高一数学函数的零点

合集下载

函数的应用(知识梳理)-高一数学单元复习(人教A版必修1)

函数的应用(知识梳理)-高一数学单元复习(人教A版必修1)

专题02函数的应用(知识梳理)第一节 函数与方程1.函数的零点 (1)函数零点的定义对于函数y =f (x ),我们把使f (x )=0的实数x 叫做函数y =f (x )的零点. (2)几个等价关系方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点. (3)函数零点的判定(零点存在性定理)如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.2.二次函数y =ax 2+bx +c (a >0)的图象与零点的关系Δ>0Δ=0Δ<0图象与x 轴的交点 (x 1,0),(x 2,0)(x 1,0) 无交点 零点个数 21[小题体验]1.函数f (x )=2x +3x 的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)答案:B2.(教材习题改编)函数f (x )=ln x +2x -6的零点个数是______. 答案:13.函数f (x )=kx +1在[1,2]上有零点,则k 的取值范围是________. 答案:⎣⎡⎦⎤-1,-121.函数f (x )的零点是一个实数,是方程f (x )=0的根,也是函数y =f (x )的图象与x 轴交点的横坐标.2.函数零点存在性定理是零点存在的一个充分条件,而不是必要条件;判断零点个数还要根据函数的单调性、对称性或结合函数图象.[小题纠偏]1.(2018·诸暨模拟)函数f(x)按照下述方法定义:当x≤2时,f(x)=-x2+2x;当x>2时,f(x)=12(x-2)2,则方程f(x)=12的所有实数根之和是()A.2 B.3 C.5 D.8解析:选C画出函数f(x)的图象,如图所示:结合图象x<2时,两根之和是2,x>2时,由12(x-2)2=12,解得x=3,故方程f(x)=12的所有实数根之和是5,故选C.2.给出下列命题:①函数f(x)=x2-1的零点是(-1,0)和(1,0);②函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则一定有f(a)·f(b)<0;③二次函数y=ax2+bx+c(a≠0)在b2-4ac<0时没有零点;④若函数f(x)在(a,b)上单调且f(a)·f(b)<0,则函数f(x)在[a,b]上有且只有一个零点.其中正确的是________(填序号).答案:③④考点一函数零点所在区间的判定基础送分型考点——自主练透[题组练透]1.已知实数a>1,0<b<1,则函数f(x)=a x+x-b的零点所在的区间是()A.(-2,-1)B.(-1,0)C.(0,1) D.(1,2)解析:选B∵a>1,0<b<1,f(x)=a x+x-b,∴f(-1)=1a-1-b<0,f(0)=1-b>0,由零点存在性定理可知f(x)在区间(-1,0)上存在零点.2.设f(x)=ln x+x-2,则函数f(x)的零点所在的区间为()A.(0,1) B.(1,2)C.(2,3) D.(3,4)解析:选B函数f(x)的零点所在的区间转化为函数g(x)=ln x,h(x)=-x +2图象交点的横坐标所在的范围.作出两函数大致图象如图所示,可知f(x)的零点所在的区间为(1,2).故选B.3.函数f(x)=x2-3x-18在区间[1,8]上______(填“存在”或“不存在”)零点.解析:法一:∵f(1)=12-3×1-18=-20<0,f(8)=82-3×8-18=22>0,∴f(1)·f(8)<0,又f(x)=x2-3x-18在区间[1,8]的图象是连续的,故f(x)=x2-3x-18在区间[1,8]上存在零点.法二:令f(x)=0,得x2-3x-18=0,∴(x-6)(x+3)=0.∵x=6∈[1,8],x=-3∉[1,8],∴f(x)=x2-3x-18在区间[1,8]上存在零点.答案:存在[谨记通法]确定函数f(x)的零点所在区间的2种常用方法(1)定义法:使用零点存在性定理,函数y=f(x)必须在区间[a,b]上是连续的,当f(a)·f(b)<0时,函数在区间(a,b)内至少有一个零点,如“题组练透”第1题.(2)图象法:若一个函数(或方程)由两个初等函数的和(或差)构成,则可考虑用图象法求解,如f(x)=g(x)-h(x),作出y=g(x)和y=h(x)的图象,其交点的横坐标即为函数f(x)的零点,如“题组练透”第2题.考点二判断函数零点个数重点保分型考点——师生共研[典例引领]1.函数f(x)=|x-2|-ln x在定义域内的零点的个数为()A.0B.1C.2 D.3解析:选C 由题意可知f (x )的定义域为(0,+∞).在同一直角坐标系中画出函数y =|x -2|(x >0),y =ln x (x >0)的图象,如图所示:由图可知函数f (x )在定义域内的零点个数为2.2.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数y =f (f (x ))+1的零点的个数是( )A .4B .3C .2D .1解析:选A 由f (f (x ))+1=0得f (f (x ))=-1, 由f (-2)=f ⎝⎛⎭⎫12=-1 得f (x )=-2或f (x )=12.若f (x )=-2,则x =-3或x =14;若f (x )=12,则x =-12或x = 2.综上可得函数y =f (f (x ))+1的零点的个数是4,故选A.[由题悟法]判断函数零点个数的3种方法(1)方程法:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:利用定理不仅要求函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点或零点值所具有的性质.(3)数形结合法:转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.[即时应用]1.已知函数f (x )=⎩⎪⎨⎪⎧3x,x ≤1,log 13x ,x >1,则函数y =f (x )+x -4的零点个数为( )A .1B .2C .3D .4解析:选B 函数y =f (x )+x -4的零点,即函数y =-x +4与y =f (x )的交点的横坐标.如图所示,函数y =-x +4与y =f (x )的图象有两个交点,故函数y =f (x )+x -4的零点有2个.故选B.2.(2018·杭州模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x ,-1<x ≤1,f x -2+1,1<x ≤3,则函数g (x )=f (f (x ))-2在区间(-1,3]上的零点个数是( )A .1B .2C .3D .4解析:选C ∵函数f (x )=⎩⎪⎨⎪⎧2x ,-1<x ≤1,f x -2+1,1<x ≤3,∴当-1<x ≤1时,12<f (x )≤2,当1<x ≤3时,-1<x -2≤1,f (x )=f (x -2)+1=2x -2+1∈⎝⎛⎦⎤32,3; 设h (x )=f (f (x )),①当-1<x ≤0时,h (x )=22x ,2<h (x )≤2, ∴g (x )=h (x )-2有一个零点x =0; ②当0<x ≤1时,h (x )=22x -2+1,32<h (x )≤2,∴g (x )=h (x )-2有一个零点x =1; ③当1<x ≤3时,h (x )=22x -2+1-2+1, 22+1<h (x )≤3,g (x )有一个零点; 综上,函数g (x )在区间(-1,3]上有3个零点,故选C. 考点三 函数零点的应用重点保分型考点——师生共研[典例引领]已知函数f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=a |x -2|-a ,其中a >0,且为常数.若函数y =f (f (x ))有10个零点,则a 的取值范围是________.解析:当x ≥0时,令f (x )=0,得|x -2|=1, 即x =1或x =3.因为f (x )是定义在R 上的偶函数, 所以f (x )的零点为x =±1或x =±3. 令f (f (x ))=0, 则f (x )=±1或f (x )=±3.因为函数y =f (f (x ))有10个零点,所以函数y =f (x )的图象与直线y =±1和y =±3共有10个交点.由图可知1<a <3.答案:(1,3)[由题悟法]已知函数有零点(方程有根)求参数取值范围常用3方法 直接法 直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围 分离参数法 先将参数分离,转化成求函数值域问题加以解决数形结合法 先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解[即时应用]1.若函数f (x )=4x -2x -a ,x ∈[-1,1]有零点,则实数a 的取值范围是________. 解析:∵函数f (x )=4x -2x -a ,x ∈[-1,1]有零点, ∴方程4x -2x -a =0在[-1,1]上有解, 即方程a =4x -2x 在[-1,1]上有解. 方程a =4x -2x 可变形为a =⎝⎛⎭⎫2x -122-14, ∵x ∈[-1,1],∴2x ∈⎣⎡⎦⎤12,2, ∴⎝⎛⎭⎫2x -122-14∈⎣⎡⎦⎤-14,2. ∴实数a 的取值范围是⎣⎡⎦⎤-14,2. 答案:⎣⎡⎦⎤-14,2 2.(2018·浙江名校高考研究联盟联考)方程x 2+3x -2=0的解可视为函数y =x +3的图象与函数y =2x的图象交点的横坐标.若方程x 4+ax -4=0的各个实根x 1,x 2,…,x k (k ≤4)所对应的点⎝⎛⎭⎫x i ,4x i (i =1,2,…,k )均在直线y =x 的同侧,则实数a 的取值范围是________. 解析:由题意知,方程x 4+ax -4=0的实根是曲线y =x 3+a 与曲线y =4x 的交点的横坐标,而曲线y =x 3+a 是由函数y =x 3的图象向上或向下平移|a |个单位长度得到的.若方程x 4+ax -4=0的各个实数根x 1,x 2,…,x k (k ≤4)所对应的点⎝⎛⎭⎫x i ,4x i(i =1,2,…,k )均在直线y =x 的同侧,如图,结合图象可得⎩⎪⎨⎪⎧ a >0,-23+a >-2或⎩⎪⎨⎪⎧a <0,23+a <2,解得a <-6或a >6,所以实数a 的取值范围是(-∞,-6)∪(6,+∞).答案:(-∞,-6)∪(6,+∞)第二节 函数模型及其应用1.几类函数模型函数模型 函数解析式一次函数模型 f (x )=ax +b (a ,b 为常数,a ≠0) 反比例函 数模型 f (x )=kx +b (k ,b 为常数且k ≠0) 二次函数模型f (x )=ax 2+bx +c (a ,b ,c 为常数,a ≠0) 指数函数模型f (x )=ba x +c(a ,b ,c 为常数,b ≠0,a >0且a ≠1) 对数函数模型 f (x )=b log a x +c(a ,b ,c 为常数,b ≠0,a >0且a ≠1) 幂函数模型 f (x )=ax n +b (a ,b 为常数,a ≠0)函数 性质 y =a x (a >1) y =log a x (a >1) y =x n (n >0) 在(0,+∞) 上的增减性 单调递增 单调递增 单调递增 增长速度 越来越快 越来越慢 相对平稳 图象的变化随x 的增大 逐渐表现为 随x 的增大 逐渐表现为随n 值变化 而各有不同与y轴平行与x轴平行值的比较存在一个x0,当x>x0时,有log a x<x n<a x3.解函数应用问题的4步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择函数模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的函数模型;(3)解模:求解函数模型,得出数学结论;(4)还原:将数学结论还原为实际意义的问题.以上过程用框图表示如下:[小题体验]1.(教材习题改编)一根蜡烛长20 cm,点燃后每小时燃烧5 cm,燃烧时剩下的高度h(cm)与燃烧时间t(h)的函数关系用图象表示为图中的()答案:B2.已知某种动物繁殖量y(只)与时间x(年)的关系为y=a log3(x+1),设这种动物第2年有100只,到第8年它们发展到________只.答案:2001.函数模型应用不当,是常见的解题错误.所以要正确理解题意,选择适当的函数模型.2.要特别关注实际问题的自变量的取值范围,合理确定函数的定义域.3.注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性.[小题纠偏]1.甲、乙两人在一次赛跑中,从同一地点出发,路程S与时间t的函数关系如图所示,则下列说法正确的是()A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲比乙先到达终点答案:D2.据调查,某自行车存车处在某星期日的存车量为4 000辆次,其中变速车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元.若普通车存车量为x辆次,存车费总收入为y元,则y关于x的函数关系式是__________.答案:y=-0.1x+1 200(0≤x≤4 000)考点一二次函数模型重点保分型考点——师生共研[典例引领]某跳水运动员在一次跳水训练时的跳水曲线为如图所示抛物线的一段.已知跳水板AB长为2 m,跳水板距水面CD的高BC为3 m.为安全和空中姿态优美,训练时跳水曲线应在离起跳点A处水平距h m(h≥1)时达到距水面最大高度4 m,规定:以CD为横轴,BC为纵轴建立直角坐标系.(1)当h=1时,求跳水曲线所在的抛物线方程;(2)若跳水运动员在区域EF内入水时才能达到比较好的训练效果,求此时h的取值范围.解:由题意,最高点为(2+h,4),(h≥1).设抛物线方程为y=a[x-(2+h)]2+4.(1)当h=1时,最高点为(3,4),方程为y=a(x-3)2+4.(*)将点A(2,3)代入(*)式得a=-1.即所求抛物线的方程为y=-x2+6x-5.(2)将点A(2,3)代入y=a[x-(2+h)]2+4,得ah2=-1.由题意,方程a[x-(2+h)]2+4=0在区间[5,6]内有一解.令f (x )=a [x -(2+h )]2+4=-1h2[x -(2+h )]2+4,则⎩⎨⎧f 5=-1h 23-h 2+4≥0,f6=-1h24-h2+4≤0.解得1≤h ≤43.故达到比较好的训练效果时的h 的取值范围是⎣⎡⎦⎤1,43. [由题悟法]二次函数模型问题的3个注意点(1)二次函数的最值一般利用配方法与函数的单调性解决,但一定要密切注意函数的定义域,否则极易出错;(2)确定一次函数模型时,一般是借助两个点来确定,常用待定系数法; (3)解决函数应用问题时,最后要还原到实际问题.[即时应用]A ,B 两城相距100 km ,在两城之间距A 城x (km)处建一核电站给A ,B 两城供电,为保证城市安全,核电站距城市距离不得小于10 km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A 城供电量为每月20亿度,B 城供电量为每月10亿度.(1)求x 的取值范围;(2)把月供电总费用y 表示成x 的函数;(3)核电站建在距A 城多远,才能使供电总费用y 最少? 解:(1)由题意知x 的取值范围为[10,90]. (2)y =5x 2+52(100-x )2(10≤x ≤90).(3)因为y =5x 2+52(100-x )2=152x 2-500x +25 000=152⎝⎛⎭⎫x -10032+50 0003, 所以当x =1003时,y min =50 0003. 故核电站建在距A 城1003 km 处,能使供电总费用y 最少.考点二 函数y =x +ax模型的应用重点保分型考点——师生共研[典例引领]为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系C (x )=k3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元,设f (x )为隔热层建造费用与20年的能源消耗费用之和.(1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小,并求最小值.解:(1)由已知条件得C (0)=8,则k =40,因此f (x )=6x +20C (x )=6x +8003x +5(0≤x ≤10). (2)f (x )=6x +10+8003x +5-10≥2 6x +10·f(8003x +5)-10=70(万元), 当且仅当6x +10=8003x +5, 即x =5时等号成立.所以当隔热层厚度为5 cm 时,总费用f (x )达到最小值,最小值为70万元.[由题悟法]应用函数y =x +a x模型的关键点 (1)明确对勾函数是正比例函数f (x )=ax 与反比例函数f (x )=b x叠加而成的. (2)解决实际问题时一般可以直接建立f (x )=ax +b x的模型,有时可以将所列函数关系式转化为f (x )=ax +b x的形式. (3)利用模型f (x )=ax +b x求解最值时,要注意自变量的取值范围,及取得最值时等号成立的条件. [即时应用]“水资源与永恒发展”是2015年联合国世界水资源日主题,近年来,某企业每年需要向自来水厂所缴纳水费约4万元,为了缓解供水压力,决定安装一个可使用4年的自动污水净化设备,安装这种净水设备的成本费(单位:万元)与管线、主体装置的占地面积(单位:平方米)成正比,比例系数约为0.2.为了保证正常用水,安装后采用净水装置净水和自来水厂供水互补的用水模式.假设在此模式下,安装后该企业每年向自来水厂缴纳的水费C (单位:万元)与安装的这种净水设备的占地面积x (单位:平方米)之间的函数关系是C (x )=k 50x +250(x ≥0,k 为常数).记y 为该企业安装这种净水设备的费用与该企业4年共将消耗的水费之和.(1)试解释C (0)的实际意义,并建立y 关于x 的函数关系式并化简;(2)当x 为多少平方米时,y 取得最小值,最小值是多少万元?解:(1)C (0)表示不安装设备时每年缴纳的水费为4万元,∵C (0)=k 250=4, ∴k =1 000,∴y=0.2x+1 00050x+250×4=0.2x+80x+5(x≥0).(2)y=0.2(x+5)+80x+5-1≥20.2×80-1=7,当x+5=20,即x=15时,y min=7,∴当x为15平方米时,y取得最小值7万元.考点三指数函数与对数函数模型重点保分型考点——师生共研[典例引领](2016·四川高考)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是()(参考数据:lg 1.12≈0.05,lg 1.3≈0.11, lg 2≈0.30)A.2018年B.2019年C.2020年D.2021年解析:选B法一:设2015年后的第n年,该公司全年投入的研发资金开始超过200万元,由130(1+12%)n>200,得 1.12n>2013,两边取常用对数,得n>lg 2-lg 1.3lg 1.12≈0.30-0.110.05=195,∴n≥4,∴从2019年开始,该公司全年投入的研发资金开始超过200万元.法二:根据题意,知每年投入的研发资金增长的百分率相同,所以从2015年起,每年投入的研发资金组成一个等比数列{a n},其中,首项a1=130,公比q=1+12%=1.12,所以a n=130×1.12n-1.由130×1.12n-1>200,两边同时取常用对数,得n-1>lg 2-lg 1.3lg 1.12,又lg 2-lg 1.3lg 1.12≈0.3-0.110.05=3.8,则n>4.8,即a5开始超过200,所以2019年投入的研发资金开始超过200万元,故选B.[由题悟法]指数函数与对数函数模型的应用技巧(1)与指数函数、对数函数两类函数模型有关的实际问题,在求解时,要先学会合理选择模型,在两类模型中,指数函数模型是增长速度越来越快(底数大于1)的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型.(2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函数解析式,再借助函数的图象求解最值问题.[即时应用]某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.(1)写出第一次服药后y 与t 之间的函数关系式y =f (t );(2)据进一步测定,每毫升血液中含药量不少于0.25微克时治疗疾病有效,求服药一次后治疗疾病有效的时间.解:(1)由题图,设y =⎩⎪⎨⎪⎧ kt ,0≤t ≤1,⎝⎛⎭⎫12t -a ,t >1, 当t =1时,由y =4得k =4,由⎝⎛⎭⎫121-a =4得a =3.所以y =⎩⎪⎨⎪⎧4t ,0≤t ≤1,⎝⎛⎭⎫12t -3,t >1. (2)由y ≥0.25得⎩⎪⎨⎪⎧ 0≤t ≤1,4t ≥0.25或⎩⎪⎨⎪⎧ t >1,⎝⎛⎭⎫12t -3≥0.25,解得116≤t ≤5. 因此服药一次后治疗疾病有效的时间是5-116=7916(小时).。

高一数学方程的根和函数的零点

高一数学方程的根和函数的零点

例2.求函数f ( x ) ln x 2 x 6的零点个数, 并指出 零点所在的大致区间.
练习:求下列函数的零点个数, 并指出零点所在 的大致区间. (1) f ( x ) 2 x ln( x 2) 3; ( 2) f ( x ) 4 4 x e
x 1
;
例3.如何由图象确定方程 ln x 2 x 6 0的根的个数 和根所在大致区间.
3.1函数与方程
3.1.1方程的根与函数的零点
函数y f ( x )的零点就是方程f ( x ) 0的实数根
例如:y x 2 1的零点就是1和 1
也就是函数y f ( x )的图象与x轴的交点的横坐标
zx xk
y
x1 O
x2 x
函数y f ( x )的图象与x轴有交点 函数y f ( x )有零点 方程y f ( x )有实数根
例1.求下列函数的零点: (1) y x 2 3 x 2; ( 2) y x 3 x; ( 3) y e x 1;
(4) y ln x 6; (5) y ln x 2 x 6
问题:一般地,如何判断函数是否存在零点? 阅读P 87探究至P 88例1前
零点存在定理: 如果函数y f ( x )在区间[a , b]上的图象是连续不断 的一条曲线, 并且有f (a ) f (b ) 0, 那么函数y f ( x ) 在区间(a , b)内有零点,即存在c (a , b ), 使得f (c ) 0, 这个c也就是方程f ( og 2 x 2 x 1的零点必落在区间( )
A.( 1,0) B.(0,1) C .(1,2) D.(1, e ) zx xk
zx xk

高一 数学 函数的零点与二分法

高一 数学 函数的零点与二分法
注:
1.两个条件缺一不可 2.有零点表示至少有一个,可以有多个 3.反之,不成立 若函数在区间( a,b)内有零点,是否一定能得出 4. 单调,唯一
f (a) f (b) 0
若改为 f (a) f (b) 0 ,是否能得出(a,b)内一定没有零点?
再加上什么限制条件,区间(a,b)内就有且仅有一个零点?
无实数解
f ( x) x2 2x 3
函数的图像
图像与x轴的交点
思考探究一
探索一元二次方程的根与二次函数图象之间的关系
方程 方程的实数根 函数
x2 2 x 3 0
x1 1, x2 3
f ( x) x2 2x 3
y
2
x2 2 x 1 0
x1 x2 1
用什么样的数值去试探才能段 :
主持人
说:猜一猜这架家用型数码相机的价格. 观众甲:2000! 李咏:高了! 观众乙:1000! 李咏:低了! 观众丙:1500! 李咏:还是低了!· · · · · · · 由此判断价格应该在1500~2000之间,如果再猜呢?
思考探究二
所有的函数都存在零点吗? 什么条件下才能确定零点的存在呢? 已知函数在[a,b]上有定义,且满
足 f (a) f (b) 0 是否一定在(a,b)内存在零点?
y y
a o
b
x
oa
b
x
零点性质

如果函数 y f ( x) 在定义区间[a,b]上的图像是一条连 续不断的曲线,且有 f (a) f (b) 0 ,那么在区间(a,b) 内一定存在一个实数c,使f(c)=0,也就是在(a,b)内, y 有零点 f ( x) 函数

数学高中必修知识点必备

数学高中必修知识点必备

数学高中必修知识点必备人教版数学必修一知识点1、函数零点的定义(1)对于函数)(xfy,我们把方程0)(xf的实数根叫做函数)(xfy的零点。

(2)方程0)(xf有实根Û函数()yfx的图像与x轴有交点Û函数()yfx有零点。

因此判断一个函数是否有零点,有几个零点,就是判断方程0)(xf是否有实数根,有几个实数根。

函数零点的求法:解方程0)(xf,所得实数根就是()fx的零点(3)变号零点与不变号零点①若函数()fx在零点0x左右两侧的函数值异号,则称该零点为函数()fx的变号零点。

②若函数()fx在零点0x左右两侧的函数值同号,则称该零点为函数()fx的不变号零点。

③若函数()fx在区间,ab上的图像是一条连续的曲线,则0)()(2、函数零点的判定(1)零点存在性定理:如果函数)(xfy在区间],[ba上的图象是连续不断的曲线,并且有()()0fafb,那么,函数)(xfy在区间,ab内有零点,即存在),(0bax,使得0)(0xf,这个0x也就是方程0)(xf的根。

(2)函数)(xfy零点个数(或方程0)(xf实数根的个数)确定方法①代数法:函数)(xfy的零点Û0)(xf的根;②(几何法)对于不能用求根公式的方程,可以将它与函数)(xfy的图象联系起来,并利用函数的性质找出零点。

(3)零点个数确定0)(xfy有2个零点Û0)(xf有两个不等实根;0)(xfy有1个零点Û0)(xf有两个相等实根;0)(xfy无零点Û0)(xf无实根;对于二次函数在区间,ab上的零点个数,要结合图像进行确定.3、二分法(1)二分法的定义:对于在区间[,]ab上连续不断且()()0fafb的函数()yfx,通过不断地把函数()yfx的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法;(2)用二分法求方程的近似解的步骤:①确定区间[,]ab,验证()()0fafb,给定精确度e;②求区间(,)ab的中点c;③计算()fc;(ⅰ)若()0fc,则c就是函数的零点;(ⅱ)若()()0fafc,则令bc(此时零点0(,)xac);(ⅲ)若()()0fcfb,则令ac(此时零点0(,)xcb);④判断是否达到精确度e,即ab,则得到零点近似值为a(或b);否则重复②至④步.高一数学下册必修知识点整理一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。

函数的零点与方程的解课件高一上学期数学人必修第一册

函数的零点与方程的解课件高一上学期数学人必修第一册

对未来学习的展望
深入学习函数和方程的概念,理解其本质和联系 掌握求解函数零点和方程解的方法和技巧,提高解题能力 培养逻辑思维能力和抽象思维能力,为后续学习打下坚实基础 激发学习兴趣,培养良好的学习习惯和态度,为未来的数学学习做好准备
THANK YOU
汇报人:
步骤:找出两个因式,使它们的乘积等于一元二次方程
例子:求解方程x^2-4x+4=0 注意事项:因式分解法适用于二次项系数为1的情况,如果二次项系数不为 1,需要先提取公因式
04
函数零点与方程解的关系
函数零点与方程解的等价关系
函数零点:函数值为0的点 方程解:满足方程的未知数的值 等价关系:函数零点与方程解之间存在一一对应关系 证明方法:利用函数图像和方程的解进行证明
一元二次方程的 判别式:b² - 4ac
一元二次方程的 根:x1, x2
配方法求解一元二次方程
配方法的基本思 想:将一元二次 方程转化为二次 函数,通过配方 法求解
配方法的步骤: 首先将一元二次 方程转化为二次 函数,然后利用 二次函数的性质 求解
配方法的应用: 求解一元二次方 程,如求解 x^2+2x+1=0
通过函数图像求方程的解
介绍函数图像的概念和作用
举例说明如何通过函数图像求解 方程
添加标题
添加标题
添加标题
添加标题
讲解如何通过函数图像找到函数 的零点
总结通过函数图像求方程解的方 法和步骤
通过方程解求函数的零点
函数零点的定义:函数在某 一点的值等于0
关系:方程的解就是函数的 零点
方程解的定义:方程的解是 指满足方程的未知数的值
函数的零点与方程的解课件高 一上学期数学人必修第一册

高一数学新人教A版必修1课件:第3章函数的应用3.1.1方程的根与函数的零点

高一数学新人教A版必修1课件:第3章函数的应用3.1.1方程的根与函数的零点

阅读教材 P86~P87“探究”以上部分,完成下列问题. 1.二次函数 y=ax2+bx+c(a>0)的图象与根的关系
Δ>0
Δ=0
二次函数y=ax2 +bx+c(a>0)的 图象
与x轴的交点
(x1,0),(x2,0)
(x1,0)
Δ<0 无交点
2.函数的零点
对于函数 y=f(x),把使 f(x)=0的实数 x 叫做函数 y=f(x)的零点.
法二 由x2-1x=0,得x2=1x. 令h(x)=x2(x≠0),g(x)=1x. 在同一坐标系中分别画出h(x)和g(x)的图象,如图所示.可知两函数图象只有 一个交点,故函数f(x)=x2-1x只有一个零点.
判断函数存在零点的 3 种方法 1.方程法:若方程 f(x)=0 的解可求或能判断解的个数,可通过方程的解来判
函数零点个数的判断
判断下列函数零点的个数. (1)f(x)=x2-7x+12;(2)f(x)=x2-1x. 【精彩点拨】 (1)中f(x)为二次函数,解答本题可判断对应的一元二次方程 的根的个数;(2)中函数零点可用解方程法或转化为两个熟知的基本初等函数y= x2与y=1x的图象交点的个数.
【自主解答】 (1)由f(x)=0,即x2-7x+12=0,得Δ=49-4×12=1>0, ∴方程x2-7x+12=0有两个不相等的实数根3,4.∴函数f(x)有两个零点. (2)法一 令f(x)=0,即x2-1x=0. ∵x≠0,∴x3-1=0.∴(x-1)(x2+x+1)=0. ∴x=1或x2+x+1=0. ∵方程x2+x+1=0的根的判别式Δ=12-4=-3<0, ∴方程x2+x+1=0无实数根. ∴函数f(x)只有一个零点.
【答案】 B

高一数学人必修教学课件函数的零点

高一数学人必修教学课件函数的零点

复合函数中内层外层关系剖析
复合函数构成
01
复合函数是由内层函数和外层函数复合而成,内层函数的值作
为外层函数的自变量。
内层函数对零点影响
02
内层函数的值域决定了外层函数的定义域,内层函数的零点也
会影响到复合函数的零点。
外层函数对零点影响
03
外层函数的性质(如单调性、周期性等)会对复合函数的零点
产生影响。
04 复杂情境下函数零点问题探讨
含参数方程中参数对零点影响分析
参数变化引起函数图像变化
当参数变化时,函数的图像会随之变化,可能导致零点的位置、 数量等发生变化。
参数对函数单调性影响
参数的变化可能会影响函数的单调性,从而改变函数的零点分布。
参数对方程根的影响
含参数方程中,参数的变化可能会导致方程根的变化,进而影响函 数的零点。
分式函数和根式函数零点分析
01
分式函数零点求解
通过令分子为零,解出 $x$ 的值,同时要注意分母不能 为零的条件。
02
根式函数零点求解
将根式方程转化为整式方程进行求解,注意定义域的限 制。
03
复合函数的零点
通过逐步分析复合函数的组成部分,找出使整体函数值 为零的 $x$ 值。
三角函数和指数函数等特殊类型处理
解题技巧归纳提炼
观察法
通过观察函数表达式或 图像,直接找出零点或 判断零点所在区间。
代数法
将函数表达式化简或变 形,以便于求解方程得 到零点。
图像法
利用函数图像判断零点 的个数及所在区间,特 别适用于高次多项式函 数。
数值计算法
借助计算器或计算机程 序,采用逼近法求解方 程的近似根。
拓展延伸:高阶导数在寻找多重根中应用

高一数学必修1第三章知识点

高一数学必修1第三章知识点

高一数学必修1第三章知识点第三章函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数yf(x)(xD),把使f(x)0成立的实数x叫做函数yf(x)(xD)的零点。

2、函数零点的意义:函数yf(x)的零点就是方程f(x)0实数根,亦即函数yf(x)的图象与x轴交点的横坐标。

即:方程f(x)0有实数根函数yf(x)的图象与x轴有交点函数yf(x)有零点.3、函数零点的求法:1(代数法)求方程f(x)0的实数根;○2(几何法)对于不能用求根公式的方程,能够将它与函数yf(x)的图象联系起来,○并利用函数的性质找出零点.4、基本初等函数的零点:①正比例函数ykx(k0)仅有一个零点。

k(k0)没有零点。

x③一次函数ykxb(k0)仅有一个零点。

②反比例函数y④二次函数yax2bxc(a0).(1)△>0,方程ax2bxc0(a0)有两不等实根,二次函数的图象与x轴有两个交点,二次函数有两个零点.(2)△=0,方程ax2bxc0(a0)有两相等实根,二次函数的图象与x轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△<0,方程ax2bxc0(a0)无实根,二次函数的图象与x轴无交点,二次函数无零点.⑤指数函数ya(a0,且a1)没有零点。

⑥对数函数ylogax(a0,且a1)仅有一个零点1.⑦幂函数yx,当n0时,仅有一个零点0,当n0时,没有零点。

5、非基本初等函数(不可直接求出零点的较复杂的函数),函数先把fx转化成,这另fx0,再把复杂的函数拆分成两个我们常见的函数y1,y2(基本初等函数)个函数图像的交点个数就是函数fx零点的个数。

6、选择题判断区间a,b上是否含有零点,只需满足fafb0。

7、确定零点在某区间a,b个数是的条件是:①fx在区间上连续,且fafb0②在区间a,b上单调。

8、函数零点的性质:从“数”的角度看:即是使f(x)0的实数;从“形”的角度看:即是函数f(x)的图象与x轴交点的横坐标;x若函数f(x)的图象在xx0处与x轴相切,则零点x0通常称为不变号零点;若函数f(x)的图象在xx0处与x轴相交,则零点x0通常称为变号零点.9、二分法的定义对于在区间[a,b]上连续持续,且满足f(a)f(b)0的函数yf(x),通过持续地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.10、给定精确度ε,用二分法求函数f(x)零点近似值的步骤:(1)确定区间[a,b],验证f(a)f(b)0,给定精度;(2)求区间(a,b)的中点x1;(3)计算f(x1):①若f(x1)=0,则x1就是函数的零点;②若f(a)f(x1)14、根据散点图设想比较接近的可能的函数模型:一次函数模型:f(x)kxb(k0);二次函数模型:g(x)ax2bxc(a0);幂函数模型:h(x)axb(a0);指数函数模型:l(x)abxc(a0,b>0,b1)利用待定系数法求出各解析式,并对各模型实行分析评价,选出合适的函数模型12扩展阅读:高一数学必修1各章知识点总结金太阳新课标资源网高一数学必修1各章知识点总结第一章集合与函数概念一、集合相关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合 3.集合的表示:{}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。

高一数学必修1第二章方程的根与函数零点

高一数学必修1第二章方程的根与函数零点

(2)log am b n=nm log a b;(3)log a b·log b a=1;(4)log a b·log b c·log c d=log a d.7.对数函数的概念一般地,把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).8.对数函数的图象与性质a>10<a<1图象性质定义域(0,+∞)值域R过定点过定点(1,0),即x=1时,y=0函数值的变化当0<x<1时,y<0当x>1时,y>0当0<x<1时,y>0当x>1时,y<0单调性是(0,+∞)上的增函数是(0,+∞)上的减函数9.反函数对数函数y=log a x(a>0,且a≠1)与指数函数y=a x(a>0,且a≠1)互为反函数.例1如图所示,曲线是对数函数y=log a x的图象,已知a取3,43,35,110,则相应于c1,c2,c3,c4的a值依次为()A.3,43,35,110 B.3,43,110,35C.43,3,35,110 D.43,3,110,35解 (1)函数的零点是使函数值为0的自变量的值,所以函数f (x )=x 2-2x 的零点为0和2,故(1)错.(2)虽然f (1)=0,但1∉[2,5],即1不在函数f (x )=x -1的定义域内,所以函数在定义域[2,5]内无零点,故(2)错.要点二 判断函数零点所在区间例2 在下列区间中,函数f (x )=e x +4x -3的零点所在的区间为( ) A.⎝⎛⎭⎫-14,0 B.⎝⎛⎭⎫0,14 C.⎝⎛⎭⎫14,12 D.⎝⎛⎭⎫12,34 答案 C解析 ∵f ⎝⎛⎭⎫14=4e -2<0, f (12)=e -1>0,∴f ⎝⎛⎭⎫14·f ⎝⎛⎭⎫12<0, ∴零点在⎝⎛⎭⎫14,12上.规律方法 1.判断零点所在区间有两种方法:一是利用零点存在定理,二是利用函数图象.2.要正确理解和运用函数零点的性质在函数零点所在区间的判断中的应用 ,若f (x )图象在[a ,b ]上连续,且f (a )·f (b )<0,则f (x )在(a ,b )上必有零点,若f (a )·f (b )>0,则f (x )在(a ,b )上不一定没有零点. 跟踪演练2 函数f (x )=e x +x -2所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2) 答案 C解析 ∵f (0)=e 0+0-2=-1<0, f (1)=e 1+1-2=e -1>0,∴f (0)·f (1)<0, ∴f (x )在(0,1)内有零点.要点三 判断函数零点的个数例3 判断函数f (x )=ln x +x 2-3的零点的个数.解 方法一 函数对应的方程为ln x +x 2-3=0,所以原函数零点的个数即为函数y =ln x 与y =3-x 2的图象交点个数.在同一坐标系下,作出两函数的图象(如图).由图象知,函数y =3-x 2与y =ln x 的图象只有一个交点.从而ln x +x 2-3=0有一个根, 即函数y =ln x +x 2-3有一个零点. 方法二 由于f (1)=ln 1+12-3=-2<0, f (2)=ln 2+22-3=ln 2+1>0,∴f (1)·f (2)<0,又f (x )=ln x +x 2-3的图象在(1,2)上是不间断的,所以f (x )在(1,2)上必有零点, 又f (x )在(0,+∞)上是递增的,所以零点只有一个.规律方法 判断函数零点个数的方法主要有:(1)对于一般函数的零点个数的判断问题,可以先确定零点存在,然后借助于函数的单调性判断零点的个数;(2)由f (x )=g (x )-h (x )=0,得g (x )=h (x ),在同一坐标系下作出y 1=g (x )和y 2=h (x )的图象,利用图象判定方程根的个数;(3)解方程,解得方程根的个数即为函数零点的个数. 跟踪演练3 函数f (x )=2x |log 0.5x |-1的零点个数为( ) A .1 B .2 C .3 D .4 答案 B解析 令f (x )=2x |log 0.5x |-1=0, 可得|log 0.5x |=⎝⎛⎭⎫12x.设g (x )=|log 0.5x |,h (x )=⎝⎛⎭⎫12x ,在同一坐标系下分别画出函数g (x ),h (x )的图象,可以发现两个函数图象一定有2个交点,因此函数f (x )有2个零点. 1.函数y =4x -2的零点是( ) A .2 B .(-2,0) C.⎝⎛⎭⎫12,0 D.12 答案 D解析 令y =4x -2=0,得x =12.∴函数y =4x -2的零点为12.2.对于函数f (x ),若f (-1)·f (3)<0,则( ) A .方程f (x )=0一定有实数解 B .方程f (x )=0一定无实数解 C .方程f (x )=0一定有两实根 D .方程f (x )=0可能无实数解 答案 D解析 ∵函数f (x )的图象在(-1,3)上未必连续,故尽管f (-1)·f (3)<0,但未必函数y =f (x )在(-1,3)上有实数解.3.函数y =lg x -9x 的零点所在的大致区间是( )A .(6,7)B .(7,8)C.(8,9) D.(9,10)答案 D解析因为f(9)=lg 9-1<0,f(10)=lg 10-910=1-910>0,所以f(9)·f(10)<0,所以y=lg x-9x在区间(9,10)上有零点,故选D.4.方程2x-x2=0的解的个数是()A.1 B.2 C.3 D.4答案 C解析在同一坐标系画出函数y=2x,及y=x2的图象,可看出两图象有三个交点,故2x-x2=0的解的个数为3. 5.函数f(x)=x2-2x+a有两个不同零点,则实数a的范围是________.答案(-∞,1)解析由题意可知,方程x2-2x+a=0有两个不同解,故Δ=4-4a>0,即a<1.【新方法、新技巧练习与巩固】一、基础达标1.下列图象表示的函数中没有零点的是()答案 A解析B,C,D的图象均与x轴有交点,故函数均有零点,A的图象与x轴没有交点,故函数没有零点.2.函数f(x)=(x-1)(x2+3x-10)的零点个数是()A.1 B.2 C.3 D.4答案 C解析∵f(x)=(x-1)(x2+3x-10)=(x-1)(x+5)(x-2),∴由f(x)=0得x=-5或x=1或x=2.3.根据表格中的数据,可以断定函数f(x)=e x-x-2的一个零点所在的区间是()x -1012 3e x0.371 2.727.3920.09x+21234 5A.(-1,0) B .(0,1) C .(1,2) D .(2,3) 答案 C解析 由上表可知f (1)=2.72-3<0, f (2)=7.39-4>0,∴f (1)·f (2)<0,∴f (x )在区间(1,2)上存在零点. 4.函数f (x )=ln x +2x -6的零点所在的区间为( ) A .(1,2) B .(2,3) C .(3,4) D .(4,5) 答案 B解析 f (1)=ln 1+2-6=-4<0, f (2)=ln 2+4-6=ln 2-2<0,f (3)=ln 3+6-6=ln 3>0,所以f (2)·f (3)<0,则函数f (x )的零点所在的区间为(2,3). 5.方程log 3x +x =3的解所在的区间为( ) A .(0,2) B .(1,2) C .(2,3) D .(3,4) 答案 C解析 令f (x )=log 3x +x -3,则f (2)=log 32+2-3=log 323<0,f (3)=log 33+3-3=1>0,那么方程log 3x +x =3的解所在的区间为(2,3).6.已知函数f (x )为奇函数,且该函数有三个零点,则三个零点之和等于________. 答案 0解析 ∵奇函数的图象关于原点对称,∴若f (x )有三个零点,则其和必为0. 7.判断函数f (x )=log 2x -x +2的零点的个数. 解 令f (x )=0,即log 2x -x +2=0, 即log 2x =x -2. 令y 1=log 2x ,y 2=x -2.画出两个函数的大致图象,如图所示,有两个不同的交点.所以函数f (x )=log 2x -x +2有两个零点. 二、能力提升8.若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( ) A .(a ,b )和(b ,c )内 B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内 答案 A解析 ∵f (x )=(x -a )(x -b )+(x -b )(x -c )+ (x -c )(x -a ),∴f (a )=(a -b )(a -c ),f (b )=(b -c )(b -a ), f (c )=(c -a )(c -b ),∵a <b <c ,∴f (a )>0,f (b )<0,f (c )>0, ∴f (x )的两个零点分别位于区间(a ,b )和(b ,c )内.9.若函数f (x )=ax 2-x -1仅有一个零点,则a =__________. 答案 0或-14解析 a =0时,f (x )只有一个零点-1, a ≠0时,由Δ=1+4a =0,得a =-14.10.设x 0是方程ln x +x =4的解,且x 0∈(k ,k +1),k ∈Z ,则k =________. 答案 2解析 令f (x )=ln x +x -4, 且f (x )在(0,+∞)上递增, ∵f (2)=ln 2+2-4<0, f (3)=ln 3-1>0.∴f (x )在(2,3)内有解,∴k =2.11.已知函数f (x )=x 2-2x -3,x ∈[-1,4]. (1)画出函数y =f (x )的图象,并写出其值域;(2)当m 为何值时,函数g (x )=f (x )+m 在[-1,4]上有两个零点? 解 (1)依题意:f (x )=(x -1)2-4,x ∈[-1,4],其图象如图所示.由图可知,函数f (x )的值域为[-4,5].(2)∵函数g (x )=f (x )+m 在[-1,4]上有两个零点.∴方程f (x )=-m 在x ∈[-1,4]上有两相异的实数根,即函数y =f (x )与y =-m 的图象有两个交点. 由(1)所作图象可知,-4<-m ≤0,∴0≤m <4.∴当0≤m <4时,函数y =f (x )与y =-m 的图象有两个交点,故当0≤m <4时,函数g (x )=f (x )+m 在[-1,4]上有两个零点. 三、探究与创新12.已知二次函数f (x )满足:f (0)=3;f (x +1)=f (x )+2x . (1)求函数f (x )的解析式;(2)令g (x )=f (|x |)+m (m ∈R ),若函数g (x )有4个零点,求实数m 的范围. 解 (1)设f (x )=ax 2+bx +c (a ≠0),∵f (0)=3, ∴c =3,∴f (x )=ax 2+bx +3.f (x +1)=a (x +1)2+b (x +1)+3=ax 2+(2a +b )x +(a +b +3), f (x )+2x =ax 2+(b +2)x +3, ∵f (x +1)=f (x )+2x ,∴⎩⎪⎨⎪⎧2a +b =b +2,a +b +3=3,解得a =1,b =-1, ∴f (x )=x 2-x +3.(2)由(1),得g (x )=x 2-|x |+3+m ,在平面直角坐标系中,画出函数g (x )的图象,如图所示,由于函数g (x )有4个零点,则函数g (x )的图象与x 轴有4个交点. 由图象得⎩⎪⎨⎪⎧3+m >0,114+m <0,解得-3<m <-114,即实数m 的范围是⎝⎛⎭⎫-3,-114. 13.已知二次函数f (x )=x 2-2ax +4 ,求下列条件下,实数a 的取值范围. (1)零点均大于1;(2)一个零点大于1,一个零点小于1; (3)一个零点在(0,1)内,另一个零点在(6,8)内. 解 (1)因为方程x 2-2ax +4=0的两根均大于1,结合二次函数的单调性与零点存在定理,得 ⎩⎪⎨⎪⎧(-2a )2-16≥0,f (1)=5-2a >0,a >1.解得2≤a <52.(2)因为方程x 2-2ax +4=0的一个根大于1,一个根小于1,。

高一数学必修二第二章知识点归纳

高一数学必修二第二章知识点归纳

高一数学必修二第二章知识点归纳(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高一数学必修二第二章知识点归纳每学完一个单元,要建立本单元的知识框架,将本章的主要思路、推理方法及运用技巧等转变成自己的实际技能,也要善于归纳总结知识间的联系。

函数的零点

函数的零点

函数的零点零点这一块内容知识点比较少,但我相信本文引用的例题对于高一新生来说有较大的参考价值。

【零点】设有一函数f(x),我们把能够使f(x)=0的实数x_0称为函数f(x)的一个“零点”。

显然,函数的零点和它的图像与x轴交点横坐标对应(零点并非几何意义上的点,而是数字,但在不关心数值,只关心零点个数的时候,我们不必强调“横坐标”这件事,因为这并不影响“对应”一词的正确性)。

零点可以通过解方程f(x)=0得到,但零点个数不一定与对应方程的实根个数相同。

例如f(x)=(x-1)^2(x-2)(x^2+1),我们说对应方程有三个实根:x_1=x_2=1,x_3=2,但说函数的零点只有1,2两个。

不难理解,对于函数F(x)=f(x)-g(x),它的零点对应函数f(x)与g(x)图像的交点。

特别地,如果g(x)=c,从而是一个常数函数,那么F(x)的零点就对应函数f(x)的图像与直线y=c的交点。

【例】【2020-2021学年嘉兴市高一上期末统考】(多选)若定义在\bold{R} 上的函数 f(x) 满足 f(-x)+f(x)=0 ,当 x<0 时,f(x)=x^2+2ax+\dfrac 32a ( a \in \bold{R} ),则下列说法正确的是:A. 若方程 f(x)=ax+\dfrac a2 有两个不同的实数根,则 a<0 或4<a<8 ;B. 若方程 f(x)=ax+\dfrac a2 有两个不同的实数根,则 4<a<8 ;C. 若方程 f(x)=ax+\dfrac a2 有4个不同的实数根,则 a>8 ;D. 若方程 f(x)=ax+\dfrac a2 有4个不同的实数根,则 a>4 。

解:首先,由题意, f(x) 是奇函数,这样就可以根据已知的 x<0时的解析式写出函数在 \bold{R} 上的解析式:f(x)=\begin{cases} -x^2+2ax-\dfrac 32a& (x>0)\\ 0& (x=0)\\x^2+2ax+\dfrac 32a& (x<0) \end{cases}根据选项,设 g(x)=ax+\dfrac a2 。

高一数学重点:零点问题的解题方法

高一数学重点:零点问题的解题方法

谈函数与方程(零点问题)的解题方法——解题技能篇从近几年高考试题看,函数的零点、方程的根的问题是高考的热点,题型主要以选择题、填空题为主,难度中等及以上.主要考查转化与化归、数形结合及函数与方程的思想.(1)函数零点的定义对于函数y=f(x) (x∈D),把使f(x)=0成立的实数x叫做函数y=f(x) (x∈D)的零点.(2)零点存在性定理(函数零点的判定)若函数y=f(x)在闭区间[a,b]上的图像是连续曲线,并且在区间端点的函数值符号相反,即f(a)·f(b)<0,则在区间(a,b)内,函数y=f(x)至少有一个零点,即相应方程f(x)=0在区间(a,b)内至少有一个实数解.也可以说:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.[提醒] 此定理只能判断出零点存在,不能确定零点的个数.(3)几个等价关系函数y=f(x)有零点⇔方程f(x)=0有实数根⇔函数y=f(x)的图象与函数y=0(即x轴)有交点.推广:函数y=f(x)-g(x)有零点⇔方程f(x)-g(x)=0有实数根⇔函数y=f(x)-g(x)的图象与y =0(即x轴)有交点.推广的变形:函数y=f(x)-g(x)有零点⇔方程f(x)=g(x)有实数根⇔函数y=f(x)的图象与y=g(x)有交点.1.函数的零点是函数y=f(x)与x轴的交点吗?是否任意函数都有零点?提示:函数的零点不是函数y=f(x)与x轴的交点,而是y=f(x)与x轴交点的横坐标,也就是说函数的零点不是一个点,而是一个实数;并非任意函数都有零点,只有f(x)=0有根的函数y=f(x)才有零点.2.若函数y=f(x)在区间(a,b)内有零点,一定有f(a)·f(b)<0吗?提示:不一定,如图所示,f(a)·f(b)>0.3.若函数y=f(x)在区间(a,b)内,有f(a)·f(b)<0成立,那么y=f(x)在(a,b)内存在唯一的零点吗?提示:不一定,可能有多个.(4)二次函数y=ax2+bx+c (a>0)的图象与零点的关系Δ=b2-4ac Δ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象与x轴的交点(x1,0),(x2,0) (x1,0) 无交点零点个数210对于日后的考试中仍以考查函数的零点、方程的根和两函数图象交点横坐标的等价转化为主要考点,涉及题目的主要考向有:1.函数零点的求解与所在区间的判断;2.判断函数零点个数;3.利用函数的零点求解参数及取值范围.考向一、函数零点的求解与所在区间的判断1.(2015·温州十校联考)设f(x)=ln x+x-2,则函数f(x)的零点所在的区间为( )A.(0,1) B.(1,2)C .(2,3)D .(3,4)【解析】法一:∵f (1)=ln 1+1-2=-1<0,f (2)=ln 2>0,∴f (1)·f (2)<0,∵函数f (x )=ln x +x -2的图象是连续的,∴函数f (x )的零点所在的区间是(1,2).法二:函数f (x )的零点所在的区间转化为函数g (x )=ln x ,h (x )=-x +2图象交点的横坐标所在的范围,如图所示,可知f (x )的零点所在的区间为(1,2).【答案】B2.(2015·西安五校联考)函数y =ln(x +1)与y =1x的图象交点的横坐标所在区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)【解析】函数y =ln(x +1)与y =1x 的图象交点的横坐标,即为函数f (x )=ln(x +1)-1x的零点,∵f (x )在(0,+∞)上为增函数,且f (1)=ln 2-1<0,f (2)=ln 3-12>0,∴f (x )的零点所在区间为(1,2).【答案】B3.函数f (x )=3x -7+ln x 的零点位于区间(n ,n +1)(n ∈N )内,则n =________.【解析】求函数f (x )=3x -7+ln x 的零点,可以大致估算两个相邻自然数的函数值,如f (2)=-1+ln 2,由于ln 2<ln e =1,所以f (2)<0,f (3)=2+ln 3,由于ln 3>1,所以f (3)>0,所以函数f (x )的零点位于区间(2,3)内,故n =2.【答案】24.(2015·长沙模拟)若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内【解析】本题考查零点的存在性定理.依题意得f (a )=(a -b )(a -c )>0,f (b )=(b -c )(b -a )<0,f (c )=(c -b )(c -a )>0,因此由零点的存在性定理知f (x )的零点位于区间(a ,b )和(b ,c )内.【答案】A5.(2014·高考湖北卷)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}【解析】令x <0,则-x >0,所以f (x )=-f (-x )=-[(-x )2-3(-x )]=-x 2-3x .求函数g (x )=f (x )-x +3的零点等价于求方程f (x )=-3+x 的解.当x ≥0时,x 2-3x =-3+x ,解得x 1=3,x 2=1;当x <0时,-x 2-3x =-3+x ,解得x 3=-2-7.【答案】D确定函数f (x )零点所在区间的方法(1)解方程法:当对应方程f (x )=0易解时,可先解方程,再看解得的根是否落在给定区间上. (2)利用函数零点的存在性定理:首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(3)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断.1.已知函数f (x )=6x-log 2x ,在下列区间中,包含f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)【解析】因为f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (4)=32-log 24=-12<0,所以函数f (x )的零点所在区间为(2,4).【答案】C2.方程log 3x +x =3的根所在的区间为( )。

高一数学函数的零点存在定理及其应用分析总结

高一数学函数的零点存在定理及其应用分析总结
在判断函数单调性中的应用
零点存在定理:如果函数f(x)在区间[a, b]上连续,且f(a)·f(b)<0,则f(x)在区间(a, b)内有零点。
单调性判断:根据零点存在定理,如果函数f(x)在区间[a, b]上有零点,则f(x)在区间(a, b)上至少有一个单调区间。
应用实例:例如,判断函数f(x)=x^3-x在区间[-1, 1]上的单调性,可以通过零点存在定理来判断。
结合实际应用:结合实际例子,理解定理的应用方法和技巧
注意定理的局限性:了解定理的局限性和适用条件
掌握定理的应用范围:了解定理的应用条件和适用范围
感谢您的观看
注意事项:在使用零点存在定理判断函数单调性时,需要注意函数的连续性和零点的存在性。
在研究函数图像中的应用
求解函数方程:通过零点存在定理,可以求解函数方程,得到函数的解析式
确定函数图像的零点:通过零点存在定理,可以确定函数图像的零点位置
判断函数图像的性质:通过零点存在定理,可以判断函数图像的连续性、单调性等性质
研究函数图像的极限:通过零点存在定理,可以研究函数图像的极限,得到函数的极限值
在解决实际问题中的应用
零点存在定理在解决实际问题中的应用广泛,如求解方程、优化问题等
零点存在定理在解决实际问题时,需要注意定理的适用条件和范围,避免错误应用
零点存在定理在解决实际问题时,需要结合实际问题的具体情况,灵活运用
零点存在定理的数学表达
零点存在定理:如果函数f(x)在区间[a, b]上连续,且f(a)·f(b)<0,则函数f(x)在区间(a, b)内至少有一个零点。
零点:函数f(x)的零点是指使得f(x)=0的x值。
பைடு நூலகம்
连续函数:如果函数f(x)在区间[a, b]上每一点x都有定义,且对于任意的ε>0,存在δ>0,使得当|x-x0|<δ时,|f(x)-f(x0)|<ε,则称f(x)在区间[a, b]上是连续的。

4.5.1 函数的零点与方程的解 课件(共38张PPT) 高一数学人教A版(2019)必修第一册

4.5.1 函数的零点与方程的解 课件(共38张PPT) 高一数学人教A版(2019)必修第一册
函数零点的定义
函数零点、方程的根、函数的图象与x轴交点的关系
函数的零点存在定理
1.在二次函数 中,ac<0,则其零点的个 数为( ) A.1 B.2 C.3 D.不存在
2.若 不是常数函数且最小值为1,则 的零点个数( )
A.0
B.1
C.0或1
D.不确定
解:
x
1
2
3
4
5
6
7
8
9
f(x)
-4
-1.306 9
1.098 6
3.386 3
5.609 4
7.791 8
9.945 9
12.079 4
14.197 2
方法一
f(x)=lnx+2x-6
从而f(2)·f(3)<0,∴函数f(x)在区间(2,3)内有零点.
10
8
6
4
2
-2
-4
5
1
2
3
4
6
x
y
O
y=-2x+6
y=lnx
6
O
x
1
2
3
4
y
即求方程lnx+2x-6=0的根的个数,即求lnx=6-2x的根的个数,即判断函数y=lnx与函数y=6-2x的交点个数.
如图可知,只有一个交点,即方程只有一根,函数f(x)只有一个零点.
方法二:
函数零点
方程的根
图象交点
转化
1.求方程2-x =x的根的个数,并确定根所在的区间[n,n+1](n∈Z).
x
y
如图,
若函数y=5x2-7x-1在区间[a,b]上的图象 是连续不断的曲线,且函数y=5x2-7x-1在(a, b)内有零点,则f(a)·f(b)的值( ) A.大于0 B.小于0 C.无法判断 D.等于0

高一数学函数的零点

高一数学函数的零点

零点存在性的探索
y
观察二次函数f(x)=x2-2x-3的图象:
.
-2 -1
2
.
.
1
-1 -2
.
1
0
2
3 4
x
> f(1)___0, < 在区间[-2,1]上,f(-2) __0, < 则 f(-2)·f(1) ___0 , 在区间(-2,1)上,x=-1是 x2 -2x-3 =0的一个根
-3 -4
2.4.1 函数的零点
思考:一元二次方程 ax2+bx+c=0(a≠0)的根与二次 函数y=ax2+bx+c(a≠0)的图象 有什么关系?
判别式△ = b2-4ac
△>0
△=0
△<0 没有实根
y
方程ax2 +bx+c=0 两个不相等 有两个相等的 的实数根x1 、x2 实数根x1 = x2 (a≠0)的根
A x> – 2
B
x< – 2
C x>2
D x<2
D – 4 ,0,4
3、函数f(x)=x3-16x的零点为( A (0,0),(4,0) B 0,4
D
)
C (– 4 ,0), (0,0),(4,0)
4、函数f(x)= – x3 – 3x+5的零点所在的大致区间为( A ) 1 A (1,2) B ( – 2 ,0) C (0,1) D (0, ) 2
5、已知函数f(x)的图象是连续不断的,有如 下的x, f(x)对应值表:
x 1 f(x) 23 2 9 3 4 –7 11 5 –5 6 7 –12 –26
那么函数在区间[1,6]上的零点至少有(

(完整word)函数的零点存在定理

(完整word)函数的零点存在定理

《函数的零点存在定理》一、教材内容分析《函数的零点》第二课时,选自人教版《普通高中课程标准实验教科书》A版必修1第三章第一节。

1、教材的地位与作用函数是中学数学的核心概念,核心的原因之一就在于函数与其他知识具有广泛的联系性,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机的联系在一起.方程的根与函数零点的关系研究,不仅为“用二分法求方程的近似解”的学习做好准备,而且揭示了方程与函数之间的本质联系,这种联系正是中学数学重要思想方法——“函数与方程思想”的理论基础。

可见,函数零点概念在中学数学中具有核心地位。

2、内容分析本节内容有函数零点概念、函数零点与相应方程根的关系、函数零点存在性定理.函数零点是研究当函数)(xf的值为零时,相应的自变量x的取值,反映在函数图象上,也就是函数图象与x轴的交点横坐标。

由于函数)(xxf,其本身已是方程的形式,因而函数的零点)f的值为零亦即0(=必然与方程有着不可分割的联系,事实上,若方程0f有解,则函数)(xf存在零(=)x点,且方程的根就是相应函数的零点,也是函数图象与x轴的交点横坐标。

顺理成章的,方程的求解问题,可以转化为求函数零点的问题.这是函数与方程关系认识的第一步。

零点存在性定理,是函数在某区间上存在零点的充分不必要条件。

如果函数(<⋅bfaf,则函数))( (xf)y=在区间[]b a,上的图象是一条连续不断的曲线,并且满足0y=在区间()b a,内至少有一个零点,但零点的个数,需结合函数的单调性等性质f)(x进行判断.定理的逆命题不成立.方程的根与函数零点的研究方法,符合从特殊到一般的认识规律,从特殊的、具体的二次函数入手,建立二次函数的零点与相应二次方程的联系,然后将其推广到一般的、抽象的函数与相应方程的情形;零点存在性的研究,也同样采用了似的方法,同时还使用了“数形结合思想”及“转化与化归思想"。

二、教学内容诊断分析本节课是在学生学习了基本初等函数及其相关性质,具备初步的数形结合的能力基础之上,利用函数图象和性质来判断方程的根的存在性及根的个数。

高一数学函数的零点知识点

高一数学函数的零点知识点

高一数学函数的零点知识点函数的零点指的是函数图像与x轴交点所对应的x坐标。

在高一数学中,函数的零点是一个重要的知识点。

本文将对高一数学函数的零点进行详细介绍。

1. 零点的定义函数的零点是指函数的输入使得函数的输出等于零的数值。

换句话说,如果f(x) = 0,那么x就是函数f(x)的零点。

2. 寻找零点的方法为了寻找函数的零点,我们可以使用以下几种方法:a) 方程法方程法是最常用的寻找函数零点的方法之一。

我们可以将函数表达式设置为0,然后解方程来求得零点。

例如,对于函数f(x) = x^2 - 4,我们可以设置方程x^2 - 4 = 0,然后解方程得到 x = ±2,所以函数的零点为x = 2和x = -2。

b) 图像法图像法是通过绘制函数图像来寻找零点的方法。

我们可以通过描绘函数的图像并观察图像与x轴的交点来找到函数的零点。

这种方法尤其适用于通过手绘图像快速估计零点的位置。

c) 近似法近似法是通过使用数值计算方法来估计函数的零点。

例如,使用二分法、牛顿法或二次插值法等数值方法,我们可以在一定精度范围内找到函数零点的近似值。

3. 零点与方程的关系函数的零点与方程的解密切相关。

当我们求得函数的零点时,实际上就是在求解函数的方程。

通过找到方程的解,我们就可以知道函数在哪些位置上与x轴有交点。

4. 零点的性质函数的零点具有以下性质:a) 奇偶性如果函数是偶函数,即f(-x) = f(x),那么函数的零点关于y轴对称,即如果x是函数的零点,那么-x也是函数的零点。

相反,如果函数是奇函数,即f(-x) = -f(x),那么函数的零点关于原点对称,即如果x是函数的零点,那么-x也是函数的零点。

b) 重复零点函数可以有多个零点,有时这些零点可能是重复的。

在求解函数零点时,我们应该注意区分重复的根和不同的根。

5. 零点与函数图像的关系函数的零点对应着函数图像与x轴的交点,因此它提供了有关函数图像的重要信息。

高一数学必修一第二章知识点归纳

高一数学必修一第二章知识点归纳

高一数学必修一第二章知识点归纳高一数学必修一第二章知识点1方程的根与函数的零点1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。

即:方程有实数根函数的图象与轴有交点函数有零点.3、函数零点的求法:求函数的零点:1(代数法)求方程的实数根;2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:二次函数.1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.高一数学必修一第二章知识点2空间几何体表面积体积公式:1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h 为其高,3、a-边长,S=6a2,V=a34、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc5、棱柱S-h-高V=Sh6、棱锥S-h-高V=Sh/37、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/38、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)11、r-底半径h-高V=πr^2h/312、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/315、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/616、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/417、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)高一数学必修一第二章知识点3(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。

高中数学知识点高一

高中数学知识点高一

高中数学知识点高一高中数学学问点高一第一篇1、函数零点的定义对于函数y=f(x),使f(x)=0的实数x叫做函数y=f(x)的零点,即零点不是点。

这样,函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴的交点的横坐标。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。

即:方程有实数根函数的图象与轴有交点函数有零点.3、函数零点的求法:求函数的零点:(1)(代数法)求方程的实数根;(2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,再利用函数找出零点.4、二次函数的零点:二次函数.1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.3)△0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.3)△2},{x|x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系“包含〞关系—子集留意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA“相等〞关系:A=B(5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等〞即:①任何一个集合是它本身的子集。

AíA②真子集:假如AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)③假如AíB,BíC,那么AíC④假如AíB同时BíA那么A=B不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.5 函数的零点(一)
【学习目标】:
理解函数(结合二次函数)零点的概念,领会函数零点与相应
方程根的关系,掌握零点存在的判定条件.
【教学过程】:
一、复习引入:
1.试解出下列方程的近似解:(1)5.084.0=x (2)x x -=3lg
2.二次函数的解析式:
(1)一般式 (2)顶点式 (3)
零点式
二、新课讲授:
思考1.下列两个问题的结果是否相同:
(1)求一元二次方程0322=--x x 的根;
(2)求二次函数322--=x x y 的图象与x 轴的交点的横坐标。

1.零点定义:一般地,我们把 称为
函数)(x f y =的零点。

思考2.判断下列函数的零点的个数:
1)32-=x y ; 2)x y 5.0=; 3)202++-=x x y ;
4))13)(1(2+--=x x x y ; 5))23)(2(22+--=x x x y .
思考3.函数)(x f y =的零点与方程0)(=x f 及函数)(x f y =的图象有何
关系?
思考4.函数)(x f y =的零点是点还是数?
思考5.已知1)(2-=x x f ,求函数)1(+x f 的零点.
思考6.零点存在性的探索:
(1)观察二次函数32)(2--=x x x f 的图象:
①)2(-f = ,)1(f = ,)1()2(f f ⋅- 0⇒在区间[]1,2-上
(有/无)零点.
②)4()2(f f ⋅ 0(<或>)⇒在区间[]4,2上 (有/无)零点.
(2)观察函数()y f x =的图象: (1)在区间[]
b a ,上 (有/无)
)()(b f a f ⋅
0(“<”或“>”)。

(2)在区间[]c b ,上 (有/无)零点;
)()(c f b f ⋅ 0(“<”或“>”)。

(3)在区间[]d c ,上 (有/无)零点;
)()(d f c f ⋅ 0(“<”或“>”)。

由以上的探索你可以得出什么结论?
2.零点的存在性定理:一般地,若函数)
(x f y =在 ,且 ,
则称函数)(x f y =在区间),(b a 上有零点。

思考7.试求出函数5)(2-=x x f 的正零点(精确到0.1)。

3.二分法:对于在区间],[b a 上不间断,且)()(b f a f ⋅ 0的函数
)(x f y =,通过不断把零点所在的区间 ,使区间的两个端
点 ,进而得到零点 的方法。

三、典例欣赏:
例1.求证:二次函数2237y x x =--有两个不同的零点.
变题1:求证:函数1)(23++=x x x f 在区间)1,2(-上存在零点.
变题2:判断函数2()21f x x x =--在区间(2,3)上是否存在零点.
变题3:求证:无论a 取什么实数,二次函数22-++=a ax x y 都有两个
零点21,x x )(21x x <,并求出12x x -最小时的二次函数的解析式。

例2.如图:这是一个二次函数)(x f y =的图象:(1)写出这个二次函
数的零点;(2)写出这个二次函数的解析式;(3)分别比较
⋅-)4(f )1(-f ,⋅)0(f )2(f 与0的大小关系。

例3.证明方程x x 23-6=在区间]2,1[内有惟一一个实数根,并求出这
个实数根(精确到0.1)。

【针对训练】 班级 姓名 学号
1.二次函数342+-=x x y 的图象交x 轴于A 、B 两点,交y 轴于C 点,
则三角形ABC 的面积为____________________.
2.一次函数32-=x y 与二次函数
122+-=x x y 的图象交点个数为
____________. x
3.抛物线22)12(m x m x y +-+=与x 轴有两个交点,则m 的取值范围是______________.
4.若二次函数)(x f y =满足)3()3(x f x f -=
+,且0)(=x f 有两实根1x ,2x 则
=+21x x _ . 5.m x x y +-=22与x 轴无交点,则一次函数1)1(-++=m x m y 的图象不经
过第_____象限.
6.已知函数a x x y ++=22在区间[]1,2-上的最小值为2,则该函数的零点个数有 个。

7.用二分法求方程0623=--x x 在区间[1,3]内的实根,取区间中点2x ,
那么下一个有根区间是 (2,3)
8.用二分法研究函数)(x f y =的零点时,若第一次经计算得
0)(,0)(<>b f a f ,(其中b a <),可以得到其中一个零点∈0x ),(b a ,第二次应计算 )2
(b a f + 9.证明:(1)函数462++=x x y 有两个不同的零点;
(2)函数13)(3-+=x x x f 在区间()1,0上有零点。

10.已知抛物线7)1(222-+--=m x m x y 与x 轴有两个不同的交点,(1)求m 的取值范围;
(2)抛物线与x 轴相交于点A ,B ,且B 点的坐标为(3,0)求出
A 点的坐标,抛物线的对称轴和顶点坐标。

11.已知二次函数32)1(22----=m x m x y ,其中m 为实数。

(1)证明对任意实数m ,这个二次函数必有两个零点;
(2)若两个零点分别为21,x x ,且21,x x 的倒数和为3
2,求这个二次函数的解析式。

12.求证:无论a 取什么实数,二次函数y=x 2+ax+a-2的图象都与x
轴相交且有两个不同的交点,并求出这两点间的距离为最小时的二次函数的解析式。

相关文档
最新文档