(分级演练)2014中考数学特训卷:概率(含部分14原创题)
中考数学专题复习题 概率(含解析)
xx中考数学专题复习题:概率一、选择题1.在学习掷硬币的概率时,老师说:“掷一枚质地均匀的硬币,正面朝上的概率是”,小明做了下列三个模拟实验来验证.取一枚新硬币,在桌面上进行抛掷,计算正面朝上的次数与总次数的比值.把一个质地均匀的圆形转盘平均分成偶数份,并依次标上奇数和偶数,转动转盘,计算指针落在奇数区域的次数与总次数的比值.将一个圆形纸板放在水平的桌面上,纸板正中间放一个圆锥如图,从圆锥的正上方往下撒米粒,计算其中一半纸板上的米粒数与纸板上总米粒数的比值.上面的实验中,合理的有A. 0个B. 1个C. 2个D. 3个2.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在附近,则n的值约为A. 20B. 30C. 40D. 503.小明做“用频率估计概率”的实验时,根据统计结果,绘制了如图所示的折线统计图,则符合这一结果的实验最有可能的是A. 同时抛掷两枚硬币,落地后两枚硬币正面都朝上B. 一副去掉大小王的扑克牌,洗匀后,从中任抽一张牌的花色是红桃C. 抛一个质地均匀的正方体骰子,朝上的面点数是3D. 一个不透明的袋子中有4个白球、1个黑球,它们除了颜色外都相同,从中抽到黑球4.下列事件中是必然事件的是A. 明天太阳从西边升起B. 篮球队员在罚球线上投篮一次,未投中C. 抛出一枚硬币,落地后正面朝上D. 实心铁球投入水中会沉入水底5.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是A. 摸出的是3个白球B. 摸出的是3个黑球C. 摸出的是2个白球、1个黑球D. 摸出的是2个黑球、1个白球6.下列说法中不正确的是A. 函数的一次项系数是B. “明天降雨的概率是”表示明天有半天都在降雨C. 若a为实数,则是不可能事件D. 一个盒子中有白球m个,红球6个,黑球n个每个球除了颜色外都相同,如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m与n的和是67.三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是A. B. C. D.8.把八个完全相同的小球平分为两组,每组中每个分别协商1,2,3,4四个数字,然后分别装入不透明的口袋内搅匀,从第一个口袋内取出一个数记下数字后作为点P的横坐标x,然后再从第二个口袋中取出一个球记下数字后作为点P的纵坐标,则点落在直线上的概率是A. B. C. D.9.下列算式;;;;.运算结果正确的概率是A. B. C. D.10.向如图所示的地砖上随机地掷一个小球,当小球停下时,最终停在地砖上阴影部分的概率是A. B. C. D.二、填空题11.一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是,那么添加的球是______ .12.已知四个点的坐标分别是,,,,从中随机选取一个点,在反比例函数图象上的概率是______.13.有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6,随机抽取1张后,放回并混在一起,再随机抽取1张,则两次取出的数字都是奇数的概率为______ .14.如图,随机地闭合开关,,,,中的三个,能够使灯泡,同时发光的概率是______ .15.下列事件:过三角形的三个顶点可以作一个圆;检验员从被检查的产品中抽取一件,就是合格品;度量五边形的内角和,结果是;测得某天的最高气温是;掷一枚骰子,向上一面的数字是3,其中必然事件的有______ ,随机事件的有______ 只填序号16.我国魏晋时期数学家刘徽首创“割圆术”计算圆周率随着时代发展,现在人们依据频率估计概率这一原理,常用随机模拟的方法对圆周率进行估计,用计算机随机产生m个有序数对y是实数,且,,它们对应的点在平面直角坐标系中全部在某一个正方形的边界及其内部如果统计出这些点中到原点的距离小于或等于1的点有n个,则据此可估计的值为______ 用含m,n的式子表示17.为了估计一个不透明的袋子中白球的数量袋中只有白球,现将5个红球放进去这些球除颜色外均相同随机摸出一个球记下颜色后放回每次摸球前先将袋中的球摇匀,通过多次重复摸球试验后,发现摸到红球的频率稳定于,由此可估计袋中白球的个数大约为______.18.黔东南下司“蓝每谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是______ kg.19.“的估计”有很多方法,下面这个随机模拟实验就是一种,其过程如下:如图,随机撒一把米到画有正方形及其内切圆的白纸上,统计落在圆内的米粒数m 与正方形内的米粒数n,并计算频率;在相同条件下,大量重复以上试验,当显现出一定稳定性时,就可以估计出的值为请说出其中所蕴含的原理:_____.20.小静和哥哥两人都很想去观看某场体育比赛,可门票只有一张哥哥想了一个办法,拿了8张扑克牌,将数字为2、3、5、9的四张牌给小静,将数字为4、6、7、8的四张牌留给自己,并按如下游戏规则进行:小静和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小静去;如果和为奇数,则哥哥去哥哥设计的游戏规则______填“公平”或“不公平”.三、计算题21.甲、乙两个人做游戏:在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,从中随机摸出一张纸牌然后放回,再随机摸出一张纸牌,若两次摸出的纸牌上数字之和是3的倍数,则甲胜;否则乙胜这个游戏对双方公平吗?请列表格或画树状图说明理由.22.研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球实验,摸球实验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.活动结果:摸球实验活动一共做了50次,统计结果如下表:无记号有记号球的颜色红色黄色红色黄色摸到的次数182822推测计算:由上述的摸球实验可推算:盒中红球、黄球各占总球数的百分比分别是多少?盒中有红球多少个?23.某篮球运动员去年共参加40场比赛,其中3分球的命中率为,平均每场有12次3分球未投中.该运动员去年的比赛中共投中多少个3分球?在其中的一场比赛中,该运动员3分球共出手20次,小亮说,该运动员这场比赛中一定投中了5个3分球,你认为小亮的说法正确吗?请说明理由.24.抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级请根据两幅统计图中的信息回答下列问题:本次抽样调查共抽取了多少名学生?求测试结果为C等级的学生数,并补全条形图;若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.25.小明学习电学知识后,用四个开关按键每个开关键闭合的可能性相等、一个电源和一个灯泡设计了一个电路图若小明设计的电路图四个开关按键都处于打开状态如图所示,求任意闭合一个开关按键,灯泡能发光的概率;若小明设计的电路图四个开关按键都处于打开状态如图所示,求同时闭合其中的两个开关按键,灯泡能发光的概率用列表或树状图法【答案】1. D2. B3. C4. D5. A6. B7. A8. B9. A10. B11. 红球12.13.14.15. ;16.17. 20个18. 56019. 用频率估计概率20. 不公平21. 解:根据题意列表如下:1234 1234所有等可能的情况数有16种,其中两次摸出的纸牌上数字之和是3的倍数的情况有:,,,,,共5种,甲获胜,乙获胜,则该游戏不公平.22. 解:由题意可知,50次摸球实验活动中,出现红球20次,黄球30次,红球所占百分比为,黄球所占百分比为,答:红球占,黄球占;由题意可知,50次摸球实验活动中,出现有记号的球4次,总球数为,红球数为,答:盒中红球有40个.23. 解:设该运动员共出手x个3分球,根据题意,得,解得,个,答:运动员去年的比赛中共投中160个3分球;小亮的说法不正确;3分球的命中率为,是40场比赛来说的平均水平,而在其中的一场比赛中,命中率并不一定是,所以该运动员这场比赛中不一定投中了5个3分球.24. 解:,所以本次抽样调查共抽取了50名学生;测试结果为C等级的学生数为人;补全条形图如图所示:中考数学专题复习题 概率(含解析)11 /11,所以估计该中学八年级学生中体能测试结果为D 等级的学生有56名; 画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2, 所以抽取的两人恰好都是男生的概率.25. 解:任意闭合一个开关按键,灯泡能发光的概率; 画树状图为:共有12种等可能的结果数,其中同时闭合其中的两个开关按键,灯泡能发光的结果数为6, 所以同时闭合其中的两个开关按键,灯泡能发光的概率.【感谢您的阅览,下载后可自由复制或修改编辑,敬请您的关注】。
2014年中考数学真题汇编-概率
精选文档2014 年中考数学真题汇编 -概率一、选择题1. ( 2014?山东枣庄,第 4 题 3 分)以下说法正确的选项是()A .“明日降雨的概率是 50%”表示明日有半天都在降雨B .数 据 4, 4, 5, 5, 0 的中位数和众数都是 5C .要 认识一批钢化玻璃的最少同意碎片数,应采纳普查的方式D .若甲、乙两组数中各有20 个数据,均匀数 =,方差 s 2 甲 =1.25, s 2 乙=0.96 ,则说明乙组数据比甲组数据稳固 考点 : 概率的意义;全面检查与抽样检查;中位数;众数;方差剖析:依据概率的意义,众数、中位数的定义,以及全面检查与抽样检查的选择,方差的意义对各选项剖析判断利用清除法求解.解答:解: A 、 “明日降雨的概率是 50%”表示明日降雨和不降雨的可能 性相等,不表示半天都在降雨,故本选项错误;B 、数据 4,4,5, 5,0 的中位数是 4,众数是 4 和 5,故本选项错误;C 、要认识一批钢化玻璃的最少同意碎片数,应采纳抽样检查的方式,故本选项错误;D 、∵方差 s 2 甲 >s 2 乙 , ∴乙组数据比甲组数据稳固正确,故本选项正确.应选 D .评论:本题解决的重点是理解概率的意义以及必定事件的观点; 用到的知识点为:不太简单做到的事要采纳抽样检查; 反应数据颠簸情况的量有极差、方差和标准差等.2. ( 2014?山东潍坊,第 10 题 3分)右图是某市 7月 1日至 10 日的空气质量指数趋向图,空气质量指数小于 100 表示空气质量优异,空气质量指数大于 2 00 表示空气重度污染,某人随机选择 7 月 1 日至 7 月 8 日中的某一天抵达该市,并连续逗留3 天.则这人在该市逗留时期有且仅有1 天空气质量优异的概率是 ()A 、1B 、2C 、1D 、33524考点 :折线统计图; ;几何概率.剖析 :将所用可能结果列举出来,找出切合要求的,后者除从前者即可。
2014 2014年中招考试数学试卷及答案
2014年数学试卷及答案一、选择题(每小题3分,共24分)1.下列各数中,最小的数是()(A). 0 (B).13(C).-13(D).-32. 据统计,2013年河南省旅游业总收入达到3875.5亿元.若将3875.5亿用科学计数法表示为3.8755×10n,则n等于()(A) 10 (B) 11 (C).12 (D).133.如图,直线AB、CD相交于O,射线OM平分∠AOC,O N⊥OM,若∠AOM =350,则∠CON的度数为()(A) .350(B). 450(C) .550(D). 6504.下列各式计算正确的是()(A)a +2a =3a2(B)(-a3)2=a6(C)a3·a2=a6(D)(a+b)2=a2 + b25.下列说法中,正确的是()(A)“打开电视,正在播放河南新闻节目”是必然事件(B)某种彩票中奖概率为10%是指买十张一定有一张中奖(c)神州飞船发射前钻要对冬部件进行抽样检查(D)了解某种节能灯的使用寿命适合抽样调查6:将两个长方体如图放皿,到所构成的几何体的左视田可能是()7.如图, ABCD 的对角线AC 与BD 相交于点O,AB ⊥AC.若AB =4,AC =6,则BD 的长是( ) (A)8 (B) 9 (C)10 (D )118.如图,在Rt △ABC 中,∠C=900,AC=1cm ,BC=2cm ,点P 从A 出发,以1cm/s 的速沿折线AC CB BA 运动,最终回到A 点。
设点P 的运动时间为x (s ),线段AP 的长度为y (cm ),则能反映y 与x 之间函数关系的图像大致是 ( )二、填空题(每小题3分,共21分) 9.计算:2-= . 10.不等式组3x 6042x 0+≥⎧⎨-⎩>的所有整数解的和是.11.在△ABC 中,按以下步骤作图:①分别以B 、C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M 、N ;②作直线MN 交AB 于点D ,连接CD. 若CD=AC ,∠B=250,则∠ACB 的度数为 .12.已知抛物线y=ax 2+bx+c(a ≠0)与x 轴交于A 、B 两点.若点A 的坐标为(-2,0),抛物线的对称轴为直线x=2.则线段AB 的长为 .13.一个不进明的袋子中装有仅颇色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,到第一个人摸到红球且第二个人摸到白球的概率是 .14.如图,在菱形ABCD 中,AB =1,∠DAB=600,把菱形ABCD 绕点A 顺时针旋转300得到菱形AB'C'D',其中点C 的运动能路径为/CC,则图中阴影部分的面积为 .15.如图,矩形ABCD 中,AD=5,AB=7.点E 为DC 上一个动点,把△ADE 沿AE 折叠,当点D 的对应点D /落在∠ABC 的角平分线上时,DE 的长为 .三、解答题(本大题共8个,满分75分) 16.(8分)先化简,再求值:222x 1x 12x x x ⎛⎫-+÷+ ⎪-⎝⎭,其中117.(9分)如图,CD 是⊙O 的直径,且CD=2cm ,点P 为CD 的延长线上一点,过点P 作⊙O 的切线PA 、PB ,切点分别为点A 、B.(1)连接AC,若∠APO =300,试证明△ACP 是等腰三角形; (2)填空:①当DP= cm 时,四边形AOBD 是菱形; ②当DP= cm 时,四边形AOBP 是正方形.18.(9分)某兴趣小组为了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为 ; (2)请补全条形统计图;(3)该校共有1200名男生,请估什全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×27300=108”,请你判断这种说法是否正确,并说明理由.19.(9分)在中俄“海上联合—2014”反潜演习中,我军舰A测得潜艇C的俯角为300.位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为680.试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数。
2014年中考数学二轮考点分类训练专题07 统计与概率(答案详解+名师点评)-1.doc
浙教版2014年中考数学二轮考点分类训练专题专题07 统计与概率班级姓名一、选择题C.上城区与下城区的人口数之和超过江干区的人口数D.杭州市区的人口数已超过600万【考点】众数。
【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是8,故这组数据的众数为8。
故选C。
4. 随机掷两枚硬币,落地后全部正面朝上的概率是【】A.1B.12C.13D.145. 下列调查中,适合用全面调查方式的是【】A.了解某班学生“50米跑”的成绩B.了解一批灯泡的使用寿命C.了解一批炮弹的杀伤半径D.了解一批袋装食品是否含有防腐剂【答案】A。
【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查。
因此,6. 将1、2、3三个数字随机生成的点的坐标,列成下表.如果每个点出现的可能性相等,那么从中任意取一点,则这个点在函数y=x图象上的概率是【】(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2)(3,3)A.0.3 B.0.5 C.13D.23A. 12B.14C.34D.110. 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表:这些运动员跳高成绩的中位数和众数分别是【】A.1.65,1.70 B.1.70,1.65 C.1.70,1.70 D.3,5二、填空题1. 下列几个命题中正确的个数为▲个.①“掷一枚均匀骰子,朝上点数为负”为必然事件(骰子上各面点数依次为1,2,3,4,5,6).②5名同学的语文成绩为90,92,92,98,103,则他们平均分为95,众数为92.③射击运动员甲、乙分别射击10次,算得甲击中环数的方差为4,乙击中环数的方差为16,则这一过程中乙较甲更稳定.④某部门15名员工个人年创利润统计表如下,其中有一栏被污渍弄脏看不清楚数据,所以对于“该部门员工个人年创利润的中位数为5万元”的说法无法判断对错.2. 甲、乙两人玩猜数字游戏,游戏规则如下:有四个数字0、1、2、3,先由甲心中任-≤,则称选一个数字,记为m,再由乙猜甲刚才所选的数字,记为n。
2014年全国各地中考数学真题分类解析汇编:14 统计
统计一、选择题1.(2014年天津市,第11题3分)某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙丙丁测试成绩(百分制)面试86 92 90 83笔试90 83 83 92如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取()A.甲B.乙C.丙D.丁考点:加权平均数.分析:根据题意先算出甲、乙、丙、丁四位候选人的加权平均数,再进行比较,即可得出答案.解答:解:甲的平均成绩为:(86×6+90×4)÷10=87.6(分),乙的平均成绩为:(92×6+83×4)÷10=88.4(分),丙的平均成绩为:(90×6+83×4)÷10=87.2(分),丁的平均成绩为:(83×6+92×4)÷10=86.6(分),因为乙的平均分数最高,所以乙将被录取.故选B.点评:此题考查了加权平均数的计算公式,注意,计算平均数时按6和4的权进行计算.2.(2014•新疆,第7题5分)某学校教研组对八年级360名学生就“分组合作学习”方式的支持程度进行了调查,随机抽取了若干名学生进行调查,并制作统计图,据此统计图估计该校八年级支持“分组合作学习”方式的学生约为(含非常喜欢和喜欢两种情况)()A .216B.252C.288D.324考点:条形统计图;用样本估计总体.分析:用分组合作学习所占的百分比乘以该校八年级的总人数,即可得出答案.解答:解:根据题意得:360×=252(人),答:该校八年级支持“分组合作学习”方式的学生约为252人;故选B.点评:此题考查了条形统计图和用样本估计总体,关键是根据题意求出抽查人数中分组合作学习所占的百分比.3.(2014年云南省,第8题3分)学校为了丰富学生课余活动开展了一次“爱我云南,唱我云南”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表:成绩(分)9.40 9.50 9.60 9.70 9.80 9.90人数 2 3 5 4 3 1则入围同学决赛成绩的中位数和众数分别是()A.9.70,9.60 B. 9.60,9.60 C. 9.60,9.70 D.9.65,9.60考点:众数;中位数分析:根据中位数和众数的概念求解.解答:解:∵共有18名同学,则中位数为第9名和第10名同学成绩的平均分,即中位数为:=9.60,众数为:9.60.故选B.点评:本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.(2014•温州,第2题4分)如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是()A.5﹣10元B.10﹣15元C.15﹣20元D.20﹣25元考点:频数(率)分布直方图.分析:根据图形所给出的数据直接找出捐款人数最多的一组即可.解答:解:根据图形所给出的数据可得:15﹣20元的有20人,人数最多,则捐款人数最多的一组是15﹣20元;故选C.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.5.(2014•温州,第6题4分)小明记录了一星期天的最高气温如下表,则这个星期每天的最高气温的中位数是()星期一二三四五六日最高气温(℃)22242325242221A .22℃B.23℃C.24℃D.25℃考点:中位数.分析:将数据从小到大排列,根据中位数的定义求解即可.解答:解:将数据从小到大排列为:21,22,22,23,24,24,25,中位数是23.故选B.点评:本题考查了中位数的知识,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.6.(2014•舟山,第2题3分)一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是()A .6B.7C.8D.9考点:中位数.分析:根据中位数的概念求解.解答:解:这组数据按照从小到大的顺序排列为:6,7,8,9,9,则中位数为:8.故选C.点评:本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.(2014•舟山,第4题3分)小红同学将自己5月份的各项消费情况制作成扇形统计图(如图),从图中可看出()A.各项消费金额占消费总金额的百分比B.各项消费的金额C.消费的总金额D.各项消费金额的增减变化情况考点:扇形统计图.分析:利用扇形统计图的特点结合各选项利用排除法确定答案即可.解答:解:A、能够看出各项消费占总消费额的百分比,故选项正确;B、不能确定各项的消费金额,故选项错误;C、不能看出消费的总金额,故选项错误;D、不能看出增减情况,故选项错误.故选A.点评:本题考查了扇形统计图的知识,扇形统计图能清楚的反应各部分所占的百分比,难度较小.8.(2014•毕节地区,第5题3分)下列叙述正确的是()9.(2014•毕节地区,第7题3分)我市5月的某一周每天的最高气温(单位:℃)统计如下:19,20,24,22,24,26,27,则这组数据的中位数与众数分别是()10.(2014•武汉,第4题3分)在一次中学生田径运动会上,参加跳高的15名运动员的成绩如表:那么这些运动员跳高成绩的众数是( )11.(2014•襄阳,第6题3分)五箱梨的质量(单位:kg)分别为:18,20,21,18,19,则这五箱梨质量的中位数和众数分别为()12.(2014•邵阳,第4题3分)如图是小芹6月1日﹣7日每天的自主学习时间统计图,则小芹这七天平均每天的自主学习时间是()A .1小时B.1.5小时C.2小时D.3小时考点:算术平均数;折线统计图分析:根据算术平均数的概念求解即可.解答:解:由图可得,这7天每天的学习时间为:2,1,1,1,1,1.5,3,则平均数为:=1.5.故选B.点评:本题考查了算术平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.13.(2014•孝感,第7题3分)为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:居民(户)1324月用电量(度/户)45556那么关于这10户居民月用电量(单位:度),下列说法错误的是()A .中位数是55B.众数是60C.方差是29D.平均数是54考点:方差;加权平均数;中位数;众数.分根据中位数、众数、平均数和方差的概念分别求得这组数据的中位数、众数、平析:均数和方差,即可判断四个选项的正确与否.解答:解:A、月用电量的中位数是55度,正确;B、用电量的众数是60度,正确;C、用电量的方差是24.9度,错误;D、用电量的平均数是54度,正确.故选C.点评:考查了中位数、众数、平均数和方差的概念.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.14.(2014•四川自贡,第7题4分)一组数据,6、4、a、3、2的平均数是5,这组数据的方差为()A .8B.5C.D.3.考点:方差;算术平均数分析:根据平均数的计算公式先求出a的值,再根据方差公式S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],代数计算即可.解答:解:∵6、4、a、3、2的平均数是5,∴(6+4+a+3+2)÷5=5,解得:a=10,则这组数据的方差S2= [(6﹣5)2+(4﹣5)2+(10﹣5)2+(3﹣5)2+(2﹣5)2]=8;故选A.点评:本题考查了方差,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].15.(2014·台湾,第25题3分)有甲、乙两个箱子,其中甲箱内有98颗球,分别标记号码1~98,且号码为不重复的整数,乙箱内没有球.已知小育从甲箱内拿出49颗球放入乙箱后,乙箱内球的号码的中位数为40.若此时甲箱内有a颗球的号码小于40,有b颗球的号码大于40,则关于a、b之值,下列何者正确?()A.a=16 B.a=24 C.b=24 D.b=34分析:先求出甲箱的球数,再根据乙箱中位数40,得出乙箱中小于、大于40的球数,从而得出甲箱中小于40的球数和大于40的球数,即可求出答案.解:甲箱98﹣49=49(颗),∵乙箱中位数40,∴小于、大于40各有(49﹣1)÷2=24(颗),∴甲箱中小于40的球有39﹣24=15(颗),大于40的有49﹣15=34(颗),即a=15,b =34.故选D.点评:此题考查了中位数,掌握中位数的定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.16.(2014•浙江湖州,第5题3分)数据﹣2,﹣1,0,1,2的方差是()A.0 B.C. 2 D.4分析:先求出这组数据的平均数,再根据方差的公式进行计算即可.解:∵数据﹣2,﹣1,0,1,2的平均数是:(﹣2﹣1+0+1+2)÷5=0,∴数据﹣2,﹣1,0,1,2的方差是:[(﹣2)2+(﹣1)2+02+12+22]=2.故选C.点评:本题考查了方差:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.17. (2014•株洲,第3题,3分)下列说法错误的是()A必然事件的概率为1.B数据1、2、2、3的平均数是2C.数据5、2、﹣3、0的极差是8D.如果某种游戏活动的中奖率为40%,那么参加这种活动10次必有4次中奖考点:概率的意义;算术平均数;极差;随机事件分析:A.根据必然事件和概率的意义判断即可;B.根据平均数的秋乏判断即可;C.求出极差判断即可;D.根据概率的意义判断即可.解答:解:A.概率值反映了事件发生的机会的大小,必然事件是一定发生的事件,所以概率为1,本项正确;B.数据1、2、2、3的平均数是=2,本项正确;C.这些数据的极差为5﹣(﹣3)=8,故本项正确;D.某种游戏活动的中奖率为40%,属于不确定事件,可能中奖,也可能不中奖,故本说法错误,故选:D.点评:本题主要考查了概率的意义、求算术平均数以及极差的方法,比较简单.18. (2014•泰州,第3题,3分)一组数据﹣1、2、3、4的极差是()A .5B.4C.3D.2考点:极差.分极差是最大值减去最小值,即4﹣(﹣1)即可.解答:解:4﹣(﹣1)=5.故选A.点评:此题考查了极差,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.注意:①极差的单位与原数据单位一致.②如果数据的平均数、中位数、极差都完全相同,此时用极差来反映数据的离散程度就显得不准确.19. (2014•扬州,第4题,3分)若一组数据﹣1,0,2,4,x的极差为7,则x的值是()A .﹣3B.6C.7D.6或﹣3考点:极差分析:根据极差的定义分两种情况进行讨论,当x是最大值时,x﹣(﹣1)=7,当x是最小值时,4﹣x=7,再进行计算即可.解答:解:∵数据﹣1,0,2,4,x的极差为7,∴当x是最大值时,x﹣(﹣1)=7,解得x=6,当x是最小值时,4﹣x=7,解得x=﹣3,故选D.点评:此题考查了极差,求极差的方法是用最大值减去最小值,本题注意分两种情况讨论.20.(2014•呼和浩特,第2题3分)以下问题,不适合用全面调查的是()A .旅客上飞机前的安检B.学校招聘教师,对应聘人员的面试C .了解全校学生的课外读书时间D.了解一批灯泡的使用寿命考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、旅客上飞机前的安检,意义重大,宜用全面调查,故此选项错误;B、学校招聘教师,对应聘人员面试必须全面调查,故此选项错误;C、了解全校同学课外读书时间,数量不大,宜用全面调查,故此选项错误;D、了解一批灯泡的使用寿,具有破坏性,工作量大,不适合全面调查,故D选项正确.故选:D.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.21.(2014•滨州,第8题3分)有19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学的()故选B.点评:中位数是将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.学会运用中位数解决问题.22.(2014•德州,第9题3分)雷霆队的杜兰特当选为2013﹣2014赛季NBA常规赛MVP,下表是他8场比赛的得分,则这8场比赛得分的众数与中位数分别为()场次12345678得分3028283823263942A .29 28B.28 29C.28 28D.28 27考点:众数;中位数分析:根据众数和中位数的概念求解.解答:解:这组数据按照从小到大的顺序排列为:23,26,28,28,30,38,39,42,则众数为:28,中位数为:=29.故选B.点评:本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.23.(2014•菏泽,第4题3分)2014年4月8日我市区县的可吸入颗粒物数值统计如下表:区县曹县单县成武定陶巨野东明郓城鄄城牡丹区开发区可吸入颗粒物0.10.10.10.10.10.10.10.10.140.14该日这一时刻的可吸入颗粒物数值的众数和中位数分别是()24.(2014•济宁,第6题3分)从总体中抽取一部分数据作为样本去估计总体的某种属性.下面叙述正确的是()A样本容量越大,样本平均数就越大.B样本容量越大,样本的方差就越大.C样本容量越大,样本的极差就越大.D样本容量越大,对总体的估计就越准确.考用样本估计总体.点:分用样本频率估计总体分布的过程中,估计的是否准确与总体的数量无关,只与样析:本容量在总体中所占的比例有关,对于同一个总体,样本容量越大,估计的越准确.解答:解:∵用样本频率估计总体分布的过程中,估计的是否准确与总体的数量无关,只与样本容量在总体中所占的比例有关,∴样本容量越大,估计的越准确.故选:D.点评:此题考查了抽样和样本估计总体的实际应用,注意在一个总体中抽取一定的样本估计总体,估计的是否准确,只与样本在总体中所占的比例有关.25.(2014年山东泰安,第9题3分)以下是某校九年级10名同学参加学校演讲比赛的统计表:成绩/分80 85 90 95人数/人 1 2 5 2则这组数据的中位数和平均数分别为()A.90,90 B. 90,89 C. 85,89 D. 85,90分析:根据中位数的定义先把这些数从小到大排列,求出最中间的两个数的平均数,再根据平均数的计算公式进行计算即可.解:∵共有10名同学,中位数是第5和6的平均数,∴这组数据的中位数是(90+90)÷2=90;这组数据的平均数是:(80+85×2+90×5+95×2)÷10=89;故选B.点评:此题考查了中位数和平均数,掌握中位数和平均数的计算公式和定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.二.填空题1. (2014•福建泉州,第12题4分)在综合实践课上,六名同学的作品数量(单位:件)分别为:3、5、2、5、5、7,则这组数据的众数为5件.考点:众数.分析:根据众数的定义即一组数据中出现次数最多的数,即可得出答案.解答:解:∵5出现了3次,出现的次数最多,∴这组数据的众数为5;故答案为:5.点评:此题考查了众数,众数是一组数据中出现次数最多的数,注意众数不止一个.2. (2014•广西玉林市、防城港市,第15题3分)下表是我市某一天在不同时段测得的气温情况0:004:008:0012:0016:0020:0025℃27℃29℃32℃34℃30℃则这一天气温的极差是9℃.考点:极差.分析:根据极差的定义即极差就是这组数中最大值与最小值的差,即可得出答案.解答:解:这组数据的最大值是34℃,最小值是25℃,则极差是34﹣25=9(℃).故答案为:9.点评:此题考查了极差,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.注意:极差的单位与原数据单位一致.3. (2014•广西贺州,第15题3分)近年来,A市民用汽车拥有量持续增长,2009年至2013年该市民用汽车拥有量(单位:万辆)依次为11,13,15,19,x.若这五个数的平均数为16,则x=22.考点:算术平均数.分根据算术平均数:对于n个数x1,x2,…,x n,则=(x1+x2+…+x n)就叫做这n个数析:的算术平均数进行计算即可.解答:解:(11+13+15+19+x)÷5=16,解得:x=22,故答案为:22.点评:此题主要考查了算术平均数,关键是掌握算术平均数的计算公式.4.(2014年广东汕尾,第14题5分)小明在射击训练中,五次命中的环数分别为5、7、6、6、6,则小明命中环数的众数为,平均数为.分析:根据众数和平均数的概念求解.解:6出现的次数最多,故众数为6,平均数为:=6.故答案为:6,6.点评:本题考查了众数和平均数的概念:一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.5.(2014•孝感,第14题3分)下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100℃;③掷一次骰子,向上一面的数字是2;④度量四边形的内角和,结果是360°.其中是随机事件的是①③.(填序号)考点:随机事件分析:随机事件就是可能发生也可能不发生的事件,依据定义即可判断.解答:解:①是随机事件;②是不可能事件;③是随机事件;④是必然事件.故答案是:①③. 点评: 本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.(2014·云南昆明,第11题3分)甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:22=甲S ,5.12=乙S ,则射击成绩较稳定的是 (填“甲”或“乙”).考点:样本方差.分析: 样本中各数据与样本平均数的差的平方和的平均数叫做样本方差,样本方差是衡量一个样本波动大小的量,样本方差越大,样本数据的波动就越大.解答:解:对甲、乙射击测试来说,射击成绩的方差越小,射击成绩越稳定. 故填乙.点评:本题考查了样本方差的意义,比较简单.7.(2014•浙江湖州,第14题4分)下面的频数分布折线图分别表示我国A 市与B 市在2014年4月份的日平均气温的情况,记该月A 市和B 市日平均气温是8℃的天数分别为a 天和b 天,则a +b = .O分析:根据折线图即可求得a 、b 的值,从而求得代数式的值. 解:根据图表可得:a =10,b =2,则a +b =10+2=12.故答案是:12. 点评:本题考查读频数分布折线图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.8.(2014·浙江金华,第14题4分)小亮对60名同学进行节水方法的问卷调查(每人选择一项),人数统计如图,如果绘制成扇形统计图,那么表示“一水多用”的扇形圆心角的度数是 ▲ .【答案】240°. 【解析】试题分析:根据扇形圆心角的计算方法,表示“一水多用”的扇形圆心角的度数是4036024040578⨯︒=+++︒.考点:扇形圆心角的计算.9.(2014•浙江宁波,第15题4分)某冷饮店一天售出各种口味雪糕数量的扇形统计图如图,其中售出红豆口味的雪糕200支,那么售出水果口味雪糕的数量是 150 支.考点: 扇形统计图分析:首先根据红豆口味的雪糕的数量和其所占的百分比确定售出雪糕的总量,然后乘以水果口味的所占的百分比即可求得其数量.解答:解:观察扇形统计图知:售出红豆口味的雪糕200支,占40%, ∴售出雪糕总量为200÷40%=500支, ∵水果口味的占30%,∴水果口味的有500×30%=150支, 故答案为150.点评:本题考查了扇形统计图的知识,解题的关键是正确的从扇形统计图中整理出进一步解题的有关信息.10. (2014•湘潭,第11题,3分)未测试两种电子表的走时误差,做了如下统计平均数 方差 甲 0.4 0.026 乙0.40.137则这两种电子表走时稳定的是 甲 .考点:方差;算术平均数.分析: 根据方差的意义判断,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,找出方差较小的即可.解答:解:∵甲的方差是0.026,乙的方差是0.137, 0.026<0.137,∴这两种电子表走时稳定的是甲; 故答案为:甲.点评:本题考查方差的意义.它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.11. (2014•益阳,第11题,4分)小斌所在的课外活动小组在大课间活动中练习立定跳远,成绩如下(单位:米):1.96,2.16,2.04,2.20,1.98,2.22,2.32,则这组数据的中位数是 2.16米.考点:中位数.分析:根据中位数的概念求解.解答:解:这组数据按照从小到大的顺序排列为:1.96,1.98,2.04,2.16,2.20,2.22,2.32,则中位数为:2.16.故答案为:2.16.点评:本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.12. (2014•株洲,第12题,3分)某校根据去年初三学生参加中考的数学成绩的等级,绘制成如图的扇形统计图,则图中表示A等级的扇形的圆心角的大小为108°.考点:扇形统计图.分析:根据C等级的人数与所占的百分比计算出参加中考的人数,再求出A等级所占的百分比,然后乘以360°计算即可得解.解解:参加中考的人数为:60÷20%=300人,答:A等级所占的百分比为:×100%=30%,所以,表示A等级的扇形的圆心角的大小为360°×30%=108°.故答案为:108°.点评:本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.13. (2014年江苏南京,第10题,2分)2014年南京青奥会某项目6名礼仪小姐的身高如下(单位:cm):168,166,168,167,169,168,则她们身高的众数是cm,极差是cm.考点:众数、极差分析:根据众数的定义找出这组数据中出现次数最多的数,再根据求极差的方法用最大值减去最小值即可得出答案.解答:168出现了3次,出现的次数最多,则她们身高的众数是168cm;极差是:169﹣166=3cm;故答案为:168;3.点评:此题考查了众数和极差,众数是一组数据中出现次数最多的数;求极差的方法是最大值减去最小值.14. (2014•扬州,第12题,3分)如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生700人,则据此估计步行的有280人.考点:用样本估计总体;扇形统计图.分析:先求出步行的学生所占的百分比,再用学生总数乘以步行学生所占的百分比即可估计全校步行上学的学生人数.解答:解:∵骑车的学生所占的百分比是×100%=35%,∴步行的学生所占的百分比是1﹣10%﹣15%﹣35%=40%,∴若该校共有学生700人,则据此估计步行的有700×40%=280(人).故答案为:280.点评:本题考查了扇形统计图及用样本估计总数的知识,解题的关键是从统计图中得出步行上学学生所占的百分比.15.(2014•呼和浩特,第12题3分)某校五个绿化小组一天的植树的棵数如下:10,10,12,x,8.已知这组数据的平均数是10,那么这组数据的方差是 1.6.考点:方差.分析:根据平均数的计算公式先求出x的值,再根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],代入计算即可.解答:解:∵这组数据的平均数是10,∴(10+10+12+x+8)÷5=10,解得:x=10,∴这组数据的方差是[3×(10﹣10)2+(12﹣10)2+(8﹣10)2]=1.6;故答案为:1.6.点评:此题考查了方差,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].三.解答题1. (2014•福建泉州,第23题9分)课外阅读是提高学生素养的重要途径.某校为了了解学生课外阅读情况,随机抽查了50名学生,统计他们平均每天课外阅读时间(t小时).根据t的长短分为A,B,C,D四类,下面是根据所抽查的人数绘制的两幅不完整的统计图表.请根据图中提供的信息,解答下面的问题:50名学生平均每天课外阅读时间统计表类别时间t(小时)人数A t<0.510B0.5≤t<120。
2014年中考真题训练概率
2014年中考真题训练概率1. ( 2014•广东)一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )A B C D2. 一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )ABCD3.(2014•浙江)如图1,在2×2的正方形网格中有9个格点,已经取定点A 和B ,在余下的7个点中任取一点C ,使△ABC 为直角三角形的概率是( )ABCD4.(2014年山东)在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率是( )ABC D5. (2014•山东)图2是某市7月1日至1 0日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于2 00表示空气重度污染,某人随机选择7月1日至7月8日中的某一天到达该市,并连续停留3天.则此人在该市停留期间有且仅有1天空气质量优良的概率是( ) A 、31 B 、52 C 、21 D 、436. (2014•黔南州)下列事件是必然事件的是( )A . 抛掷一枚硬币四次,有两次正面朝上 B.打开电视频道,正在播放《十二在线》 C . 射击运动员射击一次,命中十环 D. 方程x 2﹣2x ﹣1=0必有实数根7. (2014•湖北)如图3,电路图上有四个开关A 、B 、C 、D 和一个小灯泡,闭合开关D 或同时闭合开关A 、B 、C 都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是( ) A .B .C .D .8.(2014•襄阳)从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是 .9. 一个不进明的袋子中装有仅颜色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,到第一个人摸到红球且第二个人摸到白球的概率是 .10. 一般地,如果在一次实验中,结果落在区域D 中每一个点都是等可能的,用A 表示“实验结果落在D 中的某个小区域M 中”这个事件,那么事件A 发生的概率P A =M/D .如图,现在等边△ABC 内射入一个点,则该点落在△ABC 内切圆中的概率是11. ( 2014•安徽)如图,管中放置着三根同样的绳子AA 1、BB 1、CC 1; (1)小明从这三根绳子中随机选一根,恰好选中绳子AA 1的概率是多少?(2)小明先从左端A 、B 、C 三个绳头中随机选两个打一个结,再从右端A 1、B 1、C 1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.12(2014•温州)一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.(1)从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是,求从袋中取出黑球的个数.13 (2014•江苏)如图,用红、蓝两种颜色随机地对A 、B 、C 三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A 、C 两个区域所涂颜色不相同的概率.14(2014•甘肃)在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点(x,y)在函数y=﹣x+5图象上的概率.15 (2014•随州)四张扑克牌的牌面如图1,将扑克牌洗匀后,如图2背面朝上放置在桌面上,小明和小亮设计了A、B两种游戏方案:方案A:随机抽一张扑克牌,牌面数字为5时小明获胜;否则小亮获胜.方案B:随机同时抽取两张扑克牌,两张牌面数字之和为偶数时,小明获胜;否则小亮获胜.请你帮小亮选择其中一种方案,使他获胜的可能性较大,并说明理由.16(2014•青岛)某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?17(2014•攀枝花)在一个不透明的口袋里装有分别标有数字﹣3、﹣1、0、2的四个小球,除数字不同外,小球没有任何区别,每次试验先搅拌均匀.(1)从中任取一球,求抽取的数字为正数的概率;(2)从中任取一球,将球上的数字记为a,求关于x的一元二次方程ax2﹣2ax+a+3=0有实数根的概率;(3)从中任取一球,将球上的数字作为点的横坐标记为x(不放回);在任取一球,将球上的数字作为点的纵坐标,记为y,试用画树状图(或列表法)表示出点(x,y)所有可能出现的结果,并求点(x,y)落在第二象限内的概率.18.第十五届中国“西博会”将于2014年10月底在成都召开,现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人.(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.。
2014年中考数学试题精品分类汇编 概率
概率1.(4分)(2014•某某)下列说法中错误的是()A.掷一枚均匀的骰子,骰子停止转动后6点朝上是必然事件B.了解一批电视机的使用寿命,适合用抽样调查的方式C.若a为实数,则|a|<0是不可能事件D.甲、乙两人各进行10次射击,两人射击成绩的方差分别为=2,=4,则甲的射击成绩更稳定考点:随机事件;全面调查与抽样调查;方差分析:利用事件的分类、普查和抽样调查的特点以及方差的性质即可作出判断.解答:解:A.掷一枚均匀的骰子,骰子停止转动后6点朝上是随机事件,故本项错误;B.了解一批电视机的使用寿命,具有破坏性,适合用抽样调查的方式,故本项正确;C.若a为实数,则|a|≥0,|a|<0是不可能事件,故本项正确;D.方差小的稳定,故本项正确.故选:A.点评:本题考查了事件的分类、普查和抽样调查的特点以及方差的性质.本题解决的关键是理解必然事件和随机事件的概念;用到的知识点为:具有破坏性的事要采用抽样调查;反映数据波动情况的量有极差、方差和标准差等.1.(4分)(2014•)如图,有6X扑克牌,从中随机抽取一X,点数为偶数的概率是()A.B.C.D.考点:概率公式.分析:由有6X扑克牌,从中随机抽取一X,点数为偶数的有3种情况,直接利用概率公式求解即可求得答案.解答:解:∵有6X扑克牌,从中随机抽取一X,点数为偶数的有3种情况,∴从中随机抽取一X,点数为偶数的概率是:=.故选D.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.2.(3分)(2014•某某)一个不透明的袋子中有3个分别标有3,1,﹣2的球,这些球除了所标的数字不同外其他都相同,若从袋子中随机摸出两个球,则这两个球上的两个数字之和为负数的概率是()A.B.C.D.考点:列表法与树状图法.专题:计算题.分析:列表得出所有等可能的情况数,找出这两个球上的两个数字之和为负数的情况数,即可求出所求的概率.解答:解:列表得:3 1 ﹣23 ﹣﹣﹣(1,3)(﹣2,3)1 (3,1)﹣﹣﹣(﹣2,1)﹣2 (3,﹣2)(1,﹣2)﹣﹣﹣所有等可能的情况有6种,其中两个数字之和为负数的情况有2种,则P==.故选B点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.3.(3分)(2014年某某省)小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是()A. B.C.D.考点:概率公式.分析:由一共有10种等可能的结果,小军能一次打开该旅行箱的只有1种情况,直接利用概率公式求解即可求得答案.解答:解:∵一共有10种等可能的结果,小军能一次打开该旅行箱的只有1种情况,∴小军能一次打开该旅行箱的概率是:.故选A.点评:此题考查了概率公式的应用.用到的知识4.(3分)(2014•某某)让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于()A.B.C.D.考点:列表法与树状图法.专题:计算题.分析:列表得出所有等可能的情况数,找出两个数的和是2的倍数或3的倍数情况,即可求出所求概率.解答:解:列表如下:1 2 3 41 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)(3,2)(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)所有等可能的情况有16种,其中两个数的和是2的倍数或3的倍数情况有10种,则P==.故选C点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.5.(2014年某某)若5件外观相同的产品中有1件不合格,现从中任意抽取1件进行检测,则抽到不合格产品的概率是▲ .6.(3分)(2014•某某)如图,一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向红色的概率为.考点:概率公式分析:由一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,红色的有3个扇形,直接利用概率公式求解即可求得答案.解答:解:∵一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,红色的有3个扇形,∴指针指向红色的概率为:.故答案为:.点评:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.7.(3分)(2014•某某)100件外观相同的产品中有5件不合格,现从中任意抽取1件进行检测,抽到不合格产品的概率是.考点:概率公式.分析:由100件外观相同的产品中有5件不合格,直接利用概率公式求解即可求得答案.解答:解:∵100件外观相同的产品中有5件不合格,∴从中任意抽取1件进行检测,抽到不合格产品的概率是:=.故答案为:.点评:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.8.(4分)(2014年某某市)如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是.考点:概率公式.分析:由从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,直接利用概率公式求解即可求得答案.解答:解:∵从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,∴恰好抽到初三(1)班的概率是:.故答案为:.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.9.(3分)(2014年某某某某)在一个不透明的口袋中,有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球记下标号后放回,再随机地摸取一个小球记下标号,则两次摸取的小球标号都是1的概率为.考点:列表法与树状图法.专题:计算题.分析:列表得出所有等可能的情况数,找出两次摸取的小球标号都是1的情况数,即可求出所求的概率.解答:解:列表如下:1 2 3 41 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)(3,2)(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)所有等可能的情况有16种,其中两次摸取的小球标号都是1的情况有1种,则P=.故答案为:点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.10.(4分)(2014年某某某某)一个圆形转盘被平均分成红、黄、蓝、白4个扇形区域,向其投掷一枚飞镖,飞镖落在转盘上,则落在黄色区域的概率是.考点:几何概率.分析:根据概率公式,求出红色区域的面积与总面积的比即可解答.解答:解:∵圆形转盘平均分成红、黄、蓝、白4个扇形区域,其中黄色区域占1份,∴飞镖落在黄色区域的概率是;故答案为:.点评:本题考查了几何概率的运用,用到的知识点是概率公式,在解答时根据概率=相应的面积与总面积之比是解答此类问题关键.11.(4分)(2014•某某)在四个完全相同的小球上分别写上1,2,3,4四个数字,然后装入一个不透明的口袋内搅匀,从口袋内取出一个球记下数字后作为点P的横坐标x,放回袋中搅匀,然后再从袋中取出一个球记下数字后作为点P的纵坐标y,则点P(x,y)落在直线y=﹣x+5上的概率是.考点:列表法与树状图法;一次函数图象上点的坐标特征分析:首先根据题意画出表格,然后由表格求得所有等可能的结果与数字x、y满足y=﹣x+5的情况,再利用概率公式求解即可求得答案.解答:解:列表得:1 2 3 41 (1,1)(1,2)(1,3)(1,4)2 (2,1)(2,2)(2,3)(2,4)3 (3,1)(3,2)(3,3)(3,4)4 (4,1)(4,2)(4,3)(4,4)∵共有16种等可能的结果,数字x、y满足y=﹣x+5的有(1,4),(2,3),(3,2),(4,1),∴数字x、y满足y﹣x+5的概率为:.故答案为:.点评:此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.12.(3分)(2014年某某)一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于4的概率是.考点:列表法与树状图法.专题:计算题.分析:先画树状图展示所有16种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,然后根据概率的概念计算即可.解答:解:如图,随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,所有两次摸出的小球标号的和等于4的概率=.故答案为.点评:本题考查了列表法或树状图法:利用列表法或树状图法展示所有等可能的结果数n,再找出某事件所占有的结果数m,然后利用概率的概念求得这个事件的概率=.13.(2014年某某某某)从甲、乙、丙3名同学中随机抽取环保志愿者,求下列事件的概率;(1)抽取1名,恰好是甲;(2)抽取2名,甲在其中.分析:(1)由从甲、乙、丙3名同学中随机抽取环保志愿者,直接利用概率公式求解即可求得答案;(2)利用列举法可得抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,然后利用概率公式求解即可求得答案.解:(1)∵从甲、乙、丙3名同学中随机抽取环保志愿者,∴抽取1名,恰好是甲的概率为:;(2)∵抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,∴抽取2名,甲在其中的概率为:.点评:本题考查的是列举法求概率.用到的知识点为:概率=所求情况数与总情况数之比.14.(8分)(2014•某某)第十五届中国“西博会”将于2014年10月底在某某召开,现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人.(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四X牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2X,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.考点:游戏公平性;概率公式;列表法与树状图法.分析:(1)直接利用概率公式求出即可;(2)利用树状图表示出所有可能进而利用概率公式求出即可.解答:解:(1)∵现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人,∴从这20人中随机选取一人作为联络员,选到女生的概率为:=;(2)如图所示:牌面数字之和为:5,6,7,5,7,8,6,7,9,7,9,8,∴偶数为:4个,得到偶数的概率为:=,∴得到奇数的概率为:,∴甲参加的概率<乙参加的概率,∴这个游戏不公平.点评:此题主要考查了游戏公平性以及概率公式应用,正确画出树状图是解题关键.15.(6分)(2014•黄冈)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.考点:列表法与树状图法.分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得恰好选派一男一女两位同学参赛的有8种情况,然后利用概率公式求解即可求得答案.解答:解:(1)画树状图得:则共有12种等可能的结果;(2)∵恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:=.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.16.(2014年某某)有六X完全相同的卡片,分A、B两组,每组三X,在A组的卡片上分别画上“√、×、√”,B组的卡片上分别画上“√、×、×”,如图1所示。
2014年中考数学概率试题汇编解析
2014年中考数学概率试题汇编解析概率一、选择题1.(2014•山东枣庄,第4题3分)下列说法正确的是()A.“明天降雨的概率是50%”表示明天有半天都在降雨B.数据4,4,5,5,0的中位数和众数都是5C.要了解一批钢化玻璃的最少允许碎片数,应采用普查的方式D.若甲、乙两组数中各有20个数据,平均数=,方差s2甲=1.25,s2乙=0.96,则说明乙组数据比甲组数据稳定考点:概率的意义;全面调查与抽样调查;中位数;众数;方差分析:根据概率的意义,众数、中位数的定义,以及全面调查与抽样调查的选择,方差的意义对各选项分析判断利用排除法求解.解答:解:A、“明天降雨的概率是50%”表示明天降雨和不降雨的可能性相等,不表示半天都在降雨,故本选项错误;B、数据4,4,5,5,0的中位数是4,众数是4和5,故本选项错误;C、要了解一批钢化玻璃的最少允许碎片数,应采用抽样调查的方式,故本选项错误;D、∵方差s2甲>s2乙,∴乙组数据比甲组数据稳定正确,故本选项正确.故选D.点评:本题解决的关键是理解概率的意义以及必然事件的概念;用到的知识点为:不太容易做到的事要采用抽样调查;反映数据波动情况的量有极差、方差和标准差等.2.(2014•山东潍坊,第10题3分)右图是某市7月1日至10日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择7月1日至7月8日中的某一天到达该市,并连续停留3天.则此人在该市停留期间有且仅有1天空气质量优良的概率是()A、B、C、D、考点:折线统计图;;几何概率.分析:将所用可能结果列举出来,找出符合要求的,后者除以前者即可。
用到的知识点为:概率=所求情况数与总情况数之比解答:7月1日至10日按连续三天划分共有8种情况,其中仅有1天空气质量优良的有4种,所以概率为,故选C.点评:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=3.(2014•湖南张家界,第8题,3分)一个盒子里有完全相同的三个小球,球上分别标有数字﹣2,1,4.随机摸出一个小球(不放回),其数字为p,随机摸出另一个小球,其数字记为q,则满足关于x的方程x2+px+q=0有实数根的概率是()A.B.C.D.考点:列表法与树状图法;根的判别式.专题:计算题.分析:列表得出所有等可能的情况数,找出满足关于x的方程x2+px+q=0有实数根的情况数,即可求出所求的概率.解答:解:列表如下:﹣214﹣2﹣﹣﹣(1,﹣2)(4,﹣2)1(﹣2,1)﹣﹣﹣(4,1)4(﹣2,4)(1,4)﹣﹣﹣所有等可能的情况有6种,其中满足关于x的方程x2+px+q=0有实数根的有4种,则P==.故选D点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.4.(2014山东济南,第11题,3分)学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率为A.B.C.D.【解析】用H,C,N分别表示航模、彩绘、泥塑三个社团,用数组(X,Y)中的X表示征征选择的社团,Y表示舟舟选择的社团.于是可得到(H,H),(H,C),(H,N),(C,H),(C,C),(C,N),(N,H),(N,C),(N,N),共9中不同的选择结果,而征征和舟舟选到同一社团的只有(H,H),(C,C),(N,N)三种,所以,所求概率为,故选C.5.(2014•山东聊城,第8题,3分)下列说法中不正确的是()A.抛掷一枚硬币,硬币落地时正面朝上是随机事件B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C.任意打开七年级下册数学教科书,正好是97页是确定事件D.一个盒子中有白球m个,红球6个,黑球n个(每个除了颜色外都相同).如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m与n的和是6考点:随机事件;概率公式分析:根据必然事件、不可能事件、随机事件的概念以及概率的求法即可作出判断.解答:解:A.抛掷一枚硬币,硬币落地时正面朝上是随机事件,此说法正确;B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件,此说法正确;C.任意打开七年级下册数学教科书,正好是97页是不确定事件,故此说法错误;D.,取得的是红球的概率与不是红球的概率相同,所以m+n=6,此说法正确.故选:C.点评:考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念以及概率的求法.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6(2014•浙江杭州,第9题,3分)让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于()。
2014中考数学真题-概率事件
中考真题专题训练-概率事件1 (2014四川达州)下列说法中错误的是( )A.将油滴入水中,油会浮出水面是一个必然事件B.1、2、3、4这组数据的中位数是2.5C.一组数据的方差越小,这组数据的稳定性越差D.要了解某种灯管的使用寿命,一般采用抽样调查2(2014青海西宁)如图,小红随意在地板上踢毽子,则毽子恰好落在黑色方砖上的概率为________.3 (2014宁夏)在一个口袋中有4个完全相同的小球,把它们分别标号为1、2、3、4,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸出小球的标号和等于6的概率是________.4 (2014辽宁盘锦)在一个不透明的盒子里装有白球和红球共14个,其中红球比白球多4个,所有球除颜色不同外,其它方面均相同,摇匀后,从中摸出一个球为红球的概率为________.5 (2014辽宁抚顺)下列事件是必然事件的是( )A.如果|a|=|b|,那么a=bB.平分弦的直径垂直于弦,并且平分弦所对的两条弧C.半径分别为3和5的两圆相外切,则两圆的圆心距为8D.三角形的内角和是360°6(2014江苏常州)一只不透明的箱子里共有3个球,把它们的分别编号为1,2,3,这些球除编号不同外其余都相同.(1)从箱子中随机摸出一个球,求摸出的球是编号为1的球的概率;(2)从箱子中随机摸出一个球,记录下编号后将它放回箱子,搅匀后再摸出一个球并记录下编号,求两次摸出的球都是编号为3的球的概率.7 (2014湖南常德)小美周末来到公园,发现在公园一角有一种“守株待兔”游戏.游戏设计者提供了一只兔子和一个有A、B、C、D、E五个出入口的兔笼,而且笼内的兔子从每个出入口走出兔笼的机会是均等的.规定①玩家只能将小兔从A、B两个出入口放入,②如果小兔进入笼子后选择从开始进入的出入口离开,则可获得一只价值5元小兔玩具,否则应付费3元.(1)问小美得到小兔玩具的机会有多大?(2)假设有100人次玩此游戏,估计游戏设计者可赚多少元?8 (2014湖北咸宁)小亮与小明一起玩“石头、剪刀、布”的游戏,两同学同时出“剪刀”的概率是________.9(2014黑龙江农垦)如图有A、B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b.(1)请用列表或画树状图的方法写出所有的可能;(2)求一次函数y=kx+b的图象经过一、二、四象限的概率.10 (2014黑龙江龙东)三张扑克牌中只有一张黑桃,三位同学依次抽取,第一位同学抽到黑桃的概率为________.11(2014辽宁丹东)甲、乙两人用如图的两个分格均匀的转盘A、B做游戏,游戏规则如下:分别转动两个转盘,转盘停止后,指针分别指向一个数字(若指针停止在等份线上,那么重转一次,直到指针指向某一数字为止).用所指的两个数字相乘,如果积是奇数,则甲获胜;如果积是偶数,则乙获胜.请你解决下列问题:(1)用列表格或画树状图的方法表示游戏所有可能出现的结果.(2)求甲、乙两人获胜的概率.12 (2014辽宁丹东)下列事件中,必然事件是( )A.抛掷一枚硬币,正面朝上B.打开电视,正在播放广告C.体育课上,小刚跑完1000米所用时间为1分钟D.袋中只有4个球,且都是红球,任意摸出一球是红球13 (2014辽宁大连)甲口袋中有1个红球和1个黄球,乙口袋中有1个红球、1个黄球和1个绿球,这些球除颜色外都相同.从两个口袋中各随机取一个球,取出的两个球都是红的概率为( )A.B.C.D.14 (2014四川雅安)若我们把十位上的数字比个位和百位上数字都小的三位数,称为“V”数,如756,326,那么从2,3,4这三个数字组成的无重复数字的三位数中任意抽取一个数,则该数是“V”数的概率为________.15 (2014辽宁营口)第20届世界杯足球赛正在如火如荼的进行,爸爸想通过一个游戏决定小明能否看今晚的比赛:在一个不透明的盒子中放入三张卡片,每张卡片上写着一个实数,分别为3,,(每张卡片除了上面的实数不同以外其余均相同),爸爸让小明从中任意取一张卡片,如果抽到的卡片上的数是有理数,就让小明看比赛,否则就不能看.(1)请你直接写出按照爸爸的规则小明能看比赛的概率;(2)小明想了想,和爸爸重新约定游戏规则:自己从盒子中随机抽取两次,每次抽取一张卡片,第一次抽取后记下卡片上的数,再将卡片放回盒中抽取第二次,如果抽取的两数之积是有理数,自己就看比赛,否则就不看.请你用列表法或树状图法求出按照此规则小明看比赛的概率.16 (2014辽宁营口)一个不透明的袋中装有若干个红球,为了估计袋中红球的个数,小文在袋中放入10个白球(每个球除颜色外其余都与红球相同).摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到白球的频率是,则袋中红球约为________个.17(2014辽宁锦州)某学校游戏节活动中,设计了一个有奖转盘游戏,如图,A转盘被分成三个面积相等的扇形,B转盘被分成四个面积相等的扇形,每一个扇形都标有相应的数字,先转动A转盘,记下指针所指区域内的数字,再转动B转发盘,记下指针所指区域内的数字(当指针指在边界线上时,重新转动一次,直到指针指向一下区域内为止),然后,将两次记录的数据相乘.(1)请利用画树状图或列表格的方法,求出乘积结果为负数的概率.(2)如果乘积是无理数时获得一等奖,那么获得一等奖的概率是多少?18(2014辽宁锦州)某数学活动小组自制一个飞镖游戏盘,如图,若向游戏盘内投掷飞镖,投掷在阴影区域的概率是_________.19 (2014江苏宿迁)一只不透明的袋子中装有两个完全相同的小球,上面分别标有1,2两个数字,若随机地从中摸出一个小球,记下号码后放回,再随机地摸出一个小球,则两次摸出小球的号码之积为偶数的概率是( )A.B.C.D.20 (2014湖南岳阳)从1,2,3,4,5,6,7,8,9这九个自然数中,任取一个数是奇数的概率是________.21 (2014辽宁本溪)已知关于x的一元二次方程x2+bx+c=0,从-1,2,3三个数中任取一个数,作为方程中b的值,再从剩下的两个数中任取一个数作为方程中c的值,能使该一元二次方程有实数根的概率是________.22(2014辽宁本溪)在一个不透明的盒子中放入标号分别为1,2,…,9的形状、大小、质地完全相同的9个球,充分混合后,从中取出一个球,标号能被3整除的概率是________.23(2014湖北荆门)如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是( ) A.B.C.D.24(2014山东日照)在某班“讲故事”比赛中有一个抽奖活动,活动规则是:只有进入最后决赛的甲、乙、丙三位同学,每人才能获得一次抽奖机会.在如图所示的翻奖牌正面的4个数字中选一个数字,选中后就可以得到该数字后面的相应奖品:前面的人选中的数字,后面的人就不能再选择该数字了.(1)请用树状图(或列表)的方法求甲、乙二人得到的奖品都是计算器的概率.(2)有的同学认为,如果甲先翻奖牌,那么他得到篮球的概率会大些,这种说法正确吗?请说明理由.25 (2014福建莆田)在一个不透明的袋子中,装有大小、形状、质地等都相同的红色、黄色、白色小球各1个,从袋子中随机摸出一个小球,之后把小球放回袋子中并摇匀,再随机摸出一个小球,则两次摸出的小球颜色相同的概率是________.26 (2014四川德阳)下列说法中正确的个数是( )①不可能事件发生的概率为0;②一个对象在实验中出现的次数越多,频率就越大;③在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值;④收集数据过程中的“记录结果”这一步,就是记录每个对象出现的频率.A.1B.2C.3D.427 (2014江苏淮安)班级准备召开主题班会,现从由3名男生和2名女生所组成的班委中,随机选取两人担任主持人,求两名主持人恰为一男一女的概率.(请用“画树状图”或“列表”等方法写出过程)28 (2014江苏淮安)一只不透明的袋子中装有1个白球和3个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,则摸出红球的概率为________.29 (2014黑龙江哈尔滨)在一个不透明的口袋中,有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球记下标号后放回,再随机地摸取一个小球记下标号,则两次摸取的小球标号都是1的概率为________.30(2014黑龙江大庆)如图,一个质地均匀的正四面体的四个面上依次标有数字-2,0,1,2,连续抛掷两次,朝下一面的数字分别是a,b,将其作为M点的横、纵坐标,则点M(a,b)落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的概率是( ) A.B.C.D.31 (2014福建厦门)一个圆形转盘被平均分成红、黄、蓝、白4个扇形区域,向其投掷一枚飞镖,飞镖落在转盘上,则落在黄色区域的概率是________.32(2014贵州贵阳)如图,一条直线上有两只蚂蚁,甲蚂蚁在点A处,乙蚂蚁在点B处,假设两只蚂蚁同时出发,爬行方向只能沿直线AB在“向左”或“向右”中随机选择,并且甲蚂蚁爬行的速度比乙蚂蚁快.(1)甲蚂蚁选择“向左”爬行的概率为________;(2)利用列表或画树状图的方法求两只蚂蚁开始爬行后会“触碰到”的概率.33 (2014贵州贵阳)“六·一”期间,小洁的妈妈经营的玩具店进了一纸箱除颜色外都相同的散装塑料球共1000个,小洁将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱中;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱中;…多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.2,由此可以估计纸箱内红球的个数约是________个.34 (2014贵州贵阳)有5张大小、背面都相同的扑克牌,正面上的数字分别是4,5,6,7,8.若将这5张牌背面朝上洗匀后,从中任意抽取1张,那么这张牌正面上的数字为偶数的概率是( )A.B.C.D.35 (2014吉林长春)在一个不透明的袋子里装有3个乒乓球,分别标有数字1,2,3,这些乒乓球除所标数字不同外其余均相同.先从袋子里随机摸出1个乒乓球,记下标号后放回;再从袋子里随机摸出1个乒乓球记下标号,请用画树状图(或列表)的方法,求两次摸出的乒乓球标号乘积是偶数的概率.36 (2014四川乐山)在一个不透明的口袋里装有标号为1,2,3,4,5的五个小球,除数字不同外,小球没有任何区别,摸球前先搅拌均匀,每次摸一个球.(1)下列说法:①摸一次,摸出1号球和摸出5号球的概率相同;②有放回的连续摸10次,则一定摸出2号球两次;③有放回的连续摸4次,则摸出四个球标号数字之和可能是20.其中正确的序号是________.(2)若从袋中不放回地摸两次,求两球标号数字是一奇一偶的概率.37 (2014内蒙古包头)在四张正面分别标有数字2,1,-3,-4的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从四张中随机模一张不放回,将该卡片上的数字记为m,再随机模一张,将该卡片上的数字记为n.(1)请画树状图并写出(m,n)所有可能的结果;(2)求所选出的m、n能使一次函数y=mx+n的图像经过二、三、四象限的概率.38 (2014内蒙古包头)下列说法正确的是( )A.必然事件发生的概率为0B.一组数据1,6,3,9,8的极差为7C.“面积相等的两个三角形全等”是必然事件D.“任意一个三角形的外角和是180°”这一事件是不可能事件39(2014广东佛山)一个不透明的袋里有两个白球和三个红球,它们除颜色外其它都一样.(1)求“从袋中任意摸出一个球,摸出的一个球是白球”的概率;(2)直接写出“从袋中同时任意摸出两个球,摸出的两个球都是红球”的概率.40(2014山西)甲、乙、丙三位同学打乒乓球,想通过“手心手背”游戏来决定其中哪两个人先打,规则如下:三个人同时各用一只手随机出示手心或手背,若只有两个人手势相同(都是手心或都是手背),则这两人先打,若三人手势相同,则重新决定.那么通过一次“手心手背”游戏能决定甲打乒乓球的概率是________.41(2014山西)在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( ) A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率42(2014湖北随州)四张扑克牌的牌面如图1所示,将扑克牌洗匀后,如图2背面朝上放置在桌面上,小明和小亮设计了A、B两种游戏方案:方案A,随机抽一张扑克牌,牌面数字为5时小明获胜;否则小亮获胜.方案B,随机同时抽取两张扑克牌,两张牌牌面数字之和为偶数时,小明获胜;否则小亮获胜.请你帮小亮选择其中一种方案,使他获胜的可能性较大,并说明理由.43(2014湖北黄石)一般地,如果在一次实验中,结果落在区域D中每一个点都是等可能的,用A表示“实验结果落在D中的某个小区域M中”这个事件,那么事件A发生的概率.如下图,现往等边△ABC内射入一个点,则该点落在△ABC内切圆中的概率是________.44 (2014湖北黄石)学校团委在“五四青年节”举行“感动校园十大人物”颁奖活动中,九(4)班决定从甲、乙、丙、丁四人中随机派两名代表参加此活动,则甲乙两人恰有一人参加此活动的概率是( )A.B.C.D.45(2014江苏盐城)如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等.(1)现随机转动转盘一次,停止后,指针指向1的概率为________;(2)小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由.46(2014江苏盐城)一只自由飞行的小鸟,将随意地落在如图所示的方格地面上,每个小方格形状完全相同,则小鸟落在阴影方格地面上的概率是________.47 (2014四川攀枝花)在一个不透明的口袋里装有分别标有数字-3、-1、0、2的四个小球,除数字不同外,小球没有任何区别,每次试验先搅拌均匀.(1)从中任取一球,求抽取的数字为正数的概率;(2)从中任取一球,将球上的数字记为a,求关于x的一元二次方程ax2-2ax+a+3=0有实数根的概率;(3)从中任取一球,将球上的数字作为点的横坐标,记为x(不放回);再任取一球,将球上的数字作为点的纵坐标,记为y,试用画树状图(或列表法)表示出点(x,y)所有可能出现的结果,并求点(x,y)落在第二象限内的概率.48 (2014四川攀枝花)下列说法正确的是( )A.“打开电视机,它正在播广告”是必然事件B.“一个不透明的袋中装有8个红球,从中摸出一个球是红球”是随机事件C.为了了解我市今年夏季家电市场中空调的质量,不宜采用普查的调查方式进行D.销售某种品牌的凉鞋,销售商最感兴趣的是该品牌凉鞋的尺码的平均数49(2014四川绵阳)一儿童行走在如图所示的地板上,当他随意停下时,最终停在地板上阴影部分的概率是( )A.B.C.D.50 (2014江苏南通)盒中有x个黑球和y个白球,这些球除颜色外无其他差别.若从盒中随机取一个球,它是黑球的概率是;若往盒中再放进1个黑球,这时取得黑球的概率变为.(1)填空:x=________,y=________;(2)小王和小林利用x个黑球和y个白球进行摸球游戏.约定:从盒中随机摸取一个,接着从剩下的球中再随机摸取一个,若两球颜色相同则小王胜,若颜色不同则小林胜,求两个人获胜的概率各是多少?。
中考数学专题训练:概率(附参考答案)
中考数学专题训练:概率(附参考答案)1.如图是由16个相同的小正方形和4个相同的大正方形组成的图形,在这个图形内任取一点P,则点P落在阴影部分的概率为( )A.58B.1350C.1332D.5162.在6,7,8,9四个数字中任意选取两个数字,则这两个数字之和为奇数的概率是( )A.13B.12C.23D.143.先后两次抛掷同一枚质地均匀的硬币,则第一次正面向上、第二次反面向上的概率是( )A.14B.13C.12D.344.骰子各面上的点数分别是1,2,…,6.抛掷一枚骰子,朝上一面的点数是偶数的概率是( )A.12B.14C.16D.15.在四张反面无差别的卡片上,其正面分别印有线段、等边三角形、平行四边形和正六边形.现将四张卡片的正面朝下放置,混合均匀后从中随机抽取两张,则抽到的卡片正面图形都是轴对称图形的概率为( )A.12B.13C.14D.346.如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为( )A.59B.12C.13D.297.一个不透明的盒子中装有2个黑球和4个白球,这些球除颜色外其他均相同,从中任意摸出3个球,下列事件为必然事件的是( )A.至少有1个白球B.至少有2个白球C.至少有1个黑球D.至少有2个黑球8.班长邀请A,B,C,D四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则A,B两位同学座位相邻的概率是( )A.14B.13C.12D.239.如图所示的电路图,同时闭合两个开关能形成闭合电路的概率是( )A.13B.23C.12D.110.如图,两个相同的可以自由转动的转盘A和B,转盘A被三等分,分别标有数字2,0,-1;转盘B被四等分,分别标有数字3,2,-2,-3.如果同时转动转盘A,B,转盘停止时,两个指针指向转盘A,B上的对应数字分别为x,y(当指针指在两个扇形的交线时,需重新转动转盘),那么点(x,y)落在平面直角坐标系第二象限的概率是.11.中国象棋文化历史久远.在图中所示的部分棋盘中,“馬”的位置在“”(图中虚线)的下方,“馬”移动一次能够到达的所有位置已用“·”标记,则“馬”随机移动一次,到达的位置在“”上方的概率是______.12.一个不透明的口袋中装有标号为1,2,3的三个小球,这些小球除标号外完全相同,随机摸出1个小球,然后把小球重新放回口袋摇匀,再随机摸出1个小球,那么两次摸出小球上的数字之和是偶数的概率是______.13.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是______.14.为落实“双减提质”,进一步深化“数学提升工程”,提升学生数学核心素养,某学校拟开展“双减”背景下的初中数学活动型作业成果展示现场会,为了解学生最喜爱的项目,现随机抽取若干名学生进行调查,并将调查结果绘制成如下两幅不完整的统计图:根据以上信息,解答下列问题.(1)参与此次抽样调查的学生人数是_______人,补全统计图1(要求在条形图上方注明人数);(2)图2中扇形C的圆心角度数为______度;(3)若参加成果展示活动的学生共有1 200人,估计其中最喜爱“测量”项目的学生人数是多少;(4)计划在A,B,C,D,E五项活动中随机选取两项作为直播项目,请用列表或画树状图的方法,求恰好选中B,E这两项活动的概率.15.在一个不透明的袋子中,装有五个分别标有数字-√3,√6,0,2,π的小球,这些小球除数字外其他完全相同.从袋子中随机摸出两个小球,两球上的数字之积恰好是有理数的概率为______.16.新高考“3+1+2”选科模式是指除语文、数学、外语3门科目以外,学生应在历史和物理2门首选科目中选择1科,在思想政治、地理、化学、生物学4门再选科目中选择2科.某同学从4门再选科目中随机选择2科,恰好选择地理和化学的概率为______.17.在创建“文明校园”的活动中,班级决定从四名同学(两名男生,两名女生)中随机抽取两名同学担任本周的值周长,那么抽取的两名同学恰好是一名男生和一名女生的概率是______.18.从2 021,2 022,2 023,2 024,2 025 这五个数中任意抽取3个数.抽到中位数是2 022的3个数的概率等于______.19.为更好引导和促进旅游业恢复发展,深入推动大众旅游,文化和旅游部决定开展2023年“5·19中国旅游日”活动.青海省某旅行社为了解游客喜爱的旅游景区的情况,对五一假期期间的游客去向进行了随机抽样调查,并绘制了不完整的统计图,请根据图1、图2中所给的信息,解答下列问题.(1)此次抽样调查的样本容量是_______;(2)将图1中的条形统计图补充完整;(3)根据抽样调查结果,五一假期期间这四个景区共接待游客约19万人,请估计前往青海湖景区的游客有多少万人;(4)若甲、乙两名游客从四个景区中任选一个景区旅游,请用树状图或列表法求出他们选择同一景区的概率.20.2022年3月23日下午,“天宫课堂”第二课开讲,航天员翟志刚、王亚平、叶光富相互配合进行授课,激发了同学们学习航天知识的热情.小冰和小雪参加航天知识竞赛时,均获得了一等奖,学校想请一位同学作为代表分享获奖心得.小冰和小雪都想分享,于是两人决定一起做游戏,谁获胜谁分享,游戏规则如下:甲口袋装有编号为1,2的两个球,乙口袋装有编号为1,2,3,4,5的五个球,两口袋中的球除编号外其他都相同.小冰先从甲口袋中随机摸出一个球,小雪再从乙口袋中随机摸出一个球.若两球编号之和为奇数,则小冰获胜;若两球编号之和为偶数,则小雪获胜.请用列表或画树状图的方法,说明这个游戏对双方是否公平.参考答案1.B 2.C 3.A 4.A 5.A 6.C 7.A 8.C 9.B10.1611.1412.5913.1414.(1)120 图略(2)90 (3)300人(4)11015.25 16.1617.2318.31019.(1)200 (2)B组的人数为60人,补全条形统计图略(3)估计前往青海湖景区的游客有6.65万人(4)1420.游戏对双方都公平。
2014年中考数学真题汇编-概率
2014年中考数学真题汇编-概率一、选择题2. (2014•山东潍坊,第10题3分)右图是某市7月1日至1 0日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于2 00表示空气重度污染,某人随机选择7月1日至7月8日中的某一天到达该市,并连续停留3天.则此人在该市停留期间有且仅有1天空气质量优良的概率是( )3.(2014•湖南张家界,第8题,3分)一个盒子里有完全相同的三个小球,球上分别标有数字﹣2,1,4.随机摸出一个小球(不放回),其数字为p,随机摸出另一个小球,其数字记为q,则满足关于x的方程x2+px+q=0有实数根的概率是()4. (2014山东济南,第11题,3分)学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率为( )题,3分)让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于()7. (2014年贵州黔东南4.(4分))掷一枚质地均匀的硬币10次,下列说法正确的是()A.可能有5次正面朝上B.必有5次正面朝上C.掷2次必有1次正面朝上D.不可能10次正面朝上9.(2014•娄底18.(3分))五张分别写有﹣1,2,0,﹣4,5的卡片(除数字不同以外,其余都相同),现从中任意取出一张卡片,则该卡片上的数字是负数的概率是.10.(2014年湖北咸宁12题3分)小亮与小明一起玩“石头、剪刀、布”的游戏,两同学同时出“剪刀”的概率是.11. (2014•江苏苏州,第5题3分)如图,一个圆形转盘被分成6个圆心角都为60°的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是()12. (2014•江苏徐州)抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面朝上的概率()13. (2014•江苏盐城,第12题3分)一只自由飞行的小鸟,将随意地落在如图所示的方格地面上,每个小方格形状完全相同,则小鸟落在阴影方格地面上的概率是.14. (2014•山东临沂,第10题3分)从1、2、3、4中任取两个不同的数,其乘积大于4的概率是()15. (2014•年山东东营,第8题3分)小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是()16.(2014•四川宜宾,第4题,3分)一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为( )二、填空题1. (2014•上海,第13题4分)如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是 .2. (2014•四川巴中,第19题3分)在四边形ABCD 中,(1)AB ∥CD ,(2)AD ∥BC ,(3)AB =CD ,(4)AD =BC ,在这四个条件中任选两个作为已知条件,能判定四边形ABCD 是平行四边形的概率是 .3. (2014•山东枣庄,第15题4分)有两组卡片,第一组卡片上分别写有数字“2,3,4”,第二组卡片上分别写有数字“3,4,5”,现从每组卡片中各随机抽出一张,用抽取的第一组卡片上的数字减去抽取的第二组卡片上的数字,差为负数的概率为.4. (2014•山东烟台,第15题3分)在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有3个白球,且摸出白球的概率是,那么袋子中共有球 个.5. (2014山东济南,第18题,3分)在一个不透明的口袋中,装有若干个出颜色不同其余都相同的球.如果口袋中装有3个红球且摸到红球的概率为51,那么口袋中球的总个数为____________.6. (2014•山东聊城,第16题,3分)如图,有四张卡片(形状、大小和质地都相同),正面分别写有字母A 、B 、C 、D 和一个不同的算式,将这四张卡片背面向上洗匀,从中随机抽取两张卡片,这两张卡片上的算式只有一个正确的概率是 .7.一个不进明的袋子中装有仅颜色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,到第一个人摸到红球且第二个人摸到白球的概率是 .8.(2014•四川内江,第5题,5分)有6张背面完全相同的卡片,每张正面分别有三角形、平行四边形、矩形、正方形、梯形和圆,现将其全部正面朝下搅匀,从中任取一张卡片,抽中正面画的图形是中心对称图形的概率为 .9.(2014•四川凉山州,第17题,4分)“服务社会,提升自我.”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队.若从该小分队任选两名同学进行交通秩序维护,则恰是一男一女的概率是.11.(2014•甘肃兰州,第16题4分)在四个完全相同的小球上分别写上1,2,3,4四个数字,然后装入一个不透明的口袋内搅匀,从口袋内取出一个球记下数字后作为点P 的横坐标x ,放回袋中搅匀,然后再从袋中取出一个球记下数字后作为点P 的纵坐标y ,则点P (x ,y )落在直线y=﹣x+5上的概率是 .三、解答题3.(2014•湖南怀化,第20题,10分)甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.(1)求从袋中随机摸出一球,标号是1的概率;(2)从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.5.(2014•江西抚州,第17题,7分)某同学报名参加运动会,有以下5个项目可供选择:径赛项目:100m ,200m ,400m(分别用A 1 、A 2 、A 3表示);田赛项目:跳远 ,跳高(分别用B 1 、B 2表示).⑴该同学从5个项目中任选一个,恰好是田赛项目的概率为;⑵该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并且恰好是一个田赛项目和一个径赛项目的概率.6. (2014•浙江杭州,第17题,6分)一个布袋中装有只有颜色不同的a(a>12)个球,分别是2个白球,4个黑球,6个红球和b个黄球,从中任意摸出一个球,把摸出白球,黑球,红球的概率绘制成统计图(未绘制完整).请补全该统计图并求出b的值.7. (2014•遵义22.(10分))小明、小军两同学做游戏,游戏规则是:一个不透明的文具袋中,装有型号完全相同的3支红笔和2支黑笔,两人先后从袋中取出一支笔(不放回),若两人所取笔的颜色相同,则小明胜,否则,小军胜.(1)请用树形图或列表法列出摸笔游戏所有可能的结果;(2)请计算小明获胜的概率,并指出本游戏规则是否公平,若不公平,你认为对谁有利.9. (2014•江苏苏州,第25题7分)如图,用红、蓝两种颜色随机地对A、B、C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A、C两个区域所涂颜色不相同的概率.10. (2014•江苏徐州,第23题8分)某学习小组由3名男生和1名女生组成,在一次合作学习后,开始进行成果展示.(1)如果随机抽取1名同学单独展示,那么女生展示的概率为;(2)如果随机抽取2名同学共同展示,求同为男生的概率.11. (2014•江苏盐城,第22题8分)如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等.(1)现随机转动转盘一次,停止后,指针指向1的概率为;(2)小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由.14.(2014•四川南充,第19题,8分)在学习“二元一次方程组的解”时,数学张老师设计了一个数学活动.有A、B两组卡片,每组各3张,A组卡片上分别写有0,2,3;B组卡片上分别写有﹣5,﹣1,1.每张卡片除正面写有不同数字外,其余均相同.甲从A组中随机抽取一张记为x,乙从B组中随机抽取一张记为y.(1)若甲抽出的数字是2,乙抽出的数是﹣1,它们恰好是ax﹣y=5的解,求a的值;(2)求甲、乙随机抽取一次的数恰好是方程ax﹣y=5的解的概率.(请用树形图或列表法求解)15.(2014•甘肃白银,第24题8分)在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点(x,y)在函数y=﹣x+5图象上的概率.。
2014年全国中考数学试题分类汇编16 概率
概率一、选择题1. (2014•广东,第6题3分)一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( ) A.B.C.D.考点:概率公式.分析:直接根据概率公式求解即可.解答:解:∵装有7个只有颜色不同的球,其中3个红球,∴从布袋中随机摸出一个球,摸出的球是红球的概率=.故选B.点评:本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.2. (2014•广西贺州,第5题3分)A、B、C、D四名选手参加50米决赛,赛场共设1,2,3,4四条跑道,选手以随机抽签的方式决定各自的跑道,若A首先抽签,则A抽到1号跑道的概率是( ) A.1B.C.D.考点:概率公式.分析:直接利用概率公式求出A抽到1号跑道的概率.解答:解:∵赛场共设1,2,3,4四条跑道,∴A首先抽签,则A抽到1号跑道的概率是:.故选;D.点评:此题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.3. ( 2014•广西玉林市、防城港市,第8题3分)一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( ) A.B .C .D .考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到白球的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:=.故答案为:C .点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比. 4.(2014•新疆,第5题5分)在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④,随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是( )A .B .C .D .考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球的标号相同的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有16种等可能的结果,两次摸出的小球的标号相同的有4种情况,∴两次摸出的小球的标号相同的概率是:=.故选C .点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.5.(2014·台湾,第4题3分)有一箱子装有3张分别标示4、5、6的号码牌,已知小武以每次取一张且取后不放回的方式,先后取出2张牌,组成一个二位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,若先后取出2张牌组成二位数的每一种结果发生的机会都相同,则组成的二位数为6的倍数的机率为何?( )A .B .C .D .16141312分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及组成的二位数为6的倍数的情况,再利用概率公式即可求得答案.解:画树状图得:∵每次取一张且取后不放回共有6种可能情况,其中组成的二位数为6的倍数只有54,∴组成的二位数为6的倍数的机率为.16故选A .点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.6.(2014•浙江湖州,第7题3分)已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,则a 等于( )A .1B .2C .3D .4分析:首先根据题意得:=,解此分式方程即可求得答案.解:根据题意得:=,解得:a =1,经检验,a =1是原分式方程的解,∴a =1.故选A .点评:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.7.(2014·浙江金华,第4题4分)一个布袋里面装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是【】A . B . C . D .16152535【答案】D .【解析】8.(2014•浙江宁波,第7题4分)如图,在2×2的正方形网格中有9个格点,已经取定点A 和B ,在余下的7个点中任取一点C ,使△ABC 为直角三角形的概率是( )考点:概率公式专题:网格型.=,故选=.9. (2014•益阳,第3题,4分)小玲在一次班会中参与知识抢答活动,现有语文题6个,数学题5个,综合题9个,她从中随机抽取1个,抽中数学题的概率是( ) A .B .C.D .考点:概率公式.分析:由小玲在一次班会中参与知识抢答活动,现有语文题6个,数学题5个,综合题9个,直接利用概率公式求解即可求得答案.解答:解:∵小玲在一次班会中参与知识抢答活动,现有语文题6个,数学题5个,综合题9个,∴她从中随机抽取1个,抽中数学题的概率是:=.故选C .点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.10. (2014•株洲,第3题,3分)下列说法错误的是( ) A .必然事件的概率为1 B .数据1、2、2、3的平均数是2 C .数据5、2、﹣3、0的极差是8 D .如果某种游戏活动的中奖率为40%,那么参加这种活动10次必有4次中奖考点:概率的意义;算术平均数;极差;随机事件分析:A .根据必然事件和概率的意义判断即可;B .根据平均数的秋乏判断即可;C .求出极差判断即可;D .根据概率的意义判断即可.解答:解:A .概率值反映了事件发生的机会的大小,必然事件是一定发生的事件,所以概率为1,本项正确;B .数据1、2、2、3的平均数是=2,本项正确;C .这些数据的极差为5﹣(﹣3)=8,故本项正确;D.某种游戏活动的中奖率为40%,属于不确定事件,可能中奖,也可能不中奖,故本说法错误,故选:D .点评:本题主要考查了概率的意义、求算术平均数以及极差的方法,比较简单.11.(2014年山东泰安,第11题3分)在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率是( )A .B .C .D .分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球的标号之和大于4的情况,再利用概率公式即可求得答案.解:画树状图得:∵共有16种等可能的结果,两次摸出的小球的标号之和大于4的有10种情况,∴两次摸出的小球的标号之和大于4的概率是:=.故选C.点评:本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.二.填空题1. (2014•珠海,第8题4分)桶里原有质地均匀、形状大小完全一样的6个红球和4个白球,小红不慎遗失了其中2个红球,现在从桶里随机摸出一个球,则摸到白球的概率为 .考点:概率公式.分析:由桶里原有质地均匀、形状大小完全一样的6个红球和4个白球,小红不慎遗失了其中2个红球,直接利用概率公式求解即可求得答案.解答:解:∵桶里原有质地均匀、形状大小完全一样的6个红球和4个白球,小红不慎遗失了其中2个红球,∴现在从桶里随机摸出一个球,则摸到白球的概率为:=.故答案为:.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.2.(2014年天津市,第15题3分)如图,是一副普通扑克牌中的13张黑桃牌,将它们洗匀后正面向下放在桌子上,从中任意抽取一张,则抽出的牌点数小于9的概率为 .考点:概率公式.菁优网分析:抽出的牌的点数小于9有1,2,3,4,5,6,7,8共8个,总的样本数目为13,由此可以容易知道事件抽出的牌的点数小于9的概率.解答:解:∵抽出的牌的点数小于9有1,2,3,4,5,6,7,8共8个,总的样本数目为13,∴从中任意抽取一张,抽出的牌点数小于9的概率是:.故答案为:.点评:此题主要考查了概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.3.(2014•舟山,第13题4分)有三辆车按1,2,3编号,舟舟和嘉嘉两人可任意选坐一辆车.则两人同坐3号车的概率为 .考点:列表法与树状图法.分析:根据题意画出树状图,得出所有的可能,进而求出两人同坐3号车的概率.解答:解:由题意可画出树状图:,所有的可能有9种,两人同坐3号车的概率为:.故答案为:.点评:此题主要考查了树状图法求概率,列举出所有可能是解题关键.4.(2014•武汉,第13题3分)如图,一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向红色的概率为.考点:概率公式分析:由一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,红色的有3个扇形,直接利用概率公式求解即可求得答案.解答:解:∵一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,红色的有3个扇形,∴指针指向红色的概率为:.故答案为:.点评:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.5.(2014•武汉2014•武汉,第21题7分)袋中装有大小相同的2个红球和2个绿球.(1)先从袋中摸出1个球后放回,混合均匀后再摸出1个球.①求第一次摸到绿球,第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率;(2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.考点:列表法与树状图法分析:(1)①首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第一次摸到绿球,第二次摸到红球的情况,再利用概率公式即可求得答案;②首先由①求得两次摸到的球中有1个绿球和1个红球的情况,再利用概率公式即可求得答案;(2)由先从袋中摸出1个球后不放回,再摸出1个球,共有等可能的结果为:4×3=12(种),且两次摸到的球中有1个绿球和1个红球的有8种情况,直接利用概率公式求解即可求得答案.解答:解:(1)①画树状图得:∵共有16种等可能的结果,第一次摸到绿球,第二次摸到红球的有4种情况,∴第一次摸到绿球,第二次摸到红球的概率为:=;②∵两次摸到的球中有1个绿球和1个红球的有8种情况,∴两次摸到的球中有1个绿球和1个红球的为:=;(2)∵先从袋中摸出1个球后不放回,再摸出1个球,共有等可能的结果为:4×3=12(种),且两次摸到的球中有1个绿球和1个红球的有8种情况,∴两次摸到的球中有1个绿球和1个红球的概率是:=.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.6.(2014•襄阳,第14题3分)从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是 .考点:列表法与树状图法;三角形三边关系.分析:由从长度分别为2,4,6,7的四条线段中随机取三条,可能的结果为:2,4,6;2,4,7;2,6,7;4,6,7共4种,能构成三角形的是2,6,7;4,6,7;直接利用概率公式求解即可求得答案.解答:解:∵从长度分别为2,4,6,7的四条线段中随机取三条,可能的结果为:2,4,6;2,4,7;2,6,7;4,6,7共4种,能构成三角形的是2,6,7;4,6,7;∴能构成三角形的概率是:=.故答案为:.点评:此题考查了列举法求概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.7.(2014•邵阳,第15题3分)有一个能自由转动的转盘如图,盘面被分成8个大小与性状都相同的扇形,颜色分为黑白两种,将指针的位置固定,让转盘自由转动,当它停止后,指针指向白色扇形的概率是.考点:几何概率分析:求出白色扇形在整个转盘中所占的比例即可解答.解答:解:∵每个扇形大小相同,因此阴影面积与空白的面积相等,∴落在白色扇形部分的概率为:=.故答案为:.点评:此题主要考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比.8. (2014•泰州,第12题,3分)任意抛掷一枚均匀的骰子一次,朝上的点数大于4的概率等于 .考点:概率公式.分析:由任意抛掷一枚均匀的骰子一次,朝上的点数大于4的有2种情况,直接利用概率公式求解即可求得答案.解答:解:∵任意抛掷一枚均匀的骰子一次,朝上的点数大于4的有2种情况,∴任意抛掷一枚均匀的骰子一次,朝上的点数大于4的概率等于:=.故答案为:.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.三.解答题1. (2014•安徽省,第21题12分)如图,管中放置着三根同样的绳子AA1、BB1、CC1;(1)小明从这三根绳子中随机选一根,恰好选中绳子AA1的概率是多少?(2)小明先从左端A、B、C三个绳头中随机选两个打一个结,再从右端A1、B1、C1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.考点:列表法与树状图法.菁优网专题:计算题.分析:(1)三根绳子选择一根,求出所求概率即可;(2)列表得出所有等可能的情况数,找出这三根绳子能连结成一根长绳的情况数,即可求出所求概率.解答:解:(1)三种等可能的情况数,则恰好选中绳子AA1的概率是;(2)列表如下:A B CA1(A,A1)(B,A1)(C,A1)B1(A,B1)(B,B1)(C,B1)C1(A,C1)(B,C1)(C,C1)所有等可能的情况有9种,其中这三根绳子能连结成一根长绳的情况有6种,则P==.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.2. (2014•福建泉州,第21题9分)在一个不透明的箱子里,装有红、白、黑各一个球,它们除了颜色之外没有其他区别.(1)随机地从箱子里取出1个球,则取出红球的概率是多少?(2)随机地从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示所有等可能的结果,并求两次取出相同颜色球的概率.考点:列表法与树状图法;概率公式.分析:(1)由在一个不透明的箱子里,装有红、白、黑各一个球,它们除了颜色之外没有其他区别,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次取出相同颜色球的情况,再利用概率公式即可求得答案.解答:解:(1)∵在一个不透明的箱子里,装有红、白、黑各一个球,它们除了颜色之外没有其他区别,∴随机地从箱子里取出1个球,则取出红球的概率是:;(2)画树状图得:∵共有9种等可能的结果,两次取出相同颜色球的有3种情况,∴两次取出相同颜色球的概率为:=.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.3.(2014年云南省,第19题7分)某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;(2)你认为这个规则公平吗?请说明理由.考点:游戏公平性;列表法与树状图法.分析:(1)用列表法将所有等可能的结果一一列举出来即可;(2)求得两人获胜的概率,若相等则公平,否则不公平.解答:解:(1)根据题意列表得:123412345234563456745678(2)由列表得:共16种情况,其中奇数有8种,偶数有8种,∴和为偶数和和为奇数的概率均为,∴这个游戏公平.点评:本题考查了游戏公平性及列表与列树形图的知识,难度不大,是经常出现的一个知识点.4.(2014•温州,第19题8分)一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.(1)从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是,求从袋中取出黑球的个数.考点:概率公式;分式方程的应用.分析:(1)由一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球,直接利用概率公式求解即可求得答案;(2)首先设从袋中取出x个黑球,根据题意得:=,继而求得答案.解答:解:(1)∵一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球,∴从袋中摸出一个球是黄球的概率为:=;(2)设从袋中取出x个黑球,根据题意得:=,解得:x=2,经检验,x=2是原分式方程的解,∴从袋中取出黑球的个数为2个.点评:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.5.(2014年广东汕尾,第21题9分)一个口袋中有3个大小相同的小球,球面上分别写有数字1、2、3,从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;(2)求两次摸出的球上的数字和为偶数的概率.分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得两次摸出的球上的数字和为偶数的有5种情况,再利用概率公式即可求得答案.解:(1)画树状图得:则共有9种等可能的结果;(2)由(1)得:两次摸出的球上的数字和为偶数的有5种情况,∴两次摸出的球上的数字和为偶数的概率为:.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.6.(2014•孝感,第21题10分)为了解中考体育科目训练情况,某县从全县九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是 40 ;(2)图1中∠α的度数是 54° ,并把图2条形统计图补充完整;(3)该县九年级有学生3500名,如果全部参加这次中考体育科目测试,请估计不及格的人数为 700 .(4)测试老师想从4位同学(分别记为E、F、G、H,其中E为小明)中随机选择两位同学了解平时训练情况,请用列表或画树形图的方法求出选中小明的概率.考点:条形统计图;用样本估计总体;扇形统计图;列表法与树状图法.分析:(1)用B级的人数除以所占的百分比求出总人数;(2)用360°乘以A级所占的百分比求出∠α的度数,再用总人数减去A、B、D级的人数,求出C级的人数,从而补全统计图;(3)用九年级所有得学生数乘以不及格的人数所占的百分比,求出不及格的人数;(4)根据题意画出树状图,再根据概率公式进行计算即可.解答:解:(1)本次抽样测试的学生人数是:=40(人),故答案为:40;(2)根据题意得:360°×=54°,答:图1中∠α的度数是54°;C级的人数是:40﹣6﹣12﹣8=14(人),如图:故答案为:54°;(3)根据题意得:3500×=700(人),答:不及格的人数为700人.故答案为:700;(4)根据题意画树形图如下:共有12种情况,选中小明的有6种,则P(选中小明)==.点评:此题考查了条形统计图和扇形统计图的综合应用,用到的知识点是用样本估计总体、频数、频率、总数之间的关系等,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.7.(2014•四川自贡,第20题10分)为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别成绩x分频数(人数)第1组25≤x<304第2组30≤x<358第3组35≤x<4016第4组40≤x<45a第5组45≤x<5010请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.考点:频数(率)分布直方图;频数(率)分布表;列表法与树状图法分析:(1)用总人数减去第1、2、3、5组的人数,即可求出a的值;(2)根据(1)得出的a的值,补全统计图;(3)用成绩不低于40分的频数乘以总数,即可得出本次测试的优秀率;(4)用A表示小宇B表示小强,C、D表示其他两名同学,画出树状图,再根据概率公式列式计算即可.解答:解:(1)表中a的值是:a=50﹣4﹣8﹣16﹣10=12;(2)根据题意画图如下:(3)本次测试的优秀率是=0.44;答:本次测试的优秀率是0.44;(4)用A表示小宇B表示小强,C、D表示其他两名同学,根据题意画树状图如下:共有12种情况,小宇与小强两名男同学分在同一组的情况有2种,则小宇与小强两名男同学分在同一组的概率是=.点评:本题考查了频数分布直方图和概率,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,概率=所求情况数与总情况数之比.8.(2014·云南昆明,第19题6分)九年级某班同学在毕业晚会中进行抽奖活动.在一个不透明的口袋中有三个完全相同的小球,把它们分别标号1、2、3.随机摸出一个小球记下标号后放回摇匀,再从中随机摸出一个小球记下标号.(1)请用列表或画树形图的方法(只选其中一种),表示两次摸出小球上的标号的所有结果;(2)规定当两次摸出的小球标号相同时中奖,求中奖的概率.考点:列表法与树状图法..分析:(1)首先根据题意列出表格,由表格即可求得取出的两个小球上标号所有可能的结果;(2)首先根据(1)中的表格,求得取出的两个小球上标号相同情况,然后利用概率公式即可求得答案.解答:解:(1)列表得:1231(1,1)(2,1)(3,1)2(1,2)(2,2)(3,2)3(1,3)(2,3)(3,3)(2)∵取出的两个小球上标号相同有:(1,1),(2,2),(3,3)。
中考历史特训卷 欧美主要国家的社会巨变分级演练(含部分14原创题)
第19课时欧美主要国家的社会巨变1.(2014原创)几百年来,名画《蒙娜丽莎》深深地打动着人们,人们从中看到达·芬奇对人文主义精神的不懈追求。
当时这种追求反映了( )A.封建文化的兴起B.古代希腊、罗马文化的复兴C.资产阶级文化的兴起D.基督教文化的复兴2.(2011年广东东莞)“各国人民共同生活在一个‘地球村’里,应该携手合作、共同努力,推动建立公正合理的国际政治经济新秩序。
”把世界连成一体开始于( )A.文艺复兴运动B.新航路开辟C.英国资产阶级革命D.英国工业革命3. (2011年广东梅州)“他相信地圆学说,他要到东方寻求宝藏;他没有到达东方,他没有寻到宝藏,他发现了一块新的大陆。
”他是开辟新航路的著名航海家( ) A.哥伦布 B.达·伽马C.迪亚士 D.麦哲伦4. (2011年广东东莞)因宣称“人人生而平等,造物主赋予他们某些不可转让的权利,其中包括生命权、自由权和追求幸福的权利”而被马克思称为“第一个人权宣言”的是( )A.《拿破仑法典》 B.《独立宣言》C.《人权宣言》 D.《权利法案》5.18世纪中期开始的工业革命给英国社会带来了重大变化。
下列现象符合当时实际情况的是( )A.人们可以乘汽车外出 B.各家各户安装了电灯C.人们可以乘火车外出 D.各家各户安装了电脑6.历史学习是一个运用多种方法从感知历史到积累历史知识,再到理解历史的过程。
根据要求,回答下列问题。
(1)小明同学对“跨入近代社会的门槛”这一单元线索认识模糊不清,请你根据提示,把下列历史事件填入方框中的相应位置,帮助他梳理大致的线索。
(注意:只填英文字母)并指出图示法对我们学习历史有什么帮助?历史事件:A.新航路的开辟B.英国资产阶级革命C.文艺复兴运动 D.美国独立战争E.法国大革命(2)图示中③、④两次革命运动取得的重大成果各是什么?(3)在“跨入近代社会的门槛”的历史进程中,英、法、美资产阶级革命都制定和颁布了资产阶级法律文献,推动了民主政治进程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率
A 级 基础题
1.(2013年北京)在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出1个小球,其标号大于2的概率为( )
A.15
B.25
C.35
D.45
2.(2013年上海)将“定理”的英文单词theorem 中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取1张,那么取到字母e 的概率为____________.
3.(2013年湖北宜昌)2012~2013NBA 整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是( )
A .科比罚球投篮2次,一定全部命中
B .科比罚球投篮2次,不一定全部命中
C .科比罚球投篮1次,命中的可能性较大
D .科比罚球投篮1次,不命中的可能性较小
4.(2013年福建福州)袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出1个球,如果取到白球的可能性较大,那么袋中白球的个数可能是( )
A .3个
B .不足3个
C .4个
D .5个或5个以上
5.(2013年海南益阳)有三张大小、形状及背面完全相同的卡片,卡片正面分别画有正三角形、正方形、圆,从这三张卡片中任意抽取一张,卡片正面的图形既是轴对称图形又是中心对称图形的概率是________.
6.在一个不透明的盒子中,共有“一白三黑”四个围棋子,它们除了颜色之外没有其他区别.
(1)随机地从盒中提出一子,则提出白子的概率是多少?
(2)随机地从盒中提出一子,不放回再提第二子.请你用画树状图或列表的方法表示所有等可能的结果,并求恰好提出“一黑一白”子的概率.
B 级 中等题
7.(2013年重庆)从3,0,-1,-2,-3这五个数中,随机抽取一个数,作为函数y =(5-m 2)x 和关于x 的方程(m +1)x 2+mx +1=0中m 的值,恰好使所得函数的图象经过第一、三象限,且方程有实数根的概率为________.
8.(2013年湖北襄阳)襄阳市辖区内旅游景点较多,李老师和刚初中毕业的儿子准备到古隆中、水镜庄、黄家湾三个景点去游玩.如果他们各自在这三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择古隆中为第一站的概率是________.
9.在一个口袋中有4个完全相同的小球,把它们分别标上1,2,3,4.小明先随机地摸出1个小球,小强再随机的摸出1个小球.记小明摸出球的标号为x ,小强摸出的球标号为y .小明和小强在此基础上共同协商一个游戏规则:当x >y 时,小明获胜,否则小强获胜.
(1)若小明摸出的球不放回,求小明获胜的概率;
(2)若小明摸出的球放回后小强再随机摸球,问他们制定的游戏规则公平吗?请说明理由.
10.(2012年江西)如图7-2-3,大小、质地相同,仅颜色不同的两双拖鞋(分左、右脚)共四只,放置在地板上[可表示为(A1,A2),(B1,B2)].
(1)若先将两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,求恰好匹配成相同颜色的一双拖鞋的概率;
(2)若从这四只拖鞋中随机地取出两只,利用树状图或表格列举出所有可能出现的结果,并求恰好匹配成相同颜色的一双拖鞋的概率.
图7-2-3
C级拔尖题
11.(2013年江西)甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件.
(1)下列事件是必然事件的是()
A.乙抽到一件礼物B.乙恰好抽到自己带来的礼物
C.乙没有抽到自己带来的礼物D.只有乙抽到自己带来的礼物
(2)甲、乙、丙3人抽到的都不是自己带来的礼物(记为事件A),请列出事件A的所有可能的结果,并求事件A的概率.
概率
1.C 2.27 3.A 4.D 5.23
6.解:(1)∵共有“一白三黑”四个围棋子,
∴P (白子)=14
. (2)画树状图如图73.
∵共有12种等可能的结果,恰好提出“一黑一白”子的有6种情况,
∴P (一黑一白)=612=12.
图73
7.25 8.19
9.解:(1)画树状图如图74.
图74
∵共有12种等可能的结果,小明获胜的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)共6种情况,
∴小明获胜的概率为:12
. (2)画树状图如图75.
图75
∵共有16种等可能的结果,小明获胜的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)共6种情况,
∴P (小明获胜)=38,P (小强获胜)=58
, ∵P (小明获胜)≠P (小强获胜),
∴他们制定的游戏规则不公平.
10.解:(1)∵若先将两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,有A 1A 2,A 1B 2,B 1B 2,B 1A 2四种情况,恰好匹配的有A 1A 2,B 1B 2两种情况,
∴P (恰好匹配)=24=12
. (2)方法一,画树状图如图76.
图76
∵所有可能的结果为A 1A 2,A 1B 1,A 1B 2,A 2A 1,A 2B 1,A 2B 2,B 1A 1,B 1A 2,B 1B 2,B 2A 1,B 2A 2,B 2B 1,
∴从这四只拖鞋中随机的取出两只,共有12种不同的情况,其中恰好匹配的有4种,分别是A 1A 2,A 2A 1,B 1B 2,B 2B 1.
∴P (恰好匹配)=412=13
. 方法二,列表格如下:
A 1
B 2 A 2B 2 B 1B 2 -
A 1
B 1 A 2B 1 -
B 2B 1 A 1A 2 -
B 1A 2 B 2A 2 -
A 2A 1
B 1A 1 B 2A 1 可见,从这四只拖鞋中随机的取出两只,共有12种不同的情况,
其中恰好匹配的有4种,分别是A 1A 2,A 2A 1,B 1B 2,B 2B 1.
∴P (恰好匹配)=412=13
. 11.解:(1)A
(2)设甲、乙、丙三人的礼物分别记为a ,b ,c ,
根据题意画出树状图如图77.
图77
一共有6种等可能的情况,三人抽到的礼物分别为abc ,acb ,bac ,bca ,cab ,cba ,
3人抽到的都不是自己带来的礼物的情况有bca ,cab 有2种,所以,P (A )=26=13
.。