2020版高考数学大一轮复习第九章平面解析几何8第7讲抛物线新题培优练文(含解析)新人教A版

合集下载

2020版高考数学一轮复习第8章平面解析几何第7讲抛物线讲义理(含解析)

2020版高考数学一轮复习第8章平面解析几何第7讲抛物线讲义理(含解析)
条件探究1将举例说明条件变为“过该抛物线焦点F的直线交抛物线于A,B两点,若|AF|=3”,求△AOB的面积.
解 焦点F(1,0),设A,B分别在第一、四象限,则点A到准线l:x=-1的距离为3,得点A的横坐标为2,纵坐标为2 ,AB的方程为y=2 (x-1),与抛物线方程联立可得2x2-5x+2=0,所以点B的横坐标为 ,纵坐标为- ,所以S△AOB= ×1×(2 + )= .
A.8 B.16 C.32 D.64
答案B
解析 由抛物线y2=8x的焦点为(2,0),得直线的方程为y=x-2,代入y2=8x,得(x-2)2=8x,即x2-12x+4=0,所以x1+x2=12,弦长为x1+x2+p=12+4=16.故选B.
(4)抛物线8x2+y=0的焦点坐标为________.
答案
答案D
解析 设抛物线为y2=mx,代入点P(-4,-2),解得m=-1,则抛物线方程为y2=-x;设抛物线为x2=ny,代入点P(-4,-2),解得n=-8,则抛物线方程为x2=-8y.
答案(1)×(2)×(3)×(4)√
2.小题热身
(1)若抛物线y=4x2上的一点M到焦点的距离为1,则点M的纵坐标是()
A. B.
C. D.0
答案B
解析M到准线的距离等于M到焦点的距离,又准线方程为y=- ,设M(x,y),则y+ =1,∴y= .
(2)已知抛物线C与双曲线x2-y2=1有相同的焦点,且顶点在原点,则抛物线C的方程是()
A.y2=±2 xB.y2=±2x
C.y2=±4xD.y2=±4 x
答案D
解析∵双曲线x2-y2=1的焦点坐标为(± ,0),
∴抛物线C的焦点坐标为(± ,0).
设抛物线C的方程为y2=±2px(p>0),则 = .

高考数学大一轮复习第九章平面解析几何8第7讲抛物线课件文新人教A版3

高考数学大一轮复习第九章平面解析几何8第7讲抛物线课件文新人教A版3
[注意] 涉及弦的中点、斜率时,一般用“点差法”求解.
1.(2018·高考全国卷Ⅰ)设抛物线 C:y2=4x 的焦点为 F,过点
(-2,0)且斜率为23的直线与 C 交于 M,N 两点,则F→M·F→N=
()
A.5
B.6
C.7
D.8
解析:选 D.法一:过点(-2,0)且斜率为23的直线的方程为 y= 23(x+2),由yy= 2=234(xx+2), 得 x2-5x+4=0,解得 x=1 或 x =4,所以xy==21,或xy==44,,不妨设 M(1,2),N(4,4),易知 F(1,0),所以F→M=(0,2),F→N=(3,4),所以F→M·F→N=8. 故选 D.
(2)如图,过点 B 作 BQ 垂直准线于点 Q,交抛物线于点 P1,则 |P1Q|=|P1F|.
则有|PB|+|PF|≥|P1B|+|P1Q|=|BQ|=4. 即|PB|+|PF|的最小值为 4. 【答案】 (1)D (2)4
[迁移探究 1] (变条件)若将本例(2)中的 B 点坐标改为(3,4), 试求|PB|+|PF|的最小值.
答案:6
抛物线的定义(典例迁移)
(1)已知抛物线 y2=2px(p>0)上一点 M 到焦点 F 的距离等
于 2p,则直线 MF 的斜率为( )
A.±
3 3
B.±34
C.±1
D.± 3
(2)设 P 是抛物线 y2=4x 上的一个动点,F 为抛物线的焦点,若
B(3,2),则|PB|+|PF|的最小值为________.
解决直线与抛物线位置关系问题的方法 (1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系 类似,一般要用到根与系数的关系. (2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的 焦点,若过抛物线的焦点,可直接使用公式|AB|=|x1|+|x2|+p, 若不过焦点,则必须用一般弦长公式. (3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根 与系数的关系采用“设而不求”“整体代入”等解法.

2022年高考数学(文)一轮复习文档:第八章 平面解析几何 第7讲抛物线 Word版含答案

2022年高考数学(文)一轮复习文档:第八章 平面解析几何 第7讲抛物线 Word版含答案

第7讲 抛物线 ,)1.抛物线的定义满足以下三个条件的点的轨迹是抛物线: (1)在平面内;(2)动点到定点F 的距离与到定直线l 的距离相等; (3)定点不在定直线上. 2.抛物线的标准方程和几何性质标准方程y 2=2px(p >0)y 2=-2px(p >0)x 2=2py(p >0)x 2=-2py(p >0)p 的几何意义:焦点F 到准线l 的距离图形顶点 O (0,0)对称轴 y =0x =0焦点 F ⎝ ⎛⎭⎪⎫p 2,0 F ⎝ ⎛⎭⎪⎫-p 2,0 F ⎝⎛⎭⎪⎫0,p 2 F ⎝ ⎛⎭⎪⎫0,-p 2离心率 e =1准线 方程 x =-p2x =p 2y =-p 2y =p 2范围 x ≥0,y ∈Rx ≤0,y ∈Ry ≥0,x ∈Ry ≤0, x ∈R开口方向 向右向左向上 向下 焦半径|PF |=|PF |=|PF |=|PF |=(其中P (x 0, y 0))x 0+p 2-x 0+p2y 0+p 2-y 0+p21.辨明两个易误点(1)抛物线的定义中易忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与定直线垂直的直线.(2)对于抛物线标准方程中参数p ,易忽视只有p >0才能证明其几何意义是焦点F 到准线l 的距离,否则无几何意义.2.与焦点弦有关的常用结论(以右图为依据)设A (x 1,y 1),B (x 2,y 2).(1)y 1y 2=-p 2,x 1x 2=p 24.(2)|AB |=x 1+x 2+p =2psin 2θ(θ为AB 的倾斜角).(3)1|AF |+1|BF |为定值2p. (4)以AB 为直径的圆与准线相切. (5)以AF 或BF 为直径的圆与y 轴相切.1.教材习题改编 抛物线8x 2+y =0的焦点坐标为( ) A .(0,-2) B .(0,2) C .⎝⎛⎭⎪⎫0,-132 D .⎝ ⎛⎭⎪⎫0,132C 由8x 2+y =0,得x 2=-18y .2p =18,p =116,所以焦点为⎝⎛⎭⎪⎫0,-132,故选C.2.教材习题改编 以x =1为准线的抛物线的标准方程为( ) A .y 2=2x B .y 2=-2x C .y 2=4xD .y 2=-4xD 由准线x =1知,抛物线方程为y 2=-2px (p >0)且p2=1,p =2,所以方程为y 2=-4x ,故选D.3.M 是抛物线y 2=2px (p >0)位于第一象限的点,F 是抛物线的焦点,若|MF |=52p ,则直线MF 的斜率为( )A .43B .53C .54D .52A 设M (x 0,y 0),由|MF |=52p ,得x 0+p 2=5p2,所以x 0=2p .所以y 20=2px 0=4p 2,取正根得y 0=2p . 即M 的坐标为(2p ,2p ), 又F 的坐标为(p2,0),所以k MF =2p -02p -p 2=43,故选A.4.动圆过点(1,0),且与直线x =-1相切,则动圆的圆心的轨迹方程为________.设动圆的圆心坐标为(x ,y ),则圆心到点(1,0)的距离与到直线x =-1的距离相等,依据抛物线的定义易知动圆的圆心的轨迹方程为y 2=4x .y 2=4x5.教材习题改编 抛物线x 2=2py (p >0)上的点P (m ,2)到焦点F 的距离为3,则该抛物线的方程为________. 依据抛物线定义可知2+p2=3,所以p =2,所以抛物线的方程为x 2=4y .x 2=4y抛物线的定义及其应用(1)若抛物线y 2=2x 上一点M 到它的焦点F 的距离为32,O 为坐标原点,则△MFO 的面积为( )A .22B .24C .12D .14(2)已知抛物线y 2=4x 的焦点是F ,点P 是抛物线上的动点,又有点B (3,2),则|PB |+|PF |的最小值为________.【解析】 (1)由题意知,抛物线准线方程为x =-12.设M (a ,b ),由抛物线的定义可知, 点M 到准线的距离为32,所以a =1,代入抛物线方程y 2=2x , 解得b =±2,所以S △MFO =12×12×2=24.(2)如图,过点B 作BQ 垂直准线于Q ,交抛物线于点P 1,则|P 1Q |=|P 1F |,则有|PB |+|PF |≥|P 1B |+|P 1Q |=|BQ |=4.即|PB |+|PF |的最小值为4. 【答案】 (1)B (2)4若本例(2)中的B 点坐标改为(3,4),试求|PB |+|PF |的最小值.由题意可知点(3,4)在抛物线的外部.由于|PB |+|PF |的最小值即为B ,F 两点间的距离, 所以|PB |+|PF |≥|BF |=42+22=16+4=2 5.即|PB |+|PF |的最小值为2 5.抛物线定义的应用(1)利用抛物线的定义解决此类问题,应机敏地进行抛物线上的点到焦点的距离与到准线距离的等价转化.即“看到准线想到焦点,看到焦点想到准线”.(2)留意机敏运用抛物线上一点P (x ,y )到焦点F 的距离|PF |=|x |+p 2或|PF |=|y |+p2.1.(2021·云南省统一检测)设经过抛物线C 的焦点F 的直线l 与抛物线C 交于A 、B 两点,那么抛物线C 的准线与以AB 为直径的圆的位置关系为( )A .相离B .相切C .相交但不经过圆心D .相交且经过圆心B 设圆心为M ,过点A 、B 、M 作准线l 的垂线,垂足分别为A 1、B 1、M 1, 则|MM 1|=12(|AA 1|+|BB 1|).由抛物线定义可知|BF |=|BB 1|,|AF |=|AA 1|, 所以|AB |=|BB 1|+|AA 1|,|MM 1|=12|AB |,即圆心M 到准线的距离等于圆的半径, 故以AB 为直径的圆与抛物线的准线相切.2.(2021·长春调研)已知直线l 1:4x -3y +6=0和直线l 2:x =-1,则抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )A .355B .2C .115D .3B 由题可知l 2:x =-1是抛物线y 2=4x 的准线,设抛物线的焦点F 为(1,0),则动点P 到l 2的距离等于|PF |,则动点P 到直线l 1和直线l 2的距离之和的最小值即为焦点F 到直线l 1:4x -3y +6=0的距离,所以最小值是|4-0+6|5=2.抛物线的标准方程及性质(高频考点)抛物线的标准方程及性质是高考的热点,考查时多以选择题、填空题形式消灭,个别高考题有肯定难度. 高考对抛物线的考查主要有以下三个命题角度: (1)求抛物线方程; (2)由已知求参数p ; (3)抛物线方程的实际应用.(1)(2022·高考全国卷乙)以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的准线于D 、E两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .8(2)若抛物线的焦点为直线3x -4y -12=0与坐标轴的交点,则抛物线的标准方程为________.【解析】 (1)由题意,不妨设抛物线方程为y 2=2px (p >0),由|AB |=42,|DE |=25,可取A ⎝ ⎛⎭⎪⎫4p,22,D ⎝ ⎛⎭⎪⎫-p 2,5,设O 为坐标原点,由|OA |=|OD |,得16p 2+8=p 24+5,得p =4,所以选B.(2)对于直线方程3x -4y -12=0,令x =0,得y =-3,令y =0,得x =4,所以抛物线的焦点坐标可能为(0,-3)或(4,0).当焦点坐标为(0,-3)时,设方程为x 2=-2py (p >0),则p2=3,所以p =6,此时抛物线的标准方程为x2=-12y ;当焦点坐标为(4,0)时,设方程为y 2=2px (p >0),则p2=4,所以p =8,此时抛物线的标准方程为y 2=16x . 所以所求抛物线的标准方程为x 2=-12y 或y 2=16x . 【答案】 (1)B (2)x 2=-12y 或y 2=16x(1)求抛物线的标准方程的方法①求抛物线的标准方程常用待定系数法,由于未知数只有p ,所以只需一个条件确定p 值即可. ②由于抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量. (2)确定及应用抛物线性质的技巧①利用抛物线方程确定及应用其焦点、准线等性质时,关键是将抛物线方程化成标准方程.②要结合图形分析,机敏运用平面几何的性质以图助解.角度一 求抛物线方程1.以x 轴为对称轴,原点为顶点的抛物线上的一点P (1,m )到焦点的距离为3,则抛物线的方程是( ) A .y =4x 2B .y =8x 2C .y 2=4xD .y 2=8xD 设抛物线的方程为y 2=2px (p >0),则由抛物线的定义知1+p2=3,即p =4,所以抛物线方程为y2=8x .角度二 由已知求参数p2.(2021·襄阳调研测试)抛物线y 2=2px 的焦点为F ,M 为抛物线上一点,若△OFM 的外接圆与抛物线的准线相切(O 为坐标原点),且外接圆的面积为9π,则p =( )A .2B .4C .6D .8B 由于△OFM 的外接圆与抛物线的准线相切,所以△OFM 的外接圆的圆心到准线的距离等于圆的半径,由于圆面积为9π,所以圆的半径为3,又由于圆心在OF 的垂直平分线上,|OF |=p2,所以p 2+p4=3,所以p =4.角度三 抛物线方程的实际应用3.如图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽为________米.建立坐标系如图所示.则可设抛物线方程为x 2=-2py (p >0).由于点(2,-2)在抛物线上,所以p =1, 即抛物线方程为x 2=-2y . 当y =-3时,x =± 6.所以水位下降1米后,水面宽为26米. 2 6直线与抛物线的位置关系(2022·高考全国卷乙)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H .(1)求|OH ||ON |;(2)除H 以外,直线MH 与C 是否有其他公共点?说明理由.【解】 (1)由已知得M (0,t ),P ⎝ ⎛⎭⎪⎫t 22p ,t . 又N 为M 关于点P 的对称点,故N ⎝ ⎛⎭⎪⎫t 2p ,t ,ON 的方程为y =ptx ,代入y 2=2px ,整理得px 2-2t 2x =0, 解得x 1=0,x 2=2t2p.因此H ⎝ ⎛⎭⎪⎫2t 2p ,2t . 所以N 为OH 的中点,即|OH ||ON |=2.(2)直线MH 与C 除H 以外没有其他公共点.理由如下:直线MH 的方程为y -t =p2t x ,即x =2tp(y -t ).代入y 2=2px 得y 2-4ty +4t 2=0,解得y 1=y 2=2t ,即直线MH 与C 只有一个公共点,所以除H 以外直线MH 与C 没有其他公共点.解决直线与抛物线位置关系问题的常用方法(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系. (2)有关直线与抛物线的弦长问题,要留意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=|x 1|+|x 2|+p ,若不过焦点,则必需用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系接受“设而不求”“整体代入”等解法.涉及弦的中点、斜率时,一般用“点差法”求解.已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.(1)由题意得直线AB 的方程为y =22·⎝ ⎛⎭⎪⎫x -p 2,与y 2=2px 联立,消去y 有4x 2-5px +p 2=0,所以x 1+x 2=5p4.由抛物线定义得|AB |=x 1+x 2+p =5p4+p =9,所以p =4,从而该抛物线的方程为y 2=8x . (2)由(1)得4x 2-5px +p 2=0, 即x 2-5x +4=0, 则x 1=1,x 2=4,于是y 1=-22,y 2=42,从而A (1,-22),B (4,42),设C (x 3,y 3), 则OC →=(x 3,y 3)=(1,-22)+λ(4,42) =(4λ+1,42λ-22). 又y 23=8x 3,所以2=8(4λ+1), 整理得(2λ-1)2=4λ+1, 解得λ=0或λ=2.,)——忽视焦点位置而致误已知抛物线的顶点在原点,对称轴为y 轴,它与圆x 2+y 2=9相交,公共弦MN 的长为25,求该抛物线的方程,并写出它的焦点坐标与准线方程.【解】 由题意,设抛物线方程为x 2=2ay (a ≠0). 设公共弦MN 交y 轴于A , 则|MA |=|AN |,且|AN |= 5. 由于|ON |=3,所以|OA |=32-(5)2=2,所以N (5,±2).由于N 点在抛物线上,所以5=2a ·(±2),即2a =±52,故抛物线的方程为x 2=52y 或x 2=-52y .抛物线x 2=52y 的焦点坐标为⎝ ⎛⎭⎪⎫0,58,准线方程为y =-58.抛物线x 2=-52y 的焦点坐标为⎝ ⎛⎭⎪⎫0,-58,准线方程为y =58.(1)解决本题易忽视焦点位置可在y 轴的正半轴也可在负半轴上两种状况,误认为a >0,从而导致漏解.(2)对称轴确定,而开口方向不确定的抛物线方程有如下特点: ①当焦点在x 轴上时,可将抛物线方程设为y 2=ax (a ≠0); ②当焦点在y 轴上时,可将抛物线方程设为x 2=ay (a ≠0).若抛物线y 2=2px 的焦点与椭圆x 29+y 25=1的焦点重合,则抛物线的准线方程为________.由椭圆x 29+y 25=1,得c 2=9-5=4,即c =2,故椭圆的焦点坐标为(±2,0). 即抛物线的焦点坐标为(±2,0).所以当p >0时,抛物线的准线方程为x =-2;当p <0时,抛物线的准线方程为x =2. x =2或x =-2,)1.若抛物线y =4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A .1716 B .1516 C .78D .0B M 到准线的距离等于M 到焦点的距离,又准线方程为y =-116,设M (x ,y ),则y +116=1,所以y =1516.2.若抛物线y 2=2x 上一点P 到准线的距离等于它到顶点的距离,则点P 的坐标为( ) A .⎝ ⎛⎭⎪⎫14,±22B .⎝ ⎛⎭⎪⎫14,±1C .⎝ ⎛⎭⎪⎫12,±22D .⎝ ⎛⎭⎪⎫12,±1 A 设抛物线的顶点为O ,焦点为F ,P (x P ,y P ),由抛物线的定义知,点P 到准线的距离即为点P 到焦点的距离,所以|PO |=|PF |,过点P 作PM ⊥OF 于点M (图略),则M 为OF 的中点,所以x P =14,代入y 2=2x ,得y P =±22,所以P ⎝ ⎛⎭⎪⎫14,±22. 3.(2022·高考全国卷甲)设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)与C 交于点P ,PF ⊥x 轴,则k =( )A .12 B .1C .32D .2D 易知抛物线的焦点为F (1,0),设P (x P ,y P ),由PF ⊥x 轴可得x P =1,代入抛物线方程得y P =2(-2舍去),把P (1,2)代入曲线y =k x(k >0)得k =2.4.设F 为抛物线y 2=2x 的焦点,A 、B 、C 为抛物线上三点,若F 为△ABC 的重心,则|FA →|+|FB →|+|FC →|的值为( )A .1B .2C .3D .4C 依题意,设点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),又焦点F ⎝ ⎛⎭⎪⎫12,0,x 1+x 2+x 3=3×12=32, 则|FA →|+|FB →|+|FC →|=⎝⎛⎭⎪⎫x 1+12+⎝ ⎛⎭⎪⎫x 2+12+⎝ ⎛⎭⎪⎫x 3+12=(x 1+x 2+x 3)+32=32+32=3.5.直线l 过抛物线y 2=-2px (p >0)的焦点,且与抛物线交于A 、B 两点,若线段AB 的长是8,AB 的中点到y 轴的距离是2,则此抛物线的方程是( )A .y 2=12x B .y 2=-8x C .y 2=6xD .y 2=-4xB 设A (x 1,y 1)、B (x 2,y 2),由抛物线定义可得|x 1|+|x 2|+p =8,又AB 的中点到y 轴的距离为2,即|x 1|+|x 2|=4,所以p =4,所以y 2=-8x .故选B.6.已知抛物线y 2=4x ,圆F :(x -1)2+y 2=1,过点F 作直线l ,自上而下顺次与上述两曲线交于点A ,B ,C ,D (如图所示),则下列关于|AB |·|CD |的值的说法中,正确的是( )A .等于1B .等于4C .最小值是1D .最大值是4A 设直线l :x =ty +1,代入抛物线方程,得y 2-4ty -4=0.设A (x 1,y 1),D (x 2,y 2),依据抛物线的定义知,|AF |=x 1+1,|DF |=x 2+1,故|AB |=x 1,|CD |=x 2,所以|AB |·|CD |=x 1x 2=y 214·y 224=(y 1y 2)216.而y 1y 2=-4,故|AB |·|CD |=1.7.(2021·资阳模拟)顶点在原点,对称轴是y 轴,并且经过点P (-4,-2)的抛物线方程是________. 设抛物线方程为x 2=my ,将点P (-4,-2)代入x 2=my ,得m =-8. 所以抛物线方程是x 2=-8y . x 2=-8y8.(2021·云南省第一次统一检测)已知抛物线C 的方程为y 2=2px (p >0),○· M 的方程为x 2+y 2+8x +12=0,假如抛物线C 的准线与○·M 相切,那么p 的值为________.将○·M 的方程化为标准方程:(x +4)2+y 2=4,圆心坐标为(-4,0),半径r =2,又由于抛物线的准线方程为x =-p2,所以⎪⎪⎪⎪⎪⎪4-p 2=2,p =12或4.12或49.经过抛物线C 的焦点F 作直线l 与抛物线C 交于A ,B 两点,假如A ,B 在抛物线C 的准线上的射影分别为A 1,B 1,那么∠A 1FB 1=________.由抛物线定义可知|BF |=|BB 1|,|AF |=|AA 1|,故∠BFB 1=∠BB 1F ,∠AFA 1=∠AA 1F . 又∠OFB 1=∠BB 1F ,∠OFA 1=∠AA 1F , 故∠BFB 1=∠OFB 1,∠AFA 1=∠OFA 1, 所以∠OFA 1+∠OFB 1=12×π=π2,即∠A 1FB 1=π2.π210.(2021·豫东、豫北十校联考)已知抛物线的顶点在原点,焦点在x 轴的正半轴上,若抛物线的准线与双曲线5x 2-y 2=20的两条渐近线围成的三角形的面积为45,则抛物线方程为________.由双曲线方程5x 2-y 2=20知其渐近线方程为y =±5x ,由题意可设抛物线方程为y 2=2px (p >0),故其准线方程为x =-p 2,设准线与双曲线的两条渐近线的交点为A ,B ,则不妨令A ⎝ ⎛⎭⎪⎫-p2,52p ,B ⎝ ⎛⎭⎪⎫-p 2,-52p ,故S △ABO =12×5p ×p 2=54p 2=45,解得p 2=16,又由于p >0,所以p =4,故抛物线方程为y 2=8x .y 2=8x11.已知抛物线y 2=2px (p >0)的焦点为F ,A 是抛物线上横坐标为4,且位于x 轴上方的点,A 到抛物线准线的距离等于5,过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M .(1)求抛物线的方程;(2)若过M 作MN ⊥FA ,垂足为N ,求点N 的坐标. (1)抛物线y 2=2px 的准线为x =-p2,于是4+p2=5,所以p =2.所以抛物线方程为y 2=4x .(2)由于点A 的坐标是(4,4), 由题意得B (0,4),M (0,2). 又由于F (1,0),所以k FA =43,由于MN ⊥FA ,所以k MN =-34.所以FA 的方程为y =43(x -1),①MN 的方程为y -2=-34x ,②联立①②,解得x =85,y =45,所以N 的坐标为⎝ ⎛⎭⎪⎫85,45.12.(2021·长春一模)过抛物线y 2=2px (p >0)的焦点F 且倾斜角为120°的直线l 与抛物线在第一、四象限分别交于A ,B 两点,则|AF ||BF |的值等于( ) A .13B .23 C.34 D.43A 记抛物线y 2=2px 的准线为l ′,如图,作AA 1⊥l ′,BB 1⊥l ′,AC ⊥BB 1,垂足分别是A 1,B 1,C ,则有cos ∠ABB 1=|BC ||AB |=|BB 1|-|AA 1||AF |+|BF |=|BF |-|AF ||AF |+|BF |,即cos 60°=|BF |-|AF ||AF |+|BF |=12,由此得|AF ||BF |=13.13.已知抛物线C :y 2=4x 的焦点为F ,直线l 经过点F 且与抛物线C 相交于A 、B 两点. (1)若线段AB 的中点在直线y =2上,求直线l 的方程; (2)若线段|AB |=20,求直线l 的方程.(1)由已知得抛物线的焦点为F (1,0).由于线段AB 的中点在直线y =2上,所以直线l 的斜率存在,设直线l 的斜率为k ,A (x 1,y 1),B (x 2,y 2),AB 的中点M (x 0,y 0),则⎩⎪⎨⎪⎧x 0=x 1+x 22,y 0=y 1+y 22.由⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2得(y 1+y 2)(y 1-y 2)=4(x 1-x 2),所以2y 0k =4. 又y 0=2,所以k =1,故直线l 的方程是y =x -1. (2)设直线l 的方程为x =my +1,与抛物线方程联立得⎩⎪⎨⎪⎧x =my +1,y 2=4x ,消元得y 2-4my -4=0,所以y 1+y 2=4m ,y 1y 2=-4,Δ=16(m 2+1)>0. |AB |=m 2+1|y 1-y 2|=m 2+1·(y 1+y 2)2-4y 1y 2 =m 2+1·(4m )2-4×(-4) =4(m 2+1).所以4(m 2+1)=20,解得m =±2, 所以直线l 的方程是x =±2y +1,即x ±2y -1=0.14.已知圆C 过定点F ⎝ ⎛⎭⎪⎫-14,0,且与直线x =14相切,圆心C 的轨迹为E ,曲线E 与直线l :y =k (x +1)(k ∈R )相交于A ,B 两点.(1)求曲线E 的方程;(2)当△OAB 的面积等于10时,求k 的值.(1)由题意,点C 到定点F ⎝ ⎛⎭⎪⎫-14,0和直线x =14的距离相等, 故点C 的轨迹E 的方程为y 2=-x .(2)由方程组⎩⎪⎨⎪⎧y 2=-x ,y =k (x +1),消去x 后,整理得ky 2+y -k =0. 设A (x 1,y 1),B (x 2,y 2),由根与系数的关系有y 1+y 2=-1k,y 1y 2=-1.设直线l 与x 轴交于点N ,则N (-1,0). 所以S △OAB =S △OAN +S △OBN =12|ON ||y 1|+12|ON ||y 2|, =12|ON ||y 1-y 2| =12×1×(y 1+y 2)2-4y 1y 2 =12⎝ ⎛⎭⎪⎫-1k 2+4=10, 解得k =±16.。

2020版高考数学新增分大一轮讲义 习题第九章 平面解析几何 9.7 Word版含解析

2020版高考数学新增分大一轮讲义 习题第九章 平面解析几何 9.7 Word版含解析

§双曲线考情考向分析主要侧重双曲线的方程以及以双曲线方程为载体研究参数,,及与渐近线有关的问题,其中离心率和渐近线是重点.以填空题的形式考查,难度为中低档.解题时应熟练掌握基础内容及双曲线方程的求法,能灵活应用双曲线的几何性质..双曲线的定义平面内到两个定点,的距离的差的绝对值等于常数(小于的正数)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距..双曲线的标准方程和几何性质标准方程-=(>,>) -=(>,>)图形性质范围≤-或≥,∈∈,≤-或≥对称性对称轴:轴,轴对称中心:()对称轴:轴,轴对称中心:()顶点顶点坐标:(-),()顶点坐标:(,-),(,)渐近线=±=±离心率=,∈(,+∞)实虚轴 线段叫做双曲线的实轴,它的长=;线段叫做双曲线的虚轴,它的长=;叫做双曲线的实半轴长,叫做双曲线的虚半轴长,,的关系 =+(>>,>>).等轴双曲线 实轴与虚轴等长的双曲线叫做等轴双曲线,其方程为-=λ(λ≠),离心率=,渐近线方程为=±..双曲线的第二定义平面内动点到定点的距离和它到定直线(点不在直线上)的距离的比是常数(>)的点的轨迹是双曲线.定点是焦点,定直线是准线,常数是离心率.双曲线-=(>,>)的准线方程为=±,双曲线-=(>,>)的准线方程为=±.概念方法微思考.平面内与两定点,的距离之差的绝对值等于常数的动点的轨迹一定为双曲线吗?为什么? 提示当=时,动点的轨迹是两条射线;当>时,动点的轨迹不存在;当=时,动点的轨迹是线段的中垂线..方程+=表示双曲线的充要条件是什么?提示若>,<,表示焦点在轴上的双曲线;若<,>,表示焦点在轴上的双曲线.所以+=表示双曲线的充要条件是<.题组一思考辨析.判断下列结论是否正确(请在括号中打“√”或“×”)。

高考数学一轮复习 第九章 平面解析几何 第8讲 曲线与方程配套课时作业 理(含解析)新人教A版-新人

高考数学一轮复习 第九章 平面解析几何 第8讲 曲线与方程配套课时作业 理(含解析)新人教A版-新人

第8讲 曲线与方程配套课时作业1.已知点F ⎝ ⎛⎭⎪⎫14,0,直线l :x =-14,点B 是l 上的动点.若过点B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( )A .双曲线B .椭圆C .圆D .抛物线 答案 D解析 由已知知|MF |=|MB |,根据抛物线的定义知,点M 的轨迹是以点F 为焦点,直线l 为准线的抛物线.2.(2019·某某模拟)如图所示,A 是圆O 内一定点,B 是圆周上一个动点,AB 的中垂线CD 与OB 交于点E ,则点E 的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线 答案 B解析 由题意知,|EA |+|EO |=|EB |+|EO |=r (r 为圆的半径)且r >|OA |,故E 的轨迹为以O ,A 为焦点的椭圆.故选B.3.到点F (0,4)的距离比到直线y =-5的距离小1的动点M 的轨迹方程为( ) A .y =16x 2B .y =-16x 2C .x 2=16y D .x 2=-16y 答案 C解析 由条件知,动点M 到F (0,4)的距离与到直线y =-4的距离相等,所以点M 的轨迹是以F (0,4)为焦点,直线y =-4为准线的抛物线,其标准方程为x 2=16y .4.(2019·某某模拟)设点A 为圆(x -1)2+y 2=1上的动点,PA 是圆的切线,且|PA |=1,则P 点的轨迹方程为( )A .y 2=2x B .(x -1)2+y 2=4 C .y 2=-2x D .(x -1)2+y 2=2 答案 D解析 如图,设P (x ,y ),圆心为M (1,0),连接MA ,则MA ⊥PA ,且|MA |=1.又∵|PA |=1,∴|PM |=|MA |2+|PA |2=2,即|PM |2=2,∴(x -1)2+y 2=2.5.在△ABC 中,已知A (-1,0),C (1,0),且|BC |,|CA |,|AB |成等差数列,则顶点B 的轨迹方程是( )A.x 23+y 24=1B.x 23+y 24=1(x ≠±3)C.x 24+y 23=1 D.x 24+y 23=1(x ≠±2) 答案 D解析 因为|BC |,|CA |,|AB |成等差数列,所以|BC |+|BA |=2|CA |=4.所以点B 的轨迹是以A ,C 为焦点,半焦距c =1,长轴长2a =4的椭圆.又B 是三角形的顶点,A ,B ,C 三点不能共线,故所求的轨迹方程为x 24+y 23=1,且x ≠±2.故选D.6.动圆M 经过双曲线x 2-y 23=1的左焦点且与直线x =2相切,则圆心M 的轨迹方程是( )A .y 2=8x B .y 2=-8x C .y 2=4x D .y 2=-4x 答案 B解析 设双曲线x 2-y 23=1的左焦点为F (-2,0),因为动圆M 经过F 且与直线x =2相切,所以圆心M 到点F 的距离和到直线x =2的距离相等,由抛物线的定义知轨迹是抛物线,其方程为y 2=-8x .7.(2019·某某某某检测)已知F 1,F 2是双曲线的两个焦点,Q 是双曲线上任意一点,从焦点F 1引∠F 1QF 2的平分线的垂线,垂足为P ,则点P 的轨迹为( )A .直线B .圆C .椭圆D .双曲线 答案 B解析 不妨设点Q 在双曲线的右支上,延长F 1P 交直线QF 2于点S ,∵QP 是∠F 1QF 2的平分线,且QP ⊥F 1S ,∴P 是F 1S 的中点.∵O 是F 1F 2的中点,∴PO 是△F 1SF 2的中位线,∴|PO |=12|F 2S |=12(|QS |-|QF 2|)=12(|QF 1|-|QF 2|)=a (定值),∴点P 的轨迹为圆. 8.设线段AB 的两个端点A ,B 分别在x 轴、y 轴上滑动,且|AB |=5,OM →=35OA →+25OB →,则点M 的轨迹方程为( )A.x 29+y 24=1B.y 29+x 24=1C.x 225+y 29=1 D.y 225+x 29=1 答案 A解析 设M (x ,y ),A (x 0,0),B (0,y 0),由OM →=35OA →+25OB →,得(x ,y )=35(x 0,0)+25(0,y 0),则⎩⎪⎨⎪⎧x =35x 0,y =25y 0,解得⎩⎪⎨⎪⎧x 0=53x ,y 0=52y ,由|AB |=5,得⎝ ⎛⎭⎪⎫53x 2+⎝ ⎛⎭⎪⎫52y 2=25,化简得x 29+y 24=1.9.已知A ,B 为平面内两定点,过该平面内动点M 作直线AB 的垂线,垂足为N .若MN →2=λAN →·NB →,其中λ为常数,则动点M 的轨迹不可能是( )A .圆B .椭圆C .抛物线D .双曲线 答案 C解析 以AB 所在直线为x 轴,AB 的中垂线为y 轴,建立坐标系,设M (x ,y ),A (-a,0),B (a,0),则N (x,0).因为MN →2=λAN →·NB →,所以y 2=λ(x +a )(a -x ),即λx 2+y 2=λa 2,当λ=1时,轨迹是圆;当λ>0且λ≠1时,轨迹是椭圆;当λ<0时,轨迹是双曲线;当λ=0时,轨迹是直线.综上,动点M 的轨迹不可能是抛物线.10.已知A (0,7),B (0,-7),C (12,2),以C 为一个焦点作过A ,B 的椭圆,椭圆的另一个焦点F 的轨迹方程是( )A .y 2-x 248=1(y ≤-1) B .y 2-x 248=1C .y 2-x 248=-1 D .x 2-y 248=1 答案 A解析 由题意,得|AC |=13,|BC |=15,|AB |=14,又|AF |+|AC |=|BF |+|BC |,∴|AF |-|BF |=|BC |-|AC |=2.故点F 的轨迹是以A ,B 为焦点,实轴长为2的双曲线的下支.∵双曲线中c =7,a =1,∴b 2=48,∴焦点F 的轨迹方程为y 2-x 248=1(y ≤-1).11.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点M 在AB 上,且AM =13,点P 在平面ABCD内,且动点P 到直线A 1D 1的距离与动点P 到点M 的距离的平方差为1,则动点P 的轨迹是( )A .直线B .圆C .双曲线D .抛物线 答案 D解析 在平面ABCD 内过点P 作PF ⊥AD ,垂足为F ,过点F 在平面AA 1D 1D 内作FE ⊥A 1D 1,垂足为E ,连接PE ,则有PE ⊥A 1D 1,即PE 为点P 到A 1D 1的距离.由题意知|PE |2-|PM |2=1,又因为|PE |2=|PF |2+|EF |2,所以|PF |2+|EF |2-|PM |2=1,即|PF |2=|PM |2,即|PF |=|PM |,所以点P 满足到点M 的距离等于点P 到直线AD 的距离.由抛物线的定义知点P 的轨迹是以点M 为焦点,AD 为准线的抛物线,所以点P 的轨迹为抛物线.12.(2019·某某质量检查)已知A (-2,0),B (2,0),斜率为k 的直线l 上存在不同的两点M ,N 满足|MA |-|MB |=23,|NA |-|NB |=23,且线段MN 的中点为(6,1),则k 的值为( )A .-2B .-12 C.12 D .2答案 D解析 因为|MA |-|MB |=23,|NA |-|NB |=23,由双曲线的定义知,点M ,N 在以A ,B 为焦点的双曲线的右支上,且c =2,a =3,所以b =1,所以该双曲线的方程为x 23-y 2=1.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=12,y 1+y 2=2.设直线l 的方程为y =kx +m ,代入双曲线的方程,消去y ,得(1-3k 2)x 2-6mkx -3m 2-3=0,所以x 1+x 2=6mk 1-3k 2=12①,y 1+y 2=k (x 1+x 2)+2m =12k +2m =2②,由①②解得k =2,故选D.13.由动点P 向圆x 2+y 2=1引两条切线PA ,PB ,切点分别为A ,B ,∠APB =60°,则动点P 的轨迹方程为________.答案 x 2+y 2=4解析 设P (x ,y ),x 2+y 2=1的圆心为O ,因为∠APB =60°,OP 平分∠APB ,所以∠OPB =30°,因为|OB |=1,∠OBP 为直角,所以|OP |=2,所以x 2+y 2=4.14.(2019·某某模拟)△ABC 的顶点A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是________.答案x 29-y 216=1(x >3)解析 如图,令内切圆与三边的切点分别为D ,E ,F ,可知|AD |=|AE |=8,|BF |=|BE |=2,|CD |=|CF |,所以|CA |-|CB |=|AE |-|BE |=8-2=6<|AB |=10.根据双曲线定义,所求轨迹是以A ,B 为焦点,实轴长为6的双曲线的右支,其方程为x 29-y 216=1(x >3).15.已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C ,则曲线C 的方程为________.答案x 24+y 23=1(x ≠-2) 解析 设圆M 的半径为r 1,圆N 的半径为r 2,圆P 的半径为R .因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2,短半轴长为3的椭圆(左顶点除外),其方程为x 24+y 23=1(x ≠-2).16.若过抛物线y 2=4x 的焦点作直线与其交于M ,N 两点,作平行四边形MONP ,则点P的轨迹方程为________.答案 y 2=4(x -2)解析 (1)当直线斜率k 存在时,设直线方程为y =k (x -1),点M (x 1,y 1),N (x 2,y 2),P (x ,y ),由OM →=NP →,得(x 1,y 1)=(x -x 2,y -y 2).得x 1+x 2=x ,y 1+y 2=y .由⎩⎪⎨⎪⎧y =k x -1,y 2=4x ,联立得x =x 1+x 2=2k 2+4k2.y =y 1+y 2=4kk 2,消去参数k ,得y 2=4(x -2).(2)当直线斜率k 不存在时,直线方程为x =1,由O P →=2O F →得P (2,0),适合y 2=4(x -2).综合(1)(2),点P 的轨迹方程为y 2=4(x -2).17.(2019·某某质检)如图所示,动圆C 1:x 2+y 2=t 2,1<t <3,与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点,点A 1,A 2分别为C 2的左、右顶点.(1)当t 为何值时,矩形ABCD 的面积取得最大值?并求出其最大面积; (2)求直线AA 1与直线A 2B 交点M 的轨迹方程. 解 (1)设A (x 0,y 0),则S 矩形ABCD =4|x 0y 0|, 由x 209+y 20=1,得y 20=1-x 209, 从而x 20y 2=x 20⎝ ⎛⎭⎪⎫1-x 209=-19⎝ ⎛⎭⎪⎫x 20-922+94.当x 20=92,y 20=12时,S max =6.从而t 2=x 20+y 20=5,t =5,所以当t =5时,矩形ABCD 的面积取到最大值6. (2)由椭圆C 2:x 29+y 2=1,知A 1(-3,0),A 2(3,0),由曲线的对称性及A (x 0,y 0),得B (x 0,-y 0), 设点M 的坐标为(x ,y ), 直线AA 1的方程为y =y 0x 0+3(x +3),①直线A 2B 的方程为y =-y 0x 0-3(x -3),② 由①②得y 2=-y 20x 20-9(x 2-9).③又点A (x 0,y 0)在椭圆C 2上,故y 20=1-x 209.④将④代入③,得x 29-y 2=1(x <-3,y <0).因此点M 的轨迹方程为x 29-y 2=1(x <-3,y <0).18.(2019·某某某某模拟)已知动点M (x ,y )满足:x +12+y 2+x -12+y 2=2 2.(1)求动点M 的轨迹E 的方程;(2)设过点N (-1,0)的直线l 与曲线E 交于A ,B 两点,点A 关于x 轴的对称点为C (点C 与点B 不重合).证明:直线BC 恒过定点,并求该定点的坐标.解 (1)由已知,动点M 到点P (-1,0),Q (1,0)的距离之和为22,且 |PQ |<22,所以动点M 的轨迹为椭圆,且a =2,c =1,所以b =1,所以动点M 的轨迹E 的方程为x 22+y 2=1.(2)证明:设A (x 1,y 1),B (x 2,y 2),则C (x 1,-y 1), 由已知得直线l 的斜率存在,设斜率为k , 则直线l 的方程为y =k (x +1).由⎩⎪⎨⎪⎧y =k x +1,x 22+y 2=1得(1+2k 2)x 2+4k 2x +2k 2-2=0,所以x 1+x 2=-4k 21+2k 2,x 1x 2=2k 2-21+2k 2.又直线BC 的方程为y -y 2=y 2+y 1x 2-x 1(x -x 2), 即y =y 2+y 1x 2-x 1x -x 1y 2+x 2y 1x 2-x 1, 令y =0,得x =x 1y 2+x 2y 1y 2+y 1=2kx 1x 2+k x 1+x 2k x 1+x 2+2k=2x 1x 2+x 1+x 2x 1+x 2+2=4k 2-41+2k 2-4k21+2k 2-4k 21+2k 2+2=-2, 所以直线BC 恒过定点D (-2,0).19.(2016·全国卷Ⅲ)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.解 由题意知F ⎝ ⎛⎭⎪⎫12,0. 设l 1:y =a ,l 2:y =b ,则ab ≠0,且A ⎝ ⎛⎭⎪⎫a 22,a ,B ⎝ ⎛⎭⎪⎫b 22,b ,P ⎝ ⎛⎭⎪⎫-12,a ,Q ⎝ ⎛⎭⎪⎫-12,b , R ⎝ ⎛ -12,⎭⎪⎫a +b 2. 记过A ,B 两点的直线为l ,则l 的方程为2x -(a +b )y +ab =0. (1)证明:由于F 在线段AB 上,故1+ab =0. 记AR 的斜率为k 1,FQ 的斜率为k 2,则k 1=a -b 1+a 2=a -b a 2-ab =1a =-aba=-b =k 2.所以AR ∥FQ .(2)设l 与x 轴的交点为D (x 1,0),则S △ABF =12|b -a |·|FD |=12|b -a |⎪⎪⎪⎪⎪⎪x 1-12,S △PQF =|a -b |2. 由题设可得2×12|b -a |⎪⎪⎪⎪⎪⎪x 1-12=|a -b |2, 所以x 1=0(舍去)或x 1=1.设满足条件的AB 的中点为E (x ,y ). 当AB 与x 轴不垂直时, 由k AB =k DE 可得2a +b =yx -1(x ≠1). 而a +b2=y ,所以y 2=x -1(x ≠1).当AB 与x 轴垂直时,E 与D 重合.所以所求轨迹方程为y 2=x -1.20.(2019·某某模拟)已知椭圆Γ:x 2a 2+y 2b2=1(a >b >0)的右焦点与短轴两端点构成一个面积为2的等腰直角三角形,O 为坐标原点.(1)求椭圆Γ的方程;(2)设点A 在椭圆Γ上,点B 在直线y =2上,且OA ⊥OB ,求证:1|OA |2+1|OB |2为定值;(3)设点C 在椭圆Γ上运动,OC ⊥OD ,且点O 到直线CD 的距离为常数3,求动点D 的轨迹方程.解 (1)∵椭圆Γ:x 2a 2+y 2b2=1(a >b >0)的右焦点与短轴两端点构成一个面积为2的等腰直角三角形,O 为坐标原点,∴b =c =2,∴a =2+2=2,∴椭圆Γ的方程为x 24+y 22=1.(2)证明:设A (x 0,y 0),则OB 的方程为x 0x +y 0y =0,由y =2,得B ⎝⎛⎭⎪⎫-2y 0x 0,2,∴1|OA |2+1|OB |2=1x 20+y 20+14+4y 20x 2=4+x 24x 20+y 2=4+x 24⎝⎛⎭⎪⎫x 20+2-x 22=12, ∴1|OA |2+1|OB |2为定值12. (3)设C (x 1,y 1),D (x ,y ),由OC ⊥OD ,得x 1x +y 1y =0,①由点C 在椭圆上,得x 214+y 212=1,②联立①②,得x 21=4y 22x 2+y 2,y 21=4x 22x 2+y2.③由OC ⊥OD ,点O 到CD 的距离为3,得|OC |·|OD |=3|CD |, ∴|OC |2·|OD |2=3(|OC |2+|OD |2).将③代入得 1|OC |2+1|OD |2=1x 21+y 21+1x 2+y2 =14y 22x 2+y 2+4x 22x 2+y2+1x 2+y 2=2x 2+y 2+44x 2+y 2=13, 化简,得点D 的轨迹方程为y 212-x 26=1.。

高考数学一轮复习第8章解析几何第7讲抛物线

高考数学一轮复习第8章解析几何第7讲抛物线

第七讲 抛物线知识梳理·双基自测 知识梳理知识点一 抛物线的定义 抛物线需要满足以下三个条件: (1)在平面内;(2)动点到定点F 的距离与到定直线l 的距离__相等__; (3)定点F 与定直线l 的关系为__点F ∉l __. 知识点二 抛物线的标准方程与几何性质标准 方程y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)p 的几何意义:焦点F 到准线l 的距离图形顶点 O (0,0)对称轴 y =0x =0焦点 F ⎝⎛⎭⎫p 2,0 F ⎝⎛⎭⎫-p2,0 F ⎝⎛⎭⎫0,p 2 F ⎝⎛⎭⎫0,-p 2 离心率 e =__1__ 准线 方程 __x =-p 2____x =p 2____y =-p 2____y =p 2__范围 x ≥0,y ∈R x ≤0,y ∈R y ≥0,x ∈R y ≤0,x ∈R 开口方向 向右 向左 向上 向下 焦半径 (其中P (x 0,y 0)) |PF |=__x 0+p2__|PF |=__-x 0+p2__|PF |=__y 0+p2__|PF |=__-y 0+p2__重要结论抛物线焦点弦的处理规律直线AB 过抛物线y 2=2px (p >0)的焦点F ,交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如图.(1)y 1y 2=-p 2,x 1x 2=p 24. (2)|AB |=x 1+x 2+p ,x 1+x 2≥2x 1x 2=p ,即当x 1=x 2时,弦长最短为2p . (3)1|AF |+1|BF |=2p. (4)弦长AB =2psin 2α(α为AB 的倾斜角).(5)以AB 为直径的圆与准线相切.(6)焦点F 对A ,B 在准线上射影的张角为90°. (7)A 、O 、D 三点共线;B 、O 、C 三点共线.双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( × )(2)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎝⎛⎭⎫a 4,0,准线方程是x =-a4.( × ) (3)抛物线既是中心对称图形,又是轴对称图形.( × ) (4)AB 为抛物线y 2=2px (p >0)的过焦点F ⎝⎛⎭⎫p 2,0的弦,若A (x 1,y 1),B (x 2,y 2),则x 1x 2=p24,y 1y 2=-p 2,弦长|AB |=x 1+x 2+p .( √ )(5)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通径,那么抛物线x 2=-2ay (a >0)的通径长为2a .( √ )题组二 走进教材2.(必修2P 69例4)(2021·甘肃张掖诊断)过抛物线y 2=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,如果x 1+x 2=6,则|PQ |等于( B )A .9B .8C .7D .6[解析] 抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.根据题意可得,|PQ |=|PF |+|QF |=x 1+1+x 2+1=x 1+x 2+2=8.3.(2021·河南郑州名校调研)抛物线y =-4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是( B ) A .-1716B .-1516C .716D .1516[解析] 由抛物线的方程y =-4x 2,可得标准方程为x 2=-14y ,则焦点坐标为F ⎝⎛⎭⎫0,-116,准线方程为y =116,设M (x 0,y 0),则由抛物线的定义可得-y 0+116=1,解得y 0=-1516.故选B . 题组三 走向高考4.(2019·课标全国Ⅱ)若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p=1的一个焦点,则p =( D ) A .2 B .3 C .4D .8[解析] ∵抛物线y 2=2px (p >0)的焦点坐标为⎝⎛⎭⎫p 2,0, ∴椭圆x 23p +y 2p =1的一个焦点为⎝⎛⎭⎫p 2,0, ∴3p -p =p 24,∴p =8.故选D .5.(2020·新课标Ⅰ)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( C )A .2B .3C .6D .9[解析] A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,因为抛物线上的点到焦点的距离和到准线的距离相等,故有:9+p2=12⇒p =6;故选C .考点突破·互动探究考点一 抛物线的定义及应用——多维探究 角度1 轨迹问题例1 (1)动圆与定圆A :(x +2)2+y 2=1外切,且和直线x =1相切,则动圆圆心的轨迹是( D ) A .直线 B .椭圆 C .双曲线D .抛物线[解析] 设动圆的圆心为C ,则C 到定圆A :(x +2)2+y 2=1的圆心的距离等于r +1,而动圆的圆心到直线x =1的距离等于r ,所以动圆到直线x =2距离为r +1,即动圆圆心到定点(-2,0)和定直线x =2的距离相等,根据抛物线的定义知,动圆的圆心轨迹为抛物线,所以答案为D .角度2 到焦点与到定点距离之和最小问题(2)①(2021·河北保定七校联考)已知M是抛物线x2=4y上一点,F为其焦点,C为圆(x+1)2+(y-2)2=1的圆心,则|MF|+|MC|的最小值为(B)A.2 B.3C.4 D.5②(2021·山西运城联考)已知抛物线C:x2=8y的焦点为F,O为原点,点P是抛物线C的准线上的一动点,点A在抛物线C上,且|AF|=4,则|P A|+|PO|的最小值为(B)A.4 2 B.213C.313 D.4 6[解析]①设抛物线x2=4y的准线方程为l:y=-1,C为圆(x+1)2+(y-2)2=1的圆心,所以C的坐标为(-1,2),过M作l的垂线,垂足为E,根据抛物线的定义可知|MF|=|ME|,所以问题求|MF|+|MC|的最小值,就转化为求|ME|+|MC|的最小值,由平面几何的知识可知,当C,M,E在一条直线上时,此时CE⊥l,|ME|+|MC|有最小值,最小值为|CE|=2-(-1)=3,故选B.②由抛物线的定义知|AF|=y A+p2=y A+2=4,∴y A=2,代入x2=8y,得x A=±4,不妨取A(4,2),又O关于准线y=-2的对称点为O′(0,-4),∴|P A|+|PO|=|P A|+|PO′|≥|AO′|=(-4-2)2+(0-4)2=213,当且仅当A、P、O′共线时取等号,故选B.[引申]本例(2)①中,(ⅰ)|MC|-|MF|的最大值为__2__;最小值为__-2__;(ⅱ)若N为⊙C上任一点,则|MF|+|MN|的最小值为__2__.角度3到准线与到定点距离之和最小问题(3)已知圆C:x2+y2+6x+8y+21=0,抛物线y2=8x的准线为l,设抛物线上任意一点P到直线l的距离为d,则d+|PC|的最小值为(A)A.41 B.7C.6 D.9[解析]由题意得圆的方程为(x+3)2+(y+4)2=4,圆心C的坐标为(-3,-4).由抛物线定义知,当d+|PC |最小时为圆心与抛物线焦点间的距离,即d +|PC |=(-3-2)2+(-4)2=41.角度4 到两定直线的距离之和最小问题(4)(2021·北京人大附中测试)点P 在曲线y 2=4x 上,过P 分别作直线x =-1及y =x +3的垂线,垂足分别为G ,H ,则|PG |+|PH |的最小值为( B )A .322B .2 2C .322+1D .2+2[解析] 由题可知x =-1是抛物线的准线,焦点F (1,0),由抛物线的性质可知|PG |=|PF |,∴|PG |+|PH |=|PF |+|PH |≤|FH |=|1-0+3|2=22,当且仅当H 、P 、F 三点共线时取等号,∴|PG |+|PH |的最小值为22.故选B .名师点拨利用抛物线的定义可解决的常见问题(1)轨迹问题:用抛物线的定义可以确定动点与定点、定直线距离有关的轨迹是否为抛物线. (2)距离问题:涉及抛物线上的点到焦点的距离和到准线的距离问题时,注意在解题中利用两者之间的关系进行相互转化.(3)看到准线想焦点,看到焦点想准线,这是解决抛物线焦点弦有关问题的重要途径. 〔变式训练1〕(1)(角度1)到定点A (0,2)的距离比到定直线l :y =-1大1的动点P 的轨迹方程为__x 2=8y __. (2)(角度1)(2021·吉林省吉林市调研)已知抛物线y 2=4x 的焦点F ,点A (4,3),P 为抛物线上一点,且P 不在直线AF 上,则△P AF 周长取最小值时,线段PF 的长为( B )A .1B .134C .5D .214(3)(角度2)(2021·山西大学附中模拟)已知点Q (22,0)及抛物线y =x 24上一动点P (x ,y ),则y +|PQ |的最小值是__2__.(4)(角度3)(2021·上海虹口区二模)已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和l 2的距离之和的最小值为( C )A .3716B .115C .2D .74[解析] (1)由题意知P 到A 的距离等于其到直线y =-2的距离,故P 的轨迹是以A 为焦点,直线y =-2为准线的抛物线,所以其方程为x 2=8y .(2)求△P AF 周长的最小值,即求|P A |+|PF |的最小值,设点P 在准线上的射影为D ,根据抛物线的定义,可知|PF |=|PD |,因此,|P A |+|PF |的最小值,即|P A |+|PD |的最小值.根据平面几何知识,可得当D ,P ,A 三点共线时|P A |+|PD |最小,此时P (94,3),且|PF |=94+1=134,故选B .(3)抛物线y =x 24即x 2=4y ,其焦点坐标为F (0,1),准线方程为y =-1.因为点Q 的坐标为(22,0),所以|FQ |=(22)2+12=3.过点P 作准线的垂线PH ,交x 轴于点D ,如图所示.结合抛物线的定义,有y +|PQ |=|PD |+|PQ |=|PH |+|PQ |-1=|PF |+|PQ |-1≥|FQ |-1=3-1=2,即y +|PQ |的最小值是2.(4)直线l 2:x =-1是抛物线y 2=4x 的准线,抛物线y 2=4x 的焦点为F (1,0),则点P 到直线l 2:x =-1的距离等于PF ,过点F 作直线l 1:4x -3y +6=0的垂线,和抛物线的交点就是点P ,所以点P 到直线l 1:4x -3y +6=0的距离和到直线l 2:x =-1的距离之和的最小值就是点F (1,0)到直线l 1:4x -3y +6=0的距离,所以最小值为|4-0+6|32+42=2,故选C .考点二 抛物线的标准方程——自主练透例2 (1)过点P (-3,2)的抛物线的标准方程为__y 2=-43x 或x 2=92y __.(2)焦点在直线x -2y -4=0上的抛物线的标准方程为__y 2=16x 或x 2=-8y __,准线方程为__x =-4或y =2__.(3)如图,过抛物线y 2=2px (p >0)的焦点F 的直线依次交抛物线及准线于点A ,B ,C ,若|BC |=2|BF |,且|AF |=3,则抛物线的方程为( B )A .y 2=32xB .y 2=3xC .y 2=92xD .y 2=9x[解析] (1)设所求抛物线的方程为y 2=-2px (p >0)或x 2=2py (p >0). ∵过点(-3,2),∴4=-2p ·(-3)或9=2p ·2. ∴p =23或p =94.∴所求抛物线的标准方程为y 2=-43x 或x 2=92y .(2)令x =0,得y =-2,令y =0,得x =4. ∴抛物线的焦点为(4,0)或(0,-2). 当焦点为(4,0)时,p2=4,∴p =8,此时抛物线方程为y 2=16x ; 当焦点为(0,-2)时,p2=2,∴p =4,此时抛物线方程为x 2=-8y .∴所求的抛物线的标准方程为y 2=16x 或x 2=-8y , 对应的准线方程分别是x =-4,y =2.(3)如图,分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设|BF |=a ,则由已知得|BC |=2a ,由定义得|BD |=a ,故∠BCD =30°. 在直角三角形ACE 中,∵|AE |=|AF |=3,|AC |=3+3a ,2|AE |=|AC |, ∴3+3a =6,从而得a =1.∵BD ∥FG ,∴|BD ||FG |=|BC ||FC |,即1p =23,求得p =32,因此抛物线的方程为y 2=3x .名师点拨求抛物线的标准方程的方法(1)求抛物线的标准方程常用待定系数法,若焦点位置确定,因为未知数只有p ,所以只需一个条件确定p 值即可.(2)因为抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量.一般焦点在x 轴上的抛物线的方程可设为y 2=ax (a ≠0);焦点在y 轴上的抛物线的方程可设为x 2=ay (a ≠0).〔变式训练2〕(1)(2021·重庆沙坪坝区模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,过点(p,0)且垂直于x 轴的直线与抛物线C 在第一象限内的交点为A ,若|AF |=1,则抛物线C 的方程为( A )A .y 2=43xB .y 2=2xC .y 2=3xD .y 2=4x(2)(2021·安徽蚌埠一中期中)已知抛物线的顶点在原点,焦点在y 轴上,其上的点P (m ,-3)到焦点的距离为5,则抛物线方程为( D )A .x 2=8yB .x 2=4yC .x 2=-4yD .x 2=-8y[解析] (1)由题意知x A =p ,又|AF |=x A +p 2=3p 2=1,∴p =23,∴抛物线C 的方程为y 2=43x ,故选A .(2)由题意可知抛物线的焦点在y 轴负半轴上,故设其方程为x 2=-2py (p >0),所以3+p2=5,即p =4,所以所求抛物线方程为x 2=-8y ,故选D .考点三 抛物线的几何性质——师生共研例3 (1)(2021·广西四校联考)已知抛物线y 2=2px (p >0)上横坐标为4的点到此抛物线焦点的距离为9,则该抛物线的焦点到准线的距离为( C )A .4B .9C .10D .18(2)(2021·四川眉山模拟)点F 为抛物线C :y 2=2px (p >0)的焦点,过F 的直线交抛物线C 于A ,B 两点(点A 在第一象限),过A 、B 分别作抛物线C 的准线的垂线段,垂足分别为M 、N ,若|MF |=4,|NF |=3,则直线AB 的斜率为( D )A .1B .724C .2D .247[解析] (1)抛物线y 2=2px 的焦点为⎝⎛⎭⎫p 2,0,准线方程为x =-p 2.由题意可得4+p2=9,解得p =10,所以该抛物线的焦点到准线的距离为10.故选C .(2)由抛物线定义知|AM |=|AF |,|BN |=|BF |,∴∠AFM +∠BFM =360°-∠MAF -∠NBF2=90°,∴∠MFN =90°, 又|MF |=4,|NF |=3, ∴|MN |=5,∴p =|KF |=|MF |·|NF ||MN |=125, 又∠AFM =∠AMF =∠MFK ,∴k AB =tan(180°-2∠MFK )=-2tan ∠MFK 1-tan 2∠MFK =-831-⎝⎛⎭⎫432=247.故选D .名师点拨在解决与抛物线的性质有关的问题时,要注意利用几何图形形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.〔变式训练3〕(1)(2021·广东茂名五校联考)设抛物线y 2=2px (p >0)的焦点为F (1,0),过焦点的直线交抛物线于A 、B 两点,若|AF |=4|BF |,则|AB |=__254__.(2)(2021·湖北荆州模拟)从抛物线y 2=4x 在第一象限内的一点P 引抛物线准线的垂线,垂足为M ,且|PM |=9,设抛物线的焦点为F ,则直线PF 的斜率为( C )A .627B .1827C .427D .227[解析] (1)∵p2=1,∴p =2,不妨设直线AB 方程为x =my +1, A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y 2=4x x =my +1,得y 2-4my -4=0, ∴y 1y 2=-4,又|AF |=4|BF |,∴y 1=-4y 2, ∴y 2=-1,从而x 2=14,∴|BF |=1+14=54,∴|AB |=5|BF |=254.(2)设P (x 0,y 0),由抛物线y 2=4x , 可知其焦点F 的坐标为(1,0), 故|PM |=x 0+1=9,解得x 0=8, 故P 点坐标为(8,42), 所以k PF =0-421-8=427.故选C .考点四 直线与抛物线的综合问题——师生共研例4 (1)已知抛物线y 2=2px (p >0)的焦点F 与双曲线x 212-y 24=1的一个焦点重合,直线y =x -4与抛物线交于A ,B 两点,则|AB |等于( B )A .28B .32C .20D .40(2)(2021·陕西师大附中期中)已知抛物线y 2=4x 的一条弦AB 恰好以P (1,1)为中点,则弦AB 所在直线的方程是( B )A .y =x -1B .y =2x -1C .y =-x +2D .y =-2x +3(3)(2021·湖南五市十校联考)已知抛物线C :y 2=2px (p >0),直线y =x -1与C 相交所得的长为8. ①求p 的值;②过原点O 的直线l 与抛物线C 交于M 点,与直线x =-1交于H 点,过点H 作y 轴的垂线交抛物线C 于N 点,求证:直线MN 过定点. [解析] (1)双曲线x 212-y 24=1的焦点坐标为(±4,0),故抛物线的焦点F 的坐标为(4,0).因此p =8,故抛物线方程为y 2=16x ,易知直线y =x -4过抛物线的焦点.设A 、B 两点坐标分别为(x 1,y 1),(x 2,y 2).由⎩⎪⎨⎪⎧y 2=16x ,y =x -4,可得x 2-24x +16=0,故x 1+x 2=24. 故|AB |=x 1+x 2+p =24+8=32.故选B .(2)设A (x 1,y 1),B (x 2,y 2),∴y 1+y 2=2,由⎩⎪⎨⎪⎧y 21=4x 1y 22=4x 2,知k AB =y 1-y 2x 1-x 2=4y 1+y 2=2, ∴AB 的方程为y -1=2(x -1),即2x -y -1=0,故选B .(3)①由⎩⎪⎨⎪⎧y 2=2px y =x -1,消x 可得y 2-2py -2p =0,∴y 1+y 2=2p ,y 1y 2=-2p ,∴弦长为1+12·(y 1+y 2)2-4y 1y 2=2·4p 2+8p =8,解得p =2或p =-4(舍去),∴p =2,②由①可得y 2= 4x ,设M ⎝⎛⎭⎫14y 20,y 0, ∴直线OM 的方程y =4y 0x , 当x =-1时,∴y H =-4y 0, 代入抛物线方程y 2=4x ,可得x N =4y 20, ∴N ⎝⎛⎭⎫4y 20,-4y 0, ∴直线MN 的斜率k =y 0+4y 0y 204-4y 20=4y 0y 20-4, 直线MN 的方程为y -y 0=4y 0y 20-4⎝⎛⎭⎫x -14y 20,整理可得y =4y 0y 20-4(x -1), 故直线MN 过点(1,0).名师点拨(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要将两方程联立,消元,用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点(设焦点在x 轴的正半轴上),可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.提醒:涉及弦的中点、斜率问题一般用“点差法”求解.〔变式训练4〕(1)(2021·甘肃诊断)直线l 过抛物线y 2=2px (p >0)的焦点,且交抛物线于A ,B 两点,交其准线于C 点,已知|AF |=4,CB →=3BF →,则p =( C )A .2B .43C .83D .4(2)(2021·安徽皖南八校模拟)已知抛物线C :y 2=2px (p >0)的焦点F 到直线x -y +1=0的距离为2. ①求抛物线C 的方程;②过点F 的直线l 与C 交于A ,B 两点,交y 轴于点P .若|AB →|=3|BP →|,求直线l 的方程.[解析] (1)过A ,B 分别作准线的垂线交准线于E ,D 两点,设|BF |=a ,根据抛物线的性质可知,|BD |=a ,|AE |=4,根据平行线段比例可知|BD ||AE |=|CB ||AC |, 即a 4=3a 3a +a +4,解得a =2, 又|BD ||GF |=|BC ||CF |,即a p =3a 4a, 解得p =43a =83,故选C .(2)①由抛物线C :y 2=2px (p >0),可得焦点F ⎝⎛⎭⎫p 2,0,因为焦点到x -y +1=0的距离为2,即⎪⎪⎪⎪p 2+12=2,解得p =2,所以抛物线C 的方程y 2=4x .②由①知焦点F (1,0),设直线l :y =k (x -1),A (x 1,y 1),B (x 2,y 2),联立方程组⎩⎪⎨⎪⎧y =k (x -1)y 2=4x ,整理得 k 2x 2-(2k 2+4)x +k 2=0,所以x 1+x 2=2+4k2, ① x 1x 2=1,②又由|AB →|=3|BP →|,得AB →=3BP →,可得x 1=4x 2,③ 由②③,可得x 1=2,x 2=12, 代入①,可得2+4k 2=52,解得k =±22, 所以直线l 的方程为22x - y -22=0或22x +y -22=0.名师讲坛·素养提升巧解抛物线的切线问题例5 (1)抛物线C 1:x 2=2py (p >0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p =( D )A .316B .38C .233D .433(2)(2019·新课标Ⅲ,节选)已知曲线C :y =x 22,D 为直线y =-12上的动点,过D 作C 的两条切线,切点分别为A ,B .证明:直线AB 过定点.[解析] (1)抛物线C 1:x 2=2py (p >0)的焦点坐标为⎝⎛⎭⎫0,p 2,双曲线x 23-y 2=1的右焦点坐标为(2,0),两点连线的方程为y =-p 4(x -2),联立⎩⎨⎧ y =-p 4(x -2),y =12p x 2,得2x 2+p 2x -2p 2=0.设点M 的横坐标为m ,易知在M 点处切线的斜率存在,则在点M 处切线的斜率为y ′⎪⎪⎪⎪x =m =⎝⎛⎭⎫12p x 2′x=m =m p. 又双曲线x 23-y 2=1的渐近线方程为x 3±y =0,其与切线平行,所以m p =33,即m =33p ,代入2x 2+p 2x -2p 2=0,得p =433或p =0(舍去). (2)设D ⎝⎛⎭⎫t ,-12,A (x 1,y 1),则x 21=2y 1,由于y ′=x , ∴切线DA 的斜率为x 1,故y 1+12x 1-t=x 1, 整理得:2tx 1-2y 1+1=0.设B (x 2,y 2),同理可得2tx 2-2y 2+1=0.故直线AB 的方程为2tx -2y +1=0,即y -12=tx . ∴直线AB 过定点⎝⎛⎭⎫0,12.名师点拨利用导数工具解决抛物线的切线问题,使问题变得巧妙而简单,若用判别式解决抛物线的切线问题,计算量大,易出错.注意:直线与抛物线只有一个公共点是直线与抛物线相切的必要不充分条件,过抛物线外一点与抛物线只有一个公共点的直线有0条或3条;过抛物线上一点和抛物线只有一个公共点的直线有2条.〔变式训练5〕(1)已知抛物线C :y 2=2px (p >0),过点M ⎝⎛⎭⎫-p 2,0作C 的切线,则切线的斜率为__±1__. (2)已知抛物线x 2=8y ,过点P (b,4)作该抛物线的切线P A ,PB ,切点为A ,B ,若直线AB 恒过定点,则该定点为( C )A .(4,0)B .(3,2)C .(0,-4)D .(4,1)[解析] (1)设斜率为k ,则切线为y =k ⎝⎛⎭⎫x +p 2代入y 2=2px 中得k 2x 2+p (k 2-2)x +k 2p 24=0. Δ=0,即p 2(k 2-2)2-4·k 2·k 2p 24=0.解得k 2=1,∴k =±1.(2)设A ,B 的坐标为(x 1,y 1),(x 2,y 2),∵y =x 28,y ′=x4,∴P A ,PB 的方程y -y 1=x 14(x -x 1),y -y 2=x 24(x -x 2),由y 1=x 218,y 2=x 228,可得y =x 14x -y 1,y =x 24x -y 2,∵切线P A ,PB 都过点P (b,4),∴4=x 14×b -y 1,4=x 24×b -y 2,故可知过A ,B 两点的直线方程为4=b4x -y ,当x =0时,y =-4,∴直线AB 恒过定点(0,-4).故选C .。

2020版高考数学大一轮复习第九章平面解析几何第8讲曲线与方程练习(含解析)(最新整理)

2020版高考数学大一轮复习第九章平面解析几何第8讲曲线与方程练习(含解析)(最新整理)

第8讲曲线与方程一、选择题1。

方程(2x+3y-1)(错误!-1)=0表示的曲线是()A。

两条直线 B.两条射线C.两条线段D。

一条直线和一条射线解析原方程可化为错误!或错误!-1=0,即2x+3y-1=0(x≥3)或x=4,故原方程表示的曲线是一条直线和一条射线.答案D2。

(2017·衡水模拟)若方程x2+y2a=1(a是常数),则下列结论正确的是()A.任意实数a方程表示椭圆B。

存在实数a方程表示椭圆C。

任意实数a方程表示双曲线 D.存在实数a方程表示抛物线解析当a>0且a≠1时,方程表示椭圆,故选B。

答案B3。

(2017·长春模拟)设圆(x+1)2+y2=25的圆心为C,A(1,0)是圆内一定点,Q为圆周上任一点。

线段AQ的垂直平分线与CQ的连线交于点M,则M的轨迹方程为( )A。

错误!-错误!=1 B。

错误!+错误!=1C.错误!-错误!=1 D。

错误!+错误!=1解析∵M为AQ的垂直平分线上一点,则|AM|=|MQ|,∴|MC|+|MA|=|MC|+|MQ|=|CQ|=5,故M的轨迹是以定点C,A为焦点的椭圆。

∴a=52,∴c=1,则b2=a2-c2=214,∴M的轨迹方程为错误!+错误!=1。

答案D4.设点A为圆(x-1)2+y2=1上的动点,PA是圆的切线,且|PA|=1,则点P的轨迹方程是()A。

y2=2x B。

(x-1)2+y2=4C。

y2=-2x D。

(x-1)2+y2=2解析如图,设P(x,y),圆心为M(1,0),连接MA,则MA⊥PA,且|MA|=1,又∵|PA|=1,∴|PM|=|MA|2+|PA|2=2,即|PM|2=2,∴(x-1)2+y2=2.答案D5.平面直角坐标系中,已知两点A(3,1),B(-1,3),若点C满足错误!=λ1错误!+λ2 OB→(O为原点),其中λ,λ2∈R,且λ1+λ2=1,则点C的轨迹是()1A.直线B.椭圆C.圆D.双曲线解析设C(x,y),因为错误!=λ1错误!+λ2错误!,所以(x,y)=λ1(3,1)+λ2(-1,3),即错误!解得错误!又λ1+λ2=1,所以错误!+错误!=1,即x+2y=5 ,所以点C的轨迹为直线,故选A.答案A二、填空题6。

(浙江专用)2020版高考数学大一轮复习第九章平面解析几何第7讲抛物线练习(含解析)(最新整理)

(浙江专用)2020版高考数学大一轮复习第九章平面解析几何第7讲抛物线练习(含解析)(最新整理)

第7讲抛物线[基础达标]1.已知点A(-2,3)在抛物线C:y2=2px(p〉0)的准线上,记C的焦点为F,则直线AF 的斜率为()A.-错误!B.-1C.-错误!D.-错误!解析:选C.由已知,得准线方程为x=-2,所以F的坐标为(2,0).又A(-2,3),所以直线AF的斜率为k=3-0-2-2=-34.2.已知抛物线C1:x2=2py(p>0)的准线与抛物线C2:x2=-2py(p〉0)交于A,B两点,C1的焦点为F,若△FAB的面积等于1,则C1的方程是( )A.x2=2y B.x2=2yC.x2=y D.x2=错误!y解析:选 A.由题意得,F错误!,不妨设A错误!,B(-p,-错误!),所以S△FAB=错误!·2p·p=1,则p=1,即抛物线C1的方程是x2=2y,故选A。

3.(2019·丽水调研)已知等边△ABF的顶点F是抛物线C:y2=2px(p>0)的焦点,顶点B在抛物线的准线l上且AB⊥l,则点A的位置()A.在C开口内B.在C上C.在C开口外D.与p值有关解析:选B。

设B错误!,由已知有AB中点的横坐标为错误!,则A错误!,△ABF是边长|AB|=2p的等边三角形,即|AF|=错误!=2p,所以p2+m2=4p2,所以m=±错误!p,所以A 错误!,代入y2=2px中,得点A在抛物线C上,故选B。

4.已知抛物线y2=2px(p>0)的焦点为F,点P1(x1,y1),P2(x2,y2),P3(x3,y3)在抛物线上,且2x2=x1+x3,则有()A.|FP1|+|FP2|=|FP3|B.|FP1|2+|FP2|2=|FP3|2C.|FP1|+|FP3|=2|FP2|D.|FP1|·|FP3|=|FP2|2解析:选 C.根据抛物线的定义知|FP1|=x1+错误!,|FP2|=x2+错误!,|FP3|=x3+错误!,所以|FP1|+|FP3|=错误!+错误!=(x1+x3)+p=2x2+p=2错误!=2|FP2|。

2020版高考数学新增分大一轮讲义 习题第九章 平面解析几何 9.2 Word版含解析

2020版高考数学新增分大一轮讲义 习题第九章 平面解析几何 9.2 Word版含解析

§两条直线的位置关系考情考向分析以考查两条直线的位置关系、两点间的距离、点到直线的距离、两条直线的交点坐标为主,有时也会与圆、椭圆、双曲线、抛物线交汇考查.题型主要以填空题为主,要求相对较低,但内容很重要,特别是距离公式,是高考考查的重点..两条直线的位置关系()两条直线平行与垂直①两条直线平行:(ⅰ)对于两条不重合的直线,,若其斜率分别为,,则有∥⇔=.(ⅱ)当直线,不重合且斜率都不存在时,∥.②两条直线垂直:(ⅰ)如果两条直线,的斜率存在,设为,,则有⊥⇔·=-.(ⅱ)当其中一条直线的斜率不存在,而另一条的斜率为时,⊥.()两条直线的交点直线:++=,:++=,则与的交点坐标就是方程组的解..几种距离()两点(,),(,)之间的距离=.()点(,)到直线:++=的距离=.()两条平行线++=与++=(其中≠)间的距离=.概念方法微思考.若两条直线与垂直,则它们的斜率有什么关系?提示当两条直线与的斜率都存在时,12·l l k k =-;当两条直线中一条直线的斜率为,另一条直线的斜率不存在时,与也垂直. .应用点到直线的距离公式和两平行线间的距离公式时应注意什么?提示()将方程化为最简的一般形式.()利用两平行线之间的距离公式时,应使两平行线方程中,的系数分别对应相等.题组一思考辨析.判断下列结论是否正确(请在括号中打“√”或“×”)()当直线和斜率都存在时,一定有=⇒∥.(×)()如果两条直线与垂直,则它们的斜率之积一定为-.(×)()已知直线:++=,:++=(,,,,,为常数),若直线⊥,则+=.(√)()点(,)到直线=+的距离为.(×)()若点,关于直线:=+(≠)对称,则直线的斜率等于-,且线段的中点在直线上.(√) 题组二教材改编.[]已知点()(>)到直线:-+=的距离为,则=.答案-解析由题意得=.解得=-+或=--.∵>,∴=-+.。

2020版高考数学一轮复习第九章解析几何第七节抛物线教案理(含解析)苏教版(2021-2022学年)

2020版高考数学一轮复习第九章解析几何第七节抛物线教案理(含解析)苏教版(2021-2022学年)

第七节 抛物线1.抛物线的定义满足以下三个条件的点的轨迹是抛物线: (1)在平面内;(2)动点到定点F 的距离与到定直线l 的距离相等; (3)定点不在定直线上.2.抛物线的标准方程和几何性质[1.抛物线2x 2+y =0的准线方程为________.解析:∵抛物线的标准方程为x 2=-错误!y ,∴2p =错误!未定义书签。

, ∴ p2=错误!,故准线方程为y=错误!.ﻬ答案:y =错误!未定义书签。

2.若抛物线y =4x2上的一点M 到焦点的距离为1,则点M 的纵坐标是________. 解析:M 到准线的距离等于M 到焦点的距离,又准线方程为y=-错误!,设M(x,y),则y+错误!未定义书签。

=1,所以y=错误!未定义书签。

答案:错误!未定义书签。

3.若抛物线y2=2px上一点P(2,y0)到其准线的距离为4,则抛物线的标准方程为________.解析:由题意知,抛物线的准线为x=-p2.因为点P(2,y0)到其准线的距离为4,所以错误!=4,所以p=4。

所以抛物线的标准方程为y2=8x。

答案:y2=8x1.抛物线的定义中易忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与直线垂直的直线.2.抛物线标准方程中参数p易忽视,只有p>0才能证明其几何意义是焦点F到准线l的距离,否则无几何意义.[小题纠偏]1.平面内到点(1,1)与到直线x+2y-3=0的距离相等的点的轨迹是________.答案:一条直线2.抛物线8x2+y=0的焦点坐标为________.解析:由8x2+y=0,得x2=-\f(1,8)y.所以2p=错误!,p=错误!未定义书签。

,所以焦点为错误!未定义书签。

答案:错误!错误!未定义书签。

错误![典例引领]1.(2019·徐州调研)在平面直角坐标系xOy中,抛物线y2=16x上横坐标为1的点到其焦点的距离为________.解析:抛物线y2=16x中,p=8,∴准线方程为x=-4,∵抛物线y2=16x上横坐标为1的点到其焦点的距离即为到其准线的距离,∴d=1-(-4)=5。

2020版高考数学大一轮复习第九章平面解析几何第7讲抛物线分层演练文

2020版高考数学大一轮复习第九章平面解析几何第7讲抛物线分层演练文

309教育网 309教育资源库 第7讲 抛物线1.抛物线y =ax 2(a <0)的准线方程是( )A .y =-12aB.y =-14a C .y =12a D .y =14a 解析:选B.抛物线y =ax 2(a <0)可化为x 2=1a y ,准线方程为y =-14a.故选B. 2.直线l 过抛物线y 2=2px (p >0)的焦点,且与抛物线交于A ,B 两点,若线段AB 的长是8,AB 的中点到y 轴的距离是2,则此抛物线方程是( )A .y 2=12xB.y 2=8x C .y 2=6x D .y 2=4x 解析:选B.设A (x 1,y 1),B (x 2,y 2),根据抛物线定义,x 1+x 2+p =8,因为AB 的中点到y 轴的距离是2,所以x 1+x 22=2,所以p =4;所以抛物线方程为y 2=8x .故选B.3.(2018·高考全国卷Ⅰ)设抛物线C :y 2=4x 的焦点为F ,过点(-2,0)且斜率为23的直线与C 交于M ,N 两点,则FM →·FN →=( )A .5B .6C .7D .8 解析:选 D.法一:过点(-2,0)且斜率为23的直线的方程为y =23(x +2),由⎩⎪⎨⎪⎧y =23(x +2),y 2=4x ,得x 2-5x +4=0,解得x =1或x =4,所以⎩⎪⎨⎪⎧x =1,y =2或⎩⎪⎨⎪⎧x =4,y =4,不妨设M (1,2),N (4,4),易知F (1,0),所以FM →=(0,2),FN →=(3,4),所以FM →·FN →=8.故选D.法二:过点(-2,0)且斜率为23的直线的方程为y =23(x +2),由⎩⎪⎨⎪⎧y =23(x +2),y 2=4x ,得x 2。

课标通用版2020版高考数学大一轮复习第九章平面解析几何第7讲抛物线检测文

课标通用版2020版高考数学大一轮复习第九章平面解析几何第7讲抛物线检测文

第讲抛物线[基础题组练].抛物线=(<)的准线方程是( ).=-.=-.=.=解析:选.抛物线=(<)可化为=,准线方程为=-.故选..已知点是抛物线:=(>)上一点,为的焦点,的中点坐标是(,),则的值为( )....解析:选.由题意得,那么在抛物线上,即=,即-+=,解得=..(·四川成都检测)已知抛物线:=的焦点为,点(,-).若线段与抛物线相交于点,则=( )解析:选.由题意,(,),=,设=,则到准线的距离为,的横坐标为-,由三角形相似,可得=,所以=,故选..直线过抛物线=(>)的焦点,且与抛物线交于,两点,若线段的长是,的中点到轴的距离是,则此抛物线方程是( ).=.=.=.=解析:选.设(,),(,),根据抛物线定义,++=,因为的中点到轴的距离是,所以=,所以=;所以抛物线方程为=.故选..抛物线=(>)的焦点为,其准线与双曲线-=相交于,两点,若△为等边三角形,则=.解析:在等边三角形中,边上的高为,=,所以.又因为点在双曲线上,故-=,解得=.答案:.(·云南大理州模拟)在直角坐标系中,有一定点(-,),若线段的垂直平分线过抛物线=(>)的焦点,则该抛物线的准线方程是.解析:依题意可得线段的垂直平分线的方程为-+=,把焦点坐标代入可求得=,所以准线方程为=-.答案:=-.顶点在原点,焦点在轴上的抛物线截直线=-所得的弦长=,求此抛物线方程.解:设所求的抛物线方程为=(≠),(,),(,),把直线=-代入=,得-(+)+=,由Δ=(+)->,得>或<-.又+=,=,所以===,所以=,所以=或=-.故所求的抛物线方程为=或=-..已知抛物线=(>)的焦点为,是抛物线上横坐标为,且位于轴上方的点,到抛物线准线的距离等于,过作垂直于轴,垂足为,的中点为.()求抛物线的方程;()若过作⊥,垂足为,求点的坐标.解:()抛物线=的准线为=-,于是+=,所以=.所以抛物线方程为=.()因为点的坐标是(,),由题意得(,),(,).又因为(,),所以=,因为⊥,所以=-.所以的方程为=(-),①的方程为-=-,②联立①②,解得=,=,所以的坐标为.[综合题组练].已知抛物线=上一动点到轴的距离为,到直线:++=的距离为,则+的最小值是( )++--解析:选.抛物线=的焦点(,),由抛物线的定义可得=-,则+=+-,而+的最小值等于焦点到直线的距离,即(+)==,所以+的最小值是-.。

2020版高考数学大一轮复习第九章平面解析几何8第7讲抛物线新题培优练文(含解析)新人教A版

2020版高考数学大一轮复习第九章平面解析几何8第7讲抛物线新题培优练文(含解析)新人教A版

第 7讲抛物线[ 基础题组练 ]1.抛物线 y = ax 2 ( a <0) 的准线方程是 ()11A .y =- 2B . y =- 4aa11C .y = 2aD . y = 4a分析:选2211B. 抛物线 y = ax ( a <0) 可化为 x = y ,准线方程为y =- 4 . 应选 B.aa 2.已知点是抛物线: 2 = 2 ( p >0) 上一点,F 为 C 的焦点, 的中点坐标是 (2 , 2) ,MC ypxMF则 p 的值为 ()A .1B . 2C .3D . 4p, 0pp2分析:选 D. 由题意得 F 2 ,那么 M 4- ,4在抛物线上,即16= 2p 4-,即 p -22 8 + 16= 0,解得 = 4.pp3.(2019 ·四川成都检测 ) 已知抛物线 C : y 2= 4x 的焦点为 F ,点 A (0 ,-3) .若线段 FA与抛物线 C 订交于点 M ,则 | MF | = ()45A. 3B. 323 C. 3D. 3分析:选 A. 由题意, F (1 , 0) , | AF | =2,设 | MF |= d ,则 M 到准线的距离为d , M 的横坐d -1 2- d4标为 d -1,由三角形相像,可得1 =2 ,所以 d =3,应选 A.4.直线 l 过抛物线 y 2= 2px ( p >0) 的焦点,且与抛物线交于A ,B 两点,若线段 AB 的长是8, AB 的中点到 y 轴的距离是 2,则此抛物线方程是 ( )A .y 2= 12xB . y 2= 8xC .2= 6D . 2= 4xy xy分析:选 B. 设 A ( x 1, y 1) , B ( x 2, y 2) ,依据抛物线定义,x 1+ x 2+ p = 8,由于的中点到y 轴的距离是2,所以 x 1+ x 2= 2,AB2所以 p = 4;所以抛物线方程为y 2= 8x . 应选 B.2x2y25.抛物线x= 2py( p>0) 的焦点为F,其准线与双曲线3-3=1订交于 A, B 两点,若△为等边三角形,则= ________.ABF p分析:在等边三角形ABF中, AB边上的高为 p,AB3B ±3p,-p=3p,所以3. 22p2p2又由于点B34在双曲线上,故-=1,解得= 6.33答案: 66.(2019 ·云南大理州模拟 ) 在直角坐标系xOy中,有必定点M(-1,2),若线段 OM的垂直均分线过抛物线x2=2py( p>0)的焦点,则该抛物线的准线方程是________.分析:依题意可得线段的垂直均分线的方程为2x - 4y+5=0,OMp5把焦点坐标0,2代入可求得p=2,5所以准线方程为y=-4.5答案: y=-7.极点在原点,焦点在x 轴上的抛物线截直线y=2x-4所得的弦长| AB|=35,求此抛物线方程.解:设所求的抛物线方程为y2=ax( a≠0), A( x1, y1), B( x2, y2),把直线 y=2x-4代入y2= ax,得 4x2- ( a+ 16) x+ 16=0,由= ( a+16) 2- 256>0,得a>0 或a<- 32.又 x+x =+ 16, x x =4,12a 1 24所以 | AB| =(1+22)[(x1+x2)2-4x1x2]=5a+1624-16=3 5,a+162= 45,所以 54- 16所以 a=4或 a=-36.故所求的抛物线方程为y2=4x 或 y2=-36x.8.已知抛物线2= 2(p >0) 的焦点为,A是抛物线上横坐标为4,且位于x轴上方的y px F点, A 到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M.(1)求抛物线的方程;(2) 若过 M 作 MN ⊥ FA ,垂足为 N ,求点 N 的坐标.2p解: (1) 抛物线 y = 2px 的准线为 x =- 2,于是 4+ p=5,所以= 2. 所以抛物线方程为y2=4 .2px(2) 由于点 A 的坐标是 (4 , 4) ,由题意得 B (0 , 4) , M (0 , 2) .4又由于 F (1 ,0) ,所以 k FA = 3,3由于 MN ⊥ FA ,所以 k MN =- 4.4 所以 FA 的方程为 y = ( x - 1) ,①33MN 的方程为 y - 2=- 4x ,②联立①②,84解得 x = 5,y = 5,8 4所以 N 的坐标为 5, 5 .[ 综合题组练 ]1.已知抛物线x 2= 4 上一动点 P 到x 轴的距离为d 1,到直线l: + + 4=0 的距离为yx yd 2,则 d 1+d 2 的最小值是 ()5 55 2A. 2 + 2B. 2 + 1525 2C. 2 - 2D. 2 - 1分析:选 D.抛物线 x 2= 4y 的焦点 F (0 , 1) ,由抛物线的定义可得112d = | PF | -1,则 d + d= | PF | + d - 1,而 | PF | + d 的最小值等于焦点 F 到直线 l的距离,即 (| PF | + d ) 5 ==222 min25 25 22 ,所以 d 1+ d 2 的最小值是2 - 1.2. ( 综合型 )(2019 ·湖北武汉部分学校调研) 过抛物线C : y 2= 2px ( p >0) 的焦点 F ,且斜率为3的直线交 C 于点 M (M 在 x 轴上方 ) ,l 为 C 的准线,点 N 在 l 上且 MN ⊥ l ,若 | NF | =4,则 M 到直线 NF 的距离为 ()A. 5 B . 2 3C .3 3D . 2 2分析:选 B. 法一:由于直线MF 的斜率为 3 ,MN⊥l,所以∠NMF= 60°,又 | MF| =| MN|,且 | NF| =4,所以△NMF是边长为4 的等边三角形,所以M到直线 NF的距离为2 3. 故选 B.3p223法二:由题意可得直线MF的方程为 x=3y+2,与抛物线方程联立消去x 可得 y-3 233ppy- p= 0,解得y=-3p 或 y=3p,又点M在x轴上方,所以M 2,3p,由于MN⊥l,所以N p3p,所以|NF|=pp2+(-3p22p.由题意=,解得=,-,+)=2222p4p2所以( -1,23), (1,0),直线NF 的方程为3x+y-3=0,且点M的坐标为 (3 ,N F2 3) ,利用点到直线的距离公式可得M到直线 NF的距离为|33+ 23- 3|= 2 3.应选 B.3+ 1法三:由题意可得直线的方程为=3+p可得223x3y ,与抛物线方程联立消去x y-3MF2py p20y3p y3p M x3p3p,由于MN l-=-3或=轴上方,所以M2,,=,解得,又点在⊥所以Np3p,所以 || =pp2+(0- 32. 由题意 2 = 4,解得= 2,-,+)= 22NF22p p p p所以(-1,23), (1,0), (3,23) ,设到直线的距离为d ,在△中,△ MNF=1N F M M NF MNF S2 113= 23,应选 B.| NF| ×d=2| MN|× y ,所以 d=4× 4×2M3.( 应用型 ) 如下图是抛物线形拱桥,当水面在l时,拱顶离水面 2m,水面宽 4 m.水位降落 1 m 后,水面宽 ________m.分析:成立如下图的平面直角坐标系,设抛物线方程为x2=-2py( p>0) ,则A(2 ,- 2) ,将其坐标代入x2=-2py,得 p=1.所以 x2=-2y.当水面降落 1 m,得(0,-3)(x 0>0),将其坐标代入x2=- 2y,D x2x0= 6.得 x0=6,所以所以水面宽 || = 2 6 m. CD答案:2 64.已知抛物线:2= 2( >0) 的焦点为,直线y = 4 与C的交点为,与y轴的交点C y px p F P 3为 Q,且| PF|=2| PQ|,则抛物线 C的方程为________.288p分析:设 P( x0,4) .将点P的坐标代入y= 2px( p>0) ,得x0=p,所以 | PQ| =p, |PF|=2 8p 8 3 82+p. 由题意得2+p=2×p. 又p>0,解得p= 2 2. 所以抛物线C的方程为y= 42x.答案: y2=4 2x5.(2018 ·高考全国卷Ⅱ ) 设抛物线:y 2=4 的焦点为,过F且斜率为(> 0) 的直线C x F k k l与 C交于 A,B两点,| AB|=8.(1)求 l 的方程;(2)求过点 A, B 且与 C的准线相切的圆的方程.解: (1) 由题意得F(1,0), l 的方程为 y= k( x-1)( k>0).设 A( x1, y1), B( x2, y2).y= k(x-1),由y2=4x得 k2x2- (2 k2+4) x+k2= 0.22+ 4212k2.= 16k+16>0,故x+x=k所以 | AB| =| AF| +| BF| =124k2+ 4 ( x+ 1) + ( x+ 1) =k2.42+4= 8,解得k=- 1( 舍去 ) ,k= 1.由题设知k2所以 l 的方程为 y= x-1.(2) 由 (1) 得AB的中点坐标为 (3 , 2) ,所以AB的垂直均分线方程为y-2=-( x-3),即y =-+5.x设所求圆的圆心坐标为( x0,y0) ,y0=- x0+5,则002(x0+1) 2=(y-x+1)+ 16.2x0=3,x0=11,解得或y0=-6.y0=2所以所求圆的方程为( x- 3) 2+ ( y- 2) 2= 16 或 ( x- 11) 2+( y+ 6) 2= 144.6. ( 综合型 ) 如下图,抛物线对于x 轴对称,它的极点在座标原点,点P(1,2),A( x1, y1),B( x2, y2)均在抛物线上.(1)写出该抛物线的方程及其准线方程;(2) 当 PA 与 PB 的斜率存在且倾斜角互补时,求 y 1 +y 2 的值及直线 AB 的斜率.解: (1) 由已知条件,可设抛物线的方程为y 2= 2 ( >0).px p由于点 P (1 ,2) 在抛物线上,2所以 2 = 2p ×1,解得 p = 2.故所求抛物线的方程是y 2= 4x ,准线方程是 x =- 1.(2) 设直线 PA 的斜率为 k PA ,直线 PB 的斜率为 k PB .y 1- 2则 k PA = x 1- 1( x 1≠ 1) ,y 2-2k PB = x 2-1( x 2≠ 1) ,由于 PA 与 PB 的斜率存在且倾斜角互补,所以 k PA =- k PB .由 A ( x 1, y 1) , B ( x 2, y 2) 均在抛物线上,y 12 = 4x 1,①得2= 4x 2,②y 2y 1- 2y 2- 2 所以 1 2 =- 1 2 ,4y 1 - 1 4y 2- 1所以 y 1+ 2=- ( y 2+ 2) .所以 y 1+ y 2=- 4.2 2由 ①-②得, y 1- y 2= 4( x 1- x 2) ,y - y 2 4 所以 k AB = 1=- 1. x 1- x =2 y 1+y 2。

2020版高考数学大一轮复习第九章平面解析几何第7讲抛物线分层演练理(含解析)新人教A版

2020版高考数学大一轮复习第九章平面解析几何第7讲抛物线分层演练理(含解析)新人教A版

第7讲 抛物线1.已知点A (-2,3)在抛物线C :y 2=2px (p >0)的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .-43B .-1C .-34D .-12解析:选C.由已知,得准线方程为x =-2,所以F 的坐标为(2,0).又A (-2,3),所以直线AF 的斜率为k =3-0-2-2=-34.2.若点A ,B 在抛物线y 2=2px (p >0)上,O 是坐标原点,若正三角形OAB 的面积为43,则该抛物线方程是( ) A .y 2=233xB .y 2=3x C .y 2=23xD .y 2=33x 解析:选A.根据对称性,AB ⊥x 轴,由于正三角形的面积是43,故34AB 2=43,故AB =4,正三角形的高为23,故可以设点A 的坐标为(23,2),代入抛物线方程得4=43p ,解得p =33,故所求的抛物线方程为y 2=233x .故选A. 3.(2018·高考全国卷Ⅰ)设抛物线C :y 2=4x 的焦点为F ,过点(-2,0)且斜率为23的直线与C 交于M ,N 两点,则FM →·FN →=( ) A .5 B .6 C .7D .8解析:选D.法一:过点(-2,0)且斜率为23的直线的方程为y =23(x +2),由⎩⎪⎨⎪⎧y =23(x +2),y 2=4x ,得x 2-5x +4=0,解得x =1或x =4,所以⎩⎪⎨⎪⎧x =1,y =2或⎩⎪⎨⎪⎧x =4,y =4,不妨设M (1,2),N (4,4),易知F (1,0),所以FM →=(0,2),FN →=(3,4),所以FM →·FN →=8.故选D.法二:过点(-2,0)且斜率为23的直线的方程为y =23(x +2),由⎩⎪⎨⎪⎧y =23(x +2),y 2=4x ,得x 2-5x+4=0,设M (x 1,y 1),N (x 2,y 2),则y 1>0,y 2>0,根据根与系数的关系,得x 1+x 2=5,x 1x 2=4.易知F (1,0),所以FM →=(x 1-1,y 1),FN →=(x 2-1,y 2),所以FM →·FN →=(x 1-1)(x 2-1)+y 1y 2=x 1x 2-(x x +x 2)+1+4x 1x 2=4-5+1+8=8.故选D.4.(2019·湖南省五市十校联考)已知抛物线y 2=2x 上一点A 到焦点F 的距离与其到对称轴的距离之比为5∶4,且|AF |>2,则点A 到原点的距离为( ) A.41 B .2 2 C .4D .8解析:选B.令点A 到点F 的距离为5a ,点A 到x 轴的距离为4a ,则点A 的坐标为⎝ ⎛⎭⎪⎫5a -12,4a ,代入y 2=2x 中,解得a =12或a =18(舍),此时A (2,2),故点A 到原点的距离为2 2.5.(2019·太原模拟)已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点.若FP →=4FQ →,则|QF |等于( ) A.72 B.52 C .3D .2解析:选C.因为FP →=4FQ →,所以|FP →|=4|FQ →|,所以|PQ ||PF |=34.如图,过Q 作QQ ′⊥l ,垂足为Q ′,设l 与x 轴的交点为A ,则|AF |=4,所以|PQ ||PF |=|QQ ′||AF |=34,所以|QQ ′|=3,根据抛物线定义可知|QQ ′|=|QF |=3.6.(2019·云南大理州模拟)在直角坐标系xOy 中,有一定点M (-1,2),若线段OM 的垂直平分线过抛物线x 2=2py (p >0)的焦点,则该抛物线的准线方程是________. 解析:依题意可得线段OM 的垂直平分线的方程为2x -4y +5=0, 把焦点坐标⎝ ⎛⎭⎪⎫0,p 2代入可求得p =52, 所以准线方程为y =-54.答案:y =-547.(2019·河北六校模拟)抛物线C :y 2=2px (p >0)的焦点为F ,点O 是坐标原点,过点O ,F 的圆与抛物线C 的准线相切,且该圆的面积为36π,则抛物线的方程为________.解析:设满足题意的圆的圆心为M . 根据题意可知圆心M 在抛物线上, 又因为圆的面积为36π,所以圆的半径为6,则|MF |=x M +p 2=6,即x M =6-p2,又由题意可知x M =p 4,所以p 4=6-p2,解得p =8.所以抛物线方程为y 2=16x . 答案:y 2=16x8.已知抛物线C 1:y =12p x 2(p >0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p =________.解析:抛物线的焦点坐标为⎝ ⎛⎭⎪⎫0,p 2,双曲线的右焦点坐标为(2,0),所以上述两点连线的方程为x 2+2y p =1.双曲线的渐近线方程为y =±33x .对函数y =12p x 2,y ′=1px .设M (x 0,y 0),则1p x 0=33,即x 0=33p ,代入抛物线方程得y 0=16p ,由于点M 在直线x 2+2y p =1上,所以36p +2p ×p 6=1,解得p =43=433. 答案:4339.顶点在原点,焦点在x 轴上的抛物线截直线y =2x -4所得的弦长|AB |=35,求此抛物线方程.解:设所求的抛物线方程为y 2=ax (a ≠0),A (x 1,y 1),B (x 2,y 2),把直线y =2x -4代入y 2=ax ,得4x 2-(a +16)x +16=0,由Δ=(a +16)2-256>0,得a >0或a <-32. 又x 1+x 2=a +164,x 1x 2=4,所以|AB |=(1+22)[(x 1+x 2)2-4x 1x 2] =5⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +1642-16=35, 所以5⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫a +1642-16=45, 所以a =4或a =-36.故所求的抛物线方程为y 2=4x 或y 2=-36x .10.(2018·高考全国卷Ⅱ)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.解:(1)由题意得F (1,0),l 的方程为y =k (x -1)(k >0). 设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x 得k 2x 2-(2k 2+4)x +k 2=0. Δ=16k 2+16>0,故x 1+x 2=2k 2+4k2.所以|AB |=|AF |+|BF |=(x 1+1)+(x 2+1) =4k 2+4k2.由题设知4k 2+4k2=8,解得k =-1(舍去),k =1.因此l 的方程为y =x -1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为y -2=-(x -3),即y =-x +5.设所求圆的圆心坐标为(x 0,y 0),则⎩⎪⎨⎪⎧y 0=-x 0+5,(x 0+1)2=(y 0-x 0+1)22+16, 解得⎩⎪⎨⎪⎧x 0=3,y 0=2或⎩⎪⎨⎪⎧x 0=11,y 0=-6.因此所求圆的方程为(x -3)2+(y -2)2=16或(x -11)2+(y +6)2=144.1.(2019·甘肃兰州模拟)设O 为坐标原点,P 是以F 为焦点的抛物线y 2=2px (p >0)上任意一点,M 是线段PF 上的点,且|PM |=2|MF |,则直线OM 的斜率的最大值为( ) A.33 B.23 C.22D .1解析:选C.由题意得F ⎝ ⎛⎭⎪⎫p 2,0,设P ⎝ ⎛⎭⎪⎫y 202p ,y 0, 显然当y 0<0时,k OM <0;当y 0>0时,k OM >0.要求k OM 的最大值,则y 0>0,则OM →=OF →+FM →=OF →+13FP →=OF →+13(OP →-OF →)=13OP →+23OF →=⎝ ⎛⎭⎪⎫y 206p +p 3,y 03,所以k OM =y 03y 206p +p 3=2y 0p +2p y 0≤22y 0p ·2p y 0=22, 当且仅当y 20=2p 2时,取得等号.2.(2019·福建省普通高中质量检查)过抛物线y 2=4x 的焦点F 的直线l 交抛物线于A ,B 两点,交其准线于点C ,且A ,C 位于x 轴同侧,若|AC |=2|AF |,则|BF |等于( ) A .2 B .3 C .4D .5解析:选C.设抛物线的准线与x 轴交于点D ,则由题意,知F (1,0),D (-1,0),分别作AA 1,BB 1垂直于抛物线的准线,垂足分别为A 1,B 1,则有|AC ||FC |=|AA 1||FD |,所以|AA 1|=43,故|AF |=43.又|AC ||BC |=|AA 1||BB 1|,即|AC ||AC |+|AF |+|BF |=|AF ||BF |,亦即2|AF |3|AF |+|BF |=|AF ||BF |,解得|BF |=4,故选C.3.(2017·高考北京卷)已知抛物线C :y 2=2px 过点P (1,1).过点(0,12)作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP 、ON 交于点A ,B ,其中O 为原点.(1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.解:(1)由抛物线C :y 2=2px 过点P (1,1),得p =12.所以抛物线C 的方程为y 2=x .抛物线C 的焦点坐标为⎝ ⎛⎭⎪⎫14,0,准线方程为x =-14. (2)证明:由题意,设直线l 的方程为y =kx +12(k ≠0),l 与抛物线C 的交点为M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +12,y 2=x得4k 2x 2+(4k -4)x +1=0. 则x 1+x 2=1-k k 2,x 1x 2=14k2.因为点P 的坐标为(1,1),所以直线OP 的方程为y =x ,点A 的坐标为(x 1,x 1).直线ON 的方程为y =y 2x 2x ,点B 的坐标为⎝⎛⎭⎪⎫x 1,y 2x 1x 2. 因为y 1+y 2x 1x 2-2x 1=y 1x 2+y 2x 1-2x 1x 2x 2=⎝ ⎛⎭⎪⎫kx 1+12x 2+⎝ ⎛⎭⎪⎫kx 2+12x 1-2x 1x2x 2=(2k -2)x 1x 2+12(x 2+x 1)x 2=(2k -2)×14k 2+1-k 2k2x 2=0, 所以y 1+y 2x 1x 2=2x 1. 故A 为线段BM 的中点.4.(2019·湖南六校联考)已知抛物线的方程为x 2=2py (p >0),其焦点为F ,点O 为坐标原点,过焦点F 作斜率为k (k ≠0)的直线与抛物线交于A ,B 两点,过A ,B 两点分别作抛物线的两条切线,设两条切线交于点M . (1)求OA →·OB →;(2)设直线MF 与抛物线交于C ,D 两点,且四边形ACBD 的面积为323p 2,求直线AB 的斜率k .解:(1)设直线AB 的方程为y =kx +p 2,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2=2py ,y =kx +p 2,得x 2-2pkx -p 2=0, 则⎩⎪⎨⎪⎧x 1+x 2=2pk ,x 1·x 2=-p 2,所以OA →·OB →=x 1·x 2+y 1·y 2=-34p 2.(2)由x 2=2py ,知y ′=x p,所以抛物线在A ,B 两点处的切线的斜率分别为x 1p ,x 2p,所以直线AM 的方程为y -y 1=x 1p (x -x 1),直线BM 的方程为y -y 2=x 2p(x -x 2),则可得M ⎝ ⎛⎭⎪⎫pk ,-p 2.所以k MF =-1k,所以直线MF 与AB 相互垂直.由弦长公式知,|AB |=k 2+1|x 1-x 2|=k 2+1·4p 2k 2+4p 2=2p (k 2+1), 用-1k代替k 得,|CD |=2p ⎝ ⎛⎭⎪⎫1k 2+1,四边形ACBD 的面积S =12·|AB |·|CD |=2p 2⎝ ⎛⎭⎪⎫2+k 2+1k 2=323p 2,解得k 2=3或k 2=13,即k =±3或k =±33.。

2020版高考数学大一轮复习第九章平面解析几何第7讲抛物线练习(含解析)

2020版高考数学大一轮复习第九章平面解析几何第7讲抛物线练习(含解析)

第7讲 抛物线一、选择题1.(2016·全国Ⅱ卷)设F 为抛物线C :y 2=4x 的焦点,曲线y =k x(k >0)与C 交于点P ,PF ⊥x 轴,则k =( ) A.12B.1C.32D.2解析 由题可知抛物线的焦点坐标为(1,0), 由PF ⊥x 轴知,|PF |=2,所以P 点的坐标为(1,2). 代入曲线y =k x(k >0)得k =2,故选D. 答案 D2.点M (5,3)到抛物线y =ax 2(a ≠0)的准线的距离为6,那么抛物线的方程是( ) A.y =12x 2B.y =12x 2或y =-36x 2C.y =-36x 2D.y =112x 2或y =-136x 2解析 分两类a >0,a <0可得y =112x 2,y =-136x 2.答案 D3.(2017·张掖诊断)过抛物线y 2=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,如果x 1+x 2=6,则|PQ |=( ) A.9B.8C.7D.6解析 抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.根据题意可得,|PQ |=|PF |+|QF |=x 1+1+x 2+1=x 1+x 2+2=8.故选B. 答案 B4.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点.若FP →=4FQ →,则|QF |等于( ) A.72B.52C.3D.2解析 ∵FP →=4FQ →, ∴|FP →|=4|FQ →|,∴|PQ ||PF |=34.如图,过Q 作QQ ′⊥l ,垂足为Q ′, 设l 与x 轴的交点为A ,则|AF |=4,∴|PQ ||PF |=|QQ ′||AF |=34,∴|QQ ′|=3,根据抛物线定义可知|QQ ′|=|QF |=3,故选C. 答案 C5.(2017·衡水金卷)已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A (x 1,y 1),B (x 2,y 2)两点,则y 21+y 22的最小值为( )A.12B.24C.16D.32解析 当直线的斜率不存在时,其方程为x =4,由⎩⎪⎨⎪⎧x =4,y 2=4x ,得y 1=-4,y 2=4,∴y 21+y 22=32. 当直线的斜率存在时,设其方程为y =k (x -4),由⎩⎪⎨⎪⎧y 2=4x ,y =k (x -4),得ky 2-4y -16k =0,∴y 1+y 2=4k,y 1y 2=-16,∴y 21+y 22=(y 1+y 2)2-2y 1y 2=16k2+32>32,综上可知,y 21+y 22≥32. ∴y 21+y 22的最小值为32.故选D. 答案 D 二、填空题6.(2016·兰州诊断)抛物线y 2=-12x 的准线与双曲线x 29-y 23=1的两条渐近线所围成的三角形的面积等于________.解析 由图可知弦长|AB |=23,三角形的高为3, ∴面积为S =12×23×3=3 3.答案 3 37.(2017·四川四校三联)过抛物线y 2=4x 的焦点F 作倾斜角为45°的直线交抛物线于A ,B 两点,则弦长|AB |为________.解析 设A (x 1,y 1),B (x 2,y 2).易得抛物线的焦点是F (1,0),所以直线AB 的方程是y =x -1,联立⎩⎪⎨⎪⎧y 2=4x ,y =x -1,消去y 得x 2-6x +1=0,所以x 1+x 2=6,所以|AB |=x 1+x 2+p =6+2=8. 答案 88.(2017·江西九校联考)抛物线y 2=2px (p >0)的焦点为F ,其准线与双曲线y 2-x 2=1相交于A ,B 两点,若△ABF 为等边三角形,则p =________.解析 y 2=2px 的准线为x =-p2.由于△ABF 为等边三角形.因此不妨设A ⎝⎛⎭⎪⎫-p 2,p3,B ⎝⎛⎭⎪⎫-p 2,-p 3,又点A ,B 在双曲线y 2-x 2=1上,从而p 23-p 24=1,所以p =2 3.答案 2 3 三、解答题9.(2016·江苏卷)如图,在平面直角坐标系xOy 中,已知直线l :x -y -2=0,抛物线C :y 2=2px (p >0).(1)若直线l 过抛物线C 的焦点,求抛物线C 的方程; (2)已知抛物线C 上存在关于直线l 对称的相异两点P 和Q . ①求证:线段PQ 的中点坐标为(2-p ,-p ); ②求p 的取值范围.(1)解 ∵l :x -y -2=0,∴l 与x 轴的交点坐标为(2,0). 即抛物线的焦点为(2,0),∴p2=2,∴p =4.∴抛物线C 的方程为y 2=8x .(2)①证明 设点P (x 1,y 1),Q (x 2,y 2).则⎩⎪⎨⎪⎧y 21=2px 1,y 22=2px 2,则⎩⎪⎨⎪⎧x 1=y 212p,x 2=y 222p ,∴k PQ =y 1-y 2y 212p -y 222p=2py 1+y 2, 又∵P ,Q 关于l 对称.∴k PQ =-1,即y 1+y 2=-2p , ∴y 1+y 22=-p ,又∵PQ 的中点一定在l 上, ∴x 1+x 22=y 1+y 22+2=2-p .∴线段PQ 的中点坐标为(2-p ,-p ). ②解 ∵PQ 的中点为(2-p ,-p ),∴⎩⎪⎨⎪⎧y 1+y 2=-2p ,x 1+x 2=y 21+y 222p =4-2p , 即⎩⎪⎨⎪⎧y 1+y 2=-2p ,y 21+y 22=8p -4p 2,∴⎩⎪⎨⎪⎧y 1+y 2=-2p ,y 1y 2=4p 2-4p , 即关于y 的方程y 2+2py +4p 2-4p =0,有两个不等实根.∴Δ>0. 即(2p )2-4(4p 2-4p )>0,解得0<p <43,故所求p 的范围为⎝ ⎛⎭⎪⎫0,43. 10.已知抛物线y 2=2px (p >0)的焦点为F ,A (x 1,y 1),B (x 2,y 2)是过F 的直线与抛物线的两个交点,求证:(1)y 1y 2=-p 2,x 1x 2=p 24;(2)1|AF |+1|BF |为定值; (3)以AB 为直径的圆与抛物线的准线相切. 证明 (1)由已知得抛物线焦点坐标为(p2,0).由题意可设直线方程为x =my +p2,代入y 2=2px ,得y 2=2p (my +p2),即y 2-2pmy -p 2=0.(*)则y 1,y 2是方程(*)的两个实数根, 所以y 1y 2=-p 2.因为y 21=2px 1,y 22=2px 2,所以y 21y 22=4p 2x 1x 2,所以x 1x 2=y 21y 224p 2=p 44p 2=p 24.(2)1|AF |+1|BF |=1x 1+p 2+1x 2+p2 =x 1+x 2+px 1x 2+p 2(x 1+x 2)+p 24.因为x 1x 2=p 24,x 1+x 2=|AB |-p ,代入上式,得1|AF |+1|BF |=|AB |p 24+p 2(|AB |-p )+p 24=2p(定值).(3)设AB 的中点为M (x 0,y 0),分别过A ,B 作准线的垂线,垂足为C ,D ,过M 作准线的垂线,垂足为N , 则|MN |=12(|AC |+|BD |)=12(|AF |+|BF |)=12|AB |. 所以以AB 为直径的圆与抛物线的准线相切.11.(2017·合肥模拟)已知抛物线y 2=2px (p >0)的焦点弦AB 的两端点坐标分别为A (x 1,y 1),B (x 2,y 2),则y 1y 2x 1x 2的值一定等于( )A.-4B.4C.p 2D.-p 2解析 ①若焦点弦AB ⊥x 轴,则x 1=x 2=p 2,则x 1x 2=p 24;②若焦点弦AB 不垂直于x 轴,可设AB :y =k (x -p2),联立y 2=2px 得k 2x 2-(k 2p +2p )x +p 2k 24=0,则x 1x 2=p 24.又y 21=2px 1,y 22=2px 2,∴y 21y 22=4p 2x 1x 2=p 4,又∵y 1y 2<0,∴y 1y 2=-p 2. 故y 1y 2x 1x 2=-4. 答案 A12.(2016·四川卷)设O 为坐标原点,P 是以F 为焦点的抛物线y 2=2px (p >0)上任意一点,M 是线段PF 上的点,且|PM |=2|MF |,则直线OM 的斜率的最大值为( )A.33B.23C.22D.1解析 如图,由题可知F ⎝ ⎛⎭⎪⎫p 2,0,设P 点坐标为⎝ ⎛⎭⎪⎫y 202p ,y 0(y 0>0), 则OM →=OF →+FM →=OF →+13FP →=OF →+13(OP →-OF →)=13OP →+23OF →=⎝ ⎛⎭⎪⎫y 206p +p 3,y 03,k OM=y03y206p+p3=2y0p+2py0≤222=22,当且仅当y20=2p2等号成立.故选C.答案 C13.(2016·湖北七校联考)已知抛物线方程为y2=-4x,直线l的方程为2x+y-4=0,在抛物线上有一动点A,点A到y轴的距离为m,到直线l的距离为n,则m+n的最小值为________.解析如图,过A作AH⊥l,AN垂直于抛物线的准线,则|AH|+|AN|=m+n+1,连接AF,则|AF|+|AH|=m+n+1,由平面几何知识,知当A,F,H三点共线时,|AF|+|AH|=m+n+1取得最小值,最小值为F到直线l的距离,即65=655,即m+n的最小值为655-1.答案655-114.(2017·南昌模拟)已知抛物线C1:y2=4x和C2:x2=2py(p>0)的焦点分别为F1,F2,点P(-1,-1),且F1F2⊥OP(O为坐标原点).(1)求抛物线C2的方程;(2)过点O的直线交C1的下半部分于点M,交C2的左半部分于点N,求△PMN面积的最小值. 解(1)由题意知F1(1,0),F2⎝⎛⎭⎪⎫0,p2,∴F1F2→=⎝⎛⎭⎪⎫-1,p2,∵F1F2⊥OP,∴F1F2→·OP→=⎝⎛⎭⎪⎫-1,p2·(-1,-1)=1-p2=0,∴p=2,∴抛物线C2的方程为x2=4y.(2)设过点O的直线为y=kx(k<0),联立⎩⎪⎨⎪⎧y=kx,y2=4x得M⎝⎛⎭⎪⎫4k2,4k,联立⎩⎪⎨⎪⎧y=kx.x2=4y得N(4k,4k2),从而|MN |=1+k 2⎪⎪⎪⎪⎪⎪4k2-4k =1+k 2⎝ ⎛⎭⎪⎫4k2-4k ,又点P 到直线MN 的距离d =|k -1|1+k2,进而S △PMN =12·|k -1|1+k 2·1+k 2·⎝ ⎛⎭⎪⎫4k 2-4k =2·(1-k )(1-k 3)k 2=2(1-k )2(1+k +k 2)k2=2⎝⎛⎭⎪⎫k +1k-2⎝⎛⎭⎪⎫k +1k+1, 令t =k +1k(t ≤-2),则有S △PMN =2(t -2)(t +1),当t =-2时,此时k =-1,S △PMN 取得最小值.即当过点O 的直线为y =-x 时,△PMN 面积的最小值为8.。

2020版高考数学新增分大一轮新高考(鲁京津琼)专用精练:第九章第7讲 抛物线 Word版含解析

2020版高考数学新增分大一轮新高考(鲁京津琼)专用精练:第九章第7讲 抛物线 Word版含解析

第7讲 抛物线一、选择题1.(2016·全国Ⅱ卷)设F 为抛物线C :y 2=4x 的焦点,曲线y =kx (k >0)与C 交于点P ,PF ⊥x 轴,则k =( ) A.12B.1C.32D.2解析 由题可知抛物线的焦点坐标为(1,0), 由PF ⊥x 轴知,|PF |=2,所以P 点的坐标为(1,2). 代入曲线y =kx (k >0)得k =2,故选D. 答案 D2.点M (5,3)到抛物线y =ax 2(a ≠0)的准线的距离为6,那么抛物线的方程是( ) A.y =12x 2 B.y =12x 2或y =-36x 2 C.y =-36x 2D.y =112x 2或y =-136x 2解析 分两类a >0,a <0可得y =112x 2,y =-136x 2. 答案 D3.(2017·张掖诊断)过抛物线y 2=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,如果x 1+x 2=6,则|PQ |=( ) A.9B.8C.7D.6解析 抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.根据题意可得,|PQ |=|PF |+|QF |=x 1+1+x 2+1=x 1+x 2+2=8.故选B. 答案 B4.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点.若FP →=4FQ →,则|QF |等于( ) A.72B.52C.3D.2解析 ∵FP →=4FQ →, ∴|FP→|=4|FQ →|,∴|PQ ||PF |=34. 如图,过Q 作QQ ′⊥l ,垂足为Q ′, 设l 与x 轴的交点为A , 则|AF |=4,∴|PQ ||PF |=|QQ ′||AF |=34,∴|QQ ′|=3,根据抛物线定义可知|QQ ′|=|QF |=3,故选C. 答案 C5.(2017·衡水金卷)已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A (x 1,y 1),B (x 2,y 2)两点,则y 21+y 22的最小值为( )A.12B.24C.16D.32解析 当直线的斜率不存在时,其方程为x =4, 由⎩⎪⎨⎪⎧x =4,y 2=4x ,得y 1=-4,y 2=4,∴y 21+y 22=32.当直线的斜率存在时,设其方程为y =k (x -4),由⎩⎪⎨⎪⎧y 2=4x ,y =k (x -4),得ky 2-4y -16k =0,∴y 1+y 2=4k ,y 1y 2=-16,∴y 21+y 22=(y 1+y 2)2-2y 1y 2=16k 2+32>32,综上可知,y 21+y 22≥32. ∴y 21+y 22的最小值为32.故选D.答案 D 二、填空题6.(2016·兰州诊断)抛物线y 2=-12x 的准线与双曲线x 29-y 23=1的两条渐近线所围成的三角形的面积等于________.解析 由图可知弦长|AB |=23,三角形的高为3, ∴面积为S =12×23×3=3 3.答案 3 37.(2017·四川四校三联)过抛物线y 2=4x 的焦点F 作倾斜角为45°的直线交抛物线于A ,B 两点,则弦长|AB |为________.解析 设A (x 1,y 1),B (x 2,y 2).易得抛物线的焦点是F (1,0),所以直线AB 的方程是y =x -1,联立⎩⎪⎨⎪⎧y 2=4x ,y =x -1,消去y 得x 2-6x +1=0,所以x 1+x 2=6,所以|AB |=x 1+x 2+p =6+2=8. 答案 88.(2017·江西九校联考)抛物线y 2=2px (p >0)的焦点为F ,其准线与双曲线y 2-x 2=1相交于A ,B 两点,若△ABF 为等边三角形,则p =________.解析 y 2=2px 的准线为x =-p2.由于△ABF 为等边三角形.因此不妨设A ⎝ ⎛⎭⎪⎫-p 2,p 3,B ⎝ ⎛⎭⎪⎫-p 2,-p 3,又点A ,B 在双曲线y 2-x 2=1上,从而p 23-p 24=1,所以p =2 3. 答案 2 3 三、解答题9.(2016·江苏卷)如图,在平面直角坐标系xOy 中,已知直线l :x -y -2=0,抛物线C :y 2=2px (p >0).(1)若直线l 过抛物线C 的焦点,求抛物线C 的方程; (2)已知抛物线C 上存在关于直线l 对称的相异两点P 和Q .①求证:线段PQ 的中点坐标为(2-p ,-p ); ②求p 的取值范围.(1)解 ∵l :x -y -2=0,∴l 与x 轴的交点坐标为(2,0). 即抛物线的焦点为(2,0),∴p2=2,∴p =4. ∴抛物线C 的方程为y 2=8x .(2)①证明 设点P (x 1,y 1),Q (x 2,y 2). 则⎩⎨⎧y 21=2px 1,y 22=2px 2,则⎩⎪⎨⎪⎧x 1=y 212p,x 2=y 222p , ∴k PQ =y 1-y 2y 212p -y 222p=2py 1+y 2,又∵P ,Q 关于l 对称.∴k PQ =-1,即y 1+y 2=-2p , ∴y 1+y 22=-p ,又∵PQ 的中点一定在l 上,∴x 1+x 22=y 1+y 22+2=2-p .∴线段PQ 的中点坐标为(2-p ,-p ). ②解 ∵PQ 的中点为(2-p ,-p ), ∴⎩⎪⎨⎪⎧y 1+y 2=-2p ,x 1+x 2=y 21+y 222p =4-2p , 即⎩⎨⎧y 1+y 2=-2p ,y 21+y 22=8p -4p 2,∴⎩⎨⎧y 1+y 2=-2p ,y 1y 2=4p 2-4p ,即关于y 的方程y 2+2py +4p 2-4p =0,有两个不等实根.∴Δ>0. 即(2p )2-4(4p 2-4p )>0,解得0<p <43, 故所求p 的范围为⎝ ⎛⎭⎪⎫0,43.10.已知抛物线y 2=2px (p >0)的焦点为F ,A (x 1,y 1),B (x 2,y 2)是过F 的直线与抛物线的两个交点,求证: (1)y 1y 2=-p 2,x 1x 2=p 24;(2)1|AF |+1|BF |为定值;(3)以AB 为直径的圆与抛物线的准线相切. 证明 (1)由已知得抛物线焦点坐标为(p2,0). 由题意可设直线方程为x =my +p2,代入y 2=2px , 得y 2=2p (my +p2),即y 2-2pmy -p 2=0.(*) 则y 1,y 2是方程(*)的两个实数根, 所以y 1y 2=-p 2.因为y 21=2px 1,y 22=2px 2,所以y 21y 22=4p 2x 1x 2, 所以x 1x 2=y 21y 224p 2=p 44p 2=p 24.(2)1|AF |+1|BF |=1x 1+p 2+1x 2+p 2 =x 1+x 2+px 1x 2+p 2(x 1+x 2)+p 24. 因为x 1x 2=p 24,x 1+x 2=|AB |-p ,代入上式, 得1|AF |+1|BF |=|AB |p 24+p 2(|AB |-p )+p 24=2p (定值).(3)设AB 的中点为M (x 0,y 0),分别过A ,B 作准线的垂线,垂足为C ,D ,过M 作准线的垂线,垂足为N , 则|MN |=12(|AC |+|BD |)= 12(|AF |+|BF |)=12|AB |.所以以AB 为直径的圆与抛物线的准线相切.11.(2017·合肥模拟)已知抛物线y 2=2px (p >0)的焦点弦AB 的两端点坐标分别为A (x 1,y 1),B (x 2,y 2),则y 1y 2x 1x 2的值一定等于( )A.-4B.4C.p 2D.-p 2解析①若焦点弦AB⊥x轴,则x1=x2=p2,则x1x2=p24;②若焦点弦AB不垂直于x轴,可设AB:y=k(x-p2),联立y2=2px得k2x2-(k2p+2p)x+p2k24=0,则x1x2=p24.又y21=2px1,y22=2px2,∴y21y22=4p2x1x2=p4,又∵y1y2<0,∴y1y2=-p2.故y1y2x1x2=-4.答案 A12.(2016·四川卷)设O为坐标原点,P是以F为焦点的抛物线y2=2px(p>0)上任意一点,M是线段PF上的点,且|PM|=2|MF|,则直线OM的斜率的最大值为()A.33 B.23 C.22 D.1解析如图,由题可知F⎝⎛⎭⎪⎫p2,0,设P点坐标为⎝⎛⎭⎪⎫y202p,y0(y0>0),则OM→=OF→+FM→=OF→+13FP→=OF→+13(OP→-OF→)=13OP→+23OF→=⎝⎛⎭⎪⎫y206p+p3,y03,k OM=y03y206p+p3=2y0p+2py0≤222=22,当且仅当y20=2p2等号成立.故选C.答案 C13.(2016·湖北七校联考)已知抛物线方程为y2=-4x,直线l的方程为2x+y-4=0,在抛物线上有一动点A ,点A 到y 轴的距离为m ,到直线l 的距离为n ,则m +n 的最小值为________.解析 如图,过A 作AH ⊥l ,AN 垂直于抛物线的准线,则|AH |+|AN |=m +n +1,连接AF ,则|AF |+|AH |=m +n +1,由平面几何知识,知当A ,F ,H 三点共线时,|AF |+|AH |=m +n +1取得最小值,最小值为F 到直线l 的距离,即65=655,即m +n 的最小值为655-1.答案655-114.(2017·南昌模拟)已知抛物线C 1:y 2=4x 和C 2:x 2=2py (p >0)的焦点分别为F 1,F 2,点P (-1,-1),且F 1F 2⊥OP (O 为坐标原点). (1)求抛物线C 2的方程;(2)过点O 的直线交C 1的下半部分于点M ,交C 2的左半部分于点N ,求△PMN 面积的最小值.解 (1)由题意知F 1(1,0),F 2⎝ ⎛⎭⎪⎫0,p 2,∴F 1F 2→=⎝ ⎛⎭⎪⎫-1,p 2,∵F 1F 2⊥OP ,∴F 1F 2→·OP →=⎝ ⎛⎭⎪⎫-1,p 2·(-1,-1)=1-p 2=0, ∴p =2,∴抛物线C 2的方程为x 2=4y . (2)设过点O 的直线为y =kx (k <0), 联立⎩⎨⎧y =kx ,y 2=4x 得M ⎝ ⎛⎭⎪⎫4k 2,4k ,联立⎩⎨⎧y =kx .x 2=4y得N (4k ,4k 2),从而|MN |=1+k 2⎪⎪⎪⎪⎪⎪4k 2-4k =1+k 2⎝ ⎛⎭⎪⎫4k 2-4k ,又点P 到直线MN 的距离d =|k -1|1+k 2, 进而S △PMN =12·|k -1|1+k 2·1+k 2·⎝ ⎛⎭⎪⎫4k 2-4k =2·(1-k )(1-k 3)k 2=2(1-k )2(1+k +k 2)k 2=2⎝ ⎛⎭⎪⎫k +1k -2⎝ ⎛⎭⎪⎫k +1k +1, 令t =k +1k (t ≤-2), 则有S △PMN =2(t -2)(t +1),当t =-2时,此时k =-1,S △PMN 取得最小值.即当过点O 的直线为y =-x 时,△PMN 面积的最小值为8.。

2020版高考数学一轮复习第九章平面解析几何第7讲抛物线教案理(含解析)新人教A版

2020版高考数学一轮复习第九章平面解析几何第7讲抛物线教案理(含解析)新人教A版

第7讲抛物线基础知识整合1.抛物线的定义平面内与一个定点F和一条定直线l(l不过F)的距离□01相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的□02准线.其数学表达式:□03|MF|=d(其中d为点M到准线的距离).2.抛物线的标准方程与几何性质抛物线焦点弦的几个常用结论设AB 是过抛物线y 2=2px (p >0)的焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则: (1)x 1x 2=p 24,y 1y 2=-p 2.(2)弦长|AB |=x 1+x 2+p =2psin 2α(α为弦AB 的倾斜角).(3)以弦AB 为直径的圆与准线相切.(4)通径:过焦点垂直于对称轴的弦长等于2p .1.抛物线y =2x 2的准线方程为( ) A .y =-18B .y =-14C .y =-12D .y =-1答案 A解析 由y =2x 2,得x 2=12y ,故抛物线y =2x 2的准线方程为y =-18,故选A.2.(2019·黑龙江联考)若抛物线x 2=4y 上的点P (m ,n )到其焦点的距离为5,则n =( )A.194 B.92C .3D .4 答案 D解析 抛物线x 2=4y 的准线方程为y =-1.根据抛物线的定义可知5=n +1,解得n =4.故选D.3.已知抛物线C :y =x 28的焦点为F ,A (x 0,y 0)是C 上一点,且|AF |=2y 0,则x 0=( )A .2B .±2 C.4 D .±4 答案 D解析 由y =x 28,得x 2=8y ,∴抛物线C 的准线方程为y =-2,焦点为F (0,2).由抛物线的性质及题意,得|AF |=2y 0=y 0+2.解得y 0=2,∴x 0=±4.故选D.4.若抛物线y 2=2px 上一点P (2,y 0)到其准线的距离为4,则抛物线的标准方程为( )A .y 2=4x B .y 2=6x C .y 2=8x D .y 2=10x答案 C解析 ∵抛物线y 2=2px ,∴准线方程为x =-p2.∵点P (2,y 0)到其准线的距离为4.∴⎪⎪⎪⎪⎪⎪-p2-2=4.∴p =4,∴抛物线的标准方程为y 2=8x .5.(2019·广东中山统测)过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点.如果x 1+x 2=6,那么|AB |=( )A .6B .8C .9D .10 答案 B解析 由题意知,抛物线y 2=4x 的准线方程是x =-1.∵过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,∴|AB |=x 1+x 2+2.又∵x 1+x 2=6,∴|AB |=x 1+x 2+2=8.故选B.6.O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为C 上一点,若|PF |=42,则△POF 的面积为( )A .2B .2 2C .2 3D .4 答案 C解析 利用|PF |=x P +2=42,可得x P =32, ∴y P =±2 6.∴S △POF =12|OF |·|y P |=2 3.故选C.核心考向突破考向一 抛物线的定义角度1 到焦点与到定点距离之和最小问题例1 (2019·赣州模拟)若点A 的坐标为(3,2),F 是抛物线y 2=2x 的焦点,点M 在抛物线上移动时,使|MF |+|MA |取得最小值的M 的坐标为( )A .(0,0) B.⎝ ⎛⎭⎪⎫12,1 C .(1,2) D .(2,2)答案 D解析 过M 点作准线的垂线,垂足为N ,则|MF |+|MA |=|MN |+|MA |,当A ,M ,N 三点共线时,|MF |+|MA |取得最小值,此时M (2,2).角度2 到点与准线的距离之和最小问题例2 (2019·邢台模拟)已知M 是抛物线x 2=4y 上一点,F 为其焦点,点A 在圆C :(x +1)2+(y -5)2=1上,则|MA |+|MF |的最小值是________.答案 5解析 依题意,由点M 向抛物线x 2=4y 的准线l :y =-1引垂线,垂足为M 1,则有|MA |+|MF |=|MA |+|MM 1|,结合图形可知|MA |+|MM 1|的最小值等于圆心C (-1,5)到y =-1的距离再减去圆C 的半径,即等于6-1=5,因此|MA |+|MF |的最小值是5.角度3 到定直线的距离最小问题例3 已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )A.355 B .2 C.115D .3 答案 B解析 由题意可知l 2:x =-1 是抛物线y 2=4x 的准线,设抛物线的焦点为F (1,0),则动点P 到l 2的距离等于|PF |,则动点P 到直线l 1和直线l 2的距离之和的最小值,即焦点F 到直线l 1:4x -3y +6=0的距离,所以最小值是|4-0+6|5=2.触类旁通与抛物线有关的最值问题的两个转化策略(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解.将抛物线上的点到焦点的距离转化为到准线的距离,利用“与直线上所有点的连线中垂线段最短”原理解决.)即时训练 1.(2019·潍坊质检)在y =2x 2上有一点P ,它到A (1,3)的距离与它到焦点的距离之和最小,则点P 的坐标是( )A .(-2,1)B .(1,2)C .(2,1)D .(-1,2) 答案 B解析 如图所示,直线l 为抛物线y =2x 2的准线,F 为其焦点,PN ⊥l ,AN 1⊥l ,由抛物线的定义,知|PF |=|PN |,∴|AP |+|PF |=|AP |+|PN |≥|AN 1|,即当且仅当A ,P ,N 三点共线时取等号.∴P 点的横坐标与A 点的横坐标相同即为1,则可排除A ,C ,D ,故选B.2.已知P 是抛物线y 2=4x 上一动点,则点P 到直线l :2x -y +3=0和y 轴的距离之和的最小值是( )A. 3B. 5 C .2 D.5-1 答案 D解析 由题意知,抛物线的焦点为F (1,0).设点P 到直线l 的距离为d ,由抛物线的定义可知,点P 到y 轴的距离为|PF |-1,所以点P 到直线l 的距离与到y 轴的距离之和为d +|PF |-1.易知d +|PF |的最小值为点F 到直线l 的距离,故d +|PF |的最小值为|2+3|22+-2=5,所以d +|PF |-1的最小值为5-1.考向二 抛物线的方程例4 (1)(2019·运城模拟)已知抛物线x 2=ay 与直线y =2x -2相交于M ,N 两点,若MN 中点的横坐标为3,则此抛物线的方程为( )A .x 2=32yB .x 2=6y C .x 2=-3y D .x 2=3y答案 D解析 设点M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧x 2=ay ,y =2x -2消去y ,得x 2-2ax +2a =0,所以x 1+x 22=2a 2=3,即a =3,因此所求的抛物线方程是x 2=3y . (2)抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线x 23-y 23=1相交于A ,B 两点,若△ABF 为等边三角形,则p =________.答案 6解析 抛物线的准线方程为y =-p2,设A ,B 的横坐标分别为x A ,x B ,则|x A |2=|x B |2=3+p 24,所以|AB |=|2x A |.又焦点到准线的距离为p ,由等边三角形的特点,得p =32|AB |,即p 2=34×4×⎝ ⎛⎭⎪⎫3+p 24,所以p =6. 触类旁通求抛物线的标准方程应注意的几点(1)当坐标系已建立时,应根据条件确定抛物线的标准方程属于四种类型中的哪一种.要注意把握抛物线的顶点、对称轴、开口方向与方程之间的对应关系. 要注意参数p 的几何意义是焦点到准线的距离,利用它的几何意义来解决问题. 即时训练 3.(2019·上海模拟)抛物线y 2=2px (p >0)的焦点为F ,O 为坐标原点,M 为抛物线上一点,且|MF |=4|OF |,△MFO 的面积为43,则抛物线的方程为( )A .y 2=6x B .y 2=8x C .y 2=16x D .y 2=152x答案 B解析 设M (x ,y ),∵|OF |=p 2,|MF |=4|OF |,∴|MF |=2p ,由抛物线的定义知x +p2=2p ,∴x =32p ,∴y =±3p ,又△MFO 的面积为43,∴12×p2×3p =43,解得p =4(p =-4舍去).∴抛物线的方程为y 2=8x .4.动直线l 的倾斜角为60°,若直线l 与抛物线x 2=2py (p >0)交于A ,B 两点,若A ,B 两点的横坐标之和为3,则抛物线的方程为________.答案 x 2=3y解析 设直线l 的方程为y =3x +b ,联立⎩⎨⎧y =3x +b ,x 2=2py ,消去y ,得x 2=2p (3x +b ).即x 2-23px -2pb =0,∴x 1+x 2=23p =3.∴p =32,∴抛物线的方程为x 2=3y .考向三 抛物线的性质例5 (1)已知抛物线y 2=2px (p >0),过其焦点且斜率为-1的直线交抛物线于A ,B 两点,若线段AB 的中点的横坐标为3,则该抛物线的准线方程为( )A .x =1B .x =2C .x =-1D .x =-2 答案 C解析 抛物线y 2=2px (p >0)的焦点为⎝ ⎛⎭⎪⎫p2,0,所以过焦点且斜率为-1的直线方程为y=-⎝ ⎛⎭⎪⎫x -p 2,代入抛物线方程,整理得x 2-3px +p 24=0,由AB 中点的横坐标为3,得3p =6,解得p =2,故抛物线y 2=4x 的准线方程为x =-1.(2)(2018·北京高考)已知直线l 过点(1,0)且垂直于x 轴.若l 被抛物线y 2=4ax 截得的线段长为4,则抛物线的焦点坐标为________.答案 (1,0)解析 如图,由题意可得,点P (1,2)在抛物线上,将P (1,2)代入y 2=4ax ,解得a =1,∴y 2=4x ,由抛物线方程可得,2p =4,p =2,p2=1,∴焦点坐标为(1,0).触类旁通涉及抛物线上的点到焦点的距离或到准线的距离时,常可相互转化.应用抛物线的几何性质解题时,常结合图形思考,通过图形可以直观地看出抛物线的顶点、对称轴、开口方向等几何特征,体现了数形结合思想解题的直观性.即时训练 5.(2016·全国卷Ⅰ)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .8 答案 B解析 不妨设C :y 2=2px (p >0),A (x 1,22),则x 1=222p=4p,由题意可知|OA |=|OD |,得⎝ ⎛⎭⎪⎫4p 2+8=⎝ ⎛⎭⎪⎫p 22+5,解得p =4.故选B.6.在平面直角坐标系xOy 中有一定点A (4,2),若线段OA 的垂直平分线过抛物线y 2=2px (p >0)的焦点,则该抛物线的准线方程是________.答案 x =-52解析 OA 的中点的坐标为(2,1),斜率k OA =12,OA 的垂直平分线的方程为y -1=-2(x-2),即y =-2x +5.又∵抛物线y 2=2px (p >0)的焦点在x 轴上,即y =0.由⎩⎪⎨⎪⎧y =0,y =-2x +5,得抛物线的焦点F 的坐标为⎝ ⎛⎭⎪⎫52,0,∴52=p 2,∴抛物线的准线方程为x =-52. 考向四 直线与抛物线的位置关系例6 (2018·全国卷Ⅰ)设抛物线C :y 2=2x ,点A (2,0),B (-2,0),过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:∠ABM =∠ABN .解 (1)当l 与x 轴垂直时,l 的方程为x =2,可得M 的坐标为(2,2)或(2,-2). 所以直线BM 的方程为y =12x +1或y =-12x -1.(2)证明:当l 与x 轴垂直时,AB 为线段MN 的垂直平分线,所以∠ABM =∠ABN . 当直线l 与x 轴不垂直时,设直线l 的方程为y =k (x -2)(k ≠0),M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0.由⎩⎪⎨⎪⎧y =k x -,y 2=2x ,得ky 2-2y -4k =0,可知y 1+y 2=2k,y 1y 2=-4.直线BM ,BN 的斜率之和为k BM +k BN =y 1x 1+2+y 2x 2+2=x 2y 1+x 1y 2+y 1+y 2x 1+x 2+.①将x 1=y 1k +2,x 2=y 2k+2及y 1+y 2,y 1y 2的表达式代入①式分子,可得x 2y 1+x 1y 2+2(y 1+y 2)=2y 1y 2+4k y 1+y 2k=-8+8k=0.所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM =∠ABN . 综上,∠ABM =∠ABN . 触类旁通求解抛物线综合问题的方法(1)研究直线与抛物线的位置关系与研究直线与椭圆、双曲线的位置关系的方法类似,一般是用方程法,但涉及抛物线的弦长、中点、距离等问题时,要注意“设而不求”“整体代入”“点差法”以及定义的灵活应用.有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p 焦点在x 轴正半轴,若不过焦点,则必须用弦长公式.即时训练 7.如图,AB 为抛物线x 2=2py (p >0)的弦,且以AB 为直径的圆恒过原点O (A ,B 均不与O 重合),△AOB 面积的最小值为16.(1)求抛物线的方程;(2)设过点A ,B 的切线的交点为M ,试问点M 是否在某定直线上?若在,求出该直线的方程;若不在,请说明理由.解 (1)不妨设点A 在第二象限,点B 在第一象限. 设直线OA :y =kx (k <0),与抛物线方程联立,化简得x 2-2pkx =0,解得x =0或x =2pk ,则A (2pk,2pk 2), 由于以AB 为直径的圆恒过原点O ,所以OA ⊥OB , 所以直线OB 的斜率为-1k,同理可得B ⎝⎛⎭⎪⎫-2p k,2p k 2.所以S △AOB =12|OA ||OB |=12 p 2k 2+4p 2k4⎝ ⎛⎭⎪⎫4p2k 2+4p 2k 4 =2p22+k 2+1k2≥4p 2,当且仅当k =-1时等号成立.所以4p 2=16,p =2,抛物线的方程为x 2=4y . (2)由(1)知x 2=4y ,y =x 24,则y ′=x2.再由(1)得k MA =2k ,k MB =-2k.所以直线MA 的方程为y -4k 2=2k (x -4k ),直线MB 的方程为y -4k 2=-2k⎝ ⎛⎭⎪⎫x +4k , 联立两直线方程,得⎩⎪⎨⎪⎧y -4k 2=2k x -4k ,y -4k2=-2k ⎝ ⎛⎭⎪⎫x +4k ,解得x =k 2-k,y =-4,由于x =k 2-k∈R ,所以点M 在定直线y =-4(x ∈R )上.1.(2018·温州十校联考)已知点A (0,2),抛物线C :y 2=2px (p >0)的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,若|FM ||MN |=55,则p 的值等于( ) A.18 B.14 C .2 D .4 答案 C解析 设M (x M ,y M ),N ⎝ ⎛⎭⎪⎫-p 2,y N ,由|FM ||MN |=55,知|FM ||FN |=15+1,所以y N =(5+1)y M ;由k FA =k FN 知,y N -p =2-p 2,所以y N =4,所以y M =45+1;又|FM ||FN |=15+1,所以p 2-x M =15+1⎝ ⎛⎭⎪⎫p 2+p 2=p 5+1,所以x M=5-p5+,将(x M ,y M )代入y 2=2px ,得⎝⎛⎭⎪⎫45+12=2p ×5-p5+,解得p =2.故选C.2.过抛物线y 2=2px (p >0)的焦点F 作直线交抛物线于A ,B ,若S △OAF =4S △OBF ,则直线AB 的斜率为( )A .±35B .±45C .±34D .±43答案 D解析 根据题意设点A (x 1,y 1),B (x 2,y 2).由S △OAF =4S △OBF ,得|AF |=4|BF |,AF →=4FB →,得⎝ ⎛⎭⎪⎫p 2-x 1,-y 1=4⎝ ⎛⎭⎪⎫x 2-p 2,y 2,故-y 1=4y 2,即y 1y 2=-4.设直线AB 的方程为y =k ⎝ ⎛⎭⎪⎫x -p2,联立⎩⎪⎨⎪⎧y =k ⎝ ⎛⎭⎪⎫x -p 2,y 2=2px ,消去x ,得ky 2-2py -kp 2=0,故y 1+y 2=2pk,y 1y 2=-p 2,则y 1+y 22y 1y 2=y 1y 2+y 2y 1+2=-94,∴-4k 2=-94,解得k =±43,即直线AB 的斜率为±43.故选D. 答题启示圆锥曲线中存在线段比值问题,应采用化归转化思想方法进而转化为向量关系,或有关点的坐标关系,有时还利用相似比或三角函数求解.对点训练1.过抛物线y 2=4x 的焦点F 且斜率为22的直线交抛物线于A ,B 两点(x A >x B ),则|AF ||BF |=( ) A.32 B.34C .3D .2 答案 D解析 设直线方程为y =22(x -1),与y 2=4x 联立,得2x 2-5x +2=0,∴(2x -1)(x -2)=0,∴x 1=12,x 2=2.∵x A >x B ,∴x A =2,x B =12.∴|AF ||BF |=⎪⎪⎪⎪⎪⎪x A +p 2⎪⎪⎪⎪⎪⎪x B +p 2=2+112+1=2.故选D. 2.(2019·河南模拟)过抛物线y 2=2px (p >0)的焦点F 作斜率大于0的直线l 交抛物线于A ,B 两点(A 在B 的上方),且l 与准线交于点C ,若CB →=4BF →,则|AF ||BF |=( ) A.53 B.52C .3D .2 答案 A解析 根据题意,设|AF |=a ,|BF |=b ,过A ,B 作准线的垂线,垂足分别为M ,N ,则有|BF |=|BN |=b ,|AF |=|AM |=a ,因为CB →=4BF →,所以|CB |=4|BF |,即|CB |=4|BN |,又BN ∥AM ,所以|CA |=4|AM |,即有4b +a +b =4a ,变形可得a b =53,即|AF ||BF |=53,故选A.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7讲 抛物线[基础题组练]1.抛物线y =ax 2(a <0)的准线方程是( ) A .y =-12aB .y =-14aC .y =12aD .y =14a解析:选B.抛物线y =ax 2(a <0)可化为x 2=1a y ,准线方程为y =-14a.故选B.2.已知点M 是抛物线C :y 2=2px (p >0)上一点,F 为C 的焦点,MF 的中点坐标是(2,2),则p 的值为( )A .1B .2C .3D .4解析:选D.由题意得F ⎝ ⎛⎭⎪⎫p 2,0,那么M ⎝ ⎛⎭⎪⎫4-p 2,4在抛物线上,即16=2p ⎝ ⎛⎭⎪⎫4-p 2,即p 2-8p +16=0,解得p =4.3.(2019·四川成都检测)已知抛物线C :y 2=4x 的焦点为F ,点A (0,-3).若线段FA 与抛物线C 相交于点M ,则|MF |=( )A.43 B.53 C.23D.33解析:选A.由题意,F (1,0),|AF |=2,设|MF |=d ,则M 到准线的距离为d ,M 的横坐标为d -1,由三角形相似,可得d -11=2-d2,所以d =43,故选A. 4.直线l 过抛物线y 2=2px (p >0)的焦点,且与抛物线交于A ,B 两点,若线段AB 的长是8,AB 的中点到y 轴的距离是2,则此抛物线方程是( )A .y 2=12x B .y 2=8x C .y 2=6xD .y 2=4x解析:选B.设A (x 1,y 1),B (x 2,y 2),根据抛物线定义,x 1+x 2+p =8,因为AB 的中点到y 轴的距离是2,所以x 1+x 22=2,所以p =4;所以抛物线方程为y 2=8x .故选B.5.抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线x 23-y 23=1相交于A ,B 两点,若△ABF 为等边三角形,则p =________.解析:在等边三角形ABF 中,AB 边上的高为p ,AB 2=33p ,所以B ⎝ ⎛⎭⎪⎫±33p ,-p 2.又因为点B 在双曲线上,故p 233-p 243=1,解得p =6.答案:66.(2019·云南大理州模拟)在直角坐标系xOy 中,有一定点M (-1,2),若线段OM 的垂直平分线过抛物线x 2=2py (p >0)的焦点,则该抛物线的准线方程是________.解析:依题意可得线段OM 的垂直平分线的方程为2x -4y +5=0, 把焦点坐标⎝ ⎛⎭⎪⎫0,p 2代入可求得p =52, 所以准线方程为y =-54.答案:y =-547.顶点在原点,焦点在x 轴上的抛物线截直线y =2x -4所得的弦长|AB |=35,求此抛物线方程.解:设所求的抛物线方程为y 2=ax (a ≠0),A (x 1,y 1),B (x 2,y 2),把直线y =2x -4代入y 2=ax ,得4x 2-(a +16)x +16=0,由Δ=(a +16)2-256>0,得a >0或a <-32. 又x 1+x 2=a +164,x 1x 2=4,所以|AB |=(1+22)[(x 1+x 2)2-4x 1x 2] =5⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +1642-16=35, 所以5⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫a +1642-16=45, 所以a =4或a =-36.故所求的抛物线方程为y 2=4x 或y 2=-36x .8.已知抛物线y 2=2px (p >0)的焦点为F ,A 是抛物线上横坐标为4,且位于x 轴上方的点,A 到抛物线准线的距离等于5,过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M .(1)求抛物线的方程;(2)若过M 作MN ⊥FA ,垂足为N ,求点N 的坐标. 解:(1)抛物线y 2=2px 的准线为x =-p2,于是4+p2=5,所以p =2.所以抛物线方程为y 2=4x .(2)因为点A 的坐标是(4,4), 由题意得B (0,4),M (0,2). 又因为F (1,0),所以k FA =43,因为MN ⊥FA ,所以k MN =-34.所以FA 的方程为y =43(x -1),①MN 的方程为y -2=-34x ,②联立①②, 解得x =85,y =45,所以N 的坐标为⎝ ⎛⎭⎪⎫85,45. [综合题组练]1.已知抛物线x 2=4y 上一动点P 到x 轴的距离为d 1,到直线l :x +y +4=0的距离为d 2,则d 1+d 2的最小值是( )A.552+2 B.522+1 C.522-2 D.522-1 解析:选D.抛物线x 2=4y 的焦点F (0,1),由抛物线的定义可得d 1=|PF |-1,则d 1+d 2=|PF |+d 2-1,而|PF |+d 2的最小值等于焦点F 到直线l 的距离,即(|PF |+d 2)min =52=522,所以d 1+d 2的最小值是522-1. 2.(综合型)(2019·湖北武汉部分学校调研)过抛物线C :y 2=2px (p >0)的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN ⊥l ,若|NF |=4,则M 到直线NF 的距离为( )A. 5 B .2 3 C .3 3D .2 2解析:选 B.法一:因为直线MF 的斜率为3,MN ⊥l ,所以∠NMF =60°,又|MF |=|MN |,且|NF |=4,所以△NMF 是边长为4的等边三角形,所以M 到直线NF 的距离为2 3.故选B.法二:由题意可得直线MF 的方程为x =33y +p 2,与抛物线方程联立消去x 可得y 2-233py -p 2=0,解得y =-33p 或y =3p ,又点M 在x 轴上方,所以M ⎝ ⎛⎭⎪⎫3p 2,3p ,因为MN ⊥l ,所以N ⎝ ⎛⎭⎪⎫-p 2,3p ,所以|NF |=⎝ ⎛⎭⎪⎫p 2+p 22+(0-3p )2=2p .由题意2p =4,解得p =2,所以N (-1,23),F (1,0),直线NF 的方程为3x +y -3=0,且点M 的坐标为(3,23),利用点到直线的距离公式可得M 到直线NF 的距离为|33+23-3|3+1=2 3.故选B.法三:由题意可得直线MF 的方程为x =33y +p 2,与抛物线方程联立消去x 可得y 2-233py -p 2=0,解得y =-33p 或y =3p ,又点M 在x 轴上方,所以M ⎝ ⎛⎭⎪⎫3p 2,3p ,因为MN ⊥l ,所以N ⎝ ⎛⎭⎪⎫-p 2,3p ,所以|NF |=⎝ ⎛⎭⎪⎫p 2+p 22+(0-3p )2=2p .由题意2p =4,解得p =2,所以N (-1,23),F (1,0),M (3,23),设M 到直线NF 的距离为d ,在△MNF 中,S △MNF =12|NF |×d =12|MN |×y M ,所以d =14×4×23=23,故选B.3.(应用型)如图所示是抛物线形拱桥,当水面在l 时,拱顶离水面2m ,水面宽4 m .水位下降1 m 后,水面宽________m.解析:建立如图所示的平面直角坐标系,设抛物线方程为x 2=-2py (p >0),则A (2,-2),将其坐标代入x 2=-2py ,得p =1.所以x 2=-2y .当水面下降1 m ,得D (x 0,-3)(x 0>0),将其坐标代入x 2=-2y ,得x 20=6,所以x 0= 6.所以水面宽|CD |=2 6 m. 答案:2 64.已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与C 的交点为P ,与y 轴的交点为Q ,且|PF |=32|PQ |,则抛物线C 的方程为________.解析:设P (x 0,4).将点P 的坐标代入y 2=2px (p >0),得x 0=8p ,所以|PQ |=8p ,|PF |=p 2+8p .由题意得p 2+8p =32×8p.又p >0,解得p =2 2.所以抛物线C 的方程为y 2=42x . 答案:y 2=42x5.(2018·高考全国卷Ⅱ)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.解:(1)由题意得F (1,0),l 的方程为y =k (x -1)(k >0). 设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x 得k 2x 2-(2k 2+4)x +k 2=0. Δ=16k 2+16>0,故x 1+x 2=2k 2+4k2.所以|AB |=|AF |+|BF |=(x 1+1)+(x 2+1)=4k 2+4k2.由题设知4k 2+4k2=8,解得k =-1(舍去),k =1.因此l 的方程为y =x -1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为y -2=-(x -3),即y =-x +5.设所求圆的圆心坐标为(x 0,y 0),则⎩⎪⎨⎪⎧y 0=-x 0+5,(x 0+1)2=(y 0-x 0+1)22+16. 解得⎩⎪⎨⎪⎧x 0=3,y 0=2或⎩⎪⎨⎪⎧x 0=11,y 0=-6. 因此所求圆的方程为(x -3)2+(y -2)2=16或(x -11)2+(y +6)2=144.6.(综合型)如图所示,抛物线关于x 轴对称,它的顶点在坐标原点,点P (1,2),A (x 1,y 1),B (x 2,y 2)均在抛物线上.(1)写出该抛物线的方程及其准线方程;(2)当PA 与PB 的斜率存在且倾斜角互补时,求y 1+y 2的值及直线AB 的斜率. 解:(1)由已知条件,可设抛物线的方程为y 2=2px (p >0). 因为点P (1,2)在抛物线上, 所以22=2p ×1, 解得p =2.故所求抛物线的方程是y 2=4x ,准线方程是x =-1. (2)设直线PA 的斜率为k PA ,直线PB 的斜率为k PB . 则k PA =y 1-2x 1-1(x 1≠1), k PB =y 2-2x 2-1(x 2≠1),因为PA 与PB 的斜率存在且倾斜角互补, 所以k PA =-k PB .由A (x 1,y 1),B (x 2,y 2)均在抛物线上,得⎩⎪⎨⎪⎧y 21=4x 1,①y 22=4x 2,② 所以y 1-214y 21-1=-y 2-214y 22-1,所以y 1+2=-(y 2+2). 所以y 1+y 2=-4.由 ①-②得,y 21-y 22=4(x 1-x 2), 所以k AB =y 1-y 2x 1-x 2=4y 1+y 2=-1.。

相关文档
最新文档