江苏省苏州市2014年中考数学试卷(word版,含解析)
2014年江苏省苏州市中考数学试卷
数学试卷 第1页(共8页) 数学试卷 第2页(共8页)绝密★启用前江苏省苏州市2014年中考数学试卷数 学本试卷满分130分,考试时间120分钟.第Ⅰ卷(选择题 共36分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(33)⨯-的结果是( ) A .9-B .0C .9D .6- 2.已知α∠和β∠是对顶角,若30α∠=,则β∠的度数为( ) A .30B .60C .70D .150 3.有一组数据:1,3,3,4,5,这组数据的众数为( ) A .1B .3C .4D .5 4.,则x 的取值范围是( ) A .4≤-xB .4≥-xC .4≤xD .4≥x5.如图,一个圆形转盘被分成6个圆心角都为60的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是( ) A .14B .13C .12D .23(第5题)(第6题)6.如图,在△ABC 中,点D 在BC 上,==AB AD DC ,80B ∠=,则∠C 的度数为( ) A .30B .40C .45D .60 7.下列关于x 的方程有实数根的是( ) A .2+10x x =-B .21++0x x =C .2)10()(x x -+=D .2(11)0x -+=8.二次函数2()10y ax bx a =+-≠的图象经过点(1,1),则代数式1--a b 的值为( )A .3-B .1-C .2D .59.如图,港口A 在观测站O 的正东方向,4=OA km ,某船从港口A 出发,沿北偏东15方向航行一段距离后到达B 处,此时从观测站O 处测得该船位于北偏东60的方向,则该船航行的距离(即AB 的长)为 ( )A .4 kmB. kmC.kmD.1) km(第9题) (第10题)10.如图,△AOB 为等腰三角形,顶点A的坐标,底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△'''AO B ,点A 的对应点'A 在x 轴上,则点'O 的坐标为( ) A .2010(,)33B.16(3 C.20(3 D.16(3第Ⅱ卷(非选择题 共114分)二、填空题(本大题共8小题,每小题3分,共24分.把答案填写在题中的横线上)毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共8页) 数学试卷 第4页(共8页)11.32的倒数是 .12.已知地球的表面积约为510 000 000 2km ,数510 000 000用科学记数法可表示为 .13.已知正方形ABCD的对角线AC 则正方形ABCD 的周长为 .14.某学校计划开设A ,B ,C ,D 四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门,为了了解个门课程的选修人数.现从全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为1200名,由此可以估计选修C 课程的学生有 人.(第14题)(第15题)15.如图,在△ABC 中,5==AB AC ,8=BC .若12∠=∠BPC BAC ,则tan ∠=BPC .16.某地准备对一段长120m 的河道进行清淤疏通.若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道x m ,乙工程队平均每天疏通河道y m ,则()+x y 的值为 .17.如图,在矩形ABCD 中,35=AB BC ,以点B 为圆心,BC 长为半径画弧,交边AD 于点E .若4•3AE ED =,则矩形ABCD 的面积为 . (第17题) (第18题)18.如图,直线l 与半径为4的O 相切于点A ,P 是O 上的一个动点(不与点A 重合),过点P 作⊥PB l ,垂足为B ,连接PA .设=PA x ,=PB y ,则()x y -的最大值是 .三、解答题(本大题共11小题,共76分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分5分)计算:2||21-+20.(本小题满分5分)解不等式组:12,22(x 1).>≥-⎧⎨+-⎩x x21.(本小题满分5分) 先化简,再求值:21(1)11÷-+-x x x ,其中1=x .22.(本小题满分6分)解分式方程:2311+=--x x x.23.(本小题满分6分)如图,在△Rt ABC 中90ACB ∠=,点D ,F 分别在AB ,AC 上,=CF CB ,连接CD ,将线段CD 绕点C 按顺时针方向旋转90后得CE ,连接EF . (1)求证:≌△△BCD FCE ;(2)若∥EF CD ,求∠BDC 的度数.24.(本小题满分7分)如图,已知函数12=-+y x b 的图象与x 轴,y 轴分别交于点A ,B ,与函数=y x 的图象交于点M ,点M 的横坐标为2,在x 轴上有一点0(),P a (其中2>a ),过点P 作x 轴的垂线,分别交函数12=-+y x b 和=y x 的图象于点C ,D .数学试卷 第5页(共8页) 数学试卷 第6页(共8页)(1)求点A 的坐标;(2)若=OB CD ,求a 的值.25.(本小题满分7分)如图,用红、蓝两种颜色随机地对A ,B ,C 三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A ,C 两个区域所涂颜色不相同的概率.26.(本小题满分8分) 如图,已知函数()0>=ky x x的图象经过点A ,B ,点A 的坐标为(1,2),过点A 作AC y ∥轴,1=AC (点C 位于点A 的下方),过点C 作∥CD x 轴,与函数的图象交于点D ,过点B 作⊥BE CD ,垂足E 在线段CD 上,连接OC ,OD . (1)求△OCD 的面积;(2)当12=BE AC 时,求CE 的长.27.(本小题满分8分)如图,已知O 上依次有A ,B ,C ,D 四个点,=AB BC ,连接AB ,AD ,BD ,弦AB 不经过圆心O .延长AB 到E ,使=BE AB ,连接EC ,F 是EC 的中点,连接BF . (1)若O 的半径为3,120DAB ∠=,求劣弧BD 的长; (2)求证:12=BF BD ; (3)设G 是BD 的中点,探索:在O 上是否存在点P (不同于点B ),使得=PG PF ?并说明PB 与AE 的位置关系.28.(本小题满分9分)如图,已知12⊥l l ,O 与1l ,2l 都相切,O 的半径为2 cm ,矩形ABCD 的边AD 、AB 分别与1l ,2l 重合,=AB cm ,4=AD cm ,若O 与矩形ABCD 沿1l 同时向右移动,O 的移动速度为 3 cm/s ,矩形ABCD 的移动速度为 4 cm/s ,设移动时间为()t s .(1)如图①,连接OA ,AC ,则∠OAC 的度数为 ;(2)如图②,两个图形移动一段时间后,O 到达1O 的位置,矩形ABCD 到达1111A B C D 的位置,此时点1O ,1A ,1C 恰好在同一直线上,求圆心O 移动的距离(即1O 的长);(3)在移动过程中,圆心O 到矩形对角线AC 所在直线的距离在不断变化,设该距离为()d cm ,当2<d 时,求t 的取值范围(解答时可以利用备用图画出相关示意图).29.(本小题满分10分)如图,二次函数2223()y a x mx m =--(其中a ,m 是常数,且0>a ,0>m )的图象与x 轴分别交于点A ,B (点A 位于点B 的左侧),与y 轴交于3(0,)C -,点D 在二次函数的图象上,∥CD AB ,连接AD ,过点A 作射线AE 交二次函数的图象于点E ,AB 平分∠DAE .(1)用含m 的代数式表示a ;(2)求证:ADAE为定值; (3)设该二次函数图象的顶点为F ,探索:在x 轴的负半轴上是否存在点G ,连接GF,-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________以线段GF,AD,AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.数学试卷第7页(共8页)数学试卷第8页(共8页)。
2014年苏州市初中中考数学试卷含答案解析.docx
2014 年苏州市初中毕业暨升学考试试卷数学本试卷由选择题、填空题和解答题三大题组成.共29 小题,满分130 分.考试时间120分钟.一、选择题:本大题共10 小题,每小题 3 分,共 30 分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B 铅笔涂在答题卡相应位置上.1. (- 3)× 3 的结果是A .- 9B. 0C. 9D.- 62.已知∠ α和∠ β是对顶角,若∠α=30°,则∠ β的度数为A . 30°B. 60°C. 70°D. 150°3.有一组数据:1,3.3, 4,5,这组数据的众数为A . 1B. 3C. 4D. 54.若式子x 4 可在实数范围内有意义,则x 的取值范围是A . x≤- 4B. x≥- 4C. x≤ 4D. x≥ 45.如图,一个圆形转盘被分成6 个圆心角都为60°的扇形,任意转动这个转盘1 次,当转盘停止转动时,指针指向阴影区域的概率是1B.112A .C.D.43236.如图,在△ABC 中,点 D 在 BC 上, AB = AD = DC ,∠ B= 80°,则∠ C 的度数为A . 30°B. 40°C. 45°D. 60°7.下列关于 x 的方程有实数根的是A . x2-x+ 1= 0B. x2+ x+ 1= 0C. (x- 1)(x + 2)=0D. (x- 1)2+ l= 08.一次函数y= ax2+ bx- 1(a≠ 0)的图象经过点 (1, 1).则代数式1- a- b 的值为A .- 3B.- 1C. 2D. 59.如图,港口 A 在观测站 O 的正东方向, OA = 4km.某船从港口 A 出发,沿北偏东15°方向航行一段距离后到达 B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船航行的距离(即AB 的长)为A . 4km B. 2 3 km C. 2 2 km D.( 3 +1)km10.如图,△ AOB 为等腰三角形,顶点 A 的坐标为( 2,5),底边 OB 在 x 轴上.将△AOB 绕点 B 按顺时针方向旋转一定角度后得△A'O'B ,点 A 的对应点 A' 在 x 轴上,则点 O'的坐标为A .(20,10)B.(16,45 )C.(20,45 )D.(16, 43 )3333333二、填空题:本大题共8 小题,每小题 3 分,共 24 分.把答案直接填在答题卡相应位置上.11.3的倒数是▲.212 已知地球的表而积约为510000000km 2.数 510000000 用科学记数法可以表示为▲.13.已知正方形ABCD 的对角线 AC = 2 ,则正方形ABCD的周长为▲ .14.某学校计划开设 A , B, C, D 四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门.为了了解各门课程的选修人数,现从全体学牛中随机抽取了部分学牛进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为1200 名,由此可以估计选修 C 课程的学生有▲ 人.15.如图,在△ ABC 中,AB = AC = 5,BC = 8.若∠ BPC=1∠ BAC ,则 tan∠ BPC =▲.216.某地准备对一段长120m 的河道进行清淤疏通,若甲工程队先用 4 天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9 天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要 3 天,设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym ,则( x+ y)的值为▲ .17.如图,在矩形 ABCD 中,AB3,以点 B 为圆心, BC 长为半径画弧,交边AD 于点BC5E,若 AE ·ED =4,则矩形 ABCD 的面积为▲ .318.如图,直线 l 与半径为 4 的⊙ O 相切于点 A ,P 是⊙ O 上的一个动点(不与点 A 重合),过点 P 作 PB ⊥l ,垂足为 B,连接 PA.设 PA= x, PB= y,则( x- y)的最大值是▲ .三、解答题:本大题共11 小题,共 76 分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B 铅笔或黑色墨水签字笔.19.(本题满分 5 分)计算:221 4 .20.(本题满分5 分)x12解不等式组:x .2 2 x 1 21.(本题满分5 分)先化简,再求值:x112 1 .21,其中 x=x x122.(本题满分6 分)x 2 解分式方程:3.x 1 1 x23.(本题满分 6 分)如图,在 Rt△ ABC 中,∠ ACB = 90°,点 D, F 分别在 AB ,AC 上,CF =CB .连接 CD ,将线段 CD 绕点 C 按顺时针方向旋转 90°后得 CE,连接 EF.(1)求证:△ BCD ≌△ FCE;(2)若 EF ∥CD .求∠ BDC 的度数.24.(本题满分7 分)如图,已知函数y=-1x+ b 的图象与x 轴、 y轴分别交于点 A , B,2与函数y= x的图象交于点M ,点M的横坐标为2.在x 轴上有一点P (a, 0)(其中a>2),过点P 作 x轴的垂线,分别交函数y=-1x+ b 和y=x的图象于点C, D .2(1) 求点 A 的坐标;(2) 若 OB = CD ,求 a 的值.25.(本题满分7 分)如图,用红、蓝两种颜色随机地对 A ,B, C 三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求 A ,C两个区域所涂颜色不相同的概率.26(本题满分8 分)如图,已知函数y=k( x>0 )的图象经过点 A , B,点 A 的坐标为x(1,2).过点 A 作 AC∥ y 轴, AC = 1(点 C 位于点 A 的下方),过点数的图象交于点 D,过点 B 作 BE⊥CD ,垂足 E 在线段 CD 上,连接C作 CD ∥ x 轴,与函OC, OD.(1)求△ OCD 的面积;1(2)当 BE = AC 时,求 CE 的长.227.(本题满分8分)如图,已知⊙O 上依次有 A ,B,C,D 四个点,AD BC ,连接AB,AD , BD ,弦 AB 不经过圆心 O.延长 AB 到 E,使 BE = AB ,连接 EC, F 是 EC 的中点,连接BF.(1)若⊙ O 的半径为 3,∠ DAB = 120°,求劣弧BD的长;(2)求证: BF =1BD ;2(3)设 G 是 BD 的中点探索:在⊙ O 上是否存在点 P(小同于点 B ),使得 PG= PF?并说明PB 与 AE 的位置关系.28.(本题满分9分)如图,已知 l 1⊥ l2,⊙O 与 l 1,l2都相切,⊙ O 的半径为2cm.矩形 ABCD 的边AD ,AB分别与l ,l 重合, AB =4123cm ,AD = 4cm.若⊙O 与矩形ABCD沿 l 同1.时向右移动,⊙O .的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s).(1)如图①,连接 OA , AC ,则∠ OAC 的度数为▲ °;(2) 如图②,两个图形移动一段时间后,⊙ O到达⊙ O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1, A 1,C1恰好在同一直线上,求圆心O 移动的距离 (即 OO 1的长);(3)在移动过程中,圆心O 到矩形对角线 AC 所在直线的距离在不断变化,设该距离为d(cm) .当 d<2 时,求 t 的取值范围.(解答时可以利用备用图画出相关示意图)29.(本题满分 10 分)如图,一次函数 y= a(x2- 2mx - 3m2)(其中 a, m 是常数,且 a>0,m>0)的图象与 x 轴分别交于点 A , B(点 A 位于点 B 的左侧),与 y 轴交于点 C(0 ,- 3),点 D 在二次函数的图象上, CD ∥ AB ,连接 AD .过点 A 作射线 AE 交二次函数的图象于点E, AB 平分∠ DAE .(1)用含 m 的代数式表示 a;(2)求证:AD为定值;AE(3) 设该二次函数图象的顶点为F.探索:在x 轴的负半轴上是否存在点G,连接 CF,以线段 GF、 AD 、AE 的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点 G 即可,并用含m 的代数式表示该点的横坐标;如果不存在,请说明理由.。
江苏省苏州市中考数学试卷word版含剖析
A .
x2﹣x+1=0
考点:根的判别式. 菁优网版权所有
专题:计算题.
B.x2+x+1=0
分析:分别计算 A、B 中的判别式的值;根据判别式的意义进行判断;利用因式分解法对 C 进行判断;根据非负数的性质对 D 进行判断.
解答: 解:A、△=(﹣1)2﹣4×1×1=﹣3<0,方程没有实数根,所以 A 选项错误;
解答: 解:依题意知,x﹣4≥0,
解得 x≥4. 故选:D. 点评:考查了二次根式的意义和性质.概念:式子 (a≥0)叫二次根式.性质:二次根 式中的被开方数必须是非负数,否则二次根式无意义. 5.(3 分)(2014•苏州)如图,一个圆形转盘被分成 6 个圆心角都为 60°的扇形,任意转动 这个转盘 1 次,当转盘停止转动时,指针指向阴影区域的概率是( )
江苏省苏州市 2014 年中考数学试卷
一、选择题(共 10 小题,每小题 3 分,共 30 分)
1.(3 分)(2014•苏州)(﹣3)×3 的结果是( )
A . ﹣9
考点:有理数的乘法.
分析:根据两数相乘,异号得负,可得答案.
B.0
解答: 解:原式=﹣3×3=﹣9,
故选:A. 点评:本题考查了有理数的乘法,先确定积的符号,再进行绝对值得运算.
C.45°
=40°.
C. (x﹣1)(x+2)=0
D 60° .
D .
(x﹣1)2+1=0
D、(x﹣1)2=﹣1,方程左边为非负数,方程右边为 0,所以方程没有实数根,所以 D 选项错误. 故选 C. 点评: 本题考查了一元二次方程 ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方 程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有 实数根.
2014年江苏省苏州市中考试题(word版含答案)
苏州市2014年中考数学试卷 (满分:130分 时间:120分钟)本试卷由选择题、填空题和解答题三大题组成。
共29小题,满分130分。
考试时间120分钟。
注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符。
2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须要0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题。
3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效。
一、 选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
请将选择题的答案用2B 铅笔涂在答题卡相应位置上。
) 1. (2014江苏省苏州市,1,3分)(-3)×3的结果是 ( )A. -9B. 0C. 9D. -62. (2014江苏省苏州市,2,3分)已知∠α和∠β是对顶角.∠α=30°,则∠β的度数为( )A. 30°B. 60°C. 70°D. 150°3. (2014江苏省苏州市,3,3分)有一组数据:1,3,3,4,5,这组数据的众数为( )A. 1B. 3C. 4D. 54. (2014江苏省苏州市,4,3分)若式子x -4在实数范围内有意义,则x 的取值范围是( )A. x ≤-4B. x≥-4C. x≤4D. x≥45. (2014江苏省苏州市,5,3分)如图,一个圆形转盘被分成6个圆心角都为60°的扇形.任意转动这个转盘1次,当转盘停止转动时,指针指向阴影的概率是 ( )A. 14B. 13C. 12D. 23第5题6. (2014江苏省苏州市,6,3分)如图,在△ABC 中,点D 在BC 上,AB=AD=DC ,∠B =80°,则∠C的度数为( )A. 30°B. 40°C. 45°D. 60°第6题7. (2014江苏省苏州市,7,3分)下列关于x 的方程有实数根的是 ( )A. x 2-x +1=0 B. x 2+x +1=0 C. (x-1)(x +2)=0 D. (x-1)2+1=08. (2014江苏省苏州市,8,3分)二次函数y=ax 2+bx-1(a≠0)的图象经过点(1,1),则代数式1-a-b的值为( )A. -3B. -1C. 2D. 59. (2014江苏省苏州市,9,3分)如图,港口A 在观测站O 的正东方向,OA=4 km ,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船航行的距离(即AB 的长)为( )A. 4 kmB. 2 3 kmC. 2 2 kmD. ()3+1km第9题10. (2014江苏省苏州市,10,3分)如图,△AOB 为等腰三角形,顶点A 的坐标为()2,5,底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A ′O ′B ′,点A的对应点A′在x轴上,则点O′的坐标为( ) A. ⎝⎛⎭⎫203,103 B. ⎝ ⎛⎭⎪⎫163,453 C. ⎝ ⎛⎭⎪⎫203,453 D. ⎝⎛⎭⎫163,43第10题二、 填空题(本大题共8小题,每小题3分,共24分。
苏州市2014年中考数学试卷
苏州市2014年中考数学试卷(满分:130分时间:120分钟)一、选择题(本大题共10小题,每小题3分,共30分)1. (-3)×3的结果是()A. -9B. 0C. 9D. -62. 已知∠α和∠β是对顶角,若∠α=30°,则∠β的度数为()A. 30°B. 60°C. 70°D. 150°3. 有一组数据:1,3,3,4,5,这组数据的众数为()A. 1B. 3C. 4D. 54. 若式子x-4在实数范围内有意义,则x的取值范围是()A. x≤-4B. x≥-4C. x≤4D. x≥45. 如图,一个圆形转盘被分成6个圆心角都为60°的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是()A. 14 B.13 C.12 D.23第5题第6题6. 如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A. 30°B. 40°C. 45°D. 60°7. 下列关于x的方程有实数根的是()A. x2-x+1=0B. x2+x+1=0C. (x-1)(x+2)=0D. (x-1)2+1=08. 二次函数y=ax2+bx-1(a≠0)的图象经过点(1,1),则代数式1-a-b 的值为()A. -3B. -1C. 2D. 59. 如图,港口A在观测站O的正东方向,OA=4 km.某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A. 4 kmB. 2 3 kmC. 2 2 kmD. ()3+1km第9题 第10题10. 如图,△AOB 为等腰三角形,顶点A 的坐标为()2,5,底边OB 在x 轴上.将 △AOB 绕点B 按顺时针方向旋转一定角度后得△A ′O ′B ,点A 的对应点A′在x 轴上,则点O′的坐标为( )A. ⎝⎛⎭⎫203,103B. ⎝⎛⎭⎫163,453C. ⎝⎛⎭⎫203,453D. ⎝⎛⎭⎫163,43 二、 填空题(本大题共8小题,每小题3分,共24分) 11. 32的倒数是________.12. 已知地球的表面积约为510 000 000 km 2.数510 000 000用科学记数法可以表示为 ________.13. 已知正方形ABCD 的对角线AC =2,则正方形ABCD 的周长为________.14. 某学校计划开设A ,B ,C ,D 四门校本课程供全体学生选修,规定每人必须并且只 能选修其中一门.为了了解各门课程的选修人数,现从全体学生中随机抽取了部分学生 进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为1 200名,由此可以估计选修C 课程的学生有________名.第14题 第15题15. 如图,在△ABC 中,AB =AC =5,BC =8.若∠BPC =12∠BAC ,则tan ∠BPC =________.16. 某地准备对一段长120 m 的河道进行清淤疏通.若甲工程队先用 4天单独完成其中 一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单 独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河 道x m ,乙工程队平均每天疏通河道y m ,则(x +y)的值为________.17. 如图,在矩形ABCD 中,AB BC =35.以点B 为圆心,BC 长为半径画弧,交边AD 于点E.若AE·ED =43,则矩形ABCD 的面积为________.第17题 第18题18. 如图,直线l 与半径为4的⊙O 相切于点A ,P 是⊙O 上的一个动点(不与点A 重合), 过点P 作PB ⊥l ,垂足为B ,连接PA.设PA =x ,PB =y ,则(x -y)的最大值是________. 三、 解答题(本大题共11小题,共76分) 19. (本小题满分5分)计算:22+|-1|- 4.20. (本小题满分5分)解不等式组:⎩⎪⎨⎪⎧x -1>2,2+x ≥2(x -1).21. (本小题满分5分)先化简,再求值:xx 2-1÷⎝ ⎛⎭⎪⎫1+1x -1,其中x =2-1.22. (本小题满分6分)解分式方程:x x -1+21-x =3.23. (本小题满分6分)如图,在Rt △ABC 中,∠ACB =90°,点D 、F 分别在AB 、AC 上,CF =CB.连接CD ,将线段 CD 绕点C 按顺时针方向旋转90°后得CE ,连接EF. (1) 求证:△BCD ≌△FCE ;(2) 若EF ∥CD ,求∠BDC 的度数.第23题24. (本小题满分7分)如图,函数y =-12x +b 的图象与x 轴、y 轴分别交于点A 、B ,与函数y =x 的图象交于点M ,点M 的横坐标为2.在x 轴上有一点P(a ,0)(其中a>2),过点P作x轴的垂线,分别交函数y=-12x+b和y=x的图象于点C、D.(1) 求点A的坐标;(2) 若OB=CD,求a的值.第24题25. (本小题满分7分)如图,用红、蓝两种颜色随机地对A、B、C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色.请用列举法(画树状图或列表)求A、C两个区域所涂颜色不相同的概率.第25题26. (本小题满分8分)如图,函数y=kx(x>0)的图象经过点A、B,点A的坐标为(1,2).过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D ,过点B 作 BE ⊥CD ,垂足E 在线段CD 上,连接OC ,OD. (1) 求△OCD 的面积;(2) 当BE =12AC 时,求CE 的长.第26题27. (本小题满分8分)如图,⊙O 上依次有A 、B 、C 、D 四个点,AD ︵=BC ︵,连接AB 、 AD 、BD ,弦AB 不经过圆心O.延长AB 到E ,使BE =AB.连接EC ,F 是EC 的中点, 连接BF.(1) 若⊙O 的半径为3,∠DAB =120°,求劣弧BD ︵的长; (2) 求证:BF =12BD ;(3) 设G 是BD 的中点.探索:在⊙O 上是否存在点P(不同于点B),使得PG =PF ?并 说明PB 与AE 的位置关系.第27题28. (本小题满分9分)如图,l 1⊥l 2,⊙O 与l 1、l 2都相切,⊙O 的半径为2 cm.矩形ABCD 的边AD 、AB 分别与l 1、l 2重合,AB =4 3 cm ,AD =4 cm.若⊙O 与矩形ABCD 沿l 1 同时向右移动,⊙O 的移动速度为3 cm/s ,矩形ABCD 的移动速度为4 cm/s ,设移动时 间为t(s).第28题(1) 如图①,连接OA 、AC ,则∠OAC 的度数为________;(2) 如图②,两个图形移动一段时间后,⊙O 到达⊙O 1的位置,矩形ABCD 到达A 1B 1C 1D 1的位置,此时点O 1、A 1、C 1恰好在同一直线上,求圆心O 移动的距离(即OO 1的长);(3) 在移动过程中,圆心O 到矩形对角线AC 所在直线的距离在不断变化,设该距离为d(cm).当d<2时,求t 的取值范围.(解答时可以利用备用图画出相关示意图)29. (本小题满分10分)如图,二次函数y =a(x 2-2mx -3m 2)(其中a 、m 是常数,且a>0, m>0)的图象与x 轴分别交于点A 、B(点A 位于点B 的左侧),与y 轴交于点C(0,-3), 点D 在二次函数的图象上,CD ∥AB ,连接AD.过点A 作射线AE 交二次函数的图象于 点E ,AB 平分∠DAE.(1) 用含m 的代数式表示a ; (2) 求证:ADAE为定值;(3) 设该二次函数图象的顶点为F.探索:在x 轴的负半轴上是否存在点G ,连接GF ,以线段GF 、AD 、AE 的长度为三边长的三角形是直角三角形?如果存在,只要找出 一个满足要求的点G 即可,并用含m 的代数式表示该点的横坐标;如果不存在,请说明理由.第29题苏州市2014年中考数学试卷1. A [解析]不为0的两数相乘,同号得正,异号得负,并把它们的绝对值相乘.2. A [解析]对顶角相等.3. B [解析]众数是指一组数据中出现次数最多的数据.4. D [解析]二次根式有意义,必须满足被开方数是非负数.由x -4≥0,得x ≥4.5. D [解析]设圆的面积为6S(S>0),则阴影区域的面积为4S ,根据概率的计算公式得:P(指针指向阴影区域)=4S 6S =23.6. B [解析]∵ AB =AD ,∴ ∠ADB =∠B =80°.根据三角形外角的性质得 ∠ADB =∠DAC +∠C =80°.又∵ AD =DC ,∴ ∠C =∠DAC =12×80°=40°.7. C [解析]方程ax 2+bx +c =0(a ≠0)有实数根的条件是它的根的判别式Δ=b 2-4ac ≥0,计算四个选项中方程的Δ的值判断即可.注意选项C 、D 也可以如下考虑:选项C 中的方程可解出x 1=1、x 2=-2,满足题意;选项D 可从非负数的角度说明方程没有实数根.8. B [解析]把点(1,1)代入函数表达式y =ax 2+bx -1,得a +b -1=1,即a +b =2,∴ 1-a -b =1-(a +b)=-1.9. C [解析]如图,过点A 作AD ⊥OB 于D.在Rt △AOD 中,由∠ADO =90°,∠AOD=30°,OA =4 km 得AD =12OA =2 km.在Rt △ABD 中,∠B =∠CAB -∠AOB =75°-30°=45°=∠BAD ,∴ BD =AD =2 km.因此AB =22+22=22(km).第9题 第10题 第15题10. C [解析]如图,过点A 作AC ⊥OB 于C ,过点O′作O′D ⊥A′B 于D.由AB =AO ,A ()2,5得BC =OC =2,AC = 5.在Rt △ACB 中,AB =22+(5)2=3.由旋转的性质,得BO′=OB =4,∠A ′BO ′=∠ABO ,又∠O′DB =∠ACB =90°,∴ △ACB ∽△O ′DB.∴ O′D 5=BD 2=43.解得O′D =435,BD =83,即OD =4+83=203.因此点O′的坐标为⎝⎛⎭⎫203,435. 11. 23 [解析]由乘积为1的两个数互为倒数得32的倒数是1÷32=1×23=23.12. 5.1×108 [解析]科学记数法的表示形式为a ×10n ,其中1≤|a|<10,n 为整数.当原数的绝对值大于10时,n 的值等于原数的整数位数减去1.13. 4 [解析]设正方形的边长为a(a>0),则a 2+a 2=(2)2,解得a =1,因此正方形ABCD 的周长4a =4.14. 240 [解析]选修C 课程的学生在样本中所占比例为1020+12+10+8=15,由样本估计总体,得选修C 课程的学生在该校全体学生中有1 200×15=240(名).15. 43 [解析]如图,过点A 作AE ⊥BC 于点E ,由AB =AC =5,得BE =12BC =4,∠BAE =12∠BAC ,∴ ∠BPC =∠BAE.在Rt △BAE 中,由勾股定理得AE =52-42=3,∴ tan∠BAE =BE AE =43.因此tan ∠BPC =43.16. 20 [解析]由题意,得⎩⎪⎨⎪⎧4x +9y =120,8x +3y =120,两式相加,得12(x +y)=240,∴ x +y =20.17. 5 [解析]设AB =3x(x>0),则BC =5x.连接BE ,由题意得AD =BE =5x.在Rt △BAE 中,由勾股定理得AE =4x ,则DE =5x -4x =x.根据AE·ED =43,得4x·x =43,∴ x 2=13.∴ 矩形ABCD 的面积为AB·BC =15x 2=5.18. 2 [解析]如图,作直径AC ,连接CP ,易证△APC ∽△PBA ,得AP AC =BP AP ,即x 8=yx ,∴ y =18x 2.因此x -y =x -18x 2=-18x 2+x =-18(x -4)2+2.∵ x 的取值范围是0<x ≤8,∴ 当x =4 时,x -y 有最大值2.第18题19. [解析]先利用乘方的意义、绝对值的意义、平方根的概念化简每一个加数,再求算式的结果.解:原式=4+1-2=3.20. [解析]先求出不等式组中每一个不等式的解集,再利用数轴取它们的公共部分作为原不等式组的解集.解:解x -1>2,得x>3;解2+x ≥2(x -1),得x ≤4,∴ 不等式组的解集是3<x ≤4.21. [解析]按照分式混合运算的顺序,先计算括号内分式的加减运算,然后将分式的除法运算转化为分式的乘法运算,约分成最简分式后代入求值.解:原式=x(x +1)(x -1)÷x -1+1x -1=x (x +1)(x -1)×x -1x =1x +1.当x =2-1时,原式=12-1+1=12=22.22. [解析]先去分母,将分式方程转化为整式方程,求出整式方程的解,再代入去分母时的最简公分母计算,看结果是否等于0,检验此解是否是原分式方程的解.解:方程两边同乘x -1,得x -2=3x -3.解得x =12.检验:当x =12时,x -1 的值不等于0,∴ x =12是原分式方程的解.23. [解析](1) 由旋转的性质可得CD =CE ,根据“同角的余角相等”可说明∠BCD =∠FCE ,结合CF =CB ,利用“SAS”即可证明△BCD ≌△FCE ;(2) 由(1)中的△BCD ≌△FCE 得∠BDC =∠E ,转化为求∠E 的度数.解:(1) ∵ CD 绕点C 按顺时针方向旋转90°得CE ,∴ CD =CE ,∠DCE =90°.∵ ∠ACB =90°,∴ ∠BCD =90°-∠ACD =∠FCE.在△BCD 和△FCE 中,⎩⎪⎨⎪⎧CB =CF ,∠BCD =∠FCE ,CD =CE ,∴ △BCD ≌△FCE ;(2) 由△BCD ≌△FCE得∠BDC =∠E.∵ EF ∥CD ,∴ ∠E =180°-∠DCE =90°.∴ ∠BDC =90°.24. [解析](1) 先利用直线y =x 上的点的坐标特征得M(2,2),把M(2,2)代入y =-12x+b 可计算出b =3,即得y =-12x +3,令y =0可确定A 点坐标;(2) 由B 点(0,3)得OB=3,注意到DC ⊥x 轴,用a 表示点C 、D 的坐标,则DC 的长可用a 来表示,根据OB =CD 构造方程求解.解:(1) ∵ 点M 在函数y =x 的图象上,且横坐标为2,∴ 点M 的纵坐标为2.∵ 点M(2,2)在一次函数y =-12x +b 的图象上,∴ -12×2+b =2.∴ b =3.∴ 一次函数的表达式为y =-12x +3.令y =0,得x =6.∴ 点A 的坐标为(6,0);(2) 由题意得C ⎝⎛⎭⎫a ,-12a +3,D(a ,a).∵ OB =CD ,∴ a -⎝⎛⎭⎫-12a +3=3,解得 a =4. 25. [解析]画树状图得出A 、B 、C 三个区域进行涂色所有等可能的结果数,找出A 与C 中颜色不同的情况数,利用概率的计算公式求解.解:用树状图表示如下:第25题从树状图看出所有等可能的结果有8种,其中A 、C 两个区域所涂颜色不相同的有4种,∴ P(A 、C 两个区域所涂颜色不相同)=48=12. 26. [解析](1) 利用已知点A(1,2),根据待定系数法确定函数表达式,从而求出点D 的坐标,进而可求△OCD 的面积;(2) 由BE 的长先求出点B 的纵坐标,结合点在函数图象上,可得点B 的横坐标,注意到CD ∥x 轴,利用CE =x E -x C 可得CE 的长.解:(1) ∵ 反比例函数y =k x 的图象经过点A(1,2),∴ k =2.此时y =2x.又∵ AC ∥y 轴,AC =1,∴ 点C 的坐标为(1,1).∵ CD ∥x 轴,点D 在函数图象上,∴ 点D 的坐标为(2,1).∴ S △OCD =12×1×1=12;(2) ∵ BE =12AC ,∴ BE =12.∵ BE ⊥CD ,∴ 点B 的纵坐标为32.代入y =2x得点B 的横坐标为43,即点E 的横坐标为43.∴ CE =43-1=13. 27. [解析](1) 连接OB 、OD ,由圆心角与对应弧的关系可以求出∠BOD =120°,利用弧长公式可求出劣弧BD ︵ 的长;(2) 连接AC ,先根据三角形中位线定理得出BF =12AC ,再利用“同一个圆中,等弧对等弦”说明BD =AC ,进而得出BF =12BD ;(3) 首先过点B 作AE 的垂线,与⊙O 的交点即为所求的点P ,证明△PBG ≌△PBF(SAS),得PG =PF.由此可以说明在⊙O 上存在满足题意的点P ,以及PB 与AE 的垂直关系.解:(1) 如图,连接OB 、OD.∵ ∠DAB =120°,∴ DCB ︵ 所对圆心角的度数为240°.∴ ∠BOD =120°.∵ ⊙O 的半径为3,∴ 劣弧BD ︵ 的长为120180×π×3=2π;(2) 连接AC.∵ AB =BE ,∴ B 为AE 的中点.∵ F 是EC 的中点,∴ BF 为△EAC 的中位线.∴ BF =12AC.∵ AD ︵=BC ︵,∴ AD ︵+AB ︵=BC ︵+AB ︵.∴ DAB ︵=CBA ︵.∴ BD =AC.∴ BF =12BD ;(3) 过点B 作AE 的垂线,与⊙O 的交点即为所求的点P.∵ BF 为△EAC 的中位线,∴ BF ∥AC.∴ ∠FBE =∠CAE.∵ AD ︵=BC ︵,∴∠CAB =∠DBA.∴ ∠FBE =∠DBA.∵ 由作法可知,BP ⊥AE ,∴ ∠GBP =∠FBP.∵ G 为BD 的中点,∴ BG =12BD.∴ BG =BF.又∵ BP =BP ,∴ △PBG ≌△PBF.∴ PG =PF.综上所述:在⊙O 上存在点P(不同于点B),使得PG =PF ,此时PB ⊥AE.第27题28. [解析](1) 利用切线的性质以及锐角三角函数分别求出∠OAD =45°,∠DAC =60°,相加即得∠OAC 的度数;(2) 在 位置二中,设⊙O 1与l 1的切点为E ,先求出∠C 1A 1D 1=60°,再利用A 1E =AA 1-OO 1-2构造关于t 的方程,解出t 的值,进而由OO 1=3t 得出答案;(3) 由圆的半径为2 cm 可知,当⊙O 与直线AC 相切时,d =2,所以可从直线AC 与⊙O 相切时的极端情况入手:当直线AC 与⊙O 第一次相切时,设移动时间为t 1;当直线AC 与⊙O 第二次相切时,设移动时间为t 2,利用t 1<t<t 2确定t 的取值范围.解:(1) 105°;(2) 如图,在位置二,当O 1、A 1、C 1恰好在同一直线上时,设⊙O 1与l 1的切点为E ,连接O 1E.可得O 1E =2 cm ,O 1E ⊥l 1.在Rt △A 1D 1C 1中,∵ A 1D 1=4 cm ,C 1D 1=4 3 cm ,∴ tan ∠C 1A 1D 1= 3.∴ ∠C 1A 1D 1=60°.在Rt △A 1O 1E 中,∠O 1A 1E =∠C 1A 1D 1=60°,∴ A 1E =2tan 60°=233(cm).∴ A 1E =AA 1-OO 1-2=(t -2)cm.∴ t -2=233.∴ t =233+2.∴ OO 1=3t =()23+6cm ;(3) ① 当直线AC 与⊙O 第一次相切时,设移动时间为t 1.如图,在位置一,此时⊙O 移动到⊙O 2的位置,矩形ABCD 移动到A 2B 2C 2D 2的位置.设⊙O 2与直线l 1、A 2C 2分别相切于点F 、G ,连接O 2F 、O 2G 、O 2A 2.∴ O 2F ⊥l 2,O 2G ⊥A 2C 2.由(2)可得∠C 2A 2D 2=60°,∴ ∠GA 2F =120°.∴ ∠O 2A 2F =60°.在Rt △A 2O 2F 中,O 2F =2 cm ,∴ A 2F =233cm.∵ OO 2=3t 1,AF =AA 2+A 2F =⎝⎛⎭⎫4t 1+233 cm ,∴ 4t 1+233-3t 1=2.解得 t 1=2-233;② 当直线AC 与⊙O 第二次相切时,设移动时间为t 2.如图,在位置三,由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等.∴ 233+2-⎝⎛⎭⎫2-233=t 2-⎝⎛⎭⎫233+2.∴ t 2=2+2 3.综上所述,当 d<2时,t 的取值范围是2-233<t<2+2 3. 第28题29. [解析](1) 由点C 的坐标适合二次函数的表达式可得到a 与m 的关系;(2) 先用m 的代数式表示点A 、B 的坐标,分别过点D 、E 作x 轴的垂线,垂足为M 、N.证△ADM ∽△AEN得AD AE =AM AN =DM EN,由此可用m 的代数式表示E(4m ,5),即AM =3m ,AN =5m ,从而可证出AD AE =AM AN =3m 5m =35(定值);(3) 要使以线段GF 、AD 、AE 的长度为三边长的三角形是直角三角形,且(2)中AD AE =35,则可考虑GF 使得AD ∶GF ∶AE =3∶4∶5即可.注意到AD 、AE 、F 点都固定,且G 在x 轴的负半轴上,不妨连接FC 并延长交x 轴于点G ,转化为证明GF AD =43即可.解:(1) 将C(0,-3)代入函数表达式得a ()0-3m 2=-3.∴ a =1m 2;(2) 如图,过点D 、E 分别作x 轴的垂线,垂足为M 、N.由a(x 2-2mx -3m 2)=0解得x 1=-m ,x 2=3m.∵ 点A 位于点B 的左侧,m>0,∴ A(-m ,0),B(3m ,0).∵ CD ∥AB ,∴ 点D 的坐标为(2m ,-3).∵ AB 平分∠DAE ,∴ ∠DAM =∠EAN.∵ ∠DMA =∠ENA =90°,∴ △ADM ∽△AEN.∴AD AE =AM AN =DM EN .设点E 的坐标为⎣⎡⎦⎤x ,1m 2(x 2-2mx -3m 2),∴ 31m 2(x 2-2mx -3m 2)=3m x -(-m ).∴ x =4m.∴ E(4m ,5),此时AM =AO +OM =m +2m =3m ,AN =AO +ON =m +4m =5m.∴ AD AE =AM AN =3m 5m =35(定值); (3) 连接FC 并延长,与x 轴负半轴交于一点,此点即为所求的点G.由题意,得二次函数图象顶点F 的坐标为(m ,-4).过点F 作FH ⊥x 轴于点H.∵ tan ∠CGO =OC OG ,tan ∠FGH =HF HG ,∴ OC OG =HF HG.∴OG =3m.此时,GF =GH 2+HF 2=16m 2+16=4m 2+1,AD =AM 2+MD 2=9m 2+9=3m 2+1,∴ GF AD =43.由(2)得AD AE =35,∴ AD ∶GF ∶AE =3∶4∶5,∴ 以线段GF 、AD 、AE 的长度为三边长的三角形是直角三角形.因此存在点G 满足条件,此时G 点横坐标为-3m.第29题。
2014年苏州市初中毕业暨升学考试数学试卷
2014年苏州市初中毕业暨升学考试数学试卷(满分120分考试时间120分钟)一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.........1.(-3)×3的结果是()A.-9B.0C.9D.-62.已知∠α和∠β是对顶角,若∠α=30°,则∠β的度数为()A.30°B.60°C.70°D.150°3.有一组数据:1,3,3,4,5,这组数据的众数为()A.1B.3C.4D.54.若式子-在实数范围内有意义,则x的取值范围是()A.x≤-4B.x≥-4C.x≤4D.x≥45.如图,一个圆形转盘被分成6个圆心角都为60°的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是()A.B.C.D.6.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°(第5题图)(第6题图)7.下列关于x的方程有实数根的是()A.x2-x+1=0B.x2+x+1=0C.(x-1)(x+2)=0D.(x-1)2+1=08.二次函数y=ax2+bx-1(a≠0)的图象经过点(1,1),则代数式1-a-b的值为()A.-3B.-1C.2D.59.如图,港口A在观测站O的正东方向,OA=4km.某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.4kmB.2kmC.2kmD.(+1)km10.如图,△AOB为等腰三角形,顶点A的坐标为(2,底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A'O'B,点A的对应点A'在x轴上,则点O'的坐标为()A.B.C.D.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上..........11.的倒数是.12.已知地球的表面积约为510000000km2,数510000000用科学记数法可以表示为.13.已知正方形ABCD的对角线AC=则正方形ABCD的周长为.14.某学校计划开设A,B,C,D四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门.为了了解各门课程的选修人数,现从全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为1200名,由此可以估计选修C课程的学生有人.15.如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=∠BAC,则tan∠BPC=.16.某地准备对一段长120m的河道进行清淤疏通.若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道x m,乙工程队平均每天疏通河道y m,则(x+y)的值为.17.如图,在矩形ABCD中,.以点B为圆心,BC长为半径画弧,交边AD于点E,若AE·ED=,则矩形ABCD的面积为.18.如图,直线l与半径为4的☉O相切于点A,P是☉O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x-y)的最大值是.(第17题图)(第18题图)三、解答题:本大题共11小题,共76分.把解答过程写在答题卡相应位置上........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.(本题满分5分)计算:22+|-1|-.20.(本题满分5分)解不等式组:--21.(本题满分5分)先化简,再求值:--,其中x=-1.22.(本题满分6分)解分式方程:--=3.23.(本题满分6分)如图,在Rt△ABC中,∠ACB=90°,点D,F分别在AB,AC上,CF=CB.连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.24.(本题满分7分)如图,已知函数y=-x+b的图象与x轴、y轴分别交于点A,B,与函数y=x的图象交于点M,点M的横坐标为2.在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=-x+b和y=x的图象于点C,D.(1)求点A的坐标;(2)若OB=CD,求a的值.25.(本题满分7分)如图,用红、蓝两种颜色随机地对A,B,C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色.请用列举法(画树状图或列表)求A,C两个区域所涂颜色不相同的概率.26.(本题满分8分)如图,已知函数y=(x>0)的图象经过点A,B,点A的坐标为(1,2).过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC,OD.(1)求△OCD的面积;(2)当BE=AC时,求CE的长.27.(本题满分8分)如图,已知☉O上依次有A,B,C,D四个点,,连接AB,AD,BD,弦AB不经过圆心O.延长AB到E,使BE=AB.连接EC,F是EC的中点,连接BF.(1)若☉O的半径为3,∠DAB=120°,求劣弧的长.(2)求证:BF=BD.(3)设G是BD的中点.探索:在☉O上是否存在点P(不同于点B),使得PG=PF?并说明PB与AE的位置关系.28.(本题满分9分)如图,已知l1⊥l2,☉O与l1,l2都相切,☉O的半径为2cm.矩形ABCD的边AD,AB分别与l1,l2重合,AB=4cm,AD=4cm.若☉O与矩形ABCD沿l1同时..向右移动,☉O的移动速度为3 cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s).(1)如图①,连接OA,AC,则∠OAC的度数为°;(2)如图②,两个图形移动一段时间后,☉O到达☉O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm).当d<2时,求t的取值范围.(解答时可以利用备用图画出相关示意图)29.(本题满分10分)如图,二次函数y=a(x2-2mx-3m2)(其中a,m是常数,且a>0,m>0)的图象与x轴分别交于点A,B(点A位于点B的左侧),与y轴交于点C(0,-3),点D在二次函数的图象上,CD∥AB,连接AD.过点A作射线AE 交二次函数的图象于点E,AB平分∠DAE.(1)用含m的代数式表示a.(2)求证:为定值.(3)设该二次函数图象的顶点为F.探索:在x轴的负半轴上是否存在点G,连接GF,以线段GF,AD,AE 的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.2014年苏州市初中毕业暨升学考试数学试卷参考答案1.A2.A3.B4.D5.D6.B7.C8.B9.C10.C11.12.5.1×10813.414.24015.16.2017.518.219.解:原式=4+1-2=3.20.解:解x-1>2,得x>3.解2+x≥2(x-1),得x≤4.所以不等式组的解集是3<x≤4.21.解:原式=---=--.当x=1时,原式=-.22.解:去分母,得x-2=3x-3.解得x=.检验:当x=时,x-1≠0,所以x=是原方程的解.23.(1)证明:∵CD绕点C顺时针方向旋转90°得CE,∴CD=CE,∠DCE=90°.∵∠ACB=90°,∴∠BCD=90°-∠ACD=∠FCE.在△BCD和△FCE中,∴△BCD≌△FCE.(2)解:由△BCD≌△FCE,得∠BDC=∠E.∵EF∥CD,∴∠E=180°-∠DCE=90°.∴∠BDC=90°.24.解:(1)∵点M在函数y=x的图象上,且横坐标为2,∴点M的纵坐标为2.∵点M(2,2)在一次函数y=-x+b的图象上,∴-×2+b=2.∴b=3.∴一次函数的表达式为y=-x+3.令y=0,得x=6.∴点A的坐标为(6,0).(2)由题意得C-,D(a,a).∵OB=CD,∴a--=3.∴a=4.25.解:用树状图表示:∴P(A,C两个区域所涂颜色不相同)=.26.解:(1)∵反比例函数y=的图象经过点A(1,2),∴k=2.∵AC∥y轴,AC=1,∴点C的坐标为(1,1).∵CD∥x轴,点D在函数图象上,∴点D的坐标为(2,1).∴S△OCD=×1×1=.(2)∵BE=AC,∴BE=.∵BE⊥CD,∴点B的纵坐标为.∴点B的横坐标为.∴点E的横坐标为.∴CE=-1=.27.(1)解:连接OB,OD.∵∠DAB=120°,∴所对圆心角的度数为240°.∴∠BOD=120°.∵☉O的半径为3,∴劣弧的长为×π×3=2π.(2)证明:连接AC.∵AB=BE,∴点B为AE的中点.∵F是EC的中点,∴BF为△EAC的中位线.∴BF=AC.∵,∴,∴.∴BD=AC.∴BF=BD.(3)解:过点B作AE的垂线,与☉O的交点即为所求的点P.∵BF为△EAC的中位线,∴BF∥AC.∴∠FBE=∠CAE.∵,∴∠CAB=∠DBA.∴∠FBE=∠DBA.∵BP⊥AE,∴∠GBP=∠FBP.∵G为BD的中点,∴BG=BD.∴BG=BF.∵BP=BP,∴△PBG≌△PBF.∴PG=PF.28.解:(1)105°.(2)如图,当O1,A1,C1恰好在同一直线上时,设☉O1与l1的切点为E,连接O1E.可得O1E=2,O1E⊥l1.在Rt△A1D1C1中,∵A1D1=4,C1D1=4,∴tan∠C1A1D1=.∴∠C1A1D1=60°.在Rt△A1O1E中,∠O1A1E=∠C1A1D1=60°,∴A1E=.∵A1E=AA1-OO1-2=t-2,∴t-2=,∴t=+2.∴OO1=3t=2+6.(3)①当直线AC与☉O第一次相切时,设移动时间为t1.如图,此时☉O移动到☉O2的位置,矩形ABCD移动到A2B2C2D2的位置.设☉O2与直线l1,A2C2分别相切于点F,G,连接O2F,O2G,O2A2,∴O2F⊥l1,O2G⊥A2C2.由(2)可得∠C2A2D2=60°,∴∠GA2F=120°.∴∠O2A2F=60°.在Rt△A2O2F中,O2F=2,∴A2F=.∵OO2=3t1,AF=AA2+A2F=4t1+,∴4t1+-3t1=2,∴t1=2-.②当直线AC与☉O第二次相切时,设移动时间为t2,记第一次相切时为位置一,点O1,A1,C1共线时为位置二,第二次相切时为位置三.由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等.∴+2--=t2-,∴t2=2+2.综上所述,当d<2时,t的取值范围是2-<t<2+2.29.(1)解:将C(0,-3)代入函数表达式得a(0-3m2)=-3.∴a=.(2)证明:如图,过点D,E分别作x轴的垂线,垂足为M,N.由a(x2-2mx-3m2)=0,解得x1=-m,x2=3m.∴A(-m,0),B(3m,0).∵CD∥AB,∴点D的坐标为(2m,-3).∵AB平分∠DAE,∴∠DAM=∠EAN.∵∠DMA=∠ENA=90°,∴△ADM∽△AEN.∴.设点E的坐标为--,.∴----∴x=4m.∴(定值).(3)解:连接FC并延长,与x轴负半轴交于一点,此点即为所求的点G.由题意得,二次函数图象顶点F的坐标为(m,-4).过点F作FH⊥x轴于点H.∵tan∠CGO=,tan∠FGH=,∴,∴OG=3m.此时,GF==4,AD==3, ∴.由(2)得,∴AD∶GF∶AE=3∶4∶5.∴以线段GF,AD,AE的长度为三边长的三角形是直角三角形,此时G点横坐标为-3m.。
2014苏州中考数学试卷分析
2014中考数学试卷分析一、试卷的基本结构整个试卷分三部分,共29个题目,130分。
第一部分为选择题,共10个题目,30分。
第二部分为填空题,共8个题目,24分。
第三部分为解答题(包括计算题、几何证明题、函数题和动态综合题)共11个题目,76分。
二、考查的内容及分布本次中考基础分105分。
内容覆盖了初中全部的主要知识点,包括实数、方程、不等式、三角形、概率、函数、圆、三角函数等常考知识点。
考查知识点在各年级所占的比例选择题(30分)填空题(30分)解答题(76分)分值百分比七年级1、2、6 11、12、16 19、20 28 21.5%57 43.9% 八年级3、4、5、10 13、14 21、22、23、24、25、26九年级7、8、9 15、17、18 27、28、29 45 34.6%分析试卷中各题在三个年级段所占比例来讲,八年级九年级的比例相对大一点。
七、八年级所学的知识在基础题和中等难度题目中出现比较多,而九年级的知识相对来讲偏难一点多出现在压轴题中,比如圆的几何证明、圆与四边形动点、二次函数动点,最后三题都出现在九年级内容中。
这次中考试题都是常规题,题型基本平时都有见过。
但是,有些必考题这次没有考到,例如三角函数的实际应用,以前大题目中肯定会出现一题,但这次没有在大题目中出现,只在选择题倒数第二题中出现了,难度不大。
统计题也没有以大题目的形式出现,只在填空题第四题出现了,简单易做。
应用题大题目也没有考到,只在填空题第六题中出现了,二元一次工程问题。
三、试卷考点和分值1、数与式(共14分,占10.8%)(1)实数·······················································11分(基础必考)(2)分式及数的开方············································3分(基础必考)2、方程与不等式组(共11分,占8.5%)(2)不等式组··················································5分(基础必考)(3)一元二次方程··············································3分(4)二元一次方程应用题········································3分3、函数及其图象(共28分,占21.5%)(1)一次函数··················································7分(难点必考)(2)反比例函数················································8分(难点必考)(3)二次函数··················································13分(难点必考)4、图形的认识(共38分,占29.2%)(1)角度的计算················································3分(2)三角形及三角形全等········································12分(3)四边形····················································6分(4)解直角三角形··············································6分(重点必考)(5)圆························································11分(难点必考)6、统计与概率(共16分,占12.3%)(1)统计·······················································6分(基础必考) (2)概率······················································10分(基础必考7、动点综合(共19分,占14.6%)··································19分(难点必考)四、试卷总体分析这次卷子的选择题10题的难度都不大,选择最后一题属于中等难度,是一道利用三角函数算点的坐标的题目,只要用常规方法做辅助线便可得出。
2014年江苏省苏州市中考数学试卷-答案
江苏省苏州市2014年中考数学试卷数学答案解析第Ⅰ卷∴2BD AD ==,∴222AB AD ==,故选C.12AC OB A B O D ''=, 53OB A B ='3,∴的坐标为(,3【考点】勾股定理,等腰三角形的性质,等积变化思想,转化思想第Ⅱ卷111143AE ED =,即43x x =,则可得315m m m =【解析】用树状图表示413233∵O的半径为2)证明:连接F是EC的中点,∴的垂线,与O 的交点即为所求的点AC ,∴∠,∵由作法可知与O 的交点即为所求的点,可证得同弧所对自的圆心角与圆周之间的数量关系,弧长公式,恰好在同一直线上时,设1O 与1l 的切点为13=,∴23与O 第一次相切时,设移动时间为如图,此时O 移动到2O 的位置,矩形设2O 与直线1l ,22A C 分别相切于点21O F l ⊥,222O G A G ⊥,由(2)得,60C A D ∠=︒,∴Rt A O F △与O 第二次相切时,设移动时间为记第一次相切时为位置一,点由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等,23)t -=)设此时1O 与1l 的切点为解之即可求得t .由1O O =)分别求出两种特殊位置的与O 第一次、第二次相切时的与O 第一次相切时,设移动时间为1t ,结合(长,再由AF OO O -=的半径,得到关于1t 的方程,解之可得与O 第设移动时间为,由第一次相切到1O ,1A ,C 二次相切时间,可得关于的方程,解之可得解直角三角形,直线与圆的位置关系,-. ∴以线段GF,AD,AE的长度为三边长的三角形是直角三角形,此时G点的横坐标为3m11 / 11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省苏州市2014年中考数学试卷
一、选择题(共10小题,每小题3分,共30分)
4.(3分)(2014•苏州)若式子在实数范围内有意义,则x的取值范围是()
查了二次根式的意义和性质.概念:式子(
5.(3分)(2014•苏州)如图,一个圆形转盘被分成6个圆心角都为60°的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是()
B
=
.
6.(3分)(2014•苏州)如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()
C==
8.(3分)(2014•苏州)二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则代数式1
9.(3分)(2014•苏州)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()
km km +1
OA=2
AD=2
OA=2
AD=2.
2
10.(3分)(2014•苏州)如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB 在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B′,点A的对应点A′在x轴上,则点O′的坐标为()
(,,,,)
)
AC=
OA=
×=
×=,
=
,
二、填空题(共8小题,每小题3分,共24分)
11.(3分)(2014•苏州)的倒数是.
的倒数是,
故答案为:.
12.(3分)(2014•苏州)已知地球的表面积约为510000000km2,数510000000用科学记数法可表示为 5.1×108.
13.(3分)(2014•苏州)已知正方形ABCD的对角线AC=,则正方形ABCD的周长为4.
据正方形的对角线等于边长的
AB=÷=1
倍是解题
14.(3分)(2014•苏州)某学校计划开设A、B、C、D四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门,为了了解个门课程的选修人数.现从全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为1200名,由此可以估计选修C课程的学生有240人.
占总体的比例是,
×=240
15.(3分)(2014•苏州)如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=∠BAC,则
tan∠BPC=.
∠
.
BE=BC=BAE=∠
BPC=
BAE=
故答案为:.
16.(3分)(2014•苏州)某地准备对一段长120m的河道进行清淤疏通.若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲
工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,则(x+y)的值为20.
.
17.(3分)(2014•苏州)如图,在矩形ABCD中,=,以点B为圆心,BC长为半径画弧,交边AD于点E.若AE•ED=,则矩形ABCD的面积为5.
,
x=
x=
AB=3x=BC=5x=
×
18.(3分)(2014•苏州)如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x﹣y)的最大值是2.
利用=x
x x(
=
=
x
x x﹣
三、解答题(共11小题,共76分)
19.(5分)(2014•苏州)计算:22+|﹣1|﹣.
20.(5分)(2014•苏州)解不等式组:.
,
21.(5分)(2014•苏州)先化简,再求值:,其中.
÷+
÷
×
,
==
22.(6分)(2014•苏州)解分式方程:+=3.
x=
x=
23.(6分)(2014•苏州)如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.
(1)求证:△BCD≌△FCE;
(2)若EF∥CD,求∠BDC的度数.
24.(7分)(2014•苏州)如图,已知函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=﹣x+b和y=x的图象于点C、D.
(1)求点A的坐标;
(2)若OB=CD,求a的值.
﹣
a+3
﹣(﹣
x+b
﹣
x+3得﹣x+3=0
x+3
a+3
﹣(﹣
25.(7分)(2014•苏州)如图,用红、蓝两种颜色随机地对A、B、C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A、C两个区域所涂颜色不相同的概率.
P=.
26.(8分)(2014•苏州)如图,已知函数y=(x>0)的图象经过点A、B,点A的坐标
为(1,2),过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC、OD.
(1)求△OCD的面积;
(2)当BE=AC时,求CE的长.
(
BE=
,纵坐标是.
CE=
27.(8分)(2014•苏州)如图,已知⊙O上依次有A、B、C、D四个点,=,连接
AB、AD、BD,弦AB不经过圆心O,延长AB到E,使BE=AB,连接EC,F是EC的中点,连接BF.
(1)若⊙O的半径为3,∠DAB=120°,求劣弧的长;
(2)求证:BF=BD;
(3)设G是BD的中点,探索:在⊙O上是否存在点P(不同于点B),使得PG=PF?并说明PB与AE的位置关系.
,再利用弧长公式求出劣弧的长;
AC=,进而BD
,∴
的长为:×π×
=
+=,
=
=
BD
28.(9分)(2014•苏州)如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD 沿l1同时向右移动,⊙O的移动速度为3cm,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)
(1)如图①,连接OA、AC,则∠OAC的度数为105°;
(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d (cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).
cm
cm
DAC==
,
=
t=
+6
F=
+
﹣(
=2+2
2+2
29.(10分)(2014•苏州)如图,二次函数y=a(x2﹣2mx﹣3m2)(其中a,m是常数,且a >0,m>0)的图象与x轴分别交于点A、B(点A位于点B的左侧),与y轴交于C(0,﹣3),点D在二次函数的图象上,CD∥AB,连接AD,过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.
(1)用含m的代数式表示a;
(2)求证:为定值;
(3)设该二次函数图象的顶点为F,探索:在x轴的负半轴上是否存在点G,连接GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.
)求证
中= a=
==
,
,
==
CGO=,=
==4
==3
=
=。