数的排列规律及数位进行分析是完成本题的关键.7.(3分)如果1☉2=1+2,2☉3=2+3+4,…,5☉6=5+6+7+8+9+10,那么,在X☉3=54中,X=17.【分析】由题意得出“☉”表示求连续自然数的和,“☉”前面的数表示要加的第一个数,“☉”后面的数表示连续自然数的个数;由此用此规律把X☉3=54变成简易方程,再根据解方程的方法求解.【解答】解:X☉3=54X+X+1+X+2=543X+3=543X+3﹣3=54﹣33X=513X÷3=51÷3X=17故答案为:17.【点评】解答此题的关键是,根据所给出的式子,找出新的运算方法,再利用新的运算方法解决问题.8.(3分)小明去买同一种笔和同一种橡皮,所带的钱能买8支笔和4块橡皮,或买6支笔和12块橡皮.结果他用这些钱全部买了笔,他能买9支.【分析】所带的钱能买8支笔和4块橡皮,或买6支笔和12块橡皮,由此可知:买(8﹣6)支笔的钱可以买(12﹣4)块橡皮,由此可以得出买1支笔的钱可以买4块橡皮,然后根据“所带的钱能买8支笔和4块橡皮”即可得出:所带的钱全部买了笔,他能买8+1=9支;由此解答即可.【解答】解:8+4÷[(12﹣4)÷(8﹣6)]=8+1=9(支)答:结果他用这些钱全部买了笔,他能买9支.故答案为:9.【点评】此题属于简单的等量代换,根据题意推出买1支笔的钱可以买4块橡皮,是解答此题的关键.9.(4分)某班在一次测验中有26人语文获优,有30人数学获优,其中语、数双优的有12人,另外还有8人语、数均未获优,这个班共有52人.【分析】有26人语文获优,有30人数学获优,其中语数双优的有12人,根据容斥原理可知,这个班获得优秀的人数共有26+30﹣12=44人,另外有8人语数成绩均未获优,所以这个班共有44+8=52人.【解答】解:26+30﹣12+8=56﹣12+8=44+8=52(人)答:这个班共有52人.故答案为:52.【点评】首先根据容斥原理之一:A类B类元素个数总和=属于A类元素个数+属于B类元素个数﹣既是A类又是B类的元素个数,求出获优的有多少人是完成本题的关键.10.(4分)一列火车长900米,从路边的一棵大树旁通过用了1.5分钟,以同样的速度通过一座大桥用了3.5分钟,这座大桥的长度是1200米.【分析】根据路程÷时间=速度,用火车长除以1.5分钟,求出火车的速度;通过大桥时,行驶的路程是大桥和火车的长度和,再根据路程=速度×时间,求出火车和桥长度的和,进而求出大桥的长.【解答】解:900÷1.5×3.5﹣900=600×3.5﹣900=2100﹣900=1200(米)答:这座大桥的长度是1200米.故答案为:1200.【点评】本题关键在于火车行驶的路程是桥长与火车长度的和,部分同学可能不考虑火车长度而导致出错.11.(4分)甲、乙、丙、丁四人年龄之和是101岁,甲32岁,乙27岁,当甲29岁时,丁的年龄是丙的3倍,丙、丁今年各是12岁、30岁.【分析】根据题意可得,丙、丁两人年龄之和是101﹣32﹣27=42(岁),当甲29岁时,经过了32﹣29=3(年),那时,丙、丁两人年龄之和是42﹣3×2=36(岁),又因为“丁的年龄是丙的3倍,”,即此时丙、丁两人年龄之和是丙的年龄的(1+3)倍,然后根据和倍公式解答即可求出丙的年龄,以及丁的年龄.【解答】解:101﹣32﹣27=42(岁)32﹣29=3(年)42﹣3×2=36(岁)36÷(1+3)=36÷4=9(岁)9+3=12(岁)9×3+3=27+3=30(岁)答:丙今年12岁,丁今年30岁.故答案为:12;30.【点评】本题考查了比较复杂的年龄问题,关键是求出丙、丁两人年龄之和(今年和3年前的)与倍数和求出.12.(4分)有鸡蛋18箩,每只大箩容180个,每只小箩容120个,共值302.4元,若将每个鸡蛋便宜2分出售,则可得款252元.大箩有6只,小箩有12只.【分析】根据题意,可找出数量之间的相等关系式为:(大箩的只数×180+小箩的只数×120)×0.02=302.4﹣252,可设小箩有x只,则大箩有(18﹣x)只,据此列出方程并解方程即可.【解答】解:2分=0.02元,设小箩有x只,则大箩有(18﹣x)只,由题意得:[180×(18﹣x)+120x]×0.02=302.4﹣252[3240﹣180x+120x]×0.02=50.464.8﹣1.2x=50.41.2x=14.4x=12大箩有:18﹣12=6(只);答:小箩有12只,大箩有6只.故答案为:6,12.【点评】此题属于含有两个未知数的应用题,这类题用方程解答比较容易,关键是找准数量间的相等关系,设一个未知数为x,另一个未知数用含x的式子来表示,进而列并解方程即可.13.(4分)将1~9这九个自然数分别填进九个小三角形中,使每4个小三角形组成的三角形内的4个数的和都等于20.【分析】如上图所示,每4个小三角形组成的中三角形内,在求和时重复相加的小三角形内的数字是a、b、c,由已知可得:1+2+3+4+5+6+7+8+9+a+b+c=20×3,化简得,a+b+c=15,假设a、b、c是4、5、6,然后凑出其它的数字,使4+5+9+2=20,5+6+8+1=20,3+7+4+6=20,如下图1所示;假设a、b、c是3、5、7,然后凑出其它的数字,使3+7+1+9=20,2+6+5+7=20,4+8+3+5=20,如下图2所示;这样的填空的方式有多种,只要满足题意就可以,因此得解.【解答】解:假设重复求和的位置的数字分别是a、b、c,则有1+2+3+4+5+6+7+8+9+a+b+c=20×3,所以a+b+c=15,令a、b、c为4、5、6,则其它的空只要满足4+5+9+2=20,5+6+8+1=20,3+7+4+6=20,就可以完成一种填法;如图1;令a、b、c为3、5、7,则其它的空只要满足3+7+1+9=20,2+6+5+7=20,4+8+3+5=20,又可以完成一种填法;如图2;填空的方式有很多种,不妨大家试一试.答案不唯一.【点评】此题考查了凑数谜,假设出未知数,根据已知条件,列出等式,凑数,即可得解.14.(4分)六年级有100名学生,他们都订阅甲、乙、丙三种杂志中的一种、二种或三种,至少有15名学生订阅的杂志种类相同.【分析】订阅杂志中的一种有3种选法、订阅二种有3种选法、订阅三种有1种选法,共有3+3+1=7(种);把7种选法看作7个抽屉,把订阅杂志的人数(100)看元素,从最不利情况考虑,每个抽屉先放14个元素,共需要98个,还余2个,无论放在那个抽屉里,总有一个抽屉里至少有14+1=15个,所以至少要15名学生订阅的杂志种类相同;据此解答.【解答】解:3+3+1=7(种);100÷7=14(人)…2(人),14+1=15(名);答:至少要15名学生订阅的杂志种类相同.故答案为:15.【点评】抽屉原理问题的解答思路是:要从最不利情况考虑,准确地建立抽屉和确定元素的总个数,然后根据“至少数=元素的总个数÷抽屉的个数+1(有余数的情况下)”解答.15.(4分)有1999个球,甲、乙两人轮流取球,每人每次至少取一个,最多取5个,取到最后一个球的人为输.如果甲先取,那么甲将获胜.【分析】因为每人每次至少取一个,最多取5个,所以一定能保证两人所拿的和是6,而1999÷(1+5)=1999÷6=333…1,所以甲先拿1个,然后看乙拿几个,甲拿的球数与乙拿的和是6,甲一定胜利.【解答】解:1999÷(1+5)=1999÷6=333 (1)答:甲先拿1个,然后看乙拿几个,甲拿的球数与乙拿的和是6,甲一定胜利.故答案为:甲.【点评】本题考查最佳方法问题:如果有余数,谁先拿然后始终保证所拿的数量之和一定,谁就一定胜利.16.(4分)牧场上有一片牧草,供23头牛5周吃完,供17头牛10周吃完,假定草的生长速度不变,则该牧场可供16头牛吃12周.【分析】假设每头牛每周吃青草1份,先求出青草的增加的速度:(17×10﹣23×5)÷(10﹣5)=11(份);然后求出草地原有的草的份数:23×5﹣5×11=60(份);那么16头牛每周吃青草16份,青草每周增加11份,可以看作每周有(16﹣11)头牛在吃草,草地原有的60份的草,可吃:60÷5=12(周).【解答】解:假设每头牛每周吃青草1份,青草增加的速度:(17×10﹣23×5)÷(10﹣5)=55÷5=11(份);原有的草的份数:23×5﹣5×11=115﹣55=60(份);可供16头牛吃:60÷(16﹣11)=60÷5=12(周);答:该牧场可供16头牛吃12周.故答案为:12.【点评】本题考查了牛吃草的问题,关键的是求出青草的每周增加的速度(份数)和草地原有的草的份数.17.(4分)龟兔进行10000米赛跑,兔子速度是乌龟的5倍,当它们从起点出发后,乌龟不断地跑,兔子跑到某一地点开始睡觉,兔子醒来时,乌龟已经领先它5000米,兔子奋起直追,但乌龟到达终点时,兔子仍落后100米,那么在兔子睡觉期间,乌龟跑了8020米.【分析】根据题意,兔子一共跑了10000﹣100=9900(米),因为兔子的速度是乌龟的五倍,所以在兔子跑的同时乌龟跑了9900÷5=1980(米),而实际乌龟跑了10000米,所以它在兔子睡着的时候乌龟跑了10000﹣1980=8020(米),解决问题.【解答】解:10000﹣(10000﹣100)÷5,=10000﹣9900÷5,=10000﹣1980,=8020(米);答:兔子睡觉的时候,乌龟跑了8020米.故答案为:8020.【点评】此题的解答思路:先求出兔子一共跑的路程,再根据兔子速度是乌龟的5倍,求出在兔子跑的同时乌龟跑的路程,进而解决问题.18.(4分)甲仓的存粮是乙仓的2倍,每天从甲仓运出12吨粮食,从乙仓运出5吨粮食,若干天后,甲仓正好运完,而乙仓还剩粮食18吨,甲仓原有粮食216吨,乙仓原有粮食108吨.【分析】设乙仓原来有粮食x吨,因“甲仓的存粮是乙仓的2倍”,则甲仓有粮食2x,又因“每天从甲仓运出12吨粮食”,则天甲仓的粮食正好运完,又因“从乙仓运出5吨粮食,天后乙仓还剩18吨”,由此等量列方程求解.【解答】解:乙仓原来有粮食x吨,x﹣×5=18x﹣x=18x=18x=108,108×2=216(吨),答:甲仓原有粮食216吨,乙仓原有粮食108吨.故答案为:216,108.【点评】此题解答的关键是表示出甲仓正好运完的天数来算乙仓运出的吨数,从而根据乙还剩的吨数列方程.19.(4分)从装有写着1、2、3、4、5、6、7、8、9的9张卡片中,一次取出6张,计算它们的和,最多有19种不同的和.【分析】这9个数是等差数列,所以每次取6张卡片,和最小是1+2+3+4+5+6=21,和最大是4+5+6+7+8+9=39.因此,所有的和在21至39之间,有19种不同的和.【解答】解:和最小是:1+2+3+4+5+6=21和最大是:4+5+6+7+8+9=3939﹣21+1=19(种)答:最多有19种不同的和.故答案为:19.【点评】本题考查了极值问题,关键是确定这6个数的和的取值范围.20.(4分)两根电线一样长,第一根剪去50厘米,第二根剪去180厘米后,剩下部分第一根是第二根长度的3倍.这两根电线原来共长490厘米.【分析】设这两根电线原来长x厘米,根据等量关系:第一根原来的长度﹣50厘米=(第二根原来的长度﹣180厘米)×3,列方程解答即可.【解答】解:设这两根电线原来长x厘米,x﹣50=3×(x﹣180)x﹣50=3x﹣5402x=490x=245,245+245=490(厘米),答:这两根电线原来共长490厘米.故答案为:490.【点评】本题考查了含有两个未知数的应用题,这类题用方程解答比较容易,关键是找准数量间的相等关系,设一个未知数为x,另一个未知数用含x的式子来表示,进而列并解方程即可.21.(4分)五位同学捐款,他们捐的钱有3张1元,4张2元,3张5元和3张10元.这五位同学捐款数各不相同,捐款最多的同学至少捐了14元.【分析】这个题应该这么考虑,要求这五个人捐款最多的同学捐的钱尽量最少,就让五个人捐的钱相差最少(1元),所以五个人捐款的平均数为n元,要求n,n=(3×1+3×5+3×10+4×2)÷5=11.2,所以现在依次列出来,假如捐款最多的人是13,则剩下的必定是12,11,10,9,则总数是55,55<56.因此捐款最多的人是14.依次为10+2+1+1,10+2,10+1,5+5,5+2+2.【解答】解:(3×1+3×5+3×10+4×2)÷5=(3+15+30+8)÷5=11.2(元)9+0+11+12+13=55(元)55<5610+2+1+1=14(元)10+2=12(元)10+1=11(元)5+5=10(元)5+2+2=9(元)答:捐款最多的同学至少捐了14元.故答案为:14.【点评】考查了钱币问题,解答此题的关键是理解题意,知道我国现有的人民币的面值,由此即可解答.22.(4分)一列数,1、2、3、5、8、13…,从第3个开始,每一个数都是前2个数的和,在前2000个数中,有667个偶数.【分析】因为从第三个数开始,每个数都是它前面2个数的和,这个数列是按照“奇数、偶数、奇数”的顺序循环重复排列的,即每过3个数循环一次.先求出2000个数里面有多少组这样的循环,还余几,然后根据组数和余数进行求解.【解答】解:这个数列是按照“奇数、偶数、奇数”的顺序循环重复排列的;每一组循环中有2个奇数和1个偶数;2000÷3=666…2,余数是2,余下的这个数是偶数;所以偶数有:666+1=667(个)答:共有667个偶数.故答案为:667.【点评】本类型的题目先判断出按什么顺序循环重复排列的,把这样的数看成一组,看所要求的个数有几个这样的一组.23.(5分)客车和货车同时从甲乙两站相对开出,客车每小时行54千米,货车每小时行48千米,两车相遇后又以原来的速度继续前进,客车到乙站后立即返回,货车到甲站后也立即返回,两车再次相遇时,客车比货车多行21.6千米.求甲乙两站间的路程是多少千米?【分析】已知两车的速度及两车相遇时客车比货车多行的路程,因此可先据路程差÷速度差=所行时间求出第二次相遇时两车行驶的时间,再由时间×速度和=两车共行路程.由于第二次相遇时两车共行了三个全程,所以两车第二次相遇时所行的总路程除以3即得甲乙两站的距离.【解答】解:两车第二次相遇时间为:21.6÷(54﹣48)=21.6÷6=3.6(小时)甲乙两站相距:(54+48)×3.6÷3=102×3.6÷3,=122.4(千米).答:甲乙两站的路程是122.4千米.【点评】在相遇问题中,两车第二次相遇时共行的路程为三个全程.24.(5分)除以13所得的余数是9.【分析】根据同余性质来解.【解答】解:因为222222=2×111111,=2×111×1001,=2×111×7×11×13,所以222222能被13整除.又因为2000=6×333+2,=00+22,22÷13=1…9,所以要求的余数是9.故答案为:9【点评】灵活运用同余性质.25.(5分)某校202名学生排成两路纵队,以每秒3米的速度去春游,前后相邻两个人之间的距离为0.5米.李老师从队尾骑自行车以每秒5米的速度到队头,然后又返回到队尾,一共要用31.25秒.【分析】先用202除以2,求出每队的人数是202÷2=101人,101人就有100个间隔,再乘0.5米,求出这个队伍的总长度;从队尾赶到对头是追及问题,路程差就是队伍的总长度,用路程差除以速度差,即可求出赶上队头所需要时间;再返回队尾,它们的相对速度就是速度和,路程仍是队伍的长度,再用队伍的长度除以速度和,就是返回队尾所需时间,然后把两部分时间相加即可求解.【解答】解:①这支路队伍长度:(202÷2﹣1)×0.5=100×0.5=50(米)②赶上队头所需要时间:50÷(5﹣3)=50÷2=25(秒)③返回队尾所需时间:50÷(5+3)=50÷8=6.25(秒)④一共用的时间:25+6.25=31.25(秒)答:一共要用31.25秒.故答案为:31.25.【点评】要求一共要多少分钟,必须先求出从队尾赶到队头要多少分钟,再求出从队头到队尾要用多少分钟,把这两个时间相加即可;明确队伍的间隔数=人数﹣1.。
六年级行程问题应用题
行程应用题1、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇,求东西两地的距离是多少千米?2、两辆汽车同时从东、西两站相对开出,第一次在离车站60千米的地方相遇,之后两车继续以原来速度前进,各车到站后立即返回,又在离中点30千米处相遇,两站相距多少千米?3、甲、乙两地相距360千米,客车和货车同时从甲地出发驶向乙地。
货车速度每小时60千米,客车每小时40千米,货车到达乙地后停留0。
5小时,又以原速返回甲地,问从甲地出发后几小时两车相遇?4、A、B两村相距2800米,小明从A村步行出发5分钟后,小军骑车从B村出发,又经过10分钟两人相遇。
已知小军骑车比小明步行每分钟多行130米,小明步行速度是每分钟多少米?5、甲乙两辆汽车同时从东站开往西站。
甲车每小时比乙车多行12千米,甲车行驶四个半小时到达西站后,没有停留,立即从原路返回,在距离西站31。
5千米的地方和乙车相遇,甲车每小时行多少千米?6、甲、乙两车同时从A、B两地相向而行,它们相遇时距A、B两地中心处8千米,已知甲车速度是乙车的1。
2倍,求A、B两地的距离。
7、两人骑自行车沿着900米长的环形跑道行驶,他们从同一地点反向而行,那么经过2分钟后就相遇一次,若他们同向而行,那经过18分钟后快车追上慢车一次,求两人骑自行车的速度?8、兄妹两人同时离家去上学。
哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门时,发现忘带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。
问他们家离学校多远?9、龟兔进行10000米赛跑,兔子的速度是龟的速度的5倍。
当它们从起点一起出发后龟不停地跑,兔子跑到某一地点开始睡觉,兔子醒来时,龟已经领先它5000米,兔子奋起直追,但龟到达终点时,兔子仍落后100米,那么兔子睡觉期间,龟跑了多少米?10、一辆汽车从甲地开往乙地,如果把车速提高20%;可以比原定时间提前一小时到达;如果以原速行驶120千米后,再将速度提高25%则可提前40分钟到达。
数学竞赛试卷(初赛、决赛及答案)
2.下面五个图形中,有一个不是正方体的展开图:那么“不是的”图形的编号是 。
3.将60分成10个质数之和,要求最大的质数尽可能小,那么其中最大的质数是 。
4.34减去一个分数,513一个分数,两次计算结果相等,那么这个相等的结果是 。
5.右面残缺算式中已知三个“4”,那么补全后它的乘积是 。
6.有A 、B 两个整数,A 的各位数字之和为35,B 的各位数字之和为26,两数相加时进位三次,那么A+B 的各位数字之和是 。
7.苹果和梨各有若干只,如果5只苹果和3只梨装一袋,还多4只苹果,梨恰好装完;如果7只苹果和3只梨装一袋,苹果恰好装完,梨还多12只,那么苹果和梨共有______只。
8.甲班51人,乙班49人,某次考试两个班全体同学的平均成绩是81分,乙班的平均成绩要比甲班平均成绩高7分,那么乙班的平均成绩是______分。
9.在大于1000的整数中,找出所有被34除后商与余数相等的数,那么这些数的和是 。
10.高中学生的人数是初中学生的56,高中毕业生的人数是初中毕业生的1217,高、初中毕业生毕业后,高、初中留下的人数都是520人,那么高、初中毕业生共有 人。
11.如图,一个长方形的纸盒内,放着九个正方形的纸片,其中正方形A 和B 的边长分别为4和7,那么长方形(纸盒)的面积是 。
12.甲、乙两地相距100千米,张先骑摩托车从甲出发,1小时后李驾驶汽车从甲出发,两人同时到达乙地。
摩托车开始速度是50千米/d,时,中途减速为40千米/小时。
汽车速度是80千米/小时。
汽车曾在途中停驶10分钟,那么张驾驶的摩托车减速时在他出发后的_________小时。
。
3.下面五个图形中,有一个不是正方体的展开图:那么“不是的”图形的编号是_________。
4.34减去一个分数,513一个分数,两次计算结果相等,那么这个相等的结果是 。
5.规定:③=2×3×4,④=3×4×5,⑤=4×5×6,…,⑩=9×10×11,…如果,那么方框代表的数是________。
公务员考试性价比超值资料 比例法解应用题
比例法:抓住变化部分!建立比例关系通过比例差值。
求出各项比例数值。
从而求出结果!(1)某工人的步行速度为每小时5公里,如果他先步行上班路程的1/10,然后乘上速度为每小时25公里的汽车,最后再行1公里刚好到厂,那么他可以比完全步行上班早二小时到厂。
问他的上班路程有多少公里?--------------------------------------------------------------2个情况的比较主要是中间的一段路程,一个步行,一个乘车速度之比是 25:5=5:1 则所需时间之比是1:5 差4个比例点对应2小时。
每个比例点是0.5小时,那么如果是步行这段路程所需时间是0.5×5=2.5小时后面1公里步行所需时间是1/5=0.2小时,说明后面9/10的路程需要2.7小时,则全程需要2.7/9×10=3小时答案就是3×5=15小时(2)一辆汽车以每小时40千米的速度从甲城开往乙城,返回时它用原速度走了全程的4分之3多5千米,再改用每小时30千米的速度走完余下的路程,因此,返回甲城的时间比前往乙城的时间多用了10分钟,甲、乙两城相距多远?------------------------------------------------------------变化的部分就是返回的时候离甲城还有1/4的总路程少5千米的一段,这段路用40千米的速度比用30千米的速度节省10分钟速度之比4:3 时间之比是反比是 3:4 差1个比例点则假设是40千米的速度则所需时间是3×10=30分钟,则这段1/4少5千米的路程就是40×0.5=20千米,答案是(20+5)×4=100千米(3)一个学生从家到学校,先用每分50米的速度走了2分,如果这样走下去,他会迟到8分;后来他改用每分60米的速度前进,结果早到学校5分。
这个学生家到学校的路程是多少米?----------------------------------------------------------这个题目变化部分是后面采用60米的速度,速度之比是6:5 时间之比是5:6 差1个比例点对应的时间是5+8=13分钟,也就是说如果这段路程还是用50米的速度,那么所需时间是13×6=78分钟。
小学数学思维训练题(1)
小学数学思维训练题1. 在□里填上不同的质数,使等式成立。
□+□=□×□=□-□【分析与解答】如果两个质数的和(或差)是奇数,那么必须是奇数与偶数的和(或差),而偶质数只有2,则填写重复。
所以这个和只能是偶数。
一个因数是 2.可以列出100以内的质数来选择列举。
3+7=2×5=23-13 3+11=2×7=37-233+7=2×5=71-61 3+19=2×11=29-7 ……2.甲乙两种奥运会纪念品的单价相差0.6元,用36元钱买乙种纪念品比买甲种纪念品刚好可以多买2个,则甲的单价是多少元,乙的单价是多少元?【分析与解答】以角做单位,则360=甲的单价×甲的数量=(甲的单价-6)×(甲的数量+2)。
360=1×360=2×180=…=10×36=12×30=15×24=18×20观察知道,甲的单价是36角,即3.6元,乙的单价是3元。
3.一个长方体的玻璃缸,长8分米,宽6分米,高4分米,水深2.8分米,如果投入一块棱长为4分米的正方体铁块,缸里的水溢出多少升?【分析与解答】铁块的体积 4×4×4=64(立方分米)水的体积 8×6×2.8=134.4 (立方分米)玻璃缸的容积 8×6×4=192 (立方分米)注意到铁块的高度与玻璃缸的高度相同,而水的体积与铁块的体积的和比玻璃缸的容积大,则溢出水的体积是 64+134.4-192=6.4 (立方分米)=6.4(升)4.一个棱长10厘米的正方体的玻璃缸,水深3厘米,如果投入一块棱长6厘米的正方体铁块,缸里的水上升了多少厘米?【分析与解答】正方体没有淹没于水中,所以不能用正方体的体积÷底面积.根据水的体积不变,而水的底面积由10×10=100(平方厘米)变成了(10×10-6×6)平方厘米了,由此可以求出水的高度.10×10×3÷(10×10-6×6)=4.6875 (厘米)上升 4.6875-3=1.6875 (厘米)5.一个棱长10厘米的正方体的玻璃缸,水深4厘米,如果投入一块棱长6厘米的正方体铁块,缸里的水上升了多少厘米?【分析与解答】开始好像正方体没有没于水中,如上计算水深是10×10×4÷(10×10-6×6)=6.25 (厘米)大于6厘米说明水已经淹没了铁块,计算上升的高度直接用铁块的体积÷玻璃缸的底面积.6×6×6÷(10×10)=2.16(厘米)另解:当知道铁块没于水中后,由水的体积也可求高度.铁块高6厘米,铁块周围的水是以底面积是(10×10-6×6)平方厘米来计算的,高于铁块的部分的水的底面积是10×10=100平方厘米.〔10×10×4-(10×10-6×6)×6〕÷(10×10)+6-4=2.16(厘米)6.把数字1至9填入算式中,使等式成立。
解析1996小学数学奥林匹克试题决赛
1996小学数学奥林匹克试题决赛(A)卷1.计算:=__________。
2.右面是一个残缺的乘法算式,只知道其中一个数字“8”,请你补全,那么这个算式的乘积是_____。
3.用1、2、3、4、5、6、7七个数组成三个两位数,一个一位数,并且使着四个数的和等于100,我们要求最大的两位数尽可能小,那么其中最大的两位数是__________。
4.1、2、3、4、5、6六个数中,选三个数使它们的和能被3整除,那么不同的选法有__________种。
5.有四袋糖块,其中任意三袋的总和都超过60块,那么这四袋糖块的总和至少有__________块。
6.如图,A、B是两个圆(只有)的圆心,那么两个阴影部分的面积差是_____。
(π=3.14)7.用数字6、7、8各两个,组成一个六位数,使它们能被168整除。
这个六位数是_____。
8.下面九个分数算式中,那一个答数最小?它的答数是________。
,,,,,,,,9.甲、乙两项工程分别由一、二队来完成。
在晴天,一队完成甲工程需要12天,二队完成乙工程需要15天;在雨天,一队的工作效率下降40%,二队的工作效率要下降10%。
结果两队同时完成这两项工程,那么在施工的日子里,雨天有_______天。
10.某商品76件,出售给33位顾客,每位顾客最多买3件。
买一件按原定价,买两件降价10%,买三件降价20%。
最后结算,平均每件恰好按原价的85%出售,那么买三件的顾客有______人。
11.如图,三个一样大小的正方形放在一个长方形的盒内,A和B是两个正方形的重叠部分,C、D、E是空出的部分,每一个部分都是矩形,它们的面积比是A:B:C:D:E=1:2:3:4:5,那么这个长方形的长与宽之比是______。
12.轿车和小巴(小公共汽车)都从A地到B地,小巴速度是轿车的。
小巴要在两地的中点停10分钟,轿车中途不停车。
轿车比小巴在A地晚出发11分钟,早7分钟到达B地,小巴是10点钟出发,那么轿车超过小巴时是10点______分。
五年级奥数行程问题
行程问题(一)例1.甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车在距中点32千米处相遇。
东、西两地相距多少千米?练习1.小玲每分行100米,小平每分行80米,两人同时从学校和少年宫相向而行,并在离中点120米处相遇,学校到少年宫有多少米?练习2.小轿车每小时行60千米,比客车每小时多行5千米,两车同时从A、B两地相向而行,在距中点20千米处相遇,求A、B两地的路程。
例2.快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。
慢车每小时行多少千米?练习3.兄、弟二人同时从学校和家中出发,相向而行。
哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。
弟弟每分钟行多少米?练习4.学校运来一批树苗,五(1)班的40个同学都去参加植树活动,如果每人植3棵,全班同学能植这批树苗的一半还多20棵。
如果这批树苗全部给五(1)班的同学去植,平均每人值多少棵树?例3.甲、乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。
中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。
求东、西两村相距多少千米?练习5.甲、乙二人同时从A地到B地,甲每分钟走250米,乙每分钟走90米。
甲到达B地后立即返回A地,在离B地3.2千米处与乙相遇。
A、B两地间的距离是多少千米?练习6.甲、乙二人上午7时同时从A地去B地,甲每小时比乙快8千米。
上午11时甲到达B 地后立即返回,在距B地24千米处与乙相遇。
求A、B两地相距多少千米?例4.甲、乙两队学生从相距18 千米的两地同时出发,相向而行。
一个同学骑自行车以每小时14千米的速度,在两队之间不停地往返联络。
甲队每小时行5千米,乙队每小时行4千米。
两队相遇时,骑自行车的同学共行多少千米?练习7.两支队伍从相距55千米的两地相向而行。
通讯员骑马以每小时16千米的速度在两支队伍之间不断往返联络。
(NEW)小学数学思维训练题及答案解析
小学数学思维训练“十佳题”(2)1. 在□里填上不同的质数,使等式成立。
□+□=□×□=□-□【分析与解答】如果两个质数的和(或差)是奇数,那么必须是奇数与偶数的和(或差),而偶质数只有2,则填写重复。
所以这个和只能是偶数。
一个因数是2.可以列出100以内的质数来选择列举。
3+7=2×5=23-13 3+11=2×7=37-233+7=2×5=71-61 3+19=2×11=29-7 ……2.甲乙两种奥运会纪念品的单价相差0.6元,用36元钱买乙种纪念品比买甲种纪念品刚好可以多买2个,则甲的单价是多少元,乙的单价是多少元?【分析与解答】以角做单位,则360=甲的单价×甲的数量=(甲的单价-6)×(甲的数量+2)。
360=1×360=2×180=…=10×36=12×30=15×24=18×20观察知道,甲的单价是36角,即3.6元,乙的单价是3元。
3.一个长方体的玻璃缸,长8分米,宽6分米,高4分米,水深2.8分米,如果投入一块棱长为4分米的正方体铁块,缸里的水溢出多少升?【分析与解答】铁块的体积 4×4×4=64(立方分米)水的体积 8×6×2.8=134.4 (立方分米)玻璃缸的容积 8×6×4=192 (立方分米)注意到铁块的高度与玻璃缸的高度相同,而水的体积与铁块的体积的和比玻璃缸的容积大,则溢出水的体积是 64+134.4-192=6.4 (立方分米)=6.4(升)4.一个棱长10厘米的正方体的玻璃缸,水深3厘米,如果投入一块棱长6厘米的正方体铁块,缸里的水上升了多少厘米?【分析与解答】正方体没有淹没于水中,所以不能用正方体的体积÷底面积.根据水的体积不变,而水的底面积由10×10=100(平方厘米)变成了(10×10-6×6)平方厘米了,由此可以求出水的高度.10×10×3÷(10×10-6×6)=4.6875 (厘米)上升 4.6875-3=1.6875 (厘米)5.一个棱长10厘米的正方体的玻璃缸,水深4厘米,如果投入一块棱长6厘米的正方体铁块,缸里的水上升了多少厘米?【分析与解答】开始好像正方体没有没于水中,如上计算水深是10×10×4÷(10×10-6×6)=6.25 (厘米)大于6厘米说明水已经淹没了铁块,计算上升的高度直接用铁块的体积÷玻璃缸的底面积.6×6×6÷(10×10)=2.16(厘米)另解:当知道铁块没于水中后,由水的体积也可求高度.铁块高6厘米,铁块周围的水是以底面积是(10×10-6×6)平方厘米来计算的,高于铁块的部分的水的底面积是10×10=100平方厘米.〔10×10×4-(10×10-6×6)×6〕÷(10×10)+6-4=2.16(厘米)6.把数字1至9填入算式中,使等式成立。
行程问题的应用题及答案
行程问题的应用题及答案1、龟兔进行10000米赛跑,兔子的速度是乌龟的速度的5倍。
当它们从起点一起出发后,乌龟不停地跑,兔子跑到某一地点开始睡觉,兔子醒来时乌龟已经领先它5000米;兔子奋起直追,但乌龟到达终点时,兔子仍落后100米。
那么兔子睡觉期间,乌龟跑了多少米?分析:兔子跑了10000-100=9900米,这段时间里乌龟跑了9900*1/5=1980米,兔子睡觉时乌龟跑了10000-1980=8020米答:兔子睡觉期间乌龟跑了8020米。
2、小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路。
小明上学走两条路所用的时间一样多。
已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的多少倍?分析:解法1:设路程为180,则上坡和下坡均是90。
设走平路的速度是2,则下坡速度是3。
走下坡用时间90/3=30,走平路一共用时间180/2=90,所以走上坡时间是90-30=60 走与上坡同样距离的平路时用时间90/2=45 因为速度与时间成反比,所以上坡速度是下坡速度的45/60=0.75倍。
解法2:因为距离和时间都相同,所以平均速度也相同,又因为上坡和下坡路各一半也相同,设距离是1份,时间是1份,则下坡时间=0.5/1.5=1/3,上坡时间=1-1/3=2/3,上坡速度=(1/2)/(2/3)=3/4=0.75解法3:因为距离和时间都相同,所以:1/2*路程/上坡速度+1/2*路程/1.5=路程/1,得:上坡速度=0.75答:上坡的速度是平路的0.75倍。
3、一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米。
那么甲、乙两地之间的距离是多少千米?分析:解法1,第二小时比第一小时多走6千米,说明逆水走1小时还差6/2=3千米没到乙地。
顺水走1小时比逆水多走8千米,说明逆水走3千米与顺水走8-3=5千米时间相同,这段时间里的路程差是5-3=2千米,等于1小时路程差的1/4,所以顺水速度是每小时5*4=20千米(或者说逆水速度是3*4=12千米)。
小学数学竞赛叁级教练员试卷参考答案
小学数学竞赛叁级教练员试卷参考答案(1—10填空题,每题5分,11—20解答题,每题10分,共150分)1.一个四位数,将其各位上的数字顺序颠倒后得到一个新的四位数,再把这两个四位数相加。
答案只可能是 。
A 、7776B 、7766C 、7666D 、7676解:因为这两个数和一定是11的倍数,所以只可能答案B 是正确的。
2.有一个三位数,它等于去掉它的首位数字之后剩下的两位数的7倍与66的和,则符合条件的所有三位数是 。
解:设这个三位数为abc ,则有667+=bc abc ,从而有667100+-=bc bc a ,即33350+=bc a 。
当a =3时,50×3-33=117,117÷3=39,这时三位数为339;当a =6时,50×6-33=267,267÷3=89,这时三位数为689。
所以,符合条件的所有三位数是339和689。
3.当A 和B 各表示一个数字时,等式AB ×BB ×BBB =142857成立,则A 、B 分别为 。
解:因为三个乘数的个位都是B ,所以只有当B =3时,个位上为7。
经过试算:33×333=10989,142857÷10989=13。
所以,当A =1,B =3时有AB ×BB ×BBB =13×33×333=142857。
4.一个分数的分子与分母的和是80,分子、分母都减去30,新的分数约分后是91,则原来的分数是 。
解:由(80-30×2)÷(9+1)=2,得原分数为:483230293021=+⨯+⨯。
5.对于实数x 、y ,定义一种新的运算“※”:x ※y =c by ax ++,其中a 、b 、c 为常数,等式右边是通常的加法与乘法运算。
已知3※5=15,4※7=24,则1※1的值为 。
解:由已知得1553=++c b a ①2474=++c b a ②①—② 得 92=+b a ③①×7—②×5 得 524715)53520()73521(⨯-⨯=++-++c b a c b a152-=+c a ④③+④ 得 3-=++c b a所以,1※1=3-=++c b a 。
七年级奥数练习题80道
七年级奥数练习题80道【练习一】1.李云靠窗坐在一列时速60千米的火车里,看到一辆有30节车厢的货车迎面驶来,当货车车头经过窗口时,他开始记时,直到最后一节车厢驶过窗口时,所记的时间是18秒。
已知货车车厢长15.8米,车厢间距1.2米,货车车头长10米,问货车行驶的速度是多少?2.一列火车以30m/s的速度在平直轨道上行驶,在相邻的平行轨道上迎面开来一列长200m的货车,其速度是20m/s,坐在窗口的乘客看到货车从他眼前经过的时间是什么时候?3.甲、乙两列火车,甲车的速度是15m/s,乙车的速度是10m/s。
若两车同向行驶时错车时间比相向行驶时错车时间多40s,已知甲车的长度是100米,求乙车的长度。
4.一辆客车以15m/s的速度行驶,突然从后面开来的一辆长300m的货车以20m/s 的速度向前行驶,那么坐在窗口的乘客看到货车从他眼前通过的时间是多少?5.辆客车长150M.以30M/S的速度在平直的轨道上行驶,在相邻的平行轨道上迎面开来一辆长100M的货车,速度是20M/S,客车里靠窗户坐的乘客看到货车从他眼前经过的时间是多少?6.两列客车在并排的平行轨道上同向匀速行驶,两车的速度分别为20M/S,30M/S,两车长分别为150M,100M,求两列车交会时的时间是多少?【练习二】1.妈妈买了2斤苹果,4斤菠萝,花去14元;爸爸买了3斤苹果,2斤菠萝,花去13元;那么1斤苹果,1斤菠萝各多少钱?2.修一段路计划16人20天完成,这16人工作了5天后,增加4人,如果这些人的工作效率相同,问提前几天完成修路任务?3.某饭店要安装空调240台,已知10名工程技术人员8小时能安装空调64台,现饭店要求安装公司在12小时内装完,需要增派同样工作效率的技术人员多少名?4.某工程原计划42人12天(每天按8小时工作)完成,工作7天后因支持其它紧急任务调走了12人,那么剩下的工作还要几天才能完成?若要求按原定日期完工,那么每天得工作多少小时?5.小强家住三层,从一层到三层需要走60秒钟,按此速度,从一层到六层需要多少秒钟?6.加工9600套服装,30人10天完成了3600套,又增加了20人,剩下的还需要几天完成?【练习三】1、学校要挖一条长80米的下水道,第一天挖了全长的1/4,第二天挖了全长的1/2,两天共挖了多少米?还剩下多少米?2、一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少米?3、修筑一条公路,完成了全长的2/3后,离中点16.5千米,这条公路全长多少千米?4、师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21个,这批零件有多少个?5、仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12袋,这时仓库里还剩24袋,两次共取出多少袋?6、甲乙两地相距1152千米,一列客车和一列货车同时从两地对开,货车每小时行72千米,比客车快2/7,两车经过多少小时相遇?7、一件上衣比一条裤子贵160元,其中裤子的价格是上衣的3/5,一条裤子多少元?【练习四】1、甲、乙二人同时从起点出发沿同一方向行走,甲每小时行5千米,乙第一小时行1千米,第二小时行2千米,以后每行1小时都比前1小时多行1千米。
追及问题应用题
追及问题应用题追及问题应用题1.甲、乙两辆汽车同时从东西两地相向开出,甲每小时行56千米,乙每小时行48千米,两车在离两地中点32千米处相遇。
问:东西两地的距离是多少千米?2.李华步行以每小时4千米的速度从学校出发到20.4千米外的冬令营报到。
0.5小时后,营地老师闻讯前往迎接,每小时比李华多走 1.2千米。
又过了1.5小时,张明从学校骑车去营地报到。
结果3人同时在途中某地相遇。
问:骑车人每小时行驶多少千米?3快车和慢车分别从甲、乙两地同时开出,相向而行,经过5小时相遇。
已知慢车从乙地到甲地用12.5小时,慢车到甲地停留0.5小时后返回,快车到乙地停留1小时后返回,那么两车从第一次相遇到第二次相遇需要多少时间?4.某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来校作报告,往返需用1小时。
这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达。
问:汽车速度是劳模步行速度的几倍?5.已知甲的步行的速度是乙的1.4倍。
甲、乙两人分别由A,B两地同时出发。
如果相向而行,0.5小时后相遇;如果他们同向而行,那么甲追上乙需要多少小时?6.猎狗发现在离它10米的前方有一只奔跑着的兔子,马上紧追上去。
兔跑9步的路程狗只需跑5步,但狗跑2步的时间,兔却跑3步。
问狗追上兔时,共跑了多少米路程?7.张、李两人骑车同进从甲地出发,向同一方向行进。
张的速度比李的速度每小时快4千米,张比李早到20分钟通过途中乙地。
当李到达乙地时,张又前进了8千米。
那么甲、乙两地之间的距离是多少千米?8.上午8时8分,小明骑自行车从家里出发;8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他;然后爸爸立刻回家,到家后又立刻回头去追小明,再追上他的时候,离家恰好是8千米。
问这时是几时几分?9.龟兔进行10000米赛跑,兔子的速度是乌龟的速度的5倍。
当它们从起点一起出发后,乌龟不停地跑,兔子跑到某一地点开始睡觉,兔子醒来时乌龟已经领先它5000米;兔子奋起直追,但乌龟到达终点时,兔子仍落后100米。
行程问题---真题
行程问题------真题1、 小张骑自行从A 地出发,21小时后,小李发现小张忘记了带书,立即骑自行车从A 地出发去追小张。
在小李出发的同时,小王骑三轮车也从A 地出发,行走的路线与小李相同。
小李追上小张后立即原速返回,又行了15千米与小王相遇。
已知小张的速度是每小时18千米,小李的速度是小王的2倍,求小李每小时行多少千米?2、 汽车以一定的速度从甲地到乙地,如果汽车每小时比原来多行15千米,那么所用时间只是原来的65;如果汽车每小时比原来少行15千米,那么所用时间要比原来多1.5小时。
甲乙两地相距多少千米?3、 康师傅加工一批零件,加工720个之后,他的工作效率提高了20%,结果提高4天完成任务;如果康师傅一开始就把工作效率提高12.5%,那么也可以提高4天完成任务。
这批零件共有多少个?4、 一支解放军部队乘车赶往某地抗洪抢险,如果行驶1小时后,将车速提高51,就可以比预定时间提前20分钟赶到;如果先按原来的速度行驶72千米,再将车速提高31,就可以比预定时间提前30分钟赶到。
这支部队一共需要行多少千米?5、甲、乙两车分别从A、B两地同时开出,相向而行,经过6小时,甲车行了全程的75%,乙车超过中点16千米。
已知甲车比乙车每小时多行4千米。
求A、B两地相距多少千米?6、某人在公路上行走,往返公共汽车每隔4分钟就有一辆与此人迎面相遇,每隔6分钟就有一辆从背后超过此人。
如果汽车与人均为匀速运动,那么汽车站每隔多少分钟发一班车?7、某人乘船由A地顺流而下至B地,然后又逆流而上至C地,共用了6小时,已知船在静水中的速度为每小时8千米,水流速度为每小时2千米,A、C两地的距离为4千米。
求A、B间的距离。
8、一个人从县城骑车去乡办厂,他从县城骑车出发,用了35分钟完成了一半路程,这时,他加快了速度,每分钟比原来多骑行60米,又骑了20分钟后,他从路旁的路标知道,必须再骑1.8千米才可以到厂,那么县城到厂之间的路程是多少米?9、梅林租用两辆小汽车(速度相同)同时送一名带队老师和7名六年级学生到县城参加数学竞赛,每辆限坐4人(不包括司机),其中一辆小汽车在距离考场15千米的地方出现故障,此时离截止进考场的时刻还有42分钟,这时唯一可以利用的是另一辆小汽车,且这辆的平均速度是60千米/小时,人步行的速度是5千米/小时,(上下车时间忽略不计)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
姓名:签字:
例1、龟兔进行10000米赛跑,兔子的速度是乌龟的速度的5倍。
当它们从起点一起出发后,乌龟不停地跑,兔子跑到某一地点开始睡觉,兔子醒来时乌龟已经领先它5000米;兔子奋起直追,但乌龟到达终点时,兔子仍落后100米。
那么兔子睡觉期间,乌龟跑了多少米?
例2、武汉到十堰是680千米。
一天上午8时,一辆客车从十堰出发去武汉,每小时行55千米,下午2时,遇到由武汉开来的每小时行50千米的一辆货车,请算一算,这辆货车是什么时候开出的?
例3、小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地,每小时步行4千米,两人同时出发,在离两地中点1千米处相遇,问甲乙两地间的距离是()千米。
例4、父子俩走同一段路,父亲每分钟行75米,儿子每分钟行50米,走完这段路父亲要少用10分钟,这段路有多长?
例5、甲、乙两匹马在相距50米的地方同时出发,出发时甲马在前乙马在后.如果甲马每秒跑10米,乙马每秒跑12米,几秒钟两马相距70米? 练1、龟兔赛跑,全程2000米,龟每分钟爬25米,兔每分钟爬320米,兔自以为速度快,在途中睡了一觉,结果龟到达终点时,兔离终点还有400米,兔在途中睡了多少分钟?
练2、甲乙二人同时从学校出发到少年宫,已知学校到少年宫的距离是1200米,甲到少年宫后立即返回学校,在距离少年宫150米处遇到乙,此时他们离开学校已30分钟,请问甲乙每分钟各走多少米?
练3、客车从甲地到乙地,每小时行60千米,货车从乙地到甲地,每小时行80千米,两车同时出发,在离两地中点30千米处相遇,问甲乙两地间的距离是()千米。
练4、甲乙两车同时从A地去B地,甲车每小时行40千米,乙车每小时行35千米,途中甲车停车2小时,结果两车同时到达B地,问两地相距多少千米?
练5、甲、乙两匹马在相距70米的地方同时出发,出发时甲马在前乙马在后.如果甲马每秒跑8米,乙马每秒跑14米,多少秒后乙马超过甲马50米?
四年级竞赛班1025第6周追及补充英才内部资料
四年级竞赛班1025第6周拓展提高。